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ABSTRACT

The purpose of this study was to determine the soil and landscape attributes that
contribute towards folic debris slides in the maritime climate of Prince Rupert, British
Columbia. The folic debris slides were shallow (< 1 m) and composed predominantly of
organic material overlying steep bedrock surfaces. Folic debris slides were investigated
through several approaches: characterization of the physical and chemical properties of
folic soils; principal components analysis (PCA) of soil and landscape level attributes of
30 debris slide sites; paired comparison of debris slide and non-debris slide sites;
determination of shear strength values and physical soil properties at the folic soil -
bedrock contact; examination of folic debris slide attributes within the infinite slope
model using ‘Deterministic Level 1 Stability Analysis’ (DLISA). PCA results indicated
that the geologic attributes of slope angle, surface configuration and bedrock structure
and patterns in folic soil horizonation influenced slope instability primarily though
hydrologic means. Saturated conditions, and hence loss of soil adhesion, likely occurred.
Soil adhesion values ranged from 12 to 93 N with a mean value of 32 N. Results
suggested that slope angle, soil cohesion, groundwater ratio and root cohesion most

influenced the stability of folic soils.
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1.0 LITERATURE REVIEW

1.1 Folisols

Folisolic soils are formed primarily of folic material, defined as upland organic
materials, chiefly of forest origin. Organic materials are defined as those containing > 17
% organic carbon by weight. Folic materials qualify as Folisols under the Canadian
System of Soil Classification (Soil Classification Working Group, 1998) in several
profile situations. The folic material must be either > 40 cm thick or > 10 cm thick if it is
directly overlying a lithic contact or fragmental material. Folic materials are also
classified as Folisols if the folic material is twice the thickness of a mineral soil layer if
the mineral layer < 20 cm thick. Green et al. (1993) further classified upland organic
material as humus forms. A humus form is defined as a group of soil horizons that have
formed from organic residues, either separate from or intermixed with mineral materials.
The three orders of humus forms are Mor, Moder and Mull.

Folisols vary from other soils of the Organic order in several significant ways.
Folisols are very seldom saturated in the sense of having a high permanent water table,
but rather tend to be well to imperfectly drained. Folic material is formed principally of
upland organic material as opposed to the peat materials of wetland origin. Finally, folic
materials are subject to upland accumulation and decomposition processes rather than
peat-forming processes associated with wetland conditions (Trowbridge et al., 1985; Soil
Classification Working Group, 1998).

The genesis and morphology of Folisols is principally dependent upon climate

acting through vegetation. The cool, humid climate of northern coastal British Columbia



allows the development of highly productive coniferous forests. Climatic conditions in
this area do not favor decomposition or forest fires hence litter layers can become quite
deep (Lewis and Lavkulich, 1972; Trowbridge et al., 1985). Extremely acid pH values
also likely contribute to low decomposition rates in Folisolic soils (Fox et al, 1987).
Essentially, in this region, litter biomass production exceeds decomposition (Fox et al,
1994). Even bedrock outcrops are ultimately colonized by coniferous forest because of
the accumulation of significant litter layers from neighboring vegetation growing on
thicker soils and the amelioration effect of microclimate by the encroaching forest (Lewis
and Lavkulich, 1972).

For the purpose of this study, the term ‘folic soil’ will be used to describe both
Folisolic soils and some Orthic Regosols that contain at least one horizon of folic

material.

1.2 Debris Slides

Slope movements are named based on the type of movement that occurs and the type
of materials that are displaced. The slope movements dealt with in this study may be
classified as debris slides. Debris particles are defined as inorganic material containing a
significant amount of coarse material, that is 20 to 80 % > 2 mm in diameter. A slide is
defined as a downslope movement consisting of shear strain and displacement along one
or more surfaces that are visible or may be reasonably inferred. Slide movement does not
occur concurrently over the whole of what ultimately becomes the surface of rupture;

instead it propagates from a zone of local failure (Cruden and Varnes, 1996).



The debris slides in the Prince Rupert region may be further classified as
translational slides. Wherein the debris mass progresses on a planar or gently undulating
surface. This type of slide differs from a slump in that it has no rotary movement or
backward tilting characteristics. A translational slide may advance indefinitely if the
plane on which it rests is adequately inclined and as long as the shear resistance remains
lower than the relatively constant driving force. The movement of translational slides is
commonly controlled structurally by surfaces of weakness such as the interface between
the bedrock and overlying material (Cruden and Varnes, 1996). For the purpose of this
study, the term ‘folic debris slide’ refers to a translational movement of debris composed

predominantly of folic debris.

1.3 Natural Factors Influencing Slope Stability

The natural factors influencing the stability of forested slopes can be grouped into
five process-related categories, including geologic, soil, hydrologic and biotic properties
(Schroeder and Alto, 1983). Sidle (1985) included seismicity in the above list; however
siesmicity is unlikely to be an influential factor affecting slope stability in the Prince
Rupert region. Clague (1984) stated that the Prince Rupert area is a zone of potential
major earthquake damage, although reported earthquakes have not been considered in

this thesis to be significant factors in slope failures.

1.3.1 Geologic Properties Influencing Slope Stability

Shallow slope failures are common in regions where mountains have undergone

natural steepening by tectonic uplift and glaciation (Varnes, 1978; Sidle, 1985). Slope



angle can be closely related to shallow slope failures in some areas but it is difficult to
generalize because of other confounding elements (Sidle, 1985; Swanston and Howes,
1994). However, many slopes > 25 © are prone to rapid slope failure and most slopes >
35 © are prone to rapid slope failure (Sidle, 1985).

Bedrock structure can be a significant factor in slope stability. Jointed or
fractured bedrock slopes with principal joints and fracture surfaces parallel to the slope
often provide little mechanical support for overburden. However, joints and fractures
perpendicular to the slope may permit better attachment of the soil to the underlying
bedrock than is often found with more massive igneous and metamorphic bedrock.
Jointing may also create avenues for deep subsurface water flow resulting in the
development of springs and hydrostatic pressure excesses (Sidle, 1985; Swanston and
Howes, 1994).

Slope shape is an important factor in determining the distribution of subsurface
water flow on slopes. Convex slopes tend to disperse subsurface water and tend to be
more stable than concave slopes that concentrate subsurface water into small areas of the
slope (Sidle, 1985; Swanston and Howes, 1994). Slopes with mid to upper slope concave
depressions are thought to be particularly susceptible to slope failure. These depressions
accumulate subsurface water and develop positive pore water pressure, thus decreasing

slope stability (Sidle and Swanston, 1981; Sidle, 1985; Schroeder and Swanston, 1987).



1.3.2 Physical Soil Properties Influencing Slope Stability

Soil shear strength can be defined as a quantitative measure of the resistance of a
soil to failure, shear strength is a function of normal stress on a slip surface, cohesion and
internal angle of friction (Sidle, 1985; Gray and Sotir, 1996).

Normal stress is influenced by the unit weight or density of the soil at field
moisture content as well as by soil depth and slope angle. Pore water pressure at the
failure plane decreases the normal stress to an effective normal stress by behaving as a
buoyant force. However, infiltrating water can encourage slope failure by increasing the
-weight of the soil profile (Sidle, 1985).

Soil cohesion is a function of water content, increasing slightly with increasing

-water content from air dryness and then decreasing rapidly as water content is increased
further. Generally, the point at which cohesive forces are the strongest corresponds to the
-minimum water content at which a soil can be deformed without rupture. In field soils,
<cohesion is complemented by the contribution of rooting strength. The sum of soil and
o0t cohesion is called total cohesion (Sidle, 1985).

Internal angle of friction can be defined as the degree of interlocking between
andividual organic and inorganic grains or aggregates. It is influenced by the shape,
Toundness, size and packing arrangement of these particles. Angular particles have a
Harger internal angle of friction than rounded particles because of their greater
anterlocking capabilities. In addition, soil aggregation may increase interlocking and
therefore the internal angle of friction (Sidle, 1985).

Little published information exists regarding the physical properties of folic

horizons. However, information concerning peat may be relevant because many of the



physical properties of both folic materials and peat are strongly influenced by degree of
decomposition.

Boelter (1968) discussed physical properties of peat in relationship to degree of
decomposition. Some physical properties of any soil are dependent upon porosity and
pore-size distribution that in turn are related to particle-size distribution and the
arrangement of particles. In peat materials, both particle size and structure and the
resulting porosity are principally controlled by degree of decomposition. With increasing
decomposition, the size of the organic particles decreases, resulting in smaller pores and
higher bulk density. Low bulk density, fibric peats contain many large pores that allow
them to drain easily and permit rapid water movement. With increasing decomposition,
bulk density increases and a greater proportion of small pores exist, increasing water
retention and slowing water movement rates (Boelter, 1968).

Saturated water content is higher in less decomposed fibric peat than more
strongly decomposed humic peats. Total porosity decreases gradually with increased
decomposition, but is large for all peat materials. Walmsley (1977) reported porosity
values ranging from 80.7 to 95.2 %, with an average of about 92 %. However there are
significant differences in the amount of water retained under unsaturated conditions,
indicating that pore size distribution is more important than total porosity in water
desorption. As mentioned, there is a small decrease in total porosity as decomposition
progresses but a significant decrease in pore diameter. As a result, desorption curves
indicate that undecomposed peat loses water at much higher matric potentials than
decomposed peats. Therefore, water content is higher in decomposed peats under

unsaturated conditions (Boelter, 1968; Walmsley, 1977).



Saturated hydraulic conductivity is very high in the surface or near-surface
horizons of undecomposed peats whereas denser, more decomposed peats permit only
very slow water movement. Boelter (1968) reports hydraulic conductivities ranging from
3.8 x 10 2 cm/sec in undecomposed mosses to 4.5 x 10 ° cm/sec in well-decomposed
peat. Different pore size distributions, found in varying stages of decomposition, create
large differences in the behavior of soil water (Boelter, 1968; Walmsley, 1977).

Shear strength of peat is derived from both the tensile strength of the peat fiber
and the particle-to-particle strength of the peat matrix. Factors that affect the shear
strength of peat include variations in peat structure, water content and ash content
(MacFarlane and Williams, 1974). MacFarlane (1969) reports that the shear strength of
peat varies inversely with its water content and directly with its ash content.

MacFarlane (1969) reports relative values for some peat engineering properties.
Amorphous granular peat has the smallest water content, natural permeability, tensile
strength and shear strength, whereas fibrous peat has greatest values. The relative water
content values reported by MacFarlane (1969) pertain to the saturated condition because
the low water retention values of fibrous peat would not allow high water content in an

unsaturated condition.
1.3.3 Hydrologic Properties Influencing Slope Stability

Hydrologic properties influencing the stability of slopes are largely dependent
upon the precipitation regime, the rate of infiltration into the solum, the transmission rate

of water within the solum and evapotranspiration (Sidle, 1985).



Transmission within the solum may be the dominant mechanism of downslope
water movement (Sidle, 1985). Soil water recharge can be strongly affected by soil
horizonation or the presence of a shallow water table. Downward progress of the wetting
front may be hampered when the front encounters a layer of considerably lower
permeability. The same effect occurs when infiltrating water reaches a perched water
table. Tension cracks, which develop around the headwalls and flanks in unstable terrain,
can provide a rapid recharge route into the solum. The discharge rate of water from the
solum is probably the most critical hydrologic factor influencing slope stability because if
the subsurface flow rate is less than the infiltration rate for an extended amount of time, a
perched water table may form (Sidle, 1985; Swanston and Howes, 1994). Perched water
tables above a potential failure plane can significantly reduce shear strength by reducing
soil effective stresses and hence soil cohesion (Sidle, 1985; Schroeder and Swanston,
1987; Swanston and Howes, 1994). Buoyancy in a saturated state decreases effective
intergranular pressure and friction. In addition, intergranular pressure due to capillary
tension in a moist soil is destroyed upon saturation, thereby reducing soil shear strength
(Cruden and Vames, 1996). The formation of perched water tables or zones of high
hydrostatic pressures in unstable soils are believed to be a major triggering mechanism of
shallow translational slides in steep terrain (Sidle, 1985). Some mineral forest soils have
high infiltration rates because of their thick, permeable, organic surface horizons. Asa
result, the infiltration rate often does not limit the recharge of unstable slopes and the
subsurface flow rate becomes the principal hydrologic variable during many periods of

precipitation (Sidle, 1985).



Evapotranspiration may influence slope stability through transpiration, canopy
interception and timing of transpiration relative to the seasonal distribution of
precipitation. Since most shallow rapid slope failures occur during prolonged periods of
rainfall (Sidle, 1985; Swanston and Howes, 1994), evapotranspiration is unlikely to be a
major controlling factor in this study because the amount of rainfall the area receives

likely far outweighs potential evapotranspiration.

1.3.4 Vegetation Properties Influencing Slope Stability

Plant roots affect slope stability in several ways. Large roots add strength to the
soil by vertically anchoring through the solum into fractured bedrock, although this
mechanism is only effective in stabilizing relatively thin soils, less than 1 m thick. Root
anchoring may be the dominant factor in maintaining slope stability in extremely steep
areas. Thick networks of medium and small-sized roots reinforce the upper soil layer
acting as a membrane to provide lateral support and increased stability (Sidle, 1985;
Swanston and Howes, 1994). Larger structural roots in the area of individual trees can
provide buttressing depending upon tree spacing. This buttressing mechanism is only
significant in stabilizing thin soil mantles prone to debris slides (Sidle, 1985; Gray and
Sotir, 1996). Root strength and anchoring effects may be particularly important
influences in regards to debris slide stability because they tend to occur on shallow soils
(Swanston and Swanson, 1976).

O”Loughlin (1974) examined some mineral debris slides near Vancouver, British
Columbia. He states that the condition of partly exposed roots at the mainscarps and

lateral scarps indicate that a high percentage of roots, both large and small, at debris slide



margins fail in tension. Broken roots extended some distance from the head and lateral
scarps suggesting that they had been subject to considerable pull. This examination
suggests that the tensile strength of tree roots may be a critical contributor to slope
stability. The ability of roots to lengthen without rupturing in response to tensile stress
may allow the soil mantle on steep slopes to undergo small, differential movements or
creep without serious loss of strength.

Gray and Sotir (1996) report some mean tensile strength values for some common
tree and shrub species of the Prince Rupert area: Picea sitchensis - 16 MPa, Pseudotsuga
mensieii - 55 MPa, Tsuga heterophylla - 20 MPa and Vaccinium spp. - 16 MPa.
Generally, the tensile strength of individual roots decreases with increasing root diameter

(Gray and Sotir, 1996).

1.4 Mechanics of Slope Movement

The infinite slope model is a common framework for describing the mechanisms
and complex relationships between elements that are active in the development of
shallow translational slope failures (Wu and Swanston, 1980; Swanston and Howes.
1994; Gray and Sotir, 1996). An infinite slope is considered to be infinite in extent with
no top or toe (Al-Khafaji and Andersland, 1992). In regards to folic debris slides in the
Prince Rupert area, the length of slope divided by the depth of soil is very large
(Appendix 3) and the infinite slope model therefore defines the subject best. In addition,
folic soils can be considered to be cohesive soils and therefore the infinite slope model
for cohesive soils, rather than the model for cohesionless soils, better describes debris

slides in this area.
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Because of the geometry of an infinite slope, overall stability can be determined
by analyzing the stability of a block of overburden as a ratio between its shear strength or
resistance to sliding along the failure surface, and the downslope gravity or shear force.
The factor of safety of the block is defined by this ratio. If the shear strength exceeds the
shear force, the factor of safety remains greater than 1 and the block of overburden will
not fail. By analogy, the block becomes a surrogate of the materials and terrain
conditions prevailing in an area (Sidle, 1985; Al-Khafaji and Andersland, 1992;
Hammond et al., 1992; Swanston and Howes, 1994; Gray and Sotir, 1996).

The factor of safety, FS, is defined as (Hammond et al., 1992):

FS=C; +C' +cos’ & [qo + ¥ (D = Dy) + (Yeat - Y) Dy] tan ¢’
sin ot cos & [qo + Y(D — Dw) + Ysa D]

where FS = factor of safety
a = slope angle
D = total soil thickness
Dy, = saturated soil thickness
Cr = tree root strength expressed as cohesion
qo =tree surcharge
C’s = soll cohesion
¢’ = effective internal angle of friction
Y = moist soil unit weight
Ysar = saturated soil unit weight
Yw = water unit weight

1.5 Research Justification

Folic soils occur extensively on the outer coast of British Columbia, near the Prince
Rupert area. Many of these folic soils occur on very steep terrain ranging up to 60 °.
This region is dominated by several economically valuable conifer species and is of

interest from a timber harvesting perspective.
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Terrain stability has become an important aspect of forestry in British Columbia.
Under the terms of the British Columbia Forest Practices Code (1995) forestry operations
must be conducted to protect, maintain, or enhance the long-term productivity of forest
soils and minimize the impacts on water quality. As a result, areas that are to be
harvested or modified must undergo some level of terrain stability assessment. Areas that
are thought to be unstable or to have a moderate to high likelihood of slope failure
following timber harvesting, road construction or modification, or those having a slope
angle over 60 percent must be assessed for terrain stability.

There has been very little research regarding the physical properties of folic soils
and the failure of organic soils, in general. As a result, little is known regarding factors
that contribute towards the failure of folic soils in this region. In an area with such
potentially high debris slide risk, it is important to understand the factors contributing
towards folic debris slides to make a knowledgeable and accurate terrain stability
assessment.

The general purpose of this study is to determine the soil and landscape attributes
that contribute significantly towards the occurrence of folic debris slides in the Prince
Rupert region. The study approaches taken are direct examination of folic debris slides,
comparison of folic debris slides to similar non-debris slide sites and through

characterizing the physical and chemical properties of folic soils.

1.6 Hypotheses

Through review of the literature, some factors have been identified as having the

potential to be particularly significant in influencing folic debris slides in the Prince
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Rupert area. Slope angle is likely a primary factor influencing the stability of folic soils
in this region. Slope angles tend to be very steep in the Prince Rupert area and slope
angle is often strongly related to shallow slope failures (Appendix 4). A thin, poorly
decomposed upper horizon and a thick, well-decomposed lower horizon characterize the
general pattern of soil horizonation found in the folic debris slides of this area (Appendix
5). This pattern of soil horizonation may cause the formation of a water table during
periods of heavy rainfall due to high infiltration rates in surface horizons and lower
percolation rates in lower horizons. In addition, lower soil horizons may be weaker due
to decomposition and lack of root mass. Shallow hillslope depressions or particular
bedrock structures may concentrate subsurface water and cause high pore water
pressures. Finally, rooting strength and its contribution to cohesion is likely a very
important aspect in maintaining the stability of folic soils in this region because they are

shallow soils that may be poorly attached to the underlying bedrock.
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2.0 STUDY AREA

This study was conducted within a 50 km radius of the city of Prince Rupert,
British Columbia (Figure 2-1). Prince Rupert is located on the northern coast of British

Columbia at about 54.3° N and 130.5°W.

2.1 Geology

The Prince Rupert area is composed mostly of steep mountainous terrain with
narrow valleys and undulating lowlands on the outer coast (Clague, 1984; Banner et al.,
1993). The Prince Rupert area is underlain by the Ecstall Pluton, west of the Work
Channel and the Quottoon Pluton, east of the channel. The area directly around Prince
Rupert is composed of thinly bedded metasedimentary rocks with individual beds ranging
from S - 15 cm in thickness. Quartz diorite forms the greater part of the Quottoon Pluton.
Granodiorite forms large parts of the Ecstall Pluton but some parts are composed of
homogeneous, massive and generally inclusion-free quartz monzonite (Hutchinson,

1967). The majority of sites examined directly in this study were underlain by diorite,

quartz diorite or gneiss (Appendices 4 and 13).

2.2 Climate

The climate of the Prince Rupert area is mostly maritime or oceanic climate with
relatively mild temperatures and very heavy rainfall. The summer months tend to be cool
and cloudy. The winter months are extremely wet and quite mild, except when frigid

Arctic weather systems cover the region. In addition, low elevation coastal areas tend to
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receive very little snow and soils do not freeze significantly during a normal winter
(Banner et al, 1993).

Environment Canada (1998) reports climate normals at the Prince Rupert A
station from 1961 to 1990. The mean daily temperature is 6.9 °C annually, 12.4 °C in the
summer months (June — August) and 1.7 °C in the winter months (December — February).
The mean annual precipitation is 2551.9 mm, with 2409.1 mm falling as rain and 142.6
falling as snow. The mean monthly precipitation is 131.7 mm for the summer months
that all falls as rain. The mean monthly precipitation is 245.7 mm for the winter months
with 211.3 falling as rain and 34.4 mm falling as snow. Annually, on average there are
236 days with measurable precipitation. For the summer months there are 17 days of
measurable precipitation per month and in the winter months there are 21 days of
measurable precipitation per month. Potential evapotranspiration can be calculated
using the Thornthwaite method (Washburne, 1999). The mean monthly potential
evapotranspiration is 102 mm for the summer months, 25 mm for the winter months and
696 mm annually.

Banner (1983) illustrated some climatic information for the Prince Rupert A

station in the form of a climatic diagram (Figure 2-2).
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Figure 2-2. Climatic diagram for the Prince Rupert A station (Banner, 1983)
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Recurrence intervals are used to express the probability a particular storm event
will occur in a specified number of years to equal or exceed some given value (Figure 2-

3). Itrefers to the interval between particular events over a large number of years.

PAince Rupert Airport

Total Precipitation (mm

0 T T T T ] T T T 1
1 2 3 4 5 6 7 8 9 10

Days of Cumulative Precipitation Record
—=—2 -—x—-5-—+—10 —x—25 —0—5 —a—100  Recurenceintends (ys)

Figure 2-3. Intensity-duration frequency graph for Prince Rupert A station (J.Schwab,
British Columbia Ministry of Forests, Smithers, B.C., 1999).

2.3 Vegetation

The natural vegetation of the Prince Rupert area is dominated by old-growth
conifer stands of western hemlock (7suga heterophylla) and wester redcedar (Thuja
Plicata). Sitka spruce (Picea sitchensis) is common but never dominant and shore pine
(Pinus contorta var. contorta) and yellow-cedar (Chamaecyparis nootkatensis) are
abundant on the outer coast in scrub forest form. Deciduous trees such as red alder

(Alnus rubra) are uncommon, naturally occurring primarily on floodplains and debris

20




slide scars where disturbance exposes mineral soil. Understory vegetation is often
dominated by various blueberries and huckleberries (Vaccinium spp.) and scattered

throughout with small herbs (Banner et al., 1993).

2.4 Soils

Cool, wet weather and granitic parent materials are the two dominant features in
shaping the soils of the Prince Rupert area, and combine to create strongly leached,
nutrient-deficient mineral soils with thick folic accumulations. Plant roots are located
mainly within the folic layers likely because this is where most nutrient cycling occurs.
Folic phases of Ferro-Humic and Humic Podzols are common in areas with thicker
mineral soils whereas Folisols are dominant where mineral layers are shallow or non-
existent over bedrock. Other common soils include Regosols or Brunisols on floodplains

and Gleysols on wet sites (Banner et al., 1993).

2.5 References Cited

Banner, A. 1983. Classification and successional relationships of some bog and forest
ecosystems near Prince Rupert, British Columbia. M.Sc. Thesis, University of British
Columbia, Vancouver, B.C. 233 pp.

Banner, A., MacKenzie, W., Haeussler, S., Thompson, S. and Pojar, J. 1993. A field
guide to site identification and interpretation for the Prince Rupert forest region. Land
Management Handbook. Ministry of Forests. Crown Publications Inc., Victoria, B.C.

Clague, J.J. 1984. Quaternary geology and geomorphology Smithers - Terrace Prince
Rupert area, British Columbia. Geological Survey of Canada. Memoir 413. Ottawa,
Ontario. 71 pp.

Environment Canada. 1998. Canadian climate normals 1961 — 1990. Prince Rupert A,
British Columbia. 54°18-N 130°26-W/O 34 m.

21



Hutchison, W.W, 1967. Prince Rupert and Skeena map-area, British Columbia.
Geological Survey Of Canada. Paper 66-33. Ottawa, Ontario.

Washburne, J. 1999. Calculation of Potential Evapotranspiration Worksheet. [Online]
Available: http://www.hwr.arizona.edu/globe/Hydro/G3/Potential_Evapotranspiration_
Worksheet.html [ 13 April 2000]

22



3.0 CHARACTERIZATION OF FOLIC SOILS

3.1 Introduction

North American folic soils are limited in extent and as a result there has been only
a small amount of research done regarding even the most basic chemical and physical
description. The research that does exist tends to be relatively confined in sample size
and extent. Lewis and Lavkulich (1972) described three sites near Vancouver, British
Columbia and attempted to characterize the environment in which the Folisols formed.
The relationship between Folisol thickness and decomposition and elevation was
examined, and it was determined that the thickness of L-F horizons decreases with
elevation whereas the thickness of the H horizon increases. The relationship between
Folisol chemistry and elevation was also examined although Folisol chemistry appeared
to be more related to seepage and bedrock chemistry than elevation. Witty and Amold
(1970) described two Folists occupying steep mountain slopes in New York State. The
purpose of this paper was descriptive, discussing the morphology, distribution and
classification of these soils. It appears that the distribution and thickness of Folists in
New York State are related to slope angle, debris slides and water erosion and deposition.
The macromorphology and chemical characteristics of all four Folisol subgroups at nine
sites in north coastal British Columbia were described in an effort to improve folic
horizon designations (Fox et al., 1987). Fox et al. (1994) considered the chemical and
micromorphological description of all four Folisol subgroups at nine sites in north coastal
British Columbia. Three main types of horizons were identified: horizons derived from

accumulated residues, horizons with advanced decomposition and horizons derived from
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ligneous material. The chemical characteristics, physical characteristics and spatial
variability of twelve pedons in north coastal British Columbia were described in order to
understand the occurrence of Folisols in the landscape. The occurrence of Folisolic soils
in this region was related to topographic relationship, amount of ligneous material present
and the amount of accumulated plant residues (Fox, 1985). Some attempt has been made
to discover and explain relationships and trends among folic soil characteristics;
however; more research is needed in order to make conclusive statements regarding folic
soils.

The main objective of this chapter was to contribute to the further description and
understanding of folic soils found in high relief terrain. More specific chapter objectives

were to discover and express spatial trends in folic soils both horizontally and vertically.

3.2 Methods and Materials

3.2.1 Site Description and Sampling Design

The pedons selected for the characterization of chemical and physical properties
of folic soils were not sampled expressly for purpose of characterization. Folic
characterization pedons were sampled both at the upper slope and at the upper-mid slope
contours on both sides of a debris slide (Figure 3-1.) Properties of the pre-slide soil are
assumed to be the mean of the two replicate pedons sampled at a contour. As a result, the
mean of the two values at a given contour is the value used in data analysis for this
chapter, with the exception of humus-form summary statistics. The upper slope pedon
samples used for folic soil characterization were collected based on the systematic site

description and sampling design created for debris slide sites that is described in more
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detail in section 4.2.1. Therefore, the criteria and constraints used in selecting debris
slide pedons also apply to folic characterization pedons. However, only the upper slope
pedons are used in Chapter 4 whereas both the upper and upper-mid slope pedons are

used for folic characterization.

mainscarp or initiation zone

upper-mid debris slide zone

mid debris slide zone

lower debris slide zone

® = debris slide sample plot

Figure 3-1. Sample plot locations on a typical debris slide

3.2.2 Field Sampling

At each sample site, data were collected regarding geologic, biotic, hydrologic,
and soil characteristics. Geologic data collected included slope angle, slope shape,
surface configuration, bedrock type, bedrock structure, bedrock exposure, as well as a
description of the local setting. Descriptions of these attributes follow guidelines set out
by Swanston and Howes (1994). Biotic data included the presence or absence of water
tolerant vegetation, root attachment to bedrock, evidence of windthrow, root size and

abundance within the soil profile, as well as a percent cover estimate of the tree, shrub,
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herb and moss and lichen layers. Descriptions of these attributes follow guidelines set
out by Green et al. (1993), Swanston and Howes (1994) and B.C Ministry of Forests and
B.C. Ministry of Environment Land and Parks (1998). The hydrologic data collected
included only a description of field moisture status, following guidelines set out by Green
et al. (1993). Soil data noted included horizon nomenclature, horizon depth, von Post
humification, soil color, structure, character, consistence, horizon boundary description,
and coarse fragment content. Descriptions of these attributes follow guidelines set out by

the Soil Classification Working Group (1998) and Green et al. (1993).
3.2.3 Laboratory Analysis

In preparation for laboratory analysis, samples were air-dried and homogenized
by hand to pass through a 4-mm sieve. Samples were not sieved through the standard 2-
mm because preservation of soil structure was deemed important for some laboratory
analyses.

Bulk density was determined by the core method, using aluminum cylinders with
volumes of 271.9 cm® and 182.5 cm®, inserted horizontally into the soil. The samples
were oven dried at 105 °C until their mass became constant (Day et al., 1979). Particle
density was determined using the pycnometer method (Blake, 1965). The standard
pycnometer method requires a 10-g sample size. Because of the low bulk density of
organic soil materials, the sample size used was often smaller, ranging from 1.5 to 10 g.
Porosity (%) was calculated using the equation: (1-(bulk density/particle density)) x 100.

Sand to ash content ratios were approximated on selected samples using a several

part procedure. Initially, samples ranging from 7.4 to 70 g were combusted in a muffle
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furnace at a temperature of 550 °C for 20 hours. The remaining ash was then passed
through a nest of 125 um and 50 um sieves with the aid of a weak stream of water. The
material that did not pass through the sieves was collected and oven-dried at 105 °C until
its mass became constant. The mass of sand (> 50 um) could then be compared with the
mass of total ash. Ash content (i.e. the soil mineral content) was determined using the
dry-ashing method. A soil sample was combusted in a muffle furnace at a temperature of
550 °C for 20 hours. The oven-dry weight of the sample after combustion is expressed as
ash content (Carter, 1993). Organic matter content (g/kg) was defined by the equation:
(1000 — Ash Content, g/kg). Organic carbon content (g/kg) was assumed equal to:
organic matter content (g/kg) x 0.58.

Water retention properties were determined on the disturbed, 4-mm sieved, air-
dried soil samples using pressure plate apparatus at matric potentials of -5, -10, -33 and
-1500 kPa (Day et al., 1979). The samples were initially saturated by filling the ceramic
plate with water and letting the samples wet from the bottom up overnight ensuring full
saturation of the sample. However, some soil samples were hydrophobic and those
samples had to be pre-wetted by mixing the sample with water in a beaker. These
samples were then placed with the rest of the samples on the ceramic plate filled with
water and left to saturate overnight. Detention storage capacity describes the amount of
water between saturation and field capacity. It was calculated using the equation:
(porosity — volumetric water content at —10 kPa).

The pH was determined using 0.01 M CaCl; (Day et al., 1979). This procedure
requires a 3 g sample size for a constant CaCl, solution to soil ratio (w/v). However,

because of the highly varying ash contents and bulk densities of folic material, soil
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samples varying from 1 to 9 g were used. The volume of 0.01 M CaCl; also varied
between 40 and 50 mL. Ratios (w/v) between folic material and CaCl, solution ranged
from 1:50 in low bulk density material to 9:40 in higher bulk density material.

Total nitrogen was determined using micro-Kjeldahl digestion (Carter, 1993)
followed by quantification of solution NHy" using a Technicon AutoAnalyzer II,
Industrial Method No. 334-74W/B™ (Technicon Industrial Systems, 1977). Exchangeable
bases were extracted using 1 M NHLOACc at pH 7.0 (Carter, 1993) and quantified by
atomic absorption spectrophotometry. Total exchange capacity (TEC) was further
determined by replacement of NH4" using the Technicon AutoAnalyzer II, Industrial
Method No. 334-74W/B” (Technicon Industrial Systems, 1977). Exchangeable bases are
expressed both on a whole-soil basis and as a percentage of the TEC. TEC is expressed
both on a whole-soil basis and on an ash-free basis. Base saturation was calculated by

dividing the sum of exchangeable Ca?*, Mg**, K" and Na* by TEC.
3.2.4 Data Analysis

Paired-samples t-tests were employed in order to determine any differences
between soil properties at upper vs. upper-mid debris slide positions. The mean distance
between upper and upper-mid debris slide sites is 92 m with a standard deviation of 58 m
(n=30). The minimum distance is 25 m and the maximum is 225 m. Paired-samples t-
tests were also used to determine any differences between horizons denoted by vertical
position within a pedon, (i.e. horizon sequence). Paired-samples t-tests were performed
using the Paired-Samples T-Test procedure in SPSS (SPSS Inc., 1995). A two-tailed

significance level < 0.05 was accepted as significant.
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Simple correlations were employed in order to pursue relationships between
physical and chemical soil characteristics. Simple correlations were performed using the
Bivariate Correlation procedure in SPSS and were executed using a Pearson correlation
and a two-tailed test of significance (SPSS Inc., 1995). Only r > 0.5 and « levels < 0.05
were accepted as significant (Cohen, 1992).

Bivariate regression was employed to describe the relationship between i)
gravimetric water content at different matric potentials and ash content, ii) TEC and ash
content. Bivariate regression was performed using the Linear Regression procedure in

SPSS (SPSS Inc., 1995). Only r* values > 0.8 were accepted as significant.

3.3 Results

Summary statistics are presented according to horizon sequence that is, horizon 1,
horizon 2 and horizon 3. Non-continuous variables are summarized by frequencies and
continuous variables are presented as descriptive summary statistics. Summary
desorption curves are presented illustrating mean volumetric and gravimetric water
content by horizon sequence at -5, -10, -33 and -1500 kPa. Summary statistics of
continuous variables were also completed for any humus-form horizon designation with 5
or more occurrences in the sample.

Particle density values were not separated by horizon because too few
measurements were obtained. On a whole-soil basis, particle density had a median of 1.7
Mg/m’, a mean of 1.8 Mg/m? (n = 16), a standard deviation of 0.3 Mg/m’, a coefficient of

variation of 17%, a minimum of 1.5 Mg/m® and a maximum of 2.3 Mg/m’.
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3.3.1 Summary Statistics by Horizon Sequence

Table 3-1. Summary frequencies of morphoelogical soil characteristics

horizon 1: n = 116, horizon 2: n = 98, horizon 3: n =10

Soil Consistence

Value Label Horizon 1 (%) Horizon 2(%) Horizon 3(%)
Tenacious 82.8 5.1 0.0
Pliable 6.0 38.8 40.0
Loose 9.5 56.1 60.0
Resilient 1.7 0.0 0.0
Soil Character

Value Label Horizon 1 (%) Horizon 2(%) Horizon 3(%)
Fibrous 56.9 2.0 0.0
Greasy 4.3 23.5 0.0
Gritty 7.8 54.1 90.0
Mossy 7.8 3.1 0.0
Mushy 1.7 3.1 0.0
Ligneous 4.3 2.0 0.0
Fibrous / Gritty 6.0 0.0 0.0
Fibrous / Ligneous 0.9 0.0 0.0
Felty / Fibrous 34 0.0 0.0
Fibrous / Mossy 2.6 0.0 0.0
Greasy / Gritty 09 8.2 10.0
Felty / Fibrous / Gritty 09 0.0 0.0
Mossy / Gritty 1.7 0.0 0.0
Mossy / Mushy 0.9 0.0 0.0
Fibrous / Mushy 0.0 1.0 0.0
Mushy / Gritty 0.0 3.1 0.0
* °/” represents a sample containing two morphological soil characteristics.

Soil Structure

Value Label Horizon 1 (%) Horizon 2(%) Horizon 3(%)
Non-Compact Matted 81.0 4.1 0.0
Massive 52 30.6 60.0
Granular 6.9 26.5 10.0
Blocky 34 36.7 30.0
Erect 34 1.0 0.0
Wood 0.0 1.0 0.0

30



Seil Color

Value Label Horizon 1 (%) Horizon 2(%) Horizon 3(%)
2.5YR2.5/1 1.7 20 0.0
2.5YR 3/3 0.0 1.0 0.0
5YR2.51 25.9 8.2 20.0
SYR2.512 13.8 4.1 0.0
5YR 32 0.9 0.0 10.0
7.5YR 2.5/1 21.6 39.8 20.0
7.5YR 2.512 6.0 7.1 10.0
7.5YR 2.5/3 0.0 1.0 0.0
7.5YR 3/1 2.6 0.0 0.0
7.5YR 32 0.0 1.0 0.0
7.5YR 4/4 0.9 0.0 0.0
7.5YR 5/3 0.9 0.0 0.0
10YR 2/1 10.3 27.6 40.0
10YR 22 7.8 4.1 0.0
10YR 3/1 0.9 0.0 0.0
10YR 32 0.0 2.0 0.0
10YR 3/3 0.0 20 0.0
10YR 472 0.9 0.0 0.0
10YR 4/4 0.9 0.0 0.0
10YR 4/6 0.9 0.0 0.0
2.5Y573 0.9 0.0 0.0
2.5Y6/4 1.7 0.0 0.0
2.5Y 6/6 0.9 0.0 0.0
5Y 377 0.9 0.0 0.0
Horizon Designation

Value Label Horizon 1 (%) Horizon 2(%) Horizon 3(%)
Ln 1.7 0.0 0.0
Lni 0.9 0.0 0.0
Lv 2.6 0.0 0.0
Lvw 0.0 1.0 0.0
Fm 1.7 0.0 0.0
Fz 1.7 0.0 0.0
Fa 69.0 3.1 0.0
Fai 52 1.0 0.0
Faw 2.6 0.0 0.0
Hh 1.7 17.3 0.0
Hhi 34 184 20.0
Hz 0.0 4.1 0.0
Hzi 0.0 1.0 20.0
Hr 2.6 7.1 0.0
Hri 2.6 3.1 10.0
C 43 439 50.0

The master upland organic horizons of L, F and H are familiar and commonly
used (Soil Classification Working Group, 1998). However, codes for subordinate upland
organic horizon, described by Green et al. (1993), are less well known. A Ln horizon is

composed of newly accreted, unfragmented plant residues whereas an Lv horizon
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exhibits initial decay and discoloration. The Fm horizon is composed mainly of fungal
mycelia and has a matted structure and tenacious consistence. An Fz horizon is
composed primarily of faunal droppings and is weakly aggregated with a loose
consistence. A Fa horizon is an intergrade between the Fm and Fz horizons with weak to
moderate, non-compact matted structure. Fine substances with very few recognizable
plant residues dominate an Hh horizon. The fabric of a Hz horizon is composed mainly
of faunal droppings and there are very few recognizable plant residues. An Hr horizon is
dominated by fine substances but contains recognizable plant residues. The lowercase
modifier ‘i’ describes an organic horizon that contains intermixed mineral particles finer
than 2 mm, with 17 to 35 % organic carbon by mass. The lowercase modifier ‘w’
describes an organic horizon where > 35 % of the volume of solids is composed of coarse
woody debris.

The modal pedon in this study has two horizons. The modal morphology of the
upper horizon is fibrous soil character, tenacious soil consistence and a non-compact
matted structure. The modal horizon designation for the uppermost horizon is Fa. The
modal thickness of a Fa horizon is 9.0 cm, with a tenth percentile of 5.4 cm and a
ninetieth percentile of 18.0 cm. The modal morphology of the lower horizon is less clear
than the upper horizon, however, some generalizations can be made. Gritty and greasy
soil character, pliable and loose consistence and massive, granular or blocky structure are
modal for the lower horizon. The modal horizon designations for the lower horizon are
Hh, Hhi and C. The modal thickness of the lower horizon is 20.0 cm with a tenth

percentile of 10.0 cm and a ninetieth percentile of 48.0 cm.
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Table 3-2. Summary statistics for physical and chemical properties of folic soils

horizon 1: n = 60. horizon 2: n =59, horizon 3: n=§

Variable Median Mean Std. Dev. CV (%) _Min. Max.
Von Post Humification 1 4 4 1 34 2 8
2 8 8 1 13 4 9
3 8 8 1 8 7 9
Ash Content 1 (g kg™!) 88 164 169 103 21 653
2 560 583 221 38 80 931
3 844 760 181 24 420 940
Organic Carbon 1 (g kg™) 527 484 98 20 200 570
2 253 239 129 54 40 534
3 91 140 110 75 40 330
Total Nitrogen 1 (g kg™) 10.7 10.7 22 20 55 16.5
2 73 73 41 56 1.3 19.9
3 44 34 32 73 1.3 9.6
Total N ash-free 1 (g kg"'OM) 12.8 13.2 27 H 7.8 222
2 17.6 19.8 13.2 67 52 87.1
3 19.6 18.5 38 21 10.7 23.5
Carbon : Nitrogen Ratio 1 45 46 9 20 26 74
2 33 36 17 48 7 111
3 30 33 9 28 25 54
Bulk Density 1 (Mg m™) 0.08 0.12 0.11 91 0.04 0.69
2 0.26 0.29 0.16 57 0.06 0.83
3 0.29 0.38 0.23 60 0.15 0.71
Porosity 1 (%) 95 94 3 3 82 98
2 88 88 6 7 69 9%
3 87 85 8 9 73 93
Detention Storage Capacity 1 (%) 77 76 7 9 46 86
2 73 70 12 17 41 90
3 66 67 12 17 52 83
Gravimetric Water @ -5 kPa 1 (%) 260 266 82 31 80 447
2 119 121 67 55 24 280
3 57 73 38 S2 30 129
Gravimetric Water @ -10 kPa 1 (%) 231 230 72 31 65 435
2 85 99 57 58 21 241
3 51 59 31 53 25 111
Gravimetric Water @ -33 kPa 1 (%) 167 166 53 32 53 346
2 67 73 43 59 12 169
3 36 47 32 59 15 106
Gravimetric Water @ -15C0 kPa 1 (%) 140 139 45 32 31 280
2 49 54 37 69 12 169
3 15 28 24 86 6 75
Volumetric Water @ -5 kPa 1 (%) 22 26 14 54 12 81
2 24 30 18 61 7 98
3 22 22 7 31 11 33
Volumetric Water @ -10 kPa 1 (%) 19 23 2 54 10 70
2 19 24 17 63 6 86
3 18 18 6 35 8 26
Volumetric Water @ -33 kPa 1 (%) 14 17 9 55 8 51
2 14 17 12 67 6 65
3 12 13 S 37 6 20
Volumetric Water @ -1500 kPa 1 (%) 11 14 7 54 5 42
2 11 13 9 70 3 46
3 7 7 3 46 3 12
pH (CaCly) 1 35 35 0.3 7 3.1 43
2 3.7 36 0.2 6 3.1 4.1
3 39 3.8 0.4 9 3.2 4.4
TEC 1 (cmol (+) kg™) 195 199 51 26 73 293
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Variable Median Mean Std. Dev. CV (%) Min. Max.
2 81 91 53 58 18 227
3 34 59 51 87 13 145
TEC ash-free 1 (cmol (+) kg'OM) 238 239 47 20 141 435
2 224 232 136 59 63 1216
3 227 232 56 24 160 322
Exchangeable Ca 1 (cmol (+) kg*) 17.0 18.7 11.0 59 1.4 498
2 3.1 4.7 4.7 99 0.5 19.7
3 L6 25 2.6 103 0.5 7.0
Exchangeable Ca / TEC 1 (%) 8.6 9.5 54 57 0.9 222
2 46 5.6 42 75 0.5 17.9
3 5.0 49 3.5 71 1.1 11.4
Exchangeable Mg 1 (cmol (+) kg™*) 32 33 1.1 35 0.7 57
2 0.7 1.0 0.7 68 0.2 29
3 0.2 0.5 0.5 98 0.1 14
Exchangeable Mg / TEC 1 (%) 1.6 1.7 0.6 37 0.6 44
2 1.1 1.1 0.5 44 03 26
3 08 08 0.2 26 0.5 1.1
Exchangeable K 1 (cmol (+) kg™) 2.8 28 1.2 43 0.5 5.7
2 0.6 0.8 0.4 53 0.3 2.0
3 0.3 0.5 0.3 65 02 1.1
Exchangeable K / TEC 1 (%) 1.4 14 0.5 36 0.5 26
2 1.0 1.0 0.5 49 0.3 25
3 0.9 1.0 0.5 44 0.6 20
Exchangeable Na 1 (cmol (+) kg™) 0.4 04 0.1 33 0.1 0.7
2 0.2 0.2 0.1 54 0.1 0.6
3 0.2 0.2 0.1 59 0.03 0.3
Exchangeable Na / TEC 1 (%) 0.2 0.2 0.6 30 0.07 03
2 02 0.3 02 68 0.1 0.9
3 0.2 0.3 02 51 0.2 06
Base Saturation 1 (%) 12 13 6 45 4 26
2 7 8 5 60 2 23
3 7 7 4 55 3 14

e OM = Organic Matter

When the physical and chemical properties of folic socils are compared by horizon

sequence, variability among the means is large. In Table 3-2, values for coefficient of

variation are often large, indicating a large amount of variation in chemical and physical

soil characteristics, even within a particular horizon.

The volumetric mean water desorption curves (Figure 3-2) illustrate that there is

only a small difference between the water content values when examined on the basis of

horizon sequence. The gravimetric mean water desorption curves (Figure 3-3) depict

larger differences in water content values when examined on the basis of horizon

sequence, than the mean volumetric desorption curves. The significance of the

differences in volumetric water content between horizons and gravimetric water content
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between horizons will be examined further in section 3.3.3. These desorption curves also
demonstrate that the largest amount of water desorption occurs at very high matric
potentials. In fact, at only W, = -5 kPa approximately 60 % to 70 % of the saturated

water content has drained, as porosity ranges from 85 % to 94 % (Table 3-2).

Yol. Water Content (%)

1 10 100 1000 10000
Matric Potential (-kPa)

Figure 3-2. Mean volumetric water desorption curves for horizons by vertical sequence
in folic pedons (error bars + 1 SE)
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Figure 3-3. Mean gravimetric water desorption curves for horizons by vertical sequence
in folic pedons (error bars + 1 SE)

3.3.2 Summary Statistics for Humus-Form Horizon Designations

In section 3.3.1, morphological soil characteristics are related to common humus-
form horizon designations. Summary statistics of chemical and physical soil
characteristics were completed for common horizon designations in order to establish a

range of values for different folic horizon designations. (Table 3-3 to 3-9).
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Table 3-3. Physical and chemical characteristics of horizon Fa n=83
Variable Median Mean __ Std. Dev. CV(%) Min, Max.
Von Post Humification 3 34 0.5 17 3.0 50
Ash Content (g kg™) 55 7l 53 75 15 295
Organic Carbon (g kq") 548 539 31 6 409 571
Total Nitrogen (g kg™) 12 12 2 19 75 20
Carbon : Nitrogen Ratio 47 47 9 19 27 73
Bulk Density (Mg m™) 0.07 0.07 0.02 32 0.04 0.2
Porosity (%) 96 9% 1 2 91 97
Detention Storage (%) 79 78 7 9 50 89
Volumetric Water @ -5 kPa (%) 20 20 6 29 10 47
Volumetric Water @ -10 kPa (%) 18 18 5 29 9 41
Volumetric Water @ -33 kPa (%) 13 13 4 28 7 27
Volumetric Water @ -1500 kPa (%) 11 11 3 30 6 24
pH (CaCly) 3.5 3.5 0.3 9 2.8 50
TEC (cmol (+) kg™") 204 219 45 21 117 349
Exchangeable Ca (cmol (+) kg"? 19.1 204 135 66 1.4 70.7
Exchangeable Mg (cmol (+) kg™) 3.5 3.6 1.3 36 0.9 6.6
Exchangeable K (cmol (+) kg™) 3.0 3.2 14 44 0.8 8.0
Exchangeable Na (cmol (+) kg™) 0.41 046 0.17 38 0.23 1.4
Base Saturation (%) 12 13 6 50 2 33

e Frequency Fa=24 %

Table 3-4. Physical and chemical characteristics of horizon Fai n=7
Variable Median Mean Std. Dev. CV(%) Min. Max.
Von Post Humification 5 4.6 1 21 3.0 6.0
Ash Content (g kg™) 474 428 125 29 170 565
Organic Carbon (g kg") 305 332 70 22 252 481
Total Nitrogen (g kg™) 8 9 1 14 7 11
Carbon : Nitrogen Ratio 40 39 6 15 28 45
Bulk Density (Mg m™) 0.21 0.23 0.17 77 0.09 0.6
Porosity (%) 90 89 9 10 70 9%
Detention Storage (%) 69 72 8 11 64 86
Volumetric Water @ -5 kPa (%) 27 36 33 92 1l 109
Volumetric Water @ -10 kPa (%) 20 32 32 102 10 103
Volumetric Water @ -33 kPa (%) 18 23 21 90 6 69
Volumetric Water @ -1500 kPa (%) 12 15 8 54 8 41
pH (CaCl,) 3.6 3.6 0.3 8 28 39
TEC (cmol (+) kg™) 153 163 35 21 113 225
Exchangeable Ca (cmol (+) kg"? 3.0 5.1 5.4 104 0.7 20.2
Exchangeable Mg (cmol (+) ke') 1.0 1.3 0.9 70 0.4 45
Exchangeable K (cmol (+) kg™) 1.7 1.8 0.5 27 1.1 25
Exchangeable Na (cmol (+) kg™) 0.37 0.36 0.12 34 0.19 0.5
Base Saturation (%6) 7 8 5 62 5 19

e Frequency Fai =2 %
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Table 3-5. Physical and chemical characteristics of horizon Hh

Variable Median Mean _ Std. Dev. CV(%) Min. Max.
Von Post Humification 8.0 8.1 0.8 10 7.0 9.0
Ash Content (g kg™) 276 259 9% 37 102 390
Organic Carbon (g kq") 420 430 56 13 354 521
Total Nitrogen (g kg™) 14 14 4 29 6 24
Carbon : Nitrogen Ratio 30 32 9 29 21 59
Bulk Density (Mg m™) 0.13 0.16 0.10 60 0.08 0.5
Porosity (%) 93 91 5 6 73 96
Detention Storage (%) 72 70 8 11 54 81
Volumetric Water @ -5 kPa (%) 26 31 17 55 16 87
Volumetric Water @ -10 kPa (%) 23 27 15 56 13 73
Volumetric Water @ -33 kPa (%) 17 20 11 56 10 54
Volumetric Water @ -1500 kPa (%) 12 15 8 54 8 41
pH (CaCly) 3.6 36 03 8 2.8 3.9
TEC (cmol (+) kg™) 153 163 35 21 113 225
Exchangeable Ca (cmol (+) kg™ 3.0 5.1 54 104 0.7 20.2
Exchangeable Mg (cmol (+) kf ) 1.0 1.3 09 70 04 4.5
Exchangeable K (cmol (+) kg™) 08 1.0 0.6 53 0.3 26
Exchangeable Na (cmol (+) kg™) 02 0.3 0.1 47 0.1 0.6
Base Saturation (%) 3 5 37 76 1 15
e Frequency Hh=6 %
Table 3-6. Physical and chemical characteristics of horizon Hhi n=28
Variable Median Mean _ Std. Dev. CV(%) Min. Max
Von Post Humification 8.0 8.1 0.5 6 7.0 9.0
Ash Content (g kg™) 607 594 76 13 424 688
Organic Carbon (g k%") 228 235 44 19 181 334
Total Nitrogen (g kg™ ) 7 7 2 34 5 16
Carbon : Nitrogen Ratio 35 35 8 24 21 55
Bulk Density (Mg m™>) 0.22 031 021 68 0.11 0.6
Porosity (%) 90 86 9 11 69 95
Detention Storage (%) 75 69 17 24 30 27
Volumetric Water @ -5 kPa (%) 22 27 17 64 10 72
Volumetric Water @ -10 kPa (%) 18 23 17 73 8 69
Volumetric Water @ -33 kPa (%) 13 18 14 78 6 58
Volumetric Water @ -1500 kPa (%) 8 12 11 88 4 45
pH (CaCly) 3.6 36 02 7 32 4.1
TEC (cmol (+) kg!) 88 89 25 28 53 157
Exchangeable Ca (cmol (+) kg'l? 22 3.1 24 77 0.8 10.7
Exchangeable Mg (cmol (+) kg ) 0.9 i.0 0.5 48 0.3 2.1
Exchangeable K (cmol (+) kg™) 0.7 0.7 0.3 35 04 1.5
Exchangeable Na (cmol (+) kg™) 0.17 0.19 0.09 50 0.11 0.6
Base Saturation (%) 4 6 3 45 3 14

e Frequency Hhi= 14 %
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Table 3-7. Physical and chemical characteristics of horizon Hr

Variable Median Mean _ Std. Dev. CV(%) Min. Max.
Von Post Humification 70 6.9 0.7 11 6.0 8.0
Ash Content (g kg™) 140 152 77 51 40 336
Organic Carbon (g kq") 498 492 45 9 385 557
Total Nitrogen (g kg™) 14 13 3 27 4 15
Carbon : Nitrogen Ratio 36 45 30 66 31 131
Bulk Density (Mg m™) 0.09 008 0.04 45 0.05 02
Porosity (%) 95 94 3 3 89 97
Detention Storage (%) 79 75 12 16 51 87
Volumetric Water @ -5 kPa (%) 20 22 10 45 10 43
Volumetric Water @ -10 kPa (%) 16 20 9 49 10 38
Volumetric Water @ -33 kPa (%) 13 15 6 43 7 27
Volumetric Water @ -1500 kPa (%) 11 12 4 36 7 19
pH (CaCl,) 3.5 3.5 04 10 3.1 42
TEC (cmol (+) kg™) 176 186 37 20 132 241
Exchangeable Ca (cmol (+) kg* ) 14 15 8 51 5 31
Exchangeable Mg (cmol (+) kg ) 23 26 09 34 1.6 45
Exchangeable K (cmol (+) kg™) 1.9 1.8 04 22 1.2 24
Exchangeable Na (cmol (+) kg™) 0.37 0.39 0.14 34 0.21 0.6
Base Saturation (%) 10 11 ] 48 5 22

e FrequencyHr=3%

Table 3-8. Physical and chemical characteristics of horizon Hri n=6
Variable Median Mean  Std. Dev. CV(%) Min. Max.
Von Post Humification 8.0 73 0.8 11 6.0 8.0
Ash Content (g kg'l) 563 537 61 11 430 585
Organic Carbon (g k%") 254 268 36 13 241 331
Total Nitrogen (g kg™) 8 8 2 22 7 12
Carbon : Nitrogen Ratio 31 33 5 16 28 41
Bulk Density (Mg m?) 0.17 0.17 0.06 36 0.09 0.3
Porosity (%) 92 92 3 3 88 96
Detention Storage (%) 78 74 13 17 58 90
Volumetric Water @ -5 kPa (%) 16 21 12 58 7 38
Volumetric Water @ -10 kPa (%) 14 18 10 54 6 30
Volumetric Water @ -33 kPa (%) 11 13 6 47 6 21
Volumetric Water @ -1500 kPa (%) 11 11 5 49 4 20
pH (CaCl,) 3.7 3.6 0.2 6 33 3.9
TEC (cmol (+) kg™) 109 103 34 33 60 137
Exchangeable Ca (cmol (+) kg"? 9.0 10.3 8.4 81 14 223
Exchangeable Mg (cmol (+) kg' ) 1.6 1.6 1.0 71 0.2 2.9
Exchangeable K (cmol (+) kg™) 1.0 0.9 0.5 61 0.1 1.4
Exchangeable Na (cmol (+) kg™) 0.20 0.20 0.15 73 0.02 0.5
Base Saturation (%) 15 12 8 61 1 20

e Frequency Hri=5 %
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Table 3-9. Physical and chemical characteristics of horizon C

Variable Median Mean Std. Dev. CV(%) Min Max.
Von Post Humification 80 7.6 0.7 9 50 9.0
Ash Content (g kg™) 837 835 75 9 710 971
Organic Carbon (g k§") 95 96 44 45 17 168
Total Nitrogen (g kg™) 3 3 2 67 1 15
Carbon : Nitrogen Ratio 30 31 10 32 6 54
Bulk Density (Mg m™) 0.38 041 0.18 45 0.10 0.8
Porosity (%) 85 84 7 8 69 96
Detention Storage (%) 69 67 14 21 34 90
Volumetric Water @ -5 kPa (%) 20 21 11 51 7 49
Volumetric Water @ -10 kPa (%) 15 17 9 53 ) 46
Volumetric Water @ -33 kPa (%) 10 11 6 51 4 25
Volumetric Water @ -1500 kPa (%) 6 6 3 50 2 18
pH (CaCl,) 38 3.8 0.3 7 33 44
TEC (cmol (+) kg™) 37 39 20 50 11 103
Exchangeable Ca (cmol (+) kg™! 1.6 23 2.1 91 03 84
Exchangeable Mg (cmol (+) k§‘ ) 0.4 0.5 0.9 159 0.1 6.4
Exchangeable K (cmol (+) kg’ %) 04 0.5 0.2 50 02 1.2
Exchangeable Na (cmol (+) kg™) 0.13 0.14 007 54 0.03 0.5
Base Saturation (%) 7 10 6 65 1 32

e Frequency C=33 %

Mean volumetric water desorption curves are given for horizon Fa, Fai, Hh and Hhi

in order to compare the desorption of folic soils with varying degree of decomposition

and varying ash content (Figure 3-4)
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Figure 3-4. Mean volumetric water desorption curves for folic horizons with varying
degree of decomposition and ash content (error bars + 1 SE)

3.3.3 Spatial Comparison of Folic Soil Properties

The soil characteristics of upper debris slide pedons are not significantly different
from the characteristics of upper-mid debris side pedons because paired sample t-test
results by slope position (not shown) were not significant. However, there are significant
differences in soil characteristics vertically within the pedon when pedons for the two
slope positions are pooled (Table 3-10). The soil characteristics of horizon 1 were
compared with both horizon 2 and horizon 3. In addition, horizon 2 and 3 were also

compared.
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Table 3-10. Statistical comparison of physical and chemical seil properties by horizon sequence

Hor. 1 vs. Hor. 2 __Hor. 1 vs. Hor. 3 Hor 2 vs. Hor 3

{n =159, df = 58) (n=8,df=7) (n=8,df=7)
Variable t-value  2-Tailed Sig. t-value _2-Tailed Sig. t-value 2-Tailed Sig.
Von Post Humification 15.16 0.00 -3.75 000 068 052
Ash Content -11.14  0.00 -5.50 0.00 -2.67 0.03
Organic Carbon 1124 0.00 5.50 0.00 267 0.03
Total Nitrogen 582 0.00 476  0.00 2.65 0.03
Total Nitrogen ash-free -3.89 0.00 -3.00 0.02 022 0.83
Carbon:Nitrogen Ratio .77 0.00 229 0.06 0.92 0.39
Bulk Density 6.58 0.00 -2.12  0.10 064 055
Porosity 770 0.00 3.33 0.01 1.09 0.31
Detention Storage 349 0.00 207 0.08 1.07 0.32
Grav. Water Content @ -5 kPa 9.99 0.00 5.43 0.00 228 0.06
Grav. Water Content @ -10 kPa 1034 0.00 5.33 0.00 222 0.06
Grav. Water Content @ -33 kPa 10.26 0.00 4.49 0.00 1.89 0.10
Grav. Water Content @ -1500 kPa 1097 0.00 4.73 0.00 2.19 0.07
Vol. Water Content @ -5 kPa -1.34 0.18 0.01 0.99 1.04 0.33
Vol. Water Content @ -10 kPa 0.80 043 0.11 091 0.93 0.38
Vol. Water Content @ -33 kPa 057 057 -0.06 095 0.83 0.43
Vol. Water Content @ -1500 kPa 059 0.56 2.11 0.07 1.67 0.14
pH (CaCl,) 253 0.1 2.06 0.08 -1.03 039
TEC 1049 0.00 6.92 0.00 1.98  0.09
TEC ash-free 037 0.71 1.39 0.08 0.14 0.89
Exch. Ca 912 0.00 3.19 0.02 1.85 0.11
Exch. Ca/TEC 496 0.00 207 0.22 1.36 0.22
Exch. Mg 1231 0.00 3.48 0.01 1.68 0.14
Exch. Mg/ TEC 636 0.00 6.36 0.00 0.75 0.48
Exch. K 11.51  0.00 3.24 0.01 3.19 0.02
Exch. K/ TEC 444 0.00 0.28 0.79 0.54 0.60
Exch. Na 9.32 0.00 3.91 0.01 2.52 0.04
Exch. Na/ TEC -3.14 0.00 -1.19 0.27 0.12 0.91
Base Saturation 5.57 0.00 1.97 0.09 1.31 0.23

® 2-Tailed Significance levels in boldface are significant.

Horizon 1 is significantly different from horizon 2 for all soil variables, except
volumetric water content at all matric potentials and TEC on an ash-free basis (Table 3-
10). Horizon 1 is significantly different from horizon 3 for only 17 of 30 soil variables.
While horizon 2 is significantly different from horizon 3 for only 6 of 30 soil variables.
The lack of significant difference between horizon 1 and 3, where one would expect to
see the largest difference between variables, may be due to the small sample size of 8

pairs.
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3.3.4 Relationships between Chemical and Physical Properties of Folic Soils

Simple correlation and bivariate regression were employed in order to pursue
relationships between the physical and chemical properties of folic soils (Appendix 10).
Ash content and degree of decomposition appear to be influential soil attributes affecting
several folic soil properties.

Ash content correlated significantly with total nitrogen, where r =-0.77, p = 0.00
and n = 126. However, when total nitrogen was expressed on an ash-free basis the
correlation was no longer significant.

Bivariate regression was used to characterize the relationship between ash content
and TEC. The relationship between ash content (x) and TEC (y) was significant with an
r value of 0.85 and a sig. F value of 0.00. The relationship is characterized by the
equation: y = 233.84 — 2.37x. Relationships also exist between ash content and the
exchangeable basic cations (Table 3-11). These relationships are not strong enough to be
significant bivariate regressions, but they are strong enough to be significant simple

correlations.

Table 3-11. Simple correlation between ash content and exchangeable cations

Variable r p n

Exchangeable Ca (cmol(+) kg ) -0.68 0.00 127
Exchangeable Mg (cmol(+) kg ) -0.80 0.00 127
Exchangeable K (cmol(+) kg™) -0.79 0.00 127
Exchangeable Na (cmol(+) kg™) £.74 0.00 127
Exchangeable Ca/TEC (%) 0.28 0.00 127
Exchangeable Mg/TEC (%) -0.26 0.00 127
Exchangeable K/TEC (%) -0.15 0.09 127
Exchangeable Na/TEC (%) 047 0.00 127

e Correlation coefficients in boldface are significant.
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The inverse relationships between ash content and concentration of exchangeable
cations (cmol(+)/kg) are significant, however, when exchangeable cations are expressed
as a percentage of the TEC the relationships are no longer significant. Significant
relationships also exist between von Post humification and TEC and von Post

humification and concentration of exchangeable cations (Table 3-12).

Table 3-12. Simple correlation between von Post and exchangeable cations and TEC

Variable r p n
TEC (cmol(+) kgt) -0.77 0.00 127
Exchangeable Ca (cmol(+) kg™") -0.65 0.00 127
Exchangeable Mg (cmol(+) kg‘) 20.77 0.00 127
Exchangeable K (cmol(+) kg™) -0.81 0.00 127
Exchangeable Na (cmol(+) kg™) -0.70 0.00 127
TEC ash-free (cmol(+) kg™ OM) -0.08 0.37 127
Exchangeable C//TEC (%) -0.36 0.00 127
Exchangeable Mg/TEC (%) -0.38 0.00 127
Exchangeable K/TEC (%) -0.38 0.00 127
Exchangeable Na/TEC (%) 0.24 0.01 127
e Correlation coefficients in boldface are significant. e OM = Organic Matter

Von Post humification correlates significantly with TEC and all exchangeable
basic cations when expressed on a whole-soil basis. However, they do not correlate

significantly when expressed on an ash-free basis or as a percentage of the TEC.

Table 3-13. Relationship between ash and gravimetric water content at different matric potentials
Matric Potential Sig. F Equation

-5 kPa 0.84 0.00 y=315.13-3.25x
-10 kPa 0.85 0.00 y=273.17-2.8%
-33 kPa 0.84 0.00 y=201.03-2.13x
-1500 kPa 0.85 0.00 y=165.91 — 1.86x

e r* values in boldface are significant.

Gravimetric water content at all matric potentials is significantly dependent upon
the ash content of the soil (Table 3-13). All of the relationships are vary slightly,

however the relationship between ash content and gravimetric water content at different



matric potentials is always negative. On the other hand, the relationship between

volumetric water content at different matric potentials and ash content is not significant.

Table 3-14. Simple correlation between gravimetric and volumetric water content at all matric
potentials and von Post humification

Variable r p n

Gravimetric Water Content @-5 kPa 0.82 0.00 127
Gravimetric Water Content @-10 kPa -0.82 0.00 127
Gravimetric Water Content @-33 kPa -0.80 0.00 127
Gravimetric Water Content @-1500 kPa 0.81 0.00 127
Volumetric Water Content @-5 kPa 0.11 0.23 126
Volumetric Water Content @-10 kPa 0.06 0.50 126
Volumetric Water Content @-33 kPa 0.06 0.48 126
Volumetric Water Content @-1500 kPa -0.06 0.54 126

o Correlation coefficients in boldface are significant

Similarly, gravimetric water content at all matric potentials is negatively

correlated with von Post humification while volumetric water content is not (Table 3-14).

3.4 Discussion

3.4.1 Ash Content, Degree of Decomposition and Bulk Density of Folic Soils

Ash content is an influential property of folic soils, affecting the values and trends
in other physical folic soil properties and chemical properties. Degree of decomposition
also affects many other folic soils properties although its influence is often overridden by
the more dominant influence of ash content. Ash content and degree of decomposition
both influence folic soil properties by affecting bulk density. Ash content also influences
folic soil properties via particle size and through replacement of organic matter.

The ash content of folic soils tends to increase with soil depth. The ash content of
Folisols found in comparable coastal study sites with relatively high relief terrain

illustrates a similar trend (Lewis and Lavkulich 1972; Fox, 1985; Fox et al. 1987). In this
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study, horizons located nearest the lithic contact are the horizons that tend to be highest in
ash content. Mean ash content value was 164 g/kg in horizon 1 and 760 g/kg in horizon
3. The sand-sized material of the ash content (Appendix 25) and its increasing

abundance with proximity to the lithic contact seem to point toward the underlying
bedrock as the primary source of ash content, although Lewis and Lavkulich (1972)

stated that transport from upslope may also be a factor.

Degree of decomposition of folic soils tends to increase with soil depth, from a
mean value of 4 for horizon 1 to 8 for horizon 3. The degree of decomposition of
Folisols found in comparable high relief, coastal study sites illustrate a similar trend
(Lewis and Lavkulich 1972; Fox, 1985; Fox et al. 1987). This trend exists because the
genesis of folic horizons is a result of the buildup of litter from surrounding vegetation
(Lewis and Lavkulich, 1972). Undecomposed parent material is added to the top of the
soil profile. As a result, the lower horizons are the oldest horizons and have had the most
time to undergo decomposition processes.

The bulk density of folic soils tends to increase with soil depth. Bulk density was
as low as 0.04 Mg/m® for horizon 1 and as high as 0.83 Mg/m’ for horizon 3. The
primary reason for this increase with depth is because ash content also tends to increase
with depth and mineral material has higher particle density than organic material
(Walmsley, 1977). Another important but less influential factor is degree of
decomposition. An increase in the degree of decomposition of an organic soil results in
an increase in bulk density because strongly decomposed soil contains more solids and

less airspace than poorly decomposed soil (Farnham and Finney, 1965; Boelter, 1969).



Witty and Arnold (1970) illustrate similar trends in the bulk density, ash content and

degree of decomposition of Folists.
3.4.2 Hydrologic Properties of Folic Soils

The hydrologic properties of folic soils are influenced primarily by two physical
soil properties: ash content and degree of decomposition. Ash content is likely the more
important of the two due to its effect on soil bulk density and the coarse texture of the ash
content of folic soils in the Prince Rupert area.

The porosity of folic soils tends to decrease with increasing soii depth. Mean
porosity decreases from 94 % in horizon 1 to 85 % in horizon 3. For the purposes of this
study, porosity was calculated using the equation: (1-(bulk density/particle density))*100.
As a result, the porosity of a folic soil is influenced by the same properties that affect
bulk density values; namely ash content and degree of decomposition, with ash content
having a more important influence. Both ash content and degree of decomposition are
positively correlated to porosity. Ash content correlates significantly to porosity where, r
=-0.73, p=0.00 and n = 126. Degree of decomposition correlates significantly to
porosity where, r = 0.57, p = 0.00 and n = 126.

Gravimetric water contents at -5, -10, -33 and -1500 kPa all tended to decrease
with soil depth. This is likely a result of both increasing ash content and increasing
decomposition that occurs with depth. It is difficult to discern between the two
influences because ash content and von Post humification correlate significantly where, r
=0.80, p=0.00 and n = 127. Gravimetric water contents at -5, -10, -33 and -1500 kPa

are significantly and negatively related to the ash content of folic soils, with r* values of
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0.84 and 0.85. The implication of this statement is that water retention in folic soils
comes primarily from the organic portion of the soil. The ash content of folic soils in this
region is primarily composed relatively large, sand-sized particles. Large particles create
large pores that drain easily at relatively low matric potentials whereas small particles
create small pores that are not easily drained at high matric potentials (Juma, 1999).
Therefore, folic soils with high ash contents have poorer gravimetric water retention
capabilities than folic soils with low ash content. Degree of decomposition and
gravimetric water content at all matric potentials has a significant negative relationship.
Poorly decomposed peat has a high total porosity consisting chiefly of large pores that
drain easily at relatively high matric potentials whereas strongly decomposed soil is
composed primarily of small pores which do not drain at high matric potentials (Boelter,
1964).

Volumetric water contents at -5, -10, -33 and -1500 kPa portray no significant
difference with soil depth and hence horizon type. It appears that poorly decomposed,
low ash content folic soils drain at similar volumetric water content values as highly
decomposed, high ash content folic soils (Figure 3-1). Therefore, kind of material is not
important in the volumetric desorption of folic soils, likely due to the highly variable bulk
densities between the upper and lower horizons. For instance, the mean bulk density
value for horizon 1 is 0.12 Mg/m” and horizon 3 is 0.38 Mg/m®. Moskal (1999) found
that highly varying bulk densities, due to differing ash content, had a similar effect upon
the volumetric water content of peat : sand mixtures. This trend in the volumetric
desorption is very different from that of peat soils. Poorly decomposed fibric peat and

low ash content (< 150 g/kg) has a high total porosity consisting chiefly of large pores

48



that drain easily at relatively high matric potentials whereas strongly decomposed humic
peat and low ash content is composed primarily of small pores that are not drained at high
matric potentials (Boelter, 1964). However, peat profiles tend not to have highly variable

ash content like the folic profiles of the Prince Rupert region.

3.4.3 Carbon and Nitrogen in Folic Soils

The organic carbon content of folic soils tends to decrease with increasing soil
depth. The mean organic carbon value for horizon 1 samples is 484 g/kg and 140 g/kg
for horizon 3. The decrease in organic carbon with depth in folic soils is related to ash
content increasing with soil depth. For the purposes of this study, it cannot be discerned
whether or not organic carbon is influenced by the degree of decomposition because
organic carbon is calculated as a fixed percentage of soil organic matter. Theoretically
organic carbon content should decrease with increasing decomposition because the
microbial activity that creates decomposition causes a release of carbon in the form of
carbon dioxide through microbial respiration (McGill, 1997).

The total nitrogen content of folic soils tends to decrease with soil depth because
ash content increases with soil depth and consequently the crganic portion of the soil
decreases with depth. The mean total nitrogen value for horizon 1 is 11 g/kg and 4 g/kg
for horizon 3. In fact, total nitrogen and ash content in folic soils have a significant
negative correlation. The implication of this statement is that the total nitrogen found in
folic soils comes primarily from the organic portion of the soil (Walmsley, 1977).

If total nitrogen is examined on an ash-free basis the trend is reversed. Total

nitrogen on an ash-free basis increases with soil depth. On an ash-free basis, the mean
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total nitrogen value is 13 g/kg for horizon 1 and 19 g/kg for horizon 3. This trend is
likely a result of degree of decomposition increasing as soil depth increases. Total
nitrogen on an ash-free basis correlates negatively with degree of decomposition,
although correlation coefficient is not considered significant for this study.
Accumulations of organic nitrogen are believed to occur where decomposition has
progressed the furthest (Frazier and Lee, 1971; Walmsley, 1977). Fox et al. (1994)
observed that the net release of nitrogen is related to the onset of decomposition and the
disappearance of acid-insoluble organic substances, such as lignin.

The carbon to nitrogen ratio of folic soils tends to decrease with soil depth. The
mean carbon to nitrogen ratio is 46:1 for horizon 1 and 33:1 for horizon 3. Both organic
carbon and total nitrogen content decrease with soil depth however, it must be that total
carbon content decreases more quickly than total nitrogen content with depth. This

occurrence is likely a result of loss of carbon through microbial respiration.

3.4.4 Total Exchange Capacity, Exchangeable Basic Cations and pH of Folic Soils

The trends and values for TEC and exchangeable basic cations in folic
soils are influenced primarily by two physical soil properties: ash content and degree of
decomposition. Ash content is the most influential property and degree of decomposition
is less influential but important in terms of the chemical changes that accompany
decomposition of organic matter.

The TEC of folic soils tends to decrease with increasing soil depth. The mean
value for TEC is 199 (cmol(+)/kg) for horizon 1 and 59 (cmol(+)/kg) for horizon 3. This

trend is likely a result of decreasing organic matter content with soil depth. TEC is
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significantly and negatively correlated with the ash content of folic soils, although the
sand-sized ash particles are likely not sources of TEC. The implication of this statement
is that the TEC of folic soils comes primarily from the organic portion of the soil. The
capacity of a soil to adsorb cations is positively related to its humus content (Walmsley,
1977). There are several theories as to the source of high total exchange capacities in
organic matter. Cation exchange may be a result of the substitution of dissociable
hydrogen ions in certain organic groups by other ions or may also be a result of carboxyl
and hydroxyl groups associated with humic acid and hemicellulose. Regardless of the
source, soil organic matter has a high TEC (Walmsley, 1977; Bohn et al., 1979) whereas
sand-sized mineral material has relatively low TEC values (Comell Cooperative
Extension, 1997). Therefore, folic soils with a high content of sand-sized ash have low
total exchange capacities. The TEC of folic soils is not related to degree of
decomposition since t-test results for TEC on an ash-free basis were not significant. In
addition, the relationship between degree of decomposition and TEC expressed on an
ash-free basis was not significant.

Exchangeable basic cations tended to decrease with soil depth. Fox et al. (1987)
reported similar trends with exchangeable Ca?*, Mg®" and K+ and Lewis and Lavkulich
(1972) reported some similar trends with exchangeable Ca®**, Mg?*, K* and Na‘in
Folisols. This trend is likely a result of increasing ash content and decreasing organic
matter content with soil depth. The relationships between ash content and exchangeable
Ca®", Mg?", K" and Na" are significantly negative. The implication of this statement is
that the exchangeable basic cations found in folic soils come primarily. from the organic

portion of the soil. When the exchangeable cations are expressed as a percentage of the
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TEC, the trend was still to decrease with soil depth with the exception of Na*, which then
increases with soil depth. However, the relationship between degree of decomposition
and exchangeable basic cations expressed as a percentage of the TEC was not significant.
Therefore, degree of decomposition does not appear to influence the level of
exchangeable basic cations found in folic soils.

The increase in exchangeable Na* values when expressed as a percentage of TEC
with soil depth is likely a result of a lithic sodium source. Diorite is a common bedrock
in the Prince Rupert area, with a frequency of 75 % at study sites. Diorite often contains
a proportion of sodium-rich plagioclase feldspar (Ambos, 1997). The relationship
between Na" expressed as a percentage of TEC and ash content was not significant (r =
0.47, where p = 0.00 and n = 126), although the results a very close to being significant
and are worth examination. Exchangeable cation values may be a result of other
influences such as seepage of cations from upslope, weathering of bedrock and biological
cycling.

Base saturation in folic soils tends to decrease with soil depth. The mean base
saturation value decreases from 13 % in horizon 1 to 7 % in horizon 3. Lewis and
Lavkulich (1972) discovered similar trends in the base saturation of Folisols of coastal
British Columbia. The decrease in base saturation with depth may be a result of
disassociable acidic H" from carboxyl and hydroxyl groups that are associated with an
increase in degree of decomposition (Walmsley, 1977). Base saturation and degree of
decomposition are negatively related in a correlation that is near to being significant (r = -

0.40, where p = 0.00 and n = 126).

52



Folic soils tend to become very slightly more basic with increasing soil depth: the
mean pH value for horizon 1 samples is 3.5 and 3.8 in horizon 3 samples. Walmsley
(1977) and Fox et al. (1987) reported similar trends in peat and Folisols, respectively.
This trend is likely a result of increasing ash content and decreasing organic matter
content with increasing soil depth. The strong acidity of folic soils is a result of the
organic matter portion of the soil therefore, as ash content increases and the source of
acidity becomes diluted, soil becomes more basic. Peat soils tend towards more acidic
conditions as organic content increases, however, this relationship breaks down at about

80 percent organic matter content (Walmsley, 1977).

3.5 Conclusions

The physical properties of ash and degree of decomposition play a vital role in
determining the vertical distribution of values for other physical and chemical properties
in folic pedons. Both ash content and degree of decomposition increase with soil depth in
the folic soils studied, indicating that the chemical and physical properties of folic soils
tend to change along a vertical continuum within the pedon.

Ash content is a very influential physical property of folic soils because the
chemical and physical properties of organic matter and mineral material are very
different. Ash content influences the bulk density, carbon content, nitrogen content,
hydrology and chemistry of folic soils. Farnham and Finney (1965) suggested that when
the ash content of an organic soil exceeds 50 percent by mass that it displays properties

more characteristic of mineral material than organic material.
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Degree of decomposition is also an important physico-chemical property of folic
soils because with the decomposition of plant material causes both physical disintegration
and biochemical alteration (Farnham and Finney, 1965). As a result, degree of
decomposition influences the bulk density, total nitrogen content, hydrology and

chemistry of folic soils.
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4.0 FACTORS CONTRIBUTING TOWARDS FOLIC DEBRIS SLIDES

4.1 Introduction

Swanston and Swanson (1976) discussed shallow debris slides in the steep
competent bedrock of the Coast Mountain Ranges of Oregon, Washington, British
Columbia and Alaska. The stability of these areas can be heavily impacted by timber
harvesting operations, particularly through the alteration of hydrology. Sidle and
Swanston (1982) and Sidle (1985b) considered coastal Alaskan debris slides. They state
that high intensity rainfall events, a permeable forest mantle and geologic concave
depressions that collect groundwater are key debris slide triggers. Four natural, process-
related categories that can influence the stability of forested slopes in the coastal ranges
of Oregon and Washington are geologic factors, biotic factors, hydrologic factors and soil
properties (Schroeder and Alto, 1983). Contributions to debris slides may appear as
landscape-level characteristics such as geologic features, or they may appear as smaller-
scale, pedon-level characteristics such as soil attributes.

It is important to determine the factors that contribute toward slope failure in the
Prince Rupert region as it has such a high debris slide risk. By identifying and
understanding the possible causes of debris slides, there can be more confidence in
minimizing the risk of debris slides that occur through timber harvesting activities. There
has been little investigation regarding folic debris slides in the Prince Rupert area.
However, there have been several investigations of shallow debris slides in the Coast

Ranges of the Pacific Northwest.
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The following hypotheses were formed conceming contributions to slope failure
in this region: i) Slope angle is a primary factor influencing the stability of folic soils in
this region, ii) soil characteristics and bedrock characteristics are closely related to slope
hydrology and have an important effect on slope stability.

The objectives of this chapter were to determine the factors and relationships that
contribute toward folic debris slides in the Prince Rupert area, on both a landscape and a

pedon scale.

4.2 Methods and Materials

4.2.1 Site Description and Sampling Design

Thirty sampling sites were chosen within an approximately 50 km radius
surrounding the city of Prince Rupert, British Columbia. Folic debris slides were
identified by several methods: debris slide scar recognition, debris slide sidewall
recognition in older sites and by the fact that they tended to occur more often in western
redcedar — western hemlock forests than mineral debris slides that were more often
located in Sitka spruce forests. The apparent age of folic debris slides in this study range
between approximately 1 to 300 years.

There were two criteria used in selecting sample debris slide sites. The debris
slides must occur on open slopes, outside of a confining drainage, in order to avoid well-
documented indicators of slope instability, such as gullies (Swanston and Howes, 1994).
In addition, the soil profile of a sample debris slide site should contain only folic material
over bedrock, with little or no mineral soil component. The failure of organic soil that

was of interest therefore soils with thick mineral horizons were excluded from the study.
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Some mineral soils were unknowingly sampled. At the time of field sampling, the
samples in question were thought to be Folisols, but upon laboratory investigation they
were discovered to be otherwise. However, these soils tend to have a strong folic
influence and were therefore included in the study regardless.

Sample collection on the folic debris slides was further divided into two sample
plots per slide. These plots were located, in most cases, within 5 m of the path of

damage, outside of the debris slide scar on opposite sides of the initiation zone or

mainscarp (Figure 4-1). Situations in which this was not the case are due to accessibility

problems, when the terrain was too steep for safe travel.

mainscarp or initiation zone

upper-mid debris slide zone

mid debris slide zone

lower debris slide zone

® = debris slide sample plot

Figure 4-1. Sample plot locations on a typical debris slide.
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4.2.2 Field Sampling

Field sampling methods for debris slide sites are the same as those used at folic
soil characterization sites. Refer to section 3.2.2 for a detailed description of the field

sampling methods used at these sites.

4.2.3 Laboratory Analysis

In preparation for laboratory analysis, samples were air-dried and homogenized
by hand to pass through a 4-mm sieve. Samples were not sieved through the standard 2-
mm because preservation of soil structure was deemed important for some laboratory
analyses. Bulk density was determined by the core method, using cylinders with volumes
of 271.9 cm® and 182.5 cm’, inserted horizontally into the soil. The samples were oven
dried at 105 °C until their mass became constant (Day et al., 1979). Particle density was
determined using the pycnometer method (Blake, 1965). The standard pycnometer
method requires a 10-g sample size. Because of the low bulk density of organic soil
materials, the sample size used was often smaller, ranging from 1.5 to 10 g. Ash content
was determined using the dry-ashing method, also commonly referred to as loss-on-
ignition. The organic matter was combusted in a muffle furnace at a temperature of 550

°C for 20 hours (Carter, 1993).

4.2.4 Data Analysis

Principal components analysis (PCA) was performed separately on both
landscape and pedon-level variables using the Principal Components procedure in SPSS

(SPSS Inc., 1995). The PCA was executed using a varimax rotation and extracting



eigenvalues >1 only. By conducting the PCA on landscape and pedon-level variables
separately, the guideline of at least five cases for each observed variable was satisfied
(Tabachnick and Fidell, 1989). For both PCAs, only a loading > 0.5 was accepted as
being significant in the formation of the principal component or factor. A loading > 0.5
is the traditional cutoff point in PCA procedure (Sharma, 1996). In regards to summary
statistics, continuous data are presented as descriptive summary statistics and non-
continuous data are summarized by frequencies.

Two duplicate samples were taken at the mainscarp on either side of the debris
slide for both landscape and pedon-level variables. What lies between the two sample
locations is assumed to be the mean of the two replicates. The mean of the two replicates
was the value used in the PCA. Non-continuous data were merged creating additional
ranked categories as a substitution for a mean value. In addition, for the pedon-level, the
data used in analysis were obtained from the soil horizon in contact with bedrock because
it is that horizon which fails initially. For all PCA and summary statistics in this chapter
n=30. For simple correlations in this chapter n = 126 or 216 because upper-mid slope
position data were included to allow for a stronger correlation and / or duplicate samples
were unable to merged.

Landscape-level variables can be defined as those variables that vary over larger
distances than the pedon-level, that is, approximately > 50 m. The landscape-level
variables utilized in the PCA include bedrock structure, slope shape, slope angle, surface
configuration, weighted vegetation cover and the presence or absence of water-tolerant
vegetation (Appendix 11). These variables are non-continuous with the exception of

slope angle and weighted vegetation cover. A ranking system was devised to code non-
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continuous data. The system was based upon whether a particular landscape attribute
was more or less likely to contribute towards debris slide occurrence. A rationale based
on debris slide theory and literature exists for all non-continuous variables (Sidle, 1985a;
Al-Khafaji and Andersland, 1992; Swanston and Howes, 1994; Gray and Sotir, 1996).

The bedrock structure variable is ranked according to the idea that jointed and
fractured bedrock is more likely to contribute towards folic debris sliding than massive
bedrock structure. Joints and fractures are often ready-made zones of weakness and
avenues for deep penetration of groundwater or groundwater discharge. It was observed
that bedrock jointing in the study area was primarily parallel to the slope, providing little
mechanical support for the overburden. Overburden can also be poorly attached to
massive bedrock but it does not include planes of weakness nor excess hydrostatic
pressure (Sidle, 1985a; Swanston and Howes, 1994).

The slope shape variable is ranked according to the idea that convex slopes are
least likely to contribute toward slope failure, followed by straight slopes and finally
concave slopes are most likely to contribute towards slope failure. Concave slopes tend
to concentrate subsurface water flow and convex slopes tend to disperse subsurface water
flow (Sidle, 1985a; Swanston and Howes, 1994). The concentration of water flow results
in a situation where saturated soil conditions are more likely and coincident instability is
more likely. The surface configuration variable is ranked according to the idea that
uniform and smooth slopes are less stable than irregular and benchy slopes. Irregular
slopes may have flat segments that serve to support the overburden through a buttressing

mechanism. This makes slope failure less likely. However, irregular and benchy slopes

62



may have more seeps and springs as a result of breaks in the slope, allowing groundwater
an exit point.

The water-tolerant vegetation variable is ranked according to the idea that the
presence of water-tolerant vegetation indicates high groundwater levels and impeded soil
drainage (Swanston and Howes, 1994), in turn indicating an increased probability of
saturated soil conditions and therefore reduced slope stability. Weighted vegetation
cover is a variable that has combined tree, shrub and herb cover percentages into a single
new variable, created by multiplying the individual cover percentages by a factor of 1 for
trees, 0.3 for shrubs and 0.1 for herbs then obtaining the sum. The factors are simply
estimated in an attempt to account for the variable root volume found amongst these
strata of vegetation.

Pedon-level variables can be defined as those variables that vary over a distance <
10 m. The pedon-level variables utilized in the PCA include: ash content, mass of
saturated soil per unit surface area, porosity, root abundance class, soil structure and von
Post humification (Appendix 12). These variables are continuous with the exception of
root abundance class and soil structure. As with the landscape-level variables, non-
continuous data were ranked and coded. The root abundance class variable was ranked
on the basis of estimated root volume. The classes that include the largest volume of
roots are less likely to create unstable conditions than the classes with the smallest
volume of roots. Root content in a soil can increase the stability of a slope by the
contribution of root cohesion to soil cohesion (Sidle, 1985a; Al-Khafaji and Andersland,
1992; Gray and Sotir, 1996). The soil structure variable is ranked based on the idea that

soil structure with higher porosity is less likely to contribute towards slope instability.
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Better soil drainage is less likely to result in saturated soil conditions. This rationale is
based upon the significant linear relationship that exists between the soil structure and
porosity values. The correlation between soil structure and porosity is significant, where

r =0.53, where p=0.00 and n = 216.

4.3 Results

4.3.1 Landscape-Level Summary Statistics

Table 4-1. Descriptive summary statistics for landscape-level variables

Variable Median Mean __ Std. Dev. CV (%) Min. Max.
Slope Angle (°) 44 43 7 16 30 60
Weighted Vegetation Cover (%) 72 71 11 16 41 9%

For landscape-level summary statistics both continuous (Table 4-1) and non-
continuous data (Table 4-2) are presented. The sample sites chosen for this study have a
relatively large range in slope angle, although the coefficient of variation is small. It is
important to note the distribution of values because slope angle has traditionally been
thought to have a direct and primary influence on slope stability (Sidle, 1985a; Swanston
and Howes, 1994).

Table 4-2. Summary frequencies for landscape-level variables

Bedrock Structure

Value Label Frequency (%)
Jointed / Fractured 77

Massive 23




Slope Shape

Value Label Frequency (%)
Convex 47

Straight 23

Convex / Straight 13

Concave 10

Concave / Straight 7

Surface Configuration

Value Label Frequency (%)
Irregular / Benchy 67

Uniform / Smooth 33

Water-Tolerant Vegetation

Value Label Frequency (%)
Present 63
Absent 37

The frequency distribution for bedrock structure supports the hypothesis that
jointed and fractured bedrock is less stable than massive bedrock. The frequency
distribution for slope shape runs contrary to published data by Sidle (1985a) and
Swanston and Howes (1994) that state that concave slopes are the most likely to create
unstable conditions. However, Krag (1986) illustrated that debris slides on the Queen
Charlotte Islands had a similar distribution of slope shapes as this study, with dominantly
convex slopes. He noted that convex initiation zones were usually associated with
seepage zones.

The frequency distribution for surface configuration also runs contrary to the
hypothesis that uniform and smooth slopes are more likely to contribute toward
instability. Water-tolerant vegetation frequencies agree with published data that state that
the presence of water-tolerant vegetation is more likely to be characterized by slope

instability than its absence (Swanston and Howes, 1994).
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4.3.2 Landscape- Level PCA Results

The landscape-level PCA resulted in the extraction of three factors that accounted
for 73.6 % of variation (Table 4-3). Factor 1 had an eigenvalue of 1.79 and accounted for
29.8 % of variation. Factor 2 had an eigenvalue of 1.60 and accounted for 26.6 percent
of variation. Factor 3 had an eigenvalue of 1.03 and accounted for 17.2 percent of

variation.

Table 4-3. Rotated factor loading matrix of landscape-level PCA

Variable Factor 1 Factor 2 Factor 3
Bedrock Structure 0.72 0.41 0.07
Slope Shape 0.03 0.05 0.94
Slope Angle -0.82 0.23 0.17
Surface Configuration -0.12 0.70 0.53
Weighted Vegetation Cover 0.73 0.03 0.07
Water-Tolerant Vegetation -0.09 -0.86 0.16

¢ Factor loadings in boldface are significant.

Variables considered significant in the formation of Factor 1 include bedrock
structure, slope angle and weighted vegetation cover. Surface configuration and water-
tolerant vegetation are considered significant in the formation of Factor 2. Slope shape
and surface configuration are considered significant in the formation of Factor 3.

In Factor 1, bedrock structure loads in the direction of massive structure, slope
angle decreases and weighted vegetation cover increases. The variables that load on
Factor 1 describe a landscape that is resistant to failure primarily though geologic means.
As previously discussed, massive bedrock is less likely to contribute towards slope
instability than jointed and fractured bedrock. Obviously, a decrease in slope angle also
decreases the likelihood of slope failure. Vegetation cover may be related to slope angle;

the steeper the slope, the less vegetation that thrives. Therefore, a consequence of



decreasing slope angle in this factor is an increase in vegetation cover and increased
vegetation cover also increases the likelihood of slope stability. Factor 1 will be named
‘Geologic Resistance to Failure’ Factor.

In Factor 2, surface configuration loads in the direction of irregularity and the
presence of water-tolerant vegetation increases. The variables that load on this factor are
primarily hydrologic in influence. An irregular and benchy slope may have more seeps
and springs as a result of breaks in the slope that allow groundwater an exit point. As
mentioned previously, water-tolerant vegetation thrives in areas containing springs
because of relatively permanent high groundwater levels. As a result of the above
discussion, Factor 2 will be named ‘Geologic / Hydrologic Instability 1’ Factor.

In Factor 3 slope shape loads in the direction of concavity and surface
configuration loads in the direction of irregularity. The variables that load on Factor 3,
like Factor 2, are primarily hydrologic in influence. A concave slope shape tends to
concentrate water on a slope and as mentioned previously, an irregular and benchy slope
may allow the formation of springs and seeps. As a result of the above discussion, Factor

3 will be named ‘Geologic / Hydrologic Instability 2’ Factor.

4.3.3 Pedon-Level Summary Statistics

Table 4-4. Descriptive summary statistics for pedon-level variables in lowest horizon at upper slope
position, n= 30

Variable Median Mean Std. Dev. CV (%) Min. Max.
Ash Content (g kg™) 553 557 18 3 102 860
Saturated Soil Mass (kg m™) 461 454 206 45 168 1024
Porosity (%) 88 87 7 8 69 96
Von Post Humification 8 8 1 13 5 9

67



For pedon-level summary statistics both continuous (Table 4-4) and non-
continuous data are presented (Table 4-5). All of the variables in Table 4-4 have very
low coefficient of variation values with the exception of saturated soil mass. A higher
level of variation is expected in saturated soil mass because it is a secondary
measurement composed of several primary variable including coarse fragment content,

bulk density and porosity.

Table 4-5. Summary frequencies for pedon-level variables in lowest horizon at upper slope position,

n=30

Root Content Class

Value Label Frequency (%)
Few, Fine to Very Fine 53

Common, Fine to very Fine 33

Few, Medium to Very Fine 10

Common, Medium / Abundant, Fine to Very Fine 3

Soil Structure

Value Label Frequency (%)
Medium 23

Massive / Medium 23

Massive 13

Fine 13

Medium / Fine 10
Non-Compact Matted 7
Non-Compact Matted / Medium 7

Massive / Fine 3

The frequency distribution of root content class is in accordance with literature
that networks of medium and small-sized roots may provide lateral support and therefore
increase slope stability (Sidle, 1985a; Swanston and Howes, 1994). The soil structure
frequency distribution illustrates that soil structure at debris slide sites have no strongly
dominant type, although the lowest soil horizon has a very low frequency of well drained,

non-compact matted structure.
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4.3.4 Pedon-Level PCA Results

The pedon-level PCA resulted in the extraction of three factors that accounted
74.6 % of variation (Table 4-6). Factor 1 had an eigenvalue of 2.17 and accounted for
36.1 % of variation. Factor 2 had an eigenvalue of 1.27 and accounted for 21.1 percent
of variation. Factor 3 had an eigenvalue of 1.04 and accounted for 17.4 percent of

variation.

Table 4-6. Rotated factor loading matrix of pedon-level PCA

Variable Factor 1 Factor 2 Factor3
Ash Content 0.15 0.86 0.07
Saturated Soil Mass 0.01 0.10 0.94
Porosity 0.54 -0.64 -0.04
Root Content 0.80 0.26 0.04
Soil Structure 0.62 0.07 -0.51
Von Post Humification -0.80 0.35 -0.05

¢ Factor loadings in boldface are significant.

Variables considered significant in the formation of Factor 1 include porosity,
root content, soil structure and von Post humification. Ash content and porosity are
considered significant in the formation of factor 2. Variables considered significant in
the formation of Factor 3 include saturated soil mass and soil structure.

In Factor 1, soil structure loads in the direction of non-compact matted structure,
porosity and root content are increasing, and von Post humification is decreasing in
value. The variables that load on Factor 1 describe a soil condition that is resistant to
failure. A non-compact matted structure tends towards being less likely to become
saturated. Soil structure with high porosity makes saturated conditions less likely to occur
because more water is required to fill pores. Porosity and soil structure are significantly

correlated. Increased root volume in soil increases root cohesion values, therefore
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increasing soil shear strength. Pedons with lower von Post values tend to be higher in
porosity and retain less water than soils with higher von Post values, making the saturated
soil conditions less likely to occur. Because saturated conditions decrease soil shear
strength and root cohesion increases shear strength, Factor 1 will be named the ‘Increased
Shear Strength’ Factor.

In Factor 2, ash content values are increasing and porosity values are decreasing.
The variables that load on Factor 2 describe a soil that has an increased risk of failure.

An increase in the ash content of the soil increases soil bulk density, therefore decreasing
soil porosity. In addition, an increase in the ash content of a soil decreases its organic
matter content, therefore reducing the extra porosity that can sometimes be found in plant
cellular structure. The above variables combine to create a situation in which saturated
soil conditions are more likely to occur and as a result, soil shear strength is more likely
to be reduced. As a result, Factor 2 will be named the ‘Soil / Hydrologic Instability’
Factor.

In Factor 3 soil structure loads in the direction of massive structure and saturated
soil mass increases in value. The variables that load on Factor 3 describe a soil with an
increased risk of failure primarily due to increased normal load. The structure of this soil
tends toward being less porous and less likely to drain freely. Soil with poor drainage
creates saturated conditions more easily, reducing shear strength, and increases the mass
of water present in the soil. An increase in the saturated soil mass per unit area increases
the normal load upon the failure surface. As a result of the above discussion Factor 3 will

be named the ‘Increased Normal Load’ Factor.
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4.4. Discussion

4.4.1 Landscape-Level Factors

The dominant variables among landscape-level factors are primarily geologic in
origin. Bedrock structure, slope shape, surface configuration and slope angle variables
appear to be influential in determining slope stability of folic soils in the Prince Rupert
region because they load significantly upon the factors in the landscape-level PCA.
Weighted vegetation cover and water-tolerant vegetation variables are secondary
variables that occur as a result of the geologic properties.

Geologic conditions affect slope stability primarily through their influence upon
slope hydrology. It is important to note that the hydrologic and hence, geologic
conditions are important primarily because of the large amount of rainfall the Prince
Rupert area receives. The amount of precipitation the area receives is larger in winter
months, when evapotranspiration is low, therefore creating ideal conditions for saturation
of the soil profile and hence loss of soil cohesion.

Bedrock structure is a significant variable within the ‘Geologic Resistance to
Failure’ Factor, with a factor loading of 0.72. It is a geologic variable that influences
slope stability through its effect on slope hydrology. The influence of bedrock structure
upon slope stability can be significant, particularly in areas prone to steep shallow debris
slides. Joints and fractures impede vertical infiltration and root penetration in many
cases, decreasing slope stability (Sidle, 1985a). In addition, Swanston and Howes (1994)

stated that joints and fractures can create avenues for deep groundwater penetration, with
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subsequent porewater pressure development along the planes. Massive structure is also
poor, often permitting poor attachment of the solum (Sidle, 1985a).

Slope shape is a significant variable within the ‘Geologic / Hydrologic Instability
2’ Factor, with a factor loading of —0.94. Like bedrock structure, slope shape is a
geologic variable that influences slope stability through its effect on slope hydrology.
Convex slopes tend to disperse subsurface water and tend to be more stable than concave
slopes that concentrate subsurface water into smaller areas of the slope (Sidle, 1985a;
Swanston and Howes, 1994). Slopes with mid to upper slope concave depressions are
thought to be particularly susceptible to slope failure. These depressions accumulate
subsurface water and develop positive pore water pressure, thus decreasing slope stability
(Sidle and Swanston, 1981; Sidle, 1985a; Schroeder and Swanston, 1987; Swanston and
Howes, 1994). However, as mentioned previously, debris slides on the Queen Charlotte
Islands had a similar distribution of slope shapes as this study, with dominantly convex
slopes (Krag, 1986). Although, it is noted that convex initiation zones were usually
associated with seepage zones.

Surface configuration is a significant variable within the ‘Geologic / Hydrologic
Instability 1 and 2’ Factors, with factor loadings of 0.70 and 0.53, respectively. Like
bedrock structure and slope shape, surface configuration is a geologic variable that
influences slope stability through its effect on slope hydrology. Uniform slopes may be
less stable because they tend to contain fewer steep segments that act to buttress the
overburden. However, 67 % of debris slides in this study had irregular slopes. Irregular
siopes contain many breaks in slope that can serve to allow groundwater an exit point as

springs or seeps. Therefore, an irregular configuration may have more of an influence on
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slope instability via hydrology than a uniform configuration has through lack of physical
buttressing.

Slope angle is a significant variable within the ‘Geologic Resistance to Failure’
Factor, with a factor loading of —0.82. In this study, slope angle has an unknown effect
upon slope hydrology but it influences slope stability by its effect upon normal stress.
Slope angle is very closely related to shallow debris slides and is a key factor in

controlling slope stability (Sidle, 1985a; Swanston and Howes, 1994).

4.4.2 Pedon-Level Factors

The dominant variables among pedon-level factors are primarily a result of
physical soil properties. Soil porosity, ash content and degree of decomposition variables
appear to be influential in determining slope stability in the Prince Rupert region since
they load significantly upon the factors in the pedon-level PCA. Soil structure and
saturated soil mass variables are secondary variables that are influenced by more primary
soil physical measurements.

Porosity is a significant variable within the ‘Increased Shear Strength’ and the
‘Soil / Hydrologic Instability 1’ Factors, with factor loadings of 0.54 and —0.64,
respectively. It influences slope stability through its effect on soil hydrology. The
porosity of a soil determines the amount of water required to achieve saturation. The
amount of water required to achieve saturation is important because of the reduction in
soil shear strength that comes with saturation and a decline in intergranular pressure
(Sidle, 1985a; Gray and Sotir, 1996). Porosity also determines the contribution of water

to normal load in a saturated soil. The porosity of folic soils is influenced by degree of
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decomposition (correlation coefficient = 0.57, where p = 0.00 and n = 126) and ash
content (correlation coefficient = -0.73, where p = 0.00 and n = 126).

Ash content is a significant variable within the “Soil / Hydrologic Instability 1’
Factor, with a factor loading of 0.86. It influences slope stability through its effect on
soil hydrology and normal load. An increase in the ash content of a folic soil decreases
its total porosity, making saturated conditions more likely to occur because there is a
smaller volume of pores to fill. Although it is a relatively small contribution, an increase
in the ash content of a soil increases normal load because mineral material is denser than
organic material. Saturated conditions and an increased normal load are both conditions
that serve to decrease soil shear strength and make slope failure more likely (Sidle,
1985a; Gray and Sotir, 1996).

Degree of decomposition is a significant variable within the ‘Increased Shear
Strength’ Factor, with a factor loading of ~0.80. It influences slope stability through its
effect on soil hydrology. Degree of decomposition influences total porosity through the
decrease in organic particle size that comes with decomposition processes. The size of
the organic particles decrease with increasing decomposition, resulting in smaller pores
and higher bulk density (Boelter, 1968). A decrease in total porosity increases the
likelihood of saturated conditions by reducing soil shear strength and increasing the

likelihood of slope failure.
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4.5 Conclusions

Swanston and Dymess (1973) state that both geologic and soil considerations are

equally important in influencing the stability” of slopes. This statement is valid with
regards to folic debris slides in the Prince Rupert area. Both the underlying geology and
folic soils of the region serve to influence slope stability primarily through hydrologic
means but also through influencing normal stress.

Slope angle is a highly loading variable in the landscape-level PCA, likely acting
through its influence on normal stress. Therefore, slope angle appears to have an
important influence on the stability of folic soils in the Prince Rupert region.

The hydrologic processes influencing the stability of slopes in the Prince Rupert
area are initially dependent upon the large amount of rainfall the area receives. Rainfall
is particularly high during the winter months with a mean monthly rainfall of 211.3 mm
(Environment Canada, 1998). The amount and seasonal distribution of precipitation
received in the Prince Rupert area is a driving hydrologic variable with regards to slope
stability. However, slope stability is ultimately determined by how the water is
transmitted once it reaches the ground surface.

Geologic variables are important in influencing slope stability in the Prince
Rupert region, primarily through their effect upon groundwater. Any geologic
circumstance that creates locations of high hydrostatic pressure, in turn creates the

potential for slope instability through reduction of soil shear strength.
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5.0 COMPARING FOLIC DEBRIS SLIDES TO NON-DEBRIS SLIDE SITES

5.1 Introduction

One way of attempting to understand the factors causing folic debris slides is to
compare their characteristics with those of folic non-debris slide transects. Comparison
of the continuous soil and terrain variables between debris slide sites and non-debris slide
sites may allow the determination of key differences and properties sensitive to slope
failure.

During initial field survey only two features differed noticeably between debris
slide and non-debris slide sites; slope angle and pedon thickness. Because slope angle is
often closely related to shallow debris slides (Sidle, 1985; Swanston and Howes, 1994)
and pedon thickness appeared to be related to slope angle upon initial examination, the
following hypotheses were formed regarding the differences between folic debris slide
sites and non-debris slide transects: i) Folic pedon thickness is dependent upor slope
angle, ii) slope angle and pedon thickness are likely the only significant differences
between folic debris slide sites and non-debris slide transects.

One objective of this chapter was to examine and better define the relationship
between folic pedon thickness and slope angle. Another objective of this chapter was to
compare folic debris slide sites with non-debris slide transects in an attempt to discern
any significant difference between their characteristics. Both of these objectives may aid
in the identification of stable versus unstable terrain and may lead to a better

understanding of soil and terrain conditions that create debris slides.
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5.2 Methods and Materials

5.2.1 Site Description and Sampling Design

In order to investigate the soil properties that contribute towards the occurrence of
folic debris slides in the Prince Rupert area, four transects were established on terrain not
containing debris slides. These transects were sampled for comparison with those
samples taken adjacent to debris slides. Transects were all located within an
approximately 50 km radius surrounding the city of Prince Rupert, British Columbia.

Two criteria were used in selecting non-debris slide transects: i) Sample transects
were to be located in areas underlain with quartz diorite, diorite or gneiss rock,
corresponding to rock types found at debris slide sites. This criterion was used in order
to focus upon folic soil characteristics that may contribute towards slope failure, rather
than geologic characteristics which have been well documented by Sidle and Swanston
(1981), Sidle (1985), Schroeder and Swanston (1987) and Swanston and Howes (1994).
ii) Transects were also to be located on large open slopes with no gullies and no debris
slides in or nearby the chosen transect. This criterion was employed in order to more
closely duplicate the geologic conditions of debris slide sample sites and in order to
ensure that the transect sites were located on terrain that could be considered to be
reasonably stable.

Sample collection on non-debris slide transects was divided into 5 sites per

transect. These sites were based upon the following slope-angle classes: < 19 °, 20 to 24

°, 251029 °, 30 to 34 °and > 35 °. Lower slope angle classes tended to be located in
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lower slope positions and higher slope angle classes tended to be located in mid slope

positions.

3.2.2 Field Sampling

Field sampling methods used on non-debris slide transects are the same as those

used at debris slide sites (Section 3.2.2)

5.2.3 Laboratory Analysis

The methods of laboratory analysis used for non-debris slide transect samples

were the same as those employed for debris slide sample sites (Section 4.2.3).

5.2.4 Data Analysis

Paired samples t-tests were performed to compare continuous data collected at
folic debris slide sites to data collected at non-debris slide transects in order to discern
any significant differences between the two data sets. The Paired Samples T-Test
procedure in SPSS was used (SPSS Inc., 1995). A two-tailed significance level < 0.05
was accepted as significant.

Simple correlation was employed in order to examine the relationship between
slope angle and folic pedon thickness. Simple correlation was performed using the
Bivariate Correlation procedure in SPSS and the results were expressed as a Pearson
correlation coefficient with a two-tailed test of significance (SPSS Inc., 1995). Only a
correlation with r > 0.5 and an alpha level < 0.05 was accepted as significant (Cohen,

1992).



Only continuous variables used in the principal components analysis are presented
in this chapter. In addition, all data represent the horizon nearest the lithic contact
(horizon 2 or 3), with the exception of saturated soil mass and pedon thickness, which

represent the entire soil profile.

5.3 Results

5.3.1 Summary Statistics

Both the debris slide and non-debris slide summary statistics are presented for
comparison because the main purpose of this chapter is to determine differences between

the two data sets (Table 5-1).

Table 5-1. Descriptive summary statistics for non-debris slide transects and debris slide sites

Non-Debris Slide Sites n=20
Variable Median Mean Std. Dev. CV (%) Min. Max.
Ash Content (g kg™*)* 772 617 321 52 23 952

Von Post Humification* 8 8 1 13 4 9
Porosity (%)* 88 87 5 6 73 94
Saturated Soil Mass (kg m'2) 415 561 333 59 208 1538
Pedon Thickness (cm) 35 47 23 49 19 96
Slope Angle (°) 28 28 9 32 15 49
Debris Slide Sites n=30
Variable Median Mean Std. Dev. CV (%) Min. Max.
Ash Content (g kg™)* 553 557 181 33 10 860

Von Post Humification* 8 8 1 13 5 9
Porosity (%)* 88 87 7 8 69 96
Saturated Soil Mass (kg m'2) 461 454 206 45 168 1024
Pedon Thickness (cm) 31 34 41 14 10 69
Slope Angle (°) 44 43 7 16 30 60

* Values for the lowest horizon in contact with the bedrock surface
Upon initial inspection these two data sets appear very similar. The mean slope

angle is much higher in debris slide sites (43°) than in non-debris slide transects (28°).
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However, this may be an artifact of a non-debris slide transect sampling design which

was biased toward relatively shallow slope classes.

5.3.2 Slope Angle and Pedon Thickness

The relationship between slope angle and pedon thickness is negative. Non-
debris slide data were initially used for comparing these two variables because the sample
sites were chosen based on slope angle. The non-debris slide data illustrate the negative
relationship but not significantly. A simple correlation between the two variables
resulted in a r of —0.31, where p = 0.18 and n =20. The lack of significance is likely due
to the small sample size. The same correlation was run using both non-debris slide
transects and debris slide sites resulting in a r of -0.40, where p =0.00 and n=136. A
significant negative relationship still did not exist between slope angle and folic pedon
thickness, but the relationship is very close to being significant and is therefore worth

noting.

5.3.3 Comparing Folic Debris Slide Sites with Non-Debris Slide Transects

Table S-2. Paired samples t-test: debris slide vs. non-debris slide sites n=20,df=19
Variable t-value 2-Tailed Sig.

Ash Content -0.76 0.46

Von Post Humification 0.00 1.00

Porosity -1.24 0.23

Saturated Soil Mass 1.23 0.23

Pedon Thickness -2.11 0.05

Slope Angle 5.09 0.00

o 2-Tailed Significance levels in boldface are significant.

Paired samples t-tests were performed in order to determine if any significant

difference exists between the characteristics of debris slide sites and non-debris slide
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transects (Table 5-2). The only two variables in Table 5-2 that had means that differed
significantly from debris slide sites to non-debris slide transects were pedon thickness
and slope angle. It was expected that slope angle of debris slide sites would be
significantly greater because of differing sampling designs. It was also expected that
pedon thickness is significantly greater along non-debris slide transects because pedon

thickness and slope angle are inversely related.

5.4 Discussion

5.4.1 Slope Angle and Pedon Thickness

The relationship between slope angle and pedon thickness is near to being
significant (r =—0.40, where p = 0.00 and n = 136). The relationship that exists between
these two variables is likely a result of the fact that folic soils require vegetation to supply
parent material in the form of litter (Lewis and Lavkulich, 1972) and field obervation
indicated that aboveground biomass tends to grow less densely on steeper slopes. The
trend between slope angle and weighted vegetation cover is negative (r = — 0.36, where p
= 0.05 and n=30). The variation in the relationship between slope angle and pedon
thickness is likely a result of small-scale topography creating pockets of thinner or
thicker soil, unrelated to the slope of the larger angle. In addition, pedon thickness may
also be related to degree of decomposition, pedon thickness decreasing as decomposition

and hence bulk density increases.
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5.4.2 Comparing Folic Debris Slide Sites with Non-Debris Slide Transects

The variable of slope angle differed significantly between debris slide sites and
non-debris slide transects (t-value = 5.09, two-tailed sig. = 0.00). This difference is likely
an artifact of the sampling design. The sampling design for non-debris slide sites was
based on examining different slope angle classes whereas the design for debris slide sites
was based only upon the presence of an accessible debris slide. As a result, many of the
non-debris slide transect sites are much less steep than the debris slide sites. However,
one would generally expect debris slides sites to be steeper than stable sites because slope
angle is a well-documented predictor of debris slides. Sidle (1985) reports that many
slopes over 25 ° and most slopes over 35 ° are prone to rapid slope failure. However, it is
difficult to determine if the significant difference in slope angle is a real phenomenon or
if it is a result of study design.

Because of the negative trend between slope angle and pedon thickness it is not
surprising that the pedon thickness of debris slide sites and non-debris slide transects is
also significantly different (t-value = -2.11, two-tailed sig. = 0.05). Again, it is difficult
to determine if the significant difference in pedon thickness is a real phenomenon or if it
is a result of study design.

Non-debris slide transects tend to have thicker soil that debris slide sites. These
areas likely have thicker soils because they have never failed and therefore deep folic
material has had a chance to develop over time. One might expect a thicker soil mantle
to be more indicative of unstable conditions than a thinner soil mantle due to the increase
in normal load and friction a thicker soil places upon the failure surface. Therefore it is

likely that pedon thickness, and its contribution to normal load, is a less sensitive variable



in slope stability analyses than slope angle. Sidle (1985) and Swanston and Howes
(1994) state that slope angle can often be closely related to shallow slope failures such as

those found in the study area.

5.5 Conclusions

Results do not support the hypothesis that pedon thickness is dependent upon
slope angle because the negative correlation between pedon thickness and slope angle is
not significant however, the relationship between the two variables is near to being
significant and therefore worth noting.

Results support the hypothesis that slope angle and pedon thickness are the only
apparent differences between debris slide sites and non-debris slide transects. It is not
clear whether these relationships are a result of differing sampling designs or whether it is
a real phenomenon.

Slope angle may be a sensitive, primary indicator of shallow debris slide stability.
However, the difference in the sampling design of debris slide sites and non-debris slide
transects makes this question more difficult to answer. Clearly, more examination of this
parameter is needed. This may be better accomplished through sampling non-debris slide

areas that have more similar slope angles (i.e. steeper) to debris slide sites.
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6.0 SHEAR STRENGTH AT FOLIC SOIL - BEDROCK INTERFACES

6.1 Introduction

An infinite slope model is a common framework used in assessing debris slide
risk. Soil shear strength is a central concept and measurement used in these models. It
can be defined as a quantitative measure of the resistance of a soil to failure, as a function
of normal stress on a slip surface, cohesion and internal angle of friction (Sidle, 1985; Al-
Khafaji and Andersland, 1992; Gray and Sotir, 1996). There has been no past research
regarding shear strength of folic soils in British Columbia. In addition, no attempt has
been made to discover relationships between folic soil shear strength and other physical
characteristics.

Folic soils in the Prince Rupert area fail at the folic soil — bedrock interface.
Therefore, shear strength and its components of adhesion and friction are a result of the
relationship between folic soil properties and the bedrock, rather than folic soil properties
alone. The term ‘adhesion’ is used in place of the more usual term ‘cohesion’ and the
term ‘angle of friction’ is used in place of the more common term ‘internal angle of
friction’ because the materials in question are different (i.e. soil and bedrock).

Sidle (1985) found soil cohesion to be negatively related to soil water content,
cohesion being weakest when a soil is saturated. Effective internal angle of friction was
also negatively related to water content, increased water content reduced friction between
individual particles or aggregates (Sidle, 1985). Thus the following hypothesis was

formed regarding the relationship between shear strength parameters and soil water
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content: shear strength, adhesion and friction at the folic soil-bedrock interface decreases
as soil water content increases.

An increase in von Post humification is hypothesized as having a positive
influence on both shear strength and adhesion at the folic soil — bedrock interface because
of the decreasing particle size that accompanies the decomposition of organic materials.
Sidle et al. (1985) stated that smaller soil particles tend to have better cohesive properties
than larger particles through stronger interparticle bonding.

Values for shear strength and friction at the folic soil — bedrock interface are
hypothesized to increase as the ash content of a folic soil increases. This hypothesis is
based upon the idea that an increase in bulk density and hence normal load can be
primarily related to ash content because the particle density of soil mineral matter is
much higher than that of soil organic matter. Based upon the same idea of increased bulk
density and normal load is the hypothesis that states that shear strength and friction at the
folic soil — bedrock interface increase as coarse fragment content increases. Finally,
shear strength, friction and adhesion at folic soil — bedrock interface are hypothesized as
increasing as bulk density increases. Friction is related to bulk density through the
increase in normal load that is created through the presence of denser soil materials (i.e.
ash). Adhesion is related to bulk density through degree of decomposition. A strongly
decomposed soil has smaller particles that are able to pack into a denser arrangement than
poorly decomposed soil, increasing soil bulk density (Boelter, 1969).

The objectives of this chapter were to obtain some preliminary values for the

shear strength, adhesion and friction at the folic soil — bedrock interfaces for use with the
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infinite slope model. Objectives of also included discovering and examining the

relationships between shear strength parameters and other soil properties.

6.2 Methods and Materials

6.2.1 Site Description and Sampling Design

Nine sampling sites, located within about a 50-km radius of the city of Prince
Rupert, were chosen for examining the shear strength of the folic soil — bedrock interface.
Selection of sampling locations was based upon three criteria: i) The sample sites must
include folic soils with varying ash contents, ii) the sample sites must include terrain with
varying slope angles and, iii) the sample sites should overlie a relatively smooth, planar
bedrock surface.

Sample sites were located within 10 m of the path of damage of four different
folic debris slides and different slope positions along the debris slides (Appendix 18).

The number of replicates of shear strength measurements ranged between 3 and 8 at each

site location (Appendix 21).

6.2.2 Infinite Slope Model

An infinite slope model describes the stability of a block of material in terms of a
ratio between its shear strength or resistance to sliding along a failure surface, and its
shear stress or force promoting failure. This ratio is called the factor of safety (Hammond
et al., 1992). For the purpose of this study, shear strength parameters were measured
using a shear frame apparatus similar to that used in snow avalanche studies (McClung

and Schaerer, 1993). The shear frame apparatus used in this study is described in more
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detail in Section 6.2.3. The volume of soil within the shear frame represents the ‘block of
material’ in the infinite slope theory. The shear strength of the block of soil may be
divided into two components: the adhesion of the soil block to the underlying bedrock
and the friction between the soil block and the underlying bedrock. The shear stress
components on the ‘block of material’ include the force of the pull on the soil block used
to achieve failure and the component weight of the soil acting downslope. Figure 6-1
illustrates the infinite slope model as applied to the shear frame apparatus and gives
equations for shear strength or forces resisting failure and shear stress or forces

promoting failure.

shear strength / forces resistant to failure = C’, A + y,03 cos a tan ¢’
shear stress / forces promoting failure = P + y,,3 sin a

where: C’, = adhesion (N)
A = area of specimen pulled (m?)
P = pull used to achieve failure (N)
Yo = unit weight of soil (N)
a = slope angle (°)
¢’ = effective angle of friction (°)
Ysoit COS & tan ¢’ = friction (N)
Ysoit Sin o0 = weight of soil block acting downslope (N)

Figure 6-1. Infinite slope model applied to shear frame apparatus (D.M. Cruden,
University of Alberta, Edmonton, AB.)



6.2.3 Field Sampling

For the purposes of this study, shear strength was measured at the folic soil -
bedrock interface (i.e. the failure surface). Shear strength was further broken down into
two components: adhesion and friction. Adhesion replaces cohesion in this instance
because the two interacting materials are different (i.e. soil and bedrock).

Shear strength measurements were taken using a shear frame apparatus. The
shear frame used in this study was a square wooden frame with an internal area of 625
cm” and a height of 5 cm. The frame was fit around a previously excavated pedestal of
soil with the same dimensions as the shear frame. The soil was excavated to bedrock
level in the area surrounding the soil pedestal. Two wires attached the frame to a
Chatillon IN-50NRP torsion scale that was in turn attached to a Canadian Tire 1 Ton
winch, model no. 61-8153-2. (Figure 6-2) The winch was then used to pull the frame
downslope with a controlled speed of about 5 cm of winch cable per second. In cases
where colluvial rock fragments were present in the soil pedestal, it was more difficult to
obtain a satisfactory measurement. The amount of pull needed to create soil failure was
recorded from the torsion scale in kilograms (Equation 1). The detached soil pedestal
and frame were then put back into their original location at time = 0. The soil block and
frame were then pulled as before until failure again occurred. A measurement of the
friction created by the soil and frame was then recorded from the scale (Equation 2).
Finally, the soil pedestal was removed from the frame and the frame apparatus was put
back into its original position at time = 0. The frame alone was then pulled as before
until failure occurred. A measurement of the friction created by the frame alone was then

recorded from the scale (Equation 3). By subtracting the third pull from the first pull the
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components of the weight and friction of the frame are removed from the value for shear

strength (Equation 4). By subtracting the second pull from the first pull the value for the

component of adhesion is derived (Equation 5).

By subtracting the third pull from the second pull the value for the component of

friction is derived (Equation 6). The equations below describe forces involved in the

three different pulls of the shear frame apparatus and the derivation of shear strength and

its components of adhesion and friction:

Pull 1 =C’5 A + (Ysoil + Yframe) COS o tan ¢’
Pull2= (Ysoit + Yframe) COS ¢ tan ¢’
Pull 3 = Yframe COS O tan ¢’

Shear Strength = Pull 1 —Pull 3 = C’; A + ¥, cos a tan ¢’

Adhesion = Pull 1 -Pull2=C;A

Friction = Pull 2 — Pull 3 = v, cos a tan ¢’

¢’ =tan™ (friction / Ysoit COS o), where friction and vs.i are given in N.

YA LSS,

Figure 6-2. Diagram of the shear frame apparatus.

(Eq.1)
(Eq.2)
(Eq.3)

(Eq.4)
(Eq.5)
(Eq.6)
(Eq. 7)
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In addition to shear frame measurements, data were collected regarding the
geologic, biotic, hydrologic, and soil characteristics present at the sample sites. Field
sampling methods used in collecting the above data are similar to those employed at
debris slide sites (Section 3.2.2). Soil samples were taken within 10 cm of the folic soil-

bedrock interface (i.e. lowest horizon)
6.2.4 Laboratory Analysis

In preparation for laboratory analysis, soil samples were air-dried and
homogenized by hand to pass through a 4-mm sieve. Samples were not sieved to the
standard 2-mm because soil structure was to be preserved for further laboratory analysis.
Bulk density was determined using the core method, utilizing cylinders with volumes of
271.9 cm® and 182.5 cm’, inserted horizontally into the soil. The samples were oven
dried at 105 °C until their mass became constant (Day et al., 1979). Gravimetric field
water content was determined by measuring the water lost upon oven-drying the core at
105 °C. Volumetric field water content was calculated by multiplying bulk specific
gravity and gravimetric field water content. Ash content was determined using the dry-
ashing method, also commonly referred to as loss-on-ignition. The organic matter was
combusted in a muffle furnace at a temperature of 550 °C for 20 hours (Carter, 1993).
Oven-dry root density of the sample was obtained by separating the root mass from the
soil mass found inside the volume of the shear frame, i.e. the pedestal. Flushing the soil
through a 2-mm sieve using a constant stream of water flow separated the roots. Once
separated from the soil the roots were oven-dried at 60 °C and weighed. Six segments of

oven-dried roots from each size class was measured and weighed. Oven-dry root length
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density is calculated by multiplying oven-dry root density and a conversion factor. The
conversion factor is based upon the mean density to length ratios of oven-dried root
samples for different root size classes. Oven-dry root density was further manipulated in
order to calculate oven-dry root length density because oven-dry root length density may
be a better indication of the area of roots in contact with the bedrock. See Appendix 24

for conversion factors and results.
6.2.5 Data Analysis

Three to eight replicates of shear strength measurements and associated soil
samples were taken at each of the nine sample site locations within an area of 5 m2. The
mean values of each of these replicate sites were used for data analysis.

Simple correlations were used in order to pursue relationships between soil
properties and shear strength parameters. Simple correlations were performed using the
Bivariate Correlation procedure in SPSS and were executed using a Pearson correlation
coefficient and a two-tailed test of significance (SPSS Inc., 1995). Only correlations with
r=>0.5 and alpha levels < 0.10 were accepted as significant. A larger alpha level was
accepted as significant because the sample size ranges from only 6 to 9.

Bivariate regression was employed to describe the relationship between soil-
bedrock friction and slope angle. Bivariate regression was performed using the Linear

Regression procedure in SPSS (SPSS Inc., 1995). Only r* values > 0.8 were accepted as

significant.
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6.3 Results and Discussion

6.3.1 Summary Statistics

Non-continuous variables are summarized by frequencies whereas continuous
variables are presented as descriptive summary statistics (Table 6-1). Non-continuous
data are not used directly in either simple correlation or linear regression. However the
frequencies give some indication of the condition of the pedons examined in this study.
Gritty character is the dominant soil character of 44 % of all samples (n = 9). Soils with
greasy character comprise 22 % of samples. A mixture of greasy and gritty character
constitutes 22 % of samples. A combination of fibrous and gritty character accounts for
only 11 % of samples. The dominance of samples with a gritty character indicates that
sample sites are often relatively high in mineral content. Pliable consistency is the
dominant soil consistency accounting for 67 % of sample sites. Loose consistence
constitutes 22 % of sites and a mixture of tenacious and pliable consistence comprises
only 11 % of sample sites. Granular structure is the dominant soil structure accounting
for 63 % of sample sites. Blocky structure constitutes 25 % of sites and massive structure

comprises 13 % of sample sites.
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Table 6-1. Descriptive summary statistics for the lowest horizon in contact with bedrock n=6t9

Variable Median Mean  Std. Dev. CV(%) Min. Max.
Shear Strength (kPa) 928 992 608 61 352 2210
Friction (kPa) 240 256 128 50 80 448
Adhesion (kPa) 512 720 480 67 192 1490
Angle of Friction (°) 41 41 6 15 34 49
Ash Content (g kg™) 813 668 262 39 295 885
Bulk Density (Mg m™) 0.39 041 021 51 0.14 0.66
Von Post Humification 8 8.5 0.5 6 8 9
Coarse Fragment Content (%) 0 8 il 138 0 30
Gravimetric Water Content (%) 295 260 160 62 91 456
Volumetric Water Content (%) 68 67 10 15 48 76
Oven-Dry Root Density (kg m™) 4 8 7 88 0.7 22
Oven-Dry Root Length Density(cm cm™) 0.5 35 93 266 0.1 281
Slope Angle(®) 27 29 8 28 15 40

Some of the continuous variables have very high coefficients of variation,
particularly oven-dry root length density, oven-dry root density and coarse fragment
content. The variation is likely common in coarse fragment content and oven-dry root
density because the high variation was apparent prior to analysis. However, the very high
coefficient of variation of oven-dry root length density may be a result of the conversion
factor used in calculation of this variable (Appendix 24). The large ranges in ash content
and slope angle were expected, addressing the criteria of sample locations with varying
amounts of mineral material and varying slope angles. Friction angle is summarized in
Table 6-1 in order to establish a range of friction values at the folic soil-bedrock contact.
It is also important to note that field gravimetric water content values in Table 6-1
correspond to matric potential greater than —5 kPa (Appendix 23), indicating the soils

were wet but not saturated at the time of testing.



6.3.2 Relationships between Shear Strength Parameters and Physical Properties

Of all of the relationships between physical soil variables and friction, adhesion,

and shear strength, only the relationship between friction and slope angle can be

characterized significantly through bivariate regression with an r* value of 0.83 and a

significant F value of 0.00. The dependence of friction upon slope angle is characterized

by the equation: y = 63.60-1.28x.

Simple correlation was employed in order to determine the effect of primary,

physical variables upon the values of friction, adhesion and shear strength (Table 6-2).

There are no significant relationships between friction angle and the variables in Table 6-

2 (correlation not shown).

Table 6-2. Pearson correlation coefficients n=6t9
Variable Friction Adhesion Shear Strength
Ash Content 0.73 (p = 0.06) 0.72 (p=0.07) 0.69 (p =0.07)
Bulk Density 0.78 (p = 0.07) 0.89 (p = 0.02) 0.85 (p = 0.02)
Von Post Humification 0.30 (p = 0.51) 0.71 (p = 0.07) 0.52(p=0.17)
Coarse Fragment Content 0.68 (p = 0.09) 0.77 (p = 0.04) 0.45 (p =0.27)
Gravimetric Water Content -0.67 (p=0.15) -0.81 (p = 0.05) -0.70 (p = 0.08)
Volumetric Water Content -0.14 (p=0.79) -0.13 (p=0.81) -0.06 (p=0.89)
Oven-Dry Root Density -0.79 (p = 0.04) 0.55 (p = 0.20) 0.55 (p=0.16)
Oven-Dry Root Length Density 0.18 (p=0.71) 0.35 (p = 0.44) -0.36 (p = 0.38)
Slope Angle -0.91 (p =0.00) 0.72 (p=0.07 -0.82 (p = 0.01)

e Correlation coefficients in boldface are significant at r > 0.5 and p <0.10

6.3.3 Relationships between Friction and Physical Properties

The fact that friction and slope angle are strongly negatively related is expected
because friction is a function of the cosine of slope angle (Equation 6). Slope angle and
the component weight of the soil combine to become the normal stress on the bedrock

surface or the component weight of soil acting downslope.
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The positive correlation between friction and ash content is likely a result of sand-
sized soil mineral matter creating more friction on the bedrock surface than softer,
smoother soil organic matter. The positive correlation between friction and bulk density
is likely a result of the strong influence of ash content has upon bulk density. Sand-sized
ash particles create more friction than organic particles because they have a rougher
texture and a greater influence upon normal load. The positive relationship between
friction and coarse fragment content is also a result of the rough texture of mineral
material in comparison with organic matter and the influence of heavy coarse fragments
in increasing normal load.

The inverse relationship between friction and oven-dry root density can be
explained though reasoning similar to ash content. As oven dry root mass per unit area
increases, folic soil material in contact with the bedrock, including the mineral
component, decreases. Softer, smoother organic material likely creates less friction than
sand-sized mineral material. Therefore, friction decreases as the soil mass, including the

mineral component, decreases.

6.3.4 Relationships between Adhesion and Physical Properties

There is a positive correlation between adhesion and von Post humification.
Degree of decomposition relates to adhesion because the smaller particles found in
strongly decomposed soil, likely have better adhesive properties than the larger particles
found in poorly decomposed soil because fine-grained particles tend to be more strongly
bonded than coarse-grained particles (Sidle et al., 1985). The positive correlation

between adhesion and bulk density may also be explained by degree of decomposition.

98



An increase in the degree of decomposition of a soil creates higher bulk densities because
soil particles in strongly decomposed soil being smaller and more densely packed than
larger, poorly decomposed particles (Farnham and Finney, 1965; Boelter, 1969). The
positive correlation between bulk density and von Post humification is significant, where
r=0.56, p=0.00 and n =120. However, ash content is also positively correlated to
adhesion and ash content has a far stronger effect on the bulk density of folic soils than
degree of decomposition. One would expect the sand-sized ash found in the folic soils of
this region to have few adhesive properties. The reason behind the existence of a positive
correlation between coarse fragment content and adhesion is not clear. It seems that like
ash content, the opposite should be true because large mineral fragments have few
adhesive properties.

The inverse relationship between gravimetric water content and adhesion can be
explained by effective soil stresses, the portion of total soil stress that is supported by
grain-to-grain contact. When a soil becomes saturated, its effective stresses are reduced,
therefore reducing a soil’s adhesive properties (Sidle, 1985; Schroeder and Swanston,
1987; Swanston and Howes, 1994). Shear strength and volumetric water content were
not significantly related.

The inverse relationship between adhesion and slope angle is more difficult to
explain. Mathematically, slope angle is not a function of adhesion. However, the two
variables may be related by an unexplored secondary relationship that slope angle has

upon folic soil characteristics.
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6.3.5 Relationships between Shear Strength and Physical Properties

The inverse relationship between shear strength and slope can be explained as a
function of normal stress. Recall that normal stress is a component of friction and
friction is a component of shear strength (Equation 4 and 6). The positive correlation
between shear strength and ash content can be explained by the influence that ash content
has upon the component friction. The positive correlation between shear strength and
bulk density can explained though the influence of bulk density upon both friction and
adhesion components. The inverse relationship between shear strength and gravimetric
water content is likely a result of the negative influence gravimetric water content has

upon adhesion.

6.4 Conclusions

Both shear strength and adhesion are inversely related to gravimetric water
content therefore fulfilling two parts of the hypothesis that states that shear strength,
adhesion and friction decrease as water content increases. Adhesion and von Post
humification are positively related, however von Post humification does not correlate
significantly with shear strength. These resuits support part of the hypotheses that the
shear strength and adhesion of the folic soil — bedrock interface decrease as von Post
humification increases. Both friction and shear strength correlate positively with ash
content therefore supporting the hypothesis that the friction and shear strength of the folic
soil — bedrock interface increase as ash content increases. However, adhesion also
correlates positively with ash content, which was not hypothesized. Friction correlates

positively with coarse fragment content as hypothesized; however, shear strength does
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not correlate significantly with it. Also, there is a positive correlation between adhesion
and coarse fragment content, which was not hypothesized. Bulk density is positively
correlated to friction, adhesion and shear strength thereby supporting the hypothesis that
states that shear strength, friction and adhesion at the folic soil — bedrock interface

increase as bulk density increases.
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7.0 SYNTHESIS

This study examined folic debris slides through several approaches: direct
examination of folic debris slide sites, comparison of folic debris slide sites to similar non-
debris slide sites and through characterization of the physical and chemical properties of
folic soils. The purpose of this chapter is to synthesize the information obtained through
these different approaches to more clearly determine the soil and landscape attributes that

contribute to the occurrence of folic debris slides in the Prince Rupert region.
7.1 Factors Influencing Slope Stability and the Infinite Slope Model

The natural factors influencing the stability of forested slopes in the Prince Rupert area
fall into four process-related categories: geologic properties, soil properties, hydrologic
properties and vegetation properties (Schroeder and Alto, 1983). All four of these factors
are addressed within an infinite slope model of slope stability (Section 1.4). An infinite
slope model provided an excellent framework for describing the mechanisms and complex
relationships between elements that are active in the development of shallow, translational
debris slides (Wu and Swanston, 1980; Swanston and Howes, 1994; Gray and Sotir,

' 1996). Folic debris slides in the Prince Rupert area are both shallow and translational, and

are therefore candidates for characterization via an infinite slope model.
7.1.1 Geologic Properties Influencing Slope Stability

In the principal components analyses described in chapter 4, the geologic variables

of bedrock structure, slope shape, surface configuration and slope angle are portrayed as
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key variables in influencing the spatial occurrence of folic debris slides. Bedrock
structure, slope shape and surface configuration influence slope stability primarily through
their influence upon groundwater. Any geologic circumstance that creates locations of
high hydrostatic pressure, in turn creates the potential for slope instability through
reduction of soil adhesion and in turn, soil shear strength. In fact, in Chapter 6, adhesion
was shown to be significantly related to gravimetric water content where r = -0.81, p =
0.05andn=7.

Slope angle influences slope stability via shear stress, which is defined as the
component of the weight of the soil acting downslope. It is a stress that promotes slope
failure (Figure 6-1). Normal stress is a component of friction, and friction in turn, is a
component of soil shear strength (Equations 4 and 6, Chapter 6). Any increase in slope
angle decreases normal stress, decreases friction and decreases shear strength, therefore
making slope stability less likely. Significant negative correlations were found between
slope angle and friction (r = -0.91, where p = 0.00 and n = 8) and between friction and
shear strength (r = -0.82, where p =0.01 and n = 8). The examination of non-debris slide
terrain indicated that slope angle is significantly lower in non-debris slide sites when
compared with debris slide sites. However, it is likely that this difference is a result of the
non-debris slide site sampling design being biased against very steep slope angles. The
selection of non-debris slide transect sites was based upon slope angle classes, most of
which were very shallow in comparison to studied debris slide sites.

In general, the bedrock surface underlying debris slides in the Prince Rupert area is
steep with an irregular surface configuration and jointing and fracturing parallel to the

slope aspect. All of these geologic features are indicative of unstable terrain. However,
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debris slide sites in this area contained a high frequency (47 %) of convex mainscarps

(Chapter 4), and convexity is a more stable feature than concavity.

7.1.2 Soil Properties Influencing Slope Stability

In the principal components analyses described in chapter 4, the physical soil
variables of ash content, saturated soil mass per unit area, porosity, soil structure and von
Post humification are portrayed as key variables in influencing the stability of folic debris
slides. Ash content, porosity, soil structure and von Post humification primarily influence
slope stability through their effect upon water movement within the soil profile.

The modal folic soil of the Prince Rupert region has two horizons. The upper
horizon had a mean thickness of 14 cm; a von Post humification index of 4, non-compact
matted structure, a mean ash content of 164 g/kg and mean porosity of 94 %. The lower
horizon had a mean thickness of 24 cm, a von Post humification index of 8, massive,
granular or blocky structure, a mean ash content of 583 g/kg and mean porosity of 88%.
Modal folic soils of the Prince Rupert region have a particular horizon sequence and
physical soil properties that would allow a water table to form. Poor decomposition and
low ash content produce high porosity in the upper horizon. Advanced decomposition,
higher ash content and the weight of the overlying soil produce lower porosity in the
lower horizon. Porosity correlated with type of soil structure, where r = 0.53, p = 0.00
and n=216. Non-compact matted soil structure had a higher porosity than massive,
granular and blocky structure.

The modal folic soil should allow water to infiltrate quickly into the soil however,

the water is impeded by the presence of relatively impermeable bedrock therefore allowing
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a water table to form (Figure 7-1). Any soil properties that create high hydrostatic
pressure, in turn create the potential for slope instability through loss of soil-bedrock

adhesion and in turn, reduction of shear strength at that interface.

high infilration rate
high porosity

Water table
Fa horizon

lower percolation rate
lower porosity

bedrock

Figure 7-1. Schematic of the vertical dimension of water table formation in a

modal folic soil (= 0.4 m thick) overlying bedrock on a hillslope

Ash content, von Post humification, porosity and saturated soil mass per unit area,
influence slope stability through their effect upon normal load. Both ash content (r = 0.74,
p =0.00, n = 120) and von Post humification (r = 0.56, p = 0.00, n= 120) were positively
correlated with bulk density, and bulk density was negatively correlated with porosity (r =
-0.93, where p = 0.00 and n = 120), through the e-quation Porosity (%) = (1 - (Bulk

Density /Particle Density)) x 100. In addition, bulk density and porosity are used in the

106



equation to calculate saturated soil mass per unit area using the equation: Saturated Soil
Mass, kg/m2 = ((Coarse Fragment Content, v/v x Particle Density, kg/m3 + Bulk Density,
kg/m3 + Porosity, v/v)(Soil Depth, m). An increase in normal load upon the failure
surface causes an increase in shear strength of folic material and an increase in shear stress

at the folic-bedrock interface (Equation 4, Chapter 6).

7.1.3 Hydrologic Properties Influencing Slope Stability

In the principal components analyses described in chapter 4, the hydrologic
variable of water-tolerant vegetation is portrayed as a key variable in influencing the
stability of folic debris slides. Water-tolerant vegetation indicates continuously high
groundwater levels and impeded soil drainage (Swanston and Howes, 1994). The
presence of water-tolerant vegetation indicates a greater likelihood of saturated soil
conditions and therefore reduced slope stability.

Adhesion and gravimetric water content were negatively correlated (r =-0.81, p =
0.05, n=8). This relationship may be explained by effective soil stresses, the portion of
total soil stress that is supported by grain-to-grain contact. When a soil becomes saturated
its effective stresses are reduced, by reducing a soil’s adhesive properties. (Sidle, 1985;
Schroeder and Swanston, 1987; Swanston and Howes, 1994)

There are several influences in the Prince Rupert region that may aid in the
creation of saturated soil conditions. Some geologic (Section 7.1.1) and physical soil
properties (Section 7.1.2) that facilitate the creation of saturated conditions have been
discussed previously. A primary reason for the periodic saturated conditions in folic soils

of the Prince Rupert region that has yet to be discussed is climate. Banner et al. (1993)
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describes the climate of the Prince Rupert area as a mostly maritime or oceanic climate
with relatively mild temperatures and large rainfall amounts. In fact on average, about 10
modal folic profile-pore volumes of precipitation are received annually. However, on
average, only about 3 modal folic profile-pore volumes of water are lost via
evapotranspiration annually. The winter months are extremely wet (Section 2.2) which is
important because most debris slides in this region occur during winter storm events (Sidle

and Swanston, 1982).

7.1.4 Vegetation Properties Influencing Slope Stability

Vegetation can influence the stability of slopes in three prevalent ways. Roots may
add strength to the soil by vertically anchoring through the solum to the bedrock or they
may provide lateral support (Sidle, 1985; Swanston and Howes, 1994). Vegetation also
influences slope stability through its influence on tree surcharge (Hammond et al., 1992).
Both tree root strength (Cr’) and tree surcharge (q0) are a part of the infinite slope
equation for factor of safety (Section 1.4). An increase in tree root strength aids in
maintaining slope stability through increasing total soil cohesion (Cs’ + Cr’ ). An increase
in tree surcharge aids in decreasing slope stability through adding to the component
weight of the theoretical ‘block of material’ acting downslope. In other words, shear
stress increases. Another unexpected way in which vegetation influences the stability of
folic soils is through the frictional component of shear strength. The correlation between
friction and oven dry root density was significant (r = -0.79, where p = 0.04 and n = 8).
This relationship can be explained by the fact that as oven dry root mass increases, folic

soil material in contact with the bedrock, including the mineral component, decreases.
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Soft, smooth organic material may create less friction than comparatively rough-textured,
sand-sized mineral material. If this is the case then friction should decrease as the root
mass increases and the mineral soil mass decreases.

This study did not focus upon the measurement of vegetation properties
influencing slope stability. Therefore, there is little to remark upon regarding root strength
or tree surcharge. No comment can be made upon the lateral tensile strength component
of roots because during the shear frame test (Section 6.2.3), all lateral roots were severed
in order to place the shear frame upon the soil block. In addition, through general field
observation, there were no tree roots anchored into joints and fractures in the bedrock.
Hammond et al. (1992) described this type of soil-root morphology as type A. Type A
morphology consists of shallow soils overlying competent rocks that roots cannot easily
penetrate. The failure plane in type A morphology generally lies below the root zone at
the soil-bedrock contact. Folic soils found adjacently to debris slide mainscarps in the
Prince Rupert area have a mean thickness of 34 cm. The bedrock in this area is relatively
competent diorite or gneiss, generally with some joints and fractures. In addition, the

observed failure plane of folic debris slides was consistently at the soil-bedrock contact.

7.2 Deterministic Level 1 Stability Analysis (DLISA)

DLISA v. 1.02 is a deterministic slope stability computer program that can solve
the infinite slope equation for the factor of safety (Section 1.4). A single value must be
supplied for each of soil depth (ft), surface slope angle (%), tree surcharge (psf), root
cohesion (psf), groundwater ratio, friction angle (°), soil cohesion (psf), dry unit weight

(pcf), moisture content (%) and specific gravity. Note that all variables used in this
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program are specified in Imperial units. The infinite slope model tha:t DLISA is based on
is the same as that described in Section 1.4. The purpose of DLISA in this study is as a
tool for integrating the different approaches used in gathering folic sHope stability data. It
also serves to synthesize the geologic, soil, hydrologic and vegetatiom factors influencing

slope stability through the framework of the infinite slope model.

7.2.1 DLISA Variables

Values for soil depth and surface slope angle were gathered Girectly from actual
debris slide site data. Tree surcharge is an estimated variable that was calculated using
timber volume and wood densities from forested areas in the Prince BRRupert Forest Region
that contained similar tree species to those found in this study (N. Nesting, unpublished
data). The value of the root cohesion variable was estimated using laboratory root
strength values from the literature for tree species found in the study area (Hammond et
al., 1992). The laboratory root strength values were then altered to “apparent’ root
cohesion values through the use of the three-dimensional block modesl (Hammond et al.,
1992). This model states that root strength acts only along the perinmeter of the failure in
the case of type A root morphology. Basically, as the size of the failture mass increases,
the side and headwall resisting forces, and therefore root strength, hasve proportionally less
influence on the stability of the soil mass (Hammond et al., 1992). For failure blocks
approximately 12 m or wider, ‘apparent’ root strength values should be approximately 5
% of laboratory root strength values. The groundwater ratio is the ratio between the
vertical height of the phreatic surface and the soil depth. For the purgposes of this study,

the groundwater ratio is assumed to be 1 because on the North Coast, slope failures often
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occur during high intensity rainfall events (Sidle and Swanston, 1982). Soil cohesion
values were obtained using soil adhesion values from the shear frame experiment in
chapter 6. Friction angle is a variable that was calculated using the shear frame
measurements of chapter 6. Equation 7 in chapter 6 specifies how friction angle was
derived. Dry unit weight (pcf) was calculated using the equation: ((Bulk density, kg/m3)
+ (coarse fragment content, v/v * 2650, kg/m3))* 0.062. Moisture content was calculated
using the equation: ((Bulk density, kg/m3) + (coarse fragment content, v/v * 2650, kg/m3)
+ (water content - 10 kPa, v/v)* 0.062. Finally, specific gravity values were obtained as
direct laboratory measurements (Section 3.2.3). Table 7-1 illustrates the summary
statistics for variables to be used in the DLISA program, with the exception of root
cohesion (6 psf) because only one value was computed. Groundwater ratio is also
excluded because its value (1) is assumed in order to mimic a worst-case, storm event
condition that increases the likelihood of slope failure. Note that the values used in the
DLISA model are the mean of two replicate values from samples taken on both sides of

the mainscarp (Section 4.2.1).

Table 7-1. Descriptive summary statistics for parameterizing the DLISA model n=30
Variable Median Mean __ Std. Dev. CV(%) Min. Max.

Soil depth (ft) 0.9 1.0 0.4 42 0.3 2.1
Slope angle (%) 95 97 27 28 57 173

Tree surcharge (psf) 12 11 3 23 7 17
Friction angle (°) 41 41 6 15 34 49

Soil cohesion (psf) 16 19 14 74 4 44

Dry Unit Weight (pcf) 17 16 9 56 4 37
Moisture Content (%) 48 47 9 19 17 56
Specific Gravity 1.8 1.6 03 14 1.5 2.3
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7.2.2 Investigating Debris Slide Factor of Safety using DLISA

Slope angle is a well-documented contributor to slope instability. Slope angle is
often considered to be closely related to shallow slope failures (Sidle, 1985; Swanston and
Howes, 1994), such as the folic debris slides of the Prince Rupert area. Therefore, data
from two sample debris slides sites, one with the shallowest slope angle and one with the
steepest slope angle, are input to the DLISA program for an examination of the result
upon factor of safety. Slide 15, from the Harrison Lake area, represents the lowest slope
angle and slide 29 from the Skeena River / Ecstall River confluence represents the steepest
slope angle (Appendix 2). Observations from the individual slide sites are be used where
possible and substitute values (from literature and shear frame test) are used where no real
data are available.

Soil depth, slope angle, dry unit weight and moisture content values are all values
specific to each individual slide site (Figure 7-2). In the case of tree surcharge, the
maximum value was used for slide 15 and the minimum value was used for slide 29. The
assumed values for tree surcharge are based upon the negative relationship between slope
angle and vegetation cover (r = -0.36, where p = .05 and n = 30). For specific gravity,
maximum (slide 15) and minimum (slide 29) values were also used. The assignment of
values for specific gravity is based upon the fact that slide 15 contains denser materials
than slide 29. Root cohesion and groundwater ratio values were common to slides 15 and
29. Friction angle and soil cohesion values are common because there was not enough
information to vary the values meaningfully. The friction angle value used is a mean value

calculated from shear frame measurements (Chapter 6). The soil cohesion (adhesion in
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folic debris slides) value is lower than the mean to account for the fact that the
groundwater ratio is 1 (profile saturation). The original soil adhesion data from chapter 6
were taken at field moisture content (less than saturation) and soil adhesion decreases with
increasing water content. Therefore, a lower soil cohesion value was used in DILSA in

order to mimic saturated soil conditions.

Table 7-2. DLISA parameters

Varniable Slide 15 Slide 29
Soil Depth (f.) 1 0.8
Slope Angle (%) 57 173
Tree Surcharge (psf) 17 7
Root Cohesion (psf) 6 6
Groundwater Ratio - 1 1
Friction Angle (°) 41 41
Soil Cohesion (psf) 15 15
Dry Unit Weight (pcf) 12 30
Moisture Content (%) 45 Y
Specific Gravity 1.5 23
Factor of Safety 0.97 0.83

The factor of safety is larger in the debris slide site with the shallowest slope angle
(slide 15), illustrating that slide 15 either has more forces resistant to failure or fewer
forces promoting failure than slide 29. However, which variables are most important in
determining factor of safety have yet to be determined. The sensitivity of the variables
may be determined through varying the values of a variable and examining their effect

upon factor of safety.

7.2.3 Sensitivity Analyses

All the DLISA variables have been varied between their maximum and minimum

values in order to determine the influence of each variable upon factor of safety (Figure 7-
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2 to 7-11). Soil depth, slope angle, dry unit weight, moisture content and specific gravity
variables contain actual maximum and minimum values as they range from slide 15 to 29.
The maximum and minimum values for the tree surcharge variable were derived from
timber volume and wood densities from a forested area of the Prince Rupert Forest
Region that contained similar tree species to those found in the study area. The minimum
tree density value was input with slide 29 and the maximum value with slide 15 because
there was a negative trend between vegetation cover and slope angle (r = -0.36 where p =
0.05 and n = 30). Root cohesion, friction angle and soil cohesion variables were varied
between the maximum and minimum values from Table 7-1. Root cohesion was varied
between 3 and 30 psf, friction angle was varied between 34 and 49 ° and soil cohesion
variables were varied between 4 and 44 psf. Groundwater ratio was varied over the entire
possible range of values, from 0 to 1. Note the use of different scales on the x-axis
(Factor of Safety) for Figures 7-2 to 7-11. Also, note that the apparent ‘wobble’ in the
values for Figure 7-2, 7-4, 7-7, 7-9 and 7-11 are a result of too few significant digits in

relation to the scale of the x-axis, rather than any real pattern in the data.
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For ranges in the DLISA variables, factor of safety is relatively insensitive to
differences in extremes in measured tree surcharge (Fig. 7-4), dry unit weight (Fig. 7-9),
moisture content (Fig. 7-10) and specific gravity (Fig. 7-11). Throughout the range of
extreme values for these variables, the influence upon factor of safety was very small. For
tree surcharge, dry unit weight and specific gravity the factor of safety was altered by only
about 0.05 units and for moisture content the factor of safety was not altered at all. Tree
surcharge, dry unit weight and specific gravity are all variables that influence the normal
load upon the failure surface. These variables all have a similar influence upon factor of
safety: for slide 15 they have a negative relationship with factor of safety and for slide 29
they have a positive relationship with factor of safety. Therefore, steeper slides become
less unstable with increased normal load and shallower slides become more unstable with
increased normal load. Moisture content likely has no influence upon factor of safety
because the groundwater ratio used in the DLISA model is 1. Through examining the
infinite slope equation in Section 1.4 it is apparent that the term for moisture content (y) is
negated by the fact that the soil thickness (D) and the saturated soil thickness (Dw) have
the same value. If the groundwater ratio were less than 1, the moisture content variable
would then exert some influence.

For ranges in the DLISA variables factor of safety is moderately sensitive to
differences in extremes in measured soil depth (Fig. 7-2), slope angle (Fig. 7-3) and
friction angle (Fig. 7-7). Throughout the range of extreme values for these variables the
influence upon factor of safety was relatively moderate. For the soil depth and friction
angle variable the factor of safety changed by about 0.25 units. For the slope angle

variable the factor of safety changed by about 0.40 units. The friction angle variable has a
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larger effect upon the factor of safety of slide 15 (0.05 units) than slide 29 (0.25 units)
illustrating that friction may be a more important factor at shallower slope angles. The
relationship between slope angle and factor of safety is not linear. At about 115 % factor
of safety reaches its minimum point and increases slightly. However, below 115 % factor
of safety follows a pattern of decrease with slope angle increase. The mechanism behind
this trend is unclear.

For ranges in the DLISA variables, factor of safety is relatively sensitive to
differences in extremes in measured root cohesion (Fig. 7-5), groundwater ratio (Fig. 7-6)
and soil cohesion (Fig. 7-8). Throughout the range of extreme values for these variables
the influence upon factor of safety was high. For the root cohesion variable factor of
safety changed by about 0.90 units; for the groundwater ratio variable, factor of safety
changed by about 1.90 units and for the soil cohesion variable, factor of safety changed by
about 1.30 units. The root cohesion variable had a larger effect upon the factor of safety
of slide 29 (0.90 units) than of slide 15 (0.70 units), illustrating that soil adhesion may be a
more important factor at steeper slope angles. The groundwater ratio variable has a larger
effect upon the factor of safety of slide 15 (1.90 units) than slide 29 (0.90 units)
illustrating that groundwater ratio may be a more important factor at shallower slope
angles. This is likely the case because slope angle negatively related to soil depth. A
groundwater ratio of 1 in a deeper soil translates to an increase in normal load and hence a
reduced factor of safety. The soil cohesion variable has a larger effect upon the factor of
safety of slide 29 (1.30 units) than of slide 15 (1.10 units), illustrating that soil adhesion
may be more important at steeper slope angles. Recall that the root cohesion variable also

has a larger influence upon that factor of safety of steeper slopes than shallower slopes.
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This indicates that the total cohesive forces (C's + C r) may be more important on steeper

slopes.

7.3 Conclusions

Slope angle is an important factor influencing the stability of folic soils in the
Prince Rupert region. The sensitivity analysis illustrated in Figure 7-3 depicts considerable
differences in the factor of safety of debris slide sites between the minimum and maximum
slope angles in this study. The relationship between factor of safety and slope angle is not
linear. In this model, at very high slope angle values (115% +) factor of safety begins to
rise with increasing slope angle.

It is likely that the modal pattern of horizonation in folic soils in the Prince Rupert
region aids in causing the formation of a water table due to high infiltration rates and low
percolation rates. This is a result of the thin, poorly decomposed upper horizon having a
significantly higher porosity than the thicker, well-decomposed lower horizon. The
differences in porosity likely result in differences in saturated conductivity allowing water
to infiltrate quickly into the upper horizon and percolate slowly into the lower horizon,
therefore allowing a water table to form. Boelter (1969) reported similar differences in
the saturated conductivity of poorly decomposed and well-decomposed peat.

Shallow hillslope depressions do not appear to be as important in the stability of
slopes in the Prince Rupert area as originally hypothesized. The majority of folic debris
slides in this study have convex headscarps, illustrating that slope failure often occurs
without the influence of shallow hillslope depressions. However, gullied areas were

avoided in this study because they have been a previously well-documented cause of slope
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failure. The principal components analyses in Chapter 4 isolated slope shape as an
important variable in the slope stability of this region. Convex slope shape may negatively
influence slope stability in several ways, not previously considered. The very steep angle
of many of convex slopes in this study may have created conditions of failure without the
influence of concave depressions. In addition, a change in slope from a concave or
straight segment to a steeper convex segment downslope may create a break in the slope
that allows groundwater an exit point, therefore creating unstable conditions. Shallow
hillslope depressions may be a more critical factor in the failure of areas with lower slope
angles.

Root cohesion is unlikely to have a major contribution towards slope stability in
the Prince Rupert area in spite of the factor of safety being sensitive to root cohesion.
Field observation indicated that there were few tree roots anchored vertically into the
bedrock. However there were thick networks of small and medium-sized roots in the
upper soil layers that may provide lateral support and increased stability. The width of the
slides also serves to reduce the root cohesion. According to the three-dimensional block
model, as the size of the failure mass increases, the side and headwall resisting forces and
therefore root cohesion, have proportionally less influence on the stability of the soil mass.
For failure blocks 12 m or wider, ‘apparent’ root strength should be approximately 5 % of
laboratory values (Hammond et al., 1992). The studied folic debris slides have a mean
width of 27 m, a standard deviation of 36 m, a minimum of 5 m and a maximum of 190 m.
The sensitivity analysis in Figure 7-5 indicates that root cohesion is a highly influential

variable with regard to factor of safety. Examination using DLISA indicates that root
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cohesion values must be low in order to obtain a factor of safety below 1 on even the
maximum slope angle example, site 29.

Soil adhesion appears to be the most influential variable regarding slope stability in
the Prince Rupert area. Soil adhesion correlated positively with bulk density and
negatively with gravimetric water content. Therefore, any process that contributes toward
a decrease in bulk density or an increase in soil water content of the lowest soil horizon
also serves to decrease soil adhesion and therefore increase slope instability.

Any activity, natural or human-induced, that serves to increase soil bulk density or
water content may have a detrimental effect on slope stability. Sidecast from road
building is likely to increase soil bulk density, decreasing soil porosity and creating
conditions in which a soil is more likely to become saturated. Soil saturation causes a
reduction in effective soil stresses, reducing soil adhesion and hence slope stability. The
addition of sidecast to a surface also serves to create unstable conditions through increase
in normal load. Clearcut logging practices may also contribute toward folic soil instability
because of the loss in vegetation canopy that serves to reduce soil water content through
interception of rainfall and transpiration.

Groundwater ratio is negatively related to factor of safety and is a very influential
factor in determining slope stability. As a water table develops within a soil, adhesion is
reduced and normal load is increased therefore making slope instability more likely for two

reasons.
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Codes used in Appendices

1. Debris Slide Codes

Example: 1312

Slide number: 13
Pedon number: 1
Horizon number: 2

There are 30 slides, 3 or 4 pedons per slide and from 1 to 3 horizons per pedon. Pedon
number 1 and 2 are generally located adjacent to the mainscarp, whereas pedon 3 and 4
are located at the upper-mid slide location.

2. Non-Debris Slide Transect Codes

Example: G32

Transect Location: Green River
Slope Class: 25 to 29 °
Horizon Number: 2

There are 4 non-debris slide transect locations: Green River, Prudhomme Lake, Diana
Lake and Harrison Lake. There are 5 slope classes: < 19 °, 20 to 24 °, 25 to 29 °, 30 to 34
°and > 35 °. There are from 1 to 3 horizons per slope class pedon.

3. Shear Frame Codes

Example: P3R4

Plot Number: 3
Replicate: 4

There are 9 shear frame plot locations and the number of replicates per plot varies.
4. General

n/d: not determined

128



Appendix 1 - Location of Debris Slides and Non-Debris Slide Transects
1) Debris Slides

Slide Description Latitude|Longitude| UTM
1]Lachmach Road 7.5 km - west of road - new n/d n/d n/d
2]Lachmach Road 4.55 km - east of road - L47 54 16.2' |]130 52.9' |VL425139
3|Lachmach Road 8.5 km - east of road - L24 54 17.6' |130 55.9' |VL392164
4|Diana Lake 1 - P22a 54 13.4' 11309.4° |VL245089
5]Lachmach Road 1.95 km - west of road 54 15.2° 1130 52.2' |VL433119
6{Lachmach Road 4.5 km - west of road 54 15.8' |130 53.2' |VL422131
7|Harrison Lake 1 - Hwy 16 - west 54 13.6' |1301.8° |[VL329090
8|Boatlaunch - Hwy 16 at 45 km sign n/d n/d n/d
9]Lachmach Road 7.9 km - west of road 54 17.4' {130 56.9' |VL383159

10]L.achmach Road 7.6 km - west of road 54 17.2' |130 56.5' |VL385157
11)Diana Lake 2 - P22b 54 13.7" 1130 9.3' }[VL248091
12|Diana Lake 3 - P22¢ 54 13.7° {1309.2' 1VL249092
13]Lachmach Road 6.7 km - west of road 54 17.0' 130 55.9' |VL395153
14}{Lachmach Road 3.6 km - west of road 54 15.8' 1130 53.1' |VL423131
15|Harrison Lake 2 - Hwy 16 - east 54 13.0' {1300.5' |VL343079
16| Silver Creek 1 - road initiated - north 54 25.5' {130 11.4' |VL230305
17]Silver Creek 2 - road initiated south 54 25.2' {130 11.5' }VL228303
18}{Osbourn Cove 1 - north 54 23.7' |130 13.5' |VL206277
19]Osbourn Cove 2 - south 54 23.6' |130 13.5' |VL206275
20{Prodhomme Lake 1 - unnamed - west 54 149 11306.3' VL280115
21} Woodward Lake watershed - WO1 54 23.0' |130 12.6' |VL214265
22|Lachmach Road - Helisite - east of road 54 16.2' 1130 55.8 |VL396167
23|Smith Island Inlet 1 - upper 549.77 (130158 |VL177022
24|Smith Island Inlet 2 - lower 549.8 |13015.9° |VL176024
25|Silver Creek - Blasting Initiated 5424.9' |130 11.7' |VIL.225298
26{Prodhomme Lake 2 - east - P17 54149 |130 5.9 VL285115
27{Silver Creek - west - S10b 54 23.9' 1130 10.9" |VL235280
28!Silver Creek - east - S10c 54 23.9' 130 10.9' |VL234280
29|Skeena/Ecstall 1 - west 54 10.8' |130 55.9' |VL393038
30| Skeena/Ecstall 2 - east 54 10.8' {130 55.8' |VL393038

2) Non-Debris Slide Transects

Transect |Description Latitude|Longitude| UTM
1|Diana Lk. - Mt. MacDonald Lookout Trail 54 13.2' 1130 11.0' }VL229087
2| Prodhomme Lake area - north side of Hwy 16 54 14.2' 130 5.6' |[|VL287100
3[Harrison Lake - between Harrison Lk. 1 & 2 slides |54 13.3' |130 1.1' |VL337083
4|Green River - after 2nd Cutblock on Green Rvr. Rd. [n/d n/d n/d
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Appendix 2 - Slope Position of Debris Slide Initiation Zone

Slide|Slope Position
1 upper mid
2 lower mid
3 lower mid
4 mid
5 mid
6 mid
7 lower
8 mid
9 mid

10 mid
11 upper mid
12 upper mid
13 mid
14 mid
15 lower
16 mid
17 mid
18 upper
19 upper Figure A-1. Approximate slope positions on an idealized slope
20 mid
21 lower
22 mid
23 upper mid
24 mid
25 mid
26 mid
27 upper
28 upper
29 upper
30 upper
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Appendix 3 - Mean Debris Slide Parameters

Slide|Depth (m)| Width (m)|Length (m
1 0.5 19 750
2 0.8 22 300
3 0.5 17 400
4 0.8 13 150
5 0.5 16 300
6 0.5 13 400
7 0.5 25 250
8 0.5 33 300
9 0.5 10 350

10 0.5 13 200
11 0.5 13 100
12 0.5 13 100
13 0.4 25 150
14 0.5 10 200
15 0.5 100 400
16 0.5 18 900
17 0.5 20 100
18 0.4 13 300
19 0.2 12 150
20 0.2 190 210
21 0.5 13 200
22 0.4 20 500
23 0.5 20 900
24 0.5 20 700
25 0.5 n/d 400
26 0.5 63 400
27 0.5 15 300
28 0.5 15 250
29 0.5 8 700
30 0.5 5 700
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Appendix 8 - Volumetric Chemical Characteristics for Debris Slide Soil Horizons

Sample [Organic Carbon (kg m-2) [Total Nitrogen (kg m-2) |TEC {cmol(+) m-2)
111 2.64 0.05 16.62
112 69.49 2.38 250.92
121 4.96 0.14 21.66
122 14.72 0.35 56.50
131 4.03 0.08 20.04
132 34.34 0.90 123.53
141 19.37 0.77 105.13
211 1.44 0.03 6.08
212 5.81 0.16 24.94
213 6.54 0.21 25.85
221 1.99 0.04 7.03
222 5.14 0.03 22.14
223 9.92 0.25 46.63
231 2.30 0.06 8.07
311 0.55 0.01 2.60
312 1.78 0.04 7.53
313 11.32 0.36 74.84
321 1.59 0.06 9.06
322 9.23 0.31 42.96
324 11.59 0.31 50.38
331 3.47 0.08 11.41
332 5.73 0.17 23.96
411 1.29 0.03 5.98
412 2.09 0.05 5.67
421 3.30 0.09 11.91
431 2.60 0.12 11.43
432 5.95 0.26 33.24
441 13.72 0.46 75.25
511 2.24 0.04 7.90
512 8.70 0.22 30.19
513 7.20 0.26 24.55
521 1.97 0.03 7.22
522 7.85 0.29 39.34
531 6.40 0.12 22.06
532 2.15 0.09 7.75
541 3.65 0.08 12.81
542 12.76 0.41 41.51
611 6.36 0.15 21.20
621 3.32 0.07 10.46
622 5.93 0.17 24.97
631 3.13 0.07 10.92
632 6.90 0.19 21.86
641 3.48 0.09 12.19
642 13.63 0.64 63.16
643 3.20 0.11 8.84
711 4.57 0.10 13.51
712 2.96 0.12 11.51
721 3.38 0.09 11.76
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Sample |Organic Carbon (kg m-2) |Total Nitrogen (kg m-2) |TEC (cmol(+) m-2)
722 16.61 0.35 38.26
731 2.01 0.03 6.42
732 10.27 0.08 31.30
733 5.37 0.18 17.15
741 12.67 0.26 50.62
742 9.28 0.24 30.18
811 6.33 0.15 20.93
821 8.60 0.16 30.97
822 10.72 n/d 30.69
831 4.07 0.11 9.95
832 17.70 0.60 57.24
911 2.20 0.06 10.54
912 2.51 0.09 9.81
921 2.84 0.06 10.03
922 1.65 0.06 6.04
931 2.48 0.05 10.10
932 3.06 0.08 14.44
941 0.82 0.02 4.67
942 522 0.24 17.36

1011 2.53 0.06 8.30
1012 9.21 0.20 27.19
1021 2.38 0.06 8.45
1022 0.65 0.10 10.45
1031 2.34 0.05 8.58
1032 5.82 0.21 22.55
1041 8.33 0.25 29.09
1111 10.89 0.36 40.31
1121 4.52 0.13 14.68
1122 411 0.48 13.96
1131 4.16 0.14 13.97
1132 7.73 0.24 32.45
1211 34.10 1.15 124.86
1221 3.99 0.08 16.32
1222 3.25 0.49 68.26
1231 8.69 0.22 36.54
1232 8.69 0.24 35.43
1233 3.31 0.06 11.51
1241 10.78 0.25 26.09
1311 3.72 0.09 12.23
1312 9.07 0.36 31.92
1321 1.29 0.03 3.81
1322 6.69 0.30 20.31
1331 3.68 0.08 11.24
1332 2.66 0.06 4.69
1341 4.01 0.11 13.48
1342 5.31 0.18 22.61
1411 7.05 0.15 22.80
1412 3.87 0.11 9.91
1421 6.01 0.13 20.94
1422 3.52 0.10 17.73
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Sample |Organic Carbon (kg m-2) |Total Nitrogen (kg m-2) |[TEC (cmol(+) m-2)
1431 4.42 0.12 17.64
1432 9.14 0.19 31.50
1441 3.12 0.08 16.63
1442 15.99 0.47 93.53
1511 3.51 0.09 11.00
1512 7.28 0.21 27.52
1521 2.69 0.07 17.11
1522 4.34 0.18 18.76
1531 4.82 0.09 20.01
1532 8.91 0.26 40.77
1541 2.19 0.05 11.65
1542 8.27 0.33 31.88
1611 3.49 0.07 12.78
1612 20.02 0.59 78.87
1621 441 0.09 18.09
1622 28.94 0.71 101.70
1631 2.24 0.05 8.41
1632 22.86 0.39 86.94
1641 47.43 1.19 292.26
1711 4.87 0.12 29.42
1712 54.38 1.31 112.92
1721 34.97 1.01 153.91
1731 1.10 0.04 5.18
1732 52.03 1.94 197.20
1741 32.94 0.95 181.00
1811 1.65 0.03 6.05
1812 1.58 0.03 4.79
1821 5.09 0.09 19.01
1822 7.65 0.21 35.45
1831 3.73 0.07 22.26
1832 4.43 0.14 15.89
1841 2.72 0.06 10.24
1842 14.56 0.32 61.78
1911 3.58 0.06 11.01
1912 9.57 0.34 22.70
1921 3.17 0.06 10.08
1922 6.69 0.29 26.25
1931 2.30 0.05 8.13
1932 1.45 0.07 4.40
1941 3.24 0.07 8.05
2011 1.20 0.04 6.59
2012 2.10 0.08 8.26
2021 4.50 0.07 20.01
2022 9.28 0.31 30.33
2031 2.01 0.03 9.25
2032 7.91 0.26 24.33
2041 3.18 0.06 18.44
2042 6.83 0.21 26.79
2111 4.30 0.10 16.30
2112 3.26 0.08 9.58
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Sample |Organic Carbon (kg m-2) [Total Nitrogen (kg m-2) |TEC (cmol(+) m-2)
2121 13.71 0.19 60.99
2122 10.14 0.24 42.89
2131 1.67 0.04 6.86
2132 4.40 0.14 12.56
2133 5.90 0.20 29.35
2141 6.13 0.13 27.76
2142 33.73 0.71 134.71
2211 1.68 0.03 8.75
2212 31.40 0.73 121.46
2221 8.19 0.17 31.16
2222 35.12 0.83 91.97
2231 3.61 0.04 22.07
2241 2.74 0.06 9.27
2242 18.85 0.34 58.27
2311 447 0.07 19.37
2312 12.02 0.47 46.46
2321 4.86 0.12 18.38
2322 10.90 0.51 37.76
2323 8.00 0.32 34.69
2331 31.90 1.16 112.84
2332 10.07 0.33 30.00
2341 5.74 0.15 18.69
2342 29.80 1.00 103.65
2411 23.72 0.59 105.98
2412 5.79 0.20 26.66
2421 4.71 0.11 19.95
2422 37.62 1.22 159.25
2431 4.70 0.09 26.11
2432 9.04 0.51 55.27
2441 2.36 0.03 8.58
2442 9.80 0.28 41.03
2511 5.30 0.11 19.82
2512 20.56 0.52 71.74
2521 9.11 0.18 51.70
2522 15.17 0.38 57.62
2531 6.96 0.20 26.59
2532 14.40 0.39 60.73
2541 4.85 0.12 18.15
2542 18.66 0.49 70.66
2611 1.51 0.01 6.68
2612 4.52 0.11 17.75
2621 2.48 0.05 10.89
2622 7.99 0.29 30.52
2631 1.75 0.03 8.09
2632 5.13 0.21 2091
2641 1.97 0.03 10.47
2642 3.06 0.08 12.63
2711 1.90 0.04 8.64
2712 11.22 0.32 47.35
2721 78.76 2.55 333.95
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Sample |Organic Carbon (kg m-2) |Total Nitrogen (kg m-2) |TEC (cmol(+) m-2)
2731 4.38 0.09 18.00
2732 5.86 0.20 22.11
2741 6.32 0.17 27.62
2742 6.72 0.29 30.08
2811 4.40 0.08 16.48
2812 4.65 0.12 18.37
2821 78.76 2.55 333.95
2831 29.34 0.78 119.28
2841 6.32 0.17 27.62
2842 6.72 0.29 30.08
2911 2.26 0.04 7.65
2912 20.30 0.43 87.62
2921 2.90 0.06 13.67
2922 26.07 0.92 107.42
2931 3.07 0.05 13.30
2932 36.12 0.97 164.74
2941 1.92 0.04 7.72
2942 9.81 0.26 30.95
3011 2.76 0.05 13.45
3012 1.80 0.06 6.92
3021 2.90 0.06 13.67
3022 26.07 0.92 107.42
3031 4.06 0.08 15.95
3032 7.38 0.29 36.13
3041 1.92 0.04 7.72
3042 9.81 0.26 30.95
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Appendix 12 - Pedon Level Data for Principal Components Analysis

Stide |Ash Content (ﬂ-l) Soil Mass (kg m-2) | Porosity (%) [Root Content* Soil Structure von Post]
1 535.00 488.84 78.71 /f-vi] massive/medium 9
2 401.30 317.29 92.13 f/f-vi] medium 8
3 400.00 511.39 87.60 f/m-vf] massive/medium 6
4 425.00 210.42 95.71 f/m-vf}non-compact matted/medium 6
5 221.60 488.57 93.18 f/f-vf] massive 8
6 368.40 519.68 96.13 f/f-vf|non-compact matted/medium 5
7 855.00 381.30 86.59 f/f-vf] massive 8
8 675.40 168.34 85.65}] c/a, m/f-vf] non-compact matted 6
9 555.00 191.86 94.20 f/f-vf] massive/medium 8

10 690.20 360.21 90.08 c/f-vf fine 7
11 580.20 916.63 91.25 c/f-vi] medium 8
12 537.50 675.82 87.31 f/f-vf] fine 8
13 510.00 252.79 92.69 c/f-vf] medium/fine 8
14 710.00 337.40 89.49 c/f-vf] medium/fine 8
15 713.80 441.13 92.11 c/f-vf] medium 8
16 500.30 509.24 86.21 c/f-vf] massive 8
17 726.50 1024.07 87.80 f/m-vf] massive/medium 7
18 533.00 236.27 83.05 f/f-vf] medium/fine 9
19 802.80 489.90 76.33 f/f-vf] fine 8
20 507.20 238.02 86.90 f/f-vi] massive/fine 7
21 222.20 464.84 88.69 f/f-vf} massive/medium 7
22 577.20 607.68 89.09 c/f-vf] fine 8
23 755.10 456.73 81.01 f/f-vf] massive 8
24 550.40 684.38 81.79 c/f-vf] medium 8
25 441.70 670.57 93.38 f/f-vf] medium 8
26 650.70 266.29 94.39 c/f-vi] non-compact matted 7
27 805.10 624.50 68.68 f/f-vf] massive/medium 9
28 664.00 488.35 85.77 f/f-vf] massive/medium 7
29 102.40 332.91 76.22 f/f-vf] medium 9
30 687.80 277.26 82.22 c/f-vi] medium 9

* Root Content

Example: c/f-vf

common abundance class
fine to very fine size class

Abundance Class Size Class
f=few vf = very fine
€ = common f=fine

p = plentiful m = medium
a = abundant C = coarse

k = very coarse
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Appendix 18 - Location of Shear Frame Plots

Plot |Slide |Location

Pl 1}Lachmach Road 7.5 km

P2 1{Lachmach Road 7.5 km

P3 7|Harrison Lake - west

P4 1{Lachmach Road 7.5 km

PS5 1}{Lachmach Road 7.5 km

P6 16]Silver Creek 1 - road initiated - north
P7 23|Smith Island Inlet 1 - upper

P8 23{Smith Island Inlet 1 - upper

P9 1|Lachmach Road 7.5 km
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Appendix 21 - Shear Frame Shear Strength Measurements and Notes

Sample [Pull 1 (kPa) [Pull 2 (kPa) |Pull 3 (kPa) [Notes
P1R1 627 431 39 wd
P1R2 627 353 118 n/d
PIR3 549 353 78 vd
P1R4 470 274 78 35 deg slope angle
PIRS 196 118 78 40 deg slope angle,
PIR6 314 118| wt. of scale 40 deg slope angle|
P2R1 1098 broke 78 _part of pedon atop angular cobble/ pedon broke apart
P2R2 1098 broke 78 part of pedon atop angular cobble/ pedon broke apart
P2R3 1960 470 78 wd
P3R1 1254 314 78 wd
P3R2 1215 314 78 wd
P3R3 1372 314 78 wd
P4R1 784 broke 118 pedon broke
P4R2 862 broke 118 pedon broke
P4R3 2038 broke 157 part of pedon atop angular cobble/ pedon broke apart
P5R1 448 157 78 steepest area
P5R2 627 157 78 deeper soil in one area due to uneven bedrock/less steep
P5SR3 1568 624 78 deeper soil in one area due to uneven bedrock/large area
P6R1 3200 666 157 n/d
P6R2 3920 1568 314 pedestal butressed by rise in bedrock/did not fail at max readin,

P6R3 3920 1568 78 deeper soil in one area due to uneven bedrock/possible butressin,

P6R4 3920 1568 235 pedestal butressed by rise in bedrock/did not fail at max readin

P7R1 2509 broke 39 15 deg slope angle/high amounts of colluvium near bottom of profile
P7R2 1254 510 157 25 deg slope angle/less colluvium than rep 1
P7R3 3920 broke] wt. of scale 5 deg slope angle,
P7R4 1725 510] wt. of scale 24 deg slope angle/water running at soil-bedrock contact
P7RS 1882 510§ wt. of scale 5 deg slope angle,
PgR1 627 353 78 25 deg slope angle/water running at soil-bedrock contact
PSR2 666 196] wt. of scale 35 deg slope angle/water running at soil-bedrock contact
P8R3 196 196] wt. of scale 40 deg slope angle/water running at soil-bedrock contact
P9R1 1024 78] wt. of scale 40 deg slope angle/smooth impermeable bedrock
P9R2 | wt. of scale| wt. of scale| wt. of scale 50 deg slope angle/smooth impermeable bedrock
P9R3 235] wt. of scale] wt. of scale 40 deg slope angle/smooth impermeable bedrock

wt. of scale=323 g
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Appendix 22 - Physical Characteristics for Shear Frame Soil Samples

Sample {Bulk Density (Mg cm-3)

Pl 0.14
P2 0.60
P3 0.56
P4 0.43
PS5 0.17
P6 0.17
P7 0.66
P8 0.34
P9 n/d

Sample |Ash Content (g kg-1) |Organic Carbon (g kg-1)

PiR1 402.99 346.27
PIR2 169.15 481.89
PIR3 155.00 490.10
P1R4 710.00 168.20
PIRS 273.63 421.29
PIR6 305.00 403.10
P2R2 850.00 87.00
P2R3 860.00 81.20
P3R1 760.00 139.20
P3R2 805.00 113.10
P3R3 875.00 72.50
P4R2 885.00 66.70
PSR1 400.00 348.00
P5R2 660.00 197.20
PSR3 258.71 429.95
P6R1 611.94 225.07
P6R2 280.00 417.60
P6R3 770.00 133.40
P6R4 330.00 388.60
P7R1 890.00 63.80
P7R2 825.00 101.50
P7R3 977.50 13.05
P7R4 854.50 84.39
P7RS 870.00 75.40
P8R 1 755.00 142.10
P8R2 885.00 66.70
P8R3 880.00 69.60
P9R1 80.00 533.60
PIR2 490.00 295.80
P9R3 315.00 397.30
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Appendix 25 - Approximate Sand to Ash Content Ratios

Sample |Sand : Ash Ratio jAsh Content (g kg-1) |von Post Humification
1021 1:2.3 23 4
712 1:1.1 925 8
733 1:1.1 928 8
213 1:1.0 448 8
1131 1:1.5 448 8
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