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Abstract 

Metabolomics aims to study all small-molecule compounds (i.e. metabolites) in 

cells, tissues, or biofluids. These compounds provide a functional readout of the 

physiological, developmental, and pathological state of a biological system. The 

field of metabolomics has expanded rapidly over the last few years with 

increasing applications to disease diagnosis, drug toxicity screening, nutritional 

studies and many other life sciences. However, significant challenges remain in 

both collecting and understanding metabolomic data. The central objective of my 

thesis project is to develop novel bioinformatic tools to address some of the key 

computational challenges in metabolomic studies. In particular, my research is 

focused on three areas: (i) compound identification from complex biofluids, (ii) 

processing and statistical analysis of metabolomic data, and (iii) functional 

interpretation of metabolomic data.  

In addressing these issues I have developed a number of efficient and user-

friendly software tools, including MetaboMiner, MetaboAnalyst, MSEA and 

MetPA. Each of these software packages has required the development of novel 

algorithms, novel interfaces or the implementation of novel analytical concepts.  

MetaboMiner (http://wishart.biology.ualberta.ca/metabominer) is a standalone 

Java application for compound identification from 2D NMR spectra of complex 

biofluids. Based on a novel adaptive search algorithm and specially constructed 

spectral libraries, MetaboMiner is able to automatically identify ~80% of 

metabolites from good quality NMR spectra. MetaboAnalyst 

http://wishart.biology.ualberta.ca/metabominer


 

 

 

(http://www.metaboanalyst.ca) is a web-based pipeline for metabolomic data 

processing, normalization, and statistical analysis. This application is based on a 

novel framework that combines the statistical and visualization power offered by 

R (http://www.r-project.org) with an enhanced graphical user interface enabled by 

Java Server Faces technology. It is currently the most comprehensive and popular 

data analysis web service in metabolomics. MSEA or metabolite set enrichment 

analysis (http://www.msea.ca) represents a novel application of the gene set 

enrichment analysis technique to metabolomics. In particular, MSEA is a web 

application for the identification of biologically meaningful patterns through 

enrichment analysis of quantitative metabolomic data. To create MSEA, I 

assembled a unique database of ~6300 groups of biologically related metabolites 

with association data on diseases, pathways, genetic traits, and cellular or organ 

localization. MetPA (http://metpa.metabolomics.ca) is a web-based tool for 

metabolic pathway analysis. It integrates functional enrichment analysis and 

pathway topology analysis through a novel Google-map style network 

visualization system. MetPA currently supports the analysis of ~1200 KEGG 

metabolic pathways for 15 model organisms.  

These four software tools have become quite popular within the 

metabolomics community. Together, they offer a comprehensive bioinformatics 

toolkit that implements all the necessary steps to assist researchers in moving 

from raw data analysis to understanding relevant biology. 

 

http://www.metaboanalyst.ca/
http://www.r-project.org/
http://www.msea.ca/
http://metpa.metabolomics.ca/
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Metabolomics is a relatively new member of the “omics” family. It is mainly 

concerned with comprehensive analysis of all small-molecular compounds (i.e. 

metabolites) found in a biological system such as cells, tissues or biofluids (1). 

The field of metabolomics has grown rapidly in recent years. This growth has 

been driven primarily by advances in analytical technologies such as high-

resolution nuclear magnetic resonance (NMR) spectroscopy and mass 

spectrometry (MS).  It has also been facilitated by developments in computer-

aided pattern recognition and bioinformatics (2-5). Metabolomics has become an 

increasingly important research tool in a wide range of life science disciplines 

including clinical chemistry, drug toxicity screening, nutritional research, 

environmental monitoring and many other fields (6-9).  The rapid growth of 

metabolomics, coupled with its widespread applications in many life science 

disciplines is what led me to pursue my PhD research in this particular area.  

However to gain a real appreciation of both the strengths and weaknesses in 

metabolomics and to provide a clearer justification for my particular choice of 

research activities in metabolomics, it is important to have a more detailed 

understanding of this field. 

This introductory chapter is intended to provide the reader with both the 

background and motivation for my research program.  It is organized as follows: 

after a brief summary of the history of metabolomics and its current applications, 

I will provide a review of the three fundamental components of metabolomics – 

the metabolome, the analytical technologies, and bioinformatics, with particular 

focus given to the latter component as it is most relevant to my research. This 
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chapter will conclude with a description of my research objectives and an outline 

of this thesis.  

1.1 A Brief History of Metabolomics  

The practice of using bodily fluids for the study of disease can be traced back as 

far as 500 BC when ancient Greek and ancient Chinese physicians made medical 

diagnoses by assessing the color and smell of a patient‟s urine. The quantitative 

study of metabolites only became possible some 2400 years later with the 

development of chemical tests for key metabolites by early clinical chemists such 

as Archibald Garrod (1857–1936). In the 1960s and 1970s, researchers began to 

use chromatographic separation techniques and MS to investigate a relatively 

small number of metabolites in human blood and urine (10,11). In the late 1970s 

and 1980s, NMR-based approaches to monitoring and measuring isotopically 

labeled metabolites in biofluids, cells and tissues started to appear (12-14). The 

idea of measuring or comparing dozens of unlabeled metabolites simultaneously 

only started to emerge in the mid 1990s. This approach, also known as 

metabonomics, was mainly developed by Dr. Jeremy Nicholson and his 

colleagues at the Imperial College, UK (15,16). In the late 1990s, papers 

describing NMR-based quantitative metabolomics started to appear (17-19), 

however these kinds of multi-metabolite studies were not formally labeled 

“metabolomics” studies. In fact, the term “metabolome” is a relatively recent 

invention being first suggested by Dr. Stephen Oliver (University of Manchester, 

UK) in 1998 (20). Soon afterwards, Dr. Oliver Fiehn (Max Plank Institute, 
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Germany) proposed the term “metabolomics” for the systematic study of 

metabolome changes in a biological system (1). With rapid advances in analytical 

NMR and MS technologies and the growing emphasis on high-throughput 

measurements of genes, proteins and metabolites, the field of metabolomics has 

since entered a period of active exploration, experimentation and expansion (8). In 

2007, the Human Metabolome Project led by Dr. David S. Wishart (University of 

Alberta, Canada) published the first draft of the human metabolome (21).  

There are two general approaches in current metabolomics studies – 

chemometric (or non-targeted) approaches and quantitative (or targeted) 

approaches (2). Chemometric approaches do not attempt to identify the 

compounds from the NMR or MS spectra of a complex mixture (such as a 

biofluid or tissue extract). Instead, they use the unannotated peaks or binned 

spectra combined with multivariate statistics to find important “features” or 

“peaks” that differentiate one sample cohort from another (i.e. disease from 

control).  These important features may or may not be identified in the subsequent 

analysis steps. In contrast, quantitative metabolomics aims to formally identify 

and quantify all detectable metabolites from the NMR or MS spectra, prior to 

subsequent data analysis. Compound identification and quantification is usually 

achieved by comparing the spectra of the biological samples to a set of chemical 

standards or a spectral reference library.  

Chemometric approaches were widely used during the early days of 

metabolomics, when compound identification was severely hampered by the lack 

of spectral databases and appropriate software support. However, without 
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identifying or quantifying which compounds have changed or by how much, it is 

difficult to identify useful biomarkers, to understand the pathways involved or to 

infer the mechanisms of action. With the availability of several comprehensive 

metabolomics databases and user-friendly bioinformatics tools (21-25), 

compound identification has become much easier and quantitative metabolomics 

is increasingly performed in today‟s metabolomics laboratories. In addition, 

researchers, particularly those involved in MS-base metabolomics, often combine 

both identified compounds and unknown peaks in their analyses, blurring the 

boundaries between these two approaches.  

1.2 Applications of Metabolomics  

Metabolomics is generally regarded as the end point of the “omics cascade”. This is 

because metabolites are the final products of complex biological events governed 

by genetic, epigenetic, enzymatic and environmental changes that occur both within 

and outside the organism. Therefore metabolomics provides a wealth of 

information on the biochemical status of the cells, tissues or organisms, which is 

complementary to, yet distinct from, that generated by genomic and proteomic 

approaches. Metabolomics is particularly useful for understanding how a 

disturbance of a given biological system can be connected to mechanisms or 

processes on the cellular and molecular level.  

Metabolomics has the potential to contribute significantly to both basic and 

clinical research. Recent advancements in the analytical techniques and the 

available bioinformatics resources have greatly expanded the number of 
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metabolomics applications and the type of applications for which metabolomics can 

be used. In particular, metabolomics now plays an increasingly important role in 

functional genomics, disease diagnosis, toxicogenomics, nutrition and 

nutrigenomics, systems biology, environmental monitoring and even cellular 

imaging (26-32).  

1.2.1 Metabolomics in Functional Genomics 

Functional genomics aims to elucidate the functions of previously unknown or 

uncharacterized genes or gene products in a high throughput manner (33). 

Traditional approaches have centered largely on expression studies of genes 

(transcriptomics) and proteins (proteomics). As perhaps the best indicator of an 

organism‟s phenotype, metabolomics has proven to be a powerful, 

complementary tool for elucidating the function of the unknown and novel genes.  

In microbial studies, metabolomics has been used to reveal the phenotype 

of silent mutations through a technique known as the “Functional ANalysis by 

Co-responses in Yeast (FANCY) (26). FANCY compares the metabolic profiles 

of yeast strains deleted for known genes with metabolic profiles of strains deleted 

for unstudied genes that produce no overt phenotype. The underlying assumption 

is that the “unknown” genes that produce identical metabolic profiles (co-

responses) will possess similar functions as the known genes (guilty-by-

association). In plant functional genomics, metabolomics has been applied to 

quantitative trait loci (QTL) analysis for the elucidation of molecular networks 

(34) and for crop improvement (35). In this context, the metabolic profiles 
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(instead of phenotypes) are used as the quantitative traits of interest (m-traits), and 

these m-traits are used to test any linkages with genetic polymorphisms. In human 

studies, two recent large scale genome-wide associations studies (GWAS) have 

revealed distinctive “genetically determined metabotypes” (36,37). In both studies, 

the authors measured hundreds of endogenous serum metabolite concentrations 

and calculated their association with SNPs sequenced from the same cohort. They 

found that most of the significant genetic variants identified were located in or 

near genes that code for enzymes or solute carriers. Individuals with different 

genotypes in these genes were found to have significantly different metabolic 

capacities with respect to the synthesis of some of the associated metabolites.  

1.2.2 Metabolomics for the Study of Diseases 

Small molecules play key roles in a number of cellular processes such as 

intracellular signalling, energy transfer and cell-to-cell communication. As a 

result, changes in metabolite concentrations can serve as very good indicators of 

perturbations to these processes. Furthermore, the metabolome typically generates 

an amplified response to any changes in either the proteome or transcriptome. 

Indeed, small changes in enzyme concentrations can often have a manifold larger 

impact on metabolite concentrations (38,39). Consequently, metabolomics is 

generally thought to have a greater potential for the monitoring and early 

diagnosis of disease than transcriptomics or proteomics (40).  

One of the first applications of metabolomics towards disease diagnosis 

was in the screening of inborn errors of metabolism (IEM) based on GC-MS (41). 
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GC-MS and MS-MS methods are now able to test for over 130 IEMs using blood 

or urine samples from newborn babies (27). Metabolomics has also proven to be a 

valuable tool in the study of type II diabetes (42,43), the diagnosis of diabetic 

nephropathy (44), as well as the monitoring of other diabetic complications (45). 

In cardiovascular disease research, metabolomics has been used to identify 

biomarkers of acute myocardial ischemia (46) and to predict cardiovascular 

events (47). More recent applications include the use of metabolomics to study 

obesity (48), aging (49) and cancer (50).  

1.2.3 Metabolomics for Drug Toxicity Assessment and Environmental 

Monitoring 

Early detection of drug toxicity has been one of the driving forces behind the 

early adoption of metabolomics technologies within the pharmaceutical industry. 

One of the most noteworthy efforts is the COMET (Consortium for Metabonomic 

Toxicology) project formed between five pharmaceutical companies and the 

Imperial College London (29).  Using rat and mouse models, the project tested a 

total of 147 common toxins and collected around 35,000 NMR spectra of rat and 

mouse biofluids. The information has been used to develop an expert system that 

is able to predict the organ most likely to be affected based on the blood or urine 

spectra collected after the administration of a novel drug or toxin (51). 

Metabolomics has also proven to be valuable in environmental toxicity 

assessment. For instance, metabolic profiling of earthworms has identified 

potential biomarkers of soil contamination (52). A recent metabolomics study has 
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shown that the metabolic signatures of marine mussels can also be used to 

monitor the impact of chemical exposure in ocean water systems (53). 

1.2.4 Metabolomics in Food Sciences and Nutritional Studies 

Foods of plant origin contain a large number of phytochemicals. These 

phytochemicals are transformed into various secondary metabolites after digestion 

and absorption. Some of these secondary food metabolites can further modulate 

metabolism and thereby influence health. For instance, a number of studies have 

shown that antioxidants such as polyphenols (found in tea or wine) or carotenoids 

(found in tomato juice) provide many health benefits and prevent various diseases 

including cardiovascular diseases, cancers, neurodegenerative diseases, diabetes, 

osteoporosis, etc. (54,55). Metabolomics is now considered a key tool in 

understanding the biological mechanisms of phytochemicals and in the 

development of functional foods (30,56).  

Over the past decade a number of metabolomic studies have been 

conducted to investigate the metabolic responses following dietary interventions 

in both animal models and human populations (57-61). Metabolomics is now 

recognized as an essential tool for monitoring dietary interventions and 

conducting personalized nutritional research (62). The recent introduction of the 

Nutritional Metabolomics Database 

(http://wiki.nugo.org/index.php/Nutritional_Metabolomics_Database) will greatly 

facilitate research in this area.  

http://wiki.nugo.org/index.php/Nutritional_Metabolomics_Database
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1.3 Defining the Metabolome  

The metabolome consists a wide spectrum of low-molecular-weight compounds, 

including sugars, amino acids, lipids, nucleotides, vitamins and cofactors. These 

compounds have very diverse chemical and physical properties (i.e. molecular 

weight, polarity, solubility, or volatility) and occur at different concentrations that 

can vary over nine orders of magnitude from picomolar to millimolar levels. The 

metabolome was originally defined in the context of metabolic control analysis 

(MCA) as the set of all endogenous, low molecular weight compounds 

synthesized by an organism (20). It was later redefined to refer to all the small 

compounds that can be measured within a biological system (1). This broader 

definition implicitly includes both endogenous and exogenous compounds such as 

those derived from foods and xenobiotics (i.e. drugs, toxins, pollutants). In 

addition, as technology improves and detection limits decrease, it is likely that 

many more metabolites will be identified, making the potential size of any given 

organism‟s metabolome practically infinite.  

Nevertheless, it is possible to give some estimates of the size of different 

metabolomes based on work from genome-scale reconstructions of different 

organism‟s metabolic networks as well as information from public databases and 

literature. For instance, the total number of metabolites in the E. coli metabolome 

was estimated to be ~450 (63); the yeast metabolome was predicted to contain 

~600 metabolites (64); while the total number of metabolites within a mammalian 

cell was estimated to be ~650 (65). However, these network reconstructions 

appear to seriously underestimate the true size of these metabolomes. For 
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instance, literature derived data indicates that the E. coli metabolome consists of 

over 1,000 metabolites (66), a similar approach has shown that the yeast 

metabolome contains well over 2,000 metabolites (67), while the Human 

Metabolome Project has identified over 8,000 endogenous metabolites in humans 

(including ~4,000 lipid species) (25). Plant metabolomes tend to be somewhat 

larger as over 5,000 metabolites were reported from the rice metabolome (68); 

and the total number of metabolites in the plant kingdom has been estimated to be 

~200,000 (31).  

While the size of the metabolome varies considerably between species, it 

is also important to note that even within the same species, the distribution of 

metabolites is subject to considerable spatial and temporal variability. As a result, 

for multi-cellular organisms it is more common to report the metabolome for 

specific organs or specific compartments. For example, the human cerebrospinal 

(CSF) metabolome contains ~1005 metabolites, the human serum/plasma 

metabolome contains ~4,600 metabolites, and the size of human urine 

metabolome is ~800 compounds (25,69,70).  Even within a given organ or a given 

physiological compartment, the metabolome is still highly dynamic and context-

dependent, varying according to the physiological, developmental, or pathological 

state of the organism (71). In the case of human subjects, factors like age, gender, 

diet, diurnal variations, exercise, or disease conditions can all exert noticeable 

effects on metabolite concentrations and compositions (72). Therefore, the 

metabolome is often described as a “state function” of an individual at a particular 

time point (9). Despite these variations, recent studies have demonstrated that an 
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invariant distinctive “metabolic phenotype” can be ascribed to specific individuals 

(73) or geographically dispersed populations (74).  

1.4 Metabolomics Platforms 

Unlike genomics or proteomics, where the data collection procedures have mostly 

consolidated and standardized into a few platforms and protocols, the chemical 

complexity and heterogeneity of metabolome makes it extremely difficult to 

measure all compounds using a single analytical platform. Current metabolomics 

studies are largely based on the use of NMR or GC/LC-MS to detect, identify, and 

quantify small molecule compounds from biological samples (2). For historical 

reasons, NMR has been more commonly applied to mammalian samples, while 

MS-based methods have been used more often in plants and microbial studies. 

Due to their complementary nature, these analytical methods are increasingly used 

in combination to provide a more comprehensive coverage of the metabolome.  

In the following sections, I will provide a basic overview covering the 

main characteristics and features of NMR and GC/LC-MS based technologies in 

the context of metabolomics studies. It is important to note that other analytical 

techniques are also being used in metabolomics, such as infrared spectroscopy, 

immunodetection, and capillary electrophoresis with fluorescent detection. 

However, time and space prevent me from discussing all of these technologies.  

For a more comprehensive introduction to metabolomics technologies, please 

refer to two recent and very excellent review articles (3,75).     
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1.4.1 NMR Spectroscopy 

The basic principle behind NMR measurement is that when a biological sample is 

put in a constant magnetic field, those nuclei that possess non-zero magnetic spins 

(such as 
1
H and 

13
C) will be either align (low energy) or oppose (high energy) the 

external magnetic field.  Each nucleus or class of nuclei spins with a characteristic 

frequency or resonance frequency, determined by its nuclear composition, its 

chemical environment and the strength of the applied magnetic field. When one 

applies a short high-power pulse of radio frequency (RF) energy that is close to 

the resonance frequency of the nuclei of interest, a small proportion of those 

nuclei will absorb the RF energy and will be excited into a high-energy state. As 

the system returns to equilibrium, the absorbed energy is released as a burst of 

radio waves with slightly different frequencies known as the free induction decay 

(FID). Each of the frequencies corresponds to the characteristic resonance 

frequency of the different nuclei in the sample. After Fourier transformation, the 

signal is converted to a conventional NMR spectrum characterized by multiple 

peaks of varying position (corresponding to chemical shifts) and varying height 

(corresponding to the relative abundance of each nuclear type). Using this 

information it is possible to determine the chemical structure of pure substances 

or the chemical composition of liquid mixtures. 

The most abundant and sensitive NMR-active nucleus is the hydrogen 

nucleus. As hydrogen is found in nearly every organic molecule, proton NMR is 

one of the most commonly used approaches to characterize organic molecules. 

Given that most metabolites are organic molecules, it is not surprising to learn 
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that one-dimensional (1D) proton NMR spectroscopy has been used widely in 

metabolomic studies involving human biofluids. NMR can also be used to study 

solid tissue samples using a technique called high-resolution magic angle spinning 

(MAS) NMR spectroscopy of intact tissue (76). Current detection limits for 

proton NMR spectroscopy are on the order of 1-5 µM in biofluid samples, with a 

typical acquisition time of ~10 minutes (2). NMR can also be used in a non-

invasive manner to detect or measure metabolites. This involves using in vivo 

magnetic resonance spectroscopy (MRS) of intact organisms (77). 

While most NMR-based metabolomics practiced today is based on using 

1D proton spectra (which are quick and easy to collect), it is also possible to 

analyze biological mixtures using slightly more advanced NMR spectroscopic 

techniques.  In particular, two-dimensional (2D) NMR offers a robust approach to 

resolving excessively overlapped spectra commonly encountered in the 1D proton 

NMR of complex biofluid mixtures. 2D NMR can also be used to elucidate the 

structure of novel compounds that have been isolated or purified from biological 

mixtures (78). There are many different types of 2D NMR experiments. Among 

them, 
1
H-

1
H total correlation spectroscopy (TOCSY) and 

1
H-

13
C heteronuclear 

single quantum correlation spectroscopy (HSQC) are commonly used in NMR-

based metabolomics. The TOCSY experiment can help link clusters of peaks that 

are thought to belong to the same compound, but it also reveals linkages to peak 

clusters that 1D NMR cannot resolve. This additional information can be very 

useful for compound assignments. The HSQC experiment provides increased 

resolution by utilizing the greater 
13

C chemical shift dispersion on one axis of the 
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2D spectrum, which significantly reduces peak overlap and therefore increases 

metabolite specificity. 

There are several desirable features associated with NMR-based 

metabolomics. The most attractive feature is that multiple small molecule 

metabolites can be measured simultaneously without prior separation, which 

greatly simplifies the sample preparation requirements. The other important 

feature is that NMR spectra are highly reproducible, and samples analyzed from 

one spectrometer will generate near-identical results to those measured on other 

types of spectrometers (79). These features have made NMR spectroscopy a 

platform of choice for many large-scale high-throughput collaborative 

metabolomics projects (51,80). A major drawback is that NMR is a relatively 

insensitive technique as only medium to high abundance metabolites can be 

detected with this approach. The limited coverage of the metabolome has made 

data interpretation very difficult.  

1.4.2 MS-based Methods 

In metabolomics studies, mass spectrometry (MS) is usually coupled with a 

chromatographic technique such as gas chromatography (GC) or liquid 

chromatography (LC) to form hyphenated GC-MS or LC-MS analytical platforms. 

With MS-based metabolomics compounds are first separated either in the gas 

(GC) or solution phase (LC), and subsequently ionized, detected and then sorted 

according to their mass-to-charge (m/z) ratio, which can be used to identify the 

metabolites.  
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GC-MS offers a very high degree of chromatographic resolution and 

reproducibility. GC-MS is most suitable for low-molecular weight (< 500 Da), 

volatile, and thermally-stable compounds such as sugars, fatty acids, and amino 

acids. For large and polar compounds, chemical derivatization is usually required 

to improve their volatility and thermal stability before analysis. The most 

commonly used ionization technique in GC-MS is electron impact (EI) ionization 

which is very robust and reproducible. The characteristic mass spectral 

fragmentation patterns produced for common metabolites can be used to build a 

spectral library that can be used to compare spectra from other samples and to 

accurately identify metabolites from mixtures.  

Compared to GC-MS, LC-MS methods typically have somewhat lower 

chromatographic resolution and reproducibility. However, LC-MS techniques can 

typically access a much broader mass range (100-2000 Da) because volatilization 

or derivatization is not necessary. LC-MS is also a better choice for separating 

and identifying polar and non-volatile compounds. Electrospray ionization (ESI) 

and atmospheric pressure chemical ionization (APCI) are the two most common 

ionization methods in LC-MS (81). A major concern with both ESI and APCI is 

ion suppression in which a compound suppresses (or enhances) the ionization of a 

co-eluting compound. Therefore, for complex samples, high quality separations 

are necessary in order obtain reliable LC-MS results. This is usually achieved by 

using multidimensional HPLC, capillary HPLC, or ultra-performance liquid 

chromatography (UPLC). Both ESI and APCI techniques will generate a 

molecular ion whose mass can be searched against a database of known 
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metabolites for possible identification. LC-MS systems can also be extended to 

perform tandem MS (MS/MS) or MS
n
. Tandem mass spectrometry uses collision-

induced dissociation (CID) of precursor or parent ions to produce reproducible 

fragment patterns for the identification or structural elucidation of the metabolite 

of interests. Recent advances in LC-MRM (multiple reaction monitoring)-MS can 

schedule up to 1,000 MRMs per run, making it a sensitive and robust platform for 

high-throughput quantitative or semi-quantitative metabolomics studies (82,83).  

MS-based methods are widely used in metabolomics research. They are in 

general more sensitive than NMR-based approaches, and can usually detect 

metabolites at a concentration at least two orders of magnitude below that of 

NMR (9). Current detection limits for MS-based approaches are of the order of 

100 nM, allowing the detection of ~1,000 metabolites, with typical acquisition 

times of ~ 30 minutes (81). However, compared to NMR-based approaches, MS-

based approaches can sometimes be more time-consuming, especially if 

metabolite identification and quantification need to be performed. MS techniques 

also suffer from problems of reproducibility and require compound-specific 

calibration curves to perform any kind of absolute quantification. The introduction 

of selective isotope labeling for MS-based metabolomics should help resolve 

some of these limitations (84).  

Whether metabolomic data is collected via LC-MS, GC-MS or NMR, it 

eventually has to be collated and analyzed.  This aspect of data analysis represents 

one of the greatest challenges in metabolomics as it often requires the intelligent 

use of a full suite of bioinformatic tools.  In other words, bioinformatics plays a 
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part in metabolomics that is almost equal to the analytical platforms used to 

collect the data. 

1.5 Bioinformatics  

1.5.1 Overview 

The evolution of molecular biology from a bench-intensive, low-throughput 

science into a high-throughput, data-driven science has shifted the focus from data 

gathering towards data analysis. As a result, bioinformatics has become an 

integral part of almost every molecular biology experiment done today. 

Bioinformatics can be loosely defined as the application of statistics and computer 

science to the field of molecular biology. The field of bioinformatics has co-

evolved closely with every advance in molecular biology.  

The earliest applications of bioinformatics were focused on protein 3D 

structure determination from X-ray crystallographic data (85) and computing 

evolutionary trees from protein sequence data (86). These “niche” disciplines 

have since evolved into the field of structural bioinformatics and computational 

evolutionary biology.  However, it wasn‟t until the advent of the Human Genome 

Project (1989-2003) that the discipline of bioinformatics truly came into the 

spotlight. Thanks to the tools, databases and techniques developed by 

bioinformaticians, such as BLAST (87), GenBank (88), Phred-Phrap-Consed 

(89,90), it became possible to compare and annotate dozens of genomes from 

model organisms. Bioinformatics has continued to evolve as the focus has shifted 
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from analyzing sequence data towards analyzing microarray data, proteomic data 

and other kinds of omics data. 

Omics data can be conceptually grouped into three major types - sequence 

data, expression data, or a combination of both. Sequence data includes gene or 

genome sequences, mRNA sequences and protein sequences. The bioinformatics 

tasks associated with sequence analysis usually involve similarity searches, 

sequence alignment, sequence annotation and structure prediction. These 

procedures typically involve text manipulation and string matching and are often 

performed using scripting languages such as Perl (http://www.perl.org) or 

modules from the BioPerl library (91). Expression data includes gene-expression 

data measured via microarray techniques, protein expression data measured from 

two-dimensional gel electrophoresis or isotopic labeling methods such as iTRAC 

or iCAT (92), as well as metabolomics data measured by a variety of different 

techniques. The bioinformatics tasks associated with expression data analyses 

typically include differential expression analysis, pattern discovery, classification 

and pathway analysis. These procedures often involve a significant amount of 

statistical analysis and machine learning. The programming language of choice is 

often R (http://www.r-project.org) and  packages from the Bioconductor project 

(93). Expressed sequence tag (ESTs) data, serial analysis of gene expression 

(SAGE) data, or RNA-seq data generated by next-generation sequencing 

technology (94) can be considered as both sequence and expression data. The 

bioinformatics tasks for analyzing this type of data involve mapping and aligning 

http://www.perl.org/
http://www.r-project.org/
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the sequence reads to the underlying genes/exons and then using the resulting 

sequence count data to perform expression analysis.  

A detailed discussion of sequence analysis is outside the scope of this 

thesis. For a more comprehensive discussion of EST data analysis and annotation, 

please refer to my Master‟s thesis (95). The procedures for analyzing RNA-seq 

data are still rapidly evolving (96) and will not be discussed here. In keeping with 

the central subject of this thesis, I will review some of the important bioinformatic 

procedures associated with metabolomic expression data analysis. 

1.5.2 Raw Data Processing in Metabolomics 

The purpose of raw data processing in metabolomics is to convert raw spectral 

data generated by off-the-shelf NMR or MS instruments into a data format 

suitable for downstream statistical analysis or machine learning. The detailed 

procedures are highly dependent on the instruments used. In many cases, the low-

level raw data are stored in proprietary formats and can only be processed using 

the software supplied by instrument vendors. Therefore, one of the first steps for 

metabolomic data processing is the conversion of raw (proprietary) data files from 

different machines or different vendors into a common and open-access format. 

Software supplied by instrument vendors usually contains scripts that can be used 

for this task. The development of data processing tools for metabolomics has been 

an active area of bioinformatics research in recent years. Many commercial and 

open source software tools are now available for raw data conversion and 

processing. A comprehensive list of tools can be found at the MS-Utils website 
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(http://www.ms-utils.org/wiki/pmwiki.php/Main/SoftwareList) and at the Fiehn 

laboratory website 

(http://fiehnlab.ucdavis.edu/staff/kind/Metabolomics/Peak_Alignment/). Some of 

these tools and procedures are discussed briefly below. 

Processing NMR Data  

Raw NMR data is usually saved as an FID file. The basic processing steps include 

fast Fourier transform, phase correction, baseline correction, and chemical shift 

referencing. Users can then either perform spectral binning or compound profiling 

(the latter requiring a comprehensive reference spectral library). The final output 

is typically a data table of spectral bins (corresponding to small chemical shift 

regions with integrated areas) or compound concentration values.  

A variety of software tools are available for processing and interpreting 

NMR spectra for metabolomics. Certainly all three major NMR instrument 

manufacturers (Varian, Bruker and JEOL) produce instrument-specific software 

for processing and visualizing 1D proton spectra. However, these spectral 

processing tools are not ideal for identifying or profiling the compounds that 

might be found in complex mixtures – as is the case with NMR-based 

metabolomics.  As a result several specialized software tools have been developed 

independently and introduced to the market. The Chenomx NMR Suite 

(Chenomx, Edmonton, Canada) is probably the most widely used metabolomics 

software tool for processing and profiling 1D proton NMR spectra. Another 

widely used commercial tool is AMIX (Bruker Biospin, Germany) which offers 

similar features. More recently, several open source software tools have also been 

http://www.ms-utils.org/wiki/pmwiki.php/Main/SoftwareList
http://fiehnlab.ucdavis.edu/staff/kind/Metabolomics/Peak_Alignment/
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developed for processing NMR spectra for metabolomics studies, such as HiRes 

(97) and Automics (98). Compared to the commercial ones, these tools lack 

comprehensive spectra libraries to support compound identification and 

quantification. Instead, they tend to focus on spectral alignment, binning, and 

batch processing.  

Software tools that support 2D NMR spectra processing and peak picking 

include NMRPipe (99), Sparky (100), AMIX, and rNMR (101). Peak alignment 

tools for 2D-NMR spectra have also been described (102).  As yet there have been 

relatively few tools described that permit compound identification or 

quantification via 2D NMR spectroscopy, although this is changing (103-105). 

Processing MS Data  

Compared to NMR-based metabolomics, the field of MS-based metabololomics is 

somewhat more vibrant and diverse given the much larger variety of MS 

instrument vendors and MS instrument types. Indeed, there are almost as many 

MS data formats as instrument vendors. A necessary preliminary step with MS-

based metabolomics is to convert the raw MS data from its instrument-specific or 

proprietary format into an open format such as netCDF or mzXML. Once the data 

has been converted to a readable format, users have a large number of both 

commercial and free software tools at their disposal including: AMDIS (106), 

AnalyzerPro (SpectralWorks, UK), Binbase (107), ChromaTOF (LECO, USA), 

MassFrontier (HighChem, Slovakia),  MetAlign (108), Met-IDEA (109), 

MSFACTS (110), Tagfinder (111), XCMS (112), and MZmine (113).  
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The basic steps for MS data processing include noise filtering, feature 

detection, and spectral/peak alignment. The first two steps are usually integrated 

with each other. Different tools usually employ different algorithms to perform 

these steps. The popular open source XCMS package was developed primarily for 

processing LC-MS spectra for global, untargeted metabolite profiling (112). 

XCMS accepts raw LC-MS spectra in either mzXML or netCDF format. It first
 

creates extracted ion base-peak chromatograms (EIBPC) by cutting each spectrum 

into slices in the m/z dimension. Each EIBPC is then processed by a matched 

filter using a second-derivative Gaussian as the model peak shape. After filtration, 

peaks are selected using a signal-to-noise cutoff. Peak intensities are calculated by 

integrating the unfiltered chromatogram between the peak boundaries (defined by 

zero-crossing points of the filtered chromatogram) without background 

subtraction. These peaks are subsequently binned by mass and grouped according 

to their retention time distribution estimated by a Gaussian kernel density. Some 

“well-behaved” peak groups are then selected to build a deviation profile to 

correct the retention time drifts of the original peak lists using a local regression 

fitting method, loess. The process of peak matching and retention time alignment 

can be performed iteratively by successively detecting more and more well-

behaved peak groups to improve the overall alignment. The final output from 

XCMS is a peak intensity table with peaks identified by their retention time and 

m/z values for each spectrum.  

Similar to NMR-based metabolomics tools, commercial MS data 

processing tools are usually shipped with comprehensive reference spectral 
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libraries to help metabolite identification. On the other hand, open-source tools for 

MS-based metabolomics are mainly designed for spectra processing and peak 

picking. Public MS spectra libraries have started to appear such as METLIN (23) 

and HMDB (25).  

1.5.3 Metabolomic Data Normalization 

Before performing any kind of statistical analysis with NMR or MS-derived 

metabolomic data, it is often necessary to perform some kind of data 

normalization. The purpose of data normalization is to reduce any systematic bias 

within the data and to improve overall data consistency so that meaningful 

biological comparisons can be made. 

Systematic bias in experimental data is often a measurement error or bias 

that is unrelated to the biological changes of interest. Bias can be introduced 

during the many steps involved in the experimental setup such as patient selection, 

sample collection and preparation, spectral acquisition, and so on. Common 

sources of systematic bias include differences in sample quantity, dilution effects, 

technical variations due to imperfect instrument calibration or changes in 

measurement conditions, etc. A variety of methods have been developed to 

address the systematic biases encountered in metabolomics studies. Some 

commonly used methods include normalization by the sum (i.e. dividing by the 

sum of all concentrations or integrated spectral area), normalization by using 

internal controls, normalization by a physiological constants (i.e. dividing by 

creatinine concentration) or probabilistic quotient normalization (114).  
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Metabolites are present over a wide concentration range, which can differ 

by several orders of magnitude depending on the conditions to which the 

organism is exposed. However, it is important to remember that the magnitude of 

these concentrations or concentration changes is not necessarily proportional to 

their biological relevance. In many cases, the within-group metabolite 

concentration variances are higher in those groups where the mean concentration 

is also higher. Proper data transformation can usually improve the within-group 

data consistency and thereby increase the probability of detecting meaningful 

differences between groups. Metabolite concentrations are usually not normally 

(i.e. Gaussian) distributed, yet many statistical tests assume that data values are 

normally distributed. It is therefore important to perform certain data 

transformations to make metabolite data normally distributed. Commonly used 

methods include centering, autoscaling, pareto scaling, or log transformations  

(115). These procedures aim to reduce the impact of very large values and to 

make all metabolite concentrations (absolute or relative) more comparable. No 

consensus has been reached on the best data normalization procedures that will 

perform well on all types of metabolomic data sets. Different methods tend to 

emphasize different data features and each method has its own merits and 

drawbacks. The impact of these data transformation procedures have been 

discussed in detail by van den Berg et al. (115).  

1.5.4 Metabolomic Data Analysis  

Metabolomic data sets are usually high-dimensional, meaning that the number of 

variables (peaks, spectral bins or metabolites) is often very large, ranging from a 
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few dozen to hundreds or even thousands. Consequently it is difficult to manually 

examine each and every data point. This situation is very similar to what 

researchers have experienced with microarray data analysis. To deal with this 

kind of high dimensional data, a variety of statistical and machine learning 

approaches have been developed and tested. Below I will review some of the most 

commonly used approaches organized under three general categories: biomarker 

identification, pattern discovery, and class prediction.  

Biomarker Identification  

In large scale expression studies, it is often assumed that most of the observed 

metabolite or gene expression changes are a result of normal physiological 

variations (background noise) and that only a small proportion of them are 

actually associated with the experimental condition of interest. Identification of 

those “key” features is typically the first step toward finding useful biomarkers or 

understanding the biological processes involved in the condition under 

investigation. In microarray gene expression studies, this procedure for 

identifying these key genes is known as differential analysis. A variety of 

approaches for differential analysis have been developed for this task, with the 

majority of them being based on classical univariate approaches and their 

variants. In the following section, I will explain and review a number of univariate 

methods that can be used to identify important features from high dimensional 

data.  

Univariate methods, by definition, consider each feature separately and 

treat that feature as an independent variable. Features are ranked according to 
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some measure related to their association to the conditions of interests. After this 

ranking step, the first few variables in the list are selected for further analysis. The 

majority of univariate methods used today are based on t-tests and ANOVA 

(analysis of variance) methods, or their non-parametric counterparts such as the 

Wilcoxon‟s rank sum tests and Kruskal-Wallis tests. Among these methods, the t-

statistic used in the t-test is the simplest and most commonly used. The general 

form of the t-statistic is:  

SXt /     (1) 

where X  is the group difference and S is the (pooled) sample standard deviation 

(SD). For two groups of size n1 and n2 with variance of S
1 

and S
2
, the pooled 

variance for the classical t-test is defined as:  

2
2

21
2

1 // nSnSSt    (2) 

The t-statistic can be considered as a measure of the signal-to-noise ratio in which 

the difference between the two sample means is the signal, and the noise is 

measured by the SD.  The SD indicates the scatter or the dispersion of the sample 

values.  

One major concern for high-dimensional data analysis is that when the 

sample size is small, parameters estimation tends to be unstable or prone to large 

errors. As a result, standard t-test and ANOVA methods often perform poorly 

with too many false positives. This issue has led to the development of several 

highly successful and widely used alternative tools such as Cyber-T (116), SAM 
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(117), and Limma (118). These approaches are generally called regularized or 

moderated t-statistic methods. The basic idea is to “borrow information” from 

other variables (i.e. genes) to improve the estimation of variance S . For example, 

SAM uses an ad hoc permutation approach to estimate a small “fudge factor” ( 0c ) 

to add to the standard SD for each gene expression value as shown here: 

tSAM ScS  0   (3) 

where tS  is defined by equation (2). In Limma, an empirical Bayes approach is 

used to borrow information from all the genes in the experiment, with 

)/()( 0

22

00limma dddSSdS t   (4) 

where d  is the degree of freedom, tS  is defined by formula (2), 0d  and 0S  are 

estimated from the data using an empirical Bayes approach. These regularized t-

statistic methods are generally considered superior to the standard t-test in 

microarray data analysis in the sense that they usually produce better results with 

less false positives.  

Researchers in metabolomics face similar data dimensionality and data 

analysis issues as those in transcriptomics, but to a somewhat smaller extent. As 

the cost of a metabolomics experiment is approximately an order of magnitude 

lower than that of a microarray experiment, more samples are usually analyzed 

(>10 per group) in metabolomics studies than in microarray studies (3~10 per 

group). With more replicates, the variance estimate becomes fairly stable and 

accurate using standard t-test or ANOVA methods, which usually give a similar 
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performance compared to other more complicated methods for improved variance 

estimation (119).  

Although approaches based on the moderated t-statistic contain some 

multivariate components in the sense that they use (or borrow) information from 

other variables, they do not take variable correlations or interactions into 

consideration. These methods are generally considered univariate approaches. In 

general, univariate methods are simple to use and results are easy to understand. 

They are widely used for exploratory data analysis. However, univariate 

approaches are considered suboptimal for high-dimensional data analysis in 

biology as they tend to ignore the correlations that are known to be present among 

genes or metabolites. In addition, the high-dimensional nature of the data 

inevitably leads to multiple tests which would inflate the false positives. As a 

result, multivariate methods which simultaneously take all variables into 

consideration are generally considered superior to simple univariate approaches.  

However, the classical multivariate statistical methods - Hotelling‟s T
2
 test 

and multivariate analysis of variance (MANOVA), which represent direct 

extensions of the t-test and ANOVA to their multivariate counterparts, have not 

gained much use in the expression analysis community. This is primarily because 

it becomes much more difficult to ascertain the nature of the underlying 

multivariate distributions with a small number of samples (the curse of 

dimensionality). In addition, these two multivariate tests simply tell the user 

whether a difference exists or not and require complicated follow-up analyses to 

know which features are significant. Nevertheless, some modified variants of 
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MANOVA have been proposed (120). Two other widely used multivariate 

approaches for analyzing high-dimensional data are based on dimensional 

reduction - principal component analysis (PCA) and partial least squares 

discriminant analysis (PLS-DA). These two methods will be discussed in more 

detail, particularly as they relate to class discovery and class prediction, 

respectively.  

Pattern Discovery  

Identifying biologically interesting patterns has been one of the central activities 

in exploratory analysis of omics data. As omics technologies are generally 

considered hypothesis generating tools, researchers typically want to find patterns 

in the data that are not predicted by their current knowledge or pre-conceptions. In 

gene expression data analysis, some typical goals include the identification of 

groups of genes whose expression patterns are tightly related across samples (i.e. 

co-expression analysis); or to find unknown subgroups among samples (i.e. 

disease subtypes). Here I will focus on two approaches that are commonly used in 

metabolomic data analysis - dimensional reduction and clustering. As the human 

eye is very proficient at discerning patterns, both approaches are designed to 

provide excellent visualization support to facilitate the process.   

Dimensional Reduction 

The basic idea in dimensional reduction is to “summarize” a large number of 

variables into a small number of new components with minimal loss of 

information. One of the most widely used dimensional reduction methods is 
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principal component analysis (PCA), which aims to project or transform the data 

into a new coordinate system such that most data variance lies in the first few 

components. These components (also known as principal components or PCs) are 

constructed using linear combinations of the original variables. The results of a 

PCA are usually discussed in terms of scores and loadings. Scores are the values 

of the original data projected to the new coordinate system while loadings are the 

weights applied to original data during the projection process. Once the PCA 

transformation is complete, researchers then visually scan the PCA score plots to 

look for inherent groupings or patterns in the data. The most significant features 

contributing to the observed clusters can then be identified from the 

corresponding PCA loading plot.  

PCA provides a convenient summary of data with respect to data variance. 

However, there is no guarantee that the direction of maximum variance will align 

with the direction of the biological changes of interest. For instance, the first 

principal component may simply reflect systematic error in the data, especially 

when data processing and normalization are not performed properly. In addition, 

PCA‟s reliance on users to identify patterns through visual inspection is subjective 

(and sometimes dangerous) as the human eye can often spot or “create” patterns 

even they are not there. Finally, as PCA is based on eigenvalue decomposition of 

a data covariance matrix or singular value decomposition (SVD) of a data matrix, 

it is quite sensitive to the presence of outliers and artifacts arising from data 

transformation procedures.   
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Clustering  

Clustering analysis aims to reveal interesting patterns by directly generating or 

seeking natural clusters within the data. Clusters are subgroups in a data set that 

are more similar to each other than any other subgroup in the data set. One 

necessary component in clustering analysis is how to measure the distance 

between any two objects. Many distance measures have been used for clustering 

microarray data. Some common ones include Euclidean distance, Manhattan 

distance, Pearson's correlation, Spearman's rank correlation, and cosine-angle 

(121). The other critical component is the clustering algorithm, namely, how the 

clusters are constructed given a distance matrix. In bioinformatics, three types of 

cluster analysis are commonly used - hierarchical clustering, partitional clustering, 

and biclustering.   

Hierarchical clustering is probably the most widely used clustering method 

in biology. Indeed, hierarchical clustering with heat maps has become almost 

routine for microarray gene expression data analysis, beginning with the first 

description of heat maps by Eisen et al. (122). Hierarchical clusters can be 

constructed through either an agglomerative or a divisive algorithm. For instance, 

the agglomerative approach begins with each sample being considered as a 

separate cluster and then proceeds to combine them until all samples belong to 

one cluster. The order by which each cluster is combined is determined by the 

distance among the clusters. The intercluster distance can be calculated with 

different measures such as single-linkage, complete linkage, average linkage, or 

Ward‟s method (121). The net result of a hierarchical clustering process is a tree 
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of nested clusters usually accompanied with heat maps as illustrated in Figure 

1.1A. As with most image- or graph-based methods, users need to decide at which 

level the clusters are most biologically meaningful. Another issue with 

hierarchical clustering is that once an assignment has been made, it cannot be 

changed in later stages if it is found to be non-optimal.  

   In contrast to hierarchical clustering, partitional clustering approaches 

attempt to directly decompose the data set into a user-specified number of disjoint 

clusters. K-means and self-organizing map (SOM) are two widely used partitional 

clustering methods. For instance, k-means clustering aims to partition the data 

into a set of k user-specified clusters such that the sum of squares from points to 

the assigned cluster center is minimized. This can be achieved by considering 

every possible partition of p data points into k groups and then selecting the one 

that yields the lowest within-group sum of squares. However, for a high number 

of instances, it is impossible to enumerate all possible partitions. As a result, the 

method is usually implemented in iterations by rearranging existing partitions 

until no improvement is seen. One issue associated with partitional clustering is 

how to determine the optimal number of clusters when there is no prior 

knowledge about the number of clusters that should be seen in the data. In 

practice, many researchers choose the initial cluster number based on results from 

PCA or hierarchical clustering.  

Both hierarchical and partitional approaches fail to accommodate several 

important biological characteristics inherent in high dimensional “omics” 

expression data. For example, some genes or metabolites can be involved in more 



34 

 

 

 

than one active biological process, which means that clustering algorithms should 

ideally allow partial overlap among different clusters. More importantly, many 

genes or metabolites may not be involved in any of the active processes and 

mainly serve as “background noise” – especially if we assume that most observed 

expression changes are a result of normal physiological variations. Including this 

“background noise” in the clustering process will dilute the signal and obscure 

any kind of useful functional interpretation. It is also quite possible in biological 

systems that some active processes may only be “turned-on” under some 

conditions. Therefore the ideal clustering algorithm should focus only on these 

local “patches” of data that exhibit interesting patterns while leave the remaining 

data unclustered as illustrated in Figure 1.1B. Different clustering algorithms 

have been proposed over the last few years to perform this kind of biologically 

intelligent clustering (123). These approaches are generally referred to as 

biclustering or subspace clustering methods. The local “patches” are called 

biclusters as they are two-dimensional clusters - i.e. gene clusters that are only 

defined over an associated sample cluster. The algorithms for biclustering are 

very complex and will not be described here. In general, the problem of 

estimating a set of biclusters is considered to be NP-hard and a globally optimal 

solution is unlikely to be obtained for high-dimensional data. Despite these 

difficulties, a number of tools have been implemented for biclustering analysis of 

gene expression (124-126).  
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Figure 1.1 Screenshots illustration of hierachical clustering with heat maps and biclustering. 

The hierachical clustering in (A) was performed on columns, and the colored patches in (B) 

represent the biclusters identified, adapted from Luscher, et al. (125). 

Class Prediction 

Classification or class prediction using data from gene expression or metabolite 

concentration data has important applications in disease diagnosis, prognosis and 

therapy. As a result, data classification and prediction has been the subject of 

intensive studies among statisticians and machine learning researchers. A great 

variety of classification methods have been invented or adapted for analyzing or 

learning from high dimensional data. In this section, I will focus on three widely 

used methods that directly handle a large number of variables. They include 

partial least squares discriminant analysis (PLS-DA) which is based on dimension 

reduction, random forests classification, which uses an ensemble method for 

classification, and soft-margin support vector machines (SVM), which are based 

on using a soft penalty or shrinkage function to facilitate classification. 
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PLS-DA has been widely used by the chemometrics and metabolomics 

communities for many years and has served as the primary classification 

workhorse for several large-scale human metabolomics studies (127). 

Dimensional reduction in PLS-DA is achieved, like PCA, by projecting data to a 

small number of latent variables (LVs) via linear combinations of the original 

predictor variables that explain most of the covariance with the response (Y). 

These LVs are ranked by how well they explain the Y-variance. PLS-DA also 

produces variable importance measures such as variable importance in projection 

(VIP) which is a weighted sum of squares of the PLS loadings that takes into 

account the amount of explained Y-variance for each LV. An important issue with 

using PLS-DA is deciding on the number of LVs to be used to build the model. 

Commonly used criteria include the sum of squares captured by the model or the 

prediction accuracies with different numbers of LVs. Another challenge with 

PLD-DA is that it tends to easily overfit data (128). In practice, rigorous 

validation procedures including both cross validation and permutation testing are 

usually performed to evaluate PLS-DA results.  

Random forest classification (RF) is a powerful non-parametric method 

and can be used for  both classification and feature selection (129,130). RF uses 

an ensemble of classification trees, each of which is grown by random feature 

selection from a bootstrap sample at each branch. Class prediction is based on the 

majority vote of the ensemble. During tree construction, about one-third of the 

instances are left out of the bootstrap sample. These “left-out” data are then used 

as test sample to obtain an unbiased estimate of the classification error, known as 
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the „out-of-bag‟ (OOB) error. This procedure makes RF classification very robust 

and, as a consequence, RF does not suffer from the overfitting problems seen in 

PLS-DA. Variable importance is evaluated by measuring the increase of the OOB 

error when the values of the variable are permuted. Because RF classification 

takes into account the context of other variables when scoring the relevance of an 

individual variable, RF is often applied to genome-wide association studies 

(GWAS) to identify genetic interactions (131). One drawback associated with the 

RF ensemble approach is that the classification rules are obscured as predictions 

are based on many different classification trees. Another known issue with RF is 

that when variables have very different measurement scales (i.e. one in 10s and 

other in 1000s, for instance) or different numbers of categories (i.e. one contains 3 

groups and other 15 groups, for example), the computation of variable importance 

can be biased (132).  

SVM is another classification method frequently used in high-dimensional 

data analysis (133,134). The SVM uses a set of mathematical functions, known as 

kernels, to map the data points into a higher dimensional feature space and then 

separate them by means of a maximum-margin hyperplane (135). In theory, by 

projecting the data into a sufficiently high dimensional space, any data set can be 

separated by a hyperplane. However, this strict hyperplane or hard margin 

approach tends to overfit data. As a result, a certain number of misclassified 

training examples can be accepted (soft margin approach). An important issue 

associated with the application of SVM methods is how to choose the best kernel 

function, the optimal kernel parameter(s) and the best soft margin parameter. It is 
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often necessary to successively increase kernel complexity (using a grid search) 

until an appropriate classification is achieved. Another major limitation is that 

SVM cannot perform automatic feature selection, although some methods have 

been proposed based on their weights in a linear SVM classifier (136-138).  

1.5.5 Omics Data Interpretation 

The output from the data analysis step in metabolomics is usually a long list of 

features (or metabolites) that have changed significantly under the different 

conditions (differential expression) or show interesting patterns of coordinated 

changes (co-expression). Obtaining such data is usually not the end point of the 

analysis; rather it is the starting point for data interpretation.  

Data interpretation in metabolomics is traditionally a manual process.  It 

normally involves manually browsing through related databases, reading 

published literature, and finally integrating the information into a justifiable 

biological “story” based on the researcher‟s background knowledge. This manual 

approach has become somewhat impractical now that so much data is being 

generated in this era of high-throughput omics science. As a result there is a 

greater reliance on computers to help with this task. Consequently, computer-

assisted data interpretation is now among the hottest areas in bioinformatics 

research. Over the past decade, many approaches to computer-assisted data 

interpretation have been explored and tested. Among them, group-based 

significance tests and pathway analysis methods have gained wide acceptance 

among researchers involved in transcriptomics data analysis. These two 
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approaches allow the incorporation of pre-existing biological knowledge into the 

data analysis process and have greatly facilitated the data interpretation process.   

Testing a Group of Related Variables 

The basic idea in group-based significance tests is to shift the unit of analysis 

from a single variable (gene, protein, or metabolite) to sets of biologically related 

variables. This kind of biologically-reasoned approach will bring at least three 

immediate advantages: a) dimension reduction - reducing the number of tests by 

allowing one to test multiple variables simultaneously; b) taking the variable 

correlations into consideration by assessing their behavior simultaneously; and c) 

ease of interpretation as features are grouped under some biological themes 

thereby linking statistical significance with biological interpretation. In theory, 

biologically-driven and group-based significance tests will have increased 

statistical power to detect subtle but consistent changes among a group of related 

variables, which may fail with conventional approaches.  

Many different algorithms have been developed for testing or analyzing 

groups of related genes based on different assumptions and statistical methods 

(139-143). Goeman and Buhlmann (144) suggested that these group-based 

significance test methods could be generally classified into two types: 1) 

competitive or 2) self-contained. The competitive methods test whether the genes 

in the gene set are more strongly associated with the phenotype than a random set 

of the same number of genes. It assumes genes are independent and randomly 

sampled from a complete gene universe. It compares the genes within the gene set 

with the remaining genes (background) in the gene universe to determine if the 
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given gene set is more closely associated with the phenotype than the background. 

On the other hand, the self-contained methods test whether there are genes in gene 

set that correlate with the phenotype. This approach directly assesses the 

association of the gene sets with the phenotype. Consequently, the result does not 

depend on the measurement of genes outside the gene set under consideration. 

Below I will briefly review several commonly used approaches for group-based 

significance tests - over-representation analysis or ORA (139), GlobalTest (143), 

and Gene Set Enrichment Analysis (GSEA) (142). 

Over-representation analysis (ORA) is a competitive approach. It tests 

whether the observed proportion of genes identified as being differentially 

expressed in a gene set is significantly different from the corresponding 

proportion in the complementary set. ORA starts with a list of differentially 

expressed genes and tests whether a gene set is over-represented in this list more 

than expected by random chance. This type of analysis can be performed using 

Fisher‟s exact test, a Chi-square test, a hypergeometric test, or its binomial 

approximation (139,145). One major concern with ORA is its requirement for a 

strict cut-off in selecting differential expression of individual genes. Because this 

cutoff can be chosen arbitrarily, it can lead to different results with different users.  

The GlobalTest (143) is a self-contained method. It tests whether a group 

of genes is significantly associated with a specific phenotype or clinical outcome. 

The null hypothesis is that none of the genes in the gene set are correlated with a 

clinical outcome. GlobalTest uses a logistic regression model to test this null 

hypothesis. Unlike ORA, it directly uses the expression data matrix without the 
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requirement for pre-selecting differentially expressed genes. For a significant 

result to come from GlobalTest, it is not necessary that the genes in the gene set 

have similar expression patterns; it only requires that many of them are correlated 

with the phenotype. 

The widely used GSEA (142) is considered a hybrid approach between 

competitive and self-contained methods.  It tests whether the dataset contains any 

gene set that is associated with the phenotype. GSEA first uses a univariate 

method (i.e. t-tests) to rank all the genes, and then tests whether the ranks in the 

gene set differ from a uniform distribution, using a weighted Kolmogorov-

Smirnov test. The p-value for each gene set is calculated via sample permutation.  

Pathway Analysis 

Although the simple concept of gene sets can conveniently cover a large body of 

knowledge in various forms, one limitation associated with this knowledge 

representation is that all the members within each gene set are treated equally with 

no further information about their interactions or inter-relationships. For certain 

subsets of gene sets, substantially more detailed knowledge is available regarding 

their relationships in the form of transcriptional regulatory pathways, protein-

protein interaction networks, and metabolic pathways. These “knowledge-rich” 

genes, proteins or metabolites are better tackled using pathway analysis.  

Pathway analysis is a formal computer-aided analytical procedure that 

aims to reveal important clusters of genes/proteins/metabolites or functional 

modules at a higher level to facilitate biological understanding. Pathway analysis 
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has proven to be an invaluable tool in describing cellular responses in the context 

of available knowledge frameworks. Most current pathway databases focus 

mainly on visually displaying and highlighting matched genes, proteins or 

metabolites in the context of pathways, such as KEGG (146), SMPDB (147), 

BioCyc (148), Reactome (149), BioCarta (www.biocarta.com). Tools that support 

quantitative pathway analysis for gene expression data have only started 

appearing very recently (150-152). For instance, Tarca et al. described a novel 

Signaling Pathway Impact Analysis (SPIA) approach which combines the 

evidence obtained from classical enrichment analysis with a novel type of 

evidence that utilizes the pathway topology to measure the actual perturbation on 

a given pathway under a given condition (150). This hybrid approach was shown 

to provide increased sensitivity and specificity when compared to other methods 

based only on enrichment analysis.  

In this section, I have reviewed the development of bioinformatics within 

the context of metabolomics and other related omics fields, with particular focus 

on various approaches for processing, normalization, statistical analysis and 

functional interpretation of high-dimensional expression data. These techniques 

and theories have provided fertile ground for my PhD research projects which I 

will introduce in the next section. 

1.6 Research Objectives 

A typical metabolomics study involves several steps: 1) researchers first design 

their metabolomic studies and collect the necessary samples (i.e. urine, plasma, 

http://www.biocarta.com/
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plant tissues, etc); 2) these samples are then measured by NMR, GC-MS or LC-

MS either locally or by some metabolomics core facility; 3) the raw spectral data 

are then processed to generate peak lists or compound concentration tables, which 

are 4) subsequently subject to various statistical analyses to identify significant 

features or patterns; 5) finally, biological interpretations are given to the 

biological questions posed in the study design. During the process, researchers 

often need to consult various metabolite databases to help them with both 

metabolite identification and biological interpretation. These basic steps are 

summarized in Figure 1.2. 

 

Figure 1.2 A typical workflow of a metabolomics study 

Early efforts in the field of metabolomics were focused on technology 

development and technological refinement to establish high-throughput platforms 

and protocols for rapid and cost-effective data generation.  Later more emphasis 

was placed on developing some of the bioinformatics infrastructure to help 
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process this flood of data. Bioinformatics efforts in metabolomics have focused 

on two major areas. The first one involved the construction of centralized 

metabolite databases to fill the equivalent role of GenBank (153) for sequence 

data. The past few years have seen a growing number of comprehensive and high-

quality metabolomic databases emerge such as HMDB (25), BMRB (154), 

PubChem (155), ChEBI (156), KEGG (157), BiGG (158), METLIN (23), etc. The 

other area where bioinformatics has played a key role has been in the creation of 

software tools to facilitate raw data processing and compound identification. 

These tools have been reviewed in the section 1.4.2. In brief, theses efforts 

focused primarily on step,  and  as described in Figure 1.2, while step  

and  remain largely underdeveloped. In addition, compound identification from 

raw spectra is still mainly a manual process, one of the major bottlenecks in 

metabolomics. Given these limitations and bottlenecks, the central objective of 

my thesis is to develop bioinformatics tools to facilitate high-throughput 

metabolomics studies, with particular focus on (1) compound identification in 

complex mixtures; (2) efficient metabolomic data processing and statistical 

analysis; and (3) high-level functional interpretation of metabolomic data.  

One of the advantages of being last in the “omics” race is the benefit of 

hindsight. Many of the approaches developed from other omics field are not 

domain-specific and can be potentially adapted for metabolomics applications. 

The underlying rationale for the work described in this thesis is that metabolomic 

data analysis can be greatly accelerated by following the successes while avoiding 

potential pitfalls experienced in other omics fields.  
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1.7 Thesis Outline 

 This document represents a compilation of the work I have done related to 

the development of novel bioinformatics tools for metabolomic data analysis.  

The thesis is organized as follows: Chapter 1 serves as a general introduction on 

metabolomics technologies and provides a literature review that summarizes the 

current progress on omics data analysis methods and techniques. Chapters 2, 3, 4, 

5 contain the detailed descriptions of the four software tools I developed and 

implemented: MetaboMiner, MetaboAnalyst, MSEA, and MetPA. Chapter 6 

provides details on the validation, examples of real-world applications and user 

statistics concerning these tools. Chapter 7 is the general conclusion and future 

work. Appendix I contains a protocol with step-by-step instructions on how to use 

these web-based tools.  
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Chapter 2 

 Compound Identification from Spectra of Complex 

Biofluid Mixtures1 

 

                                                           

1
 A version of this chapter has been published previously: 

Xia, J., Bjorndahl, T.C., Tang, P. and Wishart, D.S. (2008) MetaboMiner: semi-automated 

identification of metabolites from 2D NMR spectra of complex biofluids. BMC 

Bioinformatics, 9, 507. 
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Introduction  

Over the past 15 years NMR has emerged as an ideal platform for studying 

metabolites in biofluids. It is a rapid, highly precise, non-destructive, and 

quantitative technique that allows one to compare, identify and quantify a wide 

range of compounds without the need for prior compound separation or 

derivatization (159-162). NMR is particularly amenable to compounds that are 

less tractable to GC-MS or LC-MS analysis, such as sugars, amines, volatile 

ketones and relatively non-reactive compounds. A key disadvantage of NMR is 

that it is a relatively insensitive technique, with a lower limit of detection of 1~5 

µM and a requirement of relatively large sample sizes (~500 µL).   

 Currently, most NMR-based metabolomic studies involve the analysis of 

1D 
1
H NMR spectra, although 1D 

13
C and 

31
P NMR spectra may also be analyzed 

(163-166). There are generally two routes to analyzing NMR spectra for 

metabolomic studies. In one method (called the chemometric approach), the 

compounds are not initially identified – only their spectral patterns and intensities 

are recorded and statistically compared in order to identify the relevant spectral 

features that distinguish sample classes. Once these features have been located, a 

variety of approaches may then be used to identify the corresponding metabolites 

(167).  In the other approach (often called quantitative metabolomics or targeted 

profiling), compounds are first identified and quantified by comparing the NMR 

spectrum of the biofluid of interest to a spectral reference library obtained from 

pure compounds (168). Once these compounds are identified and quantified, the 
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data can be analyzed in many different ways to identify the most relevant 

biomarkers or informative pathways.  

 A variety of protocols and software tools have been recently developed for 

conducting quantitative metabolomics via 1D 
1
H NMR (161,162,168,169). In 

most cases, a manual peak-fitting process is required in order to perform 

compound identification and quantification. However, this manual fitting process 

can become particularly difficult and prone to frequent errors, especially for very 

complex biofluid mixtures (such as urine or tissue extracts) due to severe spectral 

overlap. In contrast to 1D NMR, 2D NMR offers a robust approach to resolving 

excessively overlapped spectra. Indeed 2D (and 3D) NMR has long been used to 

resolve and identify individual resonances from large macromolecules such as 

DNA, RNA and proteins. 2D NMR experiments such as TOCSY, HSQC and J-

resolved spectroscopy are also increasingly being used in metabolomic studies in 

order to resolve spectral ambiguities to aid in the identification of specific 

compounds in complex biofluid mixtures (103-105,170-175).   

 A number of small-molecule NMR databases have been developed in 

recent years to support metabolomics research, including the Human Metabolome 

Database (HMDB) (176), the BioMagResBank Database (BMRB) (154), the 

Madison Metabolomics Consortium Database (MMCD) (177), the Magnetic 

Resonance Metabolomics Database (MRMD) (22), and the Platform for RIKEN 

Metabolomics (PRIMe). These resources, which contain significant numbers of 

reference NMR spectra of metabolites, also support metabolite identification 

through web-based submission of 1D and 2D NMR peak lists.  However, these 
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on-line tools do not generally provide graphical support for peak filtering, 

processing, comparative display or annotation.   Furthermore, they don‟t exploit 

additional constraints such as knowledge about biofluid composition or metabolite 

concentration ranges to make compound identification even more robust, more 

accurate, and more efficient.  

My hypothesis is that, by creating a comprehensive 2D spectral reference 

library along with some biological constraints (i.e. a more detailed knowledge of 

metabolite compositions of different biofluids), it is possible to develop an 

algorithm that largely automates compound identification from 2D NMR spectra. 

To validate and test this hypothesis I have developed a stand-alone program called 

MetaboMiner, to perform semi-automated metabolite identification from 2D 

TOCSY and HSQC-spectra of complex biofluid mixtures. The remaining sections 

of this chapter provide detailed descriptions of the program implementation, 

followed by a performance evaluation and comparison with other available 

software tools. The chapter ends with a discussion about the limitations and 

challenges in the 2D NMR based metabolomics.       

Implementation 

Data Collection and Curation 

Key to the development of this software package was the creation of an extensive 

2D spectral library containing TOCSY and HSQC spectra of pure metabolites. 

We used several publicly available sources in constructing this library. The 
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majority of the raw 
1
H-

1
H TOCSY spectra were collected from the standard 

compound spectral library available at the BMRB database (154). A few 

additional compound spectra were obtained from the MRMD (22). The 
1
H-

13
C 

HSQC spectral library was downloaded from the HMDB (176). These raw spectra 

contained a number of spectral artifacts (noise, water bands, asymmetries, peaks 

from TSP or DSS, contaminants, etc.). Consequently it was necessary to convert 

these raw spectra into “synthetic” or “simplified” spectra corresponding to the 

peaks specific to the pure compounds of interest. This conversion was done 

manually, with each of these simplified, noise-free spectra being examined for 

inconsistencies by comparing them to the original raw spectra and the 

compound‟s known resonance assignments. In total, the MetaboMiner TOCSY 

reference library includes spectra from 223 common metabolites and the 

MetaboMiner HSQC library contains spectra from 502 metabolites. The 

compounds in both libraries were further catalogued into three sub-libraries 

corresponding to the three common human biofluids – cerebrospinal fluid (CSF), 

plasma and urine. The classification was based on their respective metabolic 

compositions listed in the HMDB. Since the presence of these biofluid-specific 

metabolites was determined by a variety of technologies not limited to NMR, we 

further investigated the appearance of these metabolites in a large number of 1D 

1
H spectra collected in-house from human CSF, plasma and urine samples under 

various conditions. The combined collection of compounds (and spectra) was 

used to create corresponding “common biofluid” 2D NMR spectral libraries that 

effectively represent a generic biofluid or cell extract. The “CSF”, “plasma”, 
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“urine”, “biofluid” and “total” spectral libraries are stored as XML files and are 

editable via MetaboMiner‟s graphical user interface (GUI). 

 After the spectral libraries were constructed, each peak for each compound 

in each library was assigned a series of uniqueness values that are specific for that 

reference library. A unique peak in MetaboMiner is defined as a relatively isolated 

peak around which no peak from any other compound is observed based on the 

spectral library of the given biofluid. For any given peak, its uniqueness value is 

calculated as the total number of surrounding peaks from other compounds within 

a given chemical shift “distance”. Five distance levels were used to measure peak 

uniqueness. For 
1
H chemical shifts, the distance thresholds are 0.01, 0.02, 0.03, 

0.04, and 0.05 ppm. For 
13

C chemical shifts, the distance thresholds are set at 

0.05, 0.10, 0.15, 0.20, and 0.25 ppm. For instance, an HSQC peak with a series of 

assigned uniqueness values of 0-0-0-1-2 indicates that no peak from any other 

compound in the reference library is observed within 0.03 ppm (
1
H dimension) 

and 0.15 ppm (
13

C dimension) of that peak. It also indicates that one peak from 

another compound in the spectra library was observed within 0.03 ~ 0.04 ppm (
1
H 

dimension) and 0.15 ~ 0.20 ppm (
13

C dimension) and another peak from another 

compound was observed within 0.04 ~ 0.05 ppm (
1
H dimension) and 0.20 ~ 0.25 

ppm (
13

C dimension).  See Figure 2.1 for a more complete description of the 

uniqueness value concept. These uniqueness values are automatically updated 

after any spectral library change using MetaboMiner‟s GUI. 
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Peak Processing, Peak Matching and Compound Identification   

As part of its input, MetaboMiner requires peak lists corresponding to the peaks 

that were identified in either the TOCSY or HSQC spectra collected from the 

biofluid(s) of interest. While it is possible for users to provide manually picked 

peak lists, MetaboMiner also supports processing of multidimensional NMR peak 

lists obtained from automatic peak peaking programs. Multidimensional NMR 

spectra typically contain substantial numbers of spectral artifacts such as baseline 

distortions, intense solvent lines, ridges, sinc wiggles (truncation artifacts 

obtained by Fourier transforming truncated time-domain signals, usually caused 

by too short acquisition time), etc. Automatic peak-picking programs tend to 

mistake these noise signals for real resonances. Therefore, any raw 2D spectra 

collected from biofluids must be processed appropriately before attempting to 

match them to MetaboMiner‟s reference spectral library. Two automated 

procedures were found to be very effective in cleaning up raw 2D spectra: 1) 

streak removal and 2) symmetrical editing. Note that the latter processing 

technique is only applicable for TOCSY spectra. Spectral streaks are usually 

caused by residual solvent signals (i.e. water) or the presence of other compounds 

at extremely high concentrations. Streaks can be recognized by their specific 

locations and prominent shapes in the NMR spectra. Streak removal was 

implemented by searching for groups of peaks at these common locations and 

eliminating them from the peak list. Symmetrical editing exploits the fact that real 

TOCSY peak signals form a symmetrical square pattern along the diagonal line. 

Off-diagonal peaks without any corresponding symmetrical peaks can be 
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considered to be artifacts. Both peak positions and intensities (if provided by the 

user) of the corresponding peaks are examined for symmetry. Since TOCSY cross 

peaks are frequently not of equal intensity we require that the intensity ratio 

between the upper and lower-diagonal peaks should be within an empirical range 

of 0.8~2.5 of each other to be considered symmetrical.  

 In order to accommodate small chemical shift differences between the 

observed NMR spectra and the reference NMR spectra, an adaptive threshold 

method was implemented based on the uniqueness values (described above) of 

each reference peak. During the peak searching/matching process, the search 

threshold varies automatically based on the maximum uniqueness value of the 

current peak. For instance, when searching for potential matches for a TOCSY 

peak with uniqueness values of 0-0-0-0-1, MetaboMiner will automatically set its 

threshold to 0.04 ppm.  The peak matching and adaptive thresholding employ two 

processes: a reverse search strategy and a forward search strategy.  In the reverse 

search strategy, the library peaks are searched and matched against the query 

peaks.  Typically most query peaks find their potential matches during this reverse 

search step.  However there are usually some peaks left without any matches.  In 

order to assign these unmatched peaks a forward search is performed in which the 

unmatched query peaks are searched against the reference library with expanded 

but fixed thresholds – 0.08 ppm for TOCSY and 0.12 ppm (
1
H) and 0.4 ppm (

13
C) 

for HSQC spectra. A match is identified if only a single reference peak is 

identified within this range. 
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 In MetaboMiner a compound is considered to be present only if its 

matched pattern satisfies the requirements of what we call “minimal signatures”. 

A minimal signature is defined as the minimum peak set that can uniquely identify 

a compound from all others in a given spectral library. Based on the complete 

peak set of the reference spectral library, many minimal signatures can be derived 

through different combinations of unique peaks. A single peak match may be 

considered a minimal signature if it is completely unique. More peaks are required 

to define a minimal signature for less unique ones. For instance, in our current 

implementation, the presence of a single peak with uniqueness values 0-0-0-0-x 

(x>=0) will determine the presence of the corresponding compound (subject to 

authenticity checks as discussed later); while at least two peaks with uniqueness 

values 0-0-0-x-x are required to reach the decision. 

 Since query spectra (i.e. real spectra from biofluids) usually contain 

substantial levels of spectral noise, even after pre-processing, we found that we 

could reduce MetaboMiner‟s false positive rate even further by implementing 

several authenticity checks. These include: 1) having a minimum number of 

matched peaks (3 for TOCSY spectra and 1 for HSQC spectra), 2) having a 

minimum matched fraction of peaks (1/2 for TOCSY spectra and 1/6 for HSQC 

spectra), 3) ensuring the presence of certain peaks for certain compounds 

(determined by manual testing and validation for each compound), and 4) 

ensuring that the identified compounds were known to be in a given biofluid.  It is 

important to note that these procedures aim to reduce false positives when the 

algorithm is used for automatic compound identification. Compounds that fail to 
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meet these criteria but otherwise have matched peak(s) will be presented for user 

inspection via the GUI as described below.  

User Interface Description 

MetaboMiner‟s graphical user interface was implemented using Java Swing 

technology. The spectral visualization and manipulation tools were built using the 

JGraph library (Java open source graph visualization library, 

http://www.jgraph.com). Figure 2.2 illustrates a flowchart describing the 

MetaboMiner GUI. There are four main functional views, 1) a Processing View, 

2) a Search View, 3) an Annotation View, and 4) a Library View. All these views 

share the same component arrangement, with panels on the right side being used 

for visualizing and manipulating peaks, and the panels on the left being used for 

displaying parameters, compound lists, structure images, etc. Navigation to each 

view is readily accessible by clicking an appropriate menu item.  

 When the program launches, the default view is the “Processing View” 

where users can copy and paste the automatically picked peak list. The input 

format must be either a two or three-column list, with numbers separated by a 

space or a semicolon. The first two columns must be the x and y chemical shift 

coordinates of each peak in the 2D spectrum and the optional third column must 

be the peak height or peak intensity. After processing the raw peaks, both the 

original and the processed spectra will be displayed on MetaboMiner‟s spectral 

viewing panel (located on the right). With this viewing panel, users can directly 

edit peaks on the spectrum if necessary. For manually picked peaks, this step can 

http://www.jgraph.com/
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be skipped by turning the processing options off. By clicking the “Search” button, 

MetaboMiner‟s “Search View” will be displayed with its initial, automated 

compound identification results. Users can adjust the search threshold or switch 

the reference library to further refine the result. A compound is marked as 

identified if the matched pattern passes the authenticity checks and satisfies the 

minimum signature requirement. The raw matched scores are also displayed. 

MetaboMiner‟s interface allows users to visually inspect the matched peaks of 

any metabolite against the corresponding reference spectrum. By right clicking 

any peak displayed on the spectrum, users can search the library for this particular 

peak. The identified compound list can be saved in three different formats by 

clicking the “Export” button. A screenshot of MetaboMiner‟s “Search View” is 

shown in Figure 2.3. 

 Users can further refine the automated search results by manually 

annotating the raw 2D spectrum. By clicking the “Refine” button in the “Search 

View”, the “Annotation View” will be launched with the identified compounds 

being transferred as the starting point. Users can also directly enter the 

“Annotation View” mode by clicking the “Annotate” button from the “Console” 

menu. In order to perform manual annotation, users first need to load a high 

resolution spectral image in PNG format and set up the spectral axes properly. 

Peak searching is performed by right clicking the peak position on the spectrum to 

search the reference library as shown in Figure 2.4. All compounds that generate 

peaks within the search threshold will be checked. The compound with the closest 

peak match will be highlighted with its database reference spectrum displayed on 
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the uploaded “raw” spectrum. Users can perform peak annotation for any 

currently displayed compound. Double clicking any database peak will open a 

small text editor where users can enter the peak assignment or a comment. The 

peak pattern of the identified compounds can also be edited to match the 

experimental spectrum. For example, users can insert, delete, or drag a database 

peak to match the observed peak in the raw spectrum. These changes will be valid 

only for the current session. To make permanent changes, MetaboMiner‟s 

“Library View” must be used.  

 The “Library View” is intended for browsing and managing 

MetaboMiner‟s spectral libraries. To view all the available reference spectra in 

MetaboMiner‟s libraries, users must click the “Browse” button in the “Library” 

menu. Double clicking any compound in the compound list will open a popup 

window for peak editing. Any changes will be reflected on the spectrum at real 

time. New compounds can be introduced by clicking the “New” button at the 

bottom of the compound list. A new compound can be either exported from 

another library or be created from scratch through the wizard dialog. Both peak 

editing or adding new compounds will trigger updating of the uniqueness values 

of the affected peaks. For researchers who study other types of biological samples 

(e.g. plant or microbial extracts), they may either use MetaboMiner‟s generic 

spectral reference library or create a new library customized for that particular 

type of biofluid. Library creation or deletion can be easily accomplished by 

clicking the appropriate menu items in the “Library” menu. The compounds in the 

default reference library are linked to PubChem, HMDB, and the BMRB via the 
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hyperlink under their structure icon. The “Graphics” menu enables users to 

change the size, shape, or color of the synthetic peaks to suit their preferences.   

 It is important to note that MetaboMiner does not support spectral 

processing such as phasing, baseline correction or chemical shift referencing. 

There are many other  high-quality NMR-processing software available for this 

task, including NMRPipe (99), Felix (Molecular Simulations, Inc.,San Diego, 

CA), VNMR (Varian, Inc., Palo Alto, CA), and XWinNMR (Bruker Analytik 

GmbH, Karlsruhe, Germany), to name a few. These tools should be used prior to 

loading spectral images into MetaboMiner.  In other words, MetaboMiner is not a 

spectral processing tool, but a NMR-based metabolomics tool that facilitates 

automatic peak processing, rapid compound identification, and facile spectrum 

annotation capabilities through an intuitive graphical interface. MetaboMiner is 

available at:  http://wishart.biology.ualberta.ca/metabominer. 

Evaluation  

MetaboMiner was assessed in a variety of ways using both synthetic and 

experimental NMR spectra. The synthetic spectra were generated from the 162 

compounds that have both TOCSY and HSQC spectra in the reference library. 

The experimental spectra were collected from three defined compound mixtures 

(totalling 72 compounds) and a biofluid sample of known composition (plasma). 

These evaluations allowed a complete and comprehensive assessment of 

MetaboMiner‟s performance as well as its potential strengths and limitations. 

http://wishart.biology.ualberta.ca/metabominer
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The Effects of Different Spectral Noises on Compound Identification 

The performance of the minimal signature method and the adaptive threshold 

method were evaluated under two common types of spectral noise – missing 

peaks and “drifting” peaks (i.e. peaks that have drifted from their canonical 

positions due to temperature, pH or solvent effects). The missing peaks were 

simulated by deleting peaks of each compound at random with 0%, 10%, 20%, 

30%, 40%, 50% probabilities. The chemical shift drift effects were simulated by 

adding random values of ±0.01, ±0.02, ±0.03, ±0.04, ±0.05 ppm for each 
1
H 

chemical shift, and ±0.05, ±0.10, ±0.15, ±0.20, ±0.25 ppm for each 
13

C chemical 

shift. The spectra of each synthetic query mixture were generated by first pooling 

the peaks from 50 compounds that were randomly selected from the MetaboMiner 

reference spectral library (162 compounds). After introducing this artificial 

spectral noise, the query mixtures were searched against the reference spectral 

library with and without using the adaptive threshold method. Two compound 

identification strategies were compared - the minimal signature method (MS) and 

the percentage match method (PM) with 75% as the cut-off value. The F-measure 

was used for performance evaluation, where F = 2 × (precision × recall) / 

(precision + recall) where recall is the proportion of true positives in the returned 

result (recall = TP/(TP+FN)) and precision is a measure of the percentage of 

positive or correct results (precision = TP/(TP+FP)). The values were obtained as 

the averages of TOCSY and HSQC search results over 50 iterations. Figure 2.5A 

summarizes MetaboMiner‟s performance using data with different fractions of 
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missing peaks. Figure 2.5B shows the results using data with increasing chemical 

shift drift effects. 

The Effects of Different Data Types on Compound Identification 

We further investigated the usefulness of different NMR data types for compound 

identification based on our concept of a minimal spectral signature. Four NMR 

data types were compared - 1D 
1
H, 1D 

13
C, 

1
H TOCSY, and 

1
H-

13
C HSQC 

spectra. For this particular evaluation, reference 1D 
1
H and 1D 

13
C spectra were 

obtained from the corresponding 
1
H and 

13
C chemical shifts of MetaboMiner‟s 

HSQC spectral library. For a small number of compounds, these artificial 1D 

spectra lacked some of the expected 
1
H or 

13
C signals that might be seen in a real 

1D NMR spectrum, but their absence also helped to simulate the fact that some 

peaks in 1D NMR spectra are broadened or washed out due to signal overlap or 

solvent suppression.  

 Synthetic 2D NMR spectra (query spectra) representing different biofluids 

of increasing molecular complexity were generated by pooling peaks of 20, 30, 

40, 50, 60, 70, and 80 compounds randomly selected from MetaboMiner‟s 

reference spectral library. To further simulate noise or pH/salt effects, 10% of the 

peaks from the query spectra were deleted at random, followed by the 

introduction of random chemical shift changes (±0.01 ppm for 
1
H and ±0.05 ppm 

for 
13

C) to the remaining peaks. The resulting peaks were subsequently searched 

against MetaboMiner‟s reference spectral library using the adaptive threshold 
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method. The F measures were averaged over 50 iterations. The result is 

summarized in Figure 2.6.  

Compound Identification Using Experimental Spectra 

Twelve 2D NMR experiments (six TOCSY and six HSQC) were collected under 

different pH conditions using three synthetic mixtures and a plasma sample. The 

three synthetic mixtures were composed of 27, 21, and 24 common metabolites, 

respectively, with concentrations ranging from 40 to 60 mM. The plasma sample 

contained 35 identifiable metabolites (ranging in concentration from 0.1 to 10 

mM) as determined by independent profiling of its 1D 1H NMR spectra by 

several experienced individuals using Chenomx‟s NMR Suite software. These 

results were further confirmed by spiking/doping authentic standards into the 

plasma sample and by GC-MS analysis. The plasma sample was prepared by first 

lyophilizing and then dissolving the remaining solids in distilled water to its 1/5 

original volume. Deuterium oxide (D2O) was added to make a final concentration 

of 90% H2O and 10% D2O. All spectra were acquired at 25 °C. Six spectra were 

collected on a Varian INOVA 800 MHz spectrometer equipped with a 5 mm triple 

axis gradient cryoprobe.  The other six spectra were collected on a Varian INOVA 

500 MHz spectrometer with a 5 mm triple-resonance z-gradient probe. The 

TOCSY experiments were performed using the wgtocsy pulse sequence, and the 

HSQC experiments were performed using the gChsqc pulse sequence, both 

provided by Varian‟s BioPack.  For the TOCSY experiments, the spectral width 

was set to 11990 Hz and a mixing time of 0.05 seconds. Sixteen transients were 

collected for each t1 interval using an acquisition time of 0.085 seconds with a 
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relaxation delay of 2.0 seconds. One increment was collected for every 46.825 Hz 

in t1 dimension. For the 13C-HSQC experiments, the spectral widths of the 

proton and carbon dimensions were 11990 Hz and 28160 Hz respectively. Sixty 

four transients were acquired for each t1 interval using an acquisition time of 

0.085 seconds and a relaxation delay of 1.0 seconds. The spectra were collected 

with 2048*256 complex points for the 1H and 13C dimensions respectively. The 

total spectral acquisition time was ~5 hours. Sample TOCSY and HSQC spectra 

are shown in Figure 2.7 and 2.8. 

 The raw NMR spectra were first processed using NMRPipe (99) and the 

peaks were subsequently picked using Sparky‟s (100) automatic peak picking 

program. The resulting “raw” peak lists were copied and pasted to the processing 

view of MetaboMiner. Both peak processing and compound identification were 

performed using MetaboMiner‟s default parameter sets. The reference library 

used for the synthetic mixtures was the biofluid (common) library. For plasma 

data, the plasma (common) library was used.  To assess the degradation in 

performance assuming no prior knowledge of the sample source (urine, plasma, 

cell extract or generic biofluid) the complete spectral reference library (223 

compounds for TOCSY, 502 compounds for HSQC) was also used to identify 

compounds.  To assess the performance of the web-servers that support 2D NMR 

mixture analysis -- the HMDB (176), the MMCD (177), the BMRB (154), and the 

SpinAssign (178) of PRIMe (http://prime.psc.riken.jp) – the same set of peak lists 

were submitted. For PRIMe, the default search parameters were used. For other 

http://prime.psc.riken.jp/
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web services, the search threshold for 1H was set to 0.03 ppm and 0.10 ppm for 

13C. The results are summarized in Table 2.1.  

Results  

Using synthetic query spectra constructed as described previously, the 

performance characteristics of MetaboMiner were first assessed under different 

levels of spectral noise. Secondly, the utility of different NMR data types were 

also investigated for our approach of compound identification. Finally, we 

evaluated MetaboMiner‟s performance using a total of 12 real NMR spectra 

collected from defined compound mixtures and a plasma sample of known 

composition. 

 After creating the spectral reference libraries and calculating the 

uniqueness values for each peak, we first investigated the performance of the 

minimal signature (MS) method versus the adaptive threshold method under 

different types of spectral noise. As an additional comparison, the percentage 

match (PM) method was also included. As shown in Figure 2.5, the MS method 

performed consistently better than the PM method when missing peak and 

chemical shift variations are present. The adaptive threshold method appears to be 

most effective for data exhibiting large chemical shift variations. When chemical 

shift variation is negligible, as in the test with missing peak data, this method 

performs exactly the same as the fixed threshold method.  
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 The utility of different NMR data types was also investigated using 

synthetic spectra of increasing complexity. As illustrated in Figure 2.6, HSQC, 

TOCSY and 
13

C -based methods worked very well over the full range of 

compound mixtures. The number of compounds in the query mixture has very 

little effect on their overall performance. The slight increases in F scores with 

increasing spectral complexity are not statistically significant. In general, 

MetaboMiner‟s performance for compound identification was best using the 

HSQC dataset. It is also apparent that the minimal signature method favours 

compound identification with HSQC spectra as these spectra tend to have more 

unique peaks than other types of NMR spectra. Also evident from Figure 2.6 is 

the fact that MetaboMiner‟s performance using 1D 
1
H data, alone, is the poorest. 

In contrast to the 
1
H spectra (both 1D and 2D), it is quite clear that 

13
C chemical 

shifts (even in 1D spectra) can provide sufficient information for robust 

compound identification. This is mainly due to the much wider chemical shift 

dispersion (0~200 ppm) seen in 
13

C spectra compared to 
1
H spectra. Most 

13
C 

chemical shifts remain unique even in mixtures of 162 compounds.  

 While 
13

C spectra (1D and 2D) provide excellent data sets for compound 

identification we found that by focusing on off-diagonal peaks originating from 

the coupling between pairs of protons, the utility of TOCSY spectra could be 

greatly improved. As indicated in Figure 2.6, MetaboMiner‟s metabolite 

identification performance based on TOCSY spectra was better than that based on 

1D 
13

C spectra and was only slightly outperformed by 
13

C HSQC data. These 
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results underscore the utility of using 2D spectra in NMR-based compound 

identification of complex (>20 compounds) mixtures. 

 We also assessed MetaboMiner‟s performance on its own and against 

several other web services using eight experimental NMR spectra collected from 

four different mixtures of known composition. As indicated in Tables 2.1A and 

2.1B, the best performance for MetaboMiner was obtained when a biofluid-

specific reference library was used to analyze TOCSY or HSQC data.  On 

average, MetaboMiner was able to correctly identify (recall, precision and F-

measure) an average of 81% of the compounds from both TOCSY and HSQC 

data. When the entire spectral library (223 TOCSY, 502 HSQC) was used, the 

performance (F-measure) decreased by an average of 15%. Among the four web 

services evaluated using the same data (Table 2.1A), the SpinAssign program 

performs the best (F-measure = 49%) but this is still about 30% worse than 

MetaboMiner when it uses a biofluid-specific library and 15% worse than 

MetaboMiner when it uses its entire spectral library. Overall, the other web 

servers did not perform particularly well with average F-measures of 15-25% for 

HSQC data and 6-12% for TOCSY data.  Both the HMDB and MMCD servers 

performed better when analyzing HSQC data than TOCSY data. The performance 

for all web servers was essentially the same regardless of whether “clean” peak 

lists (no noise peaks) or “raw” peak lists were used as input.  Note that TOCSY 

mixture analysis is not currently supported by either PRIMe or BMRB.    

 In an effort to understand the influence of pH on the efficacy of compound 

identification by 2D NMR, we also collected TOCSY and HSQC data at pH 4.2 
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and pH 8.8.  This is approximately 3 pH units below (and 1.5 pH units above) the 

pH at which the spectral library standards were collected. As seen in Table 2.2, a 

significant pH change in the sample (relative to the pH of the spectral libraries) 

can negatively impact the performance of compound identification. For instance, 

at pH 4.2, the F-measure drops by more than 20% for the HSQC spectra.  

Discussion 

In this chapter, we described the development and assessment of a software tool 

(MetaboMiner) to facilitate compound identification from 2D NMR spectra of 

biofluids or small molecule mixtures. We first created a series of “clean” spectral 

reference libraries based on publicly available spectral databases. Secondly we 

developed and tested several algorithms to facilitate robust and automatic peak 

processing, peak matching and compound identification. Finally, we integrated 

these resources into an easy-to-use application and evaluated its performance 

using a variety of synthetic and real spectra.  

 MetaboMiner‟s spectral reference library covers most NMR-detectable 

metabolites present in human biofluids (176). To improve the reliability of the 

compound identification, the larger spectral library was further partitioned into 

three smaller libraries based on the composition of different biofluids (CSF, 

plasma and urine). In addition, we also created “common” libraries for each type 

of biofluid that contain the most common or abundant metabolites found in these 

biofluids (as ascertained from previous experience and from data contained in the 

HMDB). We found that the creation of biofluid-specific libraries significantly 
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improved compound identification by reducing the spectral search space. As 

indicated in Tables 2.1A and 2.1B, a 15% reduction in MetaboMiner‟s 

performance occurred if the entire compound library was used instead of the 

biofluid-specific “common” library. For researchers who wish to study other types 

of biofluids, MetaboMiner provides intuitive interfaces that allow users to easily 

expand and customize their spectral reference libraries. 

Performance Assessment 

The performance of MetaboMiner was evaluated using a variety of synthetic and 

experimental datasets. In all cases, our strategies for peak matching and 

compound identification showed robust performance under various noise (real and 

synthetic) conditions. Using synthetic data, the best compound identification 

performance was ~90% (F-measure) under moderate noise levels as indicated by 

Figure 2.6. Further inspection of the compound identification lists showed that 

the most common problem was the identification of false positives. In particular, 

for certain compounds it is inherently difficult to uniquely identify them by NMR 

based on their matched peaks. For example, the TOCSY peaks of citrate and 

serine cluster very tightly around the diagonal. They also overlap with peaks of 

other more abundant compound species. As a result, they are often misidentified. 

Another source of false positives comes from the existence of structurally similar 

compounds such as asparagine/aspartate, inosine/adenosine, or 

creatine/creatinine, which have nearly identical NMR spectral features.  
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 When we assessed the performance of MetaboMiner using experimentally 

collected data, the performance was reduced by ~10% for both TOCSY and 

HSQC data. Close examination of the lists of identified compounds as well as the 

spectra used in the evaluation indicated two sources of problems. The first relates 

to the fact that several compounds known to be in the mixtures failed to be 

identified (false negatives). Manual inspection of the actual spectra (TOCSY or 

HSQC) indicated that in every case, no peaks or very weak peaks were visible for 

these compounds. These compounds were obviously below the detection 

threshold of the instrument. The second problem was the existence of several false 

positives. Again, manual inspection of the spectra showed that the false positives 

were mainly caused by spectral artefacts. As illustrated in Figure 2.7, real spectra 

can contain a significant amount of spectral noise. In the case of TOCSY spectra, 

most of the automatically picked peaks (>60%) are from these artefacts. 

Obviously if cleaner spectra could be collected or if more manual intervention 

was used to eliminate some of the spectral artefacts prior to submitting the data to 

MetaboMiner, a better performance could be achieved.  In addition, we also 

observed that some compounds are exquisitely sensitive to small pH variations 

such as lactate, uracil and histidine.   

The Challenges in Automated Compound Identification 

There are three major challenges facing automatic compound identification for 

NMR-based metabolomics. The most common and perhaps the most vexing is the 

so-called spectral overlap problem. The spectral complexity inherent in many 

biofluids can lead to a large number of peaks confined to a relatively narrow 
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chemical shift range (~10 ppm for 
1
H spectra). With the increased availability of 

high-field NMR spectrometers, the problem of spectral overlap is diminished 

somewhat for simple biofluids such as CSF. However, for complex mixtures like 

plasma, urine, or tissue extracts, the problem is still quite severe. The second 

challenge in automated compound identification is the handling of chemical shift 

changes induced by the variation of pH, temperature, ionic strength, etc. This 

effect combined with the first issue makes it difficult to perform automated 

compound identification based solely on chemical shifts. The third challenge in 

automated compound identification is the low signal-to-noise (S/N) ratio for the 

NMR resonances of low abundance compound species. Consequently, the wide 

range of metabolite concentrations found in many biofluids poses a serious 

problem for most automatic peak-picking programs. In particular, many low 

intensity peaks are likely to be missed by most peak picking programs.   

 To address these challenges we introduced the notion of “uniqueness” in 

the reference library in order to deal with the problem of missing peaks and 

chemical shift variations. The uniqueness values were calculated for every peak 

based on their relative distances to each other in a given reference library. 

Although a finer scale may perform better for more complex mixtures, we found 

that the use of five levels of uniqueness works well for most situations. In 

MetaboMiner, both peak matching and compound identification rely heavily on 

these uniqueness values. During peak matching, an adaptive threshold method 

was used to adjust the current search threshold to its maximum uniqueness scope. 

This approach significantly improves MetaboMiner‟s performance when chemical 
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shift variations are nontrivial. By using an adaptive threshold method we found 

the effect of chemical shift changes or chemical shift drift could be tolerated to a 

greater extent. These uniqueness values also allow us to derive minimal signatures 

based on a relatively small portion of unique peaks. This approach turned out to 

be both robust and flexible since it did not require “stable” spectral patterns. In 

contrast, the common percentage match (PM) method weights each peak equally 

and uses a fixed threshold for compound identification. This approach suffers 

greatly if a nontrivial proportion of peaks are not matched. Note that the minimal 

signature method in MetaboMiner is complemented by authenticity checks with 

due consideration of the total matched patterns.  

 It should be noted that the performance of MetaboMiner strongly depends 

on the quality of the upstream spectral collection and processing work. As a 

general rule, for optimal performance, the NMR experiments on biofluid mixtures 

should be carried out under the same (or at least similar) conditions as the 

conditions used to collect the spectra for the reference library (i.e. neutral pH). 

The automatic peak-picking process should be closely monitored and an iterative 

approach is recommended in order to pick up most signals while avoiding obvious 

spectral noise. In our testing process, a typical TOCSY spectrum usually 

generated 2,000~3,000 peaks with a high proportion of noise peaks. We found that 

these noisy signals were handled quite efficiently by MetaboMiner. As a general 

rule, we would suggest that users employ a low threshold during the peak picking 

stage for TOCSY spectra.  For HSQC spectra, because of the difficulty associated 



71 

 

 

 

with detecting and removing noisy signals, we would suggest more manual 

intervention during the peak picking process.  

Comparison to other spectral analysis software tools 

There are several commercial software tools available for analysing complex 

metabolite mixtures using NMR. Chenomx Inc. (an Edmonton-based 

metabolomics company) has developed a commercial bioprofiling software 

package called the Chenomx NMR Suite that allows semi-automated 

identification of compounds from 1D
 1

H NMR spectra. The Chenomx software 

package provides an excellent interface for compound identification and 

quantification via a manual peak-fitting process using a spectra reference library 

containing 260 compounds. However, the requirement for manual fitting and 

analysis leaves the process open to inconsistent interpretation or inconsistent 

assignment by different individuals. Furthermore, the analysis can take upwards 

of one hour per sample and the software is relatively expensive. Bruker‟s AMIX 

(Bruker BioSpin) software is another powerful tool that offers support for 

compound identification and quantification for both 1D and 2D NMR. It used a 

method called AutoDROP to facilitate compound identification and structure 

verification (179). The key idea is the systematic decomposition of reference 

spectra into spectral patterns of molecular fragments. Compound identification is 

based on recognition of such patterns in the target spectra. However, similar 

limitations pertaining to cost, the reliance on manual analysis, processing time and 

inconsistent interpretation appear to apply to AMIX as well.  
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 In addition to these commercial packages there is at least one other non-

commercial system that has been described.  Xi et. al. (105) developed a 

statistical and chemical model for automatically identifying compounds in 

mixtures using 2D COSY spectra. Like MetaboMiner, the Chenomx NMR Suite 

and AMIX, Xi et al‟s method uses a library of pre-collected NMR spectra to assist 

with compound identification. These authors reported experimental results using 

spectra collected from abalone muscle and digestive gland extracts. Their method 

was able to identify 12 out of 15 amino acids and 6 out of 9 amino acids as 

determined with Chenomx‟s NMR Suite. However, it appears that this system has 

a spectral library of only 19 COSY spectra, so it is very limited in terms of 

practical applications.  

 In addition to these stand-alone, graphically based software packages, 

several metabolomics database websites, including the HMDB (176), MMCD 

(177), BMRB (154), and PRIMe now allow direct querying of their databases 

using peak lists obtained from compound mixtures. However, as web servers they 

are somewhat limited in their graphic capabilities and user-interface interactions.  

In particular, most of these sites typically return long lists of potentially matched 

compounds without a graphic display of the matched spectra to help users make 

their decisions. Further, most of the servers appear to be designed to handle single 

compound or simple mixture queries and are not optimized for compound 

identification from complex biofluid mixtures.  This is particularly evident from 

the results shown in Tables 2.1A and 2.1B.  There are some possible explanations 

regarding the different performance of the web services under comparison. In 
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particular, the PRIMe database only contains ~80 common compounds for the 

NMR search, which significantly reduces number of false positives. The HSQC 

reference spectra used by MetaboMiner as well as the test samples were collected 

under pH 7.0~7.2 with 10% D2O. This is quite different from the conditions used 

by MMCD and BMRB (pH 7.4 in solvent D2O, which corresponds to a pH 7.8 in 

H2O given the deuterium isotope effect).  The pH mismatch may partially explain 

the poor performance using our test samples.  Please note that in most cases, using 

the whole library instead of biofluid-specific library will increase of both type I 

and type II errors. This is because when more compounds are included in the 

library, NMR spectral peaks become less unique due to significant chemical shift 

overlap. As a result, the minimal signature approach becomes more error-prone 

when judging the presence or absence of a particular compound.   

 Overall, MetaboMiner combines many of the useful interactive graphic 

features and high levels of performance of the stand-alone commercial packages 

such as Bruker‟s AMIX and Chenomx‟s NMR Suite with the relatively simple 

automation or semi-automation seen with NMR-based metabolomics web servers.  

Key to MetaboMiner‟s success are its large and carefully constructed spectral 

libraries, its robust spectral filtering and peak matching routines, and its use of 

biofluid-specific spectral libraries to rationally limit the spectral search space.  

Given the extensive testing and the availability of many built-in tools for spectral 

manipulation, viewing and annotation we believe MetaboMiner is well designed 

and ready for practical metabolomics applications.  
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Limitations 

MetaboMiner is not without its limitations. In particular, MetaboMiner does not 

support compound quantification. Efforts are underway to add this functionality to 

the program but it appears that quantification via 2D NMR spectra is intrinsically 

more difficult and less reliable than with 1D NMR spectra. Lewis et al. (180) 

recently described a quantification method from HSQC spectra based on standard 

curves calibrated for each selected unique peak of a given compound. 

Quantification by TOCSY still remains difficult because the specific transfer 

functions for complex spin systems are common for many metabolites. When 

these techniques are established, it is our next step to provide more functions to 

better support the research community. Another limitation (which is also shared 

by other NMR analysis programs including Chenomx‟s NMR Suite and Bruker‟s 

AMIX) is the fact that MetaboMiner‟s performance is highly dependent on the 

spectral quality and spectral pre-processing of the query (i.e. experimental) 

spectra.  High signal-to-noise, good phasing, minimal baseline distortion and the 

elimination of spectral artefacts will always improve the performance. However, 

some biofluid samples may be refractory to good spectral processing or some 

users may lack sufficient experience/skill to properly process their spectra. Under 

these circumstances, MetaboMiner‟s results may prove to be unreliable or non-

reproducible. A third limitation to MetaboMiner is its limited sensitivity. In 

particular, MetaboMiner‟s exclusive reliance on 2D NMR spectra generally 

reduces its sensitivity limit by a factor of ~10 over what might be detected via 1D 

spectrum. Obviously the use of more concentrated samples, longer collection 
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times or isotopic labelled samples can overcome these problems, but the trade-off 

between time, cost and convenience may not always be in MetaboMiner‟s favour.  

It is worth noting that Methods such as the acceleration by sharing adjacent 

polarization (ASAP) HMQC (181) now allow very rapid acquisition of 2D NMR 

data. This may make the issues of sensitivity and time much less important, 

particularly for 2D heteronuclear experiments.  A fourth limitation is that fact that 

MetaboMiner‟s spectral libraries (esp. the TOCSY library) are still missing a 

number of important compounds.  Efforts are underway to expand the TOCSY 

library over the coming months and the MetaboMiner website will provide 

periodic reference spectral updates. Alternately, users are invited (and 

encouraged) to add their own spectra to MetaboMiner‟s reference libraries. 

Finally, unlike Chenomx‟s NMR Suite and Bruker‟s AMIX, MetaboMiner‟s 

spectral libraries do not cover a broad range of pH values. As a result, 

MetaboMiner is largely restricted to analyzing spectra from biofluids or 

metabolite mixtures that are titrated to pH 7.0 +/- 0.5. 

Conclusions 

In this chapter we have demonstrated that by utilizing the extra information found 

in 2D NMR spectra as well as prior knowledge about the composition of the 

biofluid itself, it is possible to semi-automatically identify a significant number of 

compounds in complex aqueous mixtures (both defined mixtures and biofluids) 

with excellent (>80%) accuracy. In particular, the quality and degree of 

metabolite identification achieved by MetaboMiner certainly matches that of what 
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a skilled NMR spectroscopist could do - but in significantly less time.  Overall, 

we have shown that by using a comprehensive reference library coupled with 

robust algorithms for peak processing, peak matching and compound 

identification, the process of metabolite identification from 2D NMR spectra can 

be greatly simplified.  
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Figures 

 

Figure 2.2 An illustration of the calculation of uniqueness values 

The red peak represents the peak of interest and three peaks are in its immediate vicinity. The 

calculations are only performed at five chemical shifts distance levels - 0.01, 0.02, 0.03, 0.04, 0.05 

ppm along the 
1
H dimension, and 0.05, 0.10, 0.15, 0.20, 0.25 ppm along the 

13
C dimension. No 

peak is observed in the first three distance levels. So the maximum unique scope for this peak is 

(0.03, 0.15) ppm. Peak A is found within 0.03~0.04 ppm (
1
H dimension) and 0.15~0.20 ppm (

13
C 

dimension) of the red peak; Peak B is found within 0.04~0.05 ppm (
1
H dimension) and 0.20~0.25 

ppm (
13

C dimension) of the red peak; Peak C is not considered since the chemical shift distance is 

more than 0.05 ppm along the 
1
H dimension. Therefore, the assigned uniqueness values are 0-0-0-

1-2. Note that the distance is not drawn to scale for illustration purposes. 
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Figure 2.3 MetaboMiner flowchart 

The query peaks obtained from an automatic peak-picking program are first processed to remove 

streaks and other artefacts. The cleaned peak list is then scanned for the presence of peak patterns 

of compounds in a spectral reference library corresponding to the biofluid that has been identified 

by the user. Spectral images can be used to further refine the search result.  
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Figure 2.3 Screenshot of MetaboMiner’s “Search View”. 

The left panel shows the library compounds that have matches in the query peaks. The selected 

checkbox indicates the corresponding compound is considered to be present by MetaboMiner. On 

the right panel, the reference peaks (in red) of the current selected compound is displayed with 

query peaks as background. The color variations represent the peak intensities with the dark green 

corresponding to the strongest peak intensities. When the mouse is placed over any synthetic peak, 

all its information (name, position, uniqueness values, etc.) will be displayed on the view panel. 

Right clicking on any peak will allow users to search the spectral library for this particular peak.   
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Figure 2.4 Screenshot of MetaboMiner’s “Annotation View”. 

The contents of the reference spectral library and the identified compound list are shown on the 

left panel. The spectral image is displayed on the right panel. The red peaks correspond to the 

current compound being annotated (Lysine). Peak searching is carried out by right clicking on a 

corresponding Lysine peak. The user can also directly edit the current compound by inserting, 

removing, or dragging its peaks to match the exact pattern of the reference spectrum.  
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Figure 2.5 Comparative performances of different search strategies.  

Synthetic mixture query spectra were generated by pooling the peaks of 50 randomly selected 

compounds from the reference spectral library. Different levels of spectral noise were added to 

these peaks and then compounds were identified with (*) and without using the adaptive threshold 

method. The Figure 5A, the query peaks were deleted at random with 0%, 10%, 20%, 30%, 40% 

and 50% probabilities; Figure 5B, the query peaks were subject to five levels of random chemical 

shift variations (±0.01, ±0.02, ±0.03, ±0.04, ±0.05 ppm for each 
1
H chemical shift, and  ±0.05, 

±0.10, ±0.15, ±0.20, ±0.25 ppm for each 
13

C chemical shift). The F scores were averaged over 50 

iterations. (Abbreviations: PM, percentage match method; MS, minimal signature method). 

 



82 

 

 

 

 

Figure 2.6 Evaluation of MetaboMiner using simulated datasets 

Synthetic mixture query spectra were generated by pooling peaks from 20, 30, 40, 50, 60, 70, and 

80 compounds randomly selected from MetaboMiner‟s spectral library. Spectral noise was 

introduced via random (10%) peak deletion and random chemical shift changes within ±0.01 ppm 

for each 
1
H chemical shift, and within ±0.05 ppm for each 

13
C chemical shift. Compound 

identification was based on minimal signatures using the adaptive threshold method. The F-

measures were averaged over 50 iterations. The random results were calculated as the numbers of 

true positive hits selected by random chance using the same thresholds.   
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Figure 2.7: An example of a TOCSY spectrum for a biofluid mixtures. 
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Figure 2.8: An example of a 
1
H-

13
C HSQC spectrum for a biofluid mixture.   
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Tables 

Table 2.1A: Performance evaluation using HSQC data collected at pH ~7.2.  

Samples A, B, and C are synthetic cocktail mixtures and sample D is a plasma sample. 

(Annotation: MetaboMiner-sp = searched using the biofluid-specific library; MetaboMiner-all = 

searched using the entire spectral library; TP = true positives; FN = false negatives; FP = false 

positives) 

Method Sample # Cmpds TP FN FP Precision (%) Recall (%) F score 

MetaboMiner-sp A 27 21 6 6 77.8 77.8 77.8 

MetaboMiner-all A 27 15 12 8 65.2 55.6 60.0 

HMDB A 27 8 19 19 29.7 29.7 29.7 

MMCD A 27 8 19 6 57.1 29.7 39.1 

BMRB A 27 6 21 21 22.2 22.2 22.2 

PRIMe A 27 14 13 6 70.0 51.9 59.6 

MetaboMiner-sp B 21 16 5 5 76.2 76.2 76.2 

MetaboMiner-all B 21 9 12 0 100 42.9 60.0 

HMDB B 21 1 20 20 4.8 4.8 4.8 

MMCD B 21 0 21 0 0 0 0 

BMRB B 21 1 20 20 4.8 4.8 4.8 

PRIMe B 21 6 15 4 60.0 28.6 38.7 

MetaboMiner-sp C 24 22 2 2 91.7 91.7 91.7 

MetaboMiner-all C 24 16 8 3 84.2 66.7 74.4 

HMDB C 24 9 15 15 37.5 37.5 37.5 

MMCD C 24 2 22 0 100 7.4 13.8 

BMRB C 24 3 21 21 12.5 12.5 12.5 

PRIMe C 24 8 16 5 61.5 33.3 43.2 

MetaboMiner-sp D 35 29 6 6 82.9 82.9 82.9 

MetaboMiner-all D 35 16 19 7 69.6 45.7 55.2 

HMDB D 35 9 26 26 25.7 25.7 25.7 

MMCD D 35 4 31 3 57.1 11.4 19.0 

BMRB D 35 7 28 28 20.0 20.0 20.0 

PRIMe D 35 14 21 5 73.7 40.0 51.8 
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Table 2.1B Performance evaluation using TOCSY data collected at pH ~7.2.  

Samples A, B, and C are synthetic cocktail mixtures and sample D is a plasma sample. 

(Annotation: MetaboMiner-sp = searched using the biofluid-specific library; MetaboMiner-all = 

searched using the entire spectral library; TP = true positives; FN = false negatives; FP = false 

positives). 

Method Sample # Cmpds TP FN FP Precision (%) Recall (%) F score 

MetaboMiner-sp A 27 23 4 4 85.2 85.2 85.2 

MetaboMiner-all A 27 21 6 6 77.8 77.8 77.8 

HMDB A 27 2 25 25 7.4 7.4 7.4 

MMCD A 27 1 26 26 3.7 3.7 3.7 

MetaboMiner-sp B 21 16 5 5 76.2 76.2 76.2 

MetaboMiner-all B 21 12 9 2 85.7 57.1 68.5 

HMDB B 21 2 19 19 9.5 9.5 9.5 

MMCD B 21 2 19 19 9.5 9.5 9.5 

MetaboMiner-sp C 24 17 7 7 70.8 70.8 70.8 

MetaboMiner-all C 24 15 9 8 65.2 62.5 63.8 

HMDB C 24 4 20 20 16.7 16.7 16.7 

MMCD C 24 2 22 22 8.3 8.3 8.3 

MetaboMiner-sp D 35 30 5 5 85.7 85.7 85.7 

MetaboMiner-all D 35 23 12 12 65.7 65.7 65.7 

HMDB D 35 3 32 32 8.6 8.6 8.6 

MMCD D 35 2 33 33 5.7 5.7 5.7 
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Table 2.2 Performance evaluation of MetaboMiner under different pH conditions.  

Sample # Cmpds NMR Exp. pH TP FN FP Precision (%) Recall (%) F score 

A 27 

HSQC 
4.2 15 12 12 55.6 55.6 55.6 

7.2 21 6 6 77.8 77.8 77.8 

TOCSY 
4.2 21 6 6 77.8 77.8 77.8 

7.2 23 4 4 85.2 85.2 85.2 

D 35 

HSQC 
7.3 29 6 6 82.9 82.9 82.9 

8.8 24 11 4 85.7 68.6 76.2 

TOCSY 
7.3 30 5 5 85.7 85.7 85.7 

8.8 25 10 6 80.6 71.4 75.7 

Note: Tests were performed using biofluid-specific library 

.  
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Chapter 3 

A Metabolomics Data Analysis Pipeline2 

 

                                                           

2
 A version of this chapter has been publisher previously  

Xia, J., Psychogios, N., Young, N. and Wishart, D.S. (2009) MetaboAnalyst: a web server for 

metabolomic data analysis and interpretation. Nucleic Acids Res, 37, W652-660. 
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Introduction 

Over the past decade, many robust algorithms and programming tools have been 

developed for analyzing high-dimensional data produced from transcriptomic or 

microarray studies. In particular, R (http://www.r-project.org) and the 

Bioconductor project (93) probably represent the most complete collection of up-

to-date statistical and machine learning algorithms for microarray data analysis. 

However, programming in R or using command-line R programs is particularly 

challenging for bench biologists – especially for those without computer or 

programming experience. To address this issue, many bioinformatics tools have 

been developed to provide user-friendly interfaces based on R. Among these 

tools, the most visible is probably the GenePattern server (182) from the Broad 

Institute (http://www.broad.mit.edu/genepattern). GenePattern is an open source 

and web-based tool for genomics and microarray data analysis. The three key 

concepts behind GenePattern‟s programming design are: 1) Comprehensive 

Analysis and Visualization; 2) Pipeline and 3) Servers.  

Data from metabolomics and microarray gene expression experiments 

share a great deal in common. For example, both kinds of studies aim to identify 

important features associated with certain conditions (biomarker discovery) or to 

predict these conditions based on the measured data (classification). Furthermore 

the data matrices generated by both metabolomics and transcriptomics 

experiments are characterized by a high-dimensional feature space and a 

relatively small sample size. The differences are mainly in the procedures used for 

http://www.r-project.org/
http://www.broad.mit.edu/genepattern
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data processing and data annotation. Therefore, by utilizing the available 

resources originally developed for microarray analysis, coupled with several new 

algorithms specific for metabolomics, it is possible to develop an efficient 

pipeline optimal for metabolomics data processing and analysis. Following this 

approach, I have created MetaboAnalyst – a web-based server for processing, 

analyzing, visualizing and annotating high throughput metabolomic data. I have 

designed MetaboAnalyst so that it is able to process a wide variety of 

metabolomic data types including compound concentration tables (for quantitative 

metabolomics) as well as spectrally binned data, NMR/MS peak lists and GC/LC-

MS spectra (NetCDF, mzXML, mzDATA – for chemometric metabolomics). It 

also provides a comprehensive list of analysis options for normalization, feature 

identification, dimensional reduction clustering and classification. Furthermore, 

MetaboAnalyst produces colorful graphical output and it supports a number of 

compound identification and pathway mapping tools for data annotation. The 

remaining sections of this chapter provide information about the implementation 

of MetaboAnalyst, followed by detailed descriptions of its analysis features. The 

chapter ends with a discussion and comparison with related software tools.       

Implementation 

MetaboAnalyst‟s web interface was developed using Java Server Faces (JSF) 

technology (http://java.sun.com/javaee/javaserverfaces). The backend statistical 

computing and visualization operations were carried out using functions from the 

R and Bioconductor packages. The integration between Java and R was 

http://java.sun.com/javaee/javaserverfaces
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established through the Rserve package (http://www.rforge.net/Rserve). Spectral 

matching and pathway identification software was developed in Java using the 

spectral libraries and pathway libraries developed for the Human Metabolome 

Project (21) and MetaboMiner (183). 

 JSF is a very powerful technology for developing Java-based web 

applications. It is designed to simplify the development of user interfaces for Java 

Enterprise Edition (Java EE) applications by automatic handling of low level 

HTTP requests and user input processing. JSF uses a component-based model for 

web development. Using the visual JSF web application tool offered by the 

NetBeans (http://www.netbeans.org) integrated development environment (IDE), 

components can be literally “painted” on a virtual JSF page by dragging-and-

dropping them from a palette of JSF component library. Event handlers can then 

be defined for each component the same way as for developing standalone Java 

graphic user interface (GUI) application. Finally, navigation rules are specified 

for each page from a central XML configuration file (faces-config.xml). User 

actions on
 
a web interface will trigger an event whose return value determines 

which page is to be displayed
 
subsequently based on the navigation rules specified 

for that page. This approach facilitates modular and flexible design, making web 

application development much simpler and faster. 

 MetaboAnalyst consists of several functional modules that will be 

discussed, in detail, later. These functions are carried out by several R scripts and 

Bioconductor function calls. Detailed information about the individual packages 

used and the R scripts can be downloaded from the MetaboAnalyst home page. 

http://www.rforge.net/Rserve
http://www.netbeans.org/
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When MetaboAnalyst is run, the executed R commands are recorded to a 

temporary text file. During the summary report generation, this R command 

history is examined and the last call for each analysis performed is re-evaluated 

using the R Sweave function that executes the R commands and writes text 

descriptions along with tabular and graphical results into a LaTeX file. Finally, the 

file is converted into a PDF report describing the analysis, which is available to 

the user for download.  

 MetaboAnalyst is currently hosted on GlassFish 

(https://glassfish.dev.java.net) installed on a Linux operating system (Fedora Core 

10). The server is equipped
 
with two Intel Pentium 4 processors (2.8 GHz each) 

and 4 GB of physical memory. The web application is platform independent and 

has been tested successfully under both Linux and Windows operating systems. R 

(version 2.8.0) is currently installed on the same machine with latest Bioconductor 

release 2.3 and Rserve 0.5-2.  

 A diagram illustrating MetaboAnalyst‟s workflow is shown in Figure 3.1.  

MetaboAnalyst is not a “single-click” analysis tool, but rather it is an on-line 

analysis pipeline similar in concept to several existing on-line microarray analysis 

tools such as GEPAS (184) and CARMAweb (185).  It is primarily designed to 

allow users to conduct two-group discriminant analysis (i.e. control vs. non-

control - the most common type of metabolomic analysis) for classification and 

“significant feature” identification. MetaboAnalyst also supports both paired and 

unpaired data analyses. A typical MetaboAnalyst run consists of six steps – 1) 

data upload, 2) processing, 3) normalization, 4) statistical analysis, 5) annotation, 

https://glassfish.dev.java.net/
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and 6) summary report download.  Users are guided through these steps by 

MetaboAnalyst‟s intuitive interface and the navigation bar on the left panel of 

each page. Completed steps are indicated by a change in color. Certain 

downstream analyses may not be allowed depending on the context or type of 

analyses previously performed. Detailed descriptions, help files, and helpful hints 

are either shown on the corresponding web pages or are provided as mouse-over 

pop-up balloons.  This support is further enhanced by the availability of several 

step-by-step tutorials, sample data sets (NMR, GC/LC-MS, binned data, etc.), 

sample summary files and frequently asked questions (FAQs) available on 

MetaboAnalyst‟s web site.  

Step 1: Data Upload  

Users can begin a MetaboAnalyst analysis by pressing the “Click Here to Start” 

link on the MetaboAnalyst‟s home page.  This takes users to the data upload page.  

Because there is no widely-accepted standard format for reporting metabolomics 

experiments MetaboAnalyst has been designed to accept diverse data types 

including compound concentration tables (from quantitative metabolomic 

studies), binned spectral data, NMR or MS peak lists, as well as raw GC-MS and 

raw LC-MS spectra. For compound concentration or binned spectral data, 

MetaboAnalyst requires that they be uploaded as a CSV (comma separated 

values) table with class labels (control and abnormal, say) immediately following 

the sample names. For peak list data, MetaboAnalyst requires that they be 

uploaded as two zipped folders containing peak list files from the two respective 

groups. Each file should be a two or three-column CSV list indicating peak 
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positions (chemical shift for NMR peaks, mass and/or retention time for MS 

peaks) and intensities, respectively. Examples of these formats and more detailed 

explanations of the formatting requirements are provided on the MetaboAnalyst 

home page. Vendor-specific, proprietary GC-MS or LC-MS spectra should be 

first converted to open exchange file formats (NetCDF, mzXML, mzDATA) and 

uploaded as two zipped folders corresponding to the two groups being analyzed.  

Detailed instructions on how to specify paired information (for paired data 

analysis) as well as examples for each data type are available through 

MetaboAnalyst‟s “Data Formats” link on the home page. 

Step 2: Data Processing and Data Integrity Checking 

Depending on the type of uploaded data, different processing strategies can be 

employed to convert the raw numbers into a data matrix suitable for downstream 

analysis. For compound concentration lists, the data can be used immediately after 

MetaboAnalyst‟s data integrity check. For binned spectral data, a linear filter is 

first applied in order to remove baseline noise.  This is done because most data 

processing algorithms do not work properly with many near-zero values. For 

NMR and/or MS peak lists, MetaboAnalyst first groups the peaks across all 

samples based on their positions. For GC-MS and LC-MS spectra or total ion 

chromatograms, the program performs peak detection, peak grouping, and 

retention time correction sequentially using the popular XCMS package (112). 

Users can adjust the default parameters for each processing step.   
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Often there are large numbers of missing values in a typical quantitative 

metabolomics dataset (10 - 40% in our experience). Most of these missing values 

are due to various compounds in certain samples being below the instrument 

detection limits. In untargeted approaches, however, other factors may come into 

play when missing values are introduced during spectral processing and feature 

detection. To allow selected analyses to proceed (i.e. without divide-by-zero 

problems), these missing values are replaced by the half of the minimum value 

found in the dataset by default. We also implemented a variety of methods which 

enable users to manually or automatically perform missing value exclusion, 

missing value replacement, as well as missing value imputation (186,187). In 

addition, as part of the data integrity check, MetaboAnalyst also checks class 

labels and pair specification (if applicable) to make sure all the required 

information is present and consistent before proceeding to the next step.  

Step 3: Data Normalization 

At this stage, the uploaded data is compiled into a table in which each sample is 

formally represented by a row and each feature identifies a column. With the data 

structured in this format, two types of data normalization protocols - row-wise 

normalization and column-wise normalization -- may be used.  These are often 

applied sequentially to reduce systematic variance and to improve the 

performance for downstream statistical analysis. Row-wise normalization aims to 

normalize each sample (row) so that it is comparable to the other. Four commonly 

used metabolomic normalization methods have been implemented in 

MetaboAnalyst, including normalization to a constant sum, normalization to a 
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reference sample (probabilistic quotient normalization) (114), normalization to a 

reference feature (creatinine or an internal standard) and sample-specific 

normalization (dry weight or tissue volume). In contrast to row-wise 

normalization, column-wise normalization aims to make each feature (column) 

more comparable in magnitude to the other. Four widely-used methods are 

offered in MetaboAnalyst - log transformation, auto-scaling, Pareto scaling, and 

range scaling. Given the vast dynamic range of many features (compound 

concentration or ion abundance) in metabolomics data, normalization is highly 

recommended. The effects and utility of these different normalization strategies 

have been discussed in detail elsewhere (115) and are described further in 

MetaboAnalyst‟s online tutorials.  

Step 4: Data Analysis  

MetaboAnalyst‟s data analysis module is a collection of well-established 

statistical and machine learning algorithms that have been shown to be 

particularly robust for high-dimensional data analysis. These algorithms are 

organized into five analysis “paths” for users to explore.  

a) Univariate Analysis Path. Because of their simplicity and interpretability, 

univariate analyses are often first used to obtain an overview or rough ranking of 

potentially important features before applying more sophisticated analyses. 

Univariate analysis examines each variable separately and does not consider the 

effect of multiple comparisons. MetaboAnalyst‟s univariate analysis path supports 

three commonly used methods - fold-change analysis, t-tests, and volcano plots.  
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In a t-test, one attempts to determine whether the means of two groups are 

distinct.  Once a t-value (refer to formula (1) in section 1.5.4) is determined, a p-

value can be calculated that can be used to determine whether this distinction is 

statistically significant.  Both paired (same individuals measured before and after 

an intervention) and unpaired (individuals randomly assigned to two groups) 

analyses are supported. Volcano plots are used to compare the size of the fold 

change to the statistical significance level. The horizontal axis plots the fold 

change between the two groups (on a log scale), while the vertical axis represents 

the p-value for a t-test of differences between samples (on a negative log scale). 

b) Chemometric Analysis Path. This analysis path offers the two most 

commonly used chemometric methods – principal component analysis (PCA) and 

partial-least squares discriminant analysis (PLS-DA). PCA is an unsupervised 

method aiming to find the directions of maximum variance in a data set (X) 

without referring to the class labels (Y). PLS-DA is a supervised method that uses 

multiple linear regression technique to find the direction of maximum covariance 

between a data set (X) and the class membership (Y). For both methods, the 

original variables are summarized in many fewer variables using their weighted 

averages. These new variables are called scores. The weighting profiles are called 

loadings. MetaboAnalyst provides various views commonly used for PCA and 

PLS-DA analysis. Users can specify each axis to view the patterns between 

different components. Both two-dimensional (2D) and three-dimensional (3D) 

views are implemented. A 3D PLS-DA score plot is shown in Figure 3.2A.   
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 As a supervised method, PLS-DA can perform both classification and 

feature selection. The algorithm uses cross-validation to select an optimal number 

of components for classification. Two feature importance measures are commonly 

used in PLS-DA. Variable importance in projection or VIP score is a weighted 

sum of squares of the PLS loadings. The weights are based on the amount of 

explained Y-variance in each dimension. The other importance measure is based 

on the weighted sum of PLS-regression coefficients. The weights are a function of 

the reduction of the sums of squares across the number of PLS components. Both 

importance measures are implemented in PLS-DA analysis for selecting important 

features.  MetaboAnalyst‟s implementation of PLS-DA also supports several 

options for cross-validation including leave-one-out (LOOCV) and 10-fold cross 

validation. We also implemented PLS-DA permutation tests to help user 

determine the importance of class separation (188).    

c) Feature Selection Path. This analysis path provides two well-established 

methods widely used for identification of differentially expressed genes in 

microarray experiments - Significance Analysis of Microarrays (and Metabolites) 

(SAM) (117) and Empirical Bayesian Analysis of Microarrays (and Metabolites) 

(EBAM) (189). However, these methods are very general for identification of 

significant features in high-dimensional data and are not restricted to the analysis 

of microarray data.  SAM is designed to address false discovery rate problems 

(FDR) when running multiple tests on high-dimensional data. It first assigns a 

significance score to each variable based on its change relative to the standard 

deviation of repeated measurements. Then it chooses variables with scores greater 
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than an adjustable threshold and compares their relative difference to the 

distribution estimated by random permutations of the class labels. For each 

threshold, a certain proportion of the variables in the permutation set appear to be 

significant by chance. The number is used to calculate the FDR.  In this way, 

SAM is able to perform permutation testing, something that is not done in 

MetaboAnalyst‟s t-tests. The EBAM algorithm is essentially a variation of the 

SAM method. The only difference is that EBAM uses a modified t-statistic in 

calculating the score. Typical SAM and EBAM plots are provided to assist users 

in choosing the best parameters and viewing the results. Tables containing 

numeric details are also available through hyperlinks in addition to these graphical 

presentations. A SAM plot is shown in Figure 3.2B.   

d) Cluster Analysis Path. MetaboAnalyst‟s cluster analysis allows a closer 

interrogation of samples with similar abundance profiles. This path includes two 

major approaches of clustering analysis - hierarchical clustering and partitional 

clustering. Hierarchical (agglomerative) clustering begins with each sample 

considered as separate cluster and then proceeds to combine them until all 

samples belong to one cluster. A variety of dissimilarity measures (Euclidean 

distance, Pearson's correlation, and Spearman's rank correlation) and clustering 

methods (average linkage, complete linkage, single linkage, and Ward's linkage) 

have been implemented in MetaboAnalyst. The result of hierarchical clustering is 

usually presented as a dendrogram or heat map, both of which are available in 

MetaboAnalyst. A heat map view is presented in Figure 3.2C using one of our 

test data sets. Partitional clustering attempts to directly decompose the data set 
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into a user-specified number of disjoint clusters. Two widely used methods, k-

means clustering and self-organizing maps (SOM) have been implemented in 

MetaboAnalyst. K-means clustering aims to create k clusters such that the sum of 

squares from points to the assigned cluster centers‟ is minimized. SOM is an 

unsupervised neural network based around the concept of a grid of interconnected 

nodes, each of which contains a model. The model clusters begin as random 

values, but during the iterative training process, they are updated to represent 

different subsets of the training set. Users indicate the number of clusters by 

specifying the expected dimension of the grid. The clusters from both k-means 

and SOM are presented as aggregated expression profiles in which samples in 

each cluster are plotted as line graphs on top of each other using their feature 

values.    

e) Supervised Classification Path. Class prediction using metabolomics data 

is increasingly important in studies aiming for early diagnosis, prognosis or 

treatment outcomes. MetaboAnalyst offers three powerful supervised 

classification methods - PLS-DA, random forest (130), and support vector 

machine (SVM). These methods have proved to be robust for high-dimensional 

data and are widely used for other „omics‟ data analysis. In addition, they can also 

help prioritize features that contribute significantly to the performance.  

PLS-DA based feature selection and classification was discussed in the 

chemometrics path. Random forest uses an ensemble of classification trees, each 

of which is grown by random feature selection from a bootstrap sample at each 

branch. Class prediction is based on the majority vote of the ensemble. During 
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tree construction, about one-third of the instances are left out of the bootstrap 

sample. This data is then used as test sample to obtain an unbiased estimate of the 

classification (OOB) error. Variable importance is evaluated by measuring the 

increase of the OOB error when it is permuted. Figure 3.2D shows the important 

features ranked by random forest. The SVM classification algorithm aims to find 

a decision function in the input space by mapping the data into a higher 

dimensional feature space and separating it by means of a maximum margin 

hyperplane (190). MetaboAnalyst‟s SVM analysis is done through recursive 

feature selection and sample classification using a linear kernel (136). Features 

are selected based on their relative contribution in the classification using cross 

validation error rates. The least important features are eliminated in the 

subsequent steps. This process creates a series of SVM models. The features used 

by the best model are considered to be important and are ranked by their 

frequencies of being selected in the model.  

Step 5: Data Annotation  

A key step in placing statistically significant findings from chemometric analyses 

(as opposed to quantitative metabolomic analyses) into a biological context is to 

identify significantly altered compounds represented by certain spectral bins or 

certain clusters of spectral peaks.  Once a user has identified lists of MS or NMR 

peaks that exhibit statistically significant changes, he may use one of several 

spectral comparison routines and spectral libraries to attempt to identify the 

compound(s) based on either lists of MS peaks (from MS or MS/MS data), GC-

MS peaks (from EI mass values and retention indices) or NMR peaks (from 
1
H, 
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13
C or heteronuclear NMR spectra).  These compound identification routines and 

spectral reference libraries were originally developed for the HMDB and for 

MetaboMiner (183).  While not as comprehensive as some commercial libraries 

or commercial software, these freely available tools have been shown to be quite 

useful in identifying many common compounds.  Once compound information 

becomes available (via quantitative routes or via MetaboAnalyst‟s metabolite ID 

software), more insight can be obtained by which metabolic pathways are 

involved. Pathway mapping has been implemented in MetaboAnalyst using more 

than 70 pathway diagrams and metabolite libraries derived from the HMDB. 

Users simply type the names (or synonyms) of the metabolites identified and 

MetaboAnalyst provides the list of pathways in which these metabolites are 

found, along with hyperlinks to their pathway images.  All results are linked to the 

HMDB where users can obtain more detailed information for each metabolite or 

pathway.  

Step 6: Summary Report Download 

When users finish their analyses and click the download link, a comprehensive 

report will be generated containing a detailed description of each step performed 

embedded with graphical and tabular outputs. In addition, the processed numeric 

data, high-resolution images (PNG format), R scripts, as well as the R command 

history are also available for downloading. Users familiar with R can easily 

reproduce the results on their local machine after installation of R and the required 

packages. Users have the option of providing an email address (to which the 

summary report is sent) or simply downloading the compressed file that contains 
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all the data (graphs, tables, etc.) produced during the analysis. A sample summary 

report is available for download from MetaboAnalyst‟s homepage. 

MetaboAnalyst creates a temporary folder for each job it received. The folder will 

remain on the server for three days (72 hours) before being automatically deleted.  

Tutorials and Sample Data Sets 

The inherent complexity of many data processing techniques combined with lack 

of familiarity that many users may have with some of the analytical approaches 

used by MetaboAnalyst led us to develop a number of tutorials and sample data 

sets.  This was also done so that new users could become more familiar with 

MetaboAnalyst‟s expected inputs and outputs. Under the “Try our test data” in the 

data upload window, users will find eight different data sets labeled as 1) 

Concentrations (a metabolite concentration table); 2) NMR spectral bins; 3) NMR 

peak lists; 4) Concentrations (paired, time series); 5) MS peak intensities; 6) MS 

peak lists; 7) LC-MS spectra in NetCDF format; and 8) GC-MS spectra in 

NetCDF format. Users may process these data by clicking on the radio button 

beside a given data set and pressing the Submit button. Alternately, these example 

data sets can be downloaded and subsequently “uploaded” using the “Upload your 

data” section. Once a test data set is submitted (or uploaded) the user may 

navigate through MetaboAnalyst in any way they choose.  

 MetaboAnalyst also has four step-by-step tutorials describing several 

analysis paths using a number of different data sets.  These tutorials are available 

by clicking the “Tutorials” link from homepage. Tutorial #1 uses the Metabolite 
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concentration list (data set #1).  Tutorial #2 uses the Binned NMR spectra (data 

set #2), Tutorial #3 uses the paired concentration data (data set #4) and Tutorial #4 

uses the LC-MS spectra in NetCDF format (data set #7). MetaboAnalyst also has 

~20 FAQs to complement the information found in the tutorials. These tutorials 

and FAQs will be updated frequently based on user feedback.    

Comparison to Other Software and Limitations 

Many metabolomic analyses are currently done using local installations of 

commercial statistical software packages such as MatLab, MS-Excel, SigmPlot 

and SIMCA-P.  SIMCA-P (Umetrics), in particular, is very widely used by the 

metabolomics community.  While quite expensive, SIMCA-P offers excellent 

graphic capabilities and comprehensive analysis options for three multivariate 

methods (PCA, PLS/OPLS, and SIMCA). MetaboAnalyst supports two of these 

multivariate methods (PCA and PLS) but it also offers many other methods (i.e. 

volcano plots, SAM, k-means, SOM, random forest, SVM) not found in SIMCA-

P.  While MetaboAnalyst does not have the graphical flexibility of SIMCA-P, it is 

designed to be more accessible (via the web), freely available, and easier to use. 

In addition, MetaboAnalyst provides its own metabolite and pathway 

identification tools – something that is not found in any dedicated statistical 

software package.  However, MetaboAnalyst‟s dependence on the HMDB 

infrastructure means that its coverage of plant and microbial metabolism is 

somewhat incomplete. 

 To the best of our knowledge, the only other web application that offers a 
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similar service to MetaboAnalyst is MeltDB (191). MeltDB is centered on MS-

based metabolomics data storage, administration, analysis, and annotation. 

Unfortunately, this server is incompatible with a number of common browsers 

(Firefox, Netscape) and requires a user login and password to obtain access. 

According to the paper, MeltDB appears to offer some of the features found in 

MetaboAnalyst such as t-tests, volcano plots, principal component analysis, and 

heat maps. However, these analyses are restricted to GC/LC-MS data only. 

MetaboAnalyst provides support for many more diverse data types, more 

advanced data analysis methods, more comprehensive data annotation tools as 

well as automated report generation utilities.   

 The current implementation of MetaboAnalyst primarily supports 1) 

biomarker discovery and 2) two-group discrimination. We believe these kinds of 

analyses are most relevant to the widest range of metabolomics studies. Multiclass 

problems can always be converted into a series of two-class problems through 

pair-wise decomposition. Temporal studies (more than two time points) can be 

treated as a special case of multi-class problem and decomposed into a series of 

paired two-group analyses (see Tutorial #3 for an example of a time series 

analysis). We hope to add more functions to support simultaneous analysis of 

multiple time-points in the near future.  

MetaboAnalyst makes extensive use of high-level data inputs (i.e. 

concentrations, peak lists) that requires users to perform some manual processing 

steps prior to uploading the data. The support for raw or partially processed GC-

MS and LC-MS spectra is currently achieved through the XCMS package (112). 
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However, software to handle unprocessed NMR spectra is not so readily available. 

Steps such as phasing, baseline correction, referencing, peak detection and 

deconvolution must be manually checked by an experienced analyst to ensure the 

integrity of the results. As a result, MetaboAnalyst does not accept raw NMR 

spectra. Likewise, MetaboAnalyst is not (yet) capable of handling or interpreting 

capillary electrophoretic (CE) data, FTIR data, coulometric electrode array (CEA) 

data or raw chromatographic (HPLC or UPLC) data. Certainly if the user 

community grows significantly in these areas, efforts will be made to 

accommodate these analytical platforms.  Indeed, MetaboAnalyst‟s modular and 

flexible framework should facilitate future development efforts to keep up with 

this fast-changing field. 

Conclusions 

MetaboAnalyst is a comprehensive, web-based tool designed to facilitate high-

throughput metabolomics studies. It accepts a variety of input data (NMR peak 

lists, binned NMR or MS spectra, MS peak lists, compound/concentration data) in 

a wide variety of formats.  It also offers a number of options for metabolomic data 

processing, data normalization, multivariate statistical analysis, graphing, 

metabolite identification and pathway mapping. Through its intuitive interface 

and high quality graphics, users are presented with data overviews from different 

perspectives (i.e. PCA plots, heat maps), lists of candidate biomarkers identified 

by simple univariate analysis (i.e. volcano plots), as well as estimated 

classification performances by several powerful algorithms (i.e. random forest, 
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SVM). Further biological insight can be gained by tapping into the HMDB using 

MetaboAnalyst‟s annotation tools. MetaboAnalyst‟s structured navigation, 

extensive documentation, as well as its comprehensive analysis reports should 

allow new users to analyze their data without significant training or without 

significant likelihood of statistical misadventure.  
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Figures 

 

Figure 3.1. MetaboAnalyst’s workflow and data processing options.  

Different data inputs are first transformed into compatible data matrices using several different 

processing methods. A variety of algorithms are implemented for data normalization, analysis, and 

annotation. The number of available options is shown inside the round brackets for each category. 

At the end of any given analysis, a comprehensive PDF report, the processed data, and high-

resolution images are available for download. 
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Figure 3.2 Examples of some graphical outputs from MetaboAnalyst.  

Figure A shows the PLS-DA class separation based on the top three components. Figure B shows 

the significant features identified by SAM analysis. Figure C shows the heat map generated from 

hierarchical clustering. Figure D shows the features ranked by random forest. The binned NMR 

spectral data (test data #2) was used to generate these graphs. 
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Chapter 4 

Metabolite Set Enrichment Analysis3 

 

                                                           

3
 A version of this chapter has been published previously: 

Xia, J. and Wishart, D.S. (2010) MSEA: a web-based tool to identify biologically meaningful 

patterns in quantitative metabolomic data. Nucleic Acids Res, 38, W71-77. 
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Introduction 

As reviewed in Section 1.5.5, gene set enrichment analysis (GSEA) (142) has 

turned out to be very successful in helping interpret microarray gene expression 

data. The key idea behind GSEA is to directly investigate the enrichment of pre-

defined groups of functionally related genes (or gene sets) instead of individual 

genes. This group-based approach does not require pre-selection of genes with an 

arbitrary threshold. Instead, functionally related genes are evaluated together as 

gene sets, allowing additional biological information to be incorporated into the 

analysis process. The GSEA approach has proven to be remarkably successful in 

deriving new information from genome-wide expression studies, having been 

cited over 1500 times since its initial description (141,142).  

The success of GSEA has inspired many extensions, improvements and 

variations (143,192-197). These methods can be classified into competitive or 

self-contained methods (see Section 1.5.5 for more details). The choice of which 

method to use in other “omics” disciplines is highly dependent on the type of data 

being generated. In particular, the competitive model (which assumes random 

sampling from a complete “omic” universe) is not suitable for today‟s 

metabolomics technologies. Although metabolomics is defined as the non-biased 

identification and quantification of all metabolites in a biological system, there are 

currently no analytical techniques or combinations of techniques that have 

achieved complete, unbiased coverage of the microbial, plant or mammalian 

metabolomes. Indeed, most metabolite measurements are biased either towards 
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more abundant compound species (NMR-based approaches) or compounds with 

better ionization efficiencies (MS-based approaches). Because the random 

sampling assumption does not hold for competitive models, self-contained 

approaches are actually more suitable for metabolomics applications.  

In addition to the choice of an appropriate statistical procedure, the other 

essential component to using enrichment analysis is a knowledge base with pre-

defined sets of related features.  This knowledge base is essential to properly carry 

out  group-based significance tests. The most widely used databases or knowledge 

bases of functionally related genes are based on KEGG pathways (146) and Gene 

Ontologies (198). The Molecular Signature Database (MSigDB) (142) is another 

example of a knowledge base that has been created primarily to support gene set 

enrichment analysis for human gene expression data. In addition to these 

resources, MSigDB is another database that includes gene sets co-expressed under 

the same experimental conditions. A complete list of compatible or useful 

databases for GSEA analyses is available at 

http://www.broadinstitute.org/gsea/msigdb/collections.jsp.  

To our knowledge, no tools similar to GSEA have been developed to 

support this group-based approach for metabolomic data analysis. This is likely 

because both enrichment analysis and quantitative metabolomics are relatively 

new techniques.  However, it is also likely due to the fact that in order to use this 

approach, one needs an extensive and biologically meaningful metabolite set 

library.  Such a library is very laborious and time-consuming to create. Given the 

increasing availability of many public metabolite databases and a large body of 

http://www.broadinstitute.org/gsea/msigdb/collections.jsp
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literature on metabolic pathways and metabolic diseases, it should be possible and 

relatively straightforward to create a comprehensive knowledge base in the form 

of metabolite sets for functional enrichment analysis. Therefore, by collecting and 

compiling knowledge about metabolites into computable forms (metabolite sets), 

and utilizing suitable algorithms originally developed for enrichment analysis, it is 

possible to develop a useful tool for metabolite set enrichment analysis. Following 

this approach, I have implemented a web-based application, named MSEA 

(Metabolite Set Enrichment Analysis), to support group-based enrichment 

analysis for human and/or mammalian metabolomic studies. The main features of 

MSEA include: 1) a collection of five metabolite set libraries containing ~6,300 

biologically meaningful groups of metabolites; 2) three enrichment analysis 

methods – over-representation analysis (ORA), single sample profiling (SPP), and 

quantitative enrichment analysis (QEA), to support common data forms generated 

in metabolomic studies; 4) support for enrichment analysis with discrete and 

continuous phenotypes; 5) support for enrichment analysis using customized 

(non-mammalian) metabolite sets; 6) support for conversions between metabolite 

common names, synonyms, and identifiers of nine major metabolomic databases; 

and 7) comprehensive analysis report generation. Through MSEA and its 

accompanying databases, it is possible to take a list of altered metabolites from a 

biofluid or tissue sample and use it to suggest a biological pathway or disease 

condition that can be further investigated. The MSEA server and all of its 

accompanying databases are freely available at http://www.msea.ca. The 

remaining sections of this chapter provide information about the implementation 

http://www.msea.ca/
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of MSEA, followed by a detailed description of its data analysis features. The 

chapter ends with discussion about its current limitations and future 

developments.       

Implementation 

Creation of Metabolite Set Libraries  

A group of metabolites are considered to constitute a meaningful metabolite set if 

they are known to be: a) involved in the same biological processes (i.e., metabolic 

pathways, signaling pathways); b) associated with genetic traits (i.e. SNPs); c) 

changed significantly under the same pathological conditions (i.e., various 

metabolic diseases); and d) present in the same locations such as organs, tissues or 

cellular organelles. These data were collected through manual curation from 

books and journals as well as through text mining of public databases. The 

resulting metabolite sets were manually validated/edited and then further 

organized into three categories: pathway-associated, disease-associated, and 

location based. MSEA‟s pathway-associated metabolite library contains 84 entries 

based on the 84 human metabolic pathways found in the Small Molecular 

Pathway Database (SMPDB) (199). MSEA‟s SNP-associated metabolite sets were 

derived from the two recent genome-wide association studies between genetic 

variations and metabolite profiles in human (36,37). MSEA‟s disease-associated 

metabolite sets were mainly collected from the literature. Metabolites associated 

with different diseases were manually identified, merged and subsequently refined 

by reading the original publications listed in the Human Metabolome Database 
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(HMDB) (21), the Metabolic Information Centre (MIC), and SMPDB. Using 

these resources, a total of 851 physiologically informative metabolite sets were 

created. These disease-associated metabolite sets were further divided into three 

sub-categories based on the biofluids in which they were measured:  398 

metabolite sets in blood, 335 in urine, and 118 in cerebral-spinal fluid (CSF). 

MSEA‟s location-based library contains 57 metabolite sets based on the “Cellular 

Location” and “Tissue Location” listed in the HMDB. A summary of these 

metabolite set libraries is shown in Table 4.1. 

Creation of a Metabolite Dictionary and Concentration Database 

In order for the MSEA server to accept a range of metabolite names, synonyms or 

identifiers as input, it was also necessary to develop a local metabolite dictionary 

that could be used to perform facile name conversion or “normalization”.  

Information contained in the HMDB was used to extract common names, 

synonyms, as well as identifiers (ID) used in nine major metabolomic databases 

(HMDB, PubChem (155), ChEBI (156), KEGG (157), BiGG (158), METLIN 

(23), BioCyc (200), Reactome (149), and Wikipedia). Examples of MSEA‟s 

supported IDs are listed in Table 4.2. In order for MSEA to perform single 

sample profiling (SSP) analysis it was also critical to obtain reference 

concentrations for as many metabolites as possible. These concentration data were 

collected primarily from the HMDB with additional values being added through 

manual curation.  MSEA‟s reference concentrations are organized based on the 

biofluids in which they were measured. Concentrations are presented in the form 

of mean (minimum – maximum). For concentrations reported as mean and 
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standard deviation (SD), their 95% confidence intervals (mean ± 2 SD) were used 

to define the concentration ranges. One compound may have multiple 

concentration values as reported from different studies.  

Implementation of Enrichment Analysis Programs 

Over the past 5 years, many different algorithms have been developed for group-

based enrichment analysis, including GSEA (142), GSEA-P (201), PAGE (202), 

globaltest (143), SAFE (193), SAM-GS (194) and GSA (195). Based on a 

thorough review of the literature, we decided to adapt the globaltest algorithm as 

the backend for MSEA. The globaltest is originally designed for testing 

association between gene sets and a clinical outcome. It uses a generalized linear 

model to compute a “Q-stat” for each gene set. For a group of m genes, the Q-stat 

is calculated as the average of the statistics Q1…Qi… Qm, calculated for each 

single gene, where Qi is the average of the squared covariance between the gene 

expression pattern and the clinical outcome. There were three main reasons: 1) 

recent publications have indicated that globaltest exhibited similar or superior 

performance when tested against several other algorithms (203-205); 2) globaltest 

is very flexible and supports binary, multi-class, and continuous phenotype labels; 

and 3) globaltest is computationally efficient as the p-values can be calculated 

based on the asymptotic distribution, which is correct for large sample sizes, but 

also gives a good indication for small sample sizes.  

Conventional over representation analysis was implemented based on a 

cumulative hypergeometric distribution. Since many metabolite sets are tested 
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simultaneously, we also implemented methods to adjust for the multiple testing 

problems that occur during enrichment analysis. In addition to the original p-

values, MSEA also reports Bonferroni corrected p-values and false discovery rate 

(FDR) according to Benjamini and Hochberg (206).  

Web Server Characteristics  

MSEA‟s web interface was implemented using the JSF or Java Server Faces 

(http://java.sun.com/javaee/javaserverfaces) framework. The enrichment analysis 

algorithms were implemented in the R (version 2.10.0) programming language 

(http://www.r-project.org). The communication between R and Java was 

established through the Rserve TCP/IP server (http://www.rforge.net/Rserve). The 

web application is hosted on GlassFish (version 3) using a Linux operating system 

(Fedora Core 12). MSEA‟s host server is equipped
 
with two Intel  Quad Core 2 

processors (3.0 GHz each) and 8 GB of physical memory. The web application is 

platform independent and has been tested successfully on Internet Explorer 8.0, 

Mozilla Firefox 3.0, and Safari 4.0.  

Program Description 

MSEA‟s workflow is illustrated in Figure 4.1. Briefly, metabolite set enrichment 

analysis can be described in four steps - data input, data processing, data analysis, 

and results download. In addition to its analysis utilities, users can directly 

download, browse or search MSEA‟s metabolite set libraries or perform 

compound name and ID conversions. The details of each step are discussed below.  

http://java.sun.com/javaee/javaserverfaces
http://www.r-project.org/
http://www.rforge.net/Rserve
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Step 1. Data Input 

MSEA accepts data in three different formats: a) a list of compound names 

entered in a single-column format; b) a list of compound concentrations entered as 

two-column data with the first column corresponding to the compound 

names/labels and the second corresponding to the concentration values; c) a 

concentration table containing metabolite concentration data from multiple 

samples. The table must contain comma-separated values (.csv) with rows for 

samples and columns for metabolites. The second column of the table is reserved 

for phenotype labels (binary, multi-class, or continuous).  Examples of these input 

formats are provided on the MSEA homepage. 

Step 2. Data Processing 

In this step, both the compound labels and the concentration values are examined 

for their suitability for downstream analysis. It is critical that the compound labels 

be recognized by the program in order to be compared with MSEA‟s collection of 

compound names in metabolite sets. Therefore a consistency check is done with 

the input names or IDs against the names and IDs stored in MSEA‟s metabolite 

dictionary. Any nomenclature inconsistency is flagged and displayed to users for 

manual inspection and correction. For single sample profiling (SSP, discussed 

later), the concentrations must be provided in a standard concentration unit (umol 

for blood and CSF, and umol/mmol_creatinine for urine) in order for the input 

data to be properly compared with MSEA‟s reference concentrations database. For 

QEA, the concentration values can be normalized and negative/missing values are 

allowed. Two widely-used chemometric methods - principal component analysis 
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(PCA) and partial least square (PLS) analysis - are available in MSEA to allow for 

data visualization, pattern identification, and outlier detection. Note that MSEA 

does not perform data normalization. Users are advised to visit MSEA‟s 

companion web site MetaboAnalyst (207) to access a variety of data processing 

and normalization options.  

Step 3. Enrichment Analysis  

Depending on the type of user input, MSEA offers three kinds of enrichment 

analysis: over representation analysis (ORA), single sample profiling (SSP), and 

quantitative enrichment analysis (QEA). These analysis modules are described in 

more detail below. 

a) Over Representation Analysis (ORA) - ORA is used to evaluate whether a 

particular set of metabolites is represented more than expected by
 
chance within a 

given compound list. ORA is performed when the user provides only a list of 

compound names. Such a list can be obtained using standard feature selection 

methods that statistically rank all the compounds and select those scoring above a 

certain threshold. ORA is also very useful for analyzing a group of compounds 

exhibiting similar concentration changes or patterns. Such a list can be obtained 

from standard clustering analysis. Many commonly-used feature selection and 

feature clustering methods are available from our companion web application 

MetaboAnalyst.  The p value from ORA indicates the probability of seeing at least 

a particular number of metabolites from a certain metabolite set in a given 

compound list. The Bonferroni corrected p-value and false discovery rate (FDR) 
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are also presented to account for problems associated with multiple comparisons. 

Users can click the “View” link in the Details column of any of MSEA‟s 

metabolite sets to see all its constituent metabolites with matched ones highlighted 

in red, as well as pathway images (when available). 

b) Single Sample Profiling (SSP) - For common human biofluids such as 

blood, urine or cerebral spinal fluid (CSF), normal concentration ranges are 

known for many metabolites. In clinical metabolomic studies it is often desirable 

to know whether certain metabolite concentrations in a given sample are 

significantly higher or lower than their normal ranges. MSEA‟s SSP module is 

designed to provide this kind of analysis. In particular, SSP is performed when the 

user provides a two-column list of both compounds and concentrations.  When 

called, the SSP module will compare the measured concentration values of each 

compound to its recorded normal reference ranges of the corresponding biofluid 

(Figure 4.2A). By default, only compounds with concentrations above or below 

all the reported normal ranges will be selected for further investigation. Users can 

manually select or deselect compounds to override this default selection by 

inspecting the concentration comparison plots generated by this module (Figure 

4.2B). The selected compound list will be subjected to over-representation 

analysis as described in the previous section. 

c) Quantitative Enrichment Analysis (QEA) - QEA is performed when the 

user uploads a concentration table containing metabolite concentration data from 

multiple samples. QEA is based on the globaltest algorithm to perform 

enrichment analysis directly from the raw concentration data and does not start 
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from a list of significant compounds. It can identify significant metabolite sets 

with compounds that have limited changes in concentrations. Enriched metabolite 

sets will be identified when only a few compounds are highly differentially 

changed or many compounds are only slightly (but consistently) changed. In 

addition to the Q-stat values, the QEA module also provide p-values, Bonferroni 

corrected p-values and estimates of false discovery rates (FDR). Figure 4.2C 

shows a screenshot of the result table from a typical quantitative enrichment 

analysis. Users can click the image icon of any matched metabolite set to view a 

detailed graphical summary of the contributions of individual metabolites, as 

shown in Figure 4.2D. 

Step 4. Data Download  

When users finish an enrichment analysis, a comprehensive report is generated 

with detailed descriptions of each step performed, embedded with graphical and 

tabular results. The processed data, images, R scripts, as well as the R command 

history are also available for download. Users familiar with R can easily 

reproduce the results on their local machine after installing the R packages and the 

corresponding metabolite set libraries (available on the Resources Download 

page). 

Other Features 

Compound Name and ID Mapping Tool 

The MSEA web server also offers a number of other features to facilitate 

metabolomic data analysis, including 1) a compound name and identifier mapping 
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tool; 2) a browser for metabolite sets; and 3) a facility for custom metabolite set 

uploads.  Given the fact that no consensus exists in labeling compounds in current 

metabolomic studies, we implemented a utility in MSEA to convert between 

common compound names, synonyms and the identifier codes used in nine major 

metabolite databases (see Table 4.2 for details). This converter can also deal with 

spelling errors using an approximate text matching algorithm. In addition to this 

name/ID converter, MSEA also provides a browser to view MSEA‟s collection of 

metabolite set libraries. These libraries can provide a valuable source of 

information to investigate the biological implications of any metabolite sets 

identified after enrichment analysis. The browser implemented in the MSEA web 

server allows users to easily scan and search its metabolite set libraries. Each 

entry contains the metabolite set name, its constituent compounds, and links to 

original references. Given the incompleteness of MSEA‟s metabolite-set libraries, 

researchers may want to perform enrichment analysis using customized or self-

defined metabolite sets other than the ones provided by the server. MSEA 

supports this option by allowing users to upload their own metabolite set library. 

The library file should be in a simple .csv file with the first column for metabolite 

set names and the second for compound members.   

Limitations 

Unlike genomics or transcriptomics, metabolomics has not yet achieved total 

metabolite coverage. Whereas Next-Gen DNA sequencers and modern 

microarrays routinely cover entire genomes, most metabolomic technologies only 

offer 5-10% coverage of a sample‟s metabolome. This makes many metabolomic 
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studies intrinsically biased. Since most of the metabolite sets in MSEA‟s libraries 

are also derived from experimental studies, they tend to suffer from the same 

sampling bias. Fortunately these biases tend to cancel each other out, as 

essentially the same metabolite population (the fraction of the metabolome that 

are “detectable” by current analytical technologies) is probed to generate both 

metabolite sets and user data. Nevertheless, users should always take note of their 

experimental conditions or technological limitations when interpreting the results 

from enrichment analysis.  

Another key limitation to MSEA is its bias to human and/or mammalian 

metabolomics.  The mouse/rat metabolite set libraries are currently under 

construction.  We also plan to add other metabolite sets from plants and microbes. 

However, until these databases and data sets can be completed (likely in two years 

time) we would encourage researchers who are engaged in metabolomic studies of 

non-mammalian species to create their own customized metabolite sets for 

enrichment analysis and to contribute these sets to the MSEA server for public 

use.  

Conclusions 

Over the past few years a number of software tools have been developed to 

address the bioinformatics needs of metabolomics. However, most of these 

programs were designed for spectral data processing and compound identification.  

More recently, several freely available software tools for the statistical analysis of 

metabolomic data have started to appear, such as MetaboAnalyst and MeltDB 
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(208).  As yet, no publicly available tools have been made available to assist in 

the functional interpretation of metabolomic data. To address this issue we have 

developed a web server, named MSEA (Metabolite Set Enrichment Analysis), 

designed to help researchers identify and interpret patterns of metabolite 

concentration changes in a biologically meaningful context. MSEA performs 

three kinds of enrichment analysis - over representation analysis (ORA), single 

sample profiling (SSP) and quantitative enrichment analysis (QEA).  When only a 

list of compounds is available, ORA is performed. When both compound names 

and concentrations are available, the SSP module is called. When concentration 

data is available from multiple samples, MSEA performs QEA. The enrichment 

analyses performed by MSEA are based on five carefully compiled metabolite 

libraries consisting of ~6,300 entries. In addition to its enrichment analysis 

capabilities, MSEA allows custom metabolite sets to be uploaded for more 

specialized (non-mammalian) studies.  MSEA also supports conversion between 

metabolite common names, synonyms, and major database identifiers.  We 

believe that, over time, the MSEA approach will become more powerful as 

analytical technologies for metabolomics continue to improve their metabolite 

coverage and as the metabolomics community develops improved standards and 

ontologies (209).  In the long run, we would like to turn the MSEA server into a 

resource for metabolomic annotation, visualization, and integrated discovery 

much as the DAVID server (210) has become just such a resource for microarray 

data analysis.  
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Tables 

Table 4.1 Overview of MSEA’s metabolite set libraries.  

A total of 6292 biologically related metabolite sets were collected through text-mining and manual 

curation. These metabolite sets are divided into several categories based on their biological 

context. 

Category Total #  

Biochemical Pathway  84 

Disease - associated  851 

      *Blood  344 

      *Urine 290 

      *CSF  108 

SNP-associated 4501 

Predicted biomarker 912 

Location - based 57 
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Table 4.2 Overview of compound labels currently supported by MSEA 

Label Type Examples 

Common Name Adenosine, Acetic acid, Adenine, Creatine 

HMDB  HMDB00050, HMDB00042, HMDB00034 

PubChem  60961, 176, 190, 586 

ChEBI  16335, 15366, 16708, 16919 

KEGG  C00212, C00033, C00147, C00300 

BiGG  34273, 33590, 34039, 34543 

METLINE  86, 3206, 85, 7 

BioCyc  ADENOSINE, ACET, ADENINE, CREATINE 

Reactome  114933, 114747, 114936, 114818 

Wikipedia Adenosine, Acetic acid, Adenine, Creatine 
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Figures 

 

Figure 4.1 MSEA workflow.  

Metabolite set enrichment analysis consists of four steps: data input, data processing, data 

analysis, and data download. Different analysis procedures are performed for different input types. 

MSEA allows users to directly browse and search its metabolite set libraries as well as to perform 

metabolite name mapping between different names and database identifiers. 
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Figure 4.2 Enrichment analysis and visualization 

Results from MSEA‟s enrichment analysis are presented both in tables as well as through 

graphical summaries. Figure A shows the comparison between the measured concentrations and 

reference concentrations using the single sample profiling (SSP) module. The top part of Figure B 

shows a graphical summary of the concentration comparison for a single compound when users 

click an image icon in Figure A. The bottom part of Figure B shows all the corresponding 

publications that reported these concentrations. Figure C shows the results generated by the 

quantitative enrichment analysis (QEA) module. The top part of Figure D is a metabolite-set plot 

indicating the influence of an individual compound on each of the selected metabolite sets. The 

bottom part of Figure D shows all its constituent metabolites with matched ones highlighted in red.  
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Chapter 5 

Metabolic Pathway Analysis and Visualization4  

                                                           

4
 A version of this chapter has been published previously:  

Xia, J. and Wishart, D.S. (2010) MetPA: a web-based metabolomics tool for pathway 

analysis and visualization. Bioinformatics, 26, 2342-2344 
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Introduction  

Over the past decade, pathway analysis has emerged as an invaluable aid to 

understanding the data generated from various “omics” technologies. As a result, 

a number of robust software tools have been developed to support pathway 

analysis for genomics and proteomics studies (150-152,211). However, for 

metabolomics, pathway analysis is neither nearly as sophisticated nor as well-

supported. Indeed, most pathway analysis in metabolomics is done through simple 

visual inspection of metabolic pathway databases such as KEGG (146), Reactome 

(149) or BioCyc (148). These databases provide, basically, little more than simple 

visual displays with modest support to highlight matched metabolites in the 

context of pathways. Given these limitations, it is clear that more capable pathway 

analysis tools are needed for metabolomics.  For instance, the development of 

pathway databases/resources that can directly accept metabolite concentration 

tables (for more quantitative pathway analysis) would be a useful starting point.  

Another limitation of today‟s pathway analysis tools or methods is they 

tend to focus on enrichment analysis and do not consider the inherent topological 

information in pathways. Over the past two decades, many algorithms have been 

developed in the field of graph theory to allow more quantitative interrogation of 

pathway and network structures.  This kind of interrogation can provide useful 

insights into pathway function, stability and dynamic responses (212). Given that 

it can be very useful to quantify the importance of a molecule based on its 

position within a given pathway, it stands to reason that graph theory and network 
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topology analyses should be able to help support this kind of assessment. For 

instance, the importance of a compound within a given metabolic network can be 

estimated by its centrality, a notion that is routinely used in the study of social and 

computer communication networks to estimate the potential monitoring and 

control capabilities of a given node. There are two commonly used centrality 

measures – degree centrality and betweenness centrality (Figure 5.1). The degree 

centrality measures the number of connections the node of interest has to other 

nodes. Nodes with higher degree centrality act as hubs in a network. The 

betweenness centrality measures the number of shortest paths going through the 

node of interest. Nodes with high betweenness centrality are bottlenecks in a 

network.  

One practical challenge in pathway analysis is pathway visualization.  

Visualization is very important for presentation and proper interpretation of 

pathway analysis results. Traditionally, web-based visualization of pathways has 

been implemented through static images (i.e. KEGG, SMPDB). Dynamic network 

presentation must normally be done through stand-alone programs (i.e. Cytoscape 

(213), GenMAPP (211)) due to the high computational cost of creating a network 

layout and the bandwidth constraint for transferring large images. However, 

because human eyes are able to track only a small portion of a complex network 

at any given time, it is not necessary to update the whole image every time. Only 

updating a viewport is much more efficient for image transfer, as demonstrated by 

Google Maps (http://maps.google.ca).  

http://maps.google.ca/
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Therefore, by combining enrichment analysis methods with suitable 

algorithms originally developed from graph theory and presenting the result 

dynamically via web-interface using a Google-map style visualization system, it 

will be possible to develop an effective tool for metabolomic pathway analysis. 

Following this approach, I have developed a web server called MetPA 

(Metabolomic Pathway Analysis).  MetPA is a user-friendly, web-based tool 

dedicated to the analysis and visualization of metabolomic data within the 

biological context of metabolic pathways. MetPA combines several advanced 

pathway enrichment analysis procedures along with the analysis of pathway 

topological characteristics to help identify the most relevant metabolic pathways 

involved in a given metabolomic study. The results are presented in a Google-map 

style network visualization system that supports intuitive and interactive data 

exploration through point-and-click, dragging, and lossless zooming. Additional 

features include a comprehensive compound library for metabolite name 

standardization, as well as the implementation of various univariate statistical 

procedures that can be accessed when users click on any metabolite node on a 

pathway map. MetPA currently enables analysis and visualization of 1173 

metabolic pathways, covering 15 common model organisms.  MetPA is freely 

available at http://metpa.metabolomics.ca. The remaining sections of this chapter 

provide information about MetPA‟s implementation followed by a description of 

its features as illustrated by an example data analysis.   

http://metpa.metabolomics.ca/
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Implementations 

Analysis Algorithm 

Pathway analyses in MetPA can be conducted through three routes. Pathway 

enrichment analysis supports both over-representation analysis as well as GSEA-

based approaches. The available algorithms include Fisher‟s exact test, the 

hypergeometric test, globaltest (143), and GlobalAncova (214). MetPA‟s pathway 

topological analysis is based on the centrality measures of a metabolite in a given 

metabolic network. Centrality is a local quantitative measure of the position of a 

node relative to the other nodes, and is often used to estimate a node‟s relative 

importance or role in network organization (215). Since metabolic networks are 

directed graphs, MetPA uses relative betweenness centrality and out degree 

centrality measures to calculate compound importance. The pathway impact is 

calculated as the sum of the importance measures of the pathway metabolites that 

matched the query data normalized by the sum of the importance measures of all 

metabolites in the pathway. Finally, MetPA provides a number of univariate 

analyses performed at the compound level to provide a more detailed view of the 

distribution of individual metabolite concentrations with regard to phenotypes. 

They include the t-test, one-way analysis of variance (ANOVA), and linear 

regression. 
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Pathway Library Construction and Visualization 

The pathway data used in MetPA were downloaded as KGML files from the 

KEGG database (146). Chemical compounds and pathway topology information 

were parsed into graph models using the KEGGgraph package (216). The current 

library contains 1173 metabolic pathways from 15 model organisms including 

humans, mouse, drosophila, Arabidopsis, E. coli, etc.   

Metabolic pathways are presented as a network of chemical compounds with 

metabolites as nodes and reactions as edges. The graph generation and 

manipulation were implemented using Graphviz (http://www.graphviz.org) and 

ImageMagick (http://www.imagemagick.org). This visualization system supports 

lossless zooming, dragging, and linking operations based on Ajax (Asynchronous 

JavaScript with XML) technology (217). All relevant information can be obtained 

by clicking on the corresponding graphical elements.  

Web Interface 

MetPA‟s web interface was implemented using the Java Server Faces (JSF) 

(http://java.sun.com/javaee/javaserverfaces) framework. The pathway analysis 

algorithms were implemented in the R (version 2.10.0) programming language 

(http://www.r-project.org). The communication between R and Java was 

established through the Rserve TCP/IP server (http://www.rforge.net/Rserve). The 

web application is hosted on GlassFish (version 3) using a Linux operating system 

(Fedora Core 12). The server is equipped with two Intel Core 2 Quad processors 

(3.0 GHz each) and 8 GB of physical memory. The web application is platform 

http://www.graphviz.org/
http://www.imagemagick.org/
http://java.sun.com/javaee/javaserverfaces
http://www.r-project.org/
http://www.rforge.net/Rserve


135 

 

 

 

independent and has been successfully tested on Mozilla Firefox 3.0+, Safari 

4.0+, Google-Chrome 5.0+, Opera 10.0+, and Internet Explorer 8.0. 

Example Analysis 

MetPA accepts either a list of significant compound names, or a compound 

concentration table with binary, multi-group, or continuous phenotype labels. In 

the latter case, it is advisable to first normalize the concentration data, i.e. using 

MetaboAnalyst (207). As an example, we present the analysis on urinary 

metabolite concentration data (log-normalized) from cancer patients experiencing 

either muscle gain (Y) or muscle loss (N) monitored over a three-month period. 

The purpose is to investigate if certain metabolic pathways are significantly 

different between the two groups of patients. The first step is to convert the 

compound names of the uploaded data to the compound names used in the 

pathway library. MetPA uses compound names, synonyms and database IDs data 

from the HMDB (25) to perform compound name mapping. The next step is to 

specify the parameters for the pathway analysis – i.e. the pathway library, the 

algorithm for pathway enrichment analysis, as well as the algorithm for 

topological analysis. In this case, we select the “Homo sapiens” library and use 

the default “Global Test” and “Relative Betweenness Centrality” for pathway 

enrichment analysis and pathway topological analysis, respectively. The result is 

presented in two parts - the graphical output (shown in Figure 5.2A) and a table 

containing all the analysis results. Users can intuitively explore the results by 

pointing and clicking on various hyperlinked nodes. For example, let‟s look at the 
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“Glycine, serine and threonine metabolism” pathway, which is the top pathway 

from the pathway topological analysis and is also significant in the pathway 

enrichment analysis (4.65E-5 after adjustment of multiple testing). Clicking the 

circle on the “metabolome view” (Figure 5.2A.) on the left panel launches the 

corresponding “pathway view” (Figure 5.2B) on the right. It is interesting to see 

that many of these significantly changed amino acids are in key positions for this 

pathway. Further checking (by clicking on each metabolite node) indicates that all 

the nine matched amino acids show higher concentration values in the muscle loss 

group, with Creatine being the most significant (Figure 5.2C). It is interesting to 

see that the most significant pathway identified from the enrichment analysis is 

“Galactose metabolism” (highlighted as the dark red circle on the top left corner 

of the “metabolome view”). Further checking indicates only three downstream 

peripheral compounds are involved, with “Myoinositol” being most significant. It 

is less likely that this pathway is strongly associated with muscle change.  

Conclusions  

The growing interest in metabolomics and systems biology has increased the need 

for computational and visual tools for pathway analysis. MetPA is a full-featured, 

easy-to-use pathway analysis and visualization environment that combines 

advanced statistical enrichment analysis with pathway topological characteristics 

to help researchers identify the most relevant pathways involved in the conditions 

under study.  
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Figures 

 

Figure 5.1 Illustration of centrality measures. 

There are two commonly used centrality measures - degree centrality measures the number of 

connections the node of interest has to other nodes; betweenness centrality measures the number 

of shortest paths going through the node. The red nodes have the highest degree centrality and the 

blue node with highest betweenness centrality. The figure was adapted from Junker et al (218) . 



138 

 

 

 

 

  

 

Figure 5.2 Screenshot illustration of MetPA’s data visualization features  

(A) metabolome view, (B) pathway view, and (C) compound view. Navigation to each view is by 

point-and-click on the corresponding node. 
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Chapter 6 

Validation & Example Applications 
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Background 

The primary objective of my thesis research has been to develop efficient and 

user-friendly tools to address several bioinformatics challenges that routinely arise 

in metabolomics studies. Many of the tools have been inspired by established 

concepts and established algorithms that have been developed to address the 

similar issues in other omics fields (i.e. transcriptomics). As a result of this 

approach, stringent evaluation and validation of the statistical methods have not 

been of particular concern. Instead, my metabolomic tools and their results have 

been illustrated using example test datasets. However, it is important to show that 

the concepts embodied by these programs and servers work as expected. In this 

chapter, I will perform somewhat more detailed validation of these servers and 

present some applications using both simulated and real-world metabolomic data.  

Because MetaboMiner has already been subject to a great deal of thorough 

testing, validation, and comparison with other tools, I will not perform any further 

validation with this tool. Instead, this chapter will focus on the validation on the 

other three web applications - MetaboAnalyst, MSEA, and MetPA. The goal of 

this validation study is to test the utility of these web applications with respect to 

whether it can detect compounds that are significantly different, whether they can 

help interpret metabolomic data through enriched functional groups or affected 

pathways. In this chapter, I will show that these web-based bioinformatics tools 

can perform these intended tasks correctly, efficiently, and in a user-friendly 

manner.   



141 

 

 

 

Validation Design 

In order to show that these tools can perform the intended tasks correctly, a gold 

standard test data set (i.e. a data set with a known and correct answer) is needed. 

This can be obtained from published data with a clear biologically interpretable 

result which has been subsequently confirmed in a follow-up study. Alternatively, 

it can also be a data set where the results have been widely-recognized as correct 

by the other researchers in the same field. For example, the famous Golub dataset 

(219) has been widely used by software developers to validate various tools for 

microarray gene expression analysis. In addition, there are many other benchmark 

microarray datasets available from the Gene Expression Omnibus (GEO) at NCBI 

(220) or the ArrayExpress at EBI (221). Unfortunately, no such widely-recognized 

dataset is available for metabolomics at this time.  Indeed, currently there is no 

publicly available central repository for metabolomics data similar to the GEO or 

ArrayExpress. A practical solution to this limitation is to use simulated data. If the 

simulated data closely mimic the characteristics of the real-world data, the results 

can also be very useful. To show that these tools can perform their intended tasks 

quickly and correctly, a real-world data set from a study already published will be 

used. In this case, the goal is to show that similar results can be obtained using 

these tools in a very short time. To measure user-friendliness is very subjective. 

Instead, I will use the user statistics obtained from Google Analytics to show the 

popularity of these tools, which can serve as a proxy indicator of their popularity 

and user-friendliness.  
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Materials & Methods 

Two test data sets were used to validate these web applications - a simulated data 

set and a real-world data set. The real-world data was obtained from a 

metabolomics study on dairy cows fed with different proportions of barley grain 

(222). Specifically it contains the concentrations of 47 metabolites measured on 

39 rumen samples divided into four groups - 0, 15, 30, or 45 - indicating the 

percentage of barley grain in the diet. The simulated data is based on a real 

urinary metabolomics data obtained from a metabolomics study of cancer 

cachexia published recently (223). This data set contains 77 urine samples with 

each sample containing the concentrations for 63 compounds. There are two 

groups – a cachexic (muscle loss) group and a control group. The simulated data 

was generated based on two assumptions: i) the concentration values of each 

metabolite followed a normal distribution; and ii) most changes among metabolite 

concentrations were within normal variation, with a few changes being 

biologically significant. The procedures for generating the data are briefly 

described below:  

1) Generate a concentration table with the same number of samples and 

compounds as the cachexia dataset. In particular, each compound must 

have the same mean and variance as the corresponding metabolite in 

the real data;  

For each compound, 
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a. Estimate its mean and standard deviation (SD) using robust 

measures - median and median absolute deviation (MAD); 

b. Regenerate the concentration values by sampling a normal 

distribution with the calculated mean and SD; for negative 

values or very small positive values (< 0.05), replace them with 

0.05; 

c. Replace the original concentrations with the new values 

2) Introduce changes to a few selected compounds in the cachexic group. 

Six metabolites involved in the Citric acid cycle were chosen: 2-

Oxoglutarate, Citrate, Fumarate, Pyruvate, Succinate, and cis-

Aconitate. The concentration of these metabolites are re-sampled from 

a normal distribution with a two-fold change in the parameters, namely 

either (2*mean with 2*SD) or (1/2*mean with 1/2*SD). The up- or 

down-regulation of a particular compound was determined randomly.  

Please note, using the above procedure, some characteristics of this metabolomic 

data set (concentration range and variations) will be preserved. However, the 

covariance structures between different metabolites will be lost. This is 

unavoidable unless we can model the distribution for all these metabolites.  

The two data sets were subject to analysis using MetaboAnalyst, MSEA, 

and MetPA. As there are so many parameters and options available with these 

programs, here I will only show the results from a few common procedures - 

univariate tests, multivariate tests, enrichment analysis, and pathway analysis. A 
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more detailed step-by-step protocol on how to use these web-based tools can be 

found in Appendix I.  

Results 

 Identification of Significantly Changed Compounds and Pathways  

After the data processing and normalization steps, statistically significant 

compounds in these data sets can be identified using t-tests.  The top 10 most 

significant compounds are given in Table 6.1. As expected, the five 

computationally “spiked-in” compounds occupy the top five of the list. However, 

Succinnate is ranked eighth (after Quinolinate and Formate), and is only 

marginally significant with a p value of 0.054. If we use the conventional p value 

cut-off 0.05, Quinolinate and Formate would both be selected as significant. As 

this is simulated data and we know that their concentrations in both cachexic and 

control groups are generated from the same normal distributions. Therefore, the 

observed differences in Quinolinate and Formate between the two groups are 

purely due to chance (false positives). The risk of finding false positives increases 

when multiple tests are performed.  In this case, we should use FDR (false 

discovery rate correction). For example, with a common threshold of 20% (one in 

five is false positive), the top five will be selected. 

The data can be further analyzed using PLS-DA. A three-dimensional 

score plot is shown in Figure 6.1.  A good separation can be seen from the figure. 

The significant features identified by PLS-DA are almost the same as those 
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identified by the t-tests. The permutation test shows the difference between the 

two groups (cachexic and control) is marginally significant (permutation p value = 

0.06). Note the variance explained of each component is almost identical (~4%). 

This is caused by the way the simulated data was generated, with each metabolite 

concentration being generated independently. 

Metabolite set enrichment analysis (MSEA) using the pathway database 

from SMPDB (147) shows the top five candidates for the affected pathways 

(Table 6.2). As expected, the Citric acid cycle is identified as the most 

significantly altered. This result is further confirmed using pathway analysis. As 

shown in Figure 6.3, citric acid metabolism is located in the top right corner, 

indicating it is considered significant by both enrichment analysis and topology 

analysis. A detailed view on these matched metabolites in the context of the 

pathway structure is shown in Figure 6.4. 

Reproduction of Results from Published Data  

A metabolomic data analysis using MetaboAnalyst was performed following 

precisely the same procedures described in the original study by Ametaj, et al. 

(222), in which the authors used PCA and ANOVA to identify significant 

biomarkers as well as pattern of changes that are associated with the dietary 

change. The results can be easily reproduced with these tools.  

After data processing and normalization, many compounds are 

significantly changed based on ANOVA tests with a p-value threshold 0.05 

(Figure 6.5). The details of these selected metabolites are shown in Table 6.3. In 
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addition, results from the post-hoc analyses are also performed to indicate which 

two groups are significantly different (using the same p-value cutoff). PCA 2D 

score plot (Figure 6.6) reveals four partially overlapping but distinct groups. The 

corresponding loading plot is shown in Figure 6.7. These results agree very well 

with the published data. Note that other analyses such as hierarchical clustering, 

PLS-DA can also be easily performed (results not shown). The whole process can 

be finished in 15~20 minutes.  

User Profile Statistics 

The design and implementation of these web-based tools for metabolomics was 

inspired by the existence of several successful counterparts developed for other 

omics fields.  This was done to minimize the learning curve for end-users. It has 

also made these tools quite popular in the metabolomics community. According to 

Google Analytics (http://www.google.com/analytics), as of July 1, 2011, 

MetaboAnalyst has attracted over 23000 visits by more than 6000 distinct visitors 

from around 1200 cities worldwide since its publication (Figure 6.8A), with an 

average of ~2000 monthly visits. MSEA has attracted over 2000 visits since it was 

first published in May 2010, which translates to ~150/month. MetPA has attracted 

~1700 visits since it was published in July, 2010 or about 120 monthly visits. 

Please note that MSEA and MetPA have been incorporated into MetaboAnalyst as 

of September, 2010, reducing the web traffic for these two websites (and 

concomitantly increasing the traffic for MetaboAnalyst).  

http://www.google.com/analytics
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It is important to note that the number of visits is not an accurate indicator 

of the people who actually used the web application. For example, the number of 

the users who actually uploaded their data may better reflect the utility of the 

websites. Unfortunately, the statistic is not available as MetaboAnalyst server 

uses a cron job to automatically remove user uploaded files after 72 hours. In one 

occasion, we forgot to turn on the cron job after a server update. The hard disk 

was full within one month‟s time. This could partially reflect the heavy use of 

MetaboAnalyst. In addition, as shown in Figure 6.8B, most visits are actually 

from returning visitors. This could also attest to the utility and user-friendliness of 

the web application.       

Conclusions 

In this chapter, I have performed a validation study on the three web applications 

using a simulated dataset and a real-world data set. The results from the simulated 

data indicate that these tools are able to correctly identify these “spike-in” 

metabolites either individually or as a group in the form of either metabolite sets 

or metabolic pathways. The results from the real-world data show that using these 

tools, users can quickly perform various data processing and analysis methods 

that are commonly seen in many published papers. Finally, as a qualitative 

measure of their user-friendliness, I have also shown that these tools have gained 

a great degree of popularity among researchers in the metabolomics community.  
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Tables 

Table 6.1 Importance features identified from t-tests (simulated data) 

 Compounds      P values              FDR 

1 Fumarate 2.00E-05 0.00118  

2 cis-Aconitate 4.00E-05 0.00118 

3 2-Oxoglutarate 1.40E-04 0.00295 

4 Citrate 3.70E-04 0.0058 

5 Pyruvate 0.01431 0.18029 

6 Quinolinate 0.02386 0.25049 

7 Formate 0.03806 0.34253 

8 Succinate 0.05453 0.42939 

9 Glycine 0.09117 0.58266 

10 Threonine 0.09915 0.58266 
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Table 6.2 Significant pathways identified from enrichment analysis (simulated data) 

  Total   Hits     Stats.      P values     FDR 

CITRIC ACID CYCLE  
23 6 14.588 5.00E-12 2.30E-10 

UREA CYCLE  
20 4 11.8 1.25E-07 5.64E-06 

MITOCHONDRIAL 

ELECTRON TRANSPORT 

CHAIN  

15 2 13.03 1.83E-05 8.06E-04 

ALANINE METABOLISM  
6 2 12.71 3.18E-05 0.001369 

MALATE-ASPARTATE 

SHUTTLE  
8 1 17.683 1.40E-04 0.005891 

PHENYLALANINE AND 

TYROSINE 

METABOLISM  

13 2 10.688 1.42E-04 0.005891 

GLUCOSE-ALANINE 

CYCLE  
12 3 8.4949 1.60E-04 0.006399 
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Table 6.3 List of significant compounds identified by ANOVA (real data).  

The last column shows the results from the post-hoc analysis using Fisher‟s LSD. Significantly 

different groups are presented as a pair linked by a hyphen.   
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Figures 

 

Figure 6.1 PLS-DA score plot with top three components (simulated data). 
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Figure 6.2 Matched metabolites in Citric acid metabolism (simulated data).  
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Figure 6.3 Overview of the affected pathways (simulated data).  

The x-axis in this graph indicates the impact of the pathways based on node importance measures; 

the y-axis indicates the significance of each pathway based on its p-value from the enrichment 

analysis. Each pathway is represented by a circle rendered in a color according to its p-value with 

a radius proportional to its impact value. The most affected pathways should be lying along the 

diagonal (lower left to top right). The top-right circle located around (0.33, 26) represents the TCA 

pathway.  
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Figure 6.4 Pathway view of Citric acid cycle (simulated data)  

Unmatched metabolites are rendered in blue background and matched metabolites are highlighted 

in different colors from yellow to red based on their p values.  The pathway, as displayed by 

MetPA, is zoomable and all nodes are clickable and hyperlinked.  
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Figure 6.5 Significant compounds identified using ANOVA (real data).  



156 

 

 

 

 

Figure 6.6 PCA 2D score plot (real data).  

The ellipses indicate the 95% confidence area.  
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Figure 6.7 PCA loading plot for PC1 and PC2 (real data).  
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Figure 6.8 MetaboAnalyst user profile 

A) MetaboAnalyst has attracted over 23,000 visits by over 6,000 distinct visitors from over 1200 

cities worldwide, with over 80 visits per day (as of July 1, 2011); B) Weekly user traffic of the last 

two years. The drop indicated by the arrow corresponds to the Christmas holiday.  
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Chapter 7 

General Conclusions & Future Work 
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7.1 General Conclusions 

My thesis project has been centered on three computational challenges in 

metabolomic data analysis – 1) compound identification in complex biofluids; 2) 

metabolomic data processing and analysis; and 3) functional interpretation of 

metabolomic data. To address these issues, I have implemented a series of four 

freely available and user-friendly software tools – MetaboMiner, MetaboAnalyst, 

MSEA, and MetPA. Each of these tools has been designed to address a particular 

aspect of the data analysis issues mentioned above.  

7.1.1 Compound Identification from 2D NMR with MetaboMiner 

MetaboMiner was designed for efficient compound identification from 2D NMR 

spectra of complex biofluid mixtures. As there are many analytical platforms 

currently employed in metabolomics studies, I chose to focus on NMR, 

specifically 2D NMR.  This was done for two main reasons - NMR spectra are 

highly reproducible and 2D (TOCSY and HSQC) spectra contain substantially 

more compound structural information than 1D proton NMR spectra. A major 

drawback associated with this choice is that the sensitivity of 2D NMR when 

acquired at natural abundance is very low, thus many signals may not be detected 

in normal biofluid mixtures.    

   MetaboMiner is a desktop application, written in the Java programming 

language. It supports both automated peak matching as well as spectral 

visualization for manual annotation. Tests using both synthetic and real spectra of 
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compound mixtures showed that MetaboMiner is able to automatically identify 

~80% of metabolites from good quality 2D NMR spectra. This performance is 

substantially better (>20%) than any other currently available programs for 2D 

NMR mixture analysis. 

The key idea behind MetaboMiner is the use of a knowledgebase - a pre-

defined spectral library of compounds corresponding to the known metabolite 

composition of the biofluids of interests. This approach greatly reduces the size of 

the search space and therefore, reduces the number of false positives. Another 

important concept is the implementation of a self-adaptive threshold search 

algorithm, which automatically expands or shrinks the search space to maximize 

peak matches without introducing many false positives. The library and algorithm 

have since been incorporated in the NMR spectral search engine of the latest 

HMDB release (25). The most recent version of MetaboMiner can be downloaded 

from the project home page http://wishart.biology.ualberta.ca/metabominer/.  

MetaboMiner is primarily concerned with compound identification based 

on 2D NMR spectra. For 1D proton NMR, the spectra are somewhat more 

crowded and manual fitting is usually required in order to get a reliable result. 

However, some promising approaches have been reported for analyzing 1D 

spectra that employ the cross entropy method exploiting (partial) decomposability 

(CEED) (224).  

http://wishart.biology.ualberta.ca/metabominer/
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7.1.2 General Data Processing and Analysis with MetaboAnalyst 

MetaboAnalyst is a web-based application that provides a broad array of options 

for metabolomic data processing, analysis, and annotation. MetaboAnalyst was 

originally designed for quantitative metabolomics, and later expanded to support 

the analysis of raw spectral data as well as peak lists data as might be generated 

using chemometric approaches. The first release of MetaboAnalyst only 

supported two-group discrimination analysis. Multi-group data analysis support 

was implemented with the most recent release. The latest release also 

incorporated a new functional module for two-factor and time-series metabolomic 

data analysis.   

The analysis procedures in MetaboAnalyst have been implemented as a 

series of functional modules – the data upload module, the data preprocessing 

module, the feature selection module, the report generation module, etc. The 

design of MetaboAnalyst was inspired and influenced by the popular open-source 

genomics data analysis pipeline - GenePattern (182). The three main elements 

found in GenePattern - Analysis and Visualization, Data Pipelines, and Servers, 

were closely followed throughout the design and implementation of 

MetaboAnalyst. This idea has proven to be very useful for bench biologists as 

GenePattern is widely regarded as being easy to understand and easy to use. It is 

also very useful for the tool developer, as each functional module can be 

developed and debugged independently. Furthermore, new functions can be easily 

introduced by simply adding a new module.  
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MetaboAnalyst supports a comprehensive array of analytical methods that 

includes biomarker identification, pattern discovery, and classification. For 

biomarker identification, both the standard univariate tests (t-tests, ANOVA) and 

the moderated approaches (SAM, Limma eBayes) have been implemented. The 

choice of these standard analytical tools was based on the fact that metabolomics 

experiments usually have more samples than what is available for microarray 

experiments. Standard tests often work well and are easy to use for many 

biologists who are unfamiliar with the statistical concepts specifically developed 

for microarray data. For pattern discovery, MetaboAnalyst supports PCA and 

several other clustering methods (i.e. hierarchical clustering and SOM). Bicluster 

analysis is currently very computationally intensive, and is not suitable for web-

based application. For classification, MetaboAnalyst offers the three widely used 

approaches that are known to work well for high-dimensional data including 

dimensional reduction (PLS-DA), ensemble methods (random forest), and 

shrinkage methods (soft-margin SVM).  

One of the more useful features in MetaboAnalyst is its support for 

interactive data visualization. Users can adjust key parameters for most methods 

and visualize the results immediately. These analysis and visualization 

capabilities were enabled by using the powerful R statistical environment while 

the data pipeline and servers were realized by using the Java Server Faces (JSF) 

framework. This allowed me to seamlessly encapsulate different modules into a 

streamlined workflow. MetaboAnalyst is hosted on our local server with regular 

updates and maintenance (http://www.metaboanalyst.ca).  

http://www.metaboanalyst.ca/
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7.1.3 High-level Data Interpretation with MSEA and MetPA 

MSEA is designed to perform metabolite set enrichment analysis using seven pre-

defined libraries containing a total of 6292 functionally-related metabolite sets. 

MSEA can help identify biologically meaningful patterns that are obvious as well 

as subtle but coordinated changes occurring within quantitative metabolomic data 

sets.  

In some cases, particularly for well-studied model organisms, high-quality 

metabolite sets also contain extra information about the functional relationship 

among different member compounds in the form of metabolic pathway 

information. This extra information can be used to further refine metabolomic 

results so that they are more aligned with a domain expert‟s manual interpretation. 

MetPA is designed to address this aspect of metabolomic data interpretation by 

taking into account of both the enrichment score and topological information (in 

the corresponding pathways) into account. In addition, MetPA also attempts to 

address another important issue – the visualization of a large amount of data in a 

web-based server. This is usually only possible with desktop applications as the 

interactive nature and the large size of the graphic images. To overcome this 

problem, I have developed a Google-map style visualization system using Ajax 

technology.  

7.2 Summary & Future Perspectives 

Metabolomics is still a relatively new member of the omics family. The field of 

metabolomics is rapidly growing and it is finding applications in many different 
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fields, from disease diagnosis, drug toxicity assessment, to environmental 

monitoring. My PhD research has allowed me to explore different analytical, 

biological, statistical, and computational aspects of metabolomics. During this 

time I developed several widely used software tools for compound identification 

(MetaboMiner), statistical analysis (MetaboAnalyst), metabolite set enrichment 

analysis (MSEA), and metabolic pathway analysis (MetPA). Together, they 

constitute a coherent and comprehensive solution for many bioinformatics issues 

encountered with many of today‟s metabolomic studies.     

However, metabolomics on its own does not allow one to explore all 

aspects of a biological system. Genomics, transcriptomics, and proteomics also 

play key roles in providing detailed information on the changes in the genes and 

proteins arising from various perturbations, diseases or environmental stimuli. 

Combining and analyzing omics data from multiple omics platforms is the basis 

to systems biology. However, the analysis tools for metabolomics, transcriptomics, 

genomics and proteomics have largely been developed independently from each 

other.  As a result, one of the major challenges facing bench biologists is finding 

ways to effectively integrate data from these different omics platforms to obtain a 

comprehensive understanding of biological systems. The next major focus in the 

field of bioinformatics is to develop powerful computational tools to support 

integrative analysis across different omics platforms. Different kinds of omics 

data need to be integrated at a high-level, where they can be statistically 

characterized, intuitively visualized, and presented in an appropriate biological 
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context to facilitate knowledge discovery and functional interpretation. There 

should be at least three essential components: 

       a) Specially-designed algorithms which can handle multiple 

heterogeneous omics datasets. These data sets usually consist of multiple data 

matrices of very high-dimensional nature, making most conventional analysis 

methods insufficient. Recently, several promising multivariate statistical 

algorithms have been proposed for data summarization, variable selection, 

correlation, and association analysis with multi-omics data (225,226).  

       b) A comprehensive knowledge base on genes, proteins, and metabolites. I 

believe metabolic networks, most of which are well established, provide an 

effective scaffold for organizing systems biology data. For instance, the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) database and the human 

metabolome database (HMDB) are good starting points for this purpose.  

       c) An efficient data visualization system to present biological networks 

and statistical results. There are several promising tools for network visualization. 

For instance, the Google-map style network visualization system I have 

implemented for metabolic pathways visualization can be extended to much more 

general applications. The recently available web-version of Cytoscape (227) is 

another viable option. For statistical visualization, advanced on-line interactive 

3D visualization using techniques based on virtual reality markup language 

(VRML: http://www.w3.org/MarkUp/VRML/) or Java LiveGraphics3D 

(http://www.vis.uni-stuttgart.de/~kraus/LiveGraphics3D) could be a very effective 

http://www.w3.org/MarkUp/VRML/
http://www.vis.uni-stuttgart.de/~kraus/LiveGraphics3D
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and powerful presentation tool. The arrival of HTML5 (228) is expected to greatly 

facilitate the development of web-based data visualization programs.  

       As modern biology is increasingly becoming dependent on using different 

omics technologies to explore biological responses or to measure biological 

phenotypes, the interpretation of these omics data sets relies crucially on using 

sophisticated, computerized approaches for compiling, analyzing, and visualizing 

these data. I expect that the development of bioinformatics tools for integrative 

data analysis and visualization will be the next major effort in bioinformatics and 

systems biology. 
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Appendix I 

Using Web-based Tools for Metabolomic Data Analysis and 

Interpretation
5
  

Analysis Overview  

The procedure described here provides a step-by-step protocol for using 

MetaboAnalyst to fully analyze quantitative metabolomic data.  It begins with a 

general overview of the program, followed by a detailed description on how to 

format and upload data, how to “cleanse” the data, how to normalize it and how to 

identify significant features or generate lists of “important metabolites”. It 

concludes with a description on how to perform metabolite set enrichment 

analysis and how to perform metabolic pathway analysis. While the protocol is 

specific to MetaboAnalyst, many of the early-stage statistical steps can be readily 

adapted to other statistical analysis packages (such s SIMCA-P+ and SAS).  As 

noted earlier, not all of MetaboAnalyst‟s options or data analysis paths will be 

discussed in detail.  However, the protocol described here should be applicable to 

many common data analysis scenarios in metabolomics.  

                                                           

5
 The appendix is an excerpt from the following paper: 

Xia, J. and Wishart, D.S. (2011) Web-based Inference of Biological Patterns, Functions and 

Pathways from Metabolomic Data using MetaboAnalyst. Nature Protocols 6, 743-760. 
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MetaboAnalyst consists of three main modules: 1) a data processing 

module; 2) a statistics module; and 3) a high-level functional interpretation 

module. The data processing module is responsible for data input, data processing 

and data normalization. The statistics module supports a number of statistical 

(univariate, multivariate) and machine learning methods for feature selection, 

clustering and classification. The high-level functional interpretation module 

includes enrichment analysis and pathway analysis. The enrichment analysis 

provides metabolite set enrichment analysis (MSEA) using several comprehensive 

metabolite-set libraries. The pathway analysis offers pathway enrichment analysis 

and pathway topology analysis via a Google-map style interactive pathway 

visualization system. As illustrated in Fig. A1, the data processing module is the 

entry-way to access the other two modules. The statistics module, which is 

perhaps the most important module in MetaboAnalyst, is designed for general-

purpose metabolomic data analysis and can be used to analyze a number of 

different data types including compound concentration data, peak lists, or binned 

spectral data (i.e. both targeted and non-targeted data). For high-level functional 

interpretation, only quantitative metabolomic data (i.e. compound concentration 

data or a list of metabolite names) can be accepted.  It is important to note that 

MetaboAnalyst‟s high-level functional analysis is organism-specific as dictated 

by the underlying knowledgebase. For enrichment analysis, the collection of 

~6300 metabolite sets was compiled primarily from human studies. Therefore 

users need to provide their own custom metabolite sets if they wish to perform 

enrichment analysis for other organisms. MetaboAnalyst‟s pathway analysis 
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currently supports 15 model organisms with ~1200 pre-compiled KEGG 

pathways. Prior to using this option, users need to decide whether these 

predefined libraries are applicable to their organism(s) under study. To perform 

high-level functional analysis, one critical step is to match compound names 

between users‟ data and MetaboAnalyst‟s knowledgebase. As there are currently 

no universally accepted set of metabolite names or IDs, we have implemented an 

automated compound “disambiguator” to convert various compound IDs and 

synonyms to HMDB compound names for metabolite set enrichment analysis and 

to KEGG compound names for pathway analysis. In some cases, there will be 

redundancies and conflicts due to different naming schema adopted by different 

databases. Those compounds with name conflicts will be highlighted for 

subsequent manual inspection. We recommend that users try the recently released 

Chemical Translation Service (http://cts.fiehnlab.ucdavis.edu) to clarify these 

ambiguities before performing any kind of high-level analysis. 

MetaboAnalyst uses a navigation tree to guide users through its different 

analysis procedures (Fig. A2). All the available functions are represented as tree 

nodes and these nodes are organized into different branches or functional 

categories. Users may click the corresponding nodes to navigate among different 

MetaboAnalyst functions. Depending on the context, some tree nodes may be 

disabled when the required preliminary steps have not been performed by the 

user. The current node is always highlighted during the analysis as shown in Fig. 

A2. 

http://cts.fiehnlab.ucdavis.edu/
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This protocol is organized into five sections: 1) data formatting, uploading 

and processing; 2) identifying important features using univariate analysis; 3) 

multivariate statistical analysis; 4) metabolite set enrichment analysis; and 5) 

metabolic pathway analysis. Two compound concentration datasets are provided 

to demonstrate these procedures. The first dataset contains metabolite 

concentrations of 39 bovine rumen samples measured by 
1
H NMR. The rumen 

samples were collected from dairy cows fed with different proportions of barley 

grain. The samples are labeled in four groups - 0, 15, 30, and 45 - indicating 

different percentages of barley in the diet. The second dataset contains metabolite 

concentrations of 77 urine samples from cancer patients, also measured by 
1
H 

NMR. The samples are divided into two groups -- control or cachexic (significant 

muscle loss).   

Materials 

Equipment Setup 

 A PC with an internet connection; 

 Browser requirements: MetaboAnalyst has been tested on all modern 

web browsers with JavaScript enabled, including Mozilla Firefox 3.0+, 

Safari 4.0+, Google-Chrome 5.0+, Opera 10.0+, and Internet Explorer 

8.0.  

 Data files: MetaboAnalyst has a number of example data sets for 

format illustration purposes as well as for testing purposes. Users can 
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directly select a testing data set in MetaboAnalyst‟s data upload page 

without actually downloading it. For this protocol, we will download a 

concentration data set and then re-upload it to better illustrate how 

local or user-generated data files may be handled. First go to the 

MetaboAnalyst home page (http://www.metaboanalyst.ca), and then 

click the “Data Formats” link on the left menu bar. In the Data Formats 

page, under the “Comma Separated Value (.csv) format”, click and 

download the first concentration file - “Compound concentration data 

set - cow, four groups” and save it as “cow_diet.csv”. The second 

concentration file to retrieve is “Compound concentration data set - 

human, two groups”. Save this file as “human_cachexia.csv”.  

Procedures 

Data Upload, Processing and Normalization (Time: 5-10 minutes) 

1|  Starting up (Time: 10 sec). Go to the MetaboAnalyst home page 

(http://www.metaboanalyst.ca) and click the “click here to start” link to enter the data 

upload page. 

Critical Step: As most browsers support multiple tabs, do not access MetaboAnalyst 

from more than one tab during an analysis. Opening up multiple connections to 

MetaboAnalyst within the same browser will cause problems due to having the 

session data overwritten.   

? TROUBLESHOOTING (SEE TABLE A2) 

2|  Data upload (Time 1-2 min). Depending on the type of analysis that a user wishes to 

http://www.metaboanalyst.ca/
http://www.metaboanalyst.ca/
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perform, they can upload their data via any of the three available tab options - 

Statistical Analysis, Enrichment Analysis, or Pathway Analysis (Fig. A2). Here, we 

show how to upload data from the “Statistical Analysis” tab which is selected by 

default (data upload instructions for Enrichment Analysis is provided at Steps 21-24, 

and data upload directions for Pathway Analysis is given at Step 32).   In the “Upload 

your data” section, users can upload either a comma separated values (CSV) file or a 

compressed (ZIP) file. For the example data we use for this protocol, choose the 

“Concentrations” as the data type, and “Samples in rows (unpaired)” as the data 

format. Click the “Browse” button to locate the “cow_diet.csv” file and click the 

“Submit” button. 

Critical Step: user must specify the correct data type and data format that match 

their data. Failure to do so will result in MetaboAnalyst launching the wrong data 

processing procedure.   

Critical Step: Users can also easily perform paired analysis in MetaboAnalyst. For 

any kind of paired data comparison, there must be an even (2n) number of samples. 

For data in CSV format, the pair-wise information must be given by the class labels 

as integer values between -1 and -n/2 and between 1 and n/2. Samples with class 

labels having the same absolute integer values are considered to be pairs (i.e. -18 is 

paired with +18); For ZIP formatted data, users need to upload a separate text file 

(.txt) to give the pair information. Each pair is specified as two sample names 

(without a suffix) separated by a colon with one pair per row. 

? TROUBLESHOOTING (SEE TABLE A2) 

3|  Data integrity checking (Time: 20 sec to 5 min). If the data has been uploaded 

successfully, a data integrity check is performed. After this check is completed, 

MetaboAnalyst will provide a summary of the data characteristics. Two common 
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issues that often arise with metabolomic data are missing values and outliers. To 

handle missing values, users can click the “Missing value imputation” button to use a 

variety of options to either exclude or replace these values. Outlier identification and 

removal is an iterative process and is usually performed in combination with 

preliminary data exploratory analysis. See Step 28 for an example.  For this particular 

data set, we accept the data “as is” and so we will click the “Skip” button to go to the 

normalization step. 

4|  Data normalization (Time 30 – 60 sec). There are two normalization procedures - 

row-wise normalization and column-wise normalization. In the data normalization 

page, choose “normalization by a reference sample” then select the first sample 

name “0-1-1” for row-wise normalization.  Critical Step: The choice for a reference 

sample is generally the sample in the control group with the fewest missing values. 

Alternatively, users can choose to use a pseudo-reference sample created by 

averaging all samples in the control group. For high quality data in which samples in 

the same groups are very homogenous, the effects of either procedure should be very 

similar. 

5|  Select “auto-scaling” for column-wise normalization. 

6|  After the normalization steps have been completed, click “next” to view a graphic 

summary of the normalization effects on the data (Fig. A3.). 

7|   (Optional step) Compound name standardization (Time: 1-2 min).  This step is only 

applicable for compound concentration data. Click the “Name check” node under the 

“Processing” branch. The results of the name conversion process will be shown as a 

table. Compounds without an exact match in MetaboAnalyst‟s name library will be 

highlighted in either yellow (approximate match found) or red (no match found). 
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Users should manually examine the compounds with approximate matches and 

choose the correct one. Otherwise the first match in the candidate name list will be 

used. Click “Submit” button to finish the name checking. Note that after this step, all 

three major nodes on the navigation tree - “Statistics”, “Enrichment” and “Pathway” 

should be enabled. Note if the data is uploaded under the “Enrichment Analysis” or 

“Pathway Analysis” tab, the compound name mapping will be performed by default.  

The data are now processed, normalized and ready for a variety of downstream 

analysis procedures.  

Identification of Significant Features with Univariate Methods (Time: 

~10 minutes) 

8|  Identification of significantly different features (Time: 2-3 min). MetaboAnalyst 

directly supports significant feature identification using several methods including t-

tests, ANOVA, volcano plots, SAM, etc. As the example data contains four groups, 

we use ANOVA (Option A) and SAM based-method (Option B) to select important 

features. 

a. ANOVA-based feature selection 

i. Click the ANOVA node on the navigation tree to enter the “One-way 

ANOVA and post-hoc analysis” page.  

ii. Significant features are identified with the default p-value threshold 

of 0.05. As the ANOVA F-test only tells that at least two of the 

groups differ, the post-hoc analysis further tests which ones differ 

from each other.  MetaboAnalyst offers two commonly used methods 

- Fisher‟s least significant difference (LSD) and Tukey‟s honestly 

significant difference (HSD). Tukey‟s HSD is generally more 
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conservative than Fisher‟s LSD. 

iii. Click the “view details” link to see a data table from the ANOVA 

and post-hoc tests using Fisher‟s LSD (the default). Users can click 

any compound name to view a box plots summary of its 

concentrations in different groups.   

b. SAM-based feature selection 

i. SAM is designed to control the false positives when running multiple 

tests on high-dimensional data. To use the SAM method, click the 

“SAM” node on the MetaboAnalyst navigation tree.  

ii. The default view is the Step 1 tab which contains two plots to help 

users decide a suitable Delta value. The left plot shows the FDR 

change with different Delta values, and the right plot shows the 

number of significant compounds identified given different Delta 

values.  For example, using the default Delta value 0.6 will identify 

~25 compounds with an FDR ~ 0.3; using a Delta value of 1.0 will 

identify ~ 20 significant compounds with the FDR less than 0.1. 

Enter 1.0 as the new Delta value and click “Submit”. 

iii.  The Step 2 tab shows a typical SAM plot with the Delta equals 1.0. 

Click the “View details …” link to see the SAM results table. A total 

of 21 compounds were identified above the chosen threshold. Notice 

the top ten compounds are almost exactly the same as those 

identified using ANOVA.  

9|  Identification of other features with patterns of interest (Time: 2-3 min). This step 
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allows users to investigate trends or patterns in metabolite concentration changes. 

Click the “Correlations” node on the navigation tree to enter the “Correlation 

Analysis” page. There are two types of correlation analysis that can be performed in 

MetaboAnalyst - correlation with a defined pattern (Option A) or correlation with a 

specific feature (Option B).   

A. Correlation with a defined pattern of change 

i. Here we will attempt to identify those metabolites that increase 

concentrations with the percentage of grain in the diet. Choose a pre-

defined pattern “1-2-3-4” from the “select a predefined pattern” 

drop-down list, which corresponds to a linear concentration increase 

in groups 0, 15, 30, and 45, accordingly. Alternatively, users can 

specify their own patterns in the “define your own pattern” text 

field. 

ii. Click the „Submit’ button beside the drop-down list used in the 

previous step. The result is shown in Fig. A4a.  The light blue shows 

those metabolites exhibiting a negative correlation and the light pink 

shows those with a positive correlation with the given pattern of 

change.  

iii. Click the “view details” link to see a table of all the compounds 

listed as well as their correlation coefficients. Clicking any 

compound name will generate a graphic summary of its 

concentration distribution within each group (Fig. A4b). 
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B.  Correlation with a specific feature 

i. Based on the above analysis and a review of the literature, we know 

that elevated levels of Endotoxin are important for initiating certain 

inflammatory responses. We are interested in identifying other 

metabolites with patterns of change similar to Endotoxin. We will use 

the default “Pearson r” as the distance measure and then select 

“Endotoxin” from the “Select a feature” drop-down list. 

ii. Click the “Submit” button. The resulting image shows a number of 

other features that are either positively or negatively correlated to 

Endotoxin levels.  The details can be obtained by following the 

“view details” link. 

10|  Report generation and result download (Time: 20 sec). Click the “Download” node 

on the navigation tree. MetaboAnalyst will generate a detailed analysis report based 

on the steps that the user has previously executed. The report contains a brief 

description of each method used followed by the graphical and textual results based 

on the last parameter set.  The normalized data, as well as any graphs generated 

during the analysis are also available for download. 

 

Multivariate Data Analysis (Time: ~10 minutes) 

11|  Data exploration and visualization with PCA (Time: 2-3 min). PCA summarizes data 

into a few components that explains most of data variance. Click the “PCA” node on 

the navigation tree to enter the PCA page.  This page shows six main output panels 

from MetaboAnalyst‟s PCA analysis. The default view is a pair-wise score plot from 

the top five PCs with the diagonal panels showing the explained variance.  
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12|  Click the “2D score plot” tab to see a detailed scores plot using PC1 and PC2. The 

samples are labeled and colored according to their group memberships.  In this view, 

users should look for: (a) Outliers - if there are obvious outliers, use the 

“DataEditor” under the “Processing” navigation tree to exclude outliers. Outlier 

removal should be done with considerable care and outliers should only be removed 

only if there is some clear justification (sample stability problems, sample collection 

issues, instrument problems, typographical errors, etc.); (b) Sample dispersion - if the 

data points in the score plot are not well dispersed or exhibit a high degree of 

skewing, this may be due to insufficient normalization. Click the “Normalization” 

node under the “Processing” branch to choose a different normalization procedure. In 

particular, Autoscaling or Range Scaling is very effective for correcting severely 

skewed data.   

13|  In our case, no obvious outliers or skewed distribution can be detected.  Furthermore, 

some modest separation or clustering is noticed among different groups. There are 

also some clusters that appear to overlap with each other. Users can click the “3D 

score plot” to see if a better separation can be identified with an extra dimension.   

14|  Identification of influential or important features (Time: 15-30 sec). If good 

separation patterns are seen in a scores plot, users should go to the “Loading plot” as 

well as the “Biplot” views to identify those features that are most responsible for the 

separation.  The loading plot can be viewed either as a scatter plot or a bar plot as 

specified by the user. In this particular case, since there are no clear separations, it is 

very difficult to identify which features are important. We will use a supervised 

method - PLS-DA for this purpose.   

15|  Data exploration and visualization with PLS-DA (Time: 1- 2 min). PLS-DA can 
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perform both classification and feature selection. Click the “PLS-DA” node on the 

navigation tree to start this analysis. The default view is pair-wise summary of the 

score plots of the top 5 components.  

16|  Click the “2D Score plot” for a detailed view of the separation patterns. A much 

better separation is obtained with PLS-DA compared to the PCA result obtained in 

Step 10. The 3D Score plot shows an almost perfect separation with the first three 

components (Fig. A5a). 

17|  Choosing the optimal number of components (Time: 1-2 min). MetaboAnalyst 

calculates R
2
, Q

2
 and prediction accuracies through cross-validation. Click the “Cross 

Validation” tab to start the process.  Users can choose “10-fold cross validation” or 

“Leave-one-out cross validation (LOOCV)”.  In this case, we will choose “LOOCV” 

and click the “Submit” button. The result indicates that using the top two 

components gives the best performance based on Q
2
 (Fig. A5b). Click the “view 

details …” link to get a detailed table of the calculated values.   

? TROUBLESHOOTING (SEE TABLE A2) 

18|  Result validation (Time: 2-3 min). As noted earlier, PLS-DA tends to overfit the data 

and this can often lead to false separations or incorrect classification.  As a result 

PLS-DA models need to be validated to see if the separation is statistically significant 

or due to random noise. This can be done using permutation tests. In each 

permutation, a PLS-DA model is built between the data (X) and the permuted class 

labels (Y) using the optimal number of components determined in the previous step. 

MetaboAnalyst provides two kinds of performance measures: (a) The separation 

distance which is defined as the ratio of the between-group sum of the squares and 

the within-group sum of squares (B/W-ratio) as suggested by Bijlsma et al (127). (b) 
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The prediction accuracy. This is the default approach used by MetaboAnalyst.  Click 

the “Permutation” button to view the results. The resulting histogram summarizes 

the distribution of the permutation test scores with the red arrow indicating the 

performance based on the original labels. The further the arrow it is to the right of the 

distribution, the more significant the separation between the two groups. Fig. A5c 

shows a typical permutation result based on separation distance. As seen in this 

figure, the original class assignment is very significant and not part of the distribution 

we obtained using the permuted data. A p-value < 0.0005 is reported based on 2000 

permutations.  

? TROUBLESHOOTING (SEE TABLE A2) 

19|  Identification of important features (Time: 1-2 min).  Click the “Var. Importance” 

tab to see a list of important features identified based on the VIP score (Fig. A5d). 

For multiple group analysis, the VIP score is calculated for each component. The 

overall VIP score shown in the figure is the average across all the selected 

components. Users can also use the coefficient - based importance measure.  For 

multiple-group discriminant analysis, the same number of predictors will be built 

with one for each group. The overall coefficient-based importance is the average of 

feature coefficients in all predictors. Click the “View details …” link to see the 

individual VIP scores in each selected component, or the coefficients in each group 

predictor if coefficient-based importance is used. 

? TROUBLESHOOTING (SEE TABLE A2) 

20|  Report generation and result download (Time: 20-30 sec). Click the “Download” 

node to download all the data, tables, figures produced from this particular analysis. 
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Metabolite Set Enrichment Analysis (Time: 5-10 minutes) 

21|  In the Upload page, click the “Enrichment Analysis” tab.  

22|  There are three drop-down panels for three different types of enrichment analysis. 

Each method accepts a different data type: (a) A list of compound names entered in a 

single-column format for over-representation analysis (ORA); (b) A list of compound 

concentrations entered as two-column table for single sample profiling (SSP); (c) A 

concentration table (.csv) with samples in rows and metabolites in columns for 

quantitative enrichment analysis (QEA). The phenotype information must be placed 

in the second column and can be binary, multi-class, or continuous. Click the third 

drop-down pane “A concentration table (quantitative enrichment analysis)”. 

23|  In the open page, click “Browse” to locate the “human_cachexia.csv” data file. 

24|  Make sure the selected compound label type” is “compound names” and the 

phenotype label is “Discrete (Classification)”, and then click “Submit”. 

? TROUBLESHOOTING (SEE TABLE A2) 

25|  Compound name conversion (Time: 1- 2 min). The purpose of this step is to compare 

and convert the compound names to common compound names used in the HMDB. 

The compound identities can be specified by common names or major database IDs 

(i.e. KEGG, PubChem, HMDB, MetLin, BiGG, etc). MetaboAnalyst‟s compound 

name/ID conversion is based on a name-mapping table from the HMDB. Each 

HMDB compound ID is associated with a common name, a set of synonyms, as well 

as compound IDs used in other major metabolomic databases. Any naming 

inconsistency is flagged and displayed to users for manual inspection and correction 

(see Step 7 for more details).  
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Critical Step: users must label their compounds with either common compound 

names or common database IDs. Abbreviated names usually cannot be recognized. 

Unmatched or unidentified compounds will be excluded from downstream analyses.  

26|  (Optional) Concentration comparison (Time: 1-2 min). This step is only applicable 

when the uploaded data is a list of compound concentrations used for SSP.  The basic 

idea behind SSP is to compare the measured concentration values of each compound 

to its normal reference ranges in the corresponding biofluid. For common human 

biofluids such as blood, urine or CSF, normal concentration ranges are known for 

many metabolites. In clinical metabolomic studies it is often desirable to know 

whether certain metabolite concentrations in a given sample are higher or lower than 

their normal ranges. This procedure is designed to provide this kind of analysis. Click 

the “Conc. check” to start concentration comparison. By default, only compounds 

with concentrations above or below all the known or reported normal ranges will be 

selected for further investigation. Users should manually select or deselect 

compounds to override this default selection by inspecting the concentration 

comparison plots as well as the original reports by clicking the image icon in the 

“Details” column. 

27|  (Optional) Data normalization (Time: 10-20 sec). This step is only applicable when 

the uploaded data is a concentration table. In this case, we select “Normalization by a 

reference sample”, and then choose “create a pooled average sample from the 

„control‟ group. Choose “Autoscaling” for column-wise normalization.   

28|  (Optional) Data visualization and outlier detection (Time: 1-2 min). The purpose of 

this step is to check if the data values are relatively homogenous and for outlier 

detection. Click the “PCA” node to open the PCA page. On the 2D score plot, a clear 

outlier “PIF_115” is noticeable as it sits far away from all other data points.  This 
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particular outlier is due to sample deterioration/contamination; Follow the route 

“Processing → DataEditor” and select “PIF_115” under the “Sample Editor” tab, 

click “Remove” and then click “Finish” to go back to the normalization page. 

Perform the data normalization as Step 27. Re-check the PCA score plot. This time, 

no obvious outlier should be detected. Follow the “Enrichment → Set param.” and 

enter the page to specify parameters for enrichment analysis. 

29|  Set parameters for enrichment analysis (Time: 30 sec – 1 min). In this step, users 

must specify a metabolite set library (or upload a custom metabolite set library) to 

start the analysis. Users can also indicate whether a filter should be applied to 

exclude metabolite sets containing very few compounds. In this case, we use the 

default “Pathway-associated metabolite sets” and click the “Next” button. 

30|  View the MSEA results (Time: 3-5 min). The MSEA result is presented both 

graphically and in a detailed table (Fig. A6a). The horizontal bar graph summarizes 

the most significant metabolite sets identified during the analysis. The bars are 

colored based on their p-values and the bar length is based on the fold enrichment 

calculated as the  actual matched # / expected  #  of  match  (for over-representation 

analysis) and calculated statistic / expected  statistic  (for quantitative enrichment 

analysis), respectively.  The Bonferroni corrected p-value and FDR are also provided. 

Users can click the image icon in the “Details” column of each matched metabolite 

set to view all its constituent metabolites with matched ones highlighted in red (Fig. 

A6b), as well as SMPDB pathway images(147) (when available). 

31|  Report generation and result download (Time: 10-20 sec). Click the „Download‟ 

node to download the analysis report, images as well as the processed data. 
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Metabolic Pathway Analysis (Time: ~ 10 minutes) 

32|  Data upload and processing (Time: 2- 3 min). In the Upload page, click the 

“Pathway Analysis” tab to start upload and process the “human_cachexia.csv” data. 

The steps are similar to those involved in the enrichment analysis (see Steps 21-25 

for more details).  Note that users can also provide a list of compound names for 

pathway analysis. 

? TROUBLESHOOTING (SEE TABLE A2) 

33|  Set parameters for pathway analysis (Time: 30 sec-1 min). Three parameters must be 

specified for pathway analysis including the pathway library, the algorithm for 

pathway enrichment analysis, and the algorithm for topology analysis. Users can also 

supply a reference metabolome to correct for any potential bias in the enrichment 

analysis. The reference metabolome is specified as a list of KEGG compound IDs. In 

this case, we select the “Homo sapiens” library and use the default “Global Test” and 

“Relative Betweenness Centrality” for pathway enrichment analysis and pathway 

topology analysis, respectively.  

34|  Result visualization (Time: 3-5 min). The results from the pathway analysis are 

presented in two parts - a graphical output on the top section and a table containing 

all the numerical results at the bottom. Users can intuitively explore the results by 

pointing and clicking on various graphic elements.  There are three types of view 

(Fig. A7). The left panel is the “metabolome view” which displays all the matched 

pathways as circles (Fig. A7a). The color and size of each circle is based on their p-

values and pathway impact values, respectively. Pointing the mouse over different 

nodes will show the corresponding pathway names. Clicking the node of interests 

will launch the corresponding “pathway view” on the right panel (Fig. A7b). Users 
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can zoom or drag to focus on a particular section the pathway.  Clicking on any 

matched compound node (with highlighted background) will show the corresponding 

“compound view” which contains detailed summary of the compound concentrations, 

importance measure, as well as the p value (Fig. A7c).  

35|  Report generation and result download (Time: 10-20 sec). Click the “Download” 

node to get the complete analysis report as well as the processed data and images 

produced during the analysis. 

Timing  

The times required to perform the steps described in the protocol depend on the data set 

size as well as the number of active users connected to the web server. For the test 

datasets used for these protocols, most results should be returned in a few seconds after a 

user has selected the appropriate parameters. The most time consuming computational 

step is probably the permutation test used by PLS-DA (15-20 sec for 1000 permutations). 

The most time-consuming non-computational test is typically the data visualization or 

data inspection step. Data upload, processing and normalization (Steps 2-7) should take 

about 5-10 min; feature selection using univariate analysis (Steps 8-10) usually take 

around 3-5 min; multivariate analysis (Steps 11-20) take around 10 min, respectively.  For 

high-level functional analysis, metabolite set enrichment analysis (Steps 21-31) should 

take 5-10 min, while metabolic pathway analysis (Steps 32-35) should occupy ~10 min, 

respectively. Once the data has been uploaded, an experienced user should be able to 

execute the full protocol in 30-40 min. 
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Anticipated Results 

Graphical Output: 

The graphical outputs produced during the analysis procedures are given in Figures A1-

7. Some of MetaboAnalyst‟s algorithms use time-dependent random number generators 

to calculate certain statistical values and the results may vary slightly among runs.  

Data Processing: 

The data integrity check for the data in “cow_diet.csv” will detect four groups with a 

total of 51 zero values and no missing values.  The data integrity check for 

“human_cachexia” will yield two groups with no zero or missing values.  

Feature Selection Using Univariate Methods: 

In MetaboAnalyst‟s ANOVA analysis of the “cow_diet.csv” data, the top five compounds 

identified with the default threshold should be: Endotoxin, 3-PP, Glucose, Isobutyrate, 

and Methylamine.  The top five compounds identified using SAM method will be the 

same. In correlation analysis using the pre-defined “1-2-3-4” pattern, Endotoxin and 

Alanine are the top two compounds that will be positively correlated with this pattern, 

while 3-PP and Aspartate are the top two compounds that will be negatively correlated 

with this pattern.  The same compounds should be identified as being correlated/anti-

correlated with “Endotoxin” using the “Pearson r”.  

Multivariate Data Analysis: 

The score plot from the PCA analysis of the “cow_diet.csv” data should not show a clear 

separation, with group 1 and 2 overlapping significantly and group 3 slightly overlapping 

with group 2 and 4. A much better group separation will be achieved via PLS-DA.  From 

PLS-DA, the five most important compounds identified by VIP will be: Endotoxin, 3-PP, 

Alanine, Methylamine, and Glucose. The best PLS-DA model will use just top two 
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components based on the Q
2
 score estimated from LOOCV (0.814). The p-value based on 

2000 permutations should yield a value of p < 5e-04, which is very significant. 

Metabolite Set Enrichment Analysis: 

All compound names from the “human_cachexia.csv” data set should be found to have an 

exact match during the name conversion step.  The PCA score plot should not show a 

clear separation, although it should show PIF_115 as being a clear outlier.  In the 

enrichment analysis using the pathway-based metabolite sets, the top five metabolic 

pathways that appear to be associated with cachexia will be – Pyrimidine metabolism, 

Beta-alanine metabolism, Ketone body metabolism, Purine metabolism, and Glutamate 

metabolism. 

Metabolic Pathway Analysis: 

The top five pathways from the “human_cachexia.csv” data set that should be identified 

by pathway enrichment analysis alone are: Pyrimidine metabolism, Pantothenate and 

CoA biosynthesis, Beta-alanine metabolism, Synthesis and degradation of ketone bodies, 

and Propanoate metabolism.  Note that three of these pathways are similar to those 

previously identified by MSEA.  The top three pathways identified by topology analysis 

alone should be: Glycine, serine and threonine metabolism, Pyruvate metabolism, and 

Taurine and hypotaurine metabolism. Overall, three pathways - Pantothenate and CoA 

biosynthesis, Citrate cycle (TCA cycle), Alanine, aspartate and glutamate metabolism 

appear to be perturbed as a consequence of cachexia as these will be located in the 

diagonal area of the plot with relatively good scores from both analyses.   
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Tables 

Table A1 Comparison of different metabolomic data analysis tools.  

The level of support is rated by the number of „+‟, with „+++‟ as the highest.  

Tool MetaboAnalyst MeltDB metaP-Server SIMCA-P SAS 

Software type Web-based Web-based Web-based Stand-alone Stand-alone 

License Free Free 

(registry 

required) 

Free  Commercial Commercial 

Data input Data table, NMR, 

MS, GC-MS data, 

compound/peak lists 

Raw mass 

spectral files 

Data table Data table  Data table 

Graphical 

interface 

+++ ++ ++ +++ +/- 

Normalization +++ + + ++ ++ 

Univariate 

analysis 

+++ ++ +++  +++ 

Multivariate 

analysis 

+++ ++ + +++ +++ 

Clustering +++ ++   ++ 

Classification ++    ++ 

Enrichment 

analysis 

++     

Pathway 

analysis 

+++  +   

Pathway 

visualization 

++     

Integration 

with other 

omics data 

 +    

Peak 

annotation 

++ +++    
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Table A2 Troubleshooting guide. 

Step Problem Possible reason Possible solution 

1 The content of 

the home page 

does not show 

up  

JavaScript is disabled in 

your browser 

For Mozilla Firefox 3.0+, go to the 

Tools → Options → Content, then 

select the checkbox beside “Enable 

JavaScript”;  For Internet Explorer 

8.0, go to the “Tools → Internet 

Options → Security, then select 

“Internet” from the Zone icons. 

Click the “Custom level …” 

button. From the list of available 

options, make sure the “Disable” 

radio button is not selected under 

“Active scripting” item;  For Safari 

4.0 +, go to the Edit → Preferences 

→ Security, then select the 

checkbox beside “Enable 

JavaScript”; Please check the 

documentation for other browsers 

on how to enable JavaScript.  

2, 24, 32 Fail to upload 

data 

Non-unique or unusual 

names; small sample size; 

wrong data formats; 

unrecognized zip format.  

 

Make sure sample or feature (peak/ 

compound) names are unique and 

consist of a combination of English 

letters, underscores, or numbers for 

naming purposes; The names 

should contain no space or other 

special characters; Make sure at 

least three samples per group; 

Make sure the selected data format 

matches your data; For Microsoft 

Excel users, choose “CSV 

(Macintosh)” to generate .csv file; 

For WinZip (v12.0) users, choose 

the “Legacy compression (Zip 2.0 

compatible)” for compression. 

17-19 No image is 

generated 

The sample size is too small These procedures require a 

minimum of five samples per 

group 

10, 20, 

31, 35 

No PDF report 

is generated 

Some expected data are not 

generated 

Set appropriate parameter values to 

make sure the resulting images are 

generated; Make sure a minimum 

of five samples per group for PLS-

DA analysis.  
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Figures 

 

Figure A1. MetaboAnalyst’s flowchart.  

The procedures that have been described in the protocol are indicated by the corresponding steps. 
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Figure A2. Data upload view 

This screenshot shows MetaboAnalyst‟s available data analysis modules with the “Statistical 

Analysis” module being selected for data upload. Clicking the tab labeled “Enrichment Analysis” 

or “Pathway Analysis” will allow users to upload data for the corresponding data analysis. The 

navigation tree is located on the left panel with the current step “Upload” highlighted.  
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Figure A3. Data normalization view  

The graph summarizes the distribution of input data values before and after normalization. The 

box plots on the top show the concentration distributions of individual compounds, while the 

bottom plots show the overall concentration distribution based on kernel density estimation.   
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Figure A4. Multivariate analysis using PLS-DA  

(a) Correlation plot showing the compounds that are significantly associated with a given patterns 

“1-2-3-4” (a linear concentration increase under different conditions). The compounds are 

represented as horizontal bars with colors in light pink indicating positive correlations and light 

blue for negative correlations. Users can click the “view details” link to see a detailed table. (b) 

Box plots summarizing the concentration distributions of a selected compound. 
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Figure A5. Correlation analysis to identify features with specific patterns  

(a) PLS-DA 3D score plot. (b) Bar plots showing the three performance measures using different 

number of components. The red “*” indicates the best values of the currently selected measures 

(Q
2
). (c) The result of permutation tests summarized by a histogram. (d) The top 15 compounds 

ranked by VIP scores. 
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Figure A6. Results from metabolite set enrichment analysis  

(a) The result table summarizing the matched metabolite sets ranked by their p-values. (b) The 

detailed view of a matched metabolite set (accessed by clicking the corresponding bar icon on the 

last table column).  
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Figure A7. Metabolic pathway analysis and visualization  

 (a) The “metabolome view” showing all metabolic pathways arranged according to the scores 

from enrichment analysis (y-axis) and from topology analysis (x-axis). (b) The “pathway view” 

showing the corresponding metabolic pathway after clicking any node in the “metabolome view”. 

The matched metabolites are highlighted according to their p-values. Users can zoom or drag the 

pathway map to view a subset of the compounds. (c) The “compound view” showing the 

concentration distribution of the corresponding metabolite after clicking any matched compound 

node. The p-value and the node importance are indicated below. 

 
 


