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Abstract 

Using Particle Flow Code (PFC3D), a discrete element model is presented in this paper that 

allows direct modeling of stick-slip behavior in pre-existing weak planes such as joints, beddings 

and faults. The model is used to simulate a biaxial sliding experiment from literature on a saw-

cut specimen of Sierra granite with a single fault. The fault is represented by Smooth Joint 

Contact Model. Also, an algorithm is developed to record the stick-slip induced microseismic 

events along the fault. Once the results compared well with laboratory data, a parametric study 

has been conducted to investigate the evolution of model’s behavior due to varying factors such 

as resolution of the model, particles’ elasticity, fault’s coefficient of friction, fault’s stiffness and 

normal stress.  

The results show a decrease in shear strength of the fault in the models with smaller particles, 

smaller coefficient of friction of the fault, harder surrounding of the fault, softer faults and 

smaller normal stress on the fault. Also, a higher rate of displacements was observed for 

conditions resulting in smaller shear strength. An increase in b-values was observed by 

increasing the resolution or decreasing the normal stress on the fault while b-values were not 

sensitive to changes in elasticity of the fault or its surrounding. A larger number of recorded 

events were observed for the models with finer particles, smaller fault's coefficient of friction, 

harder fault’s surrounding, harder fault and smaller normal stress on the fault. The results suggest 

that it is possible for the two ends of a fault to be still while there are patches along the fault 

undergoing stick-slips. Such local stick-slips seem to provide a softer surrounding for their 

neighbor patches facilitating their subsequent stick-slips. 

Keywords: Stick-slip, Particle Flow Code (PFC), Microseismic, Fault Instability  
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1. Introduction 

It is believed that the mechanism of fault’s instability involves multiple local on and off slips of 

patches referred to as “stick-slip” along the fault (Brace & Byerlee, 1966). Such small stick-

slips may be recorded as “foreshocks” leading to “main shocks” and followed by “aftershocks” 

each releasing different levels of acoustic energy. Various aspects of fault’s instability has been 

already studied by laboratory experiments (Brune et al., 1993; Byerlee & Brace, 1968; 

Dieterich, 1981; Julian et al., 1998; Ohnaka, 1973) as well as numerical continuum models 

(Dalguer & Day, 2006; Day et al., 2005; Galis et al., 2008; Xing et al., 2004) and numerical 

discontinuum models (Finch et al., 2003; Mora & Place, 1994; Morgan, 2004; Place et al., 

2002).  

Compared to continuum models, Discrete Element Method (DEM) has the capability of 

modeling geometrical heterogeneity by size distribution of particles as well as looking into the 

rupture process of rocks with more details. Using Particle Flow Code (PFC3D) v.5.0 in this 

research, a discrete representation of the fault is modeled and release of acoustic energy due to 

its stick-slip instability is studied. For this purpose, a large scale laboratory experiment 

conducted on granite with a single fault originally reported by Dieterich (1979) and recently 

repeated with microseismic recording by McLaskey & Kilgore (2013) has been numerically 

simulated.  

Traditionally, the approach for modeling microseismicity with PFC has been to consider each 

bond breakage (crack) as a single AE event with further possibility of clustering the events to 

form more realistic magnitudes (Hazzard, 1998). This approach has been successfully used in 

modeling the intact rock problems where the events are believed to have a compressive 
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induced crack nature (Hazzard & Young, 2002, 2004; Young et al., 2005, 2001; Zhao & 

Young, 2011). However, in the present research, new routines have been developed for 

recording slip-induced microseismic events. The results have been compared with the 

experimental data. Then, a parametric study has been conducted to study the effect of various 

factors on fault’s behavior. 

This knowledge could also be useful for problems other than earthquake studies where there is 

likelihood of two planes sliding on each other such as landslides (Peng & Gomberg, 2010), 

basal gliding of ice glaciers (Jansen, 2006; Roux et al., 2008) and microseismic monitoring of a 

sedimentary rock mass in Petroleum projects (Fairhurst, 2013; Kristiansen et al., 2000). 

2. Theory of Slip 

The basics of how slip occurs in physics are briefly explained using Figure 1 (left). As the 

applied driving force to the block, fd, is increased, the resistive frictional force (solid red line) is 

increased too until at point a, fd reaches the maximum static frictional resistance, the frictional 

resistance drops to lower values known as kinetic friction (or as simplified by the dotted blue 

curve), the spring unloads following a line with the slope equal to its stiffness (dashed green 

line), K, and the block starts to move. 

The spring’s unloading continues even after the applied force equals to kinetic friction at point 

c, meaning deceleration of the block until the final stop at point e where the excess energy is 

dissipated (Δabc equals Δcde) (Scholz, 2002). In reality, once the motion eventually stops 

(point e), there has to be a “healing” mechanism for friction to regain its static value so that 

further slips could happen. 
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Figure 1: (Left) Solid red line is variations of the resistive frictional force. The simplified change in friction 

is shown in dotted blue. The dashed green line shows variations of the driving force once the block starts to 

move until it stops. (Right) Horizontal section of a more realistic model for the fault. The masses, stiffness 

of springs and normal stress on each block are not necessarily equal due to heterogeneity. Three arbitrary 

patches are shown with dotted red, solid purple and dashed green. The red and green patches can slide 

simultaneously. 

This process of multiple slips and stops is called “stick-slip” and is believed to be the 

mechanism of earthquakes (Brace & Byerlee, 1970). Rabinowicz (1951, 1958) first suggested 

that if two surfaces are in contact in a stationary condition under load for time t, the coefficient 

of static friction increases approximately as logt. He also proposed that a minimum 

displacement of Dc, “critical slip distance”, is required for transition from static friction state to 

kinetic friction state. With regard to Figure 1 (left), the condition required for the onset of 

instability can be mathematically expressed by Eq. (1):  

 
( )f s k

c

f N
K

u D

  
 


  (1) 
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where ff

u




 is variations of resistive frictional force, ff, for increments of displacement, u. 

The parameters μs and μk are static and kinetic coefficients of friction, respectively, N is the 

normal stress on the block, Dc is critical slip distance and K is the stiffness of spring. 

The physical implication of the stiffness of spring in this model, K, can be thought of as the 

elastic conditions of the vicinity of a fault in nature or the stiffness of the loading machine in 

the laboratory. From Eq. (1), it is obvious that instability depends on the normal stress, elastic 

properties of the medium surrounding the fault and roughness of the fault. The major 

microseismic events in the field are believed to be the result of stress drop followed by slip on 

fractures and consequently release of energy (Damjanac et al., 2010). However, if the stress 

drop is not large enough to impose excess energy to the system (i.e. after point “a” in Figure 1 

(left), the drop in resistive frictional force (solid red line) is such that it is placed above the 

unloading line (dashed green line), the slip would be aseismic. Therefore, in reality not every 

slip is the source of instability and considered as seismic. 

The assumption behind the model explained by Figure 1 (left) is that the block can be regarded 

as a single mass point. Persson & Tosatti (1999) suggest that for this assumption to be valid the 

dimension of block, LB, has to be smaller than a characteristic “elastic coherence length”, ξ, 

otherwise, the block has to be discretized to smaller cells with the size, ξ, connected to each 

other by elastic springs. Therefore, it is necessary to take into account heterogeneity and 

nonuniform geometry of faults (Nielsen et al., 2000, 1995). A more realistic model for the fault 

is shown in Figure 1 (right). In this model, the mass, stiffness of springs and normal stress on 
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each block is different and thus different patches may form and slide at different times or 

simultaneously.  

3. Description of the Experiment 

Dieterich (1979) studied the scale dependence of fault instability process through a large scale 

biaxial laboratory experiment. A large specimen of Sierra white granite with 1.5x1.5x0.419 m 

dimensions was sawed diagonally at the quarry and roughened in the laboratory by lapping the 

two surfaces together with 30 grit silicon carbide abrasive to represent the fault with peak-to-

trough surface roughness of 0.08 mm (Dieterich, 1981). He concluded that a minimum fault 

length was required so that confined shear instability could occur along a preexisting fault. 

Although strain gauges and velocity transducers were mounted on the model, no types of 

acoustic emission sensors were used during his experiment. The scalar seismic moments were 

later calculated from the general formula as: 

 0M DA   (2) 

where μ is the shear modulus, D is the average local seismic displacement and A is the area of the 

fault. Similar experiment on the same specimen was conducted by McLaskey et al. (2014) and 

McLaskey & Kilgore (2013) at the USGS, California, with 14 piezoelectric sensors recording 

the microseismic events during the test. This large model would allow the fault to be studied 

realistically so that some parts of it could slide while the rest was not slipping. In this way, 

individual stick-slips can occur during the loading with the possibility that they might trigger 

other slides. However, since this specimen had been used for 25 years resulting in many stick 
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slip events and cumulative slips without additional surface preparation, McLaskey et al. (2014) 

believed that the present surface was smoother than what it was in 1981. 

The test setup was a steel frame with four flatjacks between the frame and the specimen as 

shown in Figure 2. The model was loaded in σ2 direction and unloaded in σ1 direction by 

increasing and decreasing the pressures slowly along the 1 and 2 directions, respectively, with 

the same rate of 0.001 MPa/s. This way, the normal pressure on the fault was kept constant 

while the fault was shearing. They tried to model the earthquake cycle by loading, resetting and 

holding at four stages. Slip sensors were installed on top of the fault to measure relative slips 

from one side of the fault to the other. Piezoelectric sensors were also installed on top and 

bottom of the fault. The sensors would respond to the vertical component of motion in 

frequency ranges of ~100 Hz to ~1 MHz and were installed 200 mm off the fault. The onset of 

instability was observed at 3.7 MPa of shear stress. At this point, the fault would experience 

several small falls and rises in the shear stress each accompanied by a small displacement 

along the fault. These small displacements have been reported to range from 0.08 to 0.15 mm 

(McLaskey, 2013). The shear modulus and critical slip distance of the Sierra white granite 

were estimated to be around 20 GPa and 5 micron, respectively (McLaskey, 2013). 
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Figure 2: (Left) McLaskey’s experimental setup. (Right) Slip sensors and piezoelectric sensors. Piezoelectic 

sensors are mounted on top and bottom of the sample. Flatjacks are marked with FJ1 to FJ4. Strain gages 

are shown by S1 to S15. (McLaskey & Kilgore, 2013) 

4. Numerical Model 

In this research, Particle Flow Code (PFC3D) v.5.0 is used to model the experiment reported 

by McLaskey & Kilgore (2013). PFC3D is an explicit implementation of Distinct Element 

Method (DEM) developed by Itasca and despite continuum models does not require mesh 

generation. In this code, it is assumed that the particles are rigid (non-deformable). In a PFC3D 

model, particles are bonded by models such as Parallel Bond Model and Smooth Joint Model. 

Parallel bonds can transmit both forces and moments and can be envisioned as a short length 

beam or a “set” of elastic springs uniformly distributed over a circular cross section at the 

contact point (Potyondy & Cundall, 2004). 

Smooth joint model is used to simulate interfaces. The traditional way to model an interface is 

to change the properties such as strength of the bonds along the interface to those representing 

the real interface. The problem with this approach is bumpiness of the boundaries that can 

affect the behavior of the system. The effect of these bumpy boundaries could become more 
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important, when it comes to modeling joints or weak planes. A possible solution is to use 

smaller size particles along the interface which is not practical in large models. In order to 

solve this problem, another type of bond that simulates an “interface” regardless of the 

orientation of the particles along it, is “Smooth Joint Contact Model” (Mas Ivars et al., 2008). 

This model could be assigned to all the contacts between particles that lie on or along the 

opposite sides of the interface. This model overcomes the drawback of the boundaries that are 

bumpy. The reason for calling it “smooth” is because of the constitutive behavior that allows 

particles bonded by this contact model to overlap and to “slide” on each other instead of 

moving around one another. Once a smooth joint model is created, the already existing contact 

or parallel bond models are deleted automatically for the contacts along the interface. Figure 3 

shows the behavior of smooth joint model compared to the usual parallel bond model.  

In PFC3D, it is assumed that due to small timesteps, a disturbance cannot propagate farther 

than neighbor particles and therefore velocities and accelerations can be considered constant 

during each cycle. Once a force is applied to the model, integrating twice the Law of Motion 

using the timestep, velocities and then displacements are calculated that result in the updated 

position of each particle. The updated positions are then used by the Force-Displacement Law 

to calculate the new forces and so on. This process of cycling is continued until a pre-defined 

criterion is met.  
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Figure 3: a) standard contact model with relative normal and tangential forces with regard to their 

orientation b) displacement of the particles bonded by standard contact model assuming the bottom ball is 

fixed c) normal and tangential forces on the particles whose contact is located along the s mooth joint 

regarding their orientation with respect to the joint c) displacement of particles bonded by smooth joint 

model (Mas Ivars, 2008) 

4.1. Algorithm for Recording Slip-Induced Microseismicity 

The numerical representation of the fault is composed of all the contact points whose at least one 

of the particles is located along the fault. Once a slip occurs at any of these contacts, if the 

normal stress of that contact is greater than 0.1 MPa, an “event” is created and the time at 

which slip initiated is recorded. The reason for this threshold can be explained using Figure 1 

(left). According to this Figure, if the simple static-dynamic friction law (dotted blue curve) is 

used instead of the realistic frictional resistance curve (solid red), the rate of decrease in 

frictional resistance during slip  will always be faster than the rate of decrease in driving force 

and thus every slip will be seismic. It is known that low stiffness, high normal stress and small 

DC facilitate the unstable slip (Dieterich, 1979). Based on Eq. (1), assuming the frictional 
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properties and the stiffness of surroundings are constant along the fault, normal stress will be the 

only controlling factor for the onset of instability and thus a low normal stress results in the fault 

sliding stably. Therefore, it is necessary to set a minimum normal stress for the slips to be 

considered seismic. In practice, this threshold has the advantage of reducing the number of 

recorded events and faster computation time (Hazzard & Pettitt, 2013). However, it will be 

shown in section 4.3.2. of this paper that the models presented in this study are not sensitive to 

this threshold.  

According to laboratory stick-slip friction data reported by McGarr (1994), the dynamic friction 

in this study has been assumed equal to 80% of the static friction. Therefore, once a slip passes 

the normal stress criterion, the coefficient of friction of that contact is dropped to 80% of its 

original value. Once the contact stops sliding, the coefficient of friction is readjusted to its static 

value. This is implemented to take into account the healing phenomenon (due to processes such 

as creep in the field or thermal mechanism in the lab causing the micro-asperities to weld 

together) that is believed to be a necessary component for generation of earthquakes in nature 

(McLaskey et al., 2012). For each seismic slip, the start and end times as well as displacement of 

the contact are recorded. Considering each slip as one event, results in all the magnitudes to be 

almost equal. A good practice is to assume a group of slips close in time and space forming a slip 

patch and clustering them to form a single event. Therefore, the events have been clustered if 

they had two conditions: they were within a space window and their duration of slip would 

overlap for at least one cycle. Another criterion has also been implemented for duration of each 

slip. Assuming the shear can propagate as slowly as 0.5 times the shear wave velocity of the 

material (Hazzard & Young, 2000), the minimum duration of a slip to be considered seismic is 

calculated as: 
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 min

_
int

0.5 _

space window
T

ae svel

 
  

 
  (3) 

where Tmin is the time required for the shear wave to propagate the space window, space_window 

is considered to be 0.42 m in this study and ae_svel is the shear wave velocity equal to 2700 m/s 

for Sierra granite as reported by McLaskey et al. (2014). Equation (3) shows that not only the 

choice of space window affects the size of clusters and therefore distribution of events’ 

magnitudes, but also it affects the minimum lifetime of a slip to be considered seismic.  

Therefore, choosing an appropriate space window can be considered as part of the model’s 

calibration. For a similar clustering algorithm but for crack induced events, Hazzard (1998) 

showed that the space window of 5 particle diameters would yield the best results in a 2D model 

and above this value, the b-values were not dependent on the size of window while for a 3D 

model a smaller space window would be more reasonable. Later in a study of unstable fault slip 

in Lac Du Bonnet granite, Hazzard et al. (2002) showed that 3 particle diameters would result in 

a realistic b-value. In the present model, considering the maximum diameter of the particles is 

0.14 m, a space window equal to 0.42 m (3 particle diameters) has been used. Comparison of the 

results with data reported by McLaskey et al. (2014) and McLaskey & Kilgore (2013) that will 

be shown in the next sections confirms this has been an appropriate choice. 

At the end of the test, all the slips that occurred within the space window and with the durations 

overlapping at least 1 cycle are clustered together. The area of each clustered event is calculated 

assuming the event as an ellipse. The largest and smallest radii of the ellipse are calculated based 

on the farthest and closest particles to the center of the event, respectively.  
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In order to calculate the centroid of each event, the number of contacts forming that event has 

been used. However, it has to be emphasized that the number of “contacts” forming an event is 

not necessarily the same as the number of “slips” forming that event. As an example, the 

clustering process for three smooth joint contacts, A, B and C, is schematically illustrated in 

Figure 4. 

 

Figure 4: A section of the fault illustrating the clustering process for three contacts, A, B and C.  It’s 

assumed no other contacts within the space window slipped from 0.10 to 0.20 s. Size of the elliptic event is 

determined based on the closest and farthest contacts to the center of the event (i.e. B and A, respectively)  
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In this Figure, imagine contact A starts slipping from 0.10 s to 0.15 s. At 0.13 s contact B starts 

slipping within the space window of contact A and therefore; so far these two slips constitute one 

event. The contact B slips until 0.20. At 0.15 s contact C starts slipping until 0.16 s at which 

point  contact A starts slipping “again” until 0.20 s. No other contacts slipped within the space 

window of contact A from 0.10 s to 0.20 s. In this example, although there are 4 slips forming 

one event, there are only three contacts involved and therefore, the location of contact A is used 

once for calculating the centroid (although it slipped twice). The centroid is simply calculated as 

the average of the locations of the contacts forming the event. Average displacement is calculated 

as the sum of all displacements associated to all the slips, 4 slips in this example, forming one 

event divided by the number of contacts in that event/cluster. Having the area of the event and 

the average displacement of all the contacts forming the cluster, seismic scalar moment, Mo, is 

calculated using Eq. (2). Eventually, magnitudes are calculated using Eq. (3): 

 0

2
log 6.0

3
wM M    (3).  

The whole idea of clustering is justified considering the fact that in nature, most seismic events 

are made up of small ruptures and shearing of asperities (Scholz, 2002). 

4.2. Results 

A discrete element model of the experiment reported by McLaskey et al. (2014) and McLaskey 

& Kilgore (2013) is made by PFC3D as shown in Figure 5. There are six walls surrounding the 

model. The wall on the face is not shown in this Figure to make the balls visible. The balls are 

bonded together by parallel bond model. In order to resemble the fault, smooth joint model has 
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been installed in all the contacts of all the particles located along the diagonal fault extending 

from top right to the bottom left of the model. 

 

Figure 5: The PFC3D model. The fault extends from the top right to the bottom left 

There is no direct one to one correspondence between the micro parameters of a discrete element 

model and macro parameters of the real rock. Therefore, the calibration process involves some 

trial and error attempt of varying the micro parameters until the desired macro response is 

observed (Itasca, 1999). However, in the present model, in order to eliminate the effect of 

possible bond breakages (cracks) on the fault’s behavior, the strength properties of parallel bonds 

were set to high values so that they would not control the results and therefore, such calibration 

for the parallel bond properties was no longer necessary. The fault (smooth joint) parameters 

were chosen so that the expected stick-slip behavior would be observed at the onset of instability 

at about 3.7 MPa as reported by McLaskey & Kilgore (2013). In order to keep the normal stress 

on the fault constant at 5 MPa during the test, the top and bottom walls were moving inwards 

while the right and left walls were moving outwards all four with the same velocity. The two 

walls on the back and front were not moving during the test. However, it has to be kept in mind 
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that due to complete symmetry in the fault’s location and loading scheme of this test as well as 

high strength properties of the parallel bonds, there will be practically no damage in any part of 

the model other than slip along the fault. The PFC3D parameters of the model are summarized 

in Table 1. 

Table 1: Micro-parameters used in PFC3D model of Sierra granite 

Ball Parameters Smooth Joint Parameters 

Average radius 
(m) 

Young's modulus 
(GPa) 

Normal stiffness 
(N/m

3
) 

Shear stiffness 
(N/m

3
) 

Coefficient of static 
friction 

md_ravg ba_Ec sj_kn sj_ks sj_fric 

0.056 2.1E10 2.1E10 2.1E10 1.05 

 

As the first pass to validate the model, the normal stress along the fault has been obtained during 

the test. In PFC3D, it is possible to record the stress and strain values in three different ways: 

wall-based, measurement-sphere based and particle-based. The wall based stresses are calculated 

as the sum of out-of-balance forces of all the particles in contact with the wall divided by the 

wall’s area. Measurement-spheres (or “circles” in 2D) are representative volumes in which an 

average value for the stress or strain is calculated. They can be defined at arbitrary places in the 

specimen. Particle based measurements represent the value of stress at one particular point. 

In order to ensure the normal stress remains constant on the fault, the wall-based stresses (shown 

in dashed red and purple in Figure 6) have been monitored. Considering the whole model as one 

big element, the normal stress on the fault, however, is calculated using a 2D transformation 

matrix as shown in Eq. (4): 

 cos 2 sin 2
2 2

x y x yfault

n xy

   
   

 
     (4) 
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where θ is 45⁰, 
xy  is assumed to be negligible and x  and 

y  are wall-based stresses along the 

x and y directions, respectively. As another measure of assurance, the normal stress on the fault 

is also determined by summing up all the normal forces of all the contacts with the smooth joint 

model assigned to them divided by their area. The wall-based and directly-measured normal 

stresses along the fault as well as the wall-based stresses along the x and y directions are plotted 

in Figure 6. As can be observed in this Figure, if the onset of instability is assumed as the point at 

which the increase in shear stress stops (i.e. 3.7 MPa), this point corresponds to about 0.22 s past 

the start of the test. Despite the laboratory experiment which has practical limitations for how 

much the fault can slip, in this PFC3D model, there is really no criterion for when the test should 

stop. Therefore, the test was stopped once 0.1% total displacement of the fault (i.e. 2 mm) was 

reached. Total displacement of the fault is calculated mathematically from the wall-based 

strains in the x and y directions. 



20 
 
 

 
Figure 6: Stress measurements during the test. Dotted blue curve starting at 5 MPa is the direct 

measurement of normal stress from the particles along the fault. The solid green curve at 5 MPa is the 

normal stress along the fault determined from the wall based stresses by the transformation matrix. The 

solid black curve starting at 0 MPa is shear stress along the fault directly measured from the smooth joint 

contacts. The two dashed symmetrical red and purple curves are the wall-based stresses along the x and y 

directions, respectively.  

As can be observed in Figure 6, the normal stress directly measured from the balls is a little bit 

smaller than the wall-based measurement which is as expected since the fault is modeled as a 

discontinuum surface. Other than that, the normal stress along the fault has been kept constant 

during the test. The overall shear stress along the fault versus time as well as a magnified 

section of the final stick-slip behavior is plotted in Figure 7. 
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Figure 7: The average shear stress along the fault versus time. Shear force is a vector with 3 components. 

Average shear stress of all the contacts with smooth joint model along the x and y directions are 

calculated by summing up their respective forces divided by their areas. Then, the average shear 

stress along the 45⁰ fault has been calculated by the stress transformation matrix. 

As can be observed in this Figure, the stick slips have been successfully modeled by the 

numerical model. Prior to the onset of instability at 3.7 MPa, McLaskey and Kilgore (2013) 

observed a linearly increasing shear stress throughout the test. An interesting observation from 

this Figure is that 3 stages in the slip behavior of the fault can be identified. The first stage is 

from 0 to about 3.2 MPa where the shear increases linearly with no major stick slips. The second 

stage starts from 3.2 MPa until about 3.7 MPa with minor stick slips while the shear is still 

increasing but non-linearly (i.e. the strength is still mobilizing). The final stage starts from 3.7 

MPa where the falls and rises of shear stress become more significant and the overall trend of 

shear stress becomes almost constant while the fault is sliding.  
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Location of the slips at two sides of the fault recorded in the PFC3D model is shown in Figure 8. 

As can be observed in this Figure, the events are uniformly spread along the fault. This is in 

agreement with the observation of McLaskey et al. (2014). 

 

Figure 8: The top figure shows the location of events reported by (McLaskey et al., 2014). Foreshocks and 

aftershocks are shown by circles and diamonds, respectively. They have not reported the events near the 

fault ends. The two figures at the bottom with blue background are the location of slips in the PFC3D 

model at both sides of the faults. The figure between these two is a side view of the fault with the location of 

events around it. No clustering is shown in this figure.  

In the PFC3D model, 223 slips have been recorded with the majority of magnitudes around -6 

and some -7. As was previously mentioned, a reasonable approach would be to cluster the slips 

close in time and space to represent more realistic events. After clustering, the number of events 
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is reduced to 131. As can be observed from the clusters shown in Figure 9, the largest events 

have occurred at the central section of the fault which is in agreement with McLaskey & Kilgore 

(2013). Due to difficulties in plotting ellipses, all the events in Figure 9 are illustrated with circles 

with diameters equal to the major axis of ellipses; otherwise as mentioned before, the area of 

each event has been calculated assuming it has an elliptic shape in general. It has to be 

emphasized that the number of events in a PFC model is a function of model’s resolution and 

therefore it is not reasonable to compare the number of PFC events directly with the real number 

of events recorded in the experiment. 

 

Figure 9: The clustered events in PFC3D model. A bigger radius shows a larger patch. Concentric  circles 

represent consecutive slips on the same contact.  

In their experiment reported in 2013 (McLaskey & Kilgore, 2013) the normal stress along the 

fault was kept constant at 5 MPa. However, in their recent 2014 publication, the test has been 

repeated with 4 and 6 MPa normal stresses along the fault. McLaskey et al. (2014) were able to 
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accurately locate 16 and 32 events for the test with 4 and 5 MPa normal stresses, respectively. In 

order to determine the mechanism of events, they performed a moment tensor inversion 

technique and reported that the majority of the events could be modeled by double couple 

mechanism resulted from frictional slips. The average displacement of each dynamic slip event 

(DSE) was reported to be about 50-150 microns occurring in about 3-5 ms with the source radii 

about 3-6 mm. A few larger foreshocks (M>-5.0) were not reported due to difficulty in analyzing 

them. In the PFC3D model, there are 98 smooth joint contacts forming the fault. The stick-slip 

behavior of a group of them during the test is shown in Figure 10. 

Although a general trend of increase in the shear stress followed by stick slips is observed for 

the fault in Figure 7, it can be observed from Figure 10 that different contacts do not 

necessarily follow the same stick slip pattern. In other words, for the small patches along the 

fault, not every drop in shear stress corresponds to a drop in the normal stress. This suggests 

the likelihood of existing of another process responsible for generation of local stick-slips. It is 

in agreement with McLaskey & Kilgore (2013) that some aseismic slips can possibly trigger 

repeated earthquakes in their vicinity. 
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Figure 10: Variations of stick-slip behavior in different contacts along the fault. Normal and shear forces 

are shown with solid blue and dashed red, respectively. 

4.3. Parametric Study 

A parametric study is presented in this section to investigate the effect of various parameters on 

the shear behavior of the fault as well as on generation of microseismic events. 
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4.3.1. Studying the Effect of Space Window’s Size 

A model with the same properties as mentioned in Table 1 is repeated with different space 

window’s sizes of 0.14, 0.28 and 0.42 m (equal to 1, 2 and 3 times the maximum diameter size of 

the balls, 0.14 m). In order to calculate the magnitudes, the shear modulus of 2 MPa has been 

used for the slipping patch in all the tests. The b-value plots as well as variations in the number of 

events for the three tests are shown in Figure 11. 

 

Figure 11: b-value plots as well as frequency of the number of events recorded during the tests  for three 

different sizes of space windows  

As can be observed in this Figure, an increase in the size of space window causes an increase in 

the appearance of magnitudes larger than -6 while for the smaller magnitudes, a reverse effect is 

observed. A comparison between the numerical b-value plots with the experiment is not accurate 

due to three reasons: a) McLaskey’s data belong to the tests with 4 and 6 MPa normal stress (not 

5 MPa) b) The loading in this study was continuous while in order to simulate the earthquake 

cycle their experiments would include loading, resetting and holding at four stages and c) 

Some magnitudes greater than -5 have not been reported by them. However, for the sake of 

comparison and considering the b-values, regardless of a-values, the size of space window 
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equal to 3 times the maximum diameter of the balls, 0.42 m, seems to provide the best match 

with reality and therefore, it has been used for the other tests presented in the paper.  

Also, a fewer number of clusters have been observed for greater sizes of space window which 

is as expected. 

4.3.2. Studying the Effect of Normal Stress Threshold for Seismic Events 

A model with the same properties as mentioned in Table 1 is repeated with three normal stress 

thresholds of 0.0 MPa (i.e. no threshold), 0.1 MPa and 3 MPa for the slips to be considered 

seismic (Figure 12). As was mentioned in section 4.1., although for the slips that pass the 

normal stress threshold the coefficient of friction is decreased to 80% of the static friction and 

thus it would affect the shear strength as well, no significant difference in shear-displacement 

and displacement-time plots was observed and therefore they are not included in the paper. 

However, as was expected, a lower threshold would result in a greater number of smaller 

events and also earlier appearance of events in the shear process. The b-values do not seem 

sensitive to this threshold.  

In nature, the overall normal stress on the fault would depend on the in-situ stresses as well as 

orientation of the fault while for the local patches along the fault, heterogeneity would also 

play a role. Therefore, this threshold would be more important if faults with different 

resolutions and or faults in different stress regimes were being compared. However, for the 

conditions tested in this section, the behavior of model does not seem sensitive to the choice of 

this threshold and thus 0.1 MPa has been used for the other tests presented in next sections. 
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Figure 12: Variations of model’s behavior for different normal stress thresholds for the slips to be 

considered seismic 

4.3.3. Studying the Effect of Discretization (Size of Particles)  

A model with the same properties as listed in Table 1 has been repeated with finer and coarser 

particles. The average radii of the particles in the three tests were 0.081 m (199 balls), 0056 m 

(649 balls) and 0.029 m (5164 balls). As shown in Figure 12, coarser balls would result in higher 

strengths, greater stress drops during stick-slip, slower rate of displacements and smaller b-

values. Although the events appear earlier in the finer model and the number of events are 

higher, the second stage in transitioning from elastic linear increase in shear strength to the final 

instability where the shear stress becomes constant, from 85% to peak strength, is less obvious in 

the finer model. This could be observed both in the shear-displacement plots and in frequency of 

events versus time plots where the slope of getting to the peak number of events is very steep for 

the finest model (Figure 13). 
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Figure 13: Variations of model’s behavior for different resolutions  

4.3.4. Studying the Effect of Fault’s Coefficient of Friction (sj_fric) 

A model with the same properties as mentioned in Table 1 is repeated with different fault’s 

coefficient of friction (1.05, 0.85 and 0.55) which is within the range from 0.6 to 1 as suggested 

by (Byerlee, 1978). The results shown in Figure 14 indicate a decrease in overall shear strength 

as well as an increase in the rate of displacements for smaller coefficients of friction. The number 

of magnitudes larger than -5.5 are not much sensitive to the fault’s coefficient of friction while an 

increase in the frequency of events smaller than -5.5 is observed for smaller coefficients which is 

consistent with the greater number of events observed for these faults.  
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Figure 14: Variations of model’s behavior for different coefficients of friction 

4.3.5. Studying the Effect of Particles Elasticity (ba_Ec) 

A model with the same properties as mentioned in Table 1 is repeated with varying the Young’s 

modulus of the balls (2.1e9, 2.1e10 and 2.1e11). This would represent the stiffness of the 

medium surrounding the fault. As shown in Figure 15, for the softest model (ba_Ec=2.1e9), 

small stick-slip instability was observed as early as 0.1 mm displacements were reached.This 

behavior continued until about 7 mm displacements (at 3.7 MPa shear stress) that could be 

considered as the onset of the second stage. The peak shear strength, 4.4 MPa, was reached after 
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9.6 mm displacements and 1.9 s after the start of the test. This is much longer compared to 

previous cases where the maximum shear strength was reached in a fraction of a second. The 

overall pattern of shear-displacement for the fault with softest surrounding (i.e. ba_Ec=2.1e9) 

included three stages in shear process similar to the model with Young’s modulus of balls equal 

to 2.1e10, but only the portion until 2 mm displacement is shown in Figure 15.  

 

Figure 15: Variations of model’s behavior for different Young’s modulus of the particles. Distribution of 

magnitudes for the softest model are plotted based on the events recorded until 2 mm and 9.6 mm 

displacements 

For the model with the surrounding harder than the fault itself a softening behavior is observed 

with almost no second stage in the shear process. With regard to the number of events, a softer 
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surrounding has not resulted in more emissions for the same amount of displacement and its only 

contribution has been to delay the process of displacements. An overall shift in the a-values 

towards larger magnitudes is also observed for the faults with softer surrounding while the b-

values are not much sensitive.  

4.3.6. Studying the Effect of Fault’s Elasticity (sj_kn & sj_ks) 

A model with the same properties as mentioned in Table 1 is repeated with varying the elastic 

properties of the smooth joint. As shown in Figure 16, higher shear strengths are observed for 

harder faults. The rate of deformations and b-value plots, however, do not seem to be much 

affected. A lower number of events is observed for softer faults.  
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Figure 16: Variations of model’s behavior for different elastic properties of the fault. Distribution of 

magnitudes for the model with softest fault properties are plotted based on the events recorded until 2 mm 

and 3.8 mm displacements 

4.3.7. Studying the Effect of Normal Stress  

A model with the same properties as mentioned in Table 1 is repeated with normal stresses along 

the fault equal to 3, 5 and 7 MPa. The plots in Figure 17 show an increase in the shear strength as 

well as a decrease in the rate of deformations for higher normal stresses. Also, for the same 

amount of deformation, higher normal stresses generate fewer emissions. An overall decrease in 

the b-value can be observed for higher normal stresses as well. 
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Figure 17: Variations of model’s behavior for different normal stresses. Distribution of magnitudes for the 

model with 7 MPa normal stress are plotted based on the events recorded until 2 mm and 2.8 mm 

displacements 

5. Discussion 

As was expected before, the behavior of the numerical model was sensitive to the elastic 

properties of the medium surrounding the fault as well as fault’s properties and the size of 

particles. It is in agreement with the fundamental mechanism shown in Figure 1. Sensitivity of 

the numerical model to the frictional parameters is also in agreement with the observation of 

McLaskey et al. (2014) who believed the recorded events were not due to factors such as grain 

crushing or fracturing of the fresh rock. The majority of events were believed to have a double-
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couple mechanism indicating a shear dislocation along the fault. The ones with non-double-

couple mechanism were expected not to exceed 20% of all the events (McLaskey et al., 2014).  

They observed no specific difference between the focal mechanisms and magnitudes or even 

stress drop of the foreshocks and aftershocks. Both types of events were broadly distributed 

along the fault. This is consistent with the results of numerical modeling presented in this study. 

The results show that largest magnitudes appear mostly in the last stage of unstable stick-slip 

once the peak shear strength of the fault is already reached. 

According to the model shown in Figure 1 (left), whether or not a slip is seismic (or aseismic) 

would depend on the elasticity of the medium (i.e. stiffness of spring in this model) as well as the 

amount of stress drop due to unloading the normal stress or frictional properties of the surface. In 

Figure 15, it was shown that stick-slips would occur much earlier in the shear process for the 

fault with softer surrounding. This is in agreement with the fact that low stiffness facilitates 

unstable slips (Dieterich, 1979). Also, it has been suggested that local stick-slips could trigger or 

facilitate other slips in their vicinity (McLaskey & Kilgore, 2013). A possible mechanism for this 

could be the fact that local slips (or in other words, local unloading normal stress conditions) 

provide a softened surrounding for their neighbor patches and thus, similar to what was shown in 

Figure 15, facilitating their instability. The amount of how much either of seismic or aseismic 

slips would contribute to this could be the subject of another study. 

6. Conclusion 

Applicability of the discrete element modeling to successfully reproduce stick-slips in large scale 

that takes a long time and effort in laboratory to be studied was shown in this paper. Once the 
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model is calibrated with one set of experiment, it can be used to expand our knowledge to the 

cases that cannot be easily tested. 

In this research, the microseismic release along pre-existing faults during shearing was studied 

numerically. For this purpose, the experiment reported by McLaskey & Kilgore (2013) was 

modeled using PFC3D. PFC inherently allows modeling of stick-slips however an algorithm is 

also developed in this research to record the slip-induced acoustic emissions. Some advantages of 

the present model are: 1) The three dimensional and discrete nature of model that allows taking 

into account the geometrical heterogeneity and make the simulations more realistic 2) Focusing 

on the fault’s behavior by use of smooth joint model that allows eliminating the bond breakages 

affecting the results. 3) The algorithm developed for recording the stick-slip induced 

microseismic events. 

Once the results compared well with real laboratory data, the model was then expended upon to 

study the difference in shear and microseismic behavior in faults with different properties. A 

summary of the results is presented here: 

1- A decrease in shear strength was observed for the models with smaller particles, smaller 

coefficient of friction of the fault, harder surrounding of the fault (higher Young's modulus for 

the particles), softer faults (smaller elasticity moduli of the fault) and smaller normal stress on the 

fault. Also, a softer behavior (i.e. decrease in the initial slope of shear-displacement curve) was 

observed for the softer faults as well as faults with softer surrounding. 

2- A higher rate of displacements was observed for the faults with finer particles, smaller 

coefficient of friction, harder surrounding and smaller normal stress. The fault's elastic properties 
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did not seem to have much effect on the rate of displacements, however, a small increase in this 

rate was observed for the softest fault. A comparison between displacement-time and shear-

displacement curves suggests that higher rate of displacements are observed for weaker 

conditions (i.e. conditions resulting in smaller peak strength) while this conclusion seems less 

obvious for the softer faults (Figure 16).  

3- With regard to the magnitudes, a greater size of space window resulted in an increase in the 

events larger than -6 while a reverse effect was observed for the smaller events. The b-values 

were not sensitive to the normal stress threshold of slips to be seismic. Increasing the resolution 

or decreasing the normal stress on the fault both caused an increase in the b-values.  Decreasing 

the coefficient of friction did not have much effect on the magnitudes larger than -5.5 while for 

the smaller magnitudes, a decrease in this coefficient caused an increase in the number of events. 

Increasing the particles' elasticity caused a decrease in the a-values but the b-values were not 

much affected. The b-values were not sensitive to the elastic properties of the fault.  

4- A larger number of recorded events were observed for the models with smaller size of space 

window, smaller normal stress threshold, finer particles, smaller fault's coefficient of friction, 

harder fault’s surrounding, harder fault and smaller normal stress on the fault. An obvious 

observation is that for the same amount of slip, the emissivity would depend on several factors 

affecting the release of microseismic energy. It was also suggested that there are three stages in 

the slip behavior of a fault: 1) linear increase in the shear stress until 85% of the peak strength 

with no or very few stick-slips 2) stable slip from 85% of the peak shear strength until the 

maximum shear strength is reached 3) unstable continuation of slip until for some reason the 

fault stops. An exception was observed for the case with fault’s surrounding being harder than 
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the fault itself (Figure 15) where right after the first elastic stage in the shear process, the third 

stage started with a post-peak softening pattern. However, among these three stages, the last one 

which is unstable has the greatest number of stick-slips and therefore, a comparison between the 

number of events versus time and shear versus displacement plots suggests that for the same 

amount of displacement, the conditions at which the third stage is reached earlier would be the 

most emissive ones. 

Although due to the geometry of the fault and loading scheme used in this research it was not 

investigated, the results suggest that in reality it is quite possible for the two ends of a fault to be 

still while there are patches along the fault undergoing stick-slips. Also, local stick-slips seem to 

provide a softer surrounding for their neighbor patches favoring their subsequent stick-slips. 

With regard to the calibration of model for stick-slip behavior, the onset of instability (peak shear 

strength) as well as b-value seems to be the two most controlling parameters that need to be taken 

into account. 
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