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Abstract 

High-throughput functional annotation of proteins is a fundamental task in func­

tional proteomics. Protein functions are typically organized in the form of a general-

specific hierarchy, such as the Gene Ontology (GO), which describes when one 

functional class is a specialization of its parent class. The hierarchical structure 

indicates that if a protein belongs to one class then it also belongs to all ances­

tor classes up to the root. Most previous work on protein function prediction has 

constructed independent classifiers for each function, which ignore the hierarchical 

information available in the GO. We develop a framework for combining the lo­

cal independent SVM predictions with graphical models, both Bayesian networks 

(BNs) and Conditional Random Fields (CRFs), which are built upon the hierarchi­

cal structure in the GO. Our goal is to increase the overall predictive accuracy by 

exploiting this hierarchical information. Compared to the baseline technique (i.e. 

independent SVM classifiers), our techniques using BN and CRF yield significant 

improvement on two large data sets constructed from the Uniprot database. 
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Chapter 1 

Introduction 

Thanks to rapid advancement in genome sequencing technology, a large quantity 

and variety of genomic and proteomic information has recently become available. 

The ever-increasing flood of diverse biological data from high-throughput pro­

cesses, such as genomic and proteomic sequencing, and gene expression, can be 

used to study the characteristics and interactions of cellular components. It also 

pushes the elucidation of protein function to the center stage in computational bi­

ology. However, this remarkable speed of discovery has made it impossible to ex­

perimentally determine the function for most new proteins, and made it difficult to 

keep up with the influx of data produced by human-curated annotation. Thus, sci­

entists have been turning to sophisticated computational approaches for annotating 

the huge amount of proteomic sequence data being produced. Since the protein's 

sequence characterizes its function, it is essential to design effective computational 

approaches to predict the protein functions based on protein sequence. 

To better characterize protein functions, biologists have defined a hierarchy 

of protein functions, i.e. the Gene Ontology (GO). Previously, a number of ap­

proaches had been proposed to automatically predicting function using the GO 

hierarchy. Some of them [1, 16, 40, 59] treat the hierarchy as a flat ontology in 

which the functional classes have are not interrelated, while others utilize some of 

the hierarchical information encoded in the GO (only the parent-child dependencies 

[9, 30, 43, 55, 62] or only used to construct data sets [29]). Since protein functions 

are naturally organized as a hierarchy, the hierarchical structure presented by the 

GO should be exploited when computational function prediction is performed. 

1 
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Figure 1.1: Feature extraction using the PA tool. 

From a machine learning perspective, hierarchical protein function prediction 

is a task in which one tries to predict the labels in a structured graph for unknown 

instances given some observed evidence. This is a typical example of a problem 

that can be solved using graphical models. In fact, the hierarchical function predic­

tion problem is similar to other prediction tasks with particular structures, such as 

information extraction from webpages with hyperlinks or image labeling on grids 

of pixels, which have been extensively studied by using graphical models, such as 

Bayesian networks (BNs) or Conditional Random Fields (CRFs). Graphical models 

prove to be one of the most effective tools for this kind of problems. 

In this dissertation, we develop a framework, based upon CHUGO (Classifica­

tion in a Hierarchy Under Gene Ontology), proposed by Eisner et al. [29], to predict 

a protein's set of functions within the GO hierarchy, using graphical models. Before 

introducing our framework, it is necessary to review the CHUGO system. 

1.1 Revisiting of the CHUGO System 

CHUGO constructs a function hierarchy by pruning the GO to include only those 

nodes that have sufficient positive training instances. Features used for training and 

prediction are extracted using the Proteome Analyst (PA) [59] tool, which are key 

words from main entries in the Swiss-Prot database for the most similar proteins ob­

tained by using BLAST. This feature extraction process is illustrated in Figure 1.1. 

To build a robust predictive system, CHUGO addresses the issue in the GO hierar-

2 
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Figure 1.2: The CHUGO function prediction system. 

chy from the following three aspects: 

• Training set design: Since a protein annotated as a GO node TV implicitly 

inherits functions from all the ancestors of TV, functional annotation of each 

protein in the training set is expanded to include node TV and all its ancestors. 

For example, if the function "neuropeptide receptor activity" is experimen­

tally assigned to a protein, then all its GO ancestors, such as neuropeptide 

binding, receptor activity, etc, are also included as positive annotations. This 

expansion, called the all inclusive approach by Eisner et al., intuitively leads 

to an improvement in recall. 

• Prediction model: The initial prediction for each protein is made by a set of 

independent binary support vector machine (SVM) predictors, where each is 
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trained on an individual GO node. Local positive predictions are then propa­

gated up the hierarchy. 

• Evaluation methodology: As in training set design, precision and recall are 

calculated using expanded labels for the test set as well. 

Figure 1.2 summarizes the CHUGO prediction system. These techniques are sim­

ple but effective for function prediction, as the all inclusive approach increases the 

F-measure of hierarchical classification on a 5-fold cross-validated data set from 

46% to 70%. However, the hierarchical relationship can be utilized to train a more 

accurate predictive model as will be explained in Section 1.3. 

1.2 Motivation for Using Graphical Models 

Before revealing the potential hazard in the CHUGO system, we must be clear 

about the rule of consistent labeling imposed by CHUGO. That is, if a protein is 

annotated as a GO node JV, then it is explicitly annotated as all the ancestors of node 

N. For example, in Figure 1.3, if function GO0008188 is assigned to a protein, then 

all ancestors of node GO0008188, i.e. GO0030594, GO0008528, GO0001584, 

GO0004930, GO0004888 and GO0004872, are also included as positive labels. 

Both training and evaluation are carried out using the extended annotations. 

This rule imposed for consistent labeling in the hierarchy implies two special 

properties: 

1. If a node in the hierarchy has a negative label assignment, then all its descen­

dants in the hierarchy must also have negative label assignment. 

2. If a node in the hierarchy has a positive label assignment, then all its ancestors 

in the hierarchy must also have positive label assignment. 

Either of these two properties implies that there does not exist a configuration that 

a node has a positive assignment and one or more of its ancestors has a negative as-

signment. These properties in the hierarchy leave us only one possible parent-child 

configuration probability to compute from the actual data, which is the probability 

of a node being positive given that all its ancestors are positive. 

4 



Figure 1.3: A subgraph of pruned GO hierarchy used in our experiments 

Although CHUGO constructs the training and test data using the hierarchy, it 

builds an individual binary SVM classifier for each GO node and only exploits the 

hierarchical information in a simple way. The final result of the system is simply 

a combination of all binary SVM predictions plus "up-propagation" of positive re­

sults. They demonstrated that a propagation of all positive predictions up to the root 

slightly improves the result by about 0.2%. While the up-propagation approach is 

simple, it has critical drawbacks that may hurt overall precision and recall. 

First, CHUGO propagates positive predictions obtained from the local SVM 

predictors for node N up to the root node. This could be problematic if node JV's 

SVM prediction is inaccurate. For example, if a protein P is predicted by a local 

SVM to belong to node GO0008188 (i.e. neuropeptide receptor activity), could in 

fact be an incorrect prediction. If an up-propagation is applied, this local predic­

tion error will be propagated to all ancestors of node GO0008188, as shown in Fig-
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ure 1.3. In this particular case, a single misclassification would result in 8 prediction 

errors, which is disastrous. If we do not propagate a positive local prediction up, 

and instead, we look around the node and examine the status of all the neighboring 

nodes,i.e. classes that are connected to this node, a more accurate conclusion may 

be drawn by taking the neighbors in the hierarchy into account. For instance, con­

sider a protein P that is predicted to belong to function GO0008188 but not to any 

of its three immediate parents of GO0008188. By tracing back statistics from the 

training data, one may conclude that the local SVM prediction on node GO0008188 

may be more likely to be erroneous. This dependency problem between neighbors 

is a perfect candidate for graphical models, which learn statistics of neighboring 

nodes from the training data. 

Second, CHUGO always trusts the positive local SVM predictions, and leaves 

negative local prediction to be determined by the up-propagation step. This bias 

is unjust since it favours positive up-propagation over negative down-propagation. 

Instead, we use a probabilistic SVM model to give a confidence measure to the local 

SVM prediction. This confidence prediction is integrated into the graphical model 

for making a final prediction, and we discuss in Chapter 4 and 5. 

1.3 Summary of Thesis Work 

In this dissertation, we propose a framework for hierarchical function prediction us­

ing graphical models. As Figure 1.4 shows, the CHUGO system (without positive 

prediction up-propagation) is integrated into this framework as a local predictive 

component, which gives a prediction from the local SVM predictor for each node. 

These local predictions and hierarchical information embedded in the GO are com­

bined to train a graphical model that presents a global prediction on all nodes in the 

hierarchy. 

During training of the graphical model, two sets of parameters are produced: 

parameters for hierarchy consistency and parameters for distributions of local SVM 

outputs. The former parameters ensure our final function predictions consistent to 

the hierarchy, and can be estimated from proteins' functions in the training set. By 
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Figure 1.4: A framework for hierarchical function prediction using graphical mod­
els. During training, two sets of parameters are learned: parameters for hierarchy 
consistency and parameters for SVM outputs distributions. Given an unknown se­
quence, the graphical model can make consistent function predictions. 

7 



Figure 1.5: An abstract Gene Ontology hierarchy. Each Vi represents a GO term, 
and a directed edge indicate a parent-child relationship. 

converting CHUGO's binary SVM predictions to real values, the latter parameters 

indicate the distributions of these real-valued SVM outputs, and can be estimated 

from SVM outputs for training data. 

The hierarchical structure of the GO and probabilistic SVM outputs are used 

to construct graphical models. The first graphical model we built was a Bayesian 

network, which is a directed graphical model. The GO hierarchy was used as the 

structure of the BN, in which each directed edge represented a parent-child depen­

dency, as shown in Figure 1.5. This graph was converted to a Bayesian network 

(Figure 1.6(a)) in which each node ?/j represented a variable and each node in the 

hierarchy was also connected to an observation node Xj which represented the lo­

cal SVM prediction for that node. The parameters of the Bayesian network were 

learned from the training data and from the probabilistic SVM outputs. 

The second model we built was a Conditional Random Field (CRF), which is 

an undirected graphical model. The undirected graph was constructed by dropping 

arrows in the directed graph and adding connections between nodes that share the 

common child, also called "spouse" nodes, and nodes that share the common par­

ent, also called "sibling" nodes. The resulting CRF graph is shown in Figure 1.6(b). 

Nodes y2 and y5 are spouses, and nodes y3 and y4 are siblings. To learn the param­

eters of the CRF, two types of cliques are defined, i.e. edge cliques and node-
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(a) A Bayesian network. 

(b) A Conditional Random Field 

Figure 1.6: The graphical models of the hierarchy. Graphical models converted 
from the hierarchy in Figure 1.5. Each ?/, represents a GO term whose value is 
either +1 or —1, and each Xi represents a local SVM output whose value is in R. 

observation cliques. The edge clique over two connected nodes encodes the hierar­

chical structure in the GO and the node-observation clique over a node and its SVM 

prediction indicates the confidence of a local SVM prediction. 

Having parameters in the graphical models well defined, we can make consistent 

function predictions for an unknown protein sequence, using its BLASTed features. 

In our experiments, both BN and CRF have significantly improved the prediction 

accuracy. 
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1.4 Thesis Statement 

In this dissertation, it is hypothesized that the graphical models, i.e. BNs and CRFs, 

based upon the GO hierarchy are effective for hierarchical function prediction. 

Specifically, the graphical models can make function predictions consistent with 

the hierarchy by incorporating the hierarchical information to learn the models. 

Based on the thesis research, we make the following claims: 

1. The BN model can capture the hierarchy structure in the GO for function 

prediction. 

2. The CRF model has the representation power to capture the GO hierarchy 

and statistical dependencies that are not shown in the hierarchy for function 

prediction. 

1.5 Contributions 

This thesis research makes three novel contributions: 

1. Prediction accuracy is significantly improved by using the parent-child re­

lationships in the Gene Ontology to build the Bayesian networks. While 

CHUGO takes the full hierarchical information into account when building 

the training and test data sets, it uses only the naive positive up-propagation 

for prediction. Our BN approach fully exploits the parent-child relationship 

for making consistent function predictions. Compared to only using local 

SVMs, the BN system improves the F-measure of two data sets in our ex­

periments by 2.61% and 0.91%. Compare to naive up-propagation, the BN 

system improves the F-measure of two data sets in our experiments by 2.33% 

and 1.08%. 

2. A Conditional Random Field model is applied for making hierarchical func­

tion prediction, and it increased the F-measure of two data sets by 2.94% and 

1.19%, compared to only using local SVMs, and by 2.66% and 1.36% com­

pared to naive up-propagation. The CRFs utilize parent-child relationship in 

10 



the GO hierarchy, and also statistical information from the actual data that is 

not shown in the hierarchy. 

3. We created an approach for estimating the SVM output distribution, i.e. a 

Laplace mixture distribution for SVM outputs from positive examples and a 

single Laplace for SVM outputs from negative examples. Our approach is 

more sophisticated than that proposed in Barutcuoglu et al. [9] which fits a 

single Gaussian distribution to SVM outputs obtained from both positive and 

negative instances. Our estimation technique for SVM outputs empirically 

works, because there are significantly a smaller number of positive instances 

for each functional class than that of negatives which possibly leads a negative 

prediction more favorable by the SVM predictor. 

1.6 Thesis Outline 

In this dissertation, our primary goal is to develop an effective hierarchical machine 

learning approach using graphical models for predicting protein functions in the 

Gene Ontology. Guided by this research goal, the rest of the thesis is organized as 

follows: 

Chapter 2 introduces the necessary biological background on protein function 

and explains the terminology used in computational biology. It also presents related 

work in sequence-based protein function prediction. It concludes by reviewing hi­

erarchical function prediction and hierarchical classification in general. 

Chapter 3 reviews two main types of graphical models, i.e. directed and undi­

rected models, and briefly describes inference approaches. 

Chapter 4 revisits the binary local SVM predictors built by Eisner et al. and 

reviews probabilistic SVMs. It then presents a new approach to estimating the 

distribution of the local SVM outputs using a Laplace mixture and a single Laplace. 

Chapter 5 applies two specific graphical models, i.e. BN and CRF, to make 

hierarchical function predictions. Model construction, parameter estimation and 

inference are described for each model. 

Chapter 6 presents and discusses the results obtained by using the graphical 

11 



models on two different data sets. 

Chapter 7 summarizes the thesis research and concludes the dissertation with 

possible future work. 

12 



Chapter 2 

Background 

A protein is a large complex molecule made up of one or more chains of amino 

acids. Accounting for the second largest segment of the cellular weight after wa­

ter, proteins serve as building blocks and functional components of a cell [48]. 

They perform most of the important functions in a living organism, such as con­

stitution of the organs (structural proteins), the catalysis of biochemical reactions 

(enzymes), receptors for hormones and other signaling molecules (receptors), and 

the maintenance of the cellular environment (transmembrane proteins). Therefore, 

discovering new proteins and understanding their biological functions is crucial in 

the development of new drugs and synthetic biochemicals. 

Due to high-throughput techniques for various genome analyses, a huge quan­

tity of genomic information has become available. The influx of biological data 

also makes manual annotation of protein function slow and tedious. This challenge 

paved the way for the emergence and popularization of automated function predic­

tion. 

This chapter will introduce protein function in general, and review previous 

research on protein function prediction using primary protein sequence data, anno­

tation data from databases and GO hierarchy information. 

2.1 Introduction to Protein Function 

Before delving into the details of computational prediction, we start by describing 

protein sequences, the common understanding of protein function, and a standard-

13 
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Figure 2.1: The Central Dogma of Molecular Biology. A schematic representa­
tion of the Central Dogma of showing the flow of information from DNA to RNA 
(transcription), and from RNA to protein (translation). Image courtesy of [2]. 

ized vocabulary, i.e. the Gene Ontology, which is widely used for describing protein 

function. 

2.1.1 Protein Sequences 

The Central Dogma of Molecular Biology [24] is a framework for understanding 

information transfer in a cell from DNA to RNA to protein, as shown in Figure 2.1. 

This process produces a protein sequence, constructed from a combination of 20 

amino acids, each of which is represented by a letter of alphabet. The primary 

sequence is the most fundamental form of a protein since it determines different 

characteristics of the protein such as its structure, function and subcellular localiza­

tion. An example of such a sequence is shown in Figure 2.1.1. 

An enormous number of protein sequences have been identified by high-throughput 

sequencing techniques, and information about them has been collected and orga-

14 



> P75245IACKA_MYCPN Acetate kinase - Mycoplasma pneumoniae 
MNDNKILVVNAGSSSIKFQLFDYHKKVLAKALCERIFVDGFFKLEFNEQKVEEKVAFP 
DHHAAVTHFLNTLKKHKIIQELSDIILVGHRWQGANYFKDSVIVDAEALAKIKEFIK 

P75245: SWISS-PROT accession number 
ACKAJVIYCPN: SWISS-PROT entry name 

Acetate kinase: protein name 
Mycoplasma pneumoniae: origin of the protein 

Figure 2.2: A protein sequence segment in FastA format from SWISS-PROT 

nized in various standardized databases. Among these databases, the Swiss-Prot 

and TrEMBL databases [11] are most widely used, and they are together called 

the UniProt database. The Swiss-Prot is a comprehensive, human-curated database 

that provides a wide variety of information about proteins, such as their amino acid 

sequence, functional annotation, subcellular location, and other information in the 

form of keywords and features. As a supplement to Swiss-Prot, TrEMBL (Trans­

lated EMBL) is a computer-annotated protein sequence database that contains the 

translations of all nucleotide sequences present in the EMBL/GenBank/DDBJ databases 

[14]. As of October 2 2007, the Swiss-Prot Release 54.3 contains 285,335 entries 

and the TrEMBL Release 37.3 contains 4,932,421 entries, which together comprise 

the UniProt Knowledgebase Release 12.3. 

2.1.2 Protein Function 

The definition of "protein function" is ambiguous and highly context-sensitive, 

since proteins are involved in more than one type of activity, such as cellular, molec­

ular and physiological activities. Bork et al. [12] have proposed categorizing pro­

tein functions into three types: 

• Molecular function: The biochemical functions performed by a protein, 

such as binding sites, catalytic activity and conformational changes. 

• Cellular function: Many proteins co-operate to perform complex physio­

logical (cellular) functions, such as metabolism, signal transduction cascades 
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and structural association, to keep the various components of the organism 

working well. 

• Phenotypic function: The totality of the physiological subsystems, consist­

ing of various proteins performing their cellular functions, and their interplay 

with various environmental stimuli determines the phenotypic properties and 

behavior of the organism. 

Therefore, when speaking of protein function, one must specify the context or func­

tion category, since a functional term can refer to different meanings in different 

functional categories. Throughout this dissertation, we consistently use the term 

"protein function" to refer to molecular function. For example, metal ion binding, 

transporter activity and kinase regulator activity are molecular functions of protein. 

Since protein function assignment is somewhat subjective, different biologists 

may assign the functions of proteins differently. To make functional annotation con­

sistent and available as input for computational processes, functional terms must be 

well defined and organized by some standard scheme, such as the Gene Ontology. 

2.1.3 Gene Ontology 

The Gene Ontology [6] is a functional classification system developed by the Gene 

Ontology Consortium. At the highest level, the GO controlled vocabulary is com­

posed of three disjoint functional ontologies corresponding to molecular function, 

biological process, and cellular component. Although cellular location is not a 

functional aspect per se, it is included for functional annotation since proteins do 

not function in a vacuum but at certain locations in the cell. Each ontology is hi­

erarchically structured and is implemented as a directed acyclic graph (DAG). This 

dissertation focuses on the molecular function sub-hierarchy. 

The GO DAG starts with very general classes and becomes more specific at 

lower levels of the hierarchy. Each node in the DAG corresponds to a functional 

term. Terms are the building blocks of the Gene Ontology. Each term has a unique 

numerical identifier, which is a 7-digit sequence, and a term name, e.g. ion binding, 

receptor activity or catalytic activity. Each directed edge in the DAG corresponds to 
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either an is-a or a part-of relationship. The is-a relationship is a simple inheritance 

relationship, where A is-a B means that every A is a B. For example, "metal ion 

binding" is a child of "ion binding", since every metal ion binding protein is also 

an ion binding protein. The part-of relationship is a sub-component relationship, 

where C part-of D means that every C is a part of a D. For example, every nucleus 

is part of a cell. Since there are only 2 part-of edges (two children of GO0003720 

telomerase activity) in the molecular function part of the GO, they are ignored in 

our experiments. 

Since the GO forms a DAG, each node may have more than one parent, which 

is biologically appropriate since a specific function can be the specialization of of 

more than one general function. For example, auto transporter activity is a child of 

both porin activity and protein transporter activity. This multi-inheritance property 

is also taken into account when we build our model to make function predictions, 

as will be explained in more details in Chapter 5. 

Due to its sophisticated design and wide coverage, the Gene Ontology has be­

come the most popular functional classification scheme for protein function pre­

diction studies. More importantly, the GO terms and hierarchical structures are 

constantly updated by the curators, who seek scientifically correct information to 

keep the ontology up-to-date with latest research. Since the GO became public, a 

large number of studies have used it for protein functional analysis. As listed on 

GO's website 1, there are 1654 publications describing studies following GO (as of 

November 12, 2007). For these reasons, we used a sub graph of the Gene Ontology 

in our function prediction experiments. 

As the vocabulary in the GO grows and the volume of protein sequences in­

creases steadily, there is a need to have a list that maps each protein to its biological 

functions using the GO vocabulary, and the Gene Ontology Annotation project was 

created to fill this need. 

'http^/wYvw. geneontology.org/cgi-bin/biblio.cgi 
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2.1.4 Gene Ontology Annotation 

The mission of the Gene Ontology Annotation (GOA) project [17] within the Euro­

pean Bioinformatics Institute is to annotate proteins in the UniProt database using 

the GO terms. Each of these annotations is accompanied by an evidence code, stat­

ing how the annotation was obtained. Based upon an evidence code, one can tell the 

reliability of the annotation: Is it an experimentally-derived annotation with high 

reliability, or is it inferred by a computational approach (possibly low reliability)? 

Evidence codes are organized into the following thirteen categories: 

IC: Inferred by Curator 

IDA: Inferred from Direct Assay 

IEA: Inferred from Electronic Annotation 

IEP: Inferred from Expression Pattern 

IGC: Inferred from Genomic Context 

IGI: Inferred from Genetic Interaction 

IMP: Inferred from Mutant Phenotype 

ISS: Inferred from Sequence or Structural Similarity 

NAS: Non-traceable Author Statement 

ND: No biological Data available 

RCA: inferred from Reviewed Computational Analysis 

TAS: Traceable Author Statement 

NR: Not Recorded 

GO annotations should be used with caution and based on different annotation 

reliability requirements. To create a reliable data set, one should only consider 

manually-curated annotations, such as IDA, IEP, IGC, IGI, IMP, and TAS, and ex­

clude electronically-curated annotations, such as IC, IEA, ISS, NAS, ND, RCA, 

and NR. 
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2.2 Review of Function Prediction Using Primary Pro­
tein Sequence Data 

In the domain of computational function prediction, primary protein sequence data 

has been widely used since it is the most fundamental factor that determines protein 

function. Specifically, automatic techniques that use primary protein sequence data 

to predict function are grouped into three categories: homology-based approaches, 

subsequence-based approaches and feature-based approaches. 

2.2.1 Homology-based Approaches 

The homology-based approach is one of the first and most-often-used techniques 

for predicting protein function. It is widely believed that similar proteins in dif­

ferent species mutated a common ancestor sequence during evolution. Therefore, 

homology-based approaches predict function by comparing a query sequence to 

similar sequences contained in the databases that have known function and infer­

ring that function from the known functions. 

BLAST [3] is an automated tool for finding homologs and it is the foundation 

of most homology-based techniques. BLAST searches standard databases such as 

Swiss-Prot for sequences similar to the query protein using approximate sequence 

alignment algorithms. The result of a BLAST search is accompanied by an E-

value for each match in the database, which denotes the quality of the alignment 

between the query sequence and the matched sequence. Smaller E-values mean 

higher similarity between the query sequence and the sequence match from the 

database. BLAST is now pervasively utilized in molecular biology, and in fact, it 

is widely believed that [4] there is rarely a study in molecular biology that does not 

involve BLASTing a gene or protein against a standard database. 

Although homology-based methods such as BLAST have demonstrated promis­

ing results, their applicability is restricted mainly for two reasons: 

• Limited protein coverage: No BLAST result will be returned if there are no 

similar sequences found in the database. 

• Inconsistency of function between homologues: Sometimes a homologue 
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will have a different function in a different species in response to selective 

pressure during evolution [32, 66]. 

2.2.2 Subsequence-based Approaches 

It is believed that some sequence segments are more important for determining pro­

tein function than others, and the subsequence-based approach identifies such crit­

ical segments as features of a protein and builds a computational model to predict 

function based upon those features. 

The subsequence-based techniques extract features from sequence motifs, mean­

ingful subsequences that are conserved across a set of protein sequences of a fam­

ily [13]. Although subsequence motifs may be responsible for biological charac­

teristics of a protein, it is difficult to identify these motifs that can best distinguish 

function. Although various strategies have been proposed for subsequence-based 

prediction [13, 37, 38, 47, 54], the results obtained so far are not as impressive as 

expected. 

2.2.3 Feature-based Approaches 

Feature-based techniques collect biologically meaningful features from each indi­

vidual protein sequence, and use those features to construct models for predicting 

protein functions. They are similar to the subsequence-based approaches in terms 

of building a predictive model using features from the data, but differ in that they 

focus on biologically meaningful features while subsequence-based techniques ex­

tract features from sequence motifs, based on patterns. 

In recent years, feature-based approaches have been shown to be successful in 

a number of studies [1, 16, 29, 40, 59], and it is widely believed that the inclusion 

of physical and functional features, such as subcellular location, post-translational 

modifications and residue-related features, creates a more robust model for the func­

tion prediction task. 

Currently, the most cited work in the feature-based category is Jensen et al. [40]. 

They proposed a method, called ProtFun, for predicting function using sequence-

derived protein features such as predicted post translational modifications (PTMs), 
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protein sorting signals and physical/chemical properties calculated from the amino 

acid composition. The ProtFun system [41] used 14 such calculated features to 

make predictions on 14 GO functions using neural networks, and achieved a sensi­

tivity of at least 50% for all classes and 70% for the best category, namely hormones 

and receptors. 

Another feature-based prediction tool is SVMProt [16]. SVMProt constructs its 

feature space using a set of residue-specific attributes such as normalized Van der 

Waals volume and polarity, and trains a binary SVM classifier for each functional 

family. The overall accuracy, defined as the proportion of true results (both true 

positives and true negatives) in the population, by applying SVMProt in the function 

prediction experiments ranged from 69.1 to 99.6% among 54 functional classes. 

A trend of feature-based approaches is to integrate the homology-based tech­

nique such as BLAST into the feature extraction process, and Proteome Analyst 

[59] is one of these integrative tools. PA predicts functions of query proteins by 

training binary SVM classifiers using features from the Swiss-Prot main fields as­

sociated with most similar proteins that are obtained by BLASTing. PA constructs 

a function tree by selecting 14 nodes from the original GO hierarchy and makes 

predictions that are consistent with the constructed tree. This hierarchy construc­

tion differs from ProtFun and SVMProt, neither of which treats GO functions as a 

structured hierarchy but rather a set of independent labels, and makes a better use 

of the hierarchical information for training predictive models. Figure 2.3 shows the 

hierarchy of the 14 functions used in PA. 

Another trend in sequence-based approaches is to produce an integrated pre­

dictive tool by unifying various data types. For example, InterPro [69] provides 

a single prediction system by integrating the commonly used signature databases. 

Each protein run through InterPro is assigned a variety of InterPro codes, some of 

which can be mapped to the GO terms if they represent functional families. 

Besides protein sequence, there are a large variety of other kinds of data that 

have been used to predict function, such as protein structure, gene expression data, 

phylogenetic profiles and protein interaction networks, etc. Since this dissertation 

deals with sequence data only, review of other types of methods is not covered and 
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Figure 2.3: The pruned Gene Ontology used in Proteome Analyst function predic­
tion. Image courtesy of [29]. 

we instead refer readers to [36,48]. 

2.3 Review of Hierarchical Function Prediction 

As described in Section 2.1.3, the Gene Ontology is a structured ontology that re­

lates terms to each other. It is unwise to ignore these relationships since they provide 

additional information that can be used to improve the classification model. This 

section reviews a number of proposed computational approaches to function predic­

tion, which explicitly incorporate the GO hierarchy into the prediction algorithm. 

King et al. [43] used the additional information from the hierarchy of functional 

classes by simply using different decision tree models for each level of the hierar­

chy. They induced rules for predicting function using a variety of data sources, 

such as residue frequencies, phylogeny and predicted structure. In another study, 

Clare and King [22] proposed a modified decision tree model, in which a positive 

functional annotation to a node in the decision tree was propagated to all of its 

parent classes (i.e. up-propagation in Eisner et al. [29]). Their experiments on Sac-

charomyces cerevisiae data showed that the modified version was sometimes better 
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than the non-hierarchical model and sometimes worse. 

Struyf et al. [55] suggested an alternative modification of using decision trees 

for hierarchical prediction that used distances derived from the hierarchy to train 

the model. Their approach makes use of the edge distances between nodes, which 

is a useful feature for making predictions in a hierarchy and should be considered in 

our future experiments. They evaluated their approach on different datasets avail­

able for Saccharomyces cerevisiae, and showed that their model outperformed the 

hierarchical model proposed by King et al. [43]. 

Tu et al. [62] proposed a learnability-based approach for predicting functions in 

the Gene Ontology. The basic idea of their approach is to focus on the prediction of 

"learnable" functional families, i.e. classes where the membership can be predicted 

with a reasonable accuracy given the available features. For each learnable class, a 

classifier is trained to predict the child class, which they called "further prediction". 

Through learnability-based predicting, functional annotations are made more spe­

cific. Although we do not explicitly define learnable classes in our approach, our 

graphical models can possibly extend an SVM annotation to a more specific class 

based on the training data, which will be discussed in Chapter 5. 

Verspoor et al. [64] presented a system for functional annotation by analyz­

ing collections of GO nodes obtained from annotations of protein BLAST neigh­

borhoods. Those GO annotations are weighted according to their E-values. The 

weighted GO nodes are then imported using a ranking system, POSet Ontology Cat-

egorizer (POSOC), to identify the most representative nodes as predicted functions 

of the query protein. They evaluated their function-prediction method by present­

ing what they called the hierarchical precision and hierarchical recall. In fact, their 

evaluation technique is equivalent to that of Eisner et al. which evaluates prediction 

performance based on the expanded set of annotations. 

Recently, there has been a growing interest in applying Bayesian networks to 

protein function prediction. Barutcuoglu et al. [9] developed a Bayesian network 

for combining a set of independent classifiers. The architecture of the GO hierar­

chy is used as the structure of the Bayesian network, and a single SVM is trained 

independently for each functional class in the GO. Thus, the outputs of individual 
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classifiers are combined in a hierarchical fashion. They fit local SVM outputs from 

both positive and negative instances using the same distribution, i.e. Gaussian. (We 

will show a superior model in Chapter 4.) They presented their experimental results 

based on 105 functional classes using 3,465 annotated sequences, while our experi­

ments are carried out on a much larger scale, i.e. 399 classes using 14,018 proteins, 

and 792 classes using 45,956 proteins. 

In a different manner from [9], Engelhardt et al. [30, 31] built a Bayesian sys­

tem to model the probability for the transfer of protein function from a parent to 

a child class in a single phylogenetic tree, composed of GO terms. Given a query 

protein sequence, they first constructed a phylogeny based on a set of homologous 

proteins. They learn, by fitting a probabilistic model, the transition probability for 

any parent-child pair in the GO hierarchy, which was constructed by taking the 

union of all GO annotations associated with the proteins in the phylogeny. The 

final prediction was obtained by computing the maximal posterior probability of 

possible node assignments. It was reported as the best results in function prediction 

via phylogenetic analysis. 

2.4 Review of Hierarchical Classification 

A great amount of effort has been dedicated to studying hierarchical classification in 

general and to studying applications in domains where an organized ontology exists, 

such as text categorization and web content extraction. The use of hierarchical 

decomposition allows a classification problem to be addressed using a divide-and-

conquer approach, which can be solved efficiently. 

Before delving into reviews of hierarchical classification algorithms and mea­

sures, we must be clear about the structure of a hierarchy. In general, there are 

two main types of structures for a class hierarchy, a tree structure and a Directed 

Acyclic Graph structure. They both consist of root class(es), internal classes, and 

leaf classes. The root class(es) denote(s) the most general description of all cate­

gories in the hierarchy. Each internal class has its parent and child class(es). The 

main difference between these two hierarchical structures is that each class in a tree 
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has at most one parent, while each class node in DAG can have multiple parents. 

Hierarchial classification algorithms can possibly be categorized into two major 

groups, big-bang and top-down [56, 57]. In the big-bang approach, a single com­

plex model is trained from the training data, which takes the class hierarchy into 

account during a single run of the classification method. Given a test instance, the 

classifier can assign it to more than one category in the category tree, and makes 

assignments of classes at potentially every level of the hierarchy. The big-bang 

approach has been used by several studies in text mining, such as the rule-based 

classifier [52], Naive Bayes classifier [61], and methods built on association rule 

mining [65]. 

In the top-down approach, more than one classifier is built each level of the hier­

archy during training, and each classifier functions independently as a flat classifier 

at that level. A test example is first classified by the first-level classifiers, and then 

is further classified by the classifiers of the lower level classes whose parent classes 

have been predicted at the higher level until the example cannot be further classi­

fied. For example, Dumais and Chen [28] explored the hierarchical structure for 

classifying a large collection of web content, using a top-town approach with SVM 

base classifiers. Their hierarchy of the web content consisted of two levels, 13 top-

level and 150 second-level categories (for instance, sports/football, sports/soccer, 

computer/hardware, and computer/software). They trained SVM classifiers to dis­

tinguish a second-level category from other categories within the same top level. In 

one of their experiment settings, a classification process continued to the second-

level categories only if the corresponding top-level category had a positive classifi­

cation. Their top-down approach using the hierarchical information was shown to 

be effective and to be able to improve the overall classification performance slightly, 

compared to non-hierarchical classification. The top-down approach has been also 

implemented using other base classifiers such as ACTIONs(for Automatic Classifi­

cation for Full-Text Documents) algorithm [25] and Bayesian classifiers [44]. 

The top-down approach has the advantage that the original big classification 

problem can be divided to smaller sub-problems at each level, and it is efficient in 

both training and classification phases. Compared to the top-down approach, the 
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big-bang approach builds a more complex classification model by considering the 

entire class hierarchy in the training phase, but not the classification phase. The big-

bang classifiers assign the test instances to classes regardless of their locations in 

the hierarchy. Another problem with the big-bang approach is that the constructed 

classifier may not be flexible enough to adjust for changes to the hierarchy. The 

classifier must be re-trained if the hierarchy is changed. 

On the other hand, the top-down approach has the disadvantage that a classi­

fication error at a parent class may mislead classifications at all the deeper levels. 

It requires some recovery procedure to reduce this kind of errors induced by the 

parent classifiers. In particular, the top-down approach has to deal with a special 

situation in a DAG hierarchy: for instance, given a class with two parent classes, if 

a top-down classifier at the parent level classifies one parent positive and the other 

negative, should the classification process continue on the next level? A tree hierar­

chy does not have such an issue since it only has a single parent, while a DAG-like 

structure may cause some contradictory predictions for the top-down approach.The 

top-down approach also requires more training instances since multiple classifiers 

have to be constructed and each requires a different training data set. 

We consider our hierarchical prediction system using graphical models as a top-

down approach, although it does not make classifications level by level. It takes 

into account the hierarchical structure for training SVM classifiers. Although level-

based classification could be considered in our application, the issue that a protein 

may belong to classes in different branches in the hierarchy must be addressed first. 

The proposed graphical models serve as the remedy mechanism to recover from 

incorrect classifications at the shallower levels of the hierarchy. To have adequate 

training examples in our experiments, we set up a lower bound for the number of 

proteins belonging to each GO function before constructing a prediction for that 

function. 

Another issue in hierarchical classification is how to measure the predictive per­

formance of a classification algorithm. The performance of hierarchical classifica­

tion can be measured in several ways [10, 56, 57]. The widely-used and easily-

implemented approach is the measure for flat classification. Using this measure, 
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every classification error is assigned the same cost, regardless of the level of the 

classes in the hierarchy. The most commonly used performance measures in flat 

classification are Precision and Recall, which will be introduced in Section 6.1. 

However, the uniform cost measure is usually not ideal for measuring predictive 

performance in hierarchical classification tasks, because it ignores the fact that 

classes that are closer in the category are more similar to each other than classes 

that are further away. Hence, measures based on hierarchy properties are proposed. 

Distance-based and semantics-based (or category-based) measures evaluate predic­

tive performance based on the distance in the hierarchy and category similarity of 

the predicted class and true class. The distance can be calculated based on depth 

or path in the hierarchy [10], and the category similarity can be defined by some 

measure of similarity between instances belonging to each class [57]. Those two 

approaches take the hierarchy properties into account for algorithm evaluation, but 

they are not as well accepted as in the flat classification measures so they need fur­

ther study and discussion. Since we are most interested in measuring the accuracy 

of the final classification results of our system, we adopt the uniform cost measure 

for evaluations. 
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Chapter 3 

Introduction to Graphical Models 

Graphical models are a graph-theoretic tool for dealing with conditional probability 

distribution problems. The nodes in the graph represent random variables, and the 

absence of edges represent conditional independence between random variables. 

The graphical model is a convenient way to represent joint probability distributions 

and to answer queries about them. The graph can be either directed or undirected. 

This chapter will introduce both directed and undirected graphical models, and the 

inference algorithms available for these graphical models. 

3.1 Directed Graphical Model 

A directed graphical model, also called a Bayesian Network or Belief Network, 

is based on a directed acyclic graph G = (V, E), where V is a set of vertices, 

each representing a variable, and E is a set of directed arcs in the graph G. One 

can regard an arc from random variable Vi to Vj as indicating that V* "causes" 

Vj. Throughout this dissertation, we will follow a standard practice of notations, 

i.e. upper case letters represent variables and low case letters represent values. For 

example, vt represents V — Vi, and in the case of binary values, +vt means K = +1 

and — Vi means V, = — 1, and v represents (vi, v2,. . . , VL) where L is the number 

of vertices in graph,. 

Since the conditional dependence between random variables is defined by the 

graph, the joint probability distribution, also called the probability mass function 

in the discrete case and probability density function in the continuous case, can be 
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(a) An example of directed graph. (b) An example of undirected graph. 

Figure 3.1: Two examples of graphical models. 

calculated as a product of the conditional probability of each variable conditioned 

on its parents, i.e. 

P(v) = J ] P{vi\Pa(vt)) (3.1) 

where Pa(vi) denotes an instantiation of the parents of Vi in the graph, for exam­

ple, Pa(v3) = {vi, v2} in Figure 3.1(a). For a variable with no parents, the con­

ditional probability is just its unconditional prior probability. For instance, given 

Figure 3.1(a), the joint probability P(+vi, —v2, +v3, —1>4) can be computed as 

P(+v1,-v2,+v3,-v4) 

= P(+v1)P(-v2)P(+v3\+v1,-v2)P(-vA\ + v3). 

Given a BN as shown in Figure 1.6(a), one can define the joint probability 

of variables in the graph. Formally, given a set of observation variables X = 

(Xi, X2,..., XL), a Bayesian network models the joint assignment of all hidden 

variables Y = (Yi, Y2,..., YL), where L = 5 in this specific example. To find the 

joint probability P(Y,X), this BN makes two independence assumptions. First, 

it assumes that each state Yi is independent of all non-descendents given its direct 

parent(s) Pa(Yi), i.e. node Y3 is independent from Yx, Y4 and Y5, given its parent 
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Y2, and Y4 is independent from Yx and Y3, given its parents Y2 and Y5. Second, 

it also assumes that the observation Xi is independent of other variables given the 

current state Yi. With these two assumptions, the joint probability of an observation 

sequence x and a state sequence y can be easily calculated as 

L 

p(x,y) = U.[p(yi\Pa(.yi))P(zi\yi)]'- (3-2) 

3.2 Undirected Graphical Model 

An undirected graphical model, also known as a Markov Net, can also be repre­

sented by a graph G — (V, E) over a set of random variables, differing from BN 

in that its edges are undirected. A clique in graph G is a set of fully connected 

vertices and is denoted by c, and the set of all cliques in graph G is denoted by C. 

For example, in Figure 3.1(b) nodes {V\, V2, V3} form a clique, and {V3, V4} form 

another clique. Let ^C(K) denote a nonnegative potential function associated with 

possible configurations of variable Vc in clique c. For example, the potential func­

tion ^123(̂ 123) = ^123(^1, v 2, vs). The joint probability of the random variables can 

be defined as the normalized product of the potential functions over all cliques, C, 

in graph G, i.e. 

P(v) = ̂ IlMvc), (3-3) 
L c&C 

where the normalization factor Z = Y.\ Ticec V'c(K) in the discrete case or Z = 

JvYlcectfciVc) in the continuous case. This factor Z is also called the partition 

function. For example, given the undirected graph in Figure 3.1(b), the joint proba­

bility P(+vi, —v2, +v3, —V4) can be computed as 

P{+vi,-v2,+v3,-v4) 

= ^123(+VI,-V2,+V3)I(;M(+V3,-VA), 

where 

Z = *Pl23(-Vl,-V2,-V3)lp34(-V3,-V4) 

+ i>l23(-Vl,-V2,-V3)tp34(-V3,+V4) 

+ i>123(-Vl,-V2,-V3)lpU(+V3,-V4) 
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+ Ipl23(+Vl,+V2,+V3)ljj34(+V3,+V4) 

A Conditional Random Field (CRF) may be viewed as an undirected graphical 

model conditioned upon a set of global observations. In a CRF, given a graph over 

a set of observations x and labels y, we can define a set of cliques C = {(Xc, Yc)}. 

By the Hammersley-Clifford Theorem [34], the conditional probability of the labels 

y given the observations x can be modeled by a conditional exponential family over 

cliques in the graph, i.e. 

P(y|x) = -exp5~>c(s c ,2 / c) , (3.4) 
z cec 

where Z = Ey exp £ c G c ipc(xc, yc)-

We use the undirected graph shown in Figure 1.6(b) to illustrate CRFs. Different 

cliques can be defined for the CRF model in this example, as long as every vertex 

in the clique is connected to each other. For instance, a set of maximal cliques, 

C, consists of cliques (Yi, Y2), (Y2, Y3, Y4) and (Y2, Y4,15), and a set of pairwise 

cliques is the set of all edges, i.e. (Y1: Y2), (Y2, Y3), (Y2, Y4), (Y2, Y5), (Y3, Y4), and 

(Y4, Y5). Since each observation Xi is attached to its state node Yi, cliques can be 

defined over these pairs of state-observation nodes as (Xi, Yi). Given the observa­

tion sequence x = (xi,x2,..., XL) where L = 5, the conditional distribution has 

the form 

-P(ylx) = -£ exp[(^i2(yi, 2/2) + -0234(̂ /2, j/3, yd + ^245(2/2,2/4,2/5)) 

L 

+ ^2ipi(xuyi)], (3.5) 

if the maximal cliques are chosen for computing. These potential functions will be 

defined later in Section 5.2.2. 

3.3 Inference Algorithms 

Given a specific graphical model, the main goal of inference is to estimate the values 

of hidden nodes Y, given the values of the observed nodes X, i.e. P(y|x). To 
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compute this posterior probability, we can use Bayes' rule: 

In general, computing the posterior using Bayes' rule is computationally intractable, 

because computing the likelihood term P(x) involves a marginalization computa­

tion, i.e. J2y -P(x, y) which is a sum over an exponential number of terms. 

By using the conditional assumptions encoded in the graph, one can speed up 

the computation of the posterior probability. Since we use an exact inference al­

gorithm in our application, here we only review some of the popular exact infer­

ence algorithms. However, there is another large group of algorithms for approx­

imate inference, which each produces approximate target probabilities using more 

efficient computations. Most commonly-used approximate inference algorithms 

include loopy belief propagation, sampling methods and variational methods; we 

refer readers to [7, 33]. 

Here, we present three of the many exact inference algorithms, i.e. the variable 

elimination algorithm, the belief propagation (BP) algorithm, and the Junction Tree 

(JT) algorithm. To keep our illustration simple, we use a four-node graph shown in 

Figure 3.2(a) for introducing the variable elimination algorithm and BP algorithm. 

Although the example given here is an undirected graph, the inference algorithms 

also apply to directed graphs. It is easy to convert a directed graph to the counter­

part undirected graph by connecting parent nodes that share a common child and 

dropping all arrows in the graph, as will be discussed in Section 3.3.3. Also, note 

all observation nodes X for SVM outputs are removed for now. 

3.3.1 Variable Elimination Algorithm 

The algorithm is called variable elimination because it eliminates all the irrelevant 

variables using factored representation of the joint probability. Consider an example 

in Figure 3.2(a). Suppose that potential functions are fixed or can be extracted 

from the conditional probability table of the corresponding directed graph, then the 

marginal probability p(yi) is 

p(yi) = -EEE^i'J'^^'J'^^'^) 
3/2 2/3 J/4 
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(a) The intermediate terms that are created (b) The set of all messages that are cre-
by the elimination algorithm when nodes 2, ated by the belief propagation algorithm in 
3 and 4 are eliminated in a four-node tree. a four-node tree. 

Figure 3.2: Message passing in a four-node tree. 

J2 ^(2/1,3/2) J2 v>(2/2,2/3) Yl ^(2/2, VA) 
VI 1/3 V4 

Yl ^(?/i> 2/2)^3(2/2)^4(2/2) 
V2 

TF^O/l) (3.7) 

where intermediate factors m2, m3 and ra4 are considered as "messages" passing 

from the marginalized variables. The limitation of the elimination algorithm is that 

it only computes a single marginal probability. In real-world applications, more 

than one marginal probability is often required, and multiple runs of an elimina­

tion algorithm become very inefficient, and therefore a dynamic-programming-like 

inference algorithm is desirable. 

3.3.2 Belief Propagation Algorithm 

Belief Propagation [49], also known as the sum-product algorithm, is a dynamic 

programming form of variable elimination for calculating the marginals in a tree. It 

updates the marginal (or belief) of each node iteratively by passing messages from 

the neighbors until they converge. 

We will illustrate the BP algorithm by an example shown in Figure 3.2(b). The 
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marginal probability p(y\) can be calculated by 

P(VI) = -7^(2/1) I I mn(yi) 
^ ieN(Yi) 

= -i){yi)m2i{yi) (3.8) 

where N(Yi) denotes the neighborhood set of node Y\, and mn(yi) is the message 

passed from the neighboring node T/J to node y\ which is given by 

2/2 ieN(Y2)\Y1 

= -^^2i}(y^y2)^{y2)mZ2{y2)m^{y2) (3.9) 
^ 2 / 2 

where iV(y2)Y^i refers to all nodes neighboring F2 except Y"i. 777.32(7/2) and 777,42(7/2) 

can be computed following the same procedure. If marginals of the other nodes 7/2, 

7/3 and 7/4 are also desired, the messages that were computed for getting p(yi) can 

be reused as in dynamic programming, and only messages passed in the opposite 

direction need to be computed, i.e. 777.12(7/2), 777.23(7/3) and 777,24(7/4). It can be shown 

that the number of possible messages that BP computes is twice the number of 

edges in the tree. 

As a summary, the BP algorithm sends messages from all leaf nodes to the 

neighboring nodes and continues sending messages in this manner until all possible 

messages in the tree have been sent exactly once. Once all messages are obtained, 

the marginal of a variable in the tree is simply the product of the incoming messages 

of all its adjacent nodes. The BP algorithm is capable of handling the inference 

problem in any acyclic graph such as a chain or a tree, but does not function well 

in loopy graphs, i.e. graphs with cycles, and a more complex method is needed to 

tackle this cycle issue. 

3.3.3 Junction Tree Algorithm 

The Junction Tree algorithm is one of the most widely used algorithms for exact 

marginalization in loopy graphs. Two versions of the JT algorithm were developed 

in the late 1980s. One version by Shafer and Shenoy [53], and the other was initially 
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developed by Lauritzen and Spiegelhalter [45]. The latter version was soon refined 

to a message passing scheme, which is described in this section. 

In essence, the JT algorithm performs belief propagation on a modified graph 

called a junction tree, which is obtained by clustering cycles into single nodes. 

The main steps involved in performing the JT algorithm can be summarized as 

follows [7]: 

1. Moralisation Given a directed graph, one can moralize it by adding a link be­

tween any pair of nodes with a common child and dropping edge orientations. 

If given an undirected graph, then this step can be skipped. 

2. Triangulation An undirected graph is triangulated if every cycle of length 4 

or more contains an edge to connect two nonadjacent nodes. 

3. Form the Junction Tree Form a JT by forming a cluster representation from 

cliques of the triangulated graphs. 

4. Potential Assignment Assign the potentials to the cliques on the JT and as­

sign the separator potentials on the JT to unity. 

5. Message Propagation Pass messages until updates have been passed along 

both directions of every link on the JT. 

All steps except the second are deterministic. That is, there is only one moral graph 

and a unique set of cliques of the triangulated graph. There may be several junction 

trees due to different ways of triangulating an undirected graph, and it is an NP-hard 

problem to find the optimal triangulated graph (i.e., one which minimizes the sum 

of the clique potentials) [5]. There exists a number of triangulation techniques in 

the literature [39, 51, 60, 67], and good heuristics are often used in a real-world 

application. 

Next, we will illustrate how the JT algorithm works on a directed graph by the 

example shown in Figure 3.3. Figure 3.3(a) shows a cyclic directed graph. One can 

moralize the graph by connecting nodes Y2 and Y5, which share the same child node 

Y&, and then droping all arrows. The resulted undirected graph is shown in Figure 
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(a) Original directed graph (b) Moralized graph 

(c) Triangulated graph (d) Cliques and separators in the junction 
tree 

Figure 3.3: The Junction Tree algorithm 

36 



3.3(b). One way to triangulate the moralized graph is to add edges between nodes 

Y2 and Y3 and nodes Y3 and Y5, as shown in Figure 3.3(c). Then, the cliques in the 

triangulated graph are c123 = {Y1; Y2, Y3}, e235 = {Y2, Y3, Y5}, c256 = {Y2, Y5, Y6} 

and C345 = {Y3,y4, Y5}. Given the set of cliques, we can form a junction tree 

by joining cliques with edges labeled by a set of separators, i.e. s23, s25, and 

s35, labeled by the intersection of the indices of the adjacent two cliques. The 

original cyclic directed graph now is transformed to a tree-like structure, and the 

generated junction tree is shown in Figure 3.3(d). In a tree, marginals of nodes can 

be computed in a way similar to that in a regular belief propagation algorithm. We 

first set the separator potentials on the JT to unity, and assign the potentials of the 

cliques as the product of P(Yc\Pa(Yc)) in the directed graph where Yc are variables 

in one clique. For example, we initialize the potential of clique C123 as 

^c123 - P(yi)P(v2\yi)P(yz\yi), (3.10) 

and potentials of all separators as 1. Then, messages start being passed between 

cliques via separators. When a message is passed from clique c123 to clique c235 

via separator s23, a new separator potential is obtained by marginalizing out the 

variables in clique ci23 that are not in s23, i.e. 

€23= E ^ „ = Tf
p(yi)p(v2\vi)P(ys\yi), (3-ii) 

C 1 2 3 \ S 2 3 2/1 

and a new potential for clique c235 is obtained by 

rC235 = ^235^h. (3.i2) 
yS23 

Note that in this message-passing scheme, a clique passes a message to a neighbor­

ing cluster only after it has received messages from all the other neighbors. This 

message propagation procedure continues until updates have been sent along both 

directions of every edge on the tree. Now, the clique potentials can be read from the 

JT, and the marginal probability of each variable of interest Y$ can be computed by 

PiVi) = E 4c (3-13) 
c\{Yi} 

where c is the cluster containing Yj. 

37 



It is believed that there cannot be a much more efficient exact inference algo­

rithms than the Junction Tree algorithm in a general loopy graph, since every other 

approach must contain a hidden triangulation [39]. 

3.4 GO Hierarchy Vs. Dependencies in Function La­
bels 

In principle, a correct DAG is considered as a model for describing the data gen­

erating process. Specifically, given the GO hierarchy, one can assume that protein 

function annotations are induced accordingly because of the rule of consistent label­

ing. For example, given the DAG in Figure 1.5, one would expect a set of function 

annotations D = {(V,), (V5), (Vi,V2), (VuV2,V3), (VUV2,V5), (VUV2,V4,V5), 

(Vi, V2, Vs, V4, V5)}. The BN model has the advantage that it has a simple causal 

interpretation to model the dependencies in this DAG. 

However, a DAG that only partially describes the data generation process may 

mislead the causality analysis. In particular, there may be spurious dependencies 

that are entailed by the hidden variables. Given the above set of function labels D, 

one may find that functions V\ and V5 always appear together. This relationship 

in generating function labels is not represented in the DAG, as the GO hierarchy 

is organized for biological parent-child relationships. Therefore, constructing a de­

pendency graph by learning from the actual data is the ultimate goal. However, 

learning an optimal graph structure that best explains the data is an iVP-Hard prob­

lem [20, 21], since the number of DAGs on L variables is super-exponential in L. 

Alternatively, artificially adding some arcs into the DAG may help recover the true 

data-generating relationships that are not shown in the original DAG. Under such 

a circumstance, the undirected model is advantageous over the directed model, be­

cause the undirected model does not assume directions when adding edges into the 

graph. This DAG issue will be taken into account when we build our CRF model in 

Section 5.2. 
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Chapter 4 

Function Prediction Using Local 
SVM Predictors 

As reviewed in Section 1.1, for each protein, the CHUGO system produces a set 

of independent binary SVM predictions, and then uses positive up-propagation to 

make the final predictions. However, we show that a probabilistic SVM prediction 

is more effective as an input to a graphical model. This chapter starts with a general 

introduction to Support Vector Machines, illustrates how to fit the real-valued SVM 

outputs using a Laplace mixture distribution and a single Laplace, and introduces 

an Expectation Maximization algorithm for discovering model parameters. 

4.1 Support Vector Machines 

The Support Vector Machine is a learning algorithm designed to maximize the mar­

gin of confidence of a classifier on the training data set. It was first introduced 

by Vapnik [63] and others [8, 15], and was inspired from theoretical concepts of 

statistical learning theory. An SVM works by mapping a set of labeled data to a 

feature space, and finding the "optimal" separating hyperplane in the feature space. 

This optimal plane maximizes the distances from the hyperplane to the nearest data 

points i.e. support vectors, and those distances are called margins. In practice, even 

an optimal hyperplane can not separate an arbitrary data set perfectly due to noisy 

data or insufficient features. Each data point that appears in the region of a differ­

ent label is known as a misclassification. The number of misclassification can be 

minimized by carefully selecting SVM parameters. 
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Figure 4.1: A linear Support Vector Machine. Each +/- point represents a training 
instance. Points (+) are labeled with one class, and points (-) are labeled with the 
other, di is the distance from a data point i to the hyperplane. Circled +/- points are 
misclassified. 

Figure 4.1 shows a linear SVM, in which two classes of data are separated by a 

straight line. Formally, given a set of training data where each can be represented 

by a feature vector x, we want to classify each instance as one of two classes in 

y 6 {—1, +1}. The SVM outputs are signed distances from data points to the 

hyperplane that can be calculated as: 

f{x) = wTx + b (4.1) 

where w is a vector of weights and b is the offset of the hyperplane. This hyper­

plane is optimal because the margin between the separable training instances and 

the hyperplane is made as large as possible. The same hyperplane can typically well 

separate unseen test instances as well, if they are consistent with the training data. 

SVMs can be extended to deal with non-linear boundary in the feature space by 

introducing different kernels, which find separating hyperplanes of higher dimen­

sions. The most popular non-linear kernels include polynomial kernels, radial basis 

functions (RBFs) and sigmoid functions. These kernel-based SVMs perform better 

on data that is not linearly separable. However, they tend to over-fit data as they ad­

just to fit outliers, and the computational cost is also significantly higher than linear 

SVMs due to its higher dimensionality in the feature space. In all our experiments, 

we use linear SVMs since they were shown to be efficient and successful in the 
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CHUGO system. 

To make a prediction y on an unseen instance, x, using the weight vector w 

and offset b obtained from training, one uses the sign of /(x) in Equation 4.1. y 

is labeled positive (+1) if (wT x + b) > 0, and is negative (-1) if (wT x + b) < 0. 

However, the problem with a binary SVM prediction is that every data point on 

the same side of the hyperplane is treated equally. However, the original SVM 

outputs /(x) indicates not only the label (+1 or -1) but also the confidence of this 

prediction, based on the value of /(x). Intuitively, the larger the absolute value of 

/(x), the more confident our prediction is. The next section defines a way to learn 

a new distribution from the real-valued SVM outputs obtained from the training 

data, and shows how to use the distribution on unseen data to estimate predictive 

accuracy with a specified probability. 

4.2 Probabilistic Support Vector Machines 

In many cases, the posterior probability P(y = ±1 | / ) is difficult to compute di­

rectly, but instead the class-conditional density P(f\y = ±1) is more useful for 

making a probabilistic prediction based on the SVM output. To fit probabilities 

to the output of an SVM, Hastie and Tibshirani [35] proposed fitting Gaussians to 

the class-conditional densities, which was adopted by Barutcuoglu et al. in their 

hierarchical prediction of GO functions [9]. In a separate study, Lin and Weng [46] 

investigated modeling the distribution of SVM outputs by a Gaussian and a Laplace, 

i.e. 

P(/(x)|A/W)) = - ^ - e x p ( ^ M ^ ) (4.2) 

and 

P{f(x)\C{vL, a)) = i - exp( - | / ( x ) ~ H ) (4.3) 
la a 

where A/*(/u, a2) and C{JJL, a) denotes a Gaussian and Laplace respectively, both 

characterized by a location parameter n and a scale parameter a which can be 

learned from the training data. Lin and Weng also showed that, in all their ex­

periments, Laplace estimation outperformed Gaussian. It is also worth noting that 

Piatt [50] introduced a direct approach to model the distribution of SVM outputs 
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P(y = ±1 | / ) using a sigmoid model. 

Although those studies have chosen different models to fit SVM outputs, they 

share some common assumptions and methodologies. First, they all assume that 

the distribution of the target value y depends on its input x only through the pre­

dicted value /(x). In theory, the distribution of SVM outputs may depend on the 

input x, and the length of the predictive interval may vary with different input val­

ues. However, the assumption often works well in practice and provides a good 

estimate for initial analysis. Second, they all assume that the SVM outputs, /(x), 

are generated independently, and thus the class-conditional density P(f\y — ±1) 

can be modeled by simple parametric functions. These assumptions for fitting SVM 

outputs also apply for this thesis work. In terms of initial estimation, they all use 

histograms which give a visual representation of the SVM output distribution for 

more sophisticated analysis. 

4.3 Fitting Local SVM Outputs Using a Laplace Mix­
ture Model 

Given the SVM outputs for each GO node, we want to estimate the class-conditioned 

density P(f\y = ±1). Parameters of P(f\y = +1) can be estimated from the posi­

tive examples of that class, and parameters of P(f\y = — 1) can be estimated from 

the negative examples of that class. Figure 4.2 shows histogram plots of SVM out­

puts obtained from the positive training instances on two nodes GO0030528 and 

GO0030246, and Figure 4.3 shows histogram plots of SVM outputs obtained from 

the negative instances on these nodes. Since there are significantly more negative 

training instances than positive instances in almost all GO classes, SVM perfor­

mance on positive examples is consistently worse than on negatives. As the his­

tograms show, SVM outputs from positive examples tend to spread more from the 

two centers, +1 and -1 , than SVM outputs from negative examples. This indicates 

that the SVM is more accurate for negative examples than for positive ones. The 

histograms also show that a Laplace appears to model the SVM output distribution 

more closely than a Gaussian distribution. However, we show that we can model 
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(a) A Laplace mixture on node (b) A 
GO0030528. Parameters of two GO0030528 
Laplaces: 0i = (0.32,-0.87,0.33) and sians: 0X 

SVM margins 

Gaussian mixture on node 
Parameters of two Gaus-

= (0.41,-0.68,0.44) and 
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GO0030246. 
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02 = (0.41,0.98,0.11). 

- 3 - 2 - 1 0 1 2 3 
SVM margins 

(d) A Gaussian mixture on node 
GO0030246. Parameters of two Gaus-
sians: 0i = (0.61,-0.72,0.46) and 
02 = (0.39,1.0,0.057). 

Figure 4.2: The histograms of SVM outputs obtained from positive training in­
stances. SVM outputs obtained from positive examples concentrate at +1 and - 1 . 
Both the Laplace and Gaussian mixtures are parameterized by 9X = (TTI, /J,X, a{) and 
92 = (7T2, /x2, <r2) where 7r denotes the weight of a particular component, /J, denotes 
the location parameter, a denotes the scale parameter. Note the y-axis has different 
scales based on the number of instances in different classes. 
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(c) A Laplace estimation on node GO0030246 (d) A Gaussian estimation on node 
with (i = -0.97 and a = 0.105. GO0030246 with n = -0.98 and a = 0.115. 

Figure 4.3: The histograms of SVM outputs obtained from negative training in­
stances. SVM outputs obtained from negative examples are centered at -1. Both 
the Laplace and Gaussian are parameterized by 0 = (//, a). Note the y-axis has 
different scales based on the number of instances in different classes. 
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the output more accurately by using a mixture of two Laplace distributions for SVM 

positive outputs and a single Laplace distribution for negative outputs. In our ex­

periment, we did implement a system with a Gaussian mixture but the result was 

worse than a Laplace mixture. 

It is simple to model a single Laplace, as defined by Equation 4.3 from the neg­

ative samples. Given N SVM outputs (x\, x 2 , . . . , xN) from negative training ex­

amples for the same class, location parameter /i is the median of these samples [42] 

and the estimator of the scale parameter a is 

1 N 
(J = T?E h - 4 (4.4) 

YV i= i 

It becomes somewhat complicated to model a Laplace mixture distribution. 

Given a mixture of K Laplaces, the goal is to estimate a set of unknown parame­

ters 9 = {(TTI, fix, ai),..., (irK, nK, crK)} where nk denote the proportion or weight 

of the kth Laplacian of the mixture. We use the Expectation Maximization (EM) 

algorithm for the maximum likelihood estimate of the parameters. 

The EM algorithm was well described by Dempster et al. in 1977 [27], and 

it has been frequently used for data clustering in machine learning. EM alternates 

between performing an expectation (E) step, which computes an expectation of the 

likelihood, and a maximization (M) step, which computes the maximum likelihood 

estimates of the parameters by maximizing the expected likelihood discovered on 

the E step. Then the parameters found on the M step are used to start another E 

step. EM iterates until the likelihood converges to a local maximal. 

As we are using a mixture of two Laplaces to fit the distribution of the SVM 

outputs obtained from the positive training examples, the probability density of a 

set of SVM outputs x = (xi, x2, • • •, %N) can be modeled by 

P(x\9) = f[J2 P(k,Xj\9), (4.5) 
j = l fc=l,2 

where P(k, Xj\9) denotes the joint probability of sampling the kih Laplace model 

and sampling a particular SVM output Xj from this Laplace component, i.e. 

P(k, Xj\9) = P(k\e)P(xj\k, 9) = TxkP{xj\k, 9). (4.6) 
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Given an initial 9° = {(7^, ̂ 1; ai), (7r2, /i2,02)} ', EM tries to find # l+1 that maxi­

mizes the expected value of the log-likelihood of Equation 4.5 given the data x and 

the parameter 9% from a previous iteration, i.e. 

# l+1 = a rgmaxQ(# |x ,^ (4.7) 

where 

Q(8\x,8i) = E 

= E 

= E 

log P(x|0)|x,^] 

log]! E Pfaxtf) 
j = l fc=l,2 

" TV 

EiogE^(*^#) 
J=l k=l,2 

N 

= £ £ 
i = i 

log £ P ( M # ) 
fc=l,2 

X,#* 

" 

X , ^ 

. 

xj,e
i 

= E E^I^)iogP(£,*#) 
i = i fc=i,2 

j '=l fc=l,2 
(4.8) 

The likelihood P(:Ej|fc, 0) can be calculated by the Laplace density function as 

shown in Equation 4.3. The probability that Xj comes from the fcth Laplace of 

the mixture P(k\xj, 8l) can be estimated by 

TTfcPfolM*) p(k\xj,el) (4.9) 
Efc=i,2' r*-p(a ;jl fc.^)' 

Using Equation 4.9 to replace P(k\xj, 91)) in Equation 4.8, we can optimize Q(8) 

by taking partial derivatives of Equation 4.8 subject to 7Ti + 7r2 = 1. 

As the sample median is the maximum likelihood estimator of location param­

eter // in a single Laplace, the maximum likelihood estimator of [i for a mixture of 

two Laplaces is a weighted median [23, 68]. The weighted median is the value (3 

that minimizes the following expression 

N 

J{@) = E H x * -PI (4.10) 
i = l 

1 Parameters estimated at the ith iteration are denoted by a superscript i. 
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where weight wi = P(k\xu 9). Then, the weighted median is selected based on the 

following two situations: 

XM, if Efix Wi > \ E j l i Wi } ,4U) 

1(XM + XM+I), if Efii Wi = \ E j l i Wi j 

For example, consider a set of SVM outputs x = [0.7, 0.9, 0.24,1.1, 0.8] associated 

with weights w = [0.1,0.2, 0.3,0.2, 0.1]. After sorting the x vector, we obtain the 

sorted SVM outputs with the corresponding weights. 

x 1.1 0.9 0.8 0.7 0.24 
w 0.2 0.2 0.1 0.1 0.3 

Starting from the left, add the weights until the sum is greater than or equal to 

\ YA=\ wi — 0.45. By adding the weights of the first three outputs (i.e. M = 3), 

the sum is 0.5 exceeding 0.45. The weighted median is therefore 0.8. Figure 4.4 

summarizes the EM algorithm for a mixure of two Laplaces. 

P 
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(Note: Parameters estimated at the ith iteration are denoted by a superscript i.) 

Input: data x = (xi, x2,.. • , xN) where x e RN. 

Output: parameters for two Laplaces 0\+l = (ir\+1,nli~1,a\+} 

(4+1 ,^+1 ,4+1)-

Initialization: #° and O®. 

) and 0£+1 = 

While 9\+1 - 9[ > a or 6l
2

+1 — 6\> a where a is a pre-defined threshold, do 

• E-step: Compute the posterior probabilities for all k = 
1,...,N: 

PHHx P)- < P ^ k ^ ) 

where P(xj\k, 9l) = 

• M-step 

M!+ 1 

4+1 

K+1 

^ x p ( ^ ) . 

N 

= axgmm^2 Pl(k\xj,8l)\xi — (3\ 

1 N 

= -Unkix^e^-^i, 
Z 3=1 1 N 

J V 3=1 

1,2 and j = 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

Figure 4.4: An EM algorithm for mixing of two Laplaces. 
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Chapter 5 

Hierarchical Prediction of GO 
Function Using Graphical Models 

The hierarchical relationship in the GO provides valuable knowledge for construct­

ing a model to make consistent function prediction. We build two graphical mod­

els, Bayesian network and Conditional Random Fields, each of which augment 

structural information of the hierarchy to make local SVM predictions with more 

globally consistent function prediction. This chapter illustrates how each model is 

constructed from the hierarchy, and describes approaches for parameter estimation 

and inference methods. 

5.1 Hierarchical Prediction Using Bayesian Networks 

5.1.1 Model: Bayesian Networks 

Since the GO hierarchy is organized as a DAG, it is natural and convenient to induce 

a dependency graph based on the parent-child relationships in the hierarchy. We use 

the hierarchical structure of the GO illustrated in Figure 1.5 to construct a Bayesian 

network as illustrated in Figure 1.6(a). The network spans two sets of variables, i.e. 

Y = (YUY2,..., YL) and X = {X1, X2,..., XL). Each node Yt represents a GO 

function and has two possible states, +1 for positive and -1 for negative. Each node 

Yi represents an output from the local SVM predictor which is a real number. Node 

Yi is conditioned on its parent classes, and local observed node Xi is conditioned on 

the directly connected node Yi. The edges between Y nodes encourage hierarchical 

consistency in the graph. By arranging entries in the CPT, we can ensure that a node 
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is guaranteed to be positive if any of its children is positive (+1) and to be negative if 

any of its parents is negative (-1). The edge from each Y{ to the corresponding local 

observation Xt represents the predictive accuracy of the local SVM classifier. The 

constructed Bayesian network is able to make hierarchical prediction compatible 

with the consistent-labeling rule by considering the parent-child relationship in the 

hierarchy, and to provide more accurate predictions by integrating the probabilistic 

outputs from the local predictors. 

Two assumptions have been made by this particular Bayesian network structure. 

First, each local prediction Xi is independent from the other local predictions and 

the other GO nodes, given its direct parent ¥>. Second, each GO node Y{ is con­

ditionally independent from all non-descendants, given its immediate parents. As 

discussed in Section 3.4, the second assumption is not valid because the GO hier­

archy may not be the true dependency model that is used to generate the function 

labels. However, it is reasonable to believe that the GO hierarchy is part of the true 

dependency graph, and more likely forms the fundamental structure of the graph. 

Therefore, the GO hierarchy is used to build the Bayesian network in this research. 

For this network structure, our goal is to find the maximal joint probability dis­

tribution, also known as the most probable explanation (MPE), given a set of local 

SVM outputs x for a query protein. Mathematically, given a set of observations x, 

we want to find a set of labels y* so that 

y* =argmaxP(y|x) . (5.1) 

By Bayes' rule, the joint conditional probability can be written as 

P(y|x) = Ip(y)F(x |y) , (5.2) 

where the normalization factor is Z = ^ y P{y)P(x\y)- Due to the assumptions on 

our Bayesian network, the two terms in Equation 5.2 can be simplified as 

P(y) = f[P(yi\Pa(yi)) (5.3) 

where Pa(yi) denotes all parent nodes of yu and 

P(x\y) = f[P(xi\yi). (5.4) 
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Next, let us denote P(yi\Pa(yi)) and P(xi\yi) as parameters ^w|pa(w) and 9x.\y. 

respectively, and we will discuss how to estimate these parameters from the training 

data in the next section. 

5.1.2 Parameter Estimation and Inference 

The parameter 0yi\pa(yi) represents hierarchical structure imposed by the graph, and 

indicates how likely a node yt will be labeled as positive or negative given the as­

signment of all its parent nodes. We construct a conditional probability table (CPT) 

at each node to enforce the inheritance properties of the GO hierarchy. As described 

in Section 1.2, the rule of consistent labeling in the hierarchy simplifies the CPTs in 

the Bayesian network, and only one parent-child configuration, in which y± is pos­

itive given all its parents being positive, needs to be computed from the true labels 

of training data. The CPT entries for all the other parent-child configurations, i.e. 

yi is positive given that any of its parents is negative, are merely O's. For example, 

given the BN in Figure 1.6(a), the CPT at node Y4 would be: 

Vi 
— 
— 

+ 
+ 

2/5 
— 

+ 
— 

+ 

+2/4 
0 
0 
0 
a 

-Vi 
1 
1 
1 

1 — a 

where Y2 and Y5 are parents of Y4, and a is a probability computed from the training 

data. This CPT encodes the fact that a negative label for either Y2 or Y5 implies a 

negative label for Y4. 

The other parameter 0Xi\yi represents the predictive accuracy of the local SVM 

classifier, and represents reliability of an SVM prediction given the knowledge of 

the true label y^ Given the assumption that local SVMs have similar performance 

on the training data and the test data, P(xi\yi) can be estimated by aggregating SVM 

cross-validation results on the training data. For binary SVM outputs, P{xi\yi) 

can be estimated using the confusion matrices from cross validation. For exam­

ple, P(+Xi\ + yi) represents the ratio of positive instances predicted correctly, i.e. 

TP/(TP+FN) where TP, true positives, refers to positive instances classified cor­

rectly and FN, false negatives, refers to positive instances classified incorrectly. 
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Since our local SVM prediction was modified to output the raw SVM margins, Xi 

is a real number rather than a binary bit, and therefore the estimation technique 

described in Section 4.3 is used for fitting the likelihood term P(xi\ ± yi). 

The Junction Tree algorithm described in Section 3.3.3 is utilized for inference 

in the BN. 

5.2 Hierarchical Prediction Using Conditional Ran­
dom Fields 

The Bayesian network models dependencies among GO terms using the arrows in 

the original GO graph. To generalize the second assumption made by the BN, i.e. 

function annotations are only generated according to the GO hierarchy, we would 

like to take the GO hierarchy and add edges between spouse nodes who share a 

common child term and between sibling nodes who share a common parent node. 

We cannot use a BN for this generalization, so to model the parent-child, spouse-

spouse and sibling-sibling dependencies, we use an undirected graphical model, the 

Conditional Random Field (CRF). This model has been widely used for studies of 

complex graph dependencies. 

5.2.1 Model: Conditional Random Fields 

The undirected graph is constructed by taking the Bayesian network, adding edges 

to all pairs of spouse nodes and sibling nodes, and dropping arrows in the directed 

graph. An undirected graph is shown in Figure 1.6(b), and it is converted from the 

corresponding BN in Figure 1.6(a). Given the undirected graph G = (V, E), two 

types of cliques are defined: edge cliques CE and vertex cliques Cy. Edge cliques 

CE, the local-consistency factor, includes all edges, i.e. parent-child, spouse-spouse 

and sibling-sibling edges in the proposed undirected graph. Node cliques Cy is 

defined to capture dependencies between the local predictions and the class labels. 

For simplicity, a pairwise neighborhood system is adopted for modeling the label 

consistency structure. For example, for Figure 1.6(b), edge cliques CE = {(Y"i, Y2), 

(Y2, Y3), (Y2, y4), (Y2, Y5), {Y3, Y4), {YA, *•>)}, and vertex cliques Cv = {(X1, Yx), 
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(x2, Y2), (x3, Y3), (x,, y4), (x5, y5)}. 
Given local SVM outputs, the conditional distribution over labels Y is defined 

as: 

P(y\x) = -zexp{ Y ^EiVuVj) + Y ^viVuXi)} (5.5) 

where i>E{Vi, %)> the transition function, denotes the potential over a pair of neigh­

bor nodes, ipv{yi,%i), the state-observation function, denotes the potential over 

node Vi, and Z is the partition function. Each ipE(Vi,yj) can be expressed as a 

linear function i.e. 
4 

^E{VU Vi) = Y Okfk(y» Vj), (5.6) 
fe=i 

where fk(yi, Vj) is the indicator function of state assignments over a pair of nodes 

(yi,Vj) and consists of four possible features for each pairwise clique, i.e. f(—yi, —yj), 

f(-Vi, +yj)> f(+Vi, ~yj) a nd / (+&, +%)• The formulation of function fk(yu y^ 

captures co-occurrences between labels in the hierarchy. 

Since tpv{yi, #i) captures relationships between the class label and local SVM 

prediction, we define the feature function as the class-conditioned density function 

P(xi\ ± yi) as described in Section 4.3. 

5.2.2 Parameter Estimation and Inference 

The proposed CRF model needs to estimate the parameters of the transition function 

and state-observation function. Since parameters of the state-observation function 

4>v(yu xi) a r e defined by the likelihood function P{xi\y^) of the SVM outputs, they 

are computed as described in Section 4.3, i.e. parameters for a Laplace mixture and 

a single Laplace. 

Parameters of the transition function, i.e. 6k in Equation 5.6 for each edge in the 

graph, can be estimated by counting the occurrences of all possible assignments of 

two nodes associated with the edge in the training data. For a spouse-spouse and 

sibling-sibling edge, all four assignments of (yi,yj) are possible, while only three 

assignments are possible for a parent-child edge since f(—yi, +yj) never appears 

due to the rule of consistent labeling. 
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Inference in CRFs is implemented using the same algorithm as in BNs (de­

scribed in Section 5.1.2), the Junction Tree algorithm, except there is no moralisa-

tion step since it is already an undirected graph. 
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Chapter 6 

Experiments for Hierarchical Protein 
Function Prediction 

We conducted our experiments on two different protein data sets using SVM, BN, 

and CRF classifiers. This chapter introduces the performance evaluation technique, 

describes the two data sets used in the experiments, presents the experimental re­

sults, and concludes with a discussion of the results. 

6.1 Evaluation 

For a fair evaluation of a predictive system, part of the data, called the test set, 

must be withheld from training. We use a modified 5-fold cross validation tech­

nique to split our data and evaluate the prediction results. Prediction performance 

is evaluated based on the standard F-measure score. 

Cross Validation 

To evaluate the performance of our proposed models on unseen data, we perform all 

our experiments using 5-fold cross validation. In a standard 5-fold cross validation, 

the data is divided into five folds, and each fold of data contains a similar number of 

instances for each class. Classifiers are trained on any four folds of data and tested 

on the withheld fold. This procedure continues until every fold has been tested 

using the classifier trained on the other four folds. In our task, there are two phases. 

In phase 1, there is a need for estimating the local SVM output distribution from 

the training data. In phase 2, we estimate the parameters of the graphical model. If 
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Figure 6.1: Two-phase 5-fold cross validation. Foldl is held out as a test set for 
predicting functions globally using graphical models. The other four folds are com­
bined as a training set, in which Fold2 is held out for testing the SVMs trained on 
the other three folds. The local cross validation continues until every fold in training 
has been tested. 

we perform 5-fold corss validation in all the data to construct the local SVMs then 

all the data will be used in estimating the parameters of the graphical model and no 

unused test data will be available. Therefore, we first divide the data into 5 folds for 

use in phase 2. To estimate the parameters of the local SVMs, we do 4-fold cross 

validation in the training data by using 3 folds for training and 1 fold for testing. 

This leaves a fold for testing the parameters of the graphical model. 

Specifically, in the four-fold training data, one fold is held out for testing the 

SVM classifiers trained on the other three, called a local cross validation, and then 

it is put back to the training data and another fold is pulled out for test. This process 

continues until every fold in the training set has been tested. The SVM outputs of 

all four SVM training folds are combined to make a distribution estimation using 

the technique described in Section 4.3. The same operations are applied to the other 

global folds. In total, we have trained SVMs Cf = 10 times on any three folds. One 

iteration of this two-phase cross validation technique is shown in Figure 6.1. 

Performance Measures 

The standard F-measure is adopted for performance comparison between different 

models. F-measure is defined as 

F — measure = 
2 x Precision x Recall 

Precision + Recall 
(6.1) 
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where the precision measures the performance of a classifier's positive predictions 

and is defined as 
TP 

Precision = ———-=-=-, (6.2) 
TP + FP' v ' 

and the recall measures the percentage of the positive instances that are predicted 

as positive and is defined as 

TP 
Recall = —— ——, (6.3) 

TP + FN' K ' 

where TP is the number of true positives, FP tallies false positives and FN denotes 

the number of false negatives. 

6.2 Data Set 

We create two protein data sets for hierarchical function prediction using different 

models. As discussed in Section 2.1, each data sets consists of three components: 

protein sequences, GO hierarchy, and known protein labels - i.e. functions. To cre­

ate more confident labellings, only function labels that were derived from a biolog­

ical experiment are considered in this dissertation. That is, we only include labels 

identified by evidence code IDA, IEP, IGC, IGI, IMP, and TAS, and exclude IC, 

IEA, ISS, NAS, ND, RCA, and NR. Following the consistent labeling approach, 

each experimentally-annotated label is propagated up to the root node. Since the 

root term GO0003674 molecular function is true for all proteins, it is removed from 

the label set for prediction. 

To directly compare with the prediction performance obtained by Eisner et al., 

the same data set is used. The data set (data set 1) consists of the Uniprot release 

2.0 (TrEMBL release 27 and Swiss-Prot release 44), August 28,2004 version of the 

GO molecular function ontology, and August 11,2004 version of the GOA mapping 

file. A sufficient number of positive training instances is required to create accurate 

local function predictors. To be consistent with Eisner et al [29], we also set the 

minimum number of positive instances at a node after the label propagation to 20. 

This leaves us 399 nodes in the pruned GO hierarchy1, and 14,018 proteins. 

'There were 406 GO nodes in Eisner's experiments. However, having confirmed with the author, 
there is a bug in the code used to extract the GO terms, so 7 nodes were removed. 
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To evaluate the performance of the proposed models on a larger scale and more 

recent data, we create another data set (data set 2), which includes the Uniprot 

release 10.0 (TrEMBL release 35 and Swiss-Prot release 52), June 5, 2007 version 

of the GO molecular function ontology, and August 17, 2007 version of the GOA. 

A cutoff of 20 positive instances at each node is preserved, and the final version of 

the data set contains 792 GO terms and 45,956 unique proteins. 

Table 6.1 shows the complexity of the constructed GO hierarchies in terms of 

hierarchy depth2, number of parents and number of children. Overall, both hierar­

chies are complex and deep. 

6.3 Experimental Results 

Protein similarity search and feature extraction are implemented by following the 

steps in Eisner et al. Proteins in data set 1 and 2 are BLASTed against Swiss-Prot 

database 44 and 49, respectively, and the cutoff of E-value is set to be 10~3. PA 

features for each similar protein obtained from BLASTing are extracted from the 

main entries of the Swiss-Prot database, including the Keywords, SUBCELLULAR 

LOCATION, and InterPro fields. 

The result from local SVM predictors, without propagating positive predictions 

up to the root, is used as the baseline. A linear kernel is chosen for all experiments, 

and the penalty parameter in SVM is set as C — 1. LibSVM [19] is adopted for the 

implementation of SVM. 

A Java tool for modeling Bayesian networks, Samlam [26] is adopted to imple­

ment the Bayesian networks, and a CRF tool, GRMM [58] is modified to implement 

the CRF model. 

Table 6.2(a) and 6.2(b) shows prediction results using SVM without up-propagation 

(SVM LOCAL), SVM with up-propagation (SVM UP), BN and CRF on two data 

sets, respectively. SVM UP may improve or deteriorate the overall prediction per­

formance, as the F-score has increased by 0.28% in data set 1 and decreased by 

0.17% in data set 2 by simply propagating up positive local SVM predictions. The 

2In case of multiple parents, the hierarchy depth is defined by the longest path from the root to 
the node. 
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(a) Number of nodes in terms of depth. 

Depth in Hierarchy 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Total number of nodes 

Number of Nodes 
Data set 1 

10 
54 
98 
97 
72 
31 
27 
9 
1 
0 

399 

Data set 2 
11 
76 
138 
178 
160 
106 
68 
49 
5 
1 

792 

(b) Number of nodes in terms of number of parents. 

Number of Parents 

0 
1 
2 
3 
4 
5 

Total number of nodes 

Number of Nodes 
Data set 1 

10 
330 
53 
4 
1 
1 

399 

Data set 2 
11 

625 
141 
15 
0 
0 

792 

(c) Number of nodes in terms of number of children. 

Number of Children 

0 
1 
.2 
3 
4 
5 
6 
7 

> 7 
Total number of nodes 

Number of Nodes 
Data set 1 

173 
132 
46 
21 
10 
8 
2 
2 
5 

399 

Data set 2 
384 
212 
88 
43 
23 
18 
7 
6 
11 

792 

Table 6.1: Complexity of GO hierarchies in terms of the hierarchy depth, number 
of parents and number of children. 
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(a) Experimental results for data set 1. 

SVM LOCAL 
SVMUP 

BN 
CRF 

TP 
44,285 
45,008 
48,023 
48,465 

FP 
12,537 
13,357 
14,538 
14,725 

FN 
25,155 
24,432 
21,417 
20,975 

Precision 
0.7794 
0.7711 
0.7676 
0.7670 

Recall 
0.6377 
0.6482 
0.6916 
0.6980 

F-score 
0.7015 
0.7043 
0.7276 
0.7309 

Std. Dev. 
0.00872 
0.00665 
0.00530 
0.00693 

(b) Experimental results for data set 2. 

SVM LOCAL 
SVMUP 

BN 
CRF 

TP 
171,486 
173,438 
176,884 
177,105 

FP 
62,313 
66,953 
65,735 
64,272 

FN 
72,754 
70,802 
67,356 
67,135 

Precision 
0.7335 
0.7215 
0.7291 
0.7337 

Recall 
0.7021 
0.7101 
0.7242 
0.7251 

F-score 
0.7175 
0.7158 
0.7266 
0.7294 

Std. Dev. 
0.01366 
0.01463 
0.01491 
0.01447 

Table 6.2: Experimental results by using SVM LOCAL, SVM UP, BN, and CRF. 

F-measure has increased by 2.61% and 0.91% for the two data sets, respectively, by 

using the BN directed model. The increases of F-measures are due primarily to the 

improvement on the poor recalls, which raise from 63.77% and 70.21% to 69.16% 

and 72.42%, with a small sacrifice of the precisions (down by 1.18% and 0.44%). 

By applying the proposed CRF method, the F-score has increased by 2.94% and 

1.19%, respectively, and the recall has increased by 6.03% and 2.3% with a little 

(down by 1.24%) or no loss of precision. The increases of F-measures on data set 

1, due to BN and CRF, are both statistically significant. 

Table 6.3 shows the number of GO nodes whose F-measures have been changed 

due to the use of SVM UP, BN, and CRF. Clearly, the straightforward up-propagation 

method has a limited influence on prediction of a small number of nodes, while BN 

and CRF can improve prediction performance on over half of the GO nodes. Fig­

ure 6.2 and 6.3 shows the F-score of BN and CRF compared to the F-score of SVM 

local in two data sets, respectively. 

6.4 Discussion 

SVM UP is a simple and quick operation that forces the final predictions to be con­

sistent, but it is experimentally proved to be unstable and may hurt overall perfor­

mance, such as on data set 2. Given sufficient training instances, confident statistics 
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F-measure 

Increased 
Decreased 
No change 

Total 

Data set 1 
SVMUP 

45 
24 
330 

BN 
219 
71 
109 

CRF 
261 
114 
24 

399 

Data set 2 
SVMUP 

53 
106 
633 

BN 
328 
187 
277 

CRF 
493 
259 
40 

792 

Table 6.3: Number of nodes whose F-measures have been increased, decreased or 
unchanged by using SVM UP, BN and CRF than using SVM LOCAL. 

can be learned from the dependencies between nodes and SVM outputs, and proba­

bilistic inferences are provided by the graphical models, i.e. BN and CRF, to make 

"selective" up-propagations and down-extensions. 

By using graphical models, the recalls have significant increases which con­

tributes most to the improvement of F-measures. The change of recall is deter­

mined by the number of true positives since the total number of positives is fixed 

for a given data set. There are significant increases of true positives in data set 1 

and 2, which is a result of two factors from the graphical models: 

1. Using the estimated distribution of local SVM outputs, instead of binary val­

ues. 

2. Using hierarchical information in the GO to extend a positive prediction to 

its children. 

As discussed in Section 4, a binary SVM predictor treats SVM outputs on the same 

side of the hyperplane equally, while an estimated SVM output distribution inte­

grates the confidence of making such a local prediction. The Laplace Mixture esti­

mation model we built, based on the positive instances, could turn some former FN 

predictions to be "less" negative for having some probability of being positive. It 

works even better when there is a larger number of FNs, i.e. poorer recall, such as in 

data set 1. The second factor makes additional TPs possible because the probability 

P(+yi\ + Pa(yi)) in BN or P(+yi, +Pa(yi)) in CRF learned from training data on 

a query node may indicate it is very likely that the node is positive given that all its 

parents are positive. 
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Figures 6.4 and 6.5 shows the F-score difference between BN/CRF and SVM 

local in terms of the number proteins belonging to each class in the two data sets, 

respectively. Note, the x-axis is scaled logarithmically on the number of proteins. 

From those figures, one can tell that most changes (increase or decrease) of the 

F-measures occur at node classes that have fewer training instances, and so pre­

sumably are (typically) at a lower level of the graph. There are several reasons for 

this observation. First, the fact that lower level nodes have a smaller number of 

proteins leads to two consequences: (1) adding or removing a few TP predictions 

for those classes can change the F-measure significantly; (2) statistical information, 

including both the dependency relationship and SVM output estimation, collected 

from a small number of training instances, may not truly represent unseen data. 

Also note, the performance of our graphical models at higher level nodes is mostly 

better or not worse than the local SVM. This observation indicates that, if given ad­

equate training instances, the hierarchical information and SVM output estimation 

captured by our graphical models can almost certainly improve the result. 

As we attempt to characterize GO nodes whose F-measures have been increased 

or decreased by the graphical models, we do not find any clear evidence that can 

be used to identify those nodes apriori. Figures 6.6 and 6.7 shows error bars, with 

respect to the hierarchy depth and number of parents, of F-score changes between 

using SVM LOCAL, and BN and CRF, respectively. There is no discernable pattern 

in any of the graphs due to the large variances at each level. 

Although the undirected graphical model CRF only has marginal improvement 

of the F-measure over the BN model, it shows that co-occurrences between GO 

terms other than parent-child pairs do exist and they are helpful in constructing a 

more accurate dependency graph. This result sheds light on the future research of 

learning the dependency graph from the actual data. 
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Figure 6.2: Data set 1: F-score of BN and CRF Vs. F-score of SVM local 
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Figure 6.3: Data set 2: F-score of BN and CRF Vs. F-score of SVM local 
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Figure 6.4: Data set 1: F-score difference between BN/CRF and SVM local with 
respect to the number of proteins belonging to each GO class. The x-axis is scaled 
based on a natural logarithm. 
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Figure 6.5: Data set 2: F-score differences between BN/CRF and SVM local with 
respect to the number of proteins belonging to each GO class. The x-axis is scaled 
based on a natural logarithm. 
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Figure 6.6: F-measure difference between BN and local SVM with respect to the 
hierarchy depth and the number of parents. Error bars: mean ± 1 standard devia­
tion. 
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Figure 6.7: F-measure difference between CRF and local SVM with respect to 
the hierarchy depth and the number of parents. Error bars: mean ± 1 standard 
deviation. 
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Chapter 7 

Future Work and Conclusion 

7.1 Future Work 

A possible extension of this work is to model function classes simultaneously using 

the big-bang approach. Several studies [18, 70, 71] have shown that learning a set 

of related classes at the same time will improve the overall prediction performance. 

Thus, constructing a system that trains SVM classifiers at once and uses them as 

an input to our graphical models may be beneficial for making consistent and more 

accurate hierarchical predictions. 

As the results of our experiments demonstrated, connecting sibling nodes has 

marginally improved the prediction performance over using the directed graphical 

model based on the parent-child relationship. The GO is a biological hierarchy, and 

does not explicitly indicate the co-occurrences between all pairs of classes in the 

graph, except connected nodes. It may be worth learning the dependency graph 

purely from the training data and ignoring the GO hierarchical structure or aug­

menting it. The resulting graph should not only contain the majority of the original 

GO edges but also new arcs between unrelated nodes if co-occurrences between 

those nodes do exist in the training data. However, the computational cost is very 

expensive for performing such a structure learning task. For an exact solution, one 

would need to examine 2L possible states, where L is the number of nodes in the 

hierarchy. In practice, heuristics and the consistency rule in the hierarchy can be 

used to speed up the computation. 

Other future areas of investigation include: using features from other domains, 

69 



such as protein structure, protein interaction networks, and gene expression, to im­

prove the overall accuracy; applying our approach on the other two GO categories, 

i.e. biological process, and cellular component, although the higher occurrence of 

part-of relationships may cause problems, and exploring more useful information 

from the GO hierarchy, for example the path distances between terms, to construct 

more sophisticated training data set. 

7.2 Summary 

In this dissertation, we investigated the use of hierarchical information and SVM 

output distribution to construct two graphical models, i.e. BN and CRF, in making 

consistent function predictions. Since the GO hierarchy provides useful information 

regarding the structure of protein function, better predictions should be achievable 

by incorporating this additional information into a prediction system. To examine 

this conjecture, we built our graphical models, based on a set of local SVM predic­

tors, by converting the GO hierarchy into a dependency graph. The parameters of 

dependencies were learned from the true annotations of proteins in the training data, 

and the parameters for SVM output distributions were estimated by some Laplace 

models. Our approach provided better functional predictions in two Uniprot data 

sets compared to the methods of local SVM and local SVM with up-propagation. 

Although SVMs have been used as the local predictor throughout all our exper­

iments, our approach is a generic ensemble system that allows us to integrate the 

local predictions from any other type of classifier into the graphical model. If a 

probabilistic classifier like Naive Bayes is adopted for local prediction, there is no 

need to estimate the distribution of local predictions. 

The methods that have been presented here can be applied to many other areas 

where a standardized hierarchy in the form of a directed acyclic graph exists, such 

as web content, document classification and object categorization. Independent 

classifiers for a hierarchy can violate hierarchical consistency between labels, while 

our approach using graphical models may correct such inconsistencies and improve 

the overall accuracy. 
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