
Embracing the Friction: Towards a computationally aware approach to humanistic data

interfaces

by

Anna Sollazzo

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Arts

Digital Humanities

University of Alberta

© Anna Sollazzo, 2022

Abstract

Inherent to interdisciplinary work is the negotiation of two or more sets of—often

contradictory—domain epistemologies and methodologies. In the context of the Digital

Humanities, the friction between its composite domains is particularly strong with respect to data

processing and display, where the ambiguity, complexity, and nuance that characterise

humanities data stand in opposition to the binary and discrete representations required by

computationally compatible encodings. Digital Humanities data interfaces have historically

submitted to the simplification and categorisation imposed by prevalent forms of scientific

visualisation, and previous work imagining interfaces better suited to humanistic inquiry has

largely focused on augmenting these standards. In this thesis I explore the potential of instead

stripping away layers of abstraction to expose, centre, and challenge the principles and

assumptions underpinning them. This work is built around a proof of concept of interface in this

alternative style that is modelled after natural language database query systems, but which

atypically exposes each step and difficulty of the question to query translation. I argue that an

approach that forefronts human to machine conceptual mapping both addresses key humanistic

concerns such data trajectory and user positionality, and also has an important capacity to engage

with questions of computational possibility and limits. The theoretical grounding implied in the

latter is essential to the elaboration of novel and critically conscious technologies that embody

humanistic principles.

ii

Dedication

For my grandfather, John Hvozdanski, who earned his Master’s in Civil Engineering from the

University of Alberta in 1962.

I couldn’t imagine a better person in whose footsteps to follow.

(Sort of. You’ll have to forgive me for not mentioning silt in this thesis. Not even once.)

Thank you for raising me to always be curious.

iii

Acknowledgements

When I asked you to be my supervisor, you responded to my email in five minutes flat and called

the decision easy. I was baffled.

Thank you.

Mille fois merci.

I’m running out of languages.

System.out.println(“Thank you!”)?

I don’t have the right words (or code), but I want to first extend my deepest gratitude to my

advisor Sean Gouglas. For all you insist you’re just doing your job, I have never seen anyone

work harder to support and advocate for their students in so many ways. I count myself

exceptionally lucky to have been one of them. Thank you for your careful mentorship,

impressive repertoire of (b|d)ad jokes, and boundless kindness.

Thank you to the members of my committee. To Geoffrey Rockwell, for your generosity with

your time and expertise, and for your thought provoking comments. To Harvey Quamen, for

being one of the main reasons I ended up in the DH program in the first place.

À la merveilleuse Sara Harvey - je vous dois tellement que je ne saurais même pas par où

commencer. Merci d’avoir noté les autocollants sur mon ordinateur.

Je dois aussi une fière chandelle à tous et toutes les membres de l’équipe du Programme des

Registres de la Comédie-Française. Merci de m’avoir accueilli si chaleureusement au projet, de

votre patience à l’égard de la petite informaticienne anglophone qui vous pose de drôles de

questions et surtout de votre curiosité et générosité intellectuelle. Votre expertise m’a été

indispensable.

iv

I may only be 90% sure that some of you even exist below the shoulders, but I am 100% in awe

of the kind hearts and generous spirits of my incredible Digital Humanities cohort. Particular

thanks to Cate Alexander, for making me feel welcome in DH from day one; to Kenzie Gordon,

for somehow always having the answer but also making it seem ok not to know anything at all;

to Julia Guy, for being such a constant and supportive presence in the early stages of this project;

and to Schyler Palm, for your insightful feedback and heartfelt encouragement.

Nicola DiNicola—I can’t imagine what the DH program would be without you. Thank you for

all that you do. I have a feeling I don’t even know the half of it.

Since I’m fairly convinced that your tenth grade English class is the main reason I know how to

write even semi-coherently, a special thank you to Chris McDonald.

To the VSHD crew and the Bon Accord & overs—thank you for keeping me laughing and

leaping.

Last but not least, thank you to my family.

v

Table of Contents
Abstract ii

Dedication iii

Acknowledgements iv

Table of Contents vi

List of Figures viii

Introduction 1

Chapter 1: The Humanistic Interface 7
1.1 Core Principles 12

1.1.1 Transparency 12
1.1.2 Generativity 14
1.1.3 Interpretability 15

1.2 Pushing at the Limits of Computation 17
1.3 Project Context 20

1.3.1 Interfaces 24
1.3.1.1 Discovery Tool 25

1.3.1.1.1 Transparency 27
1.3.1.1.2 Generativity 28
1.3.1.1.3 Interpretability 29

1.3.1.2 Cross-tab Browser 29
1.3.1.2.1 Transparency 30
1.3.1.2.2 Generativity 30
1.3.1.2.3 Interpretability 30

1.3.1.3 Faceted Browser 31
1.3.1.3.1 Transparency 33
1.3.1.3.2 Generativity 34
1.3.1.3.3 Interpretability 34

1.3.1.4 Graph Tool 34
1.3.1.4.1 Transparent 37
1.3.4.1.2 Generative 37
1.3.4.1.3 Interpretable 38

Chapter 2: CLAIRON 40
2.1 Natural Language Interfaces to Databases 41
2.2 A Humanistic NLIDB 45

2.2.1 Design Context 46
2.2.2 Data Context 48

2.2.2.1 Motivation 49
2.2.2.2 Collection 50

vi

2.2.2.3 Composition 51
2.2.2.4 Processing 55

2.2.3 Scoping 56
2.2.4 Query to Question Translation 58

2.2.4.1 Data Representation, System Configuration, and Input Parsing 59
2.2.4.2 Matching 62
2.2.4.3 Tree Transformation 66

2.2.4.3.1 Negation 68
2.2.4.3.2 Aggregations 69
2.2.4.3.3 Mathematical Operations 70
2.2.4.3.4 Ordering 72
2.2.4.3.5 Logic Operations 73
2.2.4.3.6 Structural Corrections 74
2.2.4.3.7 Tree Structure Validity Verification and Adjustments 77

2.2.4.4 Query Generation 79
2.2.4.4.1 Non Selection of Calculated Fields Used for Ordering 82
2.2.4.4.2 Query Flattening 83
2.2.4.4.3 Mathematical Operation Assumptions 85

2.2.4.5 Basic Error Handling 85
2.2.5 CLAIRON User Interface 86

2.2.5.1 Question Input and Results 87
2.2.5.2 Entity Match Display 89
2.2.5.3 Successive Tree Viewer 90
2.2.5.4 Database Explorer 91
2.2.5.5 Problems and Future Directions 92

2.2.6 Evaluation 94
2.2.6.1 Back End 94

2.2.6.1.1 Join 96
2.2.6.1.2 Filters and Logic 97
2.2.6.1.3 Negation, Distinct, Limit, and Ordering 97
2.2.6.1.4 Aggregation and Grouping 98
2.2.6.1.5 Subqueries 99
2.2.6.1.6 Concepts 99
2.2.6.1.7 Limitations and Future Directions 100

2.2.6.2 Front end 104
2.2.6.2.1 Transparency 104
2.2.6.2.2 Generativity 105
2.2.6.2.3 Interpretability 105

Chapter 3 and Concluding Remarks: The Third Wave 107

Bibliography 119

Appendix A: Sample Configuration File 127

vii

List of Figures

Figure 1.2-1. Graphical representation of the “appearance” of fourteen novels in 1885, with added visual
variables used to represent the data trajectory. From Johanna Drucker, Humanities Approaches to Graphical
Display (Digital Humanities Quarterly 5, no. 1, 2011), figure 4.
Figure 1.2-2. An alternative representation of time in the context of a crisis event. From Johanna Drucker,
Humanities Approaches to Graphical Display (Digital Humanities Quarterly 5, no. 1, 2011), figure 7.
Figure 1.3.1.1-1. Discovery Tool - landing page
Figure 1.3.1.1-2. Discovery Tool - index list page (plays)
Figure 1.3.1.1-3. Discovery Tool - author index detail page (Françoise de Graffigny)
Figure 1.3.1.2-1. Cross-tab Browser
Figure 1.3.1.3-1. Faceted browser - result view
Figure 1.3.1.3-2. Faceted browser - filters
Figure 1.3.1.3-3. Faceted browser - calendar view
Figure 1.3.1.4-1. Graph tool - graph construction
Figure 1.3.1.4-2. Graph tool - limited section of an actor dashboard section (Monsieur Molé)
Figure 1.3.1.4-3. Graph tool - limited section of an actor-role dashboard (Monsieur Molé - Hippolyte)
Figure 1.3.4.1.3-1: Graph construction in Discovery mode.
Figure 2.2.2.3-1. The fused recettes-feux database
Figure 2.2.4.4-1: Final parse tree for input Quelles sont les trois pièces de Voltaire les plus jouées entre 1760
et 1775 ?.
Figure 2.2.4.4-2. Corresponding SQL query for NL input Quelles sont les trois pièces de Voltaire les plus
jouées entre 1760 et 1775 ?.
Figure 2.2.4.4.2-1. Query tree for the input Lors de quelles saisons est-ce que Monsieur Bellemont a joué
moins de 100 fois?.
Figure 2.2.4.4.2-2: Query tree for input Quelles sont les pièces les plus jouées de Boursault entre 1774 et
1778 ?.
Figure 2.2.5.1-1. NL input and query translation with highlight mapping for the input Quelles sont les
comédies en trois acres ou en cinq actes qui sont jouées moins de 15 fois et ont une recette moyenne de plus
de 900 livres ?.
Figure 2.2.5.1-2. CLAIRON query logs
Figure 2.2.5.2-1. Node match lists and selections for the input Quelle est la pièce la plus rentable de Voltaire
?.
Figure 2.2.5.3-1. The first three parse and query trees produced for the input Quelles sont les cinq pièces de
Molière qu'on joue le plus entre 1680 et 1700 ?.
Figure 2.2.5.4-1: CLAIRON database explorer.
Figure 2.2.6.1-1. : NLIDB system comparison
Figure 2.2.6.1.7-1. Parse tree for input Combien de fois joue Bellemont au cours de la saison 1789-1790 ?.

18

19

26
26
27
29
32
32
33
35
36
36
38
54
80

82

83

84

88

89
90

91

92
96

102

viii

Introduction

Hippolyte Clairon made waves when she tread the boards at the Comédie-Française (CF) in the

mid-eighteenth century. Praised in the periodical press more than any other actor of her, or any

previous, generation,1 she was known for her precision and finesse.2 Clairon was an anomaly.

Unlike her fellow actors, notably her mentor turned rival, Dumesnil, Clairon insisted that the best

most natural performances were those that were the product of extensive study of political,

social, and cultural context,3 as opposed to reliance on an internal instinctual understanding

inherent to “the organisation of mankind, creation of god.”4

The latter vision of the world was more common to eighteenth century knowledge production. In

the first volume of Diderot and d'Alembert's Encyclopédie ou Dictionnaire Raisonné des

Sciences, des Arts et des Métiers, the authors affirm that the aim of the work is to “expose the

order and sequence of human knowledge”.5 Expose, not actively create, organise, or define. This

is the intellectual context that forged William Playfair (1759-1823), Scottish engineer and

statistician widely regarded as the ‘father of modern graphical methods’. Playfair’s absolute

emphasis on simplicity and completeness in turn directly and significantly influenced modern

visualisation icon Edward Tufte, who insists that the role of visualisation is to reveal an inherent

truth present in quantitative data6.

As Lauren Klein points out, though humanists have begun to explore the oxymoron that is ‘raw

data’, discover the affective potential of chartjunk, and poke at the mismatch between the

epistemology of humanistic scholarship and the dominant forms of information processing and

visualisation thrust upon them by the Playfair-Tufte lineage, little work has been done to

6 Klein, Lauren. "What Data Visualization Reveals: Elizabeth Palmer Peabody and the Work of Knowledge
Production." (2022).

5 Diderot, Denis, and Jean Le Rond d'Alembert. Encyclopédie, ou, Dictionnaire raisonné des sciences, des arts et
des métiers. vol. 1. (Pergamon Press, 1776): 1, my translation

4 Dumesnil, Marie-Françoise. Mémoires de Mlle Dumesnil, en réponse aux mémoires d'Hippolyte Clairon (Ponthieu:
Paris, 1823), my translation.

3 Clairon, Hippolyte Mémoires d'Hyppolite Clairon, et réflexions sur l'art dramatique (F. Buisson: Paris, 1799)
2 Diderot, Denis. Paradoxe sur le comédien: ouvrage posthume (A. Sautelet, 1830).
1 Based on actor mentions across 11 periodicals spanning from 1714-1791.

1

re-examine and call into question the history of visualisation on a larger scale. Klein’s own work

is frequently focused on using data to identify and elevate hidden figures, voices at the margins

who are erased by aggregative, generalising, and, in all frankness, patriarchal histories. As a

historical counterpoint and “alternative epistemological lodestone” to Playfair, she offers

Elizabeth Palmer Peabody (1804-1894), American transcendentalist and educator whose seminal

work in visualisation was the creation of the ‘Polish-American’ system of representing

chronological history using a grid of subdivided colour and pattern coded squares. Where

Playfair intended his graphics to provide “immediate insight” into a definitive truth, Peabody

intended for her charts to be “abstract rather than intuitive” so as to “promote sustained

reflection”. While he designed for “men of high rank”, she worked primarily with children.

Where he envisioned his graphics as authoritative, she emphasised participatory learning that

flattened the hierarchy between the creator and the viewer.7

The advent of the digital has undeniably changed the way in which we interact with information

and, like visualisation, seldom are its origins and underlying epistemology scrutinised. Rather,

much as Playfair intended his work to be unquestionably ‘accurate’, computing has long

promoted a similar association with objectivity. This is perhaps not surprising given that barely

two decades separate Playfair’s most prolific period and Charles Babbage’s development of the

difference engine, widely considered to be the first mechanical computer. The Digital

Humanities (DH) find themselves the inheritors of this complex and compound intellectual

legacy. My work looks to continue in line with Klein’s critical examination of visualisation and

knowledge production, but in a DH context. I don’t believe it is necessarily useful to position

them as diametrically opposed, but there are undeniable methodological and epistemological

tensions between computing and the humanities. This thesis adopts the context of digital data

interfaces to deconstruct that dynamic and look at how it might be productively navigated. It

more broadly considers how we might imagine tools or processes reflective of a more

foundationally entwined and reciprocally critical blend of DH’s constituent domains.

Though unquestionably modern, this exploration will nonetheless call back to the origins of data

visualisation.The project’s data context is anchored in Playfair’s time—in Clairon’s world, more

7 ibid

2

specifically. The Comédie-Française, the theatre where Clairon made her career, kept detailed

registers of daily revenue, expenses, programming and casting from its foundation in 1680

through to the revolutionary period in 1793. These records were legally tied to the company’s

royal patronage and altogether coincide with the rapid development of population statistics,

primarily for state use, in the 18th century. This archive is an economic, cultural, and political

dataset all in one, particularly notable for its completeness and consistency with regard to its

period. I find it especially compelling as a DH dataset because it embodies the conflict between

the enlightenment era elevation of quantification, whose legacy undeniable influenced the

development of modern computation, and the affective, subjective, embodied, and transient

aspects of humanities study, particularly in the areas of performance and cultural heritage.

Recognizing the influence and naturalisation of beliefs and conventions enshrined in a long

history, Johanna Drucker argues that “to overturn the assumptions that structure conventions

acquired from other domains requires that we re-examine the intellectual foundations of digital

humanities.” This deconstruction and re-evaluation is the purpose of chapter one. Klein describes

Peabody’s work as “rethinking…the multiple ways in which we understand the nature of

knowledge itself”, and, predictably, there are strong parallels between the foci of her analog

deconstruction and re-interpretation, and those of investigations carried out in the digital

humanities. Peabody’s emphasis on constructionism and the “generative potential of aesthetic

judgement” dovetails with the emphasis DH scholars—notably Drucker—have come to place on

the constructed nature of data. Her ambition to “provoke a unique imaginative response in each

viewer” in view of reflexive learning further aligns with the humanistic re-imagining as of the

viewer of an interface as a ‘subject’—an agent who entertains a bidirectional relationship with

the object of information with which they are interacting.8 In an overview of previous

theorisations and instantiations of DH interfaces, the first chapter of this thesis highlights the

notion of interface transparency that stems from questions of data ambiguity and transformation,

alongside generativity and interpretability as common core facets of humanistic information

processing, display, and democratisation. It further details the CF dataset and analyses four tools

built around it with respect to those three core considerations of humanistic data interfaces.

8 Drucker, "Humanities approaches to interface theory."

3

Peabody’s system for encoding historical events was not exactly evident to understand,

something which its creator regarded as “both a liability and the point.”9 The same critiques of

complexity and illegibility are often leveled at the computational representations of information

that underlie digital interfaces. However, rather than facing them, there is a tendency to bury

these models beneath levels of abstraction. I have consistently been struck by the imbalance that

exists in the digital humanities between its two composite domains with respect to theory. The

use of digital tools is widespread but rarely are the underlying computational logics that

influence and define the what and how of digital inquiry afforded the same degree of scrutiny as

the subjects to which they are applied. Chapter two presents CLAIRON, a proof of concept for a

style of humanistic interface based around redressing this imbalance. CLAIRON is a derivative

of the class of natural language database interfaces but deviates from convention by exposing

every step of the process of transforming a user’s question into a machine interpretable form, and

further allows them to take an active role in the procedure. ‘The point’, as it was in Peabody’s

case, is to engage the user in critical reflection around knowledge production and create space for

them to induce challenges and limitations.

Much as Peabody is overshadowed by the ‘father of modern graphical methods”, the dominating

figure of Babbage, the ‘father of computing’, obscures the nuanced aspects of the work of Ada

Lovelace. Despite all efforts by her mother to distance Ada from the artistic leanings of her

infamous poet father, she nonetheless imagined possibilities for Babbage’s analytical engine

beyond the number crunching for which it was conceived. “It might act upon other things besides

number” wrote Lovelace, “were objects found whose mutual fundamental relations could be

expressed by those of the abstract science of operations, and which should be also susceptible of

adaptations to the action of the operating notation and mechanism of the engine.”10 As Lovelace

speculated on the potentiality of computing, the focus was not on the result, but on the act of

re-examining and deconstructing the structures and processes constitutive of our understanding

of the world to imagine how they might be transformed to be made machine readable. Given that

“humans w[ould] always supply the creativity and intentionality”,11 it would seem that, for Ada

11 Isaacson, Walter. "The Intersection of the Humanities and the Sciences." 43rd Jefferson Lecture in the Humanities,
National Endowment for the Humanities (2014).

10 Essinger, James. Ada's algorithm: How Lord Byron's daughter Ada Lovelace launched the digital age. (Melville
House, 2014).

9 Klein, "What Data Visualization Reveals”

4

Lovelace, the foremost interest of computing was as, not unlike Peabody’s system, a “framework

… through which … difficult thinking could take place.”12 This focus, I argue in chapter three,

must be emphasised in humanities contexts, where problems whose nuance and complexity jut

up against the systematicity and regularity required of machine encodings constantly push at the

limits of computational possibility. The final chapter explores how this theoretically grounded

and process-oriented approach to computation is precisely what is needed in the digital

humanities, despite it currently being conspicuously ignored. There, I speculate about how tools

like CLAIRON might aid in ushering in a new wave of digital scholarship that has a deeper

understanding of the influence of digital mediation on knowledge production, and theorise the

kind of pedagogical changes needed to facilitate this shift.

Taking up the mantle from Lovelace, Grace Hopper always asserted that “A human must turn

information into intelligence or knowledge. We've tended to forget that no computer will ever

ask a new question.”13 Her work correspondingly focused on making computing more accessible

to humans by creating mechanisms for interfacing with machines via more abstract descriptions

of processes and relationships. Her development of the A-0 proto-compiler, and contributions to

the first English-like programming language, COBOL, fundamentally changed how we interact

with computers today. Yet, she initially faced backlash over the crisis of the de-mathematisation

of computing.14 At around the same time as Hopper was at Eckert-Mauchly fighting to develop

the human side of computation, Roberto Busa was over at IBM undertaking work in the

computational side of the humanities that would birth a field that would eventually face a

comparable mirror criticism over the supposed disregard for theoretical rigour. I don’t think that

Hopper would not have tolerated Busa or Thomas Watson Sr. for long—she notoriously refused

to work for IBM because of the stifling corporate environment complete with a company flag

and songs about it15—but I can’t help but wonder what she would have thought of the project in

the abstract. Hopper famously had a clock in her office that ran backwards. When asked about it,

she would explain “Humans are allergic to change. They love to say, ‘We've always done it this

way.’ I try to fight that.”16 DH, as a domain, follows very much in that spirit, but I believe that its

16 Schieber, "The wit and wisdom of Grace Hopper."
15 Beyer, Kurt W. Grace Hopper and the invention of the information age (Mit Press, 2012): 172.
14 Dijkstra, Edsger W. "How do we tell truths that might hurt?." ACM Sigplan Notices 17, no. 5 (1982): 13-15.
13 Schieber, Philip. "The wit and wisdom of Grace Hopper." The OCLC Newsletter 167 (1987).
12 Klein, "What Data Visualization Reveals”

5

https://en.wikiquote.org/wiki/Intelligence
https://en.wikiquote.org/wiki/Knowledge
https://en.wikiquote.org/wiki/Humans
https://en.wikiquote.org/wiki/Change

interdisciplinary potential for innovation remains hindered by epistemological conflicts born of

‘what we have always done’ that have largely remained under-investigated and unchallenged on

a computational front.

This thesis is driven by a curiosity about what DH could have been if at its origin there had been

a concerted focus on establishing a more equal but also more blended union of computing and

the humanities at a methodological but also, crucially, theoretical level. Luckily, the delineation

between what could have been and what could be is blurred when the clock is running

backwards.

6

Chapter 1: The Humanistic Interface

As a domain with roots in the scientific tradition, Human Computer Interaction (HCI)

scholarship has largely focused on design mechanics. Advances in interface design driven by

engineering values have consistently pushed towards an ideal that is “task-oriented and

efficiency driven” and “designed to abstract their use from any whiff or hint of ambiguity.”17

This, however, as argues DH scholar Johanna Drucker, fails to account for the fact that an

interface, unlike other components of computational systems, is meant to provoke a “cognitive

experience”,18 which supposes an engagement and individuality that is lost in design practices

that strive for objectivity and universality.

In her analysis re-imaging HCI through a media theory lens, Drucker highlights the ways in

which these kinds of interfaces are particularly maladapted to humanities contexts as they

“preclude humanistic methods from their operations because of the very assumptions on which

they are designed.”19 Her argument is centred on two key points—first, that all data is

constructed, and that it is essential that this be explicitly reflected in any interface; and, second,

that in the act of knowledge creation, information cannot be separated from graphical forms and

individual context.

‘Data’, Drucker argues, is perhaps not the best term. ‘Capta’—signifying ‘taken’ as opposed to

‘given’— better reflects its inherent ‘constructedness’.20 Data is only ever a simplified, reduced

complexity rendering of reality, whose dimensions are chosen by humans who are unavoidably

biased. The danger of interfaces entrenched in a tradition of empiricism is that they flatten “the

planes of reference, discourse, and processing so that they appear to be a single self-evident

surface.”21 This erasure of granularity, incompleteness, and ambiguity crucially eliminates the

utility of an interface as a tool for interpretation. Relatedly, Drucker insists on the recognition

21 Drucker, "Humanities approaches to interface theory," 13

20 Drucker, Johanna. "Humanities approaches to graphical display." Digital Humanities Quarterly 5, no. 1 (2011):
1-21.

19 Drucker, Johanna. "Humanistic theory and digital scholarship." Debates in the digital humanities 150 (2012): 85.
18 Ibid, 9
17 Drucker, Johanna. "Humanities approaches to interface theory." Culture machine 12 (2011): 1.

7

that the modes by which data is presented and accessed impose a reading of its nature and limits.

This implicit rhetoric, however, has been naturalised to the point of invisibility by the default to

‘best practices’ selected according to “expectations of performance or tasks or even behaviors”

of a nonexistent universal user. This additionally means that the mode of interaction is decidedly

unidirectional, without any exchange with the user. In designing interfaces for the humanities,

she emphasises the need for mechanisms which support observer co-dependency such that an

interface is “space of being and dwelling”22 capable of meaningfully adapting to the user’s

context, but also make an effort to broadcast the ways in which they influence knowledge

construction. “The digital humanities can no longer afford to take its tools and methods from

disciplines whose fundamental epistemological assumptions are at odds with humanistic

method”,23 writes Drucker—which begs the question: what theories and practices are constitutive

of a fundamentally humanistic interface?

Shaowen and Jeffrey Bardzell’s theorisation of humanistic HCI, which they define as “any HCI

research or practice that deploys humanistic epistemologies…and methodologies…in service of

HCI processes, theories, methods, agenda setting, and practices”, starts by identifying the

throughlines of “humanistic knowledge contributions”: contextualisation anchored in history and

tradition; conceptual analysis, which is to say a deliberate focus on, and critical examination of,

the “concepts we think with”; interpretation and hermeneutic analysis; and social action, with a

distinct emphasis on emancipatory thinking.24

Off the back of these hallmarks of humanistic work, Bardzell & Bardzell propose five broadly

defined practices characteristic of humanistic HCI. The first two, ‘interaction criticism’ and

‘critical discourse analysis’, ask that we critically consider the epistemological assumptions

underpinning digital tools. This includes interrogating our interaction with the affordances of

computation as a medium and an interface’s procedural rhetoric in the aim of exposing “hidden

epistemic or ideological limitations”, as well as calling into question, as Drucker does, the

scientific seeming in which HCI practices are frequently cloaked, notably through comparison

with methods rooted in firmly humanistic principles such as affective computing. Their third

24 Bardzell, Jeffrey, and Shaowen Bardzell. "Humanistic Hci." Interactions 23, no. 2 (2016): 20-29.
23 Drucker, "Humanities approaches to graphical display," 2
22 Ibid, 12

8

practice, ‘critical social science’, relatedly asks that we reconsider the diametrical opposition of

sciences and the humanities and instead strive to enact methodologies that blend and construct

them for mutual advancement. Their final two principles, ‘design futuring’ and ‘emancipatory

HCI’, imagine disrupting norms and challenging the limits of current technologies through

practices which centre participatory and speculative design and give voice to a plurality and

diversity of perspectives.

Though compatible with DH scholarship, what is missing from their theorisation of humanistic

HCI is the notion of a reciprocal relationship. The authors plainly state that they view humanistic

HCI as strictly separate from DH, seeing DH as computers applied to the humanities and HCI as

the opposite. While I would argue that, at least in theory if not in practice, DH is crucially both

the application of computational theories and methodologies to humanities contexts and the

integration humanistic epistemologies and practices with computational problems and logics,25

the Bardzells’ framework is firmly one-way.

Sinclair et al’s example-based analysis of DH approaches to information visualisation echoes

many of the same points raised in more theoretical work.26 As Drucker did, they pinpoint the

challenge of creating an interface that represents the ways in which data itself and the

mechanisms involved in its transformation and display are deliberately constructed and partial.

For interfaces to be useful tools for research, they must clearly communicate the ways in which

“the interpretive work is being guided and biased by the data and software.” This challenge is

most acutely felt in the case of exploratory interfaces aimed at users having no prior knowledge

of a problem or data. These interfaces must both do the most ‘storytelling’—highlighting for the

uninitiated user data facets which may be of interest—but also serve the naive user base most

likely to mistake this biased guidance for objective and singular reality. Similar to Bardzell &

Bardzell, Sinclair, Ruecker, and Radizikowska emphasise the importance of focusing on

narrative multiplicity, disrupting the “converg[ence] towards a single interpretation that cannot

be challenged” that is a product of engineering conventions favouring aggregation and

26 Sinclair, Stéfan, Stan Ruecker, Milena Radzikowska, and I. N. K. E. Inke. "Information visualization for
humanities scholars." Literary Studies in the Digital Age-An Evolving Anthology (2013).

25 Burdick, Anne, Johanna Drucker, Peter Lunenfeld, Todd Presner, and Jeffrey Schnapp, “A Short Guide to the
Digital_Humanities” in Digital_Humanities. (Mit Press, 2016), 121-136

9

abstraction and de-emphasizing granularity and complexity. Pursuant to this, their most salient

measure of success of a humanistic data visualisation is its capacity to support interpretive

exploration. Though it may suggest data entry points, it should not be to the detriment of other

trajectories. Though many visualisation techniques require the creation of derived categories and

hierarchies, this should not preclude access to more ambiguous and nuanced data. They judge the

most successful interfaces to be those that afford “new and emergent ways of understanding the

material.” I see this last element as highly related to the creation of methods of data display and

interaction that blend humanistic and scientific epistemologies. Though pure quantification may

create a new version of the source information, it does not serve interpretation and new

knowledge construction if there is a disconnect between the two. It is the process of

transformation that induces reflection by bringing to the fore questions around key facets or

implicit taxonomies that might not previously have been considered, but are foundational to the

computational model.

Given the established focus on situated knowledge and participatory and emancipatory design,

feminist scholarship is highly relevant to defining humanistic data practices. Catherine D’Ignazio

and Lauren Klein draw on feminist science and technology studies for its focus on situated

knowledge, as well as feminist DH, feminist HCI—in particular, the way in which it challenges

the existence and value of universal usability—and critical cartography studies27 to derive seven

core principles of ‘data feminism’.28 In the context of interfaces, the first two principles,

‘examine power’ and ‘challenge power’, ask that we consider both the power and influence of

the data interface itself as well as the power dynamics underpinning its creation. User interfaces

play a crucial role in data democratisation and should therefore be created to be accessible to

users spanning a wide range of social, economic, cultural, and technological contexts. A major

aspect of this is the creation of a two-way dialogue, which is to say recognizing the joint act of

knowledge creation and “acknowledg[ing] the user as a source of knowledge in the design as

well as the reception of any visual interface”29 by incorporating their context into process

decisions. Concretely, this implies more participatory design, and a flattening—or, at the least,

29 D’Ignazio and Klein, "Feminist data visualization"
28 D'Ignazio, Catherine, and Lauren F. Klein. Data feminism (MIT press, 2020).

27 D’Ignazio, Catherine, and Lauren F. Klein. "Feminist data visualization." Workshop on Visualization for the
Digital Humanities (VIS4DH), 2016.

10

critical examination of—both intra-design team hierarchies as well as those between the

researchers and the populations they serve.

Further principles ‘embrace pluralism’ and ‘consider context’ double down on this more

implicated approach. Pluralism stands as the antithesis to the notion of the universal user,

shifting instead to focus on user communities, and contextual design is informed by the

knowledge making practices of these communities. The practice of context-informed design

requires grappling with the situated and constructed nature of data. All data is a partial—in both

senses of the term. The only perfect map is one the size of the territory30; it is impossible to have

any degree of abstract representation without simplification. All data is capta because it is

constituted by humans, all of whom have implicit biases, deciding what parts should stand for

the whole. Contextual and community-focused practices put these representational choices in the

hands of communities, so as to engage in practices reflective of the values and knowledge

systems of the communities to whom they pertain. This can often mean grounding the design in

different ways of knowing, an act correlated to two further principles, ‘rethink binaries and

hierarchies’ and ‘elevate embodiment and emotion’. Indigenous scholars Maggie Walter and

Michelle Suina, for example, describe research methodologies based on the concept of the

Indigenous Lifeworld, which emphasise lived experience and relationality.31 These qualitative

metrics and quantitative measures based on scales and practices tied to land relations have

historically been devalued by the colonial western fetichisation of objectivity and rationality.

Feminist data practices readily invite the deconstruction of the false emotion &

subjectivity/reason & objectivity binary and entrenched hierarchy that positions the latter as a

more valid way of understanding the world. Interfaces, after all, are mechanisms designed to

provoke a specific cognitive experience—the subjectivity is inherent.

No matter the values underlying choices in datafication, D’ignazio and Klein’s final principle,

“make labour visible”, asks that this mapping process be centred, explored, and questioned as

opposed to deliberately effaced so that these lacunar renderings of reality do not “pass as

31 Walter, Maggie, and Michele Suina. "Indigenous data, indigenous methodologies and indigenous data
sovereignty." International Journal of Social Research Methodology 22, no. 3 (2019): 233-243.

30 Borges, Jorge Luis. "Of exactitude in science” in A Universal History of Infamy (Penguin Books, 1975): 31

11

unquestioned representations of ‘what is’.”32 A major part of this is explicitly recognizing the

contributions of everyone who had a hand in constructing the data. In the midst of the rise of

‘information capitalism’ which Kate Crawford describes as premised on the “dual operation of

abstraction and extraction”,33 this emphasis on labour as well as the established focus on

perspective diversity echoes Bardzell & Bardzell’s assertion that humanistic data practices

should work towards emancipation and social change. As Drucker maintains, data collection is in

fact data construction, and more often than not, it essentially consists of performing principal

component analysis on human lives. A critical examination of the powers deciding what

information to retain and of the bodies, the individuals, the human beings from whom the data is

taken is essential to countering hegemonic and exploitative practices which have been shown to

be particularly detrimental to women and marginalised communities.34

1.1 Core Principles

The interdisciplinarity of DH means that digital humanists are interested in high-level

overarching statistical trends, but also want a digital mapping that just as easily affords the

identification and exploration of singularities. They are searching for an encoding that is machine

compatible but also preserves ambiguity and nuance. Cela colle mal, one could say, with typical

computational logics born of an engineering tradition that prioritises categorisation,

normalisation, and aggregation. Using humanities data does not make an interface humanistic.

The design of a truly humanistic interface must “embody specific theoretical principles drawn

from the humanities.”35 It is in the handling of three core characteristics that I believe we can

read the extent to which an interface enacts humanistic principles: transparency, generativity, and

interpretability.

1.1.1 Transparency

The evolution of computing has consisted in no small part of humans adding levels of abstraction

for the benefit of other humans on top of levels of already human defined logic and presenting

35 Drucker, "Humanistic theory and digital scholarship," 86

34 See, notably: Perez, Caroline Criado. Invisible women: Data bias in a world designed for men (Abrams, 2019);
Noble, Safiya Umoja. Algorithms of Oppression (New York University Press, 2018)

33 Crawford, Kate. "Conclusion: Power." in The Atlas of AI (Yale University Press, 2021), 217.
32 Drucker, "Humanities approaches to graphical display," 2

12

this as ‘just the way the computer thinks’. In execution, however, pleasing nested conditional

control flow becomes GOTO statements, and readable looping logic gets unrolled. Interfaces are

simply another extension of this pattern.36 The problem is, none of it is ‘just how the computer

thinks’. The computer doesn’t think. The layers of mappings between human understandable and

machine understandable representations of the world constitutive of data and data interfaces are

defined by humans. However, despite these mappings being the site of non-evident

reconciliations of differing worldviews, of the definition of ontologies, of reductions in

complexity, they are most often obscured by interfaces striving for the pervasive HCI gold

standard of invisible ‘natural’ interaction. Loup Cellard and Anthony Masure argue that this

“organisation of the legible and the visible is in fact a calculated construction”37—a carefully

curated false transparency. In a humanities context, I see it as crucial to reject this sanitised

version of transparency to instead engage with discord and discomfort rather than sweeping them

under the metaphorical rug.

A humanistic interface should make an effort to expose human to machine mappings at two

sites—data construction and processing, and the design of data manipulation and display

mechanisms. The former is the recognition of data as capta. It is impossible for data to capture

all aspects of reality, but the choices that were made should be exposed and explained. The latter

refers to acknowledging the procedural rhetoric38 peddled by the interface. Much as with data,

faced with the impossibility of representing everything, an interface designer must adopt a

specific viewpoint that guides the selection of a limited set of elements to display or questions to

which to respond. Design choices such as navigational cues and visualisation paradigms further

contribute to an implicit rhetoric that tells the user what data and relationships are important.

Explicit acknowledgement of this storytelling creates space for users to imagine and explore

alternate pathways and prevents the merging of interpretation and fact. “All graphical schema are

built on the single principle of defining classes of entities and of relations”, writes Drucker, “for

a humanistic approach, these have to be defined as rhetorical arguments produced as a result of

38 Bogost, Ian. The rhetoric of video games. MacArthur Foundation Digital Media and Learning Initiative, 2008.
37 Cellard, Loup, and Anthony Masure. "Le design de la transparence." Multitudes 4 (2018): 100.

36 Schuwey, Christophe. “Humanités numériques et études littéraires : une question d’interfaces” La lettre de l'InSHS
(2018): 25-27.

13

making, a poetics of graphical form, not in the reductive or abstract logics of Boolean algebra."39

All knowledge is situated; a neutral ‘view from nowhere'40 does not exist. This reality is not a

fault; what is harmful to learning and understanding is the failure to acknowledge it. In both

cases, interface self-disclosure crucially also serves to highlight the limits of computational

representation, specifically with respect to rendering bias and uncertainty.

1.1.2 Generativity

In an echo of Sinclair et al., Christophe Schuwey argues that the most essential contribution of

DH interfaces is that they facilitate the construction of new relationships to our objects of

study41. At the difference of ‘information representations’, these ‘knowledge generation’

interfaces look to create space for ”the humanistic tenets of constructedness and interpretation.”42

The paradox of using data interfaces as a starting point for humanistic research is that they begin

at the end, in a way. With the impossibility of representing all data, they are necessarily created

to answer a small pre-defined set of questions, “collaps[ing] the critical distance between the

phenomenal world and its interpretation.”43 Interfaces are fundamentally interpretative tools, as

they make sense of data by presenting a specific interpretation dependent on layers of

abstraction. An interface is only a tool for interpretation, however, if it allows a user to at least

interrogate, if not manipulate and alter, these layers.

To create space for interpretation, an interface must incorporate visualisations that “support

combinatoric calculation”44 through dynamic interactions and/or minimally mediated

multiplicity. Because knowledge production is observer co-dependant, an interpretive interface

should entertain a bi-directional relationship with the user. Dynamiticity and multiple entry

points both create the potential for the user to enter into a dialogue with a tool, curating a

personal instantiation that is best adapted to their individual questions. Sinclair’s Voyant, for

44 Ibid, 105
43 Ibid
42 Drucker, Graphesis, 125.
41 Schuwey, “Humanités numériques et études littéraires”

40 Haraway, Donna. "Situated knowledges: The science question in feminism and the privilege of partial
perspective." in Feminist theory reader (Routledge, 2020): 202-310.

39 Drucker, Johanna. Graphesis: Visual forms of knowledge production. (Cambridge, MA: Harvard University Press,
2014), 54.

14

instance, is a good illustration of both principles; its library of interchangeable tool panels allows

users to interrogate texts at different levels of granularity (word, n-gram, text) and abstraction

(clear cut frequencies, derived topics, speculative geographic networks). Though pre-processed

visualisations can aid usability, access to detailed, complex, and messy versions of the data

similarly makes room for a user to explore the scope of what is possible, induct individualised

questions, and derive their own representations.

1.1.3 Interpretability

Interface interpretability is a somewhat ambiguous concept, as it depends on the goal of a given

interface. With data exploration and problem solving interfaces, interpretability is often equated

to usability and refers to how easy it is to locate or manipulate specific information. In a

traditional HCI context, the aim is to maximise efficiency and the user’s capacity to learn and

retain system functionality so as to reduce error rate and increase user satisfaction.45 Concretely,

this manifests as design elements whose purpose and scope are specific and limited, and

structure and feedback conventions selected to streamline interaction in an assumed collectivist

vision of usability.46

With respect to visualisations, common guidelines for interpretability tend to fall in line with the

views of Edward Tufte, who asserts the superiority of minimalist graphics for “reveal[ing] the

truth.”47 Tamara Muzner’s eight data visualisation rules of thumb, for instance, advocate for

reducing colour use and dimensionality, strongly favour starting from aggregative overviews,

and privilege the use of techniques which maintain distance from the data over more immersive

options.48 As is evident from the focus on eliminating ambiguity and distractions from a main

narrative in order to reveal ‘the’—as opposed to ‘a’—truth, these conventions are poorly adapted

to humanities contexts and epistemologies. It is precisely for this reason that Drucker and

Bardzell & Bardzell emphasise the need to create entirely new ones, often premised on the

48 Munzner, Tamara. “Rules of Thumb” in Visualization analysis and design. (CRC press, 2014), 116-141.

47 Tufte, Edward R. Visual and statistical thinking: Displays of evidence for making decisions. Vol. 12. (Cheshire,
CT: Graphics Press, 1997), 123.

46 Masure, Anthony. "Vers des humanités numériques «critiques»." Repéré à dlis. hypotheses. org/2088 (2018).

45 Ferré, Xavier, Natalia Juristo, Helmut Windl, and Larry Constantine. "Usability basics for software developers."
IEEE software 18, no. 1 (2001): 22-29.

15

integration of contextual definitions, structures, ontologies and hierarchies born of

community-focused participatory design.

However, with the exception, perhaps, of affective visualisations, where the aim may be to

convey emotion more than information, any new conventions must still be designed so as to

strike a balance between disruptive display and usability. Misguided as they may be in imagining

that all information is suited to identical visualisation practices emerged from statistical contexts,

Tufte-esque methods are rooted in accounting for the limitations of human processing. In light of

this, in imagining methods for displaying information that reflect humanistic values and

practices, humanities interfaces must still consider questions of memory, perception and

interaction affordances.

Interpretable humanistic interfaces that are looking to deconstruct and extend beyond

universality must also consider that the ‘universal user’ at whom widespread HCI design

principles and practices are aimed emerged from the same engineering-values centric context.

Much like office temperatures, crash test dummies, and medical dosages, supposedly ‘universal’

digital design standards do not take gender, ethnic, or cultural differences into account.49 This

pattern of oversight is further exacerbated by a lack of diversity in the technology industry and

the widespread use of internally oriented evaluation practices like ‘dogfooding’.50 Barnett et al.51

note, for example, that women tend to interact differently with problem solving software than

men, with design conventions favouring the latter. Their experiments show that, due at least in

part to lower technical self-efficacy, women are generally more risk averse and will be quick to

blame themselves if something malfunctions with the software. Correspondingly, women exhibit

a tendency to collect as much information as possible at any level of an interface before moving

forward (breadth-first) in contrast to a pattern of following the first promising information and

51 Burnett, Margaret, Anicia Peters, Charles Hill, and Noha Elarief. "Finding gender-inclusiveness software issues
with GenderMag: A field investigation." in Proceedings of the 2016 CHI conference on human factors in computing
systems (2016): 2586-2598.

50 ‘Dogfooding’ refers to the practice of company employees being used as test subjects for their own beta products.
See Stevens-Martinez, Kristin and Mark Guzdial. “Live Coding”. The CE-ED Podcast. February 3, 2020,
https://csedpodcast.org/blog/season1_episode4/, for discussion of how this can negatively impact software
accessibility.

49 Perez, Invisible women; Reinecke, Katharina, and Abraham Bernstein. "Improving performance, perceived
usability, and aesthetics with culturally adaptive user interfaces." ACM Transactions on Computer-Human
Interaction (TOCHI) 18, no. 2 (2011): 1-29.

16

https://csedpodcast.org/blog/season1_episode4/

backtracking as needed more common among men (depth-first). Experiments further found that

women are additionally less likely to tinker with new unknown features, but if they do, will often

benefit more from the experience than their male counterparts as their exploration is more likely

to integrate deliberate reflection on the process. Evidently, there is something troubling in

attaching these different styles of interaction to gender, and Barnett et al. explicitly acknowledge

that it is the set of characteristics and behaviours themselves that are more useful for evaluating

software inclusivity, not their link to a specific gender. I do, however, find that it is worth noting

that the variations in behaviour born, at least in part, of lack of self-efficacy and risk aversion

were most common among a group of individuals who are often socialised to believe that they

‘don’t have a tech/math brain’—an experience that may be shared, and a belief that may be

reinforced as a function of their academic identity, by many humanists. In light of this, it follows

that interfaces aiming to engage with users from contexts that often fall outside of or extend

beyond science and engineering should provide support for alternative or diverse modes of

interaction. Crucial to cultivating a space for collaborative knowledge production is that the user

feels supported and confident in their experience of the interface. A space of discomfort can

never be a space of dwelling.

1.2 Pushing at the Limits of Computation

Having recognized that the epistemology underpinning many existing visualisation conventions

for data manipulation and display is at odds with the fundamentals of humanities inquiry and

practice, digital humanists must necessarily “synthesize [humanistic] method and theory into

[new] ways of doing as thinking”52. Previous work looking to elaborate new computational

protocols has primarily focused on the multiplication of ‘visual variables’53 such as colour,

texture, and orientation, so as to be able to pack more information into each visual primitive.

conventions. For example, in a speculative visualisation looking to illustrate the lengthy process

of a novel “appearing” that would have been obscured in a traditional a bar chart showing a basic

count increase one year to the next, Johanna Drucker adds timeline-like structures with different

shapes and patterns for each step of the publication process (writing, editing, pre-press etc.) that

sit perpendicular to each bar in an effort to expose its composition (figure 1.2-1).

53 Bertin, Jacques. Sémiologie graphique: les diagrammes, les réseaux, les cartes (De Gruyter Mouton, 1973).
52 Drucker, "Humanistic theory and digital scholarship," 87

17

Figure 1.2-1. Graphical representation of the “appearance” of fourteen novels in 1885, with added visual variables

used to represent the data trajectory. From Johanna Drucker, Humanities Approaches to Graphical Display (Digital

Humanities Quarterly 5, no. 1, 2011), figure 4.

In another example (figure 1.2-2) Drucker mutates standard units of measurement to introduce a

time axis that, rather than being constrained to linear and uniform progression, twists and warps

to reflect human perception of time54. Though visually evocative, it is interesting to note that

Drucker’s approach to expressing nuance and ambiguity and exposing process is premised on

compounding layers of abstraction. Despite one of the primary aims being to collapse the

distance between the realities of the data and its display, nowhere is the data itself made visible.

The visualisation is built around a distanced symbolic vocabulary.

54 Drucker, “Humanities approaches to graphical display"

18

Figure 1.2-2. An alternative representation of time in the context of a crisis event. From Johanna Drucker,

Humanities Approaches to Graphical Display (Digital Humanities Quarterly 5, no. 1, 2011), figure 7.

Computational abstraction is a mechanism for reducing the cognitive distance between human

conceptualizations of structure and process and their machine representations. Its most

primordial instantiation is high level programming languages, which serve to distance the act of

programming from the underlying mechanics of calculation.55 While I am as grateful as the next

person not to have to write assembler or use punch cards, media theorist Anthony Masure argues

that, with respect to interfaces, this erasure of distance is precisely the reason that “the products

of digital humanities projects are rarely reflective, in their design, of [the] epistemological

tensions [between computing and the humanities].”56 One facet of the digital humanities is the

use of computation as a tool for analysis, an exploration motivated at least in part by the fact that

its logics afford different ways of looking at subjects. In light of this, one has to wonder at the

utility of effacing their influence by layering on abstraction designed to soften the dissonance

between computational and humanistic models of information processing and knowledge

construction. Much of the tone of Drucker’s work would seem to imply that the imposition of

engineering values is in some way at fault, but I can’t help but think that they are only ‘imposed’

56 Masure, “Vers des humanités numériques « critiques »,” 2; my translation.
55 Cellard & Masure, "Le design de la transparence"

19

through a failure to engage with them. In DH we aim to use technology to help us answer

humanistic questions. Fundamental to this process should be an understanding of the way in

which these questions must be transformed in order to fit into computational paradigms.

As a counterpoint to Drucker’s layers of abstraction, I imagine an alternative style of humanistic

interface that forefronts computational theory. By exposing the computational processing, it

would centre and ask the user to engage with the human to machine translation whose

complexities and necessary compromises are at the heart of enacting a more humanistic style of

computing. While an interface which requires reflection into computational thinking could stand

to place a greater cognitive load on the user, I maintain that an understanding of computational

theory and abstraction is necessary to imagining what is possible computationally—something

which is absolutely essential to creating new fundamentally humanistic computational models

and processes.

1.3 Project Context

Given the emphasis placed on questions of situated knowledge, ambiguity, and data biography, I

felt it was important to embed the exploration of humanistic interfaces in a domain specific

context. I have opted to use the data of the Comédie-Française Registers Project (CFRP)57 for in

part because of my familiarity with its origins and the conditions of its production,58 but also

because I believe the CFRP data to be particularly suited to this project’s context for two reasons.

First, theatre data exaggerates the characteristics of humanistic data, and second, there exists an

interesting parallel between the function of the CFRP data, in both modern and historical

contexts, and the aims of humanistic visualisation. The following sections offer an overview of

the CFRP data and its background and examine its four principal data interfaces—the Discovery

tool,59 Cross-tab browser,60 Faceted browser,61 and Graph tool62—with regard to the three

dimensions of humanistic interfaces outlined in section 1.1.

62 https://graphe.cfregisters.org/, created by Anna Sollazzo
61 https://surfacets.cfregisters.org/, created by Christopher York

60 https://analytics.cfregisters.org/, designed by master’s students at Laval University and created by Christopher
York

59 https://ui.cfregisters.org/, created by Logilab
58 I have been a research assistant with the CFRP since May 2018
57 https://www.cfregisters.org/#!/

20

https://graphe.cfregisters.org/
https://surfacets.cfregisters.org/
https://analytics.cfregisters.org/
https://ui.cfregisters.org/
https://www.cfregisters.org/#!/

The Comédie-Française Registers Project is an international digital humanities initiative looking

to re-examine French cultural history by way of the study of daily registers of the country’s first

national theatre company.63 This archive stretches back to the company’s foundation in 1680 and

is comprised of four distinct register sets:

1. Receipts registers - These recount, for each evening, which plays were

performed —typically two per session —and how many tickets were sold, of what types,

and at what prices. They inform not only on the troupe’s finances, but also on the

composition of the audience. The recettes are the most complete set of registers, spanning

from 1680-1793.

2. Expense registers - This register set shows the breakdown of the company’s expenses.

Though initially appended to the revenue information, the dépenses were recorded in

their own distinct volumes from 1750 onward.

3. Casting registers - The feux registers, named for the candles or firewood given to each

actor performing on a given evening to light and heat their dressing room , are a record for

every performance of which actors played which roles. Though incomplete casting

information can sporadically be found in early receipts registers, the casting registers

proper only span from 1765 to 1793.

4. Administrative registers - The registres de l’assemblée are essentially the minutes from

the actors’ weekly administrative meetings,64 during which they made decisions about the

troupe’s finances, management, and repertory.

The importance of the registers to the troupe and to the institution itself is evidenced by their

materiality and comprehensiveness. The registers are mostly in-quarto volumes bound in vellum,

using high quality paper and often including pre-printed rubrics and a title page decorated with

the royal coat of arms. What’s more, despite spanning well over a century, there is a remarkable

64 Though overseen by the Gentilshommes de la Chambre—representatives of the CF’s royal patrons— the
sociétaires (full company members) were completely responsible for managing the theatre’s programming, finances,
and other administrative facets.

63 Harvey, Sara and Agathe Sanjuan. “Le projet des registres journaliers de la Comédie-Française : les humanités
numériques, dialogue entre les mondes de la recherche et de la documentation”. Bulletin des bibliothèques de
France, no. 9 (July 2016): 146-152

21

consistency to the way in which the registers are dated, and there are very few gaps in the data.

As a historical and documentary resource, they are unparalleled with respect to the records kept

by other contemporary European theatrical institutions, such as the Comédie-Italienne or the

Drury Lane Theatre. This elevated status is reinforced by the fact that, through to today, new

members inducted into the company are gifted a facsimile of the first register. The digital

datasets derived from each register set are at the heart of the CFRP. As more fully detailed in

section 2.2.2, the scope of the data used in this thesis is limited to the recettes and feux, since

only the relational databases born of those two register sets have been fully completed and

verified.

Theatre data is an interesting subset of humanities data in that the ephemerality of performance

serves to amplify the challenges of, and interpretive bias inherent to, the datafication process.

Representations constructed from the texts of the plays, from accounts of performances

published in periodical press, or from heterogeneous collections of ticket stubs, musical scores,

and set design blueprints are all valid, but impose very different readings of what is artistically,

culturally, and historically significant65. At the difference of DH projects like ‘MOLIÈRE21’66,

which takes the CF’s spiritual patron as its sole focus, or ‘La haine du théâtre’67, whose approach

pivots around texts related to theatrical controversies, the CFRP adopts a more holistic approach

to theatre history by centering narrative multiplicity and flattening hierarchies. In consulting the

registers, the reader is confronted with the reality of the company’s day to day operations, which

depend on the collaborative efforts of a huge number of agents. In their pages, the works of

Voltaire are listed identically to those of Françoise Graffigny, page notes name the souffleurs68

before mentioning visiting royalty, and tragic starlette Clairon is on equal footing with Monsieur

Bellemont, whose riveting roles include twelve distinct characters simply described as “a

lacquey” and the no doubt essential “chair carrier” in Molière’s Les Précieuses Ridicules. Taking

the registers as an object of study provokes a shift away from the view of theatre as literature to a

68 Person who stood in a hole at the front of the stage and prompted the actors if they forgot their lines.
67 http://132.227.201.10:8086/projets/la-haine-du-theatre
66 http://moliere.huma-num.fr/

65 Escobar Varela, Miguel. “Introduction: Pursuit of Theater’s Digital Traces” in Theater as Data: Computational
Journeys into Theater Research (Ann Arbor: University of Michigan Press, 2021), 1-20

22

http://132.227.201.10:8086/projets/la-haine-du-theatre
http://moliere.huma-num.fr/

broader consideration of all of the agents and elements constitutive of la vie théâtrale as a

whole.69

Catherine D’Ignazio writes that “data is the currency of power”70 in reference to the influence of

contemporary Big Data, but this accurately describes the registers in their historical context. In a

first sense, they were a record of compliance to the conditions of the royal patronage that

protected the monopoly of French language theatre in Paris that was key to the company’s

success. Retrospectively, they also disrupt the attempted disempowerment of actors by the

church. Excommunicated for the sin of practising their chosen profession and correspondingly

stripped of a number of civil liberties by virtue of the judiciary power of the church, actors and

actresses were denied access to the ecclesiastical and legal records that are often significant

sources of information about artisans and the working class in the period in question.71 The

registers, however, which document the actors’ lives in much greater detail72 than ecclesiastical

records could ever have provided, represent the very record of their existence, value, and

importance that the church tried to deny them.

In view of its content and context, the CFRP archive could be viewed as being to ‘traditional’

hegemonic history what humanistic interfaces are to ‘traditional’ aggregative ones; both serve to

decentre power and give voice to those who are the subject of the study, emphasise alternative

measures and perspectives, and expose the labour behind constructed representations.

The CFRP are not the first to undertake a study of the registers, but are rather extending a

tradition of scholarship.73 Between 1752 and 1758, Charles de Fieux, Chevalier de Mouhy

published his tablettes dramatiques,74 which are essentially a dictionary of all the plays

74 de Fieux Mouhy, Charles. Tablettes dramatiques contenant l'abrege de l'histoire du theatre francois,
l'etablissement des theatres a Paris, un dictionnaire des pieces... Avec 3 Supplem. (Sebast. Jorry, 1752).

73 Ravel, Jeffrey S. "The Comédie-Française by the Numbers, 1752–2020." in Databases, Revenues, & Repertory:
The French Stage Online, 1680-1793 (MIT Press, 2020).

72 For example, we know the exact time and cause of actor Lekain’s death, as well as the time and location of his
burial. The registers also record quotes from people present at both events, including the King’s reaction to learning
of Lekain’s passing—”J'en suis bien fâché ; la Tragédie est morte.”

71 Sanjuan, Agathe, and Martial Poirson. Comédie-Française: une histoire du théâtre (Seuil, 2018).

70 D'Ignazio, Catherine. "Creative data literacy: Bridging the gap between the data-haves and data-have nots."
Information Design Journal 23, no. 1 (2017): 6-18.

69 Biet, Christian, Sara Harvey, and Agathe Sanjuan. "Postface–Le Programme RCF, de l’archéologie à la
futurologie." in Données, recettes & répertoire: La scène en ligne (1680-1793) (MIT Press, 2020).

23

performed at the Comédie-Française, with titles accompanied by basic information—author,

premiere date, genre—as well as occasional subjective commentary. In 1901, Alexandre

Joannidès published La Comédie-Française de 1680 à 1900: Dictionnaire général des pièces et

des auteurs,75 which likewise listed the company’s repertory and authors but notably expanded

the scope of Mouhy’s work to include a tabular summary of performance numbers. Joannidès'

work sought to demonstrate how these rudimentary statistics allowed for the identification of

trends in author and play popularity. Finally, in a number of works published between 1941 and

1951,76 Henry Carrington Lancaster compiled further tabular data, his notably being the first

work to include information relating to the troupe’s finances. As highlighted by Jeffrey Ravel,

Lancaster in particular recognized the way in which the study of the registers affords a change in

perspective, and that this move to look beyond the scope of literary canon invites important new

insights. Lancaster’s study led him to believe that “To limit one’s knowledge to three leading

writers [Corneille, Racine, and Molière] is comparable to the old method of studying history only

in its wars, its political negotiations, and the private lives of its kings and queens.”77 It is this

thread that runs through the work of the CFRP and is emphasised by digital affordances. As Lev

Manovich argues, the database as a new media object serves to invert the traditional relationship

between the ‘syntagm’—a single realisation of narrative possibilities—and the ‘paradigm’—the

collection of all possible choices, dematerializing the former while concretizing the latter78. The

transformation of the registers into relational databases, beyond extending the capabilities of

Mouhy, Joannidès, and Lancaster’s static tables, could therefore be seen as compounding the

CFRP’s focus on narrative multiplicity.

1.3.1 Interfaces

In addition to the databases and their corresponding public APIs, the CFRP have built a number

of digital interfaces for interacting with the register data. Peripherally aware of the notions of

78 Manovich, Lev. "Database as a symbolic form." Museums in a digital age (1998): 64-71.

77 Lancaster, A History of French Dramatic Literature in the Seventeenth Century, vol. 5, Recapitulation, 1610-1700
(Baltimore: Johns Hopkins University Press, 1942), 148 quoted in Ravel, “The Comédie-Française by the
Numbers”.

76 Henry Carrington Lancaster, The Comédie-Française 1680-1700: Plays, Actors, Spectators, Finances (Baltimore:
Johns Hopkins University Press, 1941); The Comédie-Française 1701-1774: Plays, Actors, Spectators, Finances
(Philadelphia: American Philosophical Society, 1951); A History of French Dramatic Literature in the Seventeenth
Century, 9 vols. (Baltimore: Johns Hopkins University Press, 1929-1942).

75 Joannidès, Alexandre. La Comédie-Française de 1680 à 1900: dictionnaire général des pièces et des auteurs
(Plon-Nourrit, 1901).

24

interface non neutrality and presentation bias, the researchers decided, in the words of one of the

principal investigators, to “multiply voices by multiplying the number of interfaces”. This effort

yielded four general-purpose data interfaces,79 each of which offers a different entry point into

the data. Three were created to explore the recettes and the fourth, the feux. Each interface is a

product of developers with varying backgrounds, levels of subject expertise, and degrees of

contact with the researchers and therefore represents a different approach to designing for a

humanities context.

The following sections will examine the ways in which each tool is handles the established

salient facets of humanistic interfaces described previously:

● Transparency- Does the interface make an effort to recognise and expose the constructed

nature of the data? Does it look to engage in questions of visual semiotics?

● Generativity - Does the interface’s presentation of the data leave entry points, ontologies

and hierarchies open to deconstruction and investigation? Do data representations

incorporate dynamicity and multiplicity so as to support interpretative analysis?

● Interpretability - Does the interface provide cues to navigating the system? Does it draw

on a combination of domain conventions and support diverse users through varied modes

of interaction?

1.3.1.1 Discovery Tool

The Discovery Tool was the first of the four tools to be created and it draws exclusively on the

recettes database. The landing page (figure 1.3.1.1-1) presents the user with four options of index

groups to explore—plays, seasons, authors, and genres. Each option links to a page listing

individual instances that can be filtered and sorted according to a limited set of their attributes

(figure 1.3.1.1-2). Selecting an item in the list leads to a terminal level page that offers further

details on an individual instance. For an author, for example, this includes breakdowns of

79 Some additional smaller and more targeted tools were created during the project’s two hackathons (2015, 2016),
but I have opted to limit my analysis to the four principle ones so as to be comparing interfaces of similar scope. The
most elaborate of the experimental tools is the seating heatmap, viewable at https://heatmap.cfregisters.org/. The
others can be accessed at https://www.cfregisters.org/#!/outils/experimentations.

25

https://heatmap.cfregisters.org/
https://www.cfregisters.org/#!/outils/experimentations

performances of their plays according to genre and authors alongside whose work they were

most often programmed, as well as an overview of their aggregate revenue (figure 1.3.1.1-3)

Figure 1.3.1.1-1. Discovery Tool - landing page

Figure 1.3.1.1-2. Discovery Tool - index list page (plays)

26

Figure 1.3.1.1-3. Discovery Tool - author index detail page (Françoise de Graffigny)

1.3.1.1.1 Transparency

The encyclopedic nature of the Discovery tool could be seen to lend it an aura of self-evidence

and comprehensiveness but, like all encyclopedias, it is the site of ample opaque ontological

decision making. Of the four foundational index categories, only two—seasons and plays—are

fully endogenous to the registers. There is no indication given in the interface that these are in

any way different from author and genre. This is especially notable with respect to genre, where

the genres originally assigned by the researchers in accordance with contemporary sources are

simplified down to five meta-categories. No details of how this mapping was established are

given, and the unprocessed values are never exposed. This data transformation runs counter to

the humanistic focus on plurality and participates in an interface rhetoric which potentially

reinforces monumental historical tendencies rather than disrupting them. Additionally, though

the homepage does not suggest any hierarchy between the different initial paths of exploration,

27

the fact that the types of graphics chosen for the individual index level pages are ill suited to

sparse data further participates in a rhetoric that elevates already central figures.

With respect to data constructedness, the most significant oversight is a lack of nuance in the

presentation of aggregate revenue data. Both author and play pages feature individual revenue

totals despite it not being possible to calculate these values with any degree of certainty

impossible because of the structure of the registers. Tickets at the Comédie-Française were not

sold for individual plays, but for sessions that typically featured two performances. The revenue

for each play is inextricably linked to its context; to equate an evening’s takings with a play’s

revenue for a given date is confusing at best, if not misleading. For instance, on the 26th of

January 1724, the season wise graph of playwright Regnard’s revenue shows a notable spike. It

is not the case, however, that the actors gave a particularly strong performance of his play La

Sérénade such that it brought in over 1000 livres more than any other evening that season that

included one of his plays. Rather, that session saw the play paired with the first performance of a

new play—Boissy’s L'Impatient—with the création as the reason for the record ticket sales.

1.3.1.1.2 Generativity

Aggregation-focused, the Discovery tool most often does not provide access to granular data,

and the graphics in the interface are principally static. There is no functional mechanism for

comparing different indices of the same type and axes of interpretation (performances, revenue)

are predefined according to index type. Author pages, for instance, only show

season-performance aggregations and play pages are limited to play-revenue graphs. With the

exception of season-wise revenue heatmaps, which are not aggregative, no graphics inform on

both revenue and performance numbers.

Light networking—links between index instance pages of different types—does, to an extent,

allow a user to easily follow their intuition to piece together evidence for unique arguments not

addressed by the existing components. Links to external sources80 further help expand the

universe of possible explorations and interpretations.

80 Gallica - BNF (https://gallica.bnf.fr/accueil/en/content/accueil-en?mode=desktop) and the La Grange database
(https://comedie-francaise.bibli.fr/index.php?lvl=cmspage&pageid=6&id_rubrique=84)

28

https://gallica.bnf.fr/accueil/en/content/accueil-en?mode=desktop
https://comedie-francaise.bibli.fr/index.php?lvl=cmspage&pageid=6&id_rubrique=84

1.3.1.1.3 Interpretability

The Discovery tool is interpretable by HCI standards as it closely adheres to Schneiderman’s

mantra “Overview first, zoom and filter, then details-on-demand.”81 Visualisations are drill-down

on click and tooltips show data descriptions. It offers, however, only a single mode of

interaction.

1.3.1.2 Cross-tab Browser

The Cross-tab browser takes a more centralised approach than the Discovery tool. Contained to a

single frame, filters pertaining to plays and their metadata (genre, authors) as well revenue

details (ticket sales, venues) can be applied in various combinations within a customizable time

frame to visualisations related to one of four pre-defined measures—aggregate revenue, average

ticket price, average revenue, and aggregate performances. Results are displayed in tabular

and/or graph form, depending on the user’s selection. Figure 1.3.1.2-1 shows a basic search.

Figure 1.3.1.2-1. Cross-tab Browser

81 Shneiderman, Ben. "The eyes have it: A task by data type taxonomy for information visualizations." In The craft
of information visualization (Morgan Kaufmann, 2003): 364-371.

29

1.3.1.2.1 Transparency

The Cross-tab browser does very little in the way of data obfuscation with respect to index

choice, though unprocessed sales and performance count data is not made available. The issue of

individual author and play revenue is addressed by the interface clearly noting that the values

correspond to sessions where an author’s work or a specific play is the nth (0<n<4) performance

given. The most notable instance of forced perspective is the addition of decade as a unit of time.

Additionally, all data is arbitrarily cut off at 1790, though in reality it extends to 1793, and no

indication is given as to whether ranges are inclusive or exclusive.

Like the Discovery tool, the Cross-tab browser derives a certain number of index categories.

Notably, it separates out the number of acts and the genre from the plays themselves. This means

that some combinations of filters are of limited utility; when displaying data for selected plays, a

secondary filter to weed out specific genres is the functional equivalent of simply selecting fewer

plays. Even more explicitly than the Discovery tool, the Cross-tab browser elevates already

central figures. The default example loaded, for instance, is a comparison of the aggregate

revenues of Jean Racine and Thomas Corneille, two of the most well known tragic authors of the

period.

1.3.1.2.2 Generativity

With four aggregations and two filters with six choices, many of which have a number of sub

choices, it is possible to produce a huge number of different graphics. The cross-tab browser is a

prototypic example of the potential for interpretative work born of ‘combinatoric calculation’.

Different index instances—specific plays or seating types, for instance—can be added at any

time, allowing the user to iterate on a question. The order in which the two filters are considered

and, correspondingly, the format of the display, can also be easily inverted to give the user a new

view on the data. The graphics themselves, however, are static and limited to bar and line charts,

depending on the nature of the requested data.

1.3.1.2.3 Interpretability

The Cross-tab browser is a powerful tool for answering diverse and specific questions, but its

interpretability is hindered by the fact that it attempts to borrow from both subject specific and

30

scientific conventions and vocabularies without sufficient integration or explanation. The

graphical conventions chosen are clear cut, but interactivity, and therefore feedback, is limited.

Hover initiated highlight mappings between graph-view and table-view help to clarify and

concretize the relationship between the two. However, there are no mechanisms built into the

interface to highlight or explain cases where an invalid combination of filters appears to initiate

processing but returns an empty or erroneous result.Though someone with a knowledge of the

Comédie-Française who knows that the company didn’t move to the Salle des Machines until

1770 would understand why there are no results for Voltaire plays performed at that venue

between 1730 and 1760, for instance, this would likely be confusing to a naive user.

Additionally, the names of the aggregation options do not match up with what they represent. An

expert user would question the selection ‘représentations / jour’ knowing that a play would be

performed a maximum of once per day. A naive user might come away with the impression that

hundreds of plays could be performed per day. Both would be confused by the fact that this

option actually displays the total number of performances, as opposed to any sort of average.

The filters are a further site of potential confusion. The two options open to selection are framed

as controlling the x and y-axis of the graph, deliberately—though arguably not

correctly—invoking mathematical language through the introductory phrase ‘as a function of

what?’. In reality, though the first selection does influence the x-axis, the second selects the chart

series. The true y-axis is always the selected aggregation. The series options themselves are

presented in full detail, using subject specific ontologies, but are presented without explanation.

Users comfortable with graphs may find the axis relationships confusing and not have the

context for meaningful series selection. Users coming from the humanities may be put off by the

blatantly mathematical framing. Rather than mutual intelligibility, this combination of

conventions instead creates a parallel discomfort.

1.3.1.3 Faceted Browser

The Faceted browser takes a more centralised and less guided approach than the Discovery tool

or the Cross-tab Browser. In default mode, the interface displays card-formatted search results,

where each card corresponds to a register page (see figure 1.3.1.3-1). As shown in figure

1.3.1.3-2, the results can be filtered according to user-defined selections relating to the plays

31

performed and the session’s revenue. In calendar mode (figure 1.3.1.3-3)—a view that was

initially part of the Cross-tab browser—users can see a season-wise revenue heatmap limited to

the dates where the performance conditions match their selected filters.

Figure 1.3.1.3-1. Faceted browser - result view

Figure 1.3.1.3-2. Faceted browser - filters

32

Figure 1.3.1.3-3. Faceted browser - calendar view

1.3.1.3.1 Transparency

The Faceted browser is transparent by virtue of minimal processing. There is a shorter

conceptual distance between the registers and the interface’s results list than the aggregative

graphs of the other tools. Each card in the result view maps to a single page in the receipts

registers and, where available, includes a direct link to the digital scan. The information is laid

out approximately as it appears in the manuscript, with the date and plays listed at the top,

followed by a breakdown of the ticket sales by type. Sales totals, however, are listed exclusively

in livres, not in livres, sols, and deniers as they are in the source documents. Following in the

pattern of the other interfaces, the author and genre of each play have been added to every card,

despite not systematically appearing in the registers. The date-ordered card display replicates the

way in which the registers flatten hierarchies and highlight complexity. There is no imposed

hierarchy, and index filter choices are not grouped or generalised.

33

1.3.1.3.2 Generativity

The Faceted browser takes the opposite approach to creating space for interpretation to the

Cross-tab browser. Overall, its choices in display focus primarily on multiplicity instead of

combinatorics. The overlapping filters facilitate quick identification of set intersections that

would be slow to calculate manually, but there is no further pre-definition of systems for data

organisation and aggregation, or evaluation and comparison. A user is left to create their own

procedures for deriving meaning from the data but there is notably no support for undertaking

this process integrated into the tool itself.

1.3.1.3.3 Interpretability

The two different modes featured in the Faceted browser provide options for users with varying

degrees of knowledge about the data. The bird’s eye view presented by the calendar heatmap can

help novice users identify potential points of interest, while the grid filters allow users with

highly specific questions to zero-in on the data most relevant to them. The filter option lists in

grid view react to selections as the user iterates on their request. This means that there is no

possibility of confusion over null or empty results, as invalid combinations are simply made

unavailable.

There are two instances where the lack of labels could be a potential source of confusion. First,

‘x’ is used instead of a precise value when specifying the number of spectators seated in the

loges. While this choice makes sense to users aware of the fact that a single box ticket could

correspond to a variable number of people, nowhere is this explained. The calendar also neglects

to broadcast the extent of its scope, which is limited by the filters in grid view. Understanding the

significance of the data it represents therefore relies solely on accurate recall on the part of the

user.

1.3.1.4 Graph Tool

The Graph tool, pictured in figure 1.3.1.4-1, was the first tool to integrate data from the casting

registers. It is based on the exploration of the various relationships between actors, roles, plays

and authors. By selecting instances of each of the four index types to use as vertices, the user can

34

build up a force-directed graph based on the connections between them. Hovering over an edge

shows details about the relationship—the number of times that two actors performed together,

for example, or the frequency with which an actor performed a given role. Clicking on any

vertex or on a subset of the edge types brings up a dashboard of visualisations specific to the

individual index or index pair connection (see figures 1.3.1.4-2 and 1.3.4.1-3). It is not possible

to interrogate groups of three or more indices. Contextual help informs on data significance and

processing.

Figure 1.3.1.4-1. Graph tool - graph construction

35

Figure 1.3.1.4-2. Graph tool - limited section of an actor dashboard section (Monsieur Molé)

Figure 1.3.1.4-3. Graph tool - limited section of an actor-role dashboard (Monsieur Molé - Hippolyte)

36

1.3.1.4.1 Transparent

As is the case with the other tools, the Graph tool hides a certain amount of the data

processing—all revenue information, for instance, is only given in livres—and many of the

graphical forms employed are poorly adapted to low-resourced examples. However, the interface

consistently includes elements that contextualise and explain data transformations. In lists

ordered by averages, for example, red dots flag instances corresponding to single occurrences

and the contextual help explains these potentially confusing false averages to the user. In

visualisations that in some way feature play revenue, at least the titles of all the plays performed

in a given session, if not their full casts, are made available. In cases where an index is assigned a

ranking, the total number of options is always listed for perspective.

The graph tool does fall back on ‘standard’ visualisation forms, but engages with questions of

multiple viewpoints and the inherent rhetoric of constructed representations by showing multiple

interpretations of the same data, even within a single dashboard element. For example, rather

than assuming that it is something users will calculate in their heads given the information, the

list of role frequencies featured in each actor’s data dashboard includes both the number of times

they performed a role, as well as what percent of the time they were the actor who performed

that role. The fact that actor Brizard played the titular King Lear in Ducis’ translated and

gallicised adaptation of the Shakespeare play 38 times, for instance, might seem unremarkable

when compared to his 100 performances of Henry IV in Collé’s Partie de Chasse. However, the

knowledge that he was the only actor to ever play the former paints a different picture of the

significance of the relationship.

1.3.4.1.2 Generative

The overview graph does not set out to answer any questions. The user is free to add whatever

indices are most relevant to them, and the connections and cluster patterns that arise through

their combination have the potential to generate new avenues of exploration. What constitutes a

connection, however, is predefined and not open to redefinition. Further, the dashboard

visualisations are minimally interactive and the configuration of panels cannot be personalised.

37

1.3.4.1.3 Interpretable

The graph tool notably features two different modes of initial interaction to support different

kinds of users. In ‘research’ mode, which is the default, a user adds individual nodes to the

graph. ‘Discovery’ mode exists to help users who may be less familiar with the data context, and

therefore have no frame of reference for likely relationships, to rapidly build and expand a

connected graph. Indices can still be added individually via the lists but, instead of opening the

dashboard as it does in research mode, clicking a node in discovery mode brings up a menu of

different index collections that could be added (see figure 1.3.4.1.3-1). Clicking the character

node Phèdre, for example, gives the user the option to add the node of the play the role belongs

to, the node for the author of that play, the nodes of all of the other roles in the play, or the nodes

corresponding to all of the actresses who played the role. Each potential option is marked with a

traffic-light coded dot to indicate whether or not it would be a ‘good’ idea to select the choice.

This interestingly highlights how the graph tool favours HCI values over humanistic ones, as the

coding of the options discounts the affective potential of a hairball82 generated by a dominating

presence.

Figure 1.3.4.1.3-1: Graph construction in Discovery mode.

82 This term is used to describe graphs that are so densely connected that they are difficult to read.

38

Just as the user can toggle between modes of interaction according to their comfort level, they

can easily opt in or out of contextual help, depending on their level of experience with the tool.

The contextual help hovers scattered through the dashboard visualisations provide context and

guidance about how to use or interpret data. This includes both explicit statements of cues that a

user may or may not have picked up on from visual affordances, explanation of how the

displayed data was derived, as well as highly context-specific definitions, useful for subject

novices.

39

Chapter 2: CLAIRON

Data interfaces are a site of negotiation between human and computational logics. They bridge

the gap between the two, but do not necessarily meet in the middle. There are advantages and

disadvantages to interfaces that exist along different points of the spectrum. The further an

interface gets from direct interaction with machine processes, the more inviting it becomes to a

broader user base, but the more control it must also sacrifice.

Previous work in humanistic interfaces has tended more toward the human logics end of the

spectrum. This is notably true of the four existing CFRP data exploration tools, none of which

exposes or encourages critical examination of the data or transformations applied to it in order to

adapt to a more human interpretable form. As mentioned in chapter one, one problem with using

these kinds of data interfaces as scholarly tools is that they start at the end, to an extent. Though

degrees of mediation vary, these interfaces framed as exploratory are implicitly structured around

answers to a specific set of questions. What’s more, in the effort to respond to the needs of as

broad of an audience as possible, these questions are often the most obvious ones. The frustration

of creating tools for the CFRP is that someone always inevitably asks but can it do this

incredible specific thing? or can I cross reference these two obscure elements? to which the

perennial answer is yes...if you know how to directly query the database.

This chapter introduces CLAIRON, a proof of concept for a different style of humanistic

interface that responds to this desire for the flexibility and degree of detail of a more direct

interaction with the data by moving towards the opposite end of the spectrum. CLAIRON is

based on natural language interfaces to databases (NLIDBs), which are systems that allow a user

to request information from a datasource in ‘plain’ language, as opposed to query languages that

require knowledge of specific syntax and data organisation. However, at the difference of these

systems, rather than simply returning a list of results, CLAIRON exposes the query used to fetch

them as well as all each step of the natural language to query language translation to the user. In

so doing, the aim is to engage the user as an active participant, inviting them to think through and

critique how their question is transformed during this imperfect mapping process.

40

The following sections give an overview the history and current state of the field of NLIDBs,

introduce the CFRP data subset used to highlight the specific challenges of applying this style of

interface to a humanistic dataset, wade into the weeds of implementation, and finally examine

how CLAIRON both measures up against the capabilities of similar NLIDBs as and addresses

the core humanistic interface tenets of transparency, generativity, and interpretability

2.1 Natural Language Interfaces to Databases
The development of NLIDBs has been driven by the desire to interrogate data without requiring

users to have a knowledge of a specific query language (e.g. SQL, SPARQL) or an

understanding of the underlying data organisation or structures. These prerequisites “set ‘a high

bar for entry’ for democratized data exploration”83; in light of this, natural language interfaces

have the potential to play an important role in promoting more widespread data literacy and

transparency. These interfaces, at the most basic level, accept a question posed in natural

language and return the results of a corresponding query produced as an intermediate step. The

challenge of creating a useful NLIDB lies in striking the balance between a system that reliably

provides correct answers and one that can handle questions that vary in structure and,

correspondingly, in syntactic complexity and ambiguity. There exist two distinct currents of

systems— those structured around a natural language processing (NLP) based ‘pipeline’, and

those rooted in deep learning (DL).84

Rules based systems predate learning-based ones, but have progressed alongside advancements

in natural language computing and are still prevalent today. Though DL systems have begun to

outperform them in automatic evaluations of large datasets, rules-based approaches are favoured

by systems which interact with users, as their internal logics are more accessible. Not reliant on

training data, they are also more demonstrably made domain-independent.85 Regardless of type,

85 Kim, Hyeonji, Byeong-Hoon So, Wook-Shin Han, and Hongrae Lee. "Natural language to SQL: where are we
today?." in Proceedings of the VLDB Endowment 13, no. 10 (2020): 1737-1750.

84 Baik, Christopher, Hosagrahar V. Jagadish, and Yunyao Li. "Bridging the semantic gap with SQL query logs in
natural language interfaces to databases." In 2019 IEEE 35th International Conference on Data Engineering, (2019):
374-385.

83 Utama, Prasetya, Nathaniel Weir, Fuat Basik, Carsten Binnig, Ugur Çetintemel, Benjamin Hättasch, Amir
Ilkhechi, Shekar Ramaswamy, and Arif Usta. "DBPal: An end-to-end neural natural language interface for
databases." arXiv preprint arXiv:1804.00401 (2018): 1.

41

every NLIDB system must address two core challenges—token mapping and join path

inference.86 Token mapping refers to the problem of establishing a mapping between input tokens

and datasource attributes and relationships. Rules-based ‘pipeline’ systems most frequently start

from a lexicon derived from the datasource and rely on linguistic resources such as WordNet87 to

find synonyms for out-of-vocabulary tokens. At an individual word level, deep learning systems

tend to use word embeddings to identify probable matches. Join path inference refers to finding

the optimal way to unify all of the data required to answer a given question. The need for join

path inference arises from the distance between the user’s mental model of the data and the true

structure of the datasource.

To avoid repetition and facilitate classification, relational databases map components of an entity

to be represented into a collection of distinct tables connected by a ‘foreign key’ that most often

consists of a single shared column. This style of decentralised organisation can seem

counterintuitive to humanists, and more generally people who have not been exposed to

databases.88 Such users tend to instead picture all of the information as being stored in a single

location—a single table—and their questions correspondingly do not explicitly specify the way

in which all the tables required to access all of the requested information should be linked; this is

up to the system to infer.

‘Pipeline’ NLIDBs broadly fall into four categories: keyword based, pattern based, parse-based

and grammar based—with only the latter two able to handle complex query structures. Grammar

based systems use a context free grammar (CFG) to define and constrain possible user inputs.

Though this severely limits scope and flexibility, this approach is favoured by systems who aim

to scaffold query construction, with the grammar leveraged to suggest valid terms and structures.

Parse-based systems focus on understanding grammatical structures and are the class typically

best at handling more verbose queries with nuanced relationships between linguistic

components.89 The architecture of grammar or parse-based systems generally includes three core

components: question structure analysis, which looks to understand the relationships between

89 Affolter, Katrin, Kurt Stockinger, and Abraham Bernstein. "A comparative survey of recent natural language
interfaces for databases." The VLDB Journal 28, no. 5 (2019): 793-819.

88 Quamen, Harvey, and Jon Bath. "Databases." in Doing Digital Humanities, (Routledge, 2016): 181-198.

87 Miller, George A. "WordNet: a lexical database for English." Communications of the ACM 38, no. 11 (1995):
39-41.

86 ibid

42

components; token matching, which seeks to map input tokens onto database elements or, in the

case of relationships, query language keywords; and query generation, which transforms an

internal structured representation of the matched tokens into a valid query.

PRECISE is an early NLIDB implemented as a demonstration of Popescu et al.'s theorisation of

the category of ‘semantically tractable’ questions that an NLIDB should be able to reliably

answer.90 To belong to the class of semantically tractable questions, each input token must match

to a single unique database element, each token that matches to an attribute (column) must have

a corresponding value (row-cell) token, each token denoting a relationship must be attached to

either a value token or an attribute token, and the input must contain a ‘wh’ word—’what’,

‘which’, ‘where’, ‘who’, or ‘when’. In the case of viable questions, after PRECISE retrieves all

possible element matches for each token, the constraints imposed by semantic tractability allow

the system to treat token-element matching as a maximum-bipartite-matching problem and to

find the optimal path—the most likely semantic interpretation—using the max-flow algorithm. In

experiments on three benchmark datasets, approximately 80% of the questions were found to be

semantically tractable. PRECISE was able to handle these with high accuracy, but would not

address the remaining 20% unless the user provided a paraphrase. In addition being limited to a

small set of possible structures, it notably cannot handle words that are outside of the vocabulary

of the database, nor any tokens that imply a calculation or combination of fields. For instance,

unless it exists as a pre-calculated field, PRECISE is unable to handle a concept like ‘density’.

ATHENA91 and SQLizer92 are both NLIDBs that add an intermediate level abstract

representation to the NL to query translation process. ATHENA does not map input tokens

directly to database elements but rather to elements in a pre-defined domain-specific ontology.

Though this does not permit the same context agnosticity as PRECISE, it does allow for more

complex relationships between tokens and aids with token disambiguation. This notably includes

derived fields that do not map to a single database element but are able to be expressed by a

92 Yaghmazadeh, Navid, Yuepeng Wang, Isil Dillig, and Thomas Dillig. "SQLizer: query synthesis from natural
language." in Proceedings of the ACM on Programming Languages 1, no. OOPSLA (2017): 1-26.

91 Saha, Diptikalyan, Avrilia Floratou, Karthik Sankaranarayanan, Umar Farooq Minhas, Ashish R. Mittal, and
Fatma Özcan. "ATHENA: an ontology-driven system for natural language querying over relational data stores." in
Proceedings of the VLDB Endowment 9, no. 12 (2016): 1209-1220.

90 Popescu, Ana-Maria, Oren Etzioni, and Henry Kautz. "Towards a theory of natural language interfaces to
databases." in Proceedings of the 8th international conference on Intelligent user interfaces (2003): 149-157.

43

single ontology element, making them available as possible matches. Using the semantic

information provided by the ontology, ATHENA creates a ranked list of valid semantic

interpretations—graphs that necessarily include all tokens, are weakly connected, and do not

include or lack any connections which contravene ontological hierarchies. The system models

join path inference as a Steiner tree problem. SQLizer’s additional layer of processing looks to

simplify query generation through the use of templates. Working from a basic semantic parse that

includes linguistic metadata such as part-of-speech and entity tags in addition to structural

information, SQLizer generates a generic SQL ‘query sketch’ with slots to be filled by database

entities and join paths. Type information is used to narrow the field of possible matches

alongside the names of schema elements, key constraints, and row values. The system iteratively

tests out different likely token combinations, using predefined repair rules—grammar defined

structural transformations—to expand and alter the query in the case of low-confidence matches.

Rather than attempting to guess the correct matches for ambiguous tokens, Li and Jagadish’s

interactive NLIDB, NaLIR,93 simply asks the user for clarification. Starting from a dependency

parse, this system groups the token nodes into classes corresponding to different query

components. For nodes likely referring to database elements, it uses a Wordnet synonym and

hypernym relationships as well as structural constraints to identify candidate matches but

ultimately relies on user interaction to select the right mapping when other metrics are not

enough. NaLIR uses a grammar to check the validity of parse trees corresponding to possible

semantic interpretations with respect to path constraints and query structure, making adjustments

where possible and discarding non-viable options. This process notably includes the insertion of

implicit nodes needed to create valid join paths. Join paths are ultimately generated using the key

relationships between all the tables of the database elements involved in the query. NaLIR’s

performance is highly dependent on human feedback, something which its later extension,

TEMPLAR, aims to mitigate, to an extent, through a semi automation of user interaction.94

TEMPLAR, which sits on top of NaLIR, reuses information from query logs corresponding to

inputs of similar structures to identify the most likely token matches and ideal join paths.

94 Baik et al., “Bridging the semantic gap with SQL query logs in natural language interfaces to databases”

93 Li, Fei, and Hosagrahar V. Jagadish. "Constructing an interactive natural language interface for relational
databases." in Proceedings of the VLDB Endowment 8, no. 1 (2014): 73-84.

44

Deep learning NLIDBs leverage training data composed of NL-SQL question and answer pairs

to learn appropriate translations, much in the same way neural translation systems between

natural languages rely on parallel corpora. The architecture of these systems is commonly

Recurrent Neural Network based and frequently augmented with some sort of attention

mechanism.95 When it comes to token matching, DL systems are better than ‘pipeline’ systems at

handling complex relationships and derived or abstract fields. As long as it appears in the

training data, a neural system can come to ‘understand’ conceptual tokens like ‘major cities’ and

correctly map them to potentially complex query fragments. Join path inference is likewise

scoped by the samples which the system has ingested. It’s no mystery that the biggest limitation

of these systems is the availability and quality of training data. Since hand annotated examples

are onerous to produce, recent attempts have been made to create and augment training sets

through automatic techniques. DBPal,96 for example, is trained on a dataset created using slot

filling, which consists of creating examples by filling in question-query template pairs with a

variety of database elements of the appropriate types. Its training set was further expanded using

automatic rephrasing, which draws on language models coupled with synonym retrieval using

linguistic resources such as WordNet to produce paraphrases of existing natural language

questions. While more efficient, these generative techniques have important drawbacks. Training

sets generated by slot filling will only ever expose the system to a limited number of query

language formulations. Rephrasing can similarly produce examples that, while technically

grammatical, are distinctly different from naturally elicited questions. One of DBPal’s templates

‘Show me the <attribute> of the <table> with <filter>’ and its rephrasing ‘For all the <table>

with <filter>, what is their <attribute>’, for instance, yielded the questions ‘Enumerate the names

of all the patients with age 80’ and ‘For all of the patients with age 80, what are their names?’.

Though true to the researchers’ goal of increasing structural diversity, the system’s lack of

syntactic nuance—not knowing age, for instance, is something that someone is rather than

has—resulted in distinctly un-natural questions.

2.2 A Humanistic NLIDB

96 Utama et al., “DBPal”
95 Kim et al., “Natural language to SQL"

45

The point at which modern technology is often considered to have reached its peak is when it has

been naturalised to the point of near invisibility.97 The layers of programmatic abstraction

necessary to create this illusion, however, obscure the assumptions and simplifications performed

by these interfaces, or unconsciously by a user, in the course of mapping a human question to a

form which aligns with computational logics. Consequently, users are not required to confront

the epistemological friction between their questions and the interface’s answers, or the influence

the interface's formulation of their question may have on their interpretation of the results.

As Micheal Mateas argues, programming, and by extension computing, is about describing

process and complex flows of cause and effect—an act of translation that will never be

frictionless98. Bringing an explicit exploration of this friction to the fore is, in my view, essential

to instantiating a humanistically oriented NLIDB. The aim of showing not only the results, but

the process, and highlighting the equivalencies and by extension, differences in formulation

between the natural language and SQL versions of an input, is to guide the user to reflect

critically on this imperfect process of translation and to consider the ways in computational

logics impact and transform their research and understanding. Ease of interaction is not

sacrificed, since translation is still taken care of by the machine, but the user is actively engaged

in the process—deconstructing, questioning, and correcting it. Though following in the logic of

existing NLIDBs in that it allows a user to interact with the database via NL questions, without

requiring either a knowledge of the database schema or of query language, CLAIRON—perhaps

paradoxically—looks to encourage users to build an understanding of both.

2.2.1 Design Context
Three key implementation choices grounded in the theorization of humanistic interfaces define

the design of CLAIRON:

1) The choice to use a parse-based system over a grammar based system or a deep learning based

system - Given the goal of interface transparency, opting for an NL pipeline style system was an

98 Mateas, Michael. "Procedural literacy: Educating the new media practitioner." On the Horizon 13, no. 2 (2005):
101-111.

97 Cellard & Masure, "Le design de la transparence"

46

obvious choice. Deep learning systems are black boxes, and the ability to illustrate the process

was an essential consideration.

2) The choice of SQL and a relational database over SPARQL and an RDF repository - Though

known today as SQL (Structured Query Language) the language used to query relational

databases was initially conceived as SEQUEL—Structured English Query Language.99 Its

authors chose to use English keywords and a sentence-like structure to “reflect how people use

tables to obtain information.” They emphasised that SEQUEL was specifically designed to

accommodate a “new class of users”, whose work utilised computers but who were not experts.

SQL was built assuming a familiarity with, and ability to draw parallels with, spreadsheets.

SPARQL (SPARQL Protocol and RDF Query Language), on the other hand, was designed to

interact with data collections specified using RDF (Resource Description Framework), a

graph-based architecture with which fewer non-experts are familiar. The intent of the interface is

to expose the guts of the process, including the underlying data structures, and to invite users to

inductively come to understand the problem deconstruction and mapping. Discovery based

learning of this type is scaffolded by prior knowledge of the world,100 so the choice of a relational

model was driven by the fact that users are more likely to have prior knowledge of, and comfort

with, spreadsheets as opposed to networks.

3) The choice to leave input unguided - Many NLIDBs leverage user interaction to help resolve

ambiguity. NALIR,101 for example, relies heavily on the user to pick between potential token

matches, and the system has been shown to be significantly less effective when run in

non-interactive mode.102 In a similar vein, the primary advantage of grammar-based systems is

the ability to suggest valid query components to the user. These systems follow in the same logic

as many query building interfaces such as Sparnatural,103 whose potential inputs are limited to fill

in the blank templates. Such systems implicitly guide the user to create an easily machine

103 https://github.com/sparna-git/Sparnatural
102 Utama et al., "An end-to-end neural natural language interface for databases"
101 Li & Jagadish, "Constructing an interactive natural language interface for relational databases"

100 de Jong, Ton. "Scaffolds for scientific discovery learning." Handling complexity in learning environments:
Theory and research (2006): 107-128.

99 Chamberlin, Donald D., and Raymond F. Boyce. "SEQUEL: A structured English query language." in
Proceedings of the 1974 ACM SIGFIDET (now SIGMOD) workshop on Data description, access and control
(1974): 249-264.

47

https://github.com/sparna-git/Sparnatural

interpretable question. Their templates and grammars result in inputs that, while technically

‘natural’ language, are not typically the type of question that would be naturally elicited, as their

components are meant to provide the cleanest mapping to query blocks. Though useful for

ensuring queries are valid, this approach directly contradicts the centering of the differences

between human and computational problem expressions. Instead, the system performs these

adjustments implicitly, without reflection of awareness on the part of the user. Input left

unguided, to the contrary, asks users to explicitly confront the ways in which their questions

must be altered in order to fit computational logics.

2.2.2 Data Context
Fundamental to humanities data methodology is the notion of data as capta.104 DH scholars

recognize that data is deeply contextual and promote practices that, from collection through to

dissemination, focus on the conditions and contexts from which it emerged, and the ways in

which those conditions shape and inform all manipulation and interpretation. Catherine

D’Ignazio offers up the creation of detailed ‘data biography’ as a crucial first step in any

humanistic data-oriented project.105 This reflexive documentation asks the researcher to identify

the how, by who, and why of data collection and analysis, and to take stock of the potential

negative impacts of the data and its limitations. We recognize that data is always “is always an

intentional simplification of a more complex and rich reality”106; the data biography exists to help

users make sense of that simplification process, showing them how to read for data gaps and

biases introduced in the mapping. Though primarily targeting datasets destined for machine

learning, Gebru et al.’s ‘datasheets’107 follow in the same vein. This slightly more detailed

formalism comprises seven sections—motivation (why was the dataset created?), collection

(who created the dataset and how?), composition (what is and isn’t the dataset representing?),

processing (what cleaning, labelling, or derivation was part of the creation of the dataset?), uses

(who has and will use the dataset, how, and what potential negative impacts could it have?),

distribution (who will be given access to the dataset, how, and under what conditions?), and

maintenance (will the dataset be maintained and, if yes, how and by whom?).

107 Gebru, Timnit, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna Wallach, Hal Daumé
Iii, and Kate Crawford. "Datasheets for datasets." Communications of the ACM 64, no. 12 (2021): 86-92.

106 ibid
105 D’ignazio, “Creative data literacy”
104 Drucker, "Humanities approaches to graphical display"

48

It would be counterproductive to embark on the creation of a humanistic data interface without

engaging in this process of reflection. The following sections comprise the data biography of the

custom dataset which I derived to use as an example for the NLIDB. They address, in turn, the

datasheet questions pertaining to the first four proposed aspects, the latter three being outside the

scope of the current project.

2.2.2.1 Motivation

The interface, like all NLIDBs, is intended to be able to work with any database. However I

chose to create a new database fusing a subset of the CFRP data (recettes and feux - the two

complete datasets) for three distinct reasons.

First, I needed a single datasource that matched the scope of the submitted questions. The

archive-per-phase approach of the CFRP means that the recettes and feux register sets were

initially transferred into two distinct databases by two different teams. The interface requires a

single datasource, hence the creation of a merged database.

Second, I wanted a datasource that, as much as possible, would exemplify the specificity of

relational database organisation. Despite their similarities and the way that the terms are often

used interchangeably by DH practitioners, databases are not spreadsheets. The logic of databases

looks to maximise access to different points of entry into the data, and to minimise data

duplication and wasted space. For example, when storing data about plays, a spreadsheet might

list each unique play and list duplicate author details every time. A database, on the other hand,

would typically treat the authors and plays as separate entities, placing them in different tables

and linking them together through a numeric identifier. This both reduces data duplication and

changes the focus of the data to place authors and plays on equal footing—with inquiry based

around either just as easy—which is not necessarily true of the spreadsheet. Recognizing this

organisational and conceptual difference is an important part of the interface’s goal of

encouraging users to think through the cognitive distance between human and computational

expressions of a question and to interrogate the ways in which technical mediation shapes and

alters inquiry. In light of this, it was important that the underlying database used to demonstrate

the NLIDB embody relational database best practices, as its schema is fully exposed. Both the

49

feux and recettes databases bear the marks of a continuous development process that worked to

adapt to the needs and interests of the researchers as their understanding of the data grew. As

alterations were being made on the fly, some were not necessarily integrated into the predefined

schema in accordance with ideal database design standards. The fused database, having the

advantage of retrospect, aims to improve the integration of these ad-hoc additions.

Third, though not functionally necessary, I wanted a database whose naming conventions

reflected domain vocabulary. English has become somewhat of a technical lingua franca; very

few programming languages support non-english keywords and, correspondingly, the tendency is

to use english variable names, even in non-english contexts. The fused database deviates from

this tradition , one that was perpetuated by both of the databases from which it draws , instead

using French names for all database elements. This choice was made to respect the precision of

domain specific vocabulary and, to a lesser and unnecessary extent, to streamline entity

matching.

2.2.2.2 Collection

In terms of datafication, we might consider the data to have been collected at two different

points. Historically, the register data was recorded by the very people to whom it relates. A

rotating roster of actors would take on the role of semainier, whose job it was to record the

evening’s performance data. In the modern context, data transcription was performed by

undergraduate and graduate students in French, Literature, and Theatre programs who were

employed as research assistants, and verification was performed by the most experienced

students, doctoral researchers, and professors.

Data input for both the recettes and feux registers was done using bespoke data interfaces, though

the respective tools were created by two different developers and the transcription likewise

undertaken by two different teams. Datafication practices as they relate to manuscript records, in

general but notably specifically with respect to similar theatre records, tend to adopt one of two

approaches: focusing on entities or focusing on page elements. The data for RECITAL project,108

for example, who are working on the registers of the Comédie-Italienne, is organised around

108 https://recital.univ-nantes.fr/

50

https://recital.univ-nantes.fr/

‘annotations’. Each entry in the central table of the database is first and foremost conceived of as

an annotation on a page that is defined by size and coordinate information. This means that,

while they are identifiable through a tag field, actors, for example, are not an easily interrogable

index of the data as they are not an entity in the database schema. This style of data organisation

is very flexible, as it is not beholden to any sort of predefined rubric, but might also be

considered to be more detached from the data context. The other approach consists of creating a

predefined data ontology. This style is much more reliant on content knowledge.The advantage

of this approach lies in easier interrogation of facets of interest, but it could be seen to more

readily encode researcher worldview and lose aspects of the data deemed unimportant by a few

individuals. The CFRP chose the latter approach. The only data entered during the transcription

phase corresponded to what was written on the register page, with the structure and fields

decided in consultation with experts. That data was then further used to build up tables of indices

identified as important by the researchers—authors, plays, seating categories, etc.

2.2.2.3 Composition

The registers of the Comédie-Française are a detailed record of all of the company’s day to day

activities, kept meticulously from its foundation in 1680 through to today. The fused database is

a combination of two of the four archives dating from the 17th and 18th centuries—the recettes

and feux . The recettes database spans from 1680 to 1793 and includes ticket sale data pertaining

to 34435 dates. Though expense and approximate casting information was sometimes present in

the receipt registers before being relegated to discrete registers, this data was not captured during

the datafication of the recettes. The feux registers only span from 1765 to 1793. These registers

capture casting data for 8462 dates, notably including 128 not seen in the recettes data, as they

pertain to performances given outside of the company’s Paris theatres.

There are fifteen tables in the fused database (see figure 2.2.2.3-1).

1) séances (34537 rows) - Each entry represents a single session (date). Typically, two plays

were performed each day.

2) représentations - Each entry corresponds to a performance of a single play.

51

3) pièces (1059 rows) - Entries offer details about the plays performed at the CF—genre,

length, premiere date etc.

4) auteurs (312 rows) - Entries give detail about the authors. This information is notably not

listed in the registers except in the case of new plays. It was added to the recettes

database by content experts.

5) attributions (1075 rows) - Entries correspond to authorship credits. This information is

encoded as a junction table rather than as a single foreign key field in the plays table

because of cases of co-authorship.

6) comédiens (566 rows) - Each entry gives information about a specific actor. As with

authors, much of this data came from sources outside of the registers.

7) débuts (260 rows) - Each entry associates an actor with the year of their formal debut.109

As with authorship, this information is formatted as a junction table because of the

possibility of multiple debuts.

8) rôles (4981 rows) - Each entry gives information about a role, and each role is associated

with a specific play.

9) interprétations (152208 rows) - Each entry in this table represents the performance by an

actor of a specific role on a given evening; in other words, each row associates a

représentation (single instance of a play being performed) with an acteur and a rôle. It is

possible for one of the latter two to be null.

10) lieux (25 rows) - Each entry corresponds to a performance location. Data about ‘special

locations’—visits to court or to the country, for example—comes directly from the

registers, and entries retain the noted level of granularity.110 Additional rows correspond

to the four different theatres111 the troupe occupied between 1680 and 1793

111 Hôtel Guénégaud (1680-1689), Fossées-Saint-Germain-de-près (1689-1770), Palais des Tuileries (salle des
machines) (1770-1782), Théâtre de l’Odéon (1782-1793).

110 For example, Versailles and Trianon are noted as two different locations, despite one being inside the other, and a
distinction is maintained between Fontainebleau and Fontainebleau, au théâtre de la ville.

109 An actor’s formal début was a two week period during which they were afforded the chance to prove their talent
by playing a number of roles of their choice, often corresponding to a specific character archetype (which came to be
known as an emploi)—reines, soubrettes, rôles à manteau or confidents, for example. After their two weeks were
up, the company’s governing body of sociétaires would either recommend to the Royal bureaucrats who were
officially (though mostly symbolically) in charge of the company that the new actor be admitted à l’essai, meaning
that after a trial year they could potentially be inducted to the company as a full sociétaire, or judge their attempt to
be unsuccessful. Many actors who were initially refused would go gain experience in provincial theatres before
returning to Paris for a second attempt. It is therefore possible for an actor to have multiple entries in the débuts
table

52

11) places (148 rows) - Each row in this table details a different seating category type. These

changed over time, primarily as a function of theatre architecture.

12) ventes (181850 rows) - Entries in this table link together a séance and a place, detailing

how many tickets of that type were sold, at what price, and how much revenue that

brought in. Though it is generally bad practice to save fields in a database which can be

calculated, as is the case with revenue, these figures were kept for two reasons. First, it is

more true to the source document and, second, in ~3.27% (5949/181850) of instances,

clerical errors or exceptional circumstances—both of which are of interest to

researchers—mean that the numbers do not match up.

13) registres_feux (8462 rows) - Though séances already covers dates, in order to preserve a

trace of the multiple data sources, each entry in this table corresponds to a page in the

casting registers. Each one is linked to a séance and gives details specific to the feux

archive.

14) registres_recettes (34409 rows) - This table serves the same function as registres_feux,

except the information relates to the receipts registers. In a similar fashion, each entry is

linked to a séance. That said, each séance won’t necessarily have both associated feux

and recettes pages; many have only one or the other.

15) pages_de_gauche (4882 rows) - This table tracks what kind of information was found on

the left hand page of the receipts registers (the details of the performance are always on

the right). Though this table is not as directly related to drawing the data picture of an

evening at the CF, it may nonetheless be of interest to those researching administrative

practices.

53

Figure 2.2.2.3-1. The fused recettes-feux database

There are a few limitations inherent to the data. The most significant is that there is no way to

determine the financial success of a single play. Except on very rare occasions, each evening’s

performance included two plays—typically a comedy and a tragedy, or longer comedy and a

shorter one. Tickets were sold for performances, not plays, so the registers consequently do not

provide individual play revenue information. Knowledge of exactly how many people were in

the room is likewise limited by ticket sale ambiguity. Unlike many seating categories, the loges

(boxes) didn’t have a 1-1 person-to-ticket ratio. Even with ticket sale numbers, the capacity of a

loge was not always known (or stable) so to know from the register data can only ever support an

informed guess at the true makeup of the audience.112 Finally, though we know it is not binary,

the registers only ever provide binary actor and role gender information.

112 Velde, François R. "An Analysis of Revenues at the Comédie française, 1680-1793." in Données, recettes &
répertoire: La scène en ligne (1680-1793). MIT Press, 2020.

54

2.2.2.4 Processing

A good portion of the collected register data directly maps to what was written on the page. In

the course of the original data entry, extra information added describing actors, authors, and

plays was drawn from contemporary sources, but these additions are nonetheless possible sights

of introduction of researcher bias. Play genre is notably only listed with any degree of

consistency when a play debuts. This means that many genres listed in the plays table had, for

the most part, to be pulled from contemporary scholarly publications or periodical press. In some

cases, however, even these sources disagreed; Marc Antoine Legrand’s Plutus, for example, is

listed as a comédie in the Chevalier de Mouhy’s Tablettes Dramatiques113 but called a vaudeville

when it is first read in the actors’ assemblée.114 In the database it is listed as a comedy. For all

that it is representative of a contemporary ontology, this decision could be called into question

given that it aligns more with the dominant narrative style of history that the CFRP actively tries

to deconstruct than with the vision of the author (who was one of the actors). The same logic of

choosing the dominant form was applied to actor and author names, though in these cases,

alternative forms were retained and noted in an additional field. The boolean divertissement field

in the plays table is another simplification. A true value flags that a play included something

outside of simple recitation—specifically dance, music, or machinery—but the database doesn’t

go into any further detail. Additionally, plays which at some point may have contained these

elements were at others performed without them, due to cost or limits imposed by formal

legislation.

Most of the data processing I performed in the creation of the fused database was cleaning to

assure consistency. It was not so much scrubbing as tidying up—removing entries that were

clearly tests, condensing tables, replacing accidental empty strings with nulls, and formalising

foreign key links that had not been properly established in the recettes database. As the aim of

the interface is to answer questions about the data itself, I removed all tables and fields relative to

team members and work logistics. In two instances I augmented the data with outside

information: I added author gender information from a list compiled by an expert researcher on

the project, and supplemented the location information to include the Paris theatres as locations

114 https://flipbooks.cfregisters.org/R52_6/index.html#page/103/mode/1up
113 Mouhy, “Tablettes Dramatiques”

55

https://flipbooks.cfregisters.org/R52_6/index.html#page/103/mode/1up

so that every performance had an associated lieu rather than only unusual cases. Additionally,

actor debuts were shifted from being an array field to a junction table.

There are a few database elements ported from the recettes that are not representative of best

practices that I chose not modify for reasons of overhead. The first is that there is no way of

identifying the comédiens-poètes, which is to say no link between actors and authors who are one

in the same. The second is that semainiers is a plaintext field, so there is no key link to any

people entries; solving this would demand the creation of a more inclusive people index as, early

on, the semainiers were sometimes company personnel (accountants, prompters) rather than

actors. The semainers question is also complicated by the fact that actors would sometimes sign

in the name of their colleagues, something we only know through additional annotations.

2.2.3 Scoping
Though the NLI pipeline approach does not require training data as machine-learning (ML)

systems do, my first step in implementation was nonetheless question generation. The goal of

collecting a list of potential questions that someone might ask of the CFRP data was to help

scope the project. In examining the different types of questions, I was able to abstract upward to

determine what structures needed to be handled, and build an understanding of the various ways

in which different SQL operations could be expressed in natural language.

It was above all important to me to ground the interface in naturally formulated questions from

people with diverse perspectives. A frequent issue with ML model training sets or pipeline

model test sets is that they cover only a limited number of phrasing variants and/or include

specific formatting that was added to aid machine interoperability. For example, one of the

benchmark datasets used to evaluate NaLIR always encloses multiword expressions in quotation

marks, so as to signal the parser to interpret them as a single token (e.g. What year is the movie

"Dead Poets Society" from?). A second benchmark consists entirely of queries that are all very

similarly phrased—each one begins with ‘return to me’ then requests a specific entity with all

filtering at the end (e.g. return me all the organizations in "North America"), and the awkward

phrasing of some examples suggests that the vocabulary used maps directly and exactly to

database entities (e.g. return me the area of PVLDB). As previously seen, the use of synonym

56

substitution or automatic rephrasing to supplement datasets can similarly result in maladroit

examples.115

Hall et al. argue that immersion in both the technical and the content domain is essential in

interdisciplinary computing projects, so as to address “challenges introduced by gaps in both

knowledge bases and cultures.”116 Though designing for dataset agnosticism, the aim was

nonetheless to create an interface able to handle specifically humanistic questions. As not an

expert in eighteenth century theatre nor a humanities scholar by training, I would never claim to

know the types of questions that would be most useful to a humanist, nor the most natural

language for expressing them. Similarly, I am aware that my knowledge of the way in which the

data is organised would colour any attempts to write questions. Finally, at the difference of

previous NLIDBs, I chose to handle French rather than English input. This meant that an

authentic set of test questions necessarily needed to come from native French speakers. In light

of these considerations, I solicited the help of the core CFRP team, who are both subject experts

and francophones. The team have varying levels of knowledge of the database contents and

structure, but I specifically requested that they not limit themselves to only questions they

thought would be answerable. Their interests span diverse facets of the data and this is reflected

in their responses. To ensure coverage of core sql concepts, I hand-augmented their submissions

with lightly modified rephrasings.

In addition to scoping what would be possible, the questions were also essential in identifying

what the system wouldn’t or shouldn’t handle. One of the primary interface goals is to bring to

the forefront what the computer doesn’t understand, rather than coping with uncertainty by

making and obfuscating assumptions about the data. This entails explicitly choosing not to

handle obviously ambiguous terms. In order to be able to answer the question Quelle est la pièce

la plus populaire de Beaumarchais ?, for instance, the system would need to implicitly decide on

a definition of ‘popular’ which, in this particular case, could equally refer to profit or attendance.

This kind of hidden processing is exactly what CLAIRON’s design is intended to avoid. When

116 Hall, Kyle Wm, Adam J. Bradley, Uta Hinrichs, Samuel Huron, Jo Wood, Christopher Collins, and Sheelagh
Carpendale. "Design by immersion: A transdisciplinary approach to problem-driven visualizations." IEEE
transactions on visualization and computer graphics 26, no. 1 (2019): 109.

115 Utama et al., “DBPal”

57

an interface makes these kinds of decisions for the user, it runs the risk of confusing them by

giving a result that clashes with their mental model or, more importantly, colouring or altering

their line of inquiry by presenting one interpretation of many as an objective truth. An input such

as Quelles sont les vedettes que le public vient plus nombreux pour voir jouer? opens up

additional questions in this same vein. This query assumes that the system has an understanding

of the term vedette, which is a rather lofty assumption given that the notion of vedettariat was

newly emerged and quickly evolving in the eighteenth century, and its definition correspondingly

fluid. Born in part of the rise in popularity of first-person writing and the expansion of the

periodical press, the relative stardom of any given actor was dependent on a number of factors

extrinsic to the data captured in the registers.117 An expert user might mentally equate the label

with the likes of Lekain, Talma, Lecouvreur, or Clairon, but the system has no frame of reference

for what distinguishes them from their fellow actors, or even that vedette might refer to an actor.

Expressing a question or problem computationally is an act of translation. As with natural

languages, the translation process involves mapping the knowledge, structure and logics of one

language to those of the other. From this follows the way forward for cases like vedette, where a

one-to-one mapping doesn’t exist. How do we translate untranslatable words or concepts? We

talk around them. Many data interfaces, in similar situations, fall back on preprogrammed hidden

definitions which may not even be expert defined in the aim of streamlining user interaction. For

CLAIRON, I instead opted to refuse to handle this type of question and pinpoint the problem

term so as to highlight the limits of computational interpretation as well as prod the user to

specify what they mean by vedette. Questions relating to who plays major roles, who brought in

the most revenue, or even who got to originate the most roles could all help paint the picture of

who the biggest stars of the time were, but these definitions need to be formulated by the user.

2.2.4 Query to Question Translation
The back end architecture of the CLAIRON NLIDB comprises four steps—parsing, matching,

query tree construction, and query generation. During parsing, questions in natural language

(French) are broken into linguistically distinct tokens and structured as a tree according to their

dependencies. The matching step uses the database structure and lexicon to map relevant tokens

117 Filippi, Florence and Sara Harvey. “Émergence du vedettariat théâtral en France (xviie-xixe siècles)” in Le Sacre
de l'acteur. Émergence du vedettariat théâtral de Molière à Sarah Bernhardt. (Paris, Armand Colin, « Collection U
», 2017): 11-26

58

to tables, columns, or row values according to linguistic evidence and context clues. During

query tree construction, an index of keywords is leveraged to help infer query logic from input

tokens and to add nodes to the tree that represent the corresponding SQL operations. Finally, the

query generation step traverses the tree to piece together the final SQL query.

2.2.4.1 Data Representation, System Configuration, and Input Parsing

Existing NLIDBs model data directly according to database structure or require a user-defined

ontology to map database elements to domain specific terms and specify the relationships

between them118. The advantage of the latter approach is that ontology can provide rich semantic

information that may have been lost in RDB schema structure. The ATHENA system notably

maps NL input to an intermediate ontology query language, and it is that intermediate

representation that is then translated into SQL, so as to “decouple the physical layout of the data

in the relational store from the semantics of the query, providing physical independence.”119

While the advantage of being able to specify complex relationships is undeniable, especially with

regard to humanities data, I wanted to avoid adding a level of abstraction. A primary goal of the

interface is to be as transparent as possible about the processes and capabilities of the

computer—something which layers of abstraction only serve to obscure.120 As a sort of

compromise, the data representation mechanism used by CLAIRON includes an optional

lightweight configuration which allows the user to establish mappings between database

elements and domain specific vocabulary and, to a limited extent, define, name, and integrate

more complex concepts that integrate calculations or field combinations. For each table, an

expert user with knowledge of the database schema can provide a list of synonyms for the table

name, and for the names of any of its attributes. Some systems do this automatically by

leveraging linguistic resources such as WordNet to fetch synonyms and well as reduced or

extended forms,121 or use pre-trained word embeddings to identify probable synonyms. However,

as mentioned earlier with regard to slot filling, this can yield some questionable results. What’s

more, these general purpose resources are likely to perform less well with regard to the hyper

121 Jammi, Manasa, Jaydeep Sen, Ashish Mittal, Sagar Verma, Vardaan Pahuja, Rema Ananthanarayanan, Pranay
Lohia, Hima Karanam, Diptikalyan Saha, and Karthik Sankaranarayanan. "Tooling framework for instantiating
natural language querying system." in Proceedings of the VLDB Endowment 11, no. 12 (2018): 2014-2017.

120 Cellard and Masure, “Le design de la transparence”
119 Saha et al., “ATHENA”, 1209
118 Kim et al, “Natural language to SQL”

59

domain specific terminology common to humanities datasets.122 For the CFRP data, the word

représenter, for example, is used to refer to performing a play. The verbs jouer, donner, or

répéter can all be used interchangeably to mean the same thing, but only the first shares a

WordNet synonym set with représenter and would therefore be identified using automatic

methods. The configuration file creates a way for the user to circumvent this kind of issue and

include precise terms, as well as variants like their nominal forms, as possible table match

tokens.

The configuration file additionally allows field names to be mapped to database functions using

specific arguments as a means of handling more complex concepts. This is notably useful for

derived fields, which historically have caused problems for non-neural systems.123 In the CFRP

data, for example, money related data is stored as livres, sols, and deniers,124 with each currency

breakdown in a different column so as to match the level of granularity present in the registers.

However, users expect revenue totals to be a single value. To account for this, the configuration

file creates a pseudo-field called recette which maps to a function which calculates the value in

livres. This notably does not preclude access to the individual currency fields. As with any other

field, these pseudo-fields can also be assigned synonyms. This is particularly useful in the case

of recettes and its user-defined synonym rentable (profitable), which is not an obvious synonym

or word form derivative, but is commonly employed in reference to financial data in the sample

question set. The primary limitation of this functionality is that it relies on predefined functions.

Database functions cannot be created in the configuration file nor can pseudo-fields be mapped

to arbitrary filters. Additionally, the current setup requires all function arguments to belong to the

same table. I feel it is also important to recognise that, while it was not the original intention, this

feature could be used to define a seemingly objective shorthand for subjective concepts or to

obfuscate data gaps. For example, though a descriptor like chef d’oeuvre (masterpiece) is a

primarily subjective categorisation, it would nonetheless be possible to create a simple boolean

function that looks at a play’s revenue and performance numbers, or even checks against a

human-defined list, with this additional processing hidden from the user.

124 Livres were the common French currency from approximately 781 to 1795, after which point they were replaced
by francs. Operating on a semi-duodecimal system, under the Ancien Régime (which covers the years in question)
there were 20 sols (sometimes called soldes) to one livre, and 12 deniers to a sol (1 livre = 240 deniers)

123 Saha et al., “ATHENA”; Kim et al., “Natural language to SQL”
122 Yaghmazadeh et al., “SQLizer”

60

The database schema is internally represented as a functionally undirected graph G(V,E). Each

element in V is a table relation Ri which contains a non-empty set of attributes (columns) A i with

a primary key RiPK∈≥1(Ai) used to identify unique n-ples. All v∈V, a∈A j
i as well as all

possible values of A j
i will be referred to in future sections as database entities. E comprises

primary-key-foreign-key relationships. These edges are directed but created in mirrored pairs,

maintaining reflexivity to facilitate join path inference. Structural information is read directly

from the metadata schema and potentially augmented using the configuration file, as outlined

above.

Natural language input is initially internally represented as a dependency parse tree. Dependency

relationships as well as pertinent linguistic information (parts of speech, morphological

characteristics, lemmatized form, etc.) are extracted using spaCy.125 To improve naive

tokenization, special parsing rules can be introduced via the configuration file such that certain

patterns that would typically be broken into several tokens are treated as a single unit. This

allows parsing to be tailored to cases specific to a unique database while keeping the system

generalizable. These rules are described using the format required by the spaCy matcher.126 A

user must essentially provide a list of dictionaries that together represents the pattern, each

element corresponding to a token as identified by the standard breakdown rules that is to be

combined with the others in the list. I further built in the option to include an extra validating

lambda function127 which is intended to take a list of the tokens matching the specified pattern

and return a boolean indicating if the pattern instance should indeed be treated as a single token.

If no validating function is given, it is assumed that all instances identified using exclusively the

matcher rules are valid. In the case of the CFRP dataset, I added two token patterns—one to

detect dates of the form YYYY-MM-DD, and another to match seasons, which are strings of the

form ‘m-n’, where n = m+1 and both m and n are of the format YYYY. The former consisted of

incorporating regex into the spacy matcher rules to weed out invalid dates. The latter addition

used simpler rules that would match anything of the form ‘YYYY-YYYY’ but included a

validation function to filter out ranges that didn’t qualify as seasons; the result is that something

127 Using Python syntax, see appendix A
126 https://spacy.io/usage/rule-based-matching
125 https://spacy.io/models/fr

61

https://spacy.io/usage/rule-based-matching
https://spacy.io/models/fr

like ‘1756-1757’ is treated as a single token, while ‘1750-1790’ is treated as three distinct tokens

- ‘1750’, ‘-’, and ‘1790’.

2.2.4.2 Matching

There are 78 different characters in the database named Lisette. There are seven different actors

with the last name Fleury, four distinct plays entitled Coriolan, and two separate major authors

who could both be referred to as Corneille. Entity mapping is a challenge.

I use ‘entity mapping’ throughout to refer to the process of linking natural language input tokens

to database elements. It falls under the larger umbrella of token matching, which also includes

identifying patterns of tokens that map to SQL structures and keywords. I am including in

‘database elements’ all tables, columns, rows, and individual row values. I opted for an iterative

approach to entity matching. An initial round of processing identifies all possible candidate

database element matches for each relevant input token, and the list is then narrowed down to a

single match using a series of metrics. As previously seen, a variety of techniques have been

employed across other systems to resolve ambiguities. PRECISE, for example, applies the

max-flow algorithm to a graphical encoding of the different semantic interpretations, and

ATHENA looks more holistically at candidate trees, producing a ranked list according to how

well they adhere to a series of relationship constraints. SQLIZER similarly ranks candidate

matches embedded in possible query structures according to a set of pre-defined linguistic and

syntactic features, and NALIR asks for humans to intervene in ambiguous cases.

The matching technique used by CLAIRON most closely resembles the second and third

approaches. Matching is done entirely without human intervention and uses a collection of

metrics relating to linguistic features, entity relationships, and match prevalence. The initial

identification of candidate matches relies on the text of the input tokens and their lemmatized

versions. Tokens that, per their part-of-speech tag, could not reasonably map to database

elements (e.g. conjunctions, participles, determiners) are ignored. The candidate search

techniques are shaped by, and limited by, the fact that the final query is eventually exposed to the

user. This means, for example, that searches for possible matches within textual fields are

performed using SQL’s SIMILAR TO operation with basic regular expressions, rather than

employing Levenshtein distance or other fuzzy match techniques that it would not be possible to

62

express in a query. I deliberately opted not to use the stemmed versions of tokens, as word forms

are important to selecting the correct match in many cases in the sample data. For instance,

tokens comédiens and comédie, where the former matches to a table and the latter to a column in

a completely different table, have different lemmas but the same stem. The validity of this

decision could be called into question with respect to different data contexts. Data types are also

used to identify matches. This is especially important with respect to dates, where different sub

divisions such as months—both numeric and textual representations—are taken into account.

Following the initial round of matching, tokens which do not appear to contribute to meaning,

being neither entities nor possible indicators of structure, are trimmed from the parse tree. Most

determiners, for example, are discarded, as the gender and number information they encode is

captured by the morphological information provided by spaCy’s parser relative to the tokens that

follow them. Auxiliary verbs are similarly dropped. Several rounds of disambiguation follow the

initial matching, with the aim of weeding out unlikely candidate matches. The likelihood metrics

rely in part on parse tree relationships as well as complexity—with tables being the least

complex matches, and individual values the most complex. The working assumption is that,

unless another indicator is given, the user is likely to be referring to the most ‘obvious’ match,

which is oftentimes the least complex, as lower complexity (table) matches refer to less detailed

and consequently more broadly known concepts than specific value matches.128

A first cluster of metrics focuses on close129 parse tree relationships. These filter the candidate

matches according to how likely they are given context. A first filter prioritises textual matches

in short form over long form text, unless there is a direct parental reference. This means, for

example, that for the token ‘Bellecour’, value matches within short form text columns like

‘pseudonyme’ in the actor table will be kept over mentions of ‘Bellecour’ in the long form text in

the register annotations column. A second filter looks for cases of a child bringing specificity to

a lower complexity parent. If a lower complexity parent has a single child and one or more of the

child matches fits ‘inside’ the parent match—i.e. it is a column of a parent table match, or a

value match inside a column match— and there is a determiner marking the desire for this degree

129 Difference of depth < 2

128 In all descriptions and examples that follow, matches are written out in the same way as they are represented in
the interface, with successive nested parts of the match separated by backward slashes. For example, a match
corresponding to the literal ‘tragédie’ in the ‘genre’ column in the ‘pièces’ table is written as ‘pièces/genre/tragédie’.

63

of specificity, candidates are filtered to preserve only those matches. This contextual metric is

good for correctly identifying matches that may not be the most ‘obvious’ were the emphasis to

be placed only on complexity or volume. For example, the historical sources on which the play

table was based assign the genre ‘pièce’ to a number of plays which do not follow the lines of

traditional comedies, tragedies, dramas, etc. This means that the question Quelles pièces ont le

genre de pièce ? is completely valid, and that the second ‘pièce’ token should map to the value

match ‘pièces/genre/pièce’, as indicated by the ‘le’ token, rather than the table match ‘pièce’,

which is the less complex match. The question Quels comédiens jouent le rôle de Voltaire dans

la pièce Corneille aux Champs-Élysées ? is similarly complex as a correct match requires that

the token ‘Voltaire’ map to a character in the metatheatrical play under consideration rather than

the famous writer’s author table entry. Because ‘Voltaire’ ends up as a child node of

‘rôle’—which matches to the rôles table—this filter ensures that the correct match is selected.

Another filter further narrows down match possibilities for high complexity matches by looking

at foreign key match prevalence with respect to the most direct table match ancestor. For

example, for the question Quelle est la pièce la moins jouée de Racine ?, there are, at this point

in the process, two match options left for the token ‘Racine’—’auteurs/nom/Racine’ and

‘rôles/nom/Racine’. The closest ancestor token with a table match is ‘pièce’, which matches to

the ‘pièces’ table. Since paths130 exist between the ‘pièces’ table and the ‘rôles’ and ‘auteurs’

tables, a check performs the relevant joins to see which potential match is associated with the

greatest number of instances (rows). Since there are more plays written by Racine the author (12)

than characters named ‘Racine’ (1), only the former match is kept.

Once the basic dependency constraints have been accounted for, all node match sets are reduced

to retain only the lowest complexity matches. This means, for example, that in the context of the

question Quelles sont les deux pièces les plus rentables de Barbier ?, ‘pièces’ will map to the

play table ‘pièces’ rather than any number of plays which have ‘pièce(s)’ in their titles, since the

table match is less complex than the value match. A final metric judges match likelihood

according to global similarity to other column or value matches in the parse tree. Matches are

considered similar if they share at least a table, if not a table and a column. For example, with the

question Qui sont les auteurs des cinq comédies les plus jouées qui ont été créées dans les

130 These are not required to be of length 1

64

années 1750-1790?, the tokens identified as dates (‘1750’ and ‘1790’) could have matched to

date columns in the séances or débuts table, but the matches in the ‘création’ column of the play

table were chosen because of the presence of a ‘pièces/création’ column match elsewhere in the

tree.

After all of the tree structuring described in the following sections, a final round of

disambiguation picks a single match to be used in query generation for any remaining nodes with

multiple options. The metrics used at this stage are more broad—not well suited to initial

decisions but necessary and sufficient for cases where few other clues are given. The first metric

looks again at relationships to surrounding matches, but this time via any existing key

relationships. It keeps the matches that are the most connected, which is to say whose tables have

the highest degree in the schema graph. The second test looks at the distance from the tables in

the candidate matches to other match tables in the parse tree, keeping only those with the shortest

average distances. This metric performs poorly in cases where a number of junction tables are

involved, as distance is perhaps not the most just measure of relevance. Since the first two

metrics have no effect on match sets where all elements are in the same table, the final metric,

which operates only on high complexity matches, simply defaults to frequency, keeping the

matches with the most row instances. If the node match remains ambiguous after all checks, the

default is to choose the first option in the set.

Incorrect matches are undoubtedly the biggest source of error in the interface. Unlike some

systems which test out all possible matches and corresponding queries, I opted to select a single

match prior to query generation for the purpose of being able to produce a clear and linear

visualisation of the process for the user, and highlight the limits of computers with respect to

knowledge inference. Though discarded matches are recorded, there is currently no mechanism

for re-attempting the query generation process with a different match set. Integrating this sort of

substitution and correction mechanism, to be undertaken automatically or potentially using

correct matches selected by the user, would be an obvious next step for the interface.

65

2.2.4.3 Tree Transformation

Following entity matching, the parse tree is mapped to an analogous query tree. At the difference

of the parse tree, nodes in the query tree loosely correspond to various SQL query components.

NaLIR employs a similar tactic, dividing nodes into seven categories—Select nodes, Operator

nodes, Function nodes, Name (attribute) nodes, Value nodes, Quantifier nodes, and Logic nodes.

My breakdown differs slightly, grouping nodes into 8 types:

1) Entity nodes - These are used to represent tokens that were mapped to database elements

(tables, columns, or values) during the matching step.

2) Literal nodes - These are used to represent numeric literals that did not map to specific

entities.

3) Operator nodes - These nodes are used to represent both binary operators, such as

inequalities, and unary operators like negation.

4) Function nodes - These are used to represent SQL functions, notably aggregations like

SUM, COUNT, and AVG.

5) Order nodes - These nodes are used to mark a sort on one or more attributes.

6) Limit nodes - These nodes are added in cases where a token implies that only a limited

number of results should be returned.

7) Group nodes - These nodes go hand in hand with aggregations, and designate the groups

over which they operate by specifying the attributes used to define the sets.

8) Query nodes - This node type is different from the others in that it is the superclass

catch-all used as default type for any token that does not map to any of the other types.

Upon initial construction, every node in the query tree is either an Entity node, if it has one or

more potential matches, or a Query node. Following this first attempt at parse-to-query tree

mapping, basic optimizations are run to refine the tree.

Unlike parse tree nodes, which are each linked to a single token, Query tree nodes can be tied to

one or more input tokens, as entities or keywords may be inferred from collections of tokens

(words). The first optimization looks to collapse entity nodes that are part of a multi-word

expression into a single entity. This collapsing helps to overcome the challenge of matching to

66

multi-word expressions that are broken up, notably identified as a significant hurdle by Li &

Jagadish,131 whose eventual handling required all multi-word expressions to be delimited by

quotation marks– a solution unsuited to my use case. Concretely, this means, for example, that

for the question Quelle est la saison la plus rentable de Pierre Corneille ?, the tokens ‘Pierre’

and ‘Corneille’ will be collapsed into a single node because they share a match to ‘auteurs/nom’

and there is at least one shared row132 between those matches. If more than one match is shared

in such a node pair, the collapse preserves all overlapping matches. This functionality further

extends to cases where a set of parent and child matches map to different columns in the same

table, provided the cardinality of their row set intersection is exactly one. For example, in the

context of the question Quels rôles est-ce que Monsieur Bellecour joue le plus ?, one of the

matches for ‘Monsieur’ is the value match ‘comédiens/titre/Monsieur’ and one of the candidate

matches for ‘Bellecour’ is the value match ‘comédiens/pseudonyme/Bellecour’.The former’s

row set includes all actors who used the title ‘Monsieur’, while the latter’s length two row set is

comprised of the entries for Monsieur and Mademoiselle Bellecour. Their intersection comprises

only one row—the actor table entry for Monsieur Jean-Claude Gilles Colson, dit Bellecour. In

this case, as in all cases of node collapsing where there is a single item in the row overlap, the

entity is re-mapped to the row’s primary key. This means, for instance, that the ‘Monsieur’ token

node matching ‘comédiens/titre/Monsieur’ and the ‘Bellecour’ token node matching

‘comédiens/pseudonyme/Bellecour’ in the above example are collapsed into a single node with a

single match, ‘comédiens/id/36’.133

The final query tree construction refinement is a group of parse course correction measures.

French is by no means a significantly under-resourced language in the world of NLP, but spaCy’s

French models are nonetheless smaller and slightly less accurate in terms of dependency

labelling134. In light of this, a few structural corrections are applied in cases where parsing is

systematically incorrect. This, for example, includes recentering the tree or its subtrees to root

134 https://spacy.io/models/fr#fr_core_news_lg-accuracy
133 The ‘id’ column is the primary key of the ‘comédiens’ table.

132 Part of the information stored in the internal representation of each possible match is a list of the row instances to
which it corresponds. For example, the value match ‘comédiens/pseudonyme/Molé’ has a row set of length two,
because the literal matches two different rows in the ‘pseudonyme’—the entries for actor François-René Molé and
his wife, Pierrette-Claudine-Hélène Molé.

131 Li & Jagadish, "Constructing an interactive natural language interface for relational databases"

67

https://spacy.io/models/fr#fr_core_news_lg-accuracy

them at the appropriate nodes as indicated by the presence of demonstrative or relative pronouns

like dont or celui.

Following preliminary optimizations and repairs, a series of query tree transformation steps add

implicit nodes and alter structure based on keywords and relationships. It is worth noting that

these structural transformations and the possible scope of the resulting queries are limited, as is

the case for all grammar based systems, by the fact that they depend on a predefined list of SQL

operation keywords and configurations. Though not beholden in the same way to an external

keyword mapping, ML systems are similarly limited in scope by the structural variation of their

training sets.135

Since one of my principal aims is to allow the end user to follow and understand the underlying

logic, I opted to break the steps into logically distinct groups of operations associated with a

limited set of linguistically similar keywords. I also see this clear cut set of steps as helping to

illustrate to the user the determinism of computing. To that end, it was important to me that the

same set of steps be shown for every query and therefore, to avoid the cognitive overload and

potential confusion of frequently showing large number of detailed steps which did not alter the

tree, some sets of parse corrections or less frequent (but still recurring) structural operations were

grouped together under a more general heading. The high level tree transformation steps

eventually made visible to the user are negation, aggregations, basic mathematical operations,

ordering, logic operations (AND/OR), and structural corrections.

2.2.4.3.1 Negation

Negation is an essential search function, and French negation is theoretically easily recognizable,

given the standard required grammatical formula ne (verb) pas. Further, the parser can tag, with

reasonable accuracy, words that have negative polarity, which helps to identify alternative

negative adverbs, such as jamais. What complicates the handling of negation in the context of an

NLIDB is the linguistic register in which the user chooses to address the interface. In both oral

and informal French, it is very common to drop the negative particle ne without this omission

135 Kim. et al., “Natural language to SQL”

68

changing the meaning of the sentence. Conversely, certain more formal structures can include ne

without it marking negation.

The question Quelles sont les comédies que Monsieur Préville n'a jamais jouées ? is an example

of the standard case; both parts of the negation are present. The regular handling involves simply

replacing the pair of negation markers with a ‘not’ operator node appended to their shared parent.

The fact that both tokens play a part in negation is later made visible to the end user. Though

Quelles soirées rapportent pas plus de 1000 livres? forgoes the ne, the negative adverb pas alone

qualifies as an instance of negation. Here too an operator node is appended to the parent in place

of the negation token query node. In later stages of processing, the added operator nodes are used

to define or alter expressions or relationships. in the first example, for instance, where the

negation node is a child of an entity node matching Monsieur Préville’s numeric id, the presence

of the negation node means that the where filter acting on the match’s column checks for non

equality with the associated literal instead of defaulting to equality. In the latter example, the

negation node causes the inequality that maps to plus de to flip from from greater-than to

less-than. Quelles pièces ne sont jouées que deux fois? is an example of a floating ne that does

not not play into any form of negation; the question is functionally the same as Quelles pièces

sont jouées deux fois?. In this case, no action is taken and the tree node for the ne token is simply

removed.

2.2.4.3.2 Aggregations

At this stage, aggregations in the guise of function nodes are added to the tree in response to

specific structures of keywords. Of the basic functions, COUNT, SUM, and AVG are all handled

similarly. MAX and MIN are discussed in section 2.2.4.3.4. COUNT and SUM can both be

invoked explicitly or inferred. Additionally, in certain cases where keywords might seem to call

for COUNT to be used, SUM is more correctly employed for typing reasons. With the exception

of the case where they are operating on all columns, the postfix-style structure sees aggregator

nodes inserted as the parent of the nodes on which they are acting.

In the question Combien de fois est-ce qu'on joue Molière pendant la saison 1765-1766 ?, for

example, combien and fois explicitly point to a need for COUNT. With a question such as Quelle

est la saison où l’acteur Duval joue le plus de rôles de tragédies ?, however, the aggregation is

69

inferred. The token pair le plus implies that the results must be sorted according to rôles and

since rôles is not a column nor is it the primary subject of the query, an aggregation is needed to

make sort possible. COUNT is used by default, but in the case of numeric columns, the operation

is changed to SUM. This mechanism, in the context of the question Quel est le mois qui rapporte

le moins en 1734?, for example, means that results are correctly ordered by the total of each

month’s revenue rather than the number of performances that occurred in that month, which

would have functionally been the result of applying COUNT to the numeric column (function)

match of rapporte.

Unlike COUNT and SUM, AVG is never invoked implicitly. It is triggered by the keyword

moyenne, which can appear before or after the tokens it is acting on. In the question Quelles sont

les comédies en 3 actes ou en 5 actes qui sont jouées moins de 15 fois et ont une recette moyenne

de plus de 900 livres ?, for example, the average is over the performance recettes, which

precedes moyenne, whereas in the question Quelle est la moyenne du nombre de spectateurs au

parterre pendant la saison 1774-1775 ?, the keyword comes first. In both cases, the resulting

function node becomes the parent of the node or subtree on which it is acting.

2.2.4.3.3 Mathematical Operations

The two mathematical operations that naturally emerged from the NL structures of the sample

questions are subtraction and division. These operations are functionally treated much the same

as aggregations; their addition is triggered by specific keywords or sets of keywords, and they

are inserted into the tree as the parent of the nodes they are acting on. A subset of possible

inequalities are also handled at this stage.

Division is needed when an input question requires a ratio of some kind. The question Dans

quelles saisons est-ce que le nombre de spectateurs du parterre est particulièrement bas par

rapport à la moyenne du nombre de spectateurs du parterre sur l’intégralité de la période

1680-1793 ?, for example, essentially asks to compare the average number of tickets sold in a

specific section for each season to the average number sold in that section over the entire period.

Though in this specific context the comparison may be expressed differently by a human

interlocutor, I chose to map par rapport to the division operation as a generalizable interpretation

of structures. This question is also an example of the system interpreting and returning a result

70

reflective of the elements it was able to understand, while dropping others. The system couldn’t

process particulièrement bas and judged that these tokens were sufficiently isolated in the query

tree that it was likely safe to discount their influence on the final query. Though the system will

throw errors in cases where a lack of interpretable keywords leaves it unable to construct a query,

in cases such as this, it is left up to the user to build an understanding of the elements of their

question that are reflected in the results via the nl-token-to-query-token mapping that is exposed

by the interface. Requests which imply ratios are the other case where division is used. With

respect to the question Quelle est la part des drames par rapport aux autres genres dans la

programmation entre 1730 et 1770 ?, for example, the keyword part maps to division such that

the request returns the percentage of the repertoire occupied by plays classified as dramas that

premiered between the specified dates. Though evidently never specified by the user, a type cast

is automatically added to all denominators in order to avoid issues of integer division. As the

values of query components are not at any point calculated separately, seemingly valid queries

where the realities of data yield in a potentially revelatory 0-denominator are only caught—and

the corresponding SQL error displayed in the interface—at execution time.

Subtraction nodes are integrated to the tree in the same way as division operators, their addition

triggered by keywords écart and différence. This was the way I opted to render users asking for

the difference between two values, allowing the result to then be used in further operations. In

the context of the question, Quels comédiens ont le plus grand écart entre leur entrée et leur

sociétariat ?, for example, the calculated value to be used for sorting.

Data ranges specified as two comparable tokens preceded by entre and separated by et as seen in

the question Quelles sont les pièces avec divertissement créées entre 1720 et 1750? are rendered

as a subtree with a logic node at the root having two children—in this case, the nodes

corresponding to 1720 and 1750—each with their own operator node child specifying the

inequalities defining the node’s relationship to its parent. Soft inequalities are used for ranges.136

Strict inequalities are used in the case of single sided date comparisons triggered by keywords

avant or après used alongside an entity node with a value match on a column with datatype

136 This decision was semi arbitrary. The choice to include endpoints was informed by previous work with the CFRP
team where data requests using this kind of language were intended to be endpoint inclusive.

71

‘date’. For example, the result list generated for the question Quelles sont les tragédies créées

après 1775? Does not include any plays which premiered in 1775.

2.2.4.3.4 Ordering

Explicit cases of result ordering are inferred from token sets le plus or le moins. This process is

complicated by the fact that, depending on surrounding structures, these keyword sets can also

map to MAX/MIN functions or strict inequalities.

With respect to ordering, there are three different parse patterns that require identical rendering.

Qui sont les cinq auteurs féminins les plus joués entre 1730 et 1780 ?, for example, is

functionally equivalent to Quels cinq auteurs féminins est-ce qu'on représente le plus entre 1730

et 1780 ?, despite the keywords which invoke ordering appearing respectively before and after

the token they are acting on (joués/représente). An additional formulation adds an extra partitive

article de, as in the question Quelle est la saison où l’acteur Duval joue le plus de rôles de

tragédies ?, which again produces a different parse. In all three examples, an order node is

inserted as a child of the node it is acting on to indicate that node’s relationship to its parent. All

three of the above cases further require the addition of an inferred function node in order to make

the ordering valid. Without an added aggregation, it is not possible, for instance, to order

according to the table match représentations which corresponds to the token joués. It is,

however, possible to sort on a count of the number of représentations. In the case of numeric

columns, SUM is used, as is the case with the question Quels cinq auteurs féminins rapportent le

plus entre 1730 et 1780?, where results are ordered according to aggregate revenue.

Whether the order is ascending or descending is understood from the use of plus or moins. In

some cases, the addition of a size-related adjective requires the direction to be flipped. For

example, in the question Quelle saison connaît la recette totale la plus basse ? the addition of

basse means that the descending order assumed from plus is switched to ascending. That said,

the system recognises that not all opposing keyword/adjective pairs require flipping. The

adjective importante in the context of the question Quelle saison connaît la recette totale la

moins importante ?, for example, only emphasises rather than alters the direction of the sort.

72

When a size adjective is present relative to a deeply nested entity node, a function node is added

rather than an order node. For example, in the context of the question Quelle est la saison qui

connaisse le plus grand écart entre la recette la plus haute et la recette la plus basse? the token

sets la plus haute and la plus basse are rendered respectively as the maximum and minimum

receipt values.

Finally, when coupled with a subordinating conjunction, keywords that usually denote ordering

instead indicate a comparison, which is added to the tree as a strict inequality. Here, too, size

adjectives are taken into account when determining direction such that in the case of the query

Lors de quelles saisons est-ce que la recette de Molière est moins que la recette de Voltaire ?,

replacing moins with plus basse correctly generates an identical result. Comparisons between

entity or function nodes and literals are also considered valid. In the context of the question Lors

de quelles soirées est-ce qu'on a joué Athalie mais rapporté moins de 1000 livres?, for instance,

the literal is compared to the numeric column match of rapporté, and in the case of Quels

sociétaires jouent moins de quinze fois pendant la saison 1774-1775 ? the comparison is between

the literal quinze and a count of performances. As with structures signaling order, implied

aggregations are added as needed to form valid queries.

2.2.4.3.5 Logic Operations

At this stage, tokens explicitly denoting logical relationships such as et, ou, mais, and ni are

either rendered as their boolean operator equivalents or eliminated from the tree if they are found

to be superfluous. In the context of the question Quelles sont les pièces les plus jouées pour les

ouvertures ou clôtures de saison ?, for example, the token ou is rendered as a logical OR, joining

the nodes specifying the conditions of it being the opening of a season and the closing of a

season respectively. The system notably does not correct errors in the user’s logic. For example,

the input Quelles sont les comédies en 5 actes et en 3 actes qui sont jouées moins de 15 fois ?

returns zero rows, as it is impossible for a play to have both three and five acts. A lack of stored

information around relationship cardinality means that detecting instances of this type of error is

non-trivial in the current version of the tool, but a future version might look to explain them to

users unfamiliar with boolean operations. The equivalent question which swaps et for ou

correctly returns the list of three or five act plays performed fewer than 15 times.

73

When ni is the child of two related comparable nodes—as is the case for the input Quels sont les

rôles féminins dans les pièces de Voltaire joués par ni Clairon ni Dumesnil ?— a negation node

is added as a child of each operand and the nodes are joined with an AND. I opted to maintain

this formulation of conditions as opposed to swapping to the slightly more compact¬𝑎 ∧ ¬𝑏

equivalent structure , as the former bears more resemblance to the input query and¬(𝑎 ∨ 𝑏)

therefore seems likely to make the mapping easier for a user to follow.

Keywords mapping to AND nodes are discarded when they describe the relationship of a direct

child to the root, as logical conjunction in the case of filters, and co-selection in other cases, is

the assumed relationship of children to the root if not otherwise specified (by an order node, for

example). In the question Quels sont les titres et les genres des pièces de Diderot ?, for instance,

the coordinating conjunction et is discarded, as it is not needed to specify the relationship of

genre to the root. OR nodes are discarded when they represent a tautology. If two identical nodes

with no subtrees are joined by a node implying an OR, the query nodes mapped to the logic

keyword and to the duplicate operand node are both dropped. One place where this occurs in

French is when a user is attempting to write somewhat inclusively rather than defaulting to male

for a mixed group of individuals. In the context of the question Quel acteur ou actrice joue le

plus les pièces de Beaumarchais ?, for example, both acteur and actrice match to the comédiens

table, so a subtree composed of both entity nodes joined by an OR operator is functionally

equivalent to a single entity node. It should be noted that the system is not currently equipped to

handle the more compact style of inclusive writing that utilises interpuncts (e.g. comédien·ne·s).

2.2.4.3.6 Structural Corrections

This final step includes a number of minor keyword-based operations, as well as a collection of

tree restructuring measures that add, remove, or relocate nodes to ensure structural validity. In

the current version of the interface they are presented to the user as a single—though clearly

composite—step. A future instantiation could opt to separate out discrete finer-grained steps,

where possible, if the more a nuanced breakdown would be clearer for the user, despite the added

complexity of each individual transformation not being as broadly applicable or linguistically

obvious as those in previous steps.

74

Miscellaneous Keywords: autre and différent

Autre and différent both map to unique operations—not equal, in the sense of exclusion from a

group, and distinct respectively—that needed to be applied after the core tree structure was

established because they are fundamentally referential.

Consider as an illustration of the former the question Combien joue-t-on Molière par rapport aux

autres auteurs dans la programmation ?, which asks to compare the number of performances of

Molière’s plays with those of all plays not penned by the infamous playwright. In this case, autre

ends up as a child of table match auteur; in order to create the comparison, a comparable

value-match entity node must be located. If we understand a match as comprising up to three

components—a table, a column, and a value, —a higher complexity entity𝑚 = { 𝑚
𝑡
, 𝑚

𝑐
, 𝑚

𝑣
}

node is considered comparable to a lower complexity one if there exists a match pair𝑒
0

𝑒
1

such that . Once such a node is located, the exclusion is expressed by𝑚
0𝑖

, 𝑚
1𝑗

 𝑚
1𝑗

⊆ 𝑚
0𝑖

substituting the nodes corresponding to the keyword autre and its parent with a clone of the

higher complexity node modified by a negation node child.

The specification that only distinct values should be selected is either understood through the use

of forms of the keywords différent or distinct, or implied through structure. The question Quel est

le rôle qui a été joué par le plus de comédiens ou comédiennes différents ? illustrates the first

case where, without the addition of distinct on the entity node matching the actor table that is

used in the aggregation by which the results are ordered, the returned row would simply

correspond to the role performed the most, rather than to the role performed by the largest

number of different actors. Cases where distinct needs to be applied to the root node are inferred

by checking to see if the total number of non null instances of the root value returned by an open

query on the join path is greater than the number instances in the table corresponding to the root.

For instance, with the input Quelles comédiennes ont incarné Oenone?, the root matches to the

comédiens table, but that table must be joined with the interprétations table in order to connect

actors to their performance of roles. Because an actor can perform many roles many times, there

are more non null instances of actors in the joined table than there are rows in the actor table.

This condition implies the need to enforce a distinct selection on the root.

75

Adding Grouping

The addition of group nodes can be triggered by the presence of aggregations in the tree and

through the use of certain keywords, as well as inferred from specific structures. The question

Quelles sont les 10 saisons les moins rentables ? illustrates the basic case. The ordering on

column match root node (séances/saison) by an entity node that does not match the root

(registres_recettes/recette) implies the need to add a grouping on the root node, which in turn

requires adding aggregation on the node being used for ordering. The input Comment se

répartissent les genres saison par saison ? invokes two different keywords that trigger the

addition of group nodes. Répartition implies results that give a breakdown, requiring the addition

of three things—first, a group node; second, an entity node inserted as a child of the root such

that, if it is not already the case, the subject of the breakdown is included in selection; and

finally, a row count to account for the fact that the tree lacks an existing aggregation to use in the

breakdown. The keyword par, in addition to chaque, when directly followed in the input

sentence by a token mapping to an entity node and lacking a leading determiner, also implies a

grouping. The query resulting from the above input question is therefore grouped by both

séances/saison and pièces/genre.

Adding Limits

Limit nodes are added to the tree in two distinct scenarios. The first is as a means of processing

‘floating’ literal nodes, which is to say literals that are not involved in any sort of operation. In

the case of the question Quelles trois pièces est-ce qu'on joue le plus entre 1730 et 1740?, for

instance, the token trois is unrelated to any comparisons or aggregations, and is not the child of a

numeric column-matched entity node to which it could be compared. It is therefore assumed to

be a limit. Limit nodes can also be added as a function of root token morphology. If the token

happens to be singular, a limit of one is added. This means, for example, that the input Quelle

comédienne joue le rôle d’Agrippine le plus souvent ? returns a single row, whereas the input

Quelles comédiennes jouent le rôle d’Agrippine le plus souvent ? is not subjected to any limit,

since comédiennes is plural.

The Feminine Filter

In addition to potentially adding a limit, I have built in a mechanism whereby root token

morphology can also introduce a filter. If the root token is feminine and the root node is matched

76

to a table with a column named féminin, a filter is added to reflect this additional level of

precision. This means that the input Quelles comédiennes jouent le plus ? returns only women

actors, while Quelles comédiens jouent le plus ? follows the rule of the inclusive masculine and

returns results relating to all actors, men and women alike.

This additional bit of processing is the operation that could be considered the closest to

overfitting. However, its more global potential has not yet been explored, as NLIDB systems and

literature have so far been limited to English, which is not a gendered language. The overall

utility of this feature, including its flaws and the ways in which it might be specified with greater

flexibility via the configuration file, would be relevant explorations for future expansions of the

system.

2.2.4.3.7 Tree Structure Validity Verification and Adjustments

Before moving on to the query generation stage, the tree is subjected to a series of different

checks to address evident structural issues. One frequently occurring correction is splitting a

value-match root node into its component parts. The root node is, in the majority of cases, what

is selected in the SQL query corresponding to the tree. In SQL, a search for a given row-match

manifests as a lower complexity select with a WHERE filter. Therefore, to create a tree that

matches the required format, a value-match root node is split into a table-match root and a

row-match child that is rendered as an equality filter during query generation. Other small

verifications include ensuring that all order nodes are linked to a parent of an appropriate

type—not a value-match node, for example—and that non boolean column-match entity nodes

are involved in some sort of operation or either removed or signaled as an error, depending on

their position in the tree.

To prepare the tree for query generation, nodes whose meaning is unknown or doesn’t contribute

to query formulation are removed from the tree. This most commonly applies to nodes which I

have come to think of as ‘floating tables’—table-match entity nodes whose inclusion in the list

of tables through which the join path must pass is often essential to properly representing the

question, but that are not invoked elsewhere in the query. Individual or self-contained subtrees of

nodes whose tokens are considered non-trivial by virtue of their part of speech tag but do not

77

belong to any of the keyword sets (interrogatives, function words, etc.) and do not map to any

entities are also removed. In both cases, the removed nodes are retained to potentially be used in

later stages to either help generate join paths or inform the user that the system has failed to

understand a central part of their question. Consider the basic example Combien de fois est-ce

qu'on joue Beaumarchais sur l'ensemble de la période ?. Here, the token joue maps to the table

représentations, but neither that specific token nor the table in general is part of the selection or

any of the filters. This means that its node must be removed from the tree so as not to be

rendered as part of the query's SELECT clauses or conditions. However, it is essential that it still

be included in the join path, because the default shortest path linking auteurs and pièces—the

table components of the entity matches in the rest of the tree—does not include représentations.

In light of this, without requiring the removed ‘floating’ table to still be considered when

generating the join path, the input would incorrectly simply return the total number of plays

written by Beaumarchais, as opposed to the total number of performances of his works.

None of the tokens in the phrase sur l'ensemble de la période map to database entities or have

any impact on the results.The dependency parse reflects the way in which they are largely

disconnected from the other components of the query, allowing the phrase subtree to be removed.

However, swapping Beaumarchais for Shakespeare, for example, causes an error to be thrown,

as the node the system cannot understand (Shakespeare) is integral to the tree structure. A naive

user might think that instead of an error being thrown, this query should simply return no results,

as there are no plays credited to Shakespeare in the database; therein lies the value of throwing it.

The system has no way of knowing Shakespeare is an author. Even the tree structure could not be

used to infer this with certainty, as joue can refer to the performance of a play or to the

performance of an actor in a role, meaning that an actor match would be an equally valid

interpretation. Explicitly raising this kind of error asks that the user reckon with prerequisite

knowledge they may unconsciously be assuming of the computer. This is particularly germain

with respect to terms with vague or variable definitions. In the case of the input Lors de quelles

séances a-t-on joué une tragédie du répertoire primitif ?, for instance, the token répertoire (if

only because it comes before primitif, which would do the same) causes an error to be thrown.

This is not an indication of the impossibility, within the confines of the interface, to achieve the

desired result; a user must simply think through what they mean by répertoire primitif; the input

78

Lors de quelles séances a-t-on joué des tragédies crées avant 1680 ?, would notably return the

correct result, as the répertoire primitif is composed of plays that pre-date the foundation of the

Comédie-Française.

2.2.4.4 Query Generation

This final stage of question to query translation is primarily based on a postorder traversal, as

entailed by the structural similarity of the query tree to a postfix expression tree. However,

following tree transformation, three additional steps occur before starting on query generation.

The first is a final definitive disambiguation. The traversal assumes that there is only a single

match associated with each entity node. Though all potential matches are preserved and exposed

to the user in the UI (see section 2.2.5.2), at this stage—as described in section 2.2.4.2—the list

is narrowed down to one using basic match similarity and frequency metrics. The second is

join-path inference. Once the matches are finalised, it is possible to extract a fixed set of tables

that are required by the query. Since there tables represent a subset of the vertices in the database

graph, join path inference can be modeled as a minimum Steiner tree problem,137 which consists

of finding the shortest path between a set of nodes for a graph where . It is𝑆 𝐺 = (𝑉, 𝐸) 𝑆 ⊆ 𝑉

worth noting that the CLAIRON NL to SQL translation process currently only deals in inner

joins. The detection of phrases which imply the need for other join types could be an interesting

area for future explorations. The third and final preparatory step is foreign key substitution.

Though not necessary to produce functional queries, I opted to include this step in order to

optimise queries by reducing the number of joins. For each row-match entity node in the tree, if

it is referencing a single row and its table is linked by a foreign key to another table already in

the path, the match is swapped out for a foreign-key match. Provided it is not being used by any

other entity node matches, the table from the original match, now superfluous, is removed from

the join path. In addition to producing shorter and, by extension, potentially more readable

queries, this serves to highlight important aspects of computational information modeling logics.

The intention is to encourage the user to move away from the common monolithic spreadsheet

notional machine of a database toward a more accurate networked mental model that affords the

construction of more complex queries.

137 Saha et al., “ATHENA”; Baik et al. “Bridging the semantic gap with SQL query logs in natural language
interfaces to databases”

79

On an abstract level, the final query is composed of a series of nested strings each corresponding

to a node, which bubble up the tree until reaching the children of the root. The strings matching

the root and each of its subtrees are then combined with a SELECT statement and the

pre-calculated join path, in an order reliant on the nature of each child and its relationship to the

root. Consider the example input question Quelles sont les trois pièces de Voltaire les plus jouées

entre 1760 et 1775 ?. Figure 2.2.4.4-1 shows the query tree after the completion of all

preprocessing, including foreign key substitution.138

Figure 2.2.4.4-1: Final parse tree for input Quelles sont les trois pièces de Voltaire les plus jouées entre 1760 et

1775 ?.

The nodes in the tree are visited in postorder sequence (B, M, K, G, N, L, H, C, I, J, D, E, F, A)

and the string corresponding to each subtree is recursively integrated with text of its parent.

The string for the leftmost subtree (green) is simply the string for entity node B. The string

representation for value-match entity nodes like B is composed of three parts—the database

entity specification, the relationship operator, and the literal. Following this pattern, B is

rendered as attributions.id_auteur = 5. For textual columns, ILIKE is used. If the node

additionally has a negation node child, the comparison operator is modified accordingly. Table

and column-match entity node strings comprise only the entity specification, with the wildcard

used in place of a column for the former. Though the precise table.column specification of

138 The letters have been added for clarity and have no significance to the tree.

80

database elements is not required by SQL in cases where there is no ambiguity, I have chosen to

consistently include it for clarity. The string generation process for the two rightmost subtrees

(orange and purple) is a similarly simple combination of SQL keywords and literals or entity

node text.The subtree rooted at C (blue) is the best illustration of the recursively defined nature

of the subtree strings. The string for node K is simply the literal 1760 with operator node M

understood to be K’s relationship to its parent. The node G is a special case of an entity node,

where an extra SQL operation is added to account for the fact that G is matched to only a portion

of a date; it is rendered as extract(year from séances.date). This means that the string

corresponding to the entire subtree GKM is extract(year from séances.date) >= 1760. This

structure is mirrored by the HLN subtree and it follows that the string for the entire blue subtree

is (extract(year from séances.date)>= 1760 and extract(year from séances.date)<= 1775). In the

case of the subtree rooted at D (red), it is order node J that specifies its relationship to its parent.

Aiming again for clarity, I have opted to explicitly include the direction keyword in both

ascending and descending sorts, despite it only being required in the latter case.

The ways in which subtree query segments are combined depends on the nature of the parent,

and whether or not any of the type of relationship is specified somewhere in the subtree. At every

level, logical conjunction is the assumed relationship to the parent where no other one is given.

This is the case for the green and blue subtrees. The exception to this rule is function nodes

which act as filters, as opposed to being selected; these must be introduced by the keyword

HAVING. All other subtrees in the example question either have relationship markers or do not

require them. The final query produced for the above tree following the addition of the join path

that must necessarily pass through attributions, séances, représentations, and pièces is pictured in

figure 2.2.4.4-2.

81

Figure 2.2.4.4-2. Corresponding SQL query for NL input Quelles sont les trois pièces de Voltaire les plus jouées

entre 1760 et 1775 ?.

The order in which the fragments are encountered in the input and correspondingly, the parse

tree, may not always be reflective of the order in which they appear in the resulting query. No

matter the original indices of their associated tokens, certain node types — notably groupings,

limits, and HAVING clauses — must appear at particular positions in the query. As is the case

with natural language translation, there are many ways in which a query representative of any

given input can be rendered. The queries generated by the system are not divorced from human

intervention but are rather a product of my choices, and I would be remiss not to mention a few

of the most significant.

2.2.4.4.1 Non Selection of Calculated Fields Used for Ordering

In cases such as the above where the query is ordered by a calculated field, I have not enforced

the selection of this field, though it may oftentimes be of interest to the user. The system

currently does not support aliasing, which is common to query realisations where a calculated

field is both selected and used to sort the results. That said, in light of the fact that they

NL-to-SQL mappings are exposed to the user (see section 2.2.5.2), the idea is that, were they to

want to select the calculated field, they would be able to deduce how the query might be altered

to do so and test their modified query using the SQL input side of the interface.

82

2.2.4.4.2 Query Flattening

For the sake of brevity and efficiency, I chose to use CASE statements instead of subqueries

wherever possible. This is most commonly seen in cases where mathematical operations or

aggregations are acting on multi-node subtrees, or a single value-match or boolean

column-match entity node. Consider, for instance, the input Lors de quelles saisons est-ce que

Monsieur Bellemont a joué moins de 100 fois? whose corresponding tree is pictured in figure

2.2.4.4.2-1.

Figure 2.2.4.4.2-1. Query tree for the input Lors de quelles saisons est-ce que Monsieur Bellemont a joué moins de

100 fois?.

Here, instead of using a subquery with a WHERE filter to account for the value-match on which

the aggregation is acting, CASE is instead used to perform what amounts to an in-place

column-wise transformation to produce the following query:

select séances.saison from séances join représentations on (séances.id
= représentations.id_séance) join interprétations on
(représentations.id = interprétations.id_représentation) group by
séances.saison having sum(case when interprétations.id_comédien = 37
then 1 else 0 end)< 100.0

83

It should be noted that parse tree corrective measures sometimes fail to identify instances where

the structure implies a case statement that is not wholly necessary. In these cases, it does not

produce a completely incorrect result, but input translations could have been rendered using a

simple filter. Take for instance the question Quelles sont les pièces les plus jouées de Boursault

entre 1774 et 1778 ? which produces the tree pictured in figure 2.2.4.4.2-2.

Figure 2.2.4.4.2-2: Query tree for input Quelles sont les pièces les plus jouées de Boursault entre 1774 et 1778 ?.

The author filter (attributions / id_auteur / 89) could easily be moved up so that it is a child of the

root node. As it stands, the resulting query (below) does return Boursault’s plays in descending

order of the number of times they were performed during the given window, but, since the filter

was treated as part of the ordering, after those rows is also listed every play performed between

1774 and 1778 in no particular order, because all of their order values are functionally 0. Though

this formulation still mostly yields the correct result, it is more easily misinterpreted by a user

who has limited knowledge of query languages.

select pièces.* from attributions join pièces on
(attributions.id_pièce = pièces.id) join représentations on (pièces.id
= représentations.id_pièce) join séances on (représentations.id_séance
= séances.id) where (extract(year from séances.date)>= 1774 and

84

extract(year from séances.date)<= 1778) group by pièces.id order by
sum(case when attributions.id_auteur = 89 then 1 else NULL end) desc
nulls last

2.2.4.4.3 Mathematical Operation Assumptions

Though not explicitly signaled by the user in any way — I am unsure of how it would manifest

— I chose to force floating point division by adding a default cast to the denominator. I

additionally wrapped every subtraction in an absolute value. The utility and validity of this is

perhaps more debatable than the change to division, but I see it as logical in relation to the

keywords that map to subtraction. In the context of the sample questions in which they occured,

tokens such as écart or différence would seem to imply a scalar quantity. Should the keywords or

their interpretation by a significant fraction of users change, this addition may need to be

reconsidered.

2.2.4.5 Basic Error Handling

The currently implemented error handling is fairly rudimentary. In a handful of cases, such as the

lack of mappings evoked in the previous section, errors arising over the course of the natural

language to SQL query translation will halt the process before arriving at query generation. This

most often occurs when the system encounters outside of vocabulary jargon that it cannot

interpret, but which is central to the question. The other major category of this type of error is

those relating to structural issues, such as being unable to locate a comparable node for binary

operations, or trying to apply SUM or AVERAGE to a table-matched entity node. Nothing in the

handling of these errors, which simply consists of returning basic pre-defined error messages,

draws a delineation between those introduced by the parser and by the user. Since the user only

has control over the latter, working to distinguish user-born errors from parser-born ones would

be a valuable future addition with respect to improving user experience. Since errors that come

up during the tree transformation halt the process, they do not return any results. To avoid

confusion, a different warning is posted for valid queries that do not return any rows. For

example, the query generated by the input Quels comédiens ont joué 1765-02-13 ? is completely

correct, but there is no data to select as the earliest casting register starts in September of 1765.

85

Some errors are not obvious until query generation, where the tree traversal will fail to produce

valid SQL. In these cases, rather than returning an error stating that the query is invalid, the

parser’s incorrect query is returned and displayed alongside the SQL error message (see section

2.2.5.1). This both gives the user the chance to see what precisely went wrong, as well as to

potentially repair the query. It is worth noting that the SQL error messages can sometimes be

difficult to parse for novice learners. A valuable future direction for future work might include

the implementation of enhanced error messages, which simplify and explain common error

patterns and have been shown to help students better understand compiler or interpreter

feedback.139 Raw errors are likewise returned when a user submits an invalid query to the SQL

input side of the interface.

2.2.5 CLAIRON User Interface
The UI for CLAIRON is inspired by what Hmelo & Guzdial call ‘glassbox scaffolding’.140

Educational scaffolding looks to enhance learning by providing support to students for working

through complex problems rather than exclusively using simplified examples. ‘Glassbox’

scaffolding—as opposed to ‘blackbox’— aims to support both performance and learning, not

exclusively the latter, by exposing to the user exactly how extra provided support functions. For

instance, in a programming environment that allows users to lean on a library of components, a

glassbox system would let them ‘see inside’ and manipulate the code comprising the pre-built

elements. This has proven particularly beneficial in a computing context when the focus is on

thought process. In her recent work exploring ‘purpose-first’ programming, Kathryn

Cunningham used glassbox high-level ‘program plans’ to create a style of instruction that

focused on the sort of abstract instruction (program planning, subgoal labelling) that most

benefited her target novice learner group without removing the possibility of working at a more

granular level.141 The crux of the case for glassbox scaffolding is that by “seeing implicit

processes made explicit, and being encouraged to reflect on those processes the learner is able to

141 Cunningham, Kathryn, Barbara J. Ericson, Rahul Agrawal Bejarano, and Mark Guzdial. "Avoiding the Turing
Tarpit: Learning Conversational Programming by Starting from Code’s Purpose." in Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems (2021): 1-15.

140 Hmelo, Cindy E., and Mark Guzdial. "Of black and glass boxes: scaffolding for doing and learning." in
Proceedings of the 1996 international conference on Learning sciences (1996): 128-134.

139 Becker, Brett A. "An effective approach to enhancing compiler error messages." in Proceedings of the 47th ACM
Technical Symposium on Computing Science Education (2016): 126-131.

86

construct new knowledge structures and modify existing structures.”142 It is this notion of

process-focused reflection that the CLAIRON interface is designed to emphasise. The

CLAIRON UI might be best characterised as ‘translucent box’. It does not give full access to the

code underlying the NL-SQL translation, but that code is not the focus; SQL queries are. By

showing the user the steps—and missteps—involved in mapping human logics to computational

ones, they are encouraged to critically examine the process and its limitations. They are not

required to try their hand at this process independently, but the interface nonetheless offers them

the possibility of trying raw SQL query input and offers ample support.

There are four sections to the interface—the question input and result display, the entity mapping

display, the sequential parse tree viewer, and the table explorer. Each section aims to support the

user in making sense of the SQL mapping and query results as well as come to grips with the

differences between computational processing and human cognition. In exposing each step of the

process, the interface makes explicit what is typically buried under layers of abstraction.

Section-wise documentation helps guide the user through the interface, with external links to

provide additional context to the data and further information to support SQL learning without

weighing down the UI.

2.2.5.1 Question Input and Results

The design of the question input section with its two side by side input boxes deliberately draws

on the visual vocabulary of automatic language translation systems such as DeepL143 and Google

Translate.144 The box on the left accepts natural language queries, and the one on the right,

arbitrary SQL queries.145 The SQL input box supports syntax highlighting and includes line

numbers, but is not a fully fledged editor (e.g. no autocomplete). When a natural language input

is successfully translated, the input question and the SQL translation are both displayed above

the input boxes with colour-coded highlights to show the correspondence between the two

(figure 2.2.5.1-1). Additionally, all tokens that were part of the final query tree are displayed in

bold. This allows users to identify which tokens were deemed irrelevant by the system, quickly

145 Though not explicitly advertised, any queries submitted via the interface are executed by a read-only user, so that
no changes can be made to the database

144 https://translate.google.ca/
143 https://www.deepl.com/en/translator
142 Hmelo & Guzdial, “Of black and glass boxes”

87

https://translate.google.ca/
https://www.deepl.com/en/translator

catching onto any errors born of dropped terms. The current version doesn’t consistently add

highlights for operators, though they are bolded, nor does it indicate which of the tables in the

join path were explicitly mentioned in the input question and which were inferred. These

oversights should be corrected in a future version.

Results of successful inputs are funnelled into a grid located directly below the input boxes.

Derived fields currently have non-informative column names; inferring useful labels from query

structure would be a nice future addition on the interface. If an NL input fails, the error returned

by the back end system is displayed in a temporary banner along the top of the page. Interpreter

errors are displayed in cases involving malformed SQL.

Figure 2.2.5.1-1. NL input and query translation with highlight mapping for the input Quelles sont les comédies en

trois acres ou en cinq actes qui sont jouées moins de 15 fois et ont une recette moyenne de plus de 900 livres ?.

Successful SQL inputs simply fetch results. Additionally generating a natural language

approximation for input queries, as NaLIR does, could be an interesting area for future work. I

made the deliberate choice not to support SQL-NL back-translation in this first version of the

interface, as I believe many users’ first instinct would be to attempt to retranslate the

88

generated—and therefore likely fairly unnatural— language into SQL. Though interesting from

an iterative problem solving perspective, this functionality would demand that the system

support a much broader range of keywords and structures.

All successful and unsuccessful NL or SQL inputs and their corresponding translations or errors

are saved to a persistent log (figure 2.2.5.1-2). The purpose of the log is twofold. First, if a user

is interested in modifying a previously submitted or translated question or query—erroneous or

not— they can simply click the pen icon to automatically repopulate the relevant input box

(though, not the results, in the current version). This, I believe, stands to facilitate the sort of

iterative problem solving that is essential to research. Second, the backlog of examples is a place

where SQL learners can study previous NL-SQL translations and abstract upwards to gain

intuition around which types of fragments serve specific purposes. In the NaLIR extension

TEMPLAR query translation logs were leveraged to help correctly predict output146; there is no

reason that this high-level pattern matching could not equally prove useful at a more human

level.

Figure 2.2.5.1-2. CLAIRON query logs

2.2.5.2 Entity Match Display

This section details the disambiguation process for all input tokens that match to database

entities. To showcase the difficulty posed by language ambiguity, all possible matches identified

during the first round of processing are listed. Using parallel lists positioned from left to right in

an attempt to convey the iterative nature of the process, the selected matches and, where

146 Baik et al., “Bridging the semantic gap with SQL query logs in natural language interfaces to databases”

89

applicable, foreign key substitutions, are displayed. Figure 2.2.5.2-1 shows the mapping for the

input Quelle est la pièce la plus rentable de Voltaire ?.

Figure 2.2.5.2-1. Node match lists and selections for the input Quelle est la pièce la plus rentable de Voltaire ?.

Specific icons flag fields that are keys or function fields. Currently there is no indicator for when

a synonym is introduced via the configuration file is used. For example, the link between the

token Voltaire and the match auteurs / nom / voltaire is evident, but the jump between rentable

and registres_recettes / recette, less so. This is a potential source of confusion for the user, and an

indication of these cases would be a valuable future addition to the interface. So as to aid the user

in understanding the significance of a match, each can be viewed in context. Clicking on any

match will direct the user to the database table viewer (detailed in section 2.2.5.4), adding, in the

case or row matches, the column filters needed to display only the relevant rows.

2.2.5.3 Successive Tree Viewer

As described in section 2.2.4.1, a grammatical dependency parse tree is at the heart of

CLAIRON’s NL to SQL translation process. The series of parse and query tree visualisations

displayed in this section of the interface shows how tree nodes are added, collapsed, removed, or

90

altered as a function of the presence of specific keywords and structural relationships. The

indices included in the node labels map to the position of the corresponding tokens in the input

question. This allows a user to follow the progress of the transformation and identify the cause of

any misinterpretations. Even if an input is erroneous and the query generation process halts

before producing a result, the interface will still display all steps up until the failure point. The

choice not to hide errors further serves to underscore the fact that the system doesn’t truly

understand language; it has no intuition that would allow it to, for instance, still identify

comparable entities even if one were labelled with an incorrect part of speech or erroneously

parsed as the child of an unconnected node. Though the tree will not alter on every step for every

input, the same set of steps is shown each time. The reason for this is twofold. Including every

step every time leaves less space for confusion, from a user experience perspective, but also

doesn’t create a false impression of machine intuition. A person versed in SQL looking to

translate an input question would more than likely focus on only the structures needed to render a

solution, not giving a thought to negation or ordering, for instance, if the situation clearly did not

call for it. CLAIRON, however, has no other recourse but to deterministically run through every

check every time. Figure 2.2.5.3-1 shows the first three steps for the input question Quelles sont

les cinq pièces de Molière qu'on joue le plus entre 1680 et 1700 ?.

Figure 2.2.5.3-1. The first three parse and query trees produced for the input Quelles sont les cinq pièces de Molière

qu'on joue le plus entre 1680 et 1700 ?. Note that the token position numbers shown in the query trees are

0-indexed.

2.2.5.4 Database Explorer

Though it is not necessary, when working with an NLIDB system, to have an understanding of

the database schema, it does provide useful context. This final section of the interface gives the

91

user full access to the database tables (figure 2.2.5.4-1) as well as entity-relationship diagrams.

This view into the machine interpretation and organisation of the data stands both to help the

user reckon with the limits of the system and, on a much more basic level, support them in

formulating their own SQL queries.

Figure 2.2.5.4-1: CLAIRON database explorer.

Whenever I am introducing the RCF data to a new group, I always start not from the tables, but

from the manuscript registers themselves. The intention of this is to highlight the fact that

datafication is a subjective and, crucially, lossy layer of abstraction—one that is currently not

made visible in the interface. Though the digitised register collections in their entirety are

available to the user, a valuable future addition to this section would be links to individual pages

in the receipts and casting registers for each corresponding row.

2.2.5.5 Problems and Future Directions

In spite of the mechanisms in place to identify erroneous interpretations before they reach the

user, some still slip through. My biggest concern with the CLAIRON UI is that users will

uncritically accept the tabular results of these misinterpretations as true, without examining the

SQL query, match mappings, or tree parses that might indicate otherwise. Take, for example, the

input Quels comédiens ont participé à le plus de créations ?. The system is unable to properly

interpret the question, returning a list of the actors who performed the most in plays for which

92

premiere dates are known, rather than in actual premiers. This is evident from reading the

resulting SQL, but the results themselves still comprise, as they would have in the correct case, a

list of actors. The rate of occurrence and severity of this kind of scenario, and the best ways to

ensure a user leverages all the tools at their disposal to verify the results, are difficult to gauge

without performing a user study.

Another potential sticking point is with questions where the returned results are not incorrect, per

say, but where there is possible dissonance between how CLAIRON interpreted the question, and

how the user did. Consider the question Qui sont les comédiens qui entraînent les recettes les

plus importantes ?, in response to which the system returns a list of actors alongside the revenue

of the highest grossing evening they ever performed on. While this is certainly one way of

answering the question of who were the most financially successful actors, a user might

reasonably have instead expected a list of actors ordered by total or average takings. Though the

latter result could be achieved by rephrasing the question, this sort of interpretive

disagreement—useful as it is for highlighting machine limitations—could be a source of

confusion and frustration for users.

Both of these scenarios might be aided by providing a plain language explanation of the SQL

query. I have so far avoided implementing this for two reasons. First, it is an added level of

abstraction. Second, and more importantly, to fit within the translation-inspired and iterative

logic of the system, this back translated ‘fake’ natural language would need to be able to then be

re-ingested into the NL-SQL cycle. While, as previously mentioned, this sort of gradual

convergence of syntax is interesting from a learning perspective, it runs counter to the system’s

emphasis on drawing attention to the distance and difference between human and machine logics

and on pushing the user to navigate that mapping independently—with support from context,

sure, but without explicit guidance in any one direction. Finding a way to integrate some sort of

plain language query explanation to aid the comprehension of SQL novices without

compromising the ethos of the system would be a valuable area for future exploration.

93

2.2.6 Evaluation
CLAIRON is a proof of concept. I have performed no formal evaluation. However, to provide

some context for its scope, strengths, and weaknesses, I have attempted an informal comparison

of both the back end NL to SQL translation system, through comparison with other notable

NLIDBs, as well as the front end user interface, using the framework specified in section 1.1.

2.2.6.1 Back End

In their 2020 survey,147 Kim et al. judged NLIDBs according to their performance across eleven

benchmark datasets. I am unable to run similar tests on the CLAIRON system, as all of the

existing benchmarks are in English, and the creation of a French language test set is outside of

the scope of this thesis. As each set is also linked to a large database, the translation of an

existing benchmark is likewise infeasible. What’s more, evaluation hinging on benchmark

accuracy often fails to assess the SQL coverage of a given system. As demonstrated by Affolter

et al.,148 many of the commonly used benchmarks consist of questions whose corresponding

queries all map to a small set of SQL structures and formulations. Over 40% of the questions in

the Yahoo! L6 corpus,149 for instance, require only a string filter and potentially a simple JOIN.

Similarly, not a single question in the GeoData250150 corpus requires multiple subqueries, dates,

or numerical ranges, and approximately 88% of the examples need only, at most, a JOIN, a string

filter, and an ordering statement.

Affolter et al.’s alternative to benchmark-level comparison is evaluation based conceptual

coverage. Recognizing that there are often many ways to structure a ‘correct’ query, they

evaluate each system on input questions that, while they could refer to specific operators,

generally require different query language concepts. In addition to joins, the ten input question

ask that a given system be able to handle string filters, numeric inequality filters,151 date filters,

151 In the original paper, the term ‘range’ is used. Their example, however, is “All movies with a rating higher than
9”, which does not require the two operator comparison that ‘range’ might imply (e.g. 3 < x < 9). For this reason, I
have opted for the term ‘inequality’.

150 Tang, Lappoon R., and Raymond J. Mooney. "Using multiple clause constructors in inductive logic programming
for semantic parsing." In European Conference on Machine Learning (2001): 466-477.

149 https://webscope.sandbox.yahoo.com/catalog.php?datatype=l
148 Affolter et al., “A comparative survey of recent natural language interfaces for databases”
147 Kim. et al., “Natural language to SQL”

94

https://webscope.sandbox.yahoo.com/catalog.php?datatype=l

ordering, logic operators,152 abstract concepts, aggregation,153 negation, simple subqueries, and

complex subqueries. In keeping with the didactic bent of the interface, I have augmented these

categories with structure types drawn from concept breakdowns used to evaluate student SQL

learning.154 My evaluation is based on a comparison with three other NLIDBs—NALIR, because

it is similarly dependency parsed base; ATHENA, because it is similarly concerned with

handling domain specificity; and DBPal, because it is concerned with linguistic diversity, and

can also be used to highlight the differences between learning and rules-based models. Figure

2.2.6.1-1 gives an overview of the results. As was the case for Affolter et al, not all of the

systems of interest have publicly released their code, meaning the results are entirely based on

information made available in related publications. Grey cells indicate a lack of information,

green and red indicate supported and unsupported constructs respectively, and yellow flags

complicated or marginal cases.

154 Migler, Andrew, and Alex Dekhtyar. "Mapping the SQL learning process in introductory database courses." in
Proceedings of the 51st ACM Technical Symposium on Computer Science Education (2020): 619-625; Ahadi,
Alireza, Julia Prior, Vahid Behbood, and Raymond Lister. "A quantitative study of the relative difficulty for novices
of writing seven different types of SQL queries." in Proceedings of the 2015 ACM Conference on Innovation and
Technology in Computer Science Education (2015): 201-206.

153 It is understood through their example—”What is the best movie of each genre?”— that this category also
includes a system’s capacity to deal with grouping.

152 Though the paper labels this operation category as ‘union’, it is specified that a potential solution could use either
logical conjunction or disjunction.

95

Figure 2.2.6.1-1. : NLIDB system comparison

2.2.6.1.1 Join

The ability to handle simple multi-table joins is essential for any functional NLIDB, as very

rarely is all sought information confined to a single table. The syntax used for joins differs from

system to system. NaLIR, ATHENA and DBPal all fully cross the tables and subsequently add

filters with the relevant keys, whereas CLAIRON uses the ON keyword to specify inner joins. It

is unclear if any of the comparison systems support left or right joins. CLAIRON currently does

not—none of the sample questions which informed the system scope required special joins, and I

am unsure of how the need for one would be expressed in natural language input. CLAIRON,

96

like ATHENA, cannot handle self joins, though it makes the point of informing the user when an

input query contains specific keywords words implying that one should be used, so that they

might try implementing it on their own using the SQL input side of the interface. It is unclear

whether NaLIR or DBPal can handle self joins but, in the case of the latter, similarly performing

learning-based systems such as GNN155 cannot. The main difficulty I encountered when

considering the implementation of self joins, was knowing which properties to enforce equality

on, especially in the case of tables or views that include multiple foreign keys. Unlike NaLIR,

there is no possibility of human-in-the-loop structural correction, but I do see investigating the

ways in which this could reliably be inferred from the parse tree and the addition of support for

self-joins as a feasible future addition.

2.2.6.1.2 Filters and Logic

As the most basic of operations, filters of all types are well supported. It should be noted that all

published examples relating to dates deal only in years. It is unknown whether the comparison

systems can handle partial dates, as CLAIRON can. Similarly, none of the published examples

confirm that the different systems can interpret written numbers. Logic operators are similarly

fairly well supported, though ATHENA is unable to handle expressions where both the left hand

side and right hand side map to instances of the same ontology element.

2.2.6.1.3 Negation, Distinct, Limit, and Ordering

The authors of ATHENA explicitly state that the system is unable to handle negation. LIMIT and

DISTINCT also seem to be missing from the grammar of the intermediate representation that

dictates its query construction. It is unclear whether DBPal is able to handle either structure and,

while NaLIR can handle DISTINCT, nothing in the published examples, test sets, or public

source code suggest that it can render arbitrary numeric limits. All systems are able to handle

basic ordering, though it is unclear whether the comparison systems can order on multiple

properties, potentially in opposing directions. CLAIRON currently only supports ordering by a

single element, though it can be complex (i.e. an aggregation, a mathematical operation etc.).

155 Bogin, Ben, Jonathan Berant, and Matt Gardner. "Representing Schema Structure with Graph Neural Networks
for Text-to-SQL Parsing." in Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics (2019): 4560-4565.

97

2.2.6.1.4 Aggregation and Grouping

All systems can handle aggregation when it is correctly detected. However, detecting

aggregation is one of the notable weaknesses of parse-based systems, as it relies on a generic set

of ‘trigger words’.156 For example, given the input Display the longest hospitilization period,

NaLIR fails to identify the token ‘longest’ as indicating an aggregation. As Kim et al. note, 157

this sort of error can be mitigated by extending token-keyword mappings for each dataset the

system is used on, but this implies a certain amount of overhead. Though I have not performed

any formal comparison, I believe it is possible that CLAIRON may be less vulnerable to this

issue because of the lower degree of linguistic variation in structures pointing to an aggregation.

In French, adverbs like ‘hottest’ or ‘longest’ do not exist; they must be written as le plus chaud

or le plus long (the most hot/long). This greatly reduces the number of ‘trigger’ tokens that must

be considered when trying to detect aggregations. However, the language does introduce

different issues. In response to the input Y a-t-il des auteurs dont la soirée au cours de laquelle

ils sont joués ne rapporte jamais moins de 4000 livres ?, for instance, it simply sees jamais as a

negative adverb, rather than the aggregation that the idea of never implies. This produces the

query—

select distinct auteurs.* from registres_recettes join séances on
(registres_recettes.id = séances.id_recettes) join représentations on
(séances.id = représentations.id_séance) join pièces on
(représentations.id_pièce = pièces.id) join attributions on (pièces.id
= attributions.id_pièce) join auteurs on (attributions.id_auteur =
auteurs.id) where en_livres(livres,sols,deniers)> 4000.0

—which returns all authors whose plays were at some point performed on an evening grossing

more than 4000 livres. The correct query, returning authors whose plays were only ever

performed on high revenue evenings is

select distinct auteurs.* from registres_recettes join séances on
(registres_recettes.id = séances.id_recettes) join représentations on
(séances.id = représentations.id_séance) join pièces on
(représentations.id_pièce = pièces.id) join attributions on (pièces.id

157 Kim. et al., “Natural language to SQL”
156 Affolter et al., “A comparative survey of recent natural language interfaces for databases”

98

= attributions.id_pièce) join auteurs on (attributions.id_auteur =
auteurs.id) group by auteurs.id having
min(en_livres(livres,sols,deniers))> 4000.0

ATHENA notably does not allow grouping on multiple properties, but, like CLAIRON, it can

handle aggregation based filters, as HAVING is included in its grammar.

2.2.6.1.5 Subqueries

All systems are able to render singly nested queries, and all of the comparison systems support

aliasing, though CLAIRON does not. Support for more complex formulations—correlated nested

queries, for example— is, like other elements, limited by the structures of which systems are

'aware’. ATHENA’s intermediate representation grammar only allows it to handle some forms of

nesting, though this set was expanded in the later iteration, ATHENA++.158 DBpal can only cope

with query structures seen in the training data, and as the slot filling algorithm templates used to

generate the dataset only covered one form of basic subquery, the system is unable to produce

more complex forms. In DBPal’s case, expanding coverage to more complex nesting means the

diversification of the training data.

2.2.6.1.6 Concepts

Given that they do not map as directly or consistently to specific query language operations,

concepts are particularly difficult for NLIDBs.159 There are two distinct types of input that fit

under this umbrella— abstract and oftentimes subjective concepts, and derived fields that are the

product of calculation possibly combining several fields. Affolter et al’s test question List all

great movies is an example of the first type, as are the notions of ‘major city’ and ‘major river’

crop up in commonly used GeoData250 benchmark. A concept like ‘population density’, from

that same dataset falls into the latter category.

ATHENA is easily able to handle tokens mapping to abstract concepts as long as they are

encoded into the domain-specific ontology provided to the system. Because the system is

premised on a user only having access to the ontology and not to the mapping between ontology

159 Ibid

158 Sen, Jaydeep, Chuan Lei, Abdul Quamar, Fatma Özcan, Vasilis Efthymiou, Ayushi Dalmia, Greg Stager, Ashish
Mittal, Diptikalyan Saha, and Karthik Sankaranarayanan. "ATHENA++ natural language querying for complex
nested sql queries." in Proceedings of the VLDB Endowment 13, no. 12 (2020): 2747-2759.

99

elements and query language expressions, it is up to the expert who creates the mapping to

provide a concrete definition. As NaLIR looks to establish a direct mapping between tokens and

database elements rather than passing through an intermediate representation, it cannot handle

this type of token. Given that one of the primary goals of the system is to deconstruct the

encoded judgements and biases that underpin interfaces which present this kind of field as

objective fact, and to communicate the limits of computing, CLAIRON handles this style of

inputs by deliberately rejecting them. If asked, for instance, to list les meilleures pièces de

Molière, CLAIRON responds that it cannot understand the token meilleures, which hopefully

might prod the user to recognize the judgement and ambiguity of their question, and to

reformulate it in a more specific way.

With calculated fields, learning-based systems like DBPal have an advantage over parse-based

ones, as they do not depend on distinct keyword and structural encodings. Provided examples of

a given type of field derivation have appeared in the training data, DL systems are able to handle

a variety of complex structures. CLAIRON handles this kind of input by allowing a user to

configure pseudocolumns which map to pre-created database functions. This is in some ways

similar to ATHENA’s handling, as it is effectively adding an element to the data ontology. It is

worth noting that this functionality could be used to handle some cases that the system typically

rejects, undermining its aim for transparency. Consider, for example, the concept of ‘major city’

introduced in the GeoData250 benchmark. It would be trivial to create a ‘major’ boolean

pseudocolumn on a cities table which is the result of a comparison of the population against an

arbitrary literal value and the mechanics of the function would remain hidden from the end user.

Extending the user interface to render the calculations underlying these pseudocolumn-function

mappings as part of the NL-SQL mapping displayed in the interface, or developing other

strategies to mitigate this issue would be a valuable avenue for future work.

2.2.6.1.7 Limitations and Future Directions

Though I have not performed a formal error analysis, experimentally, the two most significant

sources of error for CLAIRON are matching errors and incorrect parses—issues common to

many NLIDBs.

100

Linguistic ambiguity means that there is more often than not no clear one-to-one mapping

between input tokens and database elements. NaLIR’s human-in-the-loop system approaches this

problem by placing the onus of disambiguation on the user; evaluations of NaLIR run in

non-interactive mode universally observe a significant drop in performance. One of the

important factors in the success of ATHENA is that its intermediate domain-ontology imposes

important constraints on possible mappings. Though CLAIRON employs metrics similar to

NaLIR’s match ranking system, unlike that system, it picks a single match before generating a

query, as opposed to trying all potential matches. What’s more, because this token-to-element

mapping happens independently of the user, there is no way for them to correct the selection, at

least from the natural language input side of the interface. A useful future extension to the

system would be to generate and test all potential parse tree permutations, if the most probable

one appears to be incorrect. The difficulty would be to do this in such a way that the volume of

information does not become overwhelming for the user and the decision making process—and

its faults—remain at the forefront.

CLAIRON, like all parse-based systems, also struggles with out-of-vocabulary words. Currently,

only the input token and its lemmatized form are compared to the database entities. This means

that a query such as Quels rôles de tragédie sont joués par Monsieur Préville ? works as

expected, but the equivalent Quels rôles tragiques sont joués par Monsieur Préville ? does not

produce the correct result as the match ‘pièces/genre/tragédie’ is not considered a potential for

the token tragiques. Many systems utilise digital linguistic resources to supplement their

vocabularies by considering synonyms and variants. CLAIRON allows basic synonym

specification via the configuration file, but does not probe any external resources. This could be

a valuable future addition, though important consideration would need to be given to how to

expose this step of the process to the user, given that this would make the link between token and

database entity name may be less plain. Interestingly, though using embeddings to represent and

infer relationships between tokens means that DL systems tend to cope better than parse-based

systems with out-of-vocabulary terms, they can fare worse on domain-specific terminology than

mechanisms like ATHENA’s ontology or CLAIRON’s configuration. Because embeddings used

to help identify matches are oftentimes not contextual, the systems are tripped up by terms that

101

are strongly conceptually related in a given context, but semantically distant in most

contexts—’star’ and ‘rating’ as used in a movie database, for example. 160

The other primary source of error is bad parsing and tagging, which most often occurs when

inputs are not quite as explicit as they might be. Consider the question Combien de fois joue

Bellemont au cours de la saison 1789-1790 ? (figure 2.2.6.1.7-1). Here, the parser misinterprets

Bellemont as a determiner, which means that CLAIRON does not consider it as a candidate for

an entity match, consequently missing an essential part of the question.

Figure 2.2.6.1.7-1. Parse tree for input Combien de fois joue Bellemont au cours de la saison 1789-1790 ?.

Unlike NaLIR, CLAIRON does not filter out invalid parse trees based on a grammar, though it

does, as addressed in section 2.2.4.3.6, attempt some correction of invalid configurations. This

means that, while it may be open to a more diverse variety of query structures, it is also more

vulnerable to parsing errors. Even if they parse correctly, CLAIRON also struggles with

questions that imply parallel structures but do not state them explicitly. For example, the current

iteration of the system cannot correctly interpret the input Lors de quelles saisons est-ce que

Pierre Corneille rapporte plus que Racine ? but has no issue with the equivalent question Lors

de quelles saisons est-ce que Pierre Corneille rapporte plus que rapporte Racine ?. Improving

the detection and handling of cases that call for the insertion of implicit nodes would be a

160 Yaghmazadeh et al., “SQLizer”

102

valuable future direction, as this style of utterance is more natural. CLAIRON also does not do

well with yes/no questions. It also does not select the aggregations it orders by. It most often opts

to select binary comparisons as derived boolean fields instead of using them as filters. All of

these things could be accounted for, but there is a never ending list of increasingly specific

operations. With respect to CLAIRON in particular, the aim is not for the system to be able to

handle all human inputs. Human logic and processes are not computational logic and processes;

the system is designed to highlight this reality, not obfuscate it.

For parse-based systems, matching and parsing errors alike often come back to vocabulary

limitations, and I see vocabulary expansion as a particularly interesting area for future work.

When I prompted the CFRP team for the example input questions around which CLAIRON is

based, I specifically requested that they ignore everything they may know about the database, its

structures and the kind of queries that are possible. This means that their responses did not sound

like they were designed with SQL in mind, as I find some of the example questions used by other

systems can tend to — the question What is the average length of stay of patients where age is

80? generated for the DBPal training set, for instance, or the input return me all the

organizations in "North America" included the widely used Microsoft Academic Search

benchmark dataset.161 Consequently, tokens that might be considered more ‘SQL-esque’ —

décroissant or croissant for ordering, for example—are not included in the CLAIRON triggers or

keyword mappings. Though this is in line with the notion of distinguishing human logics from

computational ones that is central to the system, a future version supporting more hybrid inputs

might be an interesting area for exploration, specifically in the context of instruction. The

recently developed Hedy teaching programming language162 scaffolds learning by gradually

adding in syntactic elements such as brackets, indenting and quotations. This serves to create a

throughline between human-like inputs, and the sometimes daunting syntax of formal

programming languages. In the current iteration of CLAIRON, though the mapping NL-SQL is

shown, it is left up to the user to infer the specifics of how query language syntax works if they

162 Hermans, Felienne. "Hedy: a gradual language for programming education." in Proceedings of the 2020 ACM
conference on international computing education research (2020): 259-270.

161 Roy, Senjuti Basu, Martine De Cock, Vani Mandava, Swapna Savanna, Brian Dalessandro, Claudia Perlich,
William Cukierski, and Ben Hamner. "The microsoft academic search dataset and kdd cup 2013." in Proceedings of
the 2013 KDD cup 2013 workshop (2013): 1-6.

103

wish to input an SQL query of their own. Hedy style incremental support could both help make

this process seem less daunting, and avoid misconceptions.

2.2.6.2 Front end

The evaluations of the Discovery and Graph Tools, and of the Faceted and Cross-Tab browsers in

chapter one showed that they all struggled to some extent with data transformation hiding and

were not necessarily very explicit about how their structure influenced knowledge construction.

Placing the emphasis very squarely on the constructionist elements of data interrogation as it

does, CLAIRON does not necessarily share many of the challenges common to the other CFRP

interfaces, but its lack of layers of abstraction to aid with data understanding adds different

challenges.

2.2.6.2.1 Transparency

Interface opacity, per Loup and Masure, is a product of layers of deliberately invisibilized

computational abstraction.163 CLAIRON aims for transparency by stripping away and

deconstructing these layers. Because the interface works directly with the database tables—to

which the user is given unfettered access—questions of data construction are limited to derived

fields. Though icons flag these elements, the calculations underpinning them are not exposed.

Issues of bias and situatedness as they relate to datafication practices are not addressed; this

might be mitigated through the addition of links to the registers as seen in the Faceted browser.

The interface is constructed in such a way as to deliberately draw attention to the nuance and

challenges of mapping human questions to database queries. It particularly focuses on the

ambiguity inherent to this process, in direct opposition to the “reification of information”164

performed by, and arguably required by, many common forms of visualisations. The carousel of

tree iterations walks the user through the transformation process, and the choice to show the

same steps every time emphasises the deterministic limitations of computation. In a similar vein,

displaying all potential index choices serves to highlight data nuance and complexity, as well as

draw attention to the difficulty the computer has with making decisions that would be obvious to

164 Drucker, “Humanistic theory and digital scholarship”, 86
163 Cellard & Masure, "Le design de la transparence"

104

a human, because of its lack of deep contextual knowledge. Computers never have knowledge,

only information.

2.2.6.2.2 Generativity

Like the Faceted browser, CLAIRON also creates space for interpretive work through

multiplicity, but with the added potential for data manipulation and transformation. Exposing the

database tables presents the full range of entry points into the data without imposed hierarchies

or categories that expand beyond table structure. Lev Manovich165 positions the database as the

antithesis of narrative. Interfaces like the discovery tool or cross-tab browser that respond to a

specific set of questions are beholden to an internal narrative, which is not the case for

CLAIRON. Proximity to the database allows CLAIRON to maintain a flexibility and focus on

plurality that must necessarily be simplified and collapsed in the case of more guided interfaces.

It could be argued that CLAIRON’s tabular results are less compelling, less likely to spark new

ideas, than more narratively driven results. Not imposing limits on entry points or process types,

however, does create more space for the user to curate an individualised experience.

The display mechanisms of the interface invite the user to question and deconstruct

computational processes. Though they are unable to influence them, the index choice and parse

tree evolution displays create the potential for error identification and critical reflection on the

dissonance between human and machine conceptions of problems. The configuration file with its

specifically customisable parse rules and function-to-field mappings further facilitates the

interrogation and (re)definition of ontological elements and relationships.

Finally, CLARON’s workflow affords iterative and reciprocally fed explorations. The query logs

help users to mutate and build on previous queries; by explicitly showing the logical breakdown

of input question components, they notably feed combinatorial explorations. Highlight mappings

further scaffold inductive SQL learning.

2.2.6.2.3 Interpretability

The interaction design of CLAIRON is based on natural language translation tools. The aim of

this is that the familiar interface configuration will cue users as to its use, but also potentially

165 Manovich, "Database as a symbolic form"

105

encourage them to take a critical eye to the results—those who have experience with automatic

translation systems will likely have some level of awareness of the ways in which they struggle

with ambiguity and context. If the user is not able to intuit how to use the interface, details of the

system’s functionality are outlined in the embedded documentation.

Like the Graph tool, CLAIRON integrates two different modes of interaction to support users

with different degrees of knowledge. Those who lack knowledge of SQL are able to use the

plaintext input, and users comfortable with SQL are able to directly query the database in order

to find answers to questions whose format or complexity exceeds the current capabilities of the

translation system. The addition of the query log helps novice users to gradually build their query

language skills by incrementally modifying previously successful queries. The single page scroll

navigation and linking between elements such as index options and table rows further aims to

help manage cognitive load by making it easy for a user to locate additional context and details

while they iterate on a problem without having to exit their current frame.

106

Chapter 3 and Concluding Remarks: The Third Wave

Abstraction, formalisation, and modelling. These are the three mainstays of computational work

identified by DH scholar Pierre Mounier that stand, he argues, to lead researchers to see their

objects of study from a different perspective, to pursue alternatively focused explorations, and to

define new avenues of exploration.166 In these three consecutive phases I see a parallel to the first

two so called ‘waves’ of Digital Humanities and a third of which I believe we might be at the

precipice. In the first chapter of this thesis I explored existing approaches to the creation of

foundationally humanistic interfaces and identified the core facets of transparency, generativity,

and interpretability. I further proposed an alternative method of enacting these principles that

looked to engage with the complexity of humanities problems and data by stripping away layers

of abstraction to expose the computational processes whose implicit logics define digitally

mediated knowledge production. The second chapter presented CLAIRON, an instantiation of

this new style of interface. In this final chapter, I will expand on what I believe could constitute

an already emergent third wave of DH, and provide some conclusions regarding how my work

on CLAIRON aligns with the kind of paradigmatic and, crucially, pedagogical, shift that it

represents and that is needed to move DH from alternative foci to new avenues of exploration.

The first wave of DH “looked backward as it moved forward”,167 replicating on a different scale

existing scholarly—largely literary—techniques. As Mounier points out, Roberto Busa’s index

thomisticus, which many position as the genesis of DH, did not introduce any novel processes.

The digital facilitated his explorations but did not shape them. The same could be said of the

RCF interfaces discussed in chapter one. As evidenced by the work of Johannidès and Lancaster,

no performance data accessible via the Discovery tool, for instance, could not be collated by

hand, given enough time and resources. Much like in the case of Busa’s concordance of the

commonplace term ‘in’, it is the scale, and the distance from the source that this entails, that sets

the digital work apart. We might consider Franco Moretti’s elaboration of ‘distant reading’168 to

be the distillation of this early DH focus on quantification and statistical analysis, a pivot

emblematic of the first wave that aligns with Mounier’s idea of an initial change of perspective.

168 Moretti, Franco. Distant reading. (Verso Books, 2013).
167 “The Digital Humanities Manifesto 2.0”. Humanities Blast (2009).
166 Mounier, Pierre. "Les Humanités numériques, gadget ou progrès?." Revue du Crieur 2 (2017): 144-159.

107

The second wave of DH is characterised by a shift in focus from the quantitative to the

qualitative, giving way to the “interpretive, experiential, emotive, [and] generative”169 and calling

into question the supremacy of the arithmetic sublime. The rise in black, indigenous, and

feminist scholarship in particular has brought greater attention to elevating voices at the margins,

those who are most vulnerable to erasure or exploitation by aggregative practices. These

communities have additionally promoted a greater scholarly consideration for the value of affect

and embodiment. The transition from the first to the second wave has further been marked by a

move away from digital environments rooted in patriarchal power structures—say, a European

clergyman partnered with a computing company strongly tied to the military-industrial

complex170—to critical contexts where the oppressive and emancipatory potential of the digital is

at the forefront. This necessarily demands a recognition of the fact that computation is not

merely a tool which we can exploit, but a force that fundamentally shapes our modern society.171

Milad Doueihi argues that this degree of enmeshment with the social, the political, and the

ethical requires that we elaborate a broader theory of digital humanism. He asserts that the

essential point of inflection is passing from “penser avec le numérique” to “penser le

numérique.”172 For me, this is one of those powerful yet difficult to translate turns of phrase. I

don’t see ‘thinking with the digital to thinking digitally” or even ‘thinking with computers to

thinking computationally’ as adequately expressing the shift Doheidi identifies from using digital

tools as just that—tools—to critically engaging with, though crucially not submitting to, digital

logics and conceptualizations of the world. Stephen Ramsey’s theorisation of ‘humane

computing’ echoes this emphasis on “allow[ing] digital objects…to participate in humanistic

discussions.”173 I believe that this focus on the “underlying computationality” of digital forms

will, as predicted by David Berry in 2011, form the basis of a third wave of DH.174 A shift

towards greater domain equality on a theoretical level is needed to be able to recognise,

deconstruct, and re-imagine the ways in which the digital alters humanities work and, equally,

the undeniable humanity of computation. It is centering this not only methodological but

174 Berry, David M. "The computational turn: Thinking about the digital humanities." Culture machine 12 (2011).
173 Ramsay, Stephen. "Humane Computation." Debates in the Digital Humanities (2016): 527-529.
172 ibid
171 Doueihi, Milad. "Un humanisme numérique." Communication langages 1 (2011): 3-15
170 Mounier, “Les Humanités numériques, gadget ou progrès?.”
169 “The Digital Humanities Manifesto 2.0”

108

epistemological dialogue that stands to afford, more than previously, the creation of novel paths

of inquiry.

Berry’s prediction, however, appears to have been premature. Of the 245 definitions of Digital

Humanities175 crowdsourced from DH students and scholars during the following year’s ‘Day of

DH’, only 37—in very generous terms—in any way mention engaging with computational logics

from a humanistic perspective. For me, only two reflect the sort of bidirectional exchange that I

had expected when I first came to DH—Francesca Benatti’s “Researching the Humanities

through digital perspectives, researching digital technologies from the perspective of the

Humanities” and Geoffrey Rockwell’s similar definition “The thoughtful use of computing in

humanistic inquiry and the thinking through of computing from the perspective of the traditions

of the humanities”. More frequently, the definitions, even those that speak of working at the

‘intersection’ of domains, invoke the application of digital tools to the humanities, and insist on

the humanistic tradition, ignoring that computation has a tradition and a corresponding

worldview of its own. This is still thinking with the digital.

This is not to say that the history of DH lacks an awareness of, or interest in, thinking through

the digital. Back when the Digital Humanities was still Humanities Computing, Willard McCarty

identified “the questions raised by [...] algorithmic thinking, especially by the inevitable

mismatch between any algorithm and data of the sort normal to the humanities” as the field’s

primary interest. In this, I read the necessity to cultivate an understanding of the logic,

procedures, and epistemology of computation as a medium for the modelling of phenomena. Yet,

an engagement with a bidirectional theoretical grounding that would facilitate this work seems to

me to be missing from the majority of definitions of DH scholarship.176 In her strikingly (and I

would argue fittingly) titled essay ‘The Radical, Unrealized Potential of Digital Humanities’,

Miriam Posner affirms that “it is not only about shifting the focus of projects so that they feature

marginalized communities more prominently; it is about ripping apart and rebuilding the

machinery of the archive and database so that it does not reproduce the logic that got us here in

176 Berra, Aurélien. "Faire des humanités numériques." Read/Write Book 2 (2012): 25-43.

175 Data available at https://github.com/hepplerj/whatisdigitalhumanities/blob/master/dayofquotes_full.csv. This list
includes data from 2010, 2011, 2012, and 2014. As many of the same individuals submitted definitions year to year,
I selected only the subset corresponding to the 2012 event.

109

https://github.com/hepplerj/whatisdigitalhumanities/blob/master/dayofquotes_full.csv

the first place.”177 In a similar vein, the 2020 Turing Institute whitepaper ‘The challenges and

prospects of the intersection of humanities and data science’178 stresses the importance of moving

beyond the simple application of computational methods to humanities problems to the point of

being able to reshape and subvert its rules and norms to enact a practice of computing that aligns

with humanistic principles. This “radical unrealized potential'' is third wave DH. This is Berry’s

vision for the evolution of the field that I would claim has so far failed to come to fruition. In the

search for what is stunting the development of DH, I cannot help but to look to its pedagogy.

In their 2017 article, DH educators David Birnbaum and Alison Langmead state that it is crucial

for humanists working with digital tools and methods to have some initiation into computing as

otherwise “the risk of missed opportunity is great because the humanist may not know what is

possible computationally and the programmer may not understand what is interesting to a

humanities scholar—that is, it may be that neither knows how to ask the questions that would

bridge the divide.”179 They then outline an approach to humanities computer science education

that aims to emulate oral-proficiency-oriented foreign language pedagogy. Birnbaum and

Langmead specifically advocate for instruction that actively avoids explicitly teaching

“abstractions like numeric datatypes or control structures”, focusing instead on task-specific

programming exercises to build ‘fluency’ rather than computational abstractions that they equate

to natural language grammars.180 In addition to disregarding parity they initially invoke, I would

argue that this approach is precisely the opposite of what is needed to prepare students to explore

what is possible computationally. For all that we draw parallels between them, programming

languages are not natural languages. There are no native Python speakers whose linguistic

innovations define grammaticality. The grammar of a programming language dictates what is

180 It bears mentioning that Birnbaum and Langmead are part of the group of digital humanists who principally view
DH as the application of digital tools to humanities problems. For them “digital humanists perform humanities
research, not computer science research and not, except as a means to an end, software development”. This is
markedly different from the picture of the field I am attempting to draw in this chapter.

179 Birnbaum, David J., and Alison Langmead. "Task-driven programming pedagogy in the digital humanities." in
New directions for computing education (Springer, Cham, 2017): 63-85, emphasis mine.

178 McGillivray, Barbara, Beatrice Alex, Sarah Ames, Guyda Armstrong, David Beavan, Arianna Ciula, Giovanni
Colavizza et al. "The challenges and prospects of the intersection of humanities and data science: A white paper
from The Alan Turing Institute." (2020).

177 Posner, Miriam. "What’s next: The radical, unrealized potential of digital humanities." Miriam Posner’s Blog 27
(2015).

110

possible as a ‘speaker’, not the other way around. To be able to push the limits of computational

possibility, therefore, it is crucial to understand the abstract.

“The purpose of a course in programming is to teach people how to construct and analyse

processes”,181 argued computing pioneer Alan Perlis. For him, programming was a medium

particularly well suited to expressing processes. Correspondingly, he believed that computing

curriculum should focus on understanding the process of mapping human understandings of

systems and processes to a machine interpretable form, and interrogating the conceptual

‘friction’ that arises out of the imperfect translation between these cognitively distant

representations. Additionally, Perlis, who was an early champion of what we now call

‘CSforAll’, advocated for wide reaching computing instruction, insisting on its potential to

change the way in which anyone views, analyses, and describes the world.182 Computing

education in the humanities has taken rather an opposite turn to Perlis’ imaginings, developing a

fixation on ‘building’183 that backburners instruction in computational abstraction, seeing it as an

unnecessary level of complexity that hinders the mastery of tools. This approach, however, is

insufficient with respect to conveying the scope of computation and, by extension, the ways in

which it can be transformed and adapted to humanistic inquiry. In response to this concern,

Micheal Mateas proposes an alternative computing curriculum for ‘new media’ students, inspired

by Perlis, that is premised on the development of procedural literacy (PL), which he defines as

“the ability to read and write processes, to engage procedural representation and aesthetics, to

understand the interplay between the culturally-embedded practices of human meaning-making

and technically-mediated processes.”184 Contained in this definition I see two key facets of

humanistic computing education that I believe are essential to moving DH forward into the third

wave: computational thinking (CT) and critical computing.

184 Mateas, Michael. "Procedural literacy"
183 Ramsay, Stephen. "Who’s in and who’s out." in Defining digital humanities (Routledge, 2016): 255-258.

182 Guzdial, Mark. “Computer Science was always supposed to be taught to everyone, and it wasn’t about getting a
job: A historical perspective”, Computing Education Research Blog (blog). 26 November, 2021.
https://computinged.wordpress.com/2021/11/26/computer-science-was-always-supposed-to-be-taught-to-everyone-b
ut-not-about-getting-a-job-a-historical-perspective/

181 Greenberger, Martin. Management and the Computer of the Future (Wiley, 1962): 206.

111

https://computinged.wordpress.com/2021/11/26/computer-science-was-always-supposed-to-be-taught-to-everyone-but-not-about-getting-a-job-a-historical-perspective/
https://computinged.wordpress.com/2021/11/26/computer-science-was-always-supposed-to-be-taught-to-everyone-but-not-about-getting-a-job-a-historical-perspective/

Given the focus on reading procedure, Mark Guzdial suggests that one conception of PL might

be as computational thinking.185 Defined by Cuny et al. as “the thought processes involved in

formulating problems and their solutions so that the solutions are represented in a form that can

be effectively carried out by an information-processing agent”,186 CT can be viewed as the act of

thinking through and managing Perlis’ cognitive ‘friction’. One could argue that the conceptual

sandpaper of the nuance, heterogeneity, and ambiguity that characterises humanities sources with

regard to the precise, discrete, and systematised data and problem descriptions required by the

digital makes CT all the more important in the digital humanities. Research in a CS context has

shown that emphasising CT through explicit scaffolding of problem solving not only benefits

concrete skill acquisition, but also improved self-efficacy and reinforced the growth mindset of

novice learners.187 In her work on conversational programmers, who are in many ways similar to

DH practitioners in that they may not be the ones writing the solutions but they need to be able to

discuss computational procedures on an abstract level within a domain specific context, Kathryn

Cunningham found that they were best served by an approach that forefronted high level

‘program plans’ which prioritised procedures over implementations.188 There’s a reason that

CSUnplugged189, which teaches computer science without computers, is one of the most widely

used resources in k-12 computing curriculum—as (probably not190) Edgar Djikstra argued,

computer science is no more about computers than astronomy is about telescopes. Knowing the

syntax for a Java array is not essential. Knowing that lists exist in the abstract and are a way of

organising information that imposes specific constraints and assumptions about the data they

contain, is. Understanding how to use pointers to implement a network graph isn’t nearly as

important as being able to recognize problems that might be suited to being modelled as a

network as well as what loss might be incurred in translating the source data and questions to

190 The attribution of this quote is debated.

189 Bell, Tim, Jason Alexander, Isaac Freeman, and Mick Grimley. "Computer science unplugged: School students
doing real computing without computers." The New Zealand Journal of Applied Computing and Information
Technology 13, no. 1 (2009): 20-29.

188 Cunningham et al, “Avoiding the Turing Tarpit”

187 Loksa, Dastyni, Amy J. Ko, Will Jernigan, Alannah Oleson, Christopher J. Mendez, and Margaret M. Burnett.
"Programming, problem solving, and self-awareness: Effects of explicit guidance." in Proceedings of the 2016 CHI
conference on human factors in computing systems (2016): 1449-1461.

186 Cuny, Jan, Larry Snyder, and Jeannette M. Wing. "Demystifying computational thinking for non-computer
scientists." Unpublished manuscript in progress, referenced in http://www. cs. cmu. edu/~
CompThink/resources/TheLinkWing. pdf (2010).

185 Guzdial, “Computer Science was always supposed to be taught to everyone, and it wasn’t about getting a job: A
historical perspective”

112

that form. DH computing curriculum appears to so far have been rather telescope heavy, but it is

skills in computational thinking that are needed to elaborate computational solutions to novel

humanities problems. McCarty argues that “research in humanities computing begins…when

tools become models”; moving from a practice-focused to CT-focused curriculum is effecting

precisely this transformation.

The second essential facet–critical computing–demands a recognition of computing as a political

practice.191 This asks that we consider the larger context of the systems of power and oppression

from which it emerged and which it perpetuates. Critical CS instruction must crucially bring to

light computing’s limits and non-neutrality, and help students build the skills needed to dismantle

systems of oppression rather than reinforce them.192 As addressed in chapter one, there is a

pervasive and longstanding association between deterministic computation and rational

objectivity. Mateas counters this by positioning computing as “a universal representational

medium for describing structure and process”, a deliberate ontological choice that recognizes the

need to examine the rhetoric embodied by different instantiations of a process.193 Procedural

literacy, it follows, includes the ability to deconstruct different encodings, peeling through the

layers of abstraction to come to grips with the ways in which computational representations and

tools encode and propagate specific values and worldviews reflective of the contexts of their

development. Berry speaks of redefining what “reading and writing actually should mean in a

computational age.”194 If computational thinking is a new way of thinking about writing, or

perhaps more justly, translation, then PL as applied to critically conscious computing is reading

for the third wave DH practitioner. It is those who are able to read and deconstruct the

procedures of frequency distribution or neural network based sentiment analysis who will be able

to understand the biases underpinning what may seem, from their productions, to be

indistinguishable systems. It is those who are able to read the gaps and bias in datification

194 Berry, “The computational turn”
193 Mateas, "Procedural literacy”

192 Ko, Amy J., Alannah Oleson, Neil Ryan, Yim Register, Benjamin Xie, Mina Tari, Matthew Davidson, Stefania
Druga, and Dastyni Loksa. "It is time for more critical CS education." Communications of the ACM 63, no. 11
(2020): 31-33.

191 Ko, Amy J. “Programming as Cognition, Programming as Politics” University of Colorado Boulder, Institute for
Cognitive Science. Virtual. November 19, 2021

113

procedures and imagine alternative encodings that will be able to identify and counter the harm

done by policies based on deficit data.195

Though not primarily intended as a teaching tool, emphasising procedural literacy was at the

forefront of my mind in designing the CLAIRON interface. As addressed in chapter two, the NL

to SQL translation at its centre looks to bring to the fore the process of mapping human

conceptions of problems to their corresponding—though not necessarily

equivalent—computational expressions. Usually discussed more abstractly in a postsecondary

context, decomposition, abstraction and pattern recognition, and procedural problem solving are

often used as the four cornerstones of practical CT instruction in recently adopted k-12

computing curriculum196; the various sections of the interface each look to address one or more

of these facets. The highlight mapping and tree structure both help show the breakdown of

problems and aid users to abstract upwards and identify their common parts. Pattern-oriented and

procedural thinking are further scaffolded by the query logs. All sections, most notably the tree

transformation and match sets, invite a critical look at the computational processes underlying

the interface. Users are able to navigate through each step of the process to find errors or

ambiguous cases, and the interface makes no effort to gloss over the limits of

computation—quite the opposite. Having been around since 2008, the trajectory of the

Comédie-Française Registers Project has aligned, to an extent, with the waves of DH. The

creation of the initial databases and early tools correspond to the first wave focus on mass

datafication, distant reading and statistical calculation. The expansion of the data assemblage to

include more diverse and qualitative sources, as well as the research-creation workshops where

students explored questions of data bias and remediation, among others, echo the characteristics

of the second wave. CLAIRON is a foray into the intersection of the CFRP and what I believe to

be the emergent third wave of DH.

Why now, though? is of course the obvious question with respect to third wave DH. Since

Berry’s prediction in 2011, and even since Posner’s speculative article in 2015, I maintain there

196 See, for example, the British Columbia curriculum rolled out in 2016
https://codebc.ca/wp-content/uploads/2017/01/TTP_22pages_LighthouseLabs-v3.pdf

195 Walter, Maggie. "The voice of indigenous data: beyond the markers of disadvantage." Griffith Review 60 (2018):
256-263.

114

https://codebc.ca/wp-content/uploads/2017/01/TTP_22pages_LighthouseLabs-v3.pdf

has been a significant shift, not in the humanities, but in the CS community, that is conducive to

the kind of stronger and more egalitarian partnership that DH has been missing. There has been

growing concern over the past few years that current CS education is taught in too much of a

vacuum. For all that CS programs may make an effort to valorise the sort of high-level abstract

systems thinking that would facilitate navigating the nuances of mapping human logics to

computational ones, the development of these skills is built around toy problems and

de-contextualized datasets. These resources, in an effort to simplify learning, eliminate any sort

of Perlisian critical friction by minimising to the point of invisibility the conceptual distance

between the problem and a computationally expressed solution. This decontextualized approach

has the effect of naturalising and erasing the worldview encoded in the transformation in a global

context where computing is more intimately intertwined with the diverse societal facets than ever

before.197 Momentum is building for curriculum reform anchored in interdisciplinarity.198

On one level, this refers to an increasing focus on the mise en scène of CS learning. Despite the

recognition that students learn better when they feel more connected to the material, CS

educators have historically shied away from contextualised problems out of concern for

cognitive load.199 What this fails to recognize, however, is that context is not the same as

framing. Truly contextualised pedagogy does not view the CS problem as the core of the exercise

and conceive of the contextualization as an extra barrier that needs to be overcome. Rather, it

sees it as another source of knowledge—something which has only just begun to be understood

and leveraged. For example, Guzdial and Shreiner’s recent work in task specific programming

languages (tsp languages) derives from the notion that students learn computation most

effectively when they are also engaged in domain specific learning.200 One of the tsp languages

200 Guzdial, Mark, and Tamara Shreiner. "Integrating computing through task-specific programming for disciplinary
relevance: Considerations and examples." in Computational Thinking in Compulsory Education: A Pedagogical
Perspective, Aman Yadav and Ulf Dalvad Berthelsen (Eds.). Routledge Taylor & Francis Group (2021): 171-190

199 Craig, Michelle, Jacqueline Smith, and Andrew Petersen. "Familiar contexts and the difficulty of programming
problems." in Proceedings of the 17th Koli calling international conference on computing education research
(2017): 123-127.

198 ibid; Ko er. Al, "It is time for more critical CS education."; Guzdial, Computer Science was always supposed to
be taught to everyone, and it wasn’t about getting a job: A historical perspective”

197 Connolly, Randy. "Why computing belongs within the social sciences." Communications of the ACM 63, no. 8
(2020): 54-59.

115

and corresponding tools they developed, for example, focuses on visualising historical data.201

The impetus for its creation was the fact that Schreiner’s previous work revealed that the vast

majority of students struggle to make sense of visualisations of social sciences data and largely

did not consider, in their evaluation, important humanities questions of sourcing, collection,

processing, and display methodologies.202 Much like CLAIRON, Guzdial and Schreiner’s tool

allows users to interact with data using familiar controls that don’t require programming

knowledge, but also grants access to manipulable underlying information representation—in this

case, the JSON corresponding to the displayed bar graphs and their data. Importantly, the shape

of the tool is context-driven; it is premised on the binary comparison of graphs “because

historical inquiry often begins with two pieces of data or accounts that do not agree."203 It is not a

tool to be applied to the humanities, but one driven by domain specific theory that also looks to

engage with computational constructedness such that domain and CS learning advance in

parallel, neither a hindrance to the other.

On a second broader and more abstract level, the drive to move toward a more integrated

computing education is motivated by the need to redress the historical emphasis that has been

placed on what is taught rather than why or how.204 In her 2019 Koli Calling keynote “21st

Century Grand Challenges for Computing Education”,205 Amy Ko points to the fact that society

is increasingly looking to technology to solve some of its biggest issues—climate change, fake

news, minority discrimination, etc.—without addressing the role it had in creating them, or

equipping technologists with the skills needed to approach these kinds of problems holistically.

Ko emphasises that CS education has a tendency to fetishize the machine, valuing power and

efficiency over humanity to a degree that promotes a skewed perspective of what is possible in

the realm of computing–misinterpretations that have regrettably spilled over into the public

consciousness. To prevent this sort of thing from continuing to occur, what is needed, says Ko, is

an increased focus on recognizing and respecting the limits of computing—something which

205 Ko, Amy J. 2019 “21st Century Grand Challenges for Computing Education”. Koli Calling Computing Education
Research Conference. Koli, Finland. November 22, 2019

204 Ko et al., "It is time for more critical CS education"
203 Guzdial & Shreiner, “Integrating computing through task-specific programming for disciplinary relevance”: 181

202 Shreiner, Tamara L. Framing a model of democratic thinking to inform teaching and learning in civic education
(University of Michigan, 2009).

201 Shreiner, Tamara L., Mark Guzdial, and Bahare Naimipour. "Using participatory design research to support the
teaching and learning of data literacy in social studies." in Paper Presented at the College and University Faculty
Assembly of the National Council for the Social Studies 2021 Annual Conference Virtual Conference (2021).

116

messy and ambiguous humanities contexts excel at bringing to light. It is likewise essential to

bring ethics to the forefront as a topic that should be a constant consideration rather than an

afterthought. As Doueihi rightly points out, computation is inextricably embedded in societal

operations. We can no longer afford to forget that some problems are undecidable not because

they are NP hard but because they are morally hard. Existing interventions within CS have

tended to introduce individual human-centric examples, but it is the introduction of overarching

humanistic epistemologies and methodologies that provide the robust theoretical framework

needed to counter a system. It is the deep integration of the parallel abstractions of humanities

formalisms and computational procedures that are needed to facilitate the deconstruction of

harmful practices and the development of alternative procedures for the treatment of complex,

ambiguous, and nuanced data and problems.

Students are not being taught to think critically about how the technology they produce

concretely impacts the wider world, and educators see the scattered introduction of isolated

ethics courses as an insufficient means of addressing the problem.206 The push is for long term

interventions and an integrated curriculum that promotes an awareness of context and worldview.

Randy Conolly argues that computing needs to “move to the edge[s of the bounds of the

discipline] and to participate in the rich academic biodiversity that happens where computing

interacts with other disciplines.” He insists on the fact that this shift cannot be an “exotic

vacation” but rather must constitute a permanent relocation. Further, this shift must avoid “a

colonizing ideology that sees computational thinking as the best way to understand and inhabit

this world” and instead focus on embracing methodological, theoretical, and epistemological

pluralism.207 Much of DH’s approach to computing education had been calqued from CS and has

remained similarly decontextualized and siloed. DH courses addressing visualisation tend to

focus on the mastery of tools that are embedded in a particular information display logic without

either addressing it or discussing alternatives. Courses in programming languages do not tend to

undertake the same sort of media archaeology oriented explorations of the development and

evolution of control structures and algorithms that might be applied to various textual forms. But

they could. Achieving a tradition of scholarship that engages with ‘computationality’, I would

207 Connolly, "Why computing belongs within the social sciences"
206 ibid; Bruce, Kim B. "Five big open questions in computing education." ACM Inroads 9, no. 4 (2018): 77-80.

117

argue, requires a degree of domain equality on the level of theoretical engagement. This is what

guided the development of CLAIRON. This is what DH pedagogy is missing. This is third wave

Digital Humanities.

118

Bibliography

Affolter, Katrin, Kurt Stockinger, and Abraham Bernstein. "A comparative survey of recent
natural language interfaces for databases." The VLDB Journal 28, no. 5 (2019): 793-819.

Ahadi, Alireza, Julia Prior, Vahid Behbood, and Raymond Lister. "A quantitative study of the
relative difficulty for novices of writing seven different types of SQL queries." In
Proceedings of the 2015 ACM Conference on Innovation and Technology in Computer
Science Education (2015): 201-206.

Baik, Christopher, Hosagrahar V. Jagadish, and Yunyao Li. "Bridging the semantic gap with SQL
query logs in natural language interfaces to databases." 2019 IEEE 35th International
Conference on Data Engineering (ICDE) (2019): 374-385.

Bardzell, Jeffrey, and Shaowen Bardzell. "Humanistic Hci." Interactions 23, no. 2 (2016): 20-29.

Becker, Brett A. "An effective approach to enhancing compiler error messages." In Proceedings
of the 47th ACM Technical Symposium on Computing Science Education (2016):
126-131.

Bell, Tim, Jason Alexander, Isaac Freeman, and Mick Grimley. "Computer science unplugged:
School students doing real computing without computers." The New Zealand Journal of
Applied Computing and Information Technology 13, no. 1 (2009): 20-29.

Berra, Aurélien. "Faire des humanités numériques." Read/Write Book 2 (2012): 25-43.

Berry, David M. "The computational turn: Thinking about the digital humanities." Culture
machine 12 (2011).

Bertin, Jacques. Sémiologie graphique: les diagrammes, les réseaux, les cartes. De Gruyter
Mouton, 1973.

Beyer, Kurt W. Grace Hopper and the invention of the information age. Mit Press, 2012.

Biet, Christian, Sara Harvey, and Agathe Sanjuan. "Postface–Le Programme RCF, de
l’archéologie à la futurologie." In Données, recettes & répertoire: La scène en ligne
(1680-1793). MIT Press, 2020.

Birnbaum, David J., and Alison Langmead. "Task-driven programming pedagogy in the digital
humanities." In New directions for computing education, 63-85. Springer, Cham, 2017.

119

Bogin, Ben, Jonathan Berant, and Matt Gardner. "Representing Schema Structure with Graph
Neural Networks for Text-to-SQL Parsing." In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics (2019): 4560-4565.

Bogost, Ian. The rhetoric of video games. MacArthur Foundation Digital Media and Learning
Initiative, 2008.

Borges, Jorge Luis. "Of exactitude in science." In A Universal History of Infamy, 31. Penguin
Books, 1975.

Bruce, Kim B. "Five big open questions in computing education." ACM Inroads 9, no. 4 (2018):
77-80.

Burdick, Anne, Johanna Drucker, Peter Lunenfeld, Todd Presner, and Jeffrey Schnapp, “A Short
Guide to the Digital_Humanities” In Digital_Humanities, 121-136. Mit Press, 2016.

Burnett, Margaret, Anicia Peters, Charles Hill, and Noha Elarief. "Finding gender-inclusiveness
software issues with GenderMag: A field investigation." Proceedings of the 2016 CHI
conference on human factors in computing systems (2016): 2586-2598.

Cellard, Loup, and Anthony Masure. "Le design de la transparence." Multitudes 4 (2018):
100-111.

Chamberlin, Donald D., and Raymond F. Boyce. "SEQUEL: A structured English query
language." In Proceedings of the 1974 ACM SIGFIDET (now SIGMOD) workshop on
Data description, access and control (1974): 249-264.

Clairon, Hippolyte Mémoires d'Hyppolite Clairon, et réflexions sur l'art dramatique.F. Buisson:
Paris, 1799.

Connolly, Randy. "Why computing belongs within the social sciences." Communications of the
ACM 63, no. 8 (2020): 54-59.

Craig, Michelle, Jacqueline Smith, and Andrew Petersen. "Familiar contexts and the difficulty of
programming problems." In Proceedings of the 17th Koli calling international conference
on computing education research (2017): 123-127.

Crawford, Kate. "Power." In The Atlas of AI, 217-227, Yale University Press, 2021

Cunningham, Kathryn, Barbara J. Ericson, Rahul Agrawal Bejarano, and Mark Guzdial.
"Avoiding the Turing tarpit: Learning conversational programming by starting from
code’s purpose." In Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems (2021): 1-15.

120

Cuny, Jan, Larry Snyder, and Jeannette M. Wing. "Demystifying computational thinking for
non-computer scientists." Unpublished manuscript in progress, referenced in http://www.
cs. cmu. edu/~ CompThink/resources/TheLinkWing. pdf (2010).

Diderot, Denis, and Jean Le Rond d'Alembert. Encyclopédie, ou, Dictionnaire raisonné des
sciences, des arts et des métiers. Vol. 1. Pergamon Press, 1776.

Diderot, Denis. Paradoxe sur le comédien: ouvrage posthume. A. Sautelet, 1830.

“The Digital Humanities Manifesto 2.0”. Humanities Blast (2009).

D’Ignazio, Catherine, and Lauren F. Klein. "Feminist data visualization." Workshop on
Visualization for the Digital Humanities (VIS4DH), 2016.

D'Ignazio, Catherine. "Creative data literacy: Bridging the gap between the data-haves and
data-have nots." Information Design Journal 23, no. 1 (2017): 6-18.

D'Ignazio, Catherine, and Lauren F. Klein. Data feminism. MIT press, 2020.

Dijkstra, Edsger W. "How do we tell truths that might hurt?." ACM Sigplan Notices 17, no. 5
(1982): 13-15.

Doueihi, Milad. "Un humanisme numérique." Communication langages 1 (2011): 3-15.

Drucker, Johanna. "Humanities approaches to interface theory." Culture machine 12 (2011).

Drucker, Johanna. "Humanities approaches to graphical display." Digital Humanities Quarterly
5, no. 1 (2011): 1-21.

Drucker, Johanna. "Humanistic theory and digital scholarship." Debates in the digital humanities
150 (2012): 85-95.

Drucker, Johanna. Graphesis: Visual forms of knowledge production. Cambridge, MA: Harvard
University Press, 2014.

Dumesnil, Marie-Françoise. Mémoires de Mlle Dumesnil, en réponse aux mémoires d'Hippolyte
Clairon. Ponthieu: Paris, 1823.

Escobar Varela, Miguel. “Introduction: Pursuit of Theater’s Digital Traces” In Theater as Data:
Computational Journeys into Theater Research, 1-20. Ann Arbor: University of
Michigan Press, 2021.

121

Essinger, James. Ada's algorithm: How Lord Byron's daughter Ada Lovelace launched the digital
age. Melville House, 2014.

Ferré, Xavier, Natalia Juristo, Helmut Windl, and Larry Constantine. "Usability basics for
software developers." IEEE software 18, no. 1 (2001): 22-29.

de Fieux Mouhy, Charles. Tablettes dramatiques contenant l'abrege de l'histoire du theatre
francois, l'etablissement des theatres a Paris, un dictionnaire des pieces... Avec 3
Supplem. Sebast. Jorry, 1752.

Filippi, Florence and Sara Harvey. “Émergence du vedettariat théâtral en France (xviie-xixe
siècles)” In Le Sacre de l'acteur. Émergence du vedettariat théâtral de Molière à Sarah
Bernhardt, 11-26. Paris, Armand Colin, « Collection U », 2017.

Gebru, Timnit, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna
Wallach, Hal Daumé Iii, and Kate Crawford. "Datasheets for datasets." Communications
of the ACM 64, no. 12 (2021): 86-92.

Greenberger, Martin. Management and the Computer of the Future. Wiley, 1962.

Guzdial, Mark, and Tamara Shreiner. "Integrating computing through task-specific programming
for disciplinary relevance: Considerations and examples." In Computational Thinking in
Compulsory Education: A Pedagogical Perspective, Aman Yadav and Ulf Dalvad
Berthelsen (Eds.), 171-190. Routledge Taylor & Francis Group, 2021.

Guzdial, Mark. “Computer Science was always supposed to be taught to everyone, and it wasn’t
about getting a job: A historical perspective”, Computing Education Research Blog
(blog). 26 November, 2021.
https://computinged.wordpress.com/2021/11/26/computer-science-was-always-supposed-
to-be-taught-to-everyone-but-not-about-getting-a-job-a-historical-perspective/

Hall, Kyle Wm, Adam J. Bradley, Uta Hinrichs, Samuel Huron, Jo Wood, Christopher Collins,
and Sheelagh Carpendale. "Design by immersion: A transdisciplinary approach to
problem-driven visualizations." IEEE transactions on visualization and computer
graphics 26, no. 1 (2019): 109-118.

Haraway, Donna. "Situated knowledges: The science question in feminism and the privilege of
partial perspective." In Feminist theory reader, 303-310. Routledge, 2020.

Harvey, Sara, and Agathe Sanjuan. "Le projet des registres journaliers de la Comédie-Française:
Les humanités numériques, dialogue entre les mondes de la recherche et de la
documentation." Bulletin des bibliothèques de France 9 (2016): 102-109.

122

https://computinged.wordpress.com/2021/11/26/computer-science-was-always-supposed-to-be-taught-to-everyone-but-not-about-getting-a-job-a-historical-perspective/
https://computinged.wordpress.com/2021/11/26/computer-science-was-always-supposed-to-be-taught-to-everyone-but-not-about-getting-a-job-a-historical-perspective/

Hermans, Felienne. "Hedy: a gradual language for programming education." In Proceedings of
the 2020 ACM conference on international computing education research (2020):
259-270.

Hmelo, Cindy E., and Mark Guzdial. "Of black and glass boxes: scaffolding for doing and
learning." In Proceedings of the 1996 international conference on Learning sciences
(1996): 128-134.

Isaacson, Walter. "The Intersection of the Humanities and the Sciences." 43rd Jefferson Lecture
in the Humanities, National Endowment for the Humanities. 2014.

Jammi, Manasa, Jaydeep Sen, Ashish R. Mittal, Sagar Verma, Vardaan Pahuja, Rema
Ananthanarayanan, Pranay Lohia, Hima Karanam, Diptikalyan Saha, and Karthik
Sankaranarayanan. "Tooling framework for instantiating natural language querying
system." In Proceedings of the VLDB Endowment 11, no. 12 (2018): 2014-2017.

Joannidès, Alexandre. La Comédie-Française de 1680 à 1900: dictionnaire général des pièces et
des auteurs. Plon-Nourrit, 1901.

de Jong, Ton. "Scaffolds for scientific discovery learning." Handling complexity in learning
environments: Theory and research (2006): 107-128.

Kim, Hyeonji, Byeong-Hoon So, Wook-Shin Han, and Hongrae Lee. "Natural language to SQL:
where are we today?." Proceedings of the VLDB Endowment 13, no. 10 (2020):
1737-1750.

Klein, Lauren. "What Data Visualization Reveals: Elizabeth Palmer Peabody and the Work of
Knowledge Production." (2022).

Ko, Amy J. 2019 “21st Century Grand Challenges for Computing Education”. Koli Calling
Computing Education Research Conference. Koli, Finland. November 22, 2019

Ko, Amy J., Alannah Oleson, Neil Ryan, Yim Register, Benjamin Xie, Mina Tari, Matthew
Davidson, Stefania Druga, and Dastyni Loksa. "It is time for more critical CS education."
Communications of the ACM 63, no. 11 (2020): 31-33.

Ko, Amy J. “Programming as Cognition, Programming as Politics” University of Colorado
Boulder, Institute for Cognitive Science. Virtual. November 19, 2021

Lancaster, Henry Carrington. The Comédie Française, 1680-1701: Plays, Actors, Spectators,
Finances. No. 17. Johns Hopkins Press, 1941.

123

Li, Fei, and Hosagrahar V. Jagadish. "Constructing an interactive natural language interface for
relational databases." In Proceedings of the VLDB Endowment 8, no. 1 (2014): 73-84.

Loksa, Dastyni, Amy J. Ko, Will Jernigan, Alannah Oleson, Christopher J. Mendez, and
Margaret M. Burnett. "Programming, problem solving, and self-awareness: Effects of
explicit guidance." In Proceedings of the 2016 CHI conference on human factors in
computing systems (2016):1449-1461 .

Manovich, Lev. "Database as a symbolic form." Museums in a digital age (1998): 64-71

Masure, Anthony. "Vers des humanités numériques «critiques»." Repéré à dlis. hypotheses.
org/2088 (2018)

Mateas, Michael. "Procedural literacy: educating the new media practitioner." On the Horizon
13, no. 2 (2005): 101-111.

McGillivray, Barbara, Beatrice Alex, Sarah Ames, Guyda Armstrong, David Beavan, Arianna
Ciula, Giovanni Colavizza et al. "The challenges and prospects of the intersection of
humanities and data science: A white paper from The Alan Turing Institute." (2020).

Migler, Andrew, and Alex Dekhtyar. "Mapping the SQL learning process in introductory
database courses." In Proceedings of the 51st ACM Technical Symposium on Computer
Science Education (2020): 619-625.

Miller, George A. "WordNet: a lexical database for English." Communications of the ACM 38,
no. 11 (1995): 39-41.

Moretti, Franco. Distant reading. Verso Books, 2013.

Mounier, Pierre. "Les Humanités numériques, gadget ou progrès?." Revue du Crieur 7, no. 2
(2017): 144-159.

Munzner, Tamara. “Rules of Thumb” In Visualization analysis and design, 116-141. CRC press,
2014.

Noble, Safiya Umoja. "Algorithms of oppression." In Algorithms of Oppression. New York
University Press, 2018.

Perez, Caroline Criado. Invisible women: Data bias in a world designed for men. Abrams, 2019.

Popescu, Ana-Maria, Oren Etzioni, and Henry Kautz. "Towards a theory of natural language
interfaces to databases." Proceedings of the 8th international conference on Intelligent
user interfaces (2003): 149-157.

124

Posner, Miriam. "What’s next: The radical, unrealized potential of digital humanities." Miriam
Posner’s Blog 27 (2015).

Quamen, Harvey, and Jon Bath. "Databases." In Doing Digital Humanities, 181-198. Routledge,
2016.

Ramsay, Stephen. "Humane computation." Debates in the digital humanities (2016): 527-529.

Ramsay, Stephen. "Who’s in and who’s out." In Defining digital humanities, 255-258.
Routledge, 2016.

Ravel, Jeffrey S. "The Comédie-Française by the Numbers, 1752–2020." In Données, recettes &
répertoire: La scène en ligne (1680-1793). MIT Press, 2020.

Roy, Senjuti Basu, Martine De Cock, Vani Mandava, Swapna Savanna, Brian Dalessandro,
Claudia Perlich, William Cukierski, and Ben Hamner. "The microsoft academic search
dataset and kdd cup 2013." In Proceedings of the 2013 KDD cup 2013 workshop (2013):
1-6.

Saha, Diptikalyan, Avrilia Floratou, Karthik Sankaranarayanan, Umar Farooq Minhas, Ashish R.
Mittal, and Fatma Özcan. "ATHENA: an ontology-driven system for natural language
querying over relational data stores." Proceedings of the VLDB Endowment 9, no. 12
(2016): 1209-1220.

Sanjuan, Agathe, and Martial Poirson. Comédie-Française: une histoire du théâtre. Seuil, 2018.

Schuwey, Christophe. “Humanités numériques et études littéraires : une question d’interfaces”
La lettre de l'InSHS (2018): 25-27

Sen, Jaydeep, Chuan Lei, Abdul Quamar, Fatma Özcan, Vasilis Efthymiou, Ayushi Dalmia, Greg
Stager, Ashish Mittal, Diptikalyan Saha, and Karthik Sankaranarayanan. "ATHENA++
natural language querying for complex nested sql queries." In Proceedings of the VLDB
Endowment 13, no. 12 (2020): 2747-2759.

Schieber, Philip. "The wit and wisdom of Grace Hopper." The OCLC Newsletter 167 (1987).

Shneiderman, Ben. "The eyes have it: A task by data type taxonomy for information
visualizations." In The craft of information visualization, 364-371. Morgan Kaufmann,
2003.

Shreiner, Tamara L. Framing a model of democratic thinking to inform teaching and learning in
civic education. University of Michigan, 2009.

Shreiner, Tamara L., Mark Guzdial, and Bahare Naimipour. "Using participatory design research
to support the teaching and learning of data literacy in social studies." In Paper Presented

125

at the College and University Faculty Assembly of the National Council for the Social
Studies 2021 Annual Conference Virtual Conference. 2021.

Sinclair, Stéfan, Stan Ruecker, Milena Radzikowska, and I. N. K. E. Inke. "Information
visualization for humanities scholars." Literary Studies in the Digital Age-An Evolving
Anthology (2013).

Stevens-Martinez, Kristin and Mark Guzdial. “Live Coding”. The CE-ED Podcast. February 3,
2020, https://csedpodcast.org/blog/season1_episode4/

Tang, Lappoon R., and Raymond J. Mooney. "Using multiple clause constructors in inductive
logic programming for semantic parsing." In European Conference on Machine Learning,
466-477. Springer, Berlin, Heidelberg, 2001.

Tufte, Edward R. Visual and statistical thinking: Displays of evidence for making decisions. Vol.
12. Cheshire, CT: Graphics Press, 1997.

Utama, Prasetya, Nathaniel Weir, Fuat Basik, Carsten Binnig, Ugur Cetintemel, Benjamin
Hättasch, Amir Ilkhechi, Shekar Ramaswamy, and Arif Usta. "An end-to-end neural
natural language interface for databases." arXiv preprint arXiv:1804.00401 (2018).

Velde, François R. "An Analysis of Revenues at the Comédie française, 1680-1793." In Données,
recettes & répertoire: La scène en ligne (1680-1793). MIT Press, 2020.

Walter, Maggie. "The voice of Indigenous data: Beyond the markers of disadvantage." Griffith
Review 60 (2018): 256-263.

Walter, Maggie, and Michele Suina. "Indigenous data, indigenous methodologies and indigenous
data sovereignty." International Journal of Social Research Methodology 22, no. 3
(2019): 233-243.

Yaghmazadeh, Navid, Yuepeng Wang, Isil Dillig, and Thomas Dillig. "SQLizer: query synthesis
from natural language." Proceedings of the ACM on Programming Languages 1, no.
OOPSLA (2017): 1-26.

126

https://csedpodcast.org/blog/season1_episode4/

Appendix A: Sample Configuration File

{
"connection":{

"database":"rcf_thesis",
"host":"localhost",
"user":"dbuser",
"readonly_user":"clairon",
"password":"MDzf*4rN6!SMG@Rk",
"readonly_password":"phèdre",
"schema":"public"

},
"parse_patterns":{

"date":{
"parts":[{"IS_DIGIT": true, "LENGTH":4}, {"IS_PUNCT": true}, {"TEXT":

{"REGEX":"^0?[1-9]|1[012]$"}}, {"IS_PUNCT": true}, {"TEXT":
{"REGEX":"^0?[1-9]|[12][0-9]|3[01]$"}}]

},
"season":{

"parts":[
{

"IS_DIGIT":true,
"LENGTH":4

},
{

"TEXT":"-"
},
{

"IS_DIGIT":true,
"LENGTH":4

}
],
"valid":"lambda x:int(x[2])==int(x[0])+1"

},
"compound": {
"parts": [
{

"IS_DIGIT":false
},
{

"TEXT":"-"
},
{

"IS_DIGIT":false
}

]
}

},

127

"tables":{
"auteurs":{

"synonyms":[
"écrivains",
"dramaturges"

],
"attributes":{

"nom":{
"synonyms":[

"pseudonyme"
]

}
}

},
"pièces":{

"attributes":{
"création":{

"synonyms":[
"créer"

]
},
"divertissement":{

"synonyms":[
"danse",
"musique",
"machine"

]
}

}
},
"comédiens":{

"synonyms":[
"acteurs",
"membres"

],
"attributes":{

"titre":{
"synonyms":[

"honorifique"
]

}
}

},
"lieux":{

"synonyms":[
"endroit",
"théâtre",
"scène"

]
},
"rôles":{

128

"synonyms":[
"personnages"

]
},
"registres_recettes":{

"attributes":{
"semainier":{

"synonyms":[
"signataire"

]
},
"recette":{

"function":{
"signature":"en_livres",
"arguments":[

"livres",
"sols",
"deniers"

]
},
"synonyms":[

"rapporter",
"rapporte",
"rentable"

]
}

}
},
"séances":{

"synonyms":[
"soirées"

]
},
"attributions":{

"synonyms":[
"écrit"

]
},
"interprétations":{

"synonyms":[
"interpréter",
"interprète",
"jouer",
"joue"

]
},
"représentations":{

"synonyms":[
"répétitions",
"jouer",
"joue",

129

"représenter",
"représente",
"répéter",
"répète",
"donne",
"donner"

]
},
"ventes":{

"attributes":{
"prix":{

"function":{
"signature":"en_livres",
"arguments":[

"prix_livres",
"prix_sols",
"prix_deniers"

]
}

},
"recette_totale":{

"function":{
"signature":"en_livres",
"arguments":[

"recette_livres",
"recette_sols",
"recette_deniers"

]
}

},
"billets_vendus":{

"synonyms":[
"places",
"spectateurs"

]
}

}
}

}
}

130

