
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand corner and continuing

from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NOTE TO USERS

This reproduction is the best copy available.

_ (|j

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U n iv e rs ity o f A lb e rta

E f f ic ie n t A r c h it e c t u r e s
F o r 1 -D A n d 2 -D L if t in g -B a s e d W a v e l e t

T r a n s f o r m s

by

H o n gyu Liao

A thesis subm itted to the Faculty o f G raduate Studies and Research in pa rtia l
fu lf i llm e n t o f the

requirem ents fo r the degree o f M aster o f Science

D epartm ent o f Electrical and C om puter Engineering

Edm onton, A lberta

Fall 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 * 1
Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa O n K1A 0N4
Canada

Biblioth^que et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

0-494-09221-1

Your file Voire reference
ISBN:
O ur file Notre re ference
ISBN:

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n’y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

Library Release Form

Name of Author: Hongyu Liao

T itle o f Thesis: EFFICIENT ARCHITECTURES FOR 1-D AND 2-D LIFTING-BASED
WAVELET TRANSFORMS

Degree: Master of Science

Year th is Degree Granted: 2005

Permission is hereby granted to the University o f Alberta Library to reproduce single
copies o f this thesis and to lend or sell such copies for private, scholarly or scientific
research purposes only.

The author reserves all other publication and other rights in association w ith the
copyright in the thesis, and except as herein before provided, neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any material
form whatsoever w ithout the author's prior written permission.

Signature

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University o f Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty o f Graduate Studies
and Research for acceptance, a thesis entitled EFFICIENT ARCHITECTURES FOR 1-D
AND 2-D LIFTING-BASED W AVELET TRANSFORMS submitted by Hongyu Liao in
partial fulfillment o f the requirements for the degree o f Master of Science.

D r. M r in a l I<. M andal, Supervisor

Dr. Bruce F. Cockburn. Co-Supervisor

Dr. Duncan G. E llio tt

Dr. Jose Nelson Amaral

Date:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

The lifting scheme reduces the computational complexity o f the discrete wavelet

transform (DW T) by factoring the wavelet filters into cascades o f simple lifting steps

that process the input samples in pairs. We developed four compact and efficient

hardware architectures for implementing lifting-based DWTs. namely. 1-D and 2-D

versions o f what we call recursive and dual-scan architectures. The !-D recursive

architecture exploits interdependencies among the wavelet coefficients by interleaving.

011 alternate clock cycles using the same datapath hardware, the calculation o f higher-

older coefficients along with that o f the first-stage coefficients. The resulting hardware

utilization exceeds 90% in the typical case o f a 5-stage 1-D DWT operating on 1024

samples. The 1-D dual-scan architecture increases the datapath hardware utilization to

100% by processing two independent data streams together using shared functional

blocks. The recursive and dual-scan architectures can be readily extended to the 2-D

case. The 2-D recursive architecture is roughly 25% faster than conventional

implementations, and it requires a buffer that stores only a few rows o f the data array

instead o f a fixed fraction (typically 25% or more) o f the entire array. The 2-D dual

scan architecture processes the column and row transforms simultaneously, and

eliminates the memory buffer for the row transform coefficients.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I would like to acknowledge my supervisors. Dr. Bruce Cockburn and Dr. Mrinal
Manal, for their patience and support on helping me to finish this thesis.

1 would also like to thank the rest o f my thesis committee members: Dr. Duncan
E llio tt and Dr. Jose Amaral. Their valuable feedback helped me to improve the thesis in
many ways.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

C h a p te r I In t r o d u c t io n

1.1 M o t iv a t io n ..

1.2 O v e r v ie w o e t iie W a v e l e t T r a n s f o r m ...

1.3 O u t l in e of th e T h e s is ..

C h a p te r 2 R ev ie w of W a v e le t T h e o r y ..

2.1 W a v e l e t s ..

2.2 M u l t ir e s o l u t io n A n a l y s is a n d the W a v e l e t T r a n s f o r m ...

2.2.1 Conventions...

2.2.2 Multiresoliition Analysis..

2.2.3 The Discrete Wavelet Transform (D W T)..............................

2.2.4 The Fast Wavelet Transform (F W T) ..

2.2.5 Orthogonal Wavelets ...

2.2.6 Biorlhogonal Wavelets...

2.2.7 The Two-Dimensional D W T .. .

2.3 T he L if t in g Sc h e m e ..

2.3.1 Introduction to the L ifting Scheme..

2.3.2 Factoring Wavelet Filters into L ifting Steps.............................

2.4 C o m p a r is o n o f the C l a s s ic a l D W T a n d t h e L if t in g Sc h e m e

2.5 B o u n d a r y T r e a t m e n t ..

2.5.1 Classical Extension Methods..

2.5.2 Signal Extension with L iftin g ...

C h a p te r 3 R ev iew o f E x is t in g W a v e le t A r c h i t e c t u r e s

3.1 C l a s s ic a l A r c h it e c t u r e s ..

3.2 Ex is t in g A r c h it e c t u r e s Ba s e d o n the. L if t in g A lg o r i t h m

C h a p te r 4 Proposed 1-D A r c h it e c t u r e s ..

4.1 T he 1-D R e c u r s iv e A r c h it e c t u r e ...

4.2 T he 1-D D u a l -scan A r c h it e c t u r e ..

C h a p te r 5 Proposed 2 -D A r c h it e c t u r e s ...

5.1 T in :2 -D R ecursive : A r c h it e c t u r e ..

5.2 T in :2 -D D u a l -scan A r c h it e c t u r e

. . . . 1

. .. . 1

....4

....6

....8

. . .8

, . 10

. 10

. 11

. 13

. 14

.17

.18

. 19

.20

.21

.22

.26

.29

.30

,32

35

37

45

50

50

61

63

64

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6 IMPLEMENTATION 73

6.1 W o r d L e n g t h Se l e c t io n ...73

6.2 IMPLEMENTATIONS OF THE 1-D ARCHITECTURES 77

6.3 IMPLEMENTATIONS OF THE 2-D ARCHITECTURES................... 80

6.4 Ev a l u a t io n ... 82

C h a p te r 7 C o n c l u s io n s a n d Fu t u r e W o r k ...86

R e f e r e n c e s ... 88

A p p e n d ix A 94

A p p e n d ix B 96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Figure I. Structure o f the Pyramid A lgorithm ...16

Figure 2. Block Diagram o f the 2-D Separable D W T ... 19

Figure 3. The Split, Predict, and Update Steps in the L ifting Scheme..............................21

Figure 4. Comparison o f the DW T Coefficients Computed by Classic Wavelets and
Lifting Scheme..28

Figure 5. Comparison o f Subimages Generated by First (classical) and Second
Generation Wavelets.. 29

Figure 6 The Four Possible Cases o f Symmetric Signal Extension Using L ifting32

Figure 7. Zero Padding Extension for Short FIR Filters... 34

Figure 8. Knowles' Mux Based DW T Architecture [4] ... 37

Figure 9. The 1-D Folded Analysis Wavelet Architecture Proposed in [8]......................39

Figure 10. The Diagram o f the 1-D Digit-Serial Architecture [8]40

Figure 11. A Systolic Wavelet Architecture [16]...41

Figure 12. The Parallel Filter Architecture for 1-D DW T [10]..42

Figure 13. Block Diagram o f the 2-D Parallel Filter Architecture [10]............................ 43

Figure 14. The Decimation F iller Employing the Polyphase Decimation Technique [32],
..44

Figure 15. Decomposition Filter Employing the Coefficient Folding Technique [32]. .44

Figure 16. 1-D Folded Architecture [33]...46

Figure 17. Block Diagram o f the 2-D Architecture in [34].. 47

Figure 18. Basic Architecture o f Each Processor...48

Figure 19. Basic Circuits for the Parallel Architecture Proposed in [35]........................ 48

Figure 20. MAC for Asymmetric Wavelet F ilters... 51

Figure 21. MAC for Symmetric Wavelet F ilte rs ... 52

Figure 22. Circuits for the Basic L ifting Steps.. 53

Figure 23. 1-D Recursive Architecture for the Daub-4 DWT. “ R" represents registers,
and “ D” represents delay units. “ S f represents control signals for the data
flow ..54

Figure 24. I -D Recursive Architecture for the 9/7 DW T... 54

Figure 25. I -D DW T Coefficient Computation Order...55

Figure 26. Stale Transition Diagram o f the RA C ontro lle r..59

Figure 27. 1-D Dual-scan Architecture... 62

with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 28. The DSA PE Circuit Tor the 9/7 DW T.. 62

Figure 29. Conventional 2-D Lifting Architecture... 63

Figure 30. Calculation Sequence o f the 2-D R A ...64

Figure 3 1. The 2-D Recursive Architecture... 66

Figure 32. Exchange Operations..66

Figure 33. Scan Sequence o f the 2-D Dual-scan Architecture...70

Figure 34. 2-D Dual-scan Architecture.. 71

Figure 35. State Transform Diagram o f the 1-D 9-7 R A ’s Controller...............................77

Figure 36. Datapath o f 1-D Daub-4 D S A ..79

Figure 37. State Transfer Diagram o f 1-D DSA’s Controller... 80

Figure 38. State Transfer Diagram o f the 2-D D-4 RA 's Controller..................................81

Figure 39. State Transfer Diagram o f 2-D D S A ..82

Figure 40. Test Images... 84

Figure 41. Decomposed Images o f Test Images...85

Figure 42. Histogram o f the Error o f 3-Stage Decomposition o f Lena............................85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

Table I. Computational cost o f the lifting versus the standard algorithm for
calculating a pair o f wavelet coefficients...26

Table 2. Comparison o f the classic wavelet and the second-generation wavelet..........27

Table 3 Energy o f subimages generated by the standard and lifting D-4 D W T............28

Table 4. Basic operations that are carried out by the proposed architecture to
compute the lifting steps... 49

Table 5. Data Flow for the Three-Stage 1-D Recursive Architecture............................ 56

Table 6. Enable Signals for the Input Registers (k is the sample index) o f the 1-D RA
Implementing the D4 D W T ..57

Table 7. Input Switch Control T im ing for the 1-D RA Implementing D4 D W T 57

Table 8. Computation Time and Hardware Utilization for 1-D Architectures.............. 61

Table 9. Switch Control Tim ing for the 2-D RA Implementing Daub-4 D W T 68

Table 10. Data Flow for the Three-Stage 2-D Recursive Architecture...........................69

Table 11. Data Flow for the 2-D Dual-scan Architecture... 71

Table 12. Computation Time and Hardware Utilization for 2-D Architectures.............72

Table 13. Comparison o f Memory Size for 2-D Architectures..72

Table 14. SNR/PSNR Values for 3-stage forward D W T84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Acronyms

9/7 Daubcchies 9/7 wavelet [6]

D-4 Daubechics 4-lap wavelet [6]

Daub-4 Daubcchies 4-tap wavelet [6]

DCT Discrete Cosine Transform

DSA Dual Scan Architecture

DSP Digital Signal Processing/Processor

DSP-RAM A DSP architecture proposed in [51]

DW T Discrete Wavelet Transform

FIFO First In, First Out

FIR Finite Impulse Response

FWT Fast Wavelet Transform

IIH Image subband with high frequency components horizontally and
vertically

ML Image subband with high frequency components horizontally and low
frequency components vertically

IDW T Inverse Discrete Wavelet Transform

JPEG Joint Picture Experts Group

LH Image subband w ith low frequency components horizontally and high
frequency components vertically

LL Image subband with low frequency components horizontally and
vertically

PE Processing Element

PSNR Peak Signal-to-Noise Ratio

RA Recursive Architecture

SIMD Single Instruction stream, Multiple Data stream

SNR Signal-to-Noise Ratio

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Wavelets have been the subject o f a great deal o f research recently due, in large part,

to promising applications in signal processing and data compression [26]. Compared to

conventional Fourier analysis, signal analysis using the wavelet transform is more

effective when analyzing physical situations where the signal contains discontinuities

and sharp spikes. Many promising wavelet applications have been found in such areas

as communications, controls, turbulence, human vision, radar, and earthquake

prediction, etc. The wavelet transform has also been shown to be an excellent tool in

data compression applications. For the same perceived visual quality, the 2-D wavelet

transform outperforms the discrete cosine transform (DCT) in image compression [23].

Significantly, the 2-D biorthogonal discrete wavelet transform (DW T) has been adopted

in the recently established JPEG-2000 still image compression standard [37].

1.1 Motivation

There are several trends that are currently motivating the search for improved signal

processing using wavelets. The growth o f Internet applications that require the

transmission o f sound, images, and video over limited bandwidth communication

channels has been a major motivation for research on digital signal processing and

compression. A more recent factor has been the rise in the popularity o f digital

photography, both still image and video. Such applications require techniques that

reduce the volume o f data while preserving the apparent quality. Different data

I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

compression methods offer different trade-offs between the compression efficiency and

the perceived quality. Another research priority that is especially important in portable

devices is to find improved data compression methods that require less digital hardware

to implement and less power to operate.

One solution to the problem o f maximizing the perceived image quality while

minim izing the required data size is provided by the JPEG-2000 standard 137]. JPEG-

2000 is a wavelet-based image compression standard that provides both lossy and

lossless compression. Compared to the traditional JPEG standard [38], JPEG-2000

excels in applications that require greater quality and/or lower bit rates. Although there

are some digital cameras on the market that support JPEG-2000 format image viewing,

no camera offers on-board JPEG-2000 compression so far. One o f the reasons for this

appears to be Ending a cost-effective solution that may be acceptable to potential

customers. The computational burden o f processing the JPEG-2000 algorithm in real

time is apparently beyond the capacity o f the present signal processors in digital

cameras. Recently, Analog Devices developed a JPEG-2000 chip for real-time

applications [39], However, cost and efficiency are still major considerations for the

manufacturers o f such chips. Since the DW T is the most computationally-intensive

algorithm in JPEG-2000, a more efficient DWT core would likely improve the

performance as well as reduce the cost o f a JPEG-2000 processor. In addition, low

power consumption and compact size are also critical priorities in designs for handheld

devices.

Another important application o f the wavelet transform is noise filtering or

denoising. Wavelet denoising outperforms traditional filtering techniques in terms o f

2

with permission of the copyright owner. Further reproduction prohibited without permission.

effectiveness, flex ib ility and simplicity 124]. The most straightforward method o f

wavelet denoising is as follows: first, calculate the DWT o f the input signal: then,

discard the DW T coefficients that arc less than certain thresholds at each given

resolution scale: finally, reconstruct the input signal by calculating the inverse DWT

(IDW T) o f the remaining DW T coefficients J3 1]. Wavelet denoising has been

successfully implemented in many real-time processing applications, such as, speech,

radar signals, electrocardiogram-type (ECG-type) signal, and images [28][3 I], Since the

computation o f the forward and inverse DW T typically consumes most o f the CPU time

during wavelet denoising, incorporating efficient DW T architectures in the above

applications w ill significantly improve the real-time performance.

In order to satisfy the demand for real-time signal or image processing applications,

improving the hardware implementations o f the discrete wavelet transform has become

very important. Many DW T architectures have been proposed in the last decade; most

o f them are based on M allat’ s tree algorithm [3], The lifting scheme is a relatively new.

efficient algorithm for calculating the DW T and constructing wavelet bases. A few

hardware implementations based on the lifting scheme have been proposed in the last

few years [32][33], However, these lifting-based architectures are not optimized for

applications that read only one input sample at a time. They typically process pairs o f

samples. Since many digital systems have only one data bus, it is necessary to develop a

lifting-based architecture that is efficient for a single input at a time applications.

In this thesis, we propose two kinds o f lifting-based architectures, which we call the

dual-scan and recursive architectures, to further improve the efficiency o f the hardware

implementation by exploiting the decimation structure o f the lifting scheme algorithm.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The dual-scan architectures process two independent signals (e.g. two rows o f an

image) simultaneously to achieve 100% hardware utilization. The recursive

architectures interleave the computations o f all stages o f the DW T into a shared

datapath to achieve higher hardware utilization rates. The recursive architectures

significantly reduce the memory requirements and off-chip memory access time, so they

are not only faster but also smaller in hardware size and consume less power. Therefore,

the recursive architectures should be especially well suited for hand-held devices.

1.2 Overview of the Wavelet Transform

Wavelets were first introduced in the early 1980s by J. Morlet as a mathematical

tool for the analysis o f seismic signals [I] , In the mid eighties. Mallat and Meyer

introduced multiresolution analysis and the fast wavelet transform [3], Based on their

research. Daubechies achieved a breakthrough in wavelet research by constructing a set

o f compactly supported orthonormal wavelet basis functions [2], Daubechies' wavelets

are probably the most popular wavelet bases being used today.

Wavelets are a set o f functions (or “ building blocks-’) that satisfy certain

mathematical requirements and can be used to represent other functions or signals. The

most important property o f the wavelets is scalability, which means that a wavelet

function can be dilated to approximate the low frequency components o f a signal, as

well as be translated (shifted) to localize the time or space information o f a signal. This

is analogous to viewing a scene through a zoom lens: you can zoom out to see a bigger

but vaguer and less detailed picture, or zoom in to reveal the details o f an object in a

more localized area. Hence, one could argued that “ scale function" might have been

more an appropriate name for wavelets.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contrary to Fourier analysis, which uses sine or cosine basis functions that stretch

out infin itely in time and are highly localized in frequency, the wavelet functions are

finite and localized in both lime and frequency. In other words, the sizes o f the building

blocks (‘ frequency') o f a wavelet transform are Unite, and the translation ranges are

limited (‘ localized'). Because o f this property, the wavelets can not only represent the

low and high frequency components o f a signal, they can also represent the time or

location information o f the signal. Hence, wavelets tend to be more efficient in

situations where the signal contains discontinuities and sharp spikes.

The DW T underlies the wavelet analysis o f digital signals. In the DWT, wavelets

are translated by integers, and usually dilated (scaled) by powers o f two. This particular

kind o f DW T is called the dyadic DW T [3]. The most widely adopted algorithm for

calculating the DW T is Mallat's tree algorithm, or the fast wavelet transform (FWT).

which uses filter bank techniques to reduce the DW T computational complexity to

0(n), where n is the number o f signal samples (i.e. the signal length).

The lifting scheme, developed by Sweldcns in 1996, was first used as a method to

implement a reversible integer DW T [14]. Soon it w'as found that the lifting scheme

could also be used as a new approach to construct biorthogonal wavelet bases [17]. The

wavelet bases constructed using the lifting scheme are called second-generation

wavelets to distinguish them from the classical wavelets. The second-generation

wavelets are no longer created as the translation and dilation o f one wavelet function;

they can instead be constructed entirely in the spatial domain. The lifting scheme can be

used to construct wavelets for grids o f arbitrary dimensions and with irregular sampling

intervals [25]. Later, Daubechies and Swcldens showed that any wavelet can be factored

5

with permission of the copyright owner. Further reproduction prohibited without permission.

into lifting steps. By factoring the existing wavelets into lifting steps, the computational

complexity can be reduced by up to 50% [20|. Due to the greater efficiency o f the new

algorithm, the lifting-based 9/7 and 5/3 wavelet IIIters have also been adopted in the

recent JPEG-2000 standard [37|.

1.3 Outline of the Thesis

The remainder o f this thesis is organized as follows:

In Chapter 2, the wavelet transform and related concepts are introduced. The lifting

scheme is also described in this chapter, with an emphasis on the factorization o f

wavelet filters. The lifting scheme and the factorization algorithm are the basis o f our

research.

Chapter 3 reviews the existing wavelet architectures that have been described in

international journals and conferences. The idea o f recursive architectures was inspired

by some o f the previous implementations o f M allat’s algorithm.

The proposed 1-D architectures are described in Chapter 4. In this chapter, we first

introduce building blocks for the proposed architectures, and then describe the 1-D

dual-scan architecture and the I-D recursive architecture. We present the Daubechies-4

and 9/7 wavelet architectures as examples for implementing symmetric and asymmetric

wavelet filters. In Chapter 5, we describe the 2-D dual-scan architecture and the 2-D

recursive architecture. We also show how these architectures can improve the hardware

utilization and reduce the required memory size.

In Chapter 6, we discuss hardware implementation issues associated with the

proposed architectures. A ll o f the proposed architectures were implemented and verified

in simulation using VI IDE models. We synthesized the recursive architectures using the

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X ilin x ISE logic synthesis environment [44] to determine the actual sizes o f the

proposed architectures in a field-programmable gate array (FPGA). To estimate the size

o f these architectures in semi-custom integrated circuit designs, we compiled the same

VH D L models using the Synopsys Design Analyzer software tool [45], and placed and

routed them with the Cadence Design Framework II tools [46] provided by Canadian

Microelectronics Corporation (Kingston. ON). Evaluations o f the proposed

architectures are also provided in this chapter.

Finally, we conclude our thesis in Chapter 7 by summarizing the contributions, and

proposing possible future extensions o f our research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

Chapter 2

Review of Wavelet Theory

Wavelet theory is a relatively recent development in applied mathematics, and it

has been evolving very fast since it was formally introduced less than two decades ago

[1]. As a matter o f fact, new wavelets and new concepts are emerging at such a rate that

the very meaning o f “ wavelet analysis” keeps changing to incorporate new ideas [14].

In this chapter, we w ill briefly introduce the formal definitions o f key concepts, such as,

wavelets, the discrete wavelet transform, and the lifting scheme. First, we review the

relevant theory o f wavelets and the wavelet transform based on classical multiresolution

analysis [3].

2.1 Wavelets

Informally, a wave is an oscillating function o f time or space, such as a sinusoid.

The fundamental idea behind wave analysis is to decompose a signal / in to a weighted

sum or linear combination o f wave functions T',. Thus a func tion /is to be expressed as:

/ = 2 > , VIV (2.1)
I

In order to accurately approximate the signal / using a relatively small number o f

coefficients ci„ it is important to select an appropriate family o f functions MJ,. Fourier

analysis is the traditional wave analysis technique in which signals are represented with

weighted sums o f sinusoids. A drawback o f Fourier analysis is that the individual

sinusoids extend infinitely along the input dimensions. It is d ifficult, therefore, to

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

accurately represent an impulse signal (a “ spike'') using Fourier analysis because the

corresponding Fourier series would require an infinite number o f terms. In addition,

localization o f the spike in the continuous domain would be unclear from the

spectrum in the frequency domain.

Compared to the wave functions used in Fourier analysis, wavelets are oscillating

waves that are lim ited in both time (or space) and frequency (or scale). By “ lim ited’- we

mean that the amplitude envelopes o f the oscillating wavelet basis functions becomes

varnishingly small outside a finite range o f time and frequency. This is still not a precise

definition o f a wavelet. More precisely, all wavelets have the following properties [14].

1. Wavelets are building blocks for representing general functions. I f the

wavelet set is denoted by VF ;< (/), for indices j , k = 1.2 a linear

expansion o f a time domain function f { t) would be

/ (/) = f ° r some set o f wavelet coefficients a,^.
* j

2. Wavelets as well as most signals o f interest are localized in both space and

frequency. This means most o f the energy o f typical signals tends to be well

represented by only a few expansion coefficients. «/,*, o f the signal's

wavelet decomposition. Hence wavelets are often able to compactly

represent localized features in a signal.

3. Wavelets are supported by fast transform algorithms. More precisely, the

computational complexity o f calculating the wavelet coefficients o f a signal

is O(n) or 0(/?log») in the length n o f the signal.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Multiresolution Analysis and the Wavelet Transform

A systematic way o f constructing a wavelet basis is provided by multiresolution

analysis [3 |. First, we introduce some concepts used in our discussions.

2.2.1 Conventions

• R is the set o f real numbers;

• 7L is the set o f integers;

• R " is the Euclidean vector space:

• Z,2(R.) denotes Hilbert function space, which is the vector space o f square inlegrable

functions in R , and Z,2(R) is defined as:

• (f , g) is the inner product o f functions/and g.

In H ilbert function space, the inner product o f two functions/and g is defined as:

(/ » g) =

In a Euclidean vector space, the inner product ^Ayy^of two equal length vectors x ,y

can be expressed as:

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• | | / | is the norm of/.' and is defined by||/|| = \ J (. / \ f) •

• A ® B is the direct sum o f two sets o f integers, A and B, and where

A © B = [a + b : a e A and b e B] .

• a _L b denotes that vectors a and b are orthogonal. Orthogonalty is equivalent to the

following condition:

a _L b <=> (a, b) = 0.

• 8i t is the Kronecker della function, defined byt), t | ’ '[.
[I ; , = j

2.2.2 Multiresolution Analysis

In multiresolution analysis [I] we decompose space Z,2(R) into a sequence o f

nested subspaces Vj as follows:

•••cF2 cf,cF0 c^cF2 c - c Zf (R)

The relationship between nested subspaces Vj and VJ+i is given by:

Vj c: VJ+I.V / 'e Z ,

with their union closure

- h n

U ^ = ^ (K) .
—<n

and their intersection is zero signal, denoted by {0}, which means as / goes to negative

infin ity, Vj shrinks down to zero.

f k = (o>.
— w

I f we define a function J{x) that belongs to one subspace Vj, and the size o f

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

subspacc Vj,./ is twice as large as If. then f(x) has the following properties:

1. f (t) e Vj. <=> j \ 2 t) e Vj.+I (2.2)

2 . A O e V , < ^ f (/ - 2 - ' k) e V f , k e Z (2 .3)

We call the property in Eq. 2.2 dilation or scaling from one time resolution to the next,

and we call the property in Eq. 2.3 translation or shifting in time.

I f we can find a function cp{t) e Z,2(R) such that the collection

{tp(l - k) : k e Z } forms a Riesz basis* for subspace Vo, then we call this function a

scaling function or father function. For the other subspaces Vj, /VO. we can define a set

o f functions from the scaling function (p{t) by scaling and translation as follows:

r/V (0 = 2 ' /> (2 ' / - / c) . (2 .4)

I f we denote the orthogonal complement o f Vj in Vj+/ by Wj, then by definition Vj., /

can be decomposed as:

- V, © Wt , where W; _L V/ . (2.5)

Hence, Zr(M) can also be expressed as:

+cc +«
Z2(K) = | J Vf = V a @W0 ® W t ® - = © W. (2.6)

This means that V, is a “ coarse-resolution” representation o f Vj.,./, and Wj represents the

“ high-resolution” difference between Vj., / and Vj. Therefore, the Wj can also be called

“ detail subspaces” .

{ / (/ — k) | k e Z } , f (t) e L2(K) forms a Ricsz basis i f the following condition is satislied:

i f 0 < / ! < / / < co, then ,11| { ^ } | f <|| S ckf (t - k) ||: < It || {e* } ||2. V {ck } 6 /? (K).
ke Z

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I f we can find a function i//(t) e Wu such that

i/ / (O e (V 0 < = > i / y (f - k) e f V 0,

and the collection i//{l - k), k e Z , form an orthonormaf basis for Wn, then (//(/) is a

wavelet function or mother function. For the other subspaccs Wt, />0, we can also

define:

y //A.(/) = 2 ' /V (2 / / - / c) . (2.7)

Because we require Wf 1 V/ in Eq. 2.5, the corresponding wavelet functions and scaling

functions are orthogonal:

{VjAOWjAO) = j<PjA0- V'jAOdt = 0, j , k , l e % .

2.2.3 The Discrete Wavelet Transform (D W T)

From Eq. 2.6, we have

Zr(lR) = Vh © Wh ®WJu+l <$)■■■. wherey0 g Z .

Therefore, for a specific resolution level j Q. any function / (/) e L2(R) can be

represented as a series involving the projections o f itse lf onto the orthonormal

subspaces V and W:

= Z c/„ W ’ Vh* + Z Z c,i W ' V'j.h (') • (2-8)
A =-co A = -co y = /„

Replacing r/>7 ̂(/) and k (/) using Eqs. 2.4 and 2.7, we have

/) „ (') = Z ^ ,(A)2 Jil/> (2 ^ / - A) + X f> / , (A) 2 ' V (2 ' / ~ A) . (2.9)
A = - « > A = - t c / = y (l

Vector set {vy | £ e Z } is orthonormal , i f ^ = e>(A' - / ’) .

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Consequently, function f(t) is now expanded into a new form o f series, called a wavelet

series. The coefficients c (k) and cl j(k) are called the discrete wavelet transform

(DW T) o f the signal /(/). The c f k) represent the tow frequency components o f the

signal /(/), while the d f k) represent the high frequency components. I f the wavelet

system is orthogonal (as we assumed before), then the DW T coefficients can be

calculated as the following inner products [26]:

ci (k) = (f (0, <Pj.k (0) = \ . f (0 • <Pjy (Odt

and

d f k) = (f (t) , v jJk (/)) = \ . f { t) - i p j k { t)dt .

2.2.4 The Fast Wavelet Transform (FW T)

Since

V0 c Vt and IV0 c V, ,

<p(t) and i//(/) can be expressed in terms o f a weighted sum o f shifted versions o f

<p(2t):

XT)

<p(t) = s[2 ^ h(k) - (p f l l - k) , k e rL
k ~ - x n

— 03
i//(t) = j 2] r g(k) - (p(2 t - k) , i e Z ,

A - - c o

where the coefficients h(k) and g(k) are sequences o f real or complex numbers that

uniquely define the scaling function <p(t) and the wavelet function <//(/), respectively.

The factor V2 maintains the norm o f the scaling function unchanged.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since F/+l = V/ © IV/ . \vc can also rewrite Eq. 2.8 for any resolution level / as

./',(<)= Z AjJ - ^ . / (0 + Z r jA O -W jA O (2 . 10)

with the /lh transform coefncienls Ait and y t at stage /' defined by:

-̂J.l ~ ^ Z ^*-2/ '^J + U (2.11)

YjJ ~ Z Sk-21 ' ^i+l.k ■ (2 . 12)

The vectors o f {hk} and {g /} can be considered to be the filter coefficients o f a pair o f

low-pass and high-pass digital filters, respectively. I f these tillers are Unite impulse

response (FIR) filters, the computational complexity o f the coefficients A , and y , is

0 (t7), that is. linearly proportional to the signal length //. Compared to the DW T defined

in Eq. 2.10, the computational cost is significantly reduced. Hence, the transform

defined in Eqs. 2.11 and 2.12 is called the fast wavelet transform (FWT).

In the FWT algorithm, starting with the scaling coefficients at a given resolution

(stage), the wavelet coefficients can be calculated recursively using Eqs. 2 .11 and 2.12.

These two equations can, therefore, be implemented efficiently using the tree-shaped

filter bank structure shown in Figure 1(a). At each resolution level, the scaling

coefficients | / ly| o f the previous level are first filtered by the two half-band filters, h[n]

and g[n], and then the outputs o f the filters are decimated by a factor o f two. yielding

{Ah } and {/j-i} • The decimated low-pass filter output signal j / l^ J c a n be further

decomposed as shown in the figure. Because o f the tree-like structure o f the filter bank,

this algorithm is also known as M allat’s tree algorithm or the pyram id algorithm.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The inverse transform can be obtained by reversing the operations: the original

signal j / ^ j a t stage / can be reconstructed recursively from the lower resolution

coefficients using the following equation:

co co

^■jj ~ + ^ (Pj-\.r 'St-ir (2-13)
k=-qo

k,

k,
h[n] |— ►[12 |— ►

h[n] |— H 12 |— *k,_.

g[n]

g[n] 12 y ~ r ,j -1

12 = Down-sampling by a factor o f two

(a)

k7-2 t 2 h[-n]

7 j- 2 — H 1 2 |->| g[-n]

h[-n]

r , T2 V I g[-n]

O ► k j

1 2 = Up-sampling by a factor o f two

(b)

Figure I . Structure o f the Pyramid Algorithm,
a) Two-stage signal decomposition using analysis filters, b) Two-stage signal

reconstruction using synthesis filters, where h[n] and g|n] are the low-pass and high-
pass filter coefficients, respectively.

In Eq. 2.13, note that the filte r coefficients {//*} and {g<} are identical to those used

in Eq. 2.11-12, but they appear in the reverse order. The structure o f the corresponding

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

inverse DW T pyramid algorithm is shown in Figure 1(b). The DW T coefficients at each

transform level are First up-sampled (interpolated) by a factor o f two. and then filtered

by a pair o f synthesis (liters g[-n] and h[-n], where “ - i f ’ denotes the time reversal o f the

filter coefficients. The outputs o f both filters are summed for further composition at the

next level.

2.2.5 Orthogonal Wavelets

orthonormal. Wavelets that satisfy such conditions are called orthogonal wavelets. The

DW T coefficients {A,} and {y} o f such wavelets can be calculated by the inner products

o f the scaling and wavelet funct ions as:

According to Parseval’s theorem, the energy o f the signal .AO is equal to the sum o f the

energy o f their wavelet coefficients:

Therefore, a decomposition in the orthonormal wavelet basis is considered to be stable

because a slight change in /(/) w ill only cause slight changes in Af , and y ,.

W, 1 V,

(2.14)

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.6 Biorthogonal Wavelets

The conditions lor constructing an orthonormal basis can be relaxed to a two-bases

system, with primal and dual bases as follows:

primal: Vp Wh (pj k {t) , (//, .(/)

are called biorlhogonal bases. The wavelet coefficients % and y are calculated by the

following equation set:

The reverse transform can still be calculated using Eq. 2.13. Hence, for the biorlhogonal

wavelets, the tree algorithm can be implemented by using the dual f i lte r p a ir (h .g) for

decomposing the input signal and the prim a l f ilte r p a ir {h.g) for reconstruction.

For the biorlhogonal wavelets, Parseval's theorem does not hold, but the energy o f

the wavelet coefficients is still limited:

where 0 < A < B<co . Biorlhogonal wavelets have some special features, one o f which

is that it is possible to synthesize biorthogonal wavelets and scaling functions which are

dual: V j , W j .(p j k {t) . !//,.*(/).

Bases that satisfy the conditions

Vj 1 IV

VJ 1 Wj

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

symmetric or antisymmetric and compactly supported0. This makes it possible to use

the folding technique for boundary treatment, as w ill be described in this chapter.

2.2.7 The Two-Dimensional D W T

To calculate a higher dimensional DWT. there are two major approaches: one is the

separable algorithm, and the other one uses real (non-separable) multi-dimensional

wavelets [7|. The separable algorithm involves calculating the 1-D DW T for each

dimension independently. The structure o f the common separable 2-D DW T algorithm

is shown in Figure 2, where G and IT represent the lowpass and highpass subband

filters, respectively. We first calculate the l-D DWT horizontally on the rows o f the

input image, and then calculate the l-D DW T vertically on the columns o f coefficients

from the horizontal DW T results. Consequently, the image is decomposed into four

subbands, usually denoted by LL, LH, HL, and HH. The LL subband can then be further

decomposed recursively using the same algorithm.

Vertical DWT
Horizontal DWT LL

LH

HL

HH

Figure 2. Block Diagram o f the 2-D Separable DW T

0 For a function /(/) with “ finite energy" (J \ j (/)| < co), if/(/)= 0 when /< T\ and t> 7%, then the

interval 17T, Ti | is called the support o l'/ i and we say/has compact support,

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Intuitively, we expect that the separable 2-D DW T would be efficient for

approximating images with important details that are aligned in the vertical and

horizontal directions, but may not be ideal for efficiently representing detail in other

directions. The non-separable 2-D DWTs use real-valued 2-D wavelet bases, which can

preserve the directional information in the original image. Several methods o f

constructing the non-separable wavelet bases have been proposed [7J[18][21].

Since the computational complexity o f the separable algorithm is much lower, it is

widely used in most applications. Due to its popularity, we investigated efficient

implementations o f this algorithm in our proposed architectures.

2.3 The Lifting Scheme

While new wavelets with desirable properties are in demand, constructing them in

the traditional ways requires significant computational effort. The lifting scheme

provides a simple and efficient new method for constructing and processing wavelets

[I I] . Unlike the traditional approaches, the lifting scheme does not rely on the

frequency domain but instead constructs wavelets purely in the spatial domain. Thus,

the lifting scheme is more flexible for building wavelets for specific applications.

The wavelets constructed by the lifting scheme are called second-generation

wavelets-, wavelets restricted to the translations and dilations o f one mother wavelet

function are now referred to as first-generation wavelets or classical wavelets. The

second-generation wavelets are more general since all o f the classical wavelets can be

generated by the lifting scheme. The decomposition o f any classical wavelet filter into

lifting steps can be easily obtained via the Euclidean algorithm [20].

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3.1 Introduction to the Lifting Scheme

As described in the first section, the wavelet transform o f a signal is a multi-

resolution representation o f that signal using wavelets as the basis functions. A t each

level, the low-pass part o f the signal is decomposed recursively into a high-pass and a

low-pass part at the next lower resolution.

The lifting scheme is an efficient implementation o f these filtering operations at

each level when computing a discrete wavelet transform. Suppose we have the original

samples {/f^.] o f a signal f t) . We want to decompose, or decorrelate, this signal into the

low resolution part and the high resolution part {j7,* } - where the index

j e (-1 ,-2 ,-3 ,...) identifies the decomposition stage or level. The lifting process

consists o f three steps: split, predict, and update, as shown in Figure 3.

We begin with a trivial wavelet, called the “ Lazy wavelet", which just splits the

signal into even and odd parts. This step can be expressed as:

< (2.14)

even
> &

a

\ k ----- H Split P U

odd

Figure 3. The Split, Predict, and Update Steps in the L ifting Scheme.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Then we predict the even samples { y j k \k<=l1} from the odd samples

{ Xjk | k e Z }, based on correlation present in the original data, so that:

where P is the predict operator. This is called the real decorrelaling step.

Finally, we construct an update operator and update { A' k | k e TL} as follows:

These steps can be iterated over decreasing values o f the index j creating a multi-level

transform or multi-resolution decomposition.

The inverse transform can be performed by simply reversing the steps and

interchanging the operations + and The algorithm for the corresponding inverse

transform can be expressed as:

where n defines the range o f the decomposition stage, and the Join function refers to the

interleaved composition o f X (as odd part) and y (as even part) into a new signal.

2.3.2 Factoring Wavelet Filters into Lifting Steps

It is shown in [20] that any polyphase matrix representing a wavelet transform with

finite filters can be factored into a finite product o f upper and lower triangular 2x2

matrices, and a diagonal normalization matrix. Each o f these matrices corresponds to a

lifting step. Factoring wavelets into lifting steps can significantly improve the wavelet

(2.15)

(2.16)

r j+i,k = r j , k +P{X j k) , - n < j < n ,

i ;Lj+ lk } = do i n (Xf lk, yJ+lk)

(2.17)

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

processing speed i f the proper filters are developed. To factor an existing wavelet, the

high-pass and low-pass wavelet transform filters should first be separated into even and

odd parts. Consider the high-pass wavelet filter g(r) and low-pass wavelet filter h{z) as

follows:

g (z) = Z g /(z)
/=U

J-1

(2.18)

h { z) = ' L h j {z) (2.19)'/=0 v '

where ./ is the filter length. We can split the high-pass and low-pass filters into even and

odd parts as follows:

g U) = g e ^ 2) + * " ' £ 0 (z 2)

h (z) = he (z 2) + z ' l h0 (z 2)

The filters can also be expressed as an analysis polyphase matrix as follows:

P{z) = K i z) g r (z)

K (z) g j z) .
(2 .20)

Using the Euclidean algorithm [20], which recursively finds the greatest common

divisors o f the even and odd parts o f the original filters, each o f the filter polynomials in

the matrix can be expressed in the form f { z) - c { z) - q { z) Jrh{z) . Therefore, the forward

transform polyphase matrix P(z) can be factored into lifting steps as follows:

P (z)
mn

/= !

I 0

- s i (z ~]) 1 I

I K 0

0 K m < K. (2 .21)

where s,(zj and tj(z) are Laurent polynomials* corresponding to the update and

prediction steps, respectively, and K is a non-zero constant. The inverse DW T is

described by the following equation:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P{z)
m
n

r- 0

1 0

t j (s) 1
K
0

0

I K (2 .22)

As an example, the low-pass and high-pass filters corresponding to the Daubcchics

4-tap wavelet can be expressed as [20]:

//(z) — + /?jZ + //,z ~ + h-\Z

g(z) = -h 3z2 + h2z' - h, + /?0z_l,

where

, 1 + 73 , 3 + 73 . 3 -73 , 1-73
4 = 1 7 T 1 “ I T T 1= T / T J = 1 7 T

After separating the filters into even and odd parts, and arranging them in the form o f

Eq. 2.20, we obtain the polyphase matrix:

P(z) = P(z) =
ha+ h 2z -h 2z ~ h x

//, + l%z 1 h2z + h{)

The even portions o f the filters (polynomials in the first row) can be expressed as:

[h0 + h2z~' = (/7, + h3z~') ,v(z) + (z)

-h3z - h, = (h2z + h0)s(z) + g T (z)

One o f the common solutions o f the above equations is ,r(z) = -7 3 , so we have

P(z) =
1 - S

0 1

1 + 73 -1 + 73
72 s 2

hxJr\%i z~x h2z + h0

! A Laurent polynomial P(x) in the n variables* = (x/, Xi * „) is given by

P(.x) = ^ Pk k Xf1..X"", where Pk k 6 C and A, the support o f P(x), is a Unite subset o f
7-„

integer group Z " .

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Now, the odd portions o f the fillers can be expressed as:

We can find a common solution /(z) z . Repeating the above steps, we

can further factor the analysis polyphase matrix as:

-i

0

0

Similarly, one Daubechies 9/7 analysis wavelet filte r w ith symmetric coefficients [6]:

h.(z) = //,(z2 + z ' 2) + h2(z + z~') + h0 and /;„(z) = h3(z2 + z " ') + /7,(z + I)

can be factored as [20]:

’ l a (\ + z"')~ 1 o ' *1 y{\ + z~')~

1

Q
|

o
1

0 1 J3(\ + z) 1_ 0 1 S(\ + z) l j [o

where c t= -1.58613, (3=-0.05268, y=0.88291, 5=0.44351, and q= 1.14960.

Factoring wavelet transforms into lifting steps can significantly reduce the

computational cost. Asymptotically, for long filters, the cost o f computing the lifting

algorithm is roughly one half o f the cost o f the standard algorithm using the original

filters [20]. For the 9/7 wavelet filter example given above, the computational cost for

each wavelet coefficient is five multiplications and four additions. Compared to the

traditional M a lla fs tree algorithm, which costs 14 multiplications and additions, we

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

have a speedup o f 56%. Consider a general wavelet filter which is not symmetric, and

whose low-pass and high-pass llllers have |//| = 2/Vand |g| = 2M taps, respectively. The

cost o f the standard algorithm is A(N+M)+2. Assuming |/?t,| = N, \/i0\ = N -1. |g,.| = M, and

|#„| = M -1, we can factor the It,,) pair into N steps with the degree o f each quotient

set equal to one (i.e.. \q,\ = I for 1< / <N). The fe , g„) pair can be factored into M -N +1

lifting steps [20]. So the total cost o f the lifting algorithm is: 2 (scaling) + 4x/V + 2x(M-

yy + M - \
N + \) = 2(M +N+2) operations. So we have a speedup o f --------------- = 100% as the

N + M +1

length o f the wavelet filter increases. Table 1 lists some examples o f such comparisons

[20].

Table I. Computational cost o f the lifting versus the standard algorithm for calculating a
pair o f wavelet coefficients

Wavelet Standard (ops) L iftin g (ops) Speedup

Haar 3 3 0%

D4 14 9 56%

D6 22 14 57%

9/7 23 14 64%

B_spline 17 10 70%

|h|=2N, |g|=2M 4(N+M)+2 2(N+M+2) * 100%

2.4 Comparison of the Classical D W T anti the Lifting Scheme

We can construct both orthogonal and biorthogonal wavelets using the classical

algorithms [2][6], but we can only build biorthogonal wavelets using the lifting scheme

[17]. However, the relatively easy construction o f the lifting wavelets makes them

attractive for many applications [I 11. In addition, constructing wavelets on an interval

(boundary wavelets) using the lifting scheme requires much less effort and

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mathematical training than doing it in the classical way [9] [l l] , The comparison o f

classical wavelets with wavelets constructed using the lifting scheme (second

generation wavelets) is summarized in Table 2.

Although all classical wavelet (liters can be factored into lifting steps, the derived

lifting wavelets are no longer the same ones. One obvious reason is that all orthogonal

and biorthogonal wavelet filters w ill be factored into orthogonal lifting steps. We did an

experiment to demonstrate the difference. We calculated the one-stage D-4 DWT

coefficients o f an input series (.v,,/ = 1, 2 ,.... 100) using both the standard algorithm and

the lifting algorithm. The results are shown in Figure 4. Note that the coefficients

generated by these two kinds o f wavelets are similar but not identical. The lifting

algorithm generates larger high frequency components and smaller low frequency

components. This can also be seen by comparing the subimages o f an image (Lena

512x512) decomposed by the two wavelets (as shown in Figure 5) and their energies

(in Table 3).

Table 2. Comparison o f the classic wavelet and the second-generation wavelet

Classical Wavelets Second-generation Wavelets

Orthogonality Orthogonal/Biorthogonal Biorthogonal

Computational
Complexity

High Low

Construction o f
Wavelets on an

Interval

D ifficu lt Relatively Easy
(By polynomial

subinterpolation)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

160
-• standard algorithm
- lifting algorithm

120

100

■ 3

Q, 60

-20

-40
100

/

Figure 4. Comparison o f the DW T Coefficients Computed by Classic Wavelets and
L ifting Scheme

Table 3 Energy o f the subimages generated by the standard and lifting D-4 DWT

Standard D4 Lifted D4
Stage LL LH ML HH LL LH IIL HH

xIO9 XIO9 xl()9 x io 9 xIO9 xIO9 xIO9 xlO°

1 839.3 4.6270 2.406 1.807 29.04 4.6039 3.768 2.469

2 2366.6 4.6094 4.904 3.632 43.73 4.5556 6.924 4.420

3 5593.6 4.5771 9.382 7.165 71.13 4.4786 12.624 8.121

4 9936.5 4.5173 18.494 13.805 123.57 4.3579 23.084 14.902

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) Subimages generated using the standard Daub-4 wavelet

t'o 100 to o :o o :-oo ooo : f •*o

(b) Subimages generated using the Daub-4 wavelet after being factored into lifting steps

Figure 5. Comparison o f Subimages Generated by First (classical) and Second
Generation Wavelets.

2.5 Boundary Treatment

Filter bank algorithms usually assume that the signal lengths are infinite. However,

signals in the real world do not extend infin itely in time or space but are limited to finite

intervals. Generally speaking, simply padding or extending the finite original signal

w ith zeros is not appropriate since this would lead to more wavelet coefficients than the

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

original samples. I f one truncates the transformed function (which is equivalent o f

padding zeros to both ends o f the signal) to yield the same number o f wavelet

coefficients as samples, the resulting transform w ill badly distort the signal (especially

on boundaries) and thus render perfect reconstruction impossible using an inverse

transform. What we need is some kind o f safe signal extension, or to take into account

the finiteness o f the signal by changing the transform (using boundary wavelets) near

the boundaries o f the signal. Because boundary wavelet filters require changes in the

filter structures, using signal extension is more appropriate and easier for hardware

implementations. In this section, we w ill review signal extension methods for the DW T

[52],

2.5.1 Classical Extension Methods

In classical signal processing applications, it is common practice to extend the data

for the computations near the finite signal border by replicating the signal using one o f

the following three methods:

Zero Padding Extension

The simplest solution is the zero padding extension o f a signal: extending the signal

by simply padding zeros at both ends o f the signal. However, the number o f DW T

coefficients generated by this solution is usually larger than the number o f the signal

samples, hence distortion is inevitably introduced in the reconstructed signal. The zero

padding extension can only be implemented in limited situations, such as when the

distortions at the intervals (boundary) o f a signal can be ignored.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Periodic Extension

A second extension method is the periodic extension o f the signal: considering the

signal as one period o f a periodic signal. After the wavelet transform we can simply

discard the coefficients outside o f the interval in which the original signal was defined.

Since the compulation o f a wavelet transform is the convolution o f the original signal

w ith a FIR filter, the transformed coefficients also represent a periodic signal with the

same period as that o f the original signal, and thus the original signal can be recovered

w ithout any problems. However, unless the first and the last samples have the same

value, we w ill have introduced unwanted discontinuities at the boundaries o f the

original signal. These discontinuities w ill generate larger wavelet coefficients in the

higher frequency region and thus make compression o f the signal less efficient.

Symmetric Extension

For biorthogonal wavelet transforms, a better solution is the symmetric extension

o f the signal: we extend the finite signal by mirroring it around its endpoints, which

makes the discontinuities disappear. But the higher order derivatives may still be

discontinuous at the endpoints. Symmetric extension can be considered to be the same

as periodic extension applied to a concatenation o f the original signal and a mirrored

copy o f the original signal. Hence after filtering, one has to retain twice as many

coefficients. Fortunately, one can discard half o f them i f the filters are symmetric,

yielding the same number o f coefficients as the original signal length. The calculation

o f the DW T using symmetric extension is also called wavelet folding because it is

equivalent to folding the wavelet filter symmetrically at the edges o f the signal

intervals.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

While the periodic extension o f a discrete signal is straightforward and unique,

there are lour possible ways to extend a discrete signal symmetrically. Figure 6 shows

the four resulting possible symmetric signal extensions. However, to ensure to get a

perfect reconstruction, one has to apply the correct extension in every step o f the

decomposition and reconstruction.

extension signal extension

even e> © © ! • • • •
odd O o; O O O o; O O OJ O O O

FELO FELE

o

even ® •
odd o

• • • ; © © ® i
o o o o; o o |o o o ;o

FOLO FOLE
FELO First even, last odd; FELE First even, last even;
FOLO First odd. last odd; FOLE First odd, last even.

Figure 6 The Four Possible Cases o f Symmetric Signal Extension Using Lifting.

2.5.2 Signal Extension with Lifting

A very nice property o f second-generation wavelets is that symmetric extension is

always possible. We are no longer lim ited to symmetric (biorthogonal) wavelets. Even

i f one has a lifting decomposition for a non-symmetric wavelet Filter bank (e.g.

orthogonal Daubechies wavelets), the implementation using lifting steps can use

symmetric extension.

The simplest zero padding extension is also applicable for many second-generation

wavelets. As introduced above, factoring classic wavelet transforms into lifting steps is

actually replacing the longer wavelet FIR Filters with a series o f shorter FIRs, which can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be two- or three-tap filters in most cases. The factored shorter FIRs are obtained by

repeatedly applying the Euclidean algorithm, which finds the greatest common divisor

of' the even and odd parts (which can be expressed as polynomials .Yt.(r2) and x„(z2),

respectively) o f the original longer FIR. Also, it w ill always be true that |xc(z2)|-

|x„(z")|<=l (the difference o f the degrees o f the two filters), so we can always factor a

classic wavelet into short FIRs not longer than three taps. But it is well known that

signal extension is not necessary for two-tap wavelets, like the Flaar wavelet. Thus, we

can deduce that zero padding can be used in calculating the lifting schemes as long as

each factored step is not longer than three taps.

As shown in Figure 7. when a three-tap predict FIR filter (assuming it is causal)

convolves with a four-sample signal (.v„ /= 0 ,1,2,3), the final result after decimation is

H i, l b and 1-13. So the odd samples o f the original signal and the padded zeros are

updated to II], lb , and H3 while the even samples remain unchanged. Similarly, the

update filter updates the even samples to L|, L2. and L3 . Since the inverse wavelet

transform is just the inverse o f the forward transform, as introduced above, the even

sample xo can be restored by multiplying the update FIR filter with the padded zero,

DW T coefficients Hi and L|. Further, the odd sample x/ can be restored from 0. H i, and

the sample xo, which is restored in the previous step. Similarly, samples x? and Xj can be

reconstructed using the coefficients M], lb and L2. We can observe that the DWT

coefficients I I 3 and L3 are redundant, and we can also reach the similar result for the

non-causal filters (or one is causal and the other is non-causal) generated by the

factoring process. Thus zero padding can be implemented while maintaining perfect

reconstruction (PR) o f the original signal. Zero padding avoids the extra storage

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

required by other signal extensions and the complicated wavelets on the interval, and

hence tends to result in a simpler hardware implementation.

Even samples Xo X 2

Odd samples q V/ v
V__________ A________ K_

Y Y

D W T coefficients (High frequency) 0 Hi H2 I I3
x 1 xj 0

V A A i
Y Y Y

D W T coefficients (Low frequency) L| L2 L3

(a) Forward Transform

D W T coefficients (Low frequency) L| L2 L3

D W T coefficients (High frequency)_________ 0̂ _______ Hi I I2

Y Y

X l .Vj

D W T coefficients (High frequency) 0 1 11 H2 H3
_A.V Y

-Vo A?

(a) Inverse Transform

Figure 7. Zero Padding Extension for Short FIR Filters

 1 r Predict

>. Update

J

| . | 3 r Update

. Predict

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

Chapter 3

Review of Existing Wavelet
Architectures

W illi the widespread acceptance o f the wavelet transform in more and more

applications, especially its important role in the next generation image and video

processing techniques, efficient hardware implementations o f the transform are

attracting more and more attention. The DW T algorithms described in the previous

chapter can be conveniently implemented on modern computers or microprocessors

using a high-level programming language, such as C or BASIC. However, the

computational complexity o f calculating the DW T algorithms, especially the m ulti

dimensional transforms, precludes most general-purpose microprocessors from real

time applications.

Digital Signal Processors (DSPs) tend to be much more efficient in demanding

DW T and IDW T computations because their structures are optimized for convolution

computations, which are essentially the basic computations for the fast DWTs. As a

matter o f fact, the DSPs have been widely applied to speed up the DW T calculation in

many applications [28|[29|[30|. To improve the efficiency o f DSP implementations, it

is critical to shorten the access time for the intermediate DW T coefficients, which are

processed recursively in the DW T algorithms. This is even more important for the two-

dimensional, or higher dimensional applications. Excessive or poorly scheduled data

transfer between a DSP and its memory, especially external off-chip memory, w ill

35

with permission of the copyright owner. Further reproduction prohibited without permission.

greatly slow down the computation speed. Therefore, the best DSP implementation may

not be as straightforward as a high-level computer implementation, i f maximum

efficiency is to be achieved.

We developed a l-D DW T implementation on DSP-RAM [29]. DSP-RAM is a

single instruction, multiple data (SIMD) processor with an array o f simplified DSP

processors tightly coupled with SRAM local memories [51], Our implementation fully

exploits the parallel processing and linear array architecture o f DSP-RAM, and is

capable o f efficiently computing l-D DW T pyramid algorithms.

Although conventional DSP processors are faster and more efficient in the DW T

computation, they are not necessarily suitable for applications requiring low power

consumption, low cost, and compact size. In such cases, utilizing dedicated circuits

specially built for processing the DWT may be more appropriate. Because the data

paths o f the dedicated circuits are optimized for the DW T computation, and their

control paths are simpler than the instruction execution logic in DSP processors, they

can normally not only process the DW T more efficiently in terms o f hardware

utilization and power consumption but much faster (provided they operate at the same

system clock frequency). Much previous work has described attempts to design efficient

DW T architectures based on M allat’s tree algorithm. Recently, a few architectures based

on the lifting DW T have been published. Since the lifting steps can be implemented

with ladder type data flow structures, the natural lifting architectures are different from

the direct FIR implementations. In the following sections, we w ill first review some

typical classical architectures based on Mallat's algorithm, and then introduce the lifting

architectures that have been published in recent years.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1 Classical Architectures

An early DW T architecture was Knowles’ multiplexer-based architecture

published in 1990 [4], as shown in Figure 8. The rectangles on the top o f the figure

represent register arrays. This architecture uses these serial-in-parallel-out register

queues to store the input signal samples {s(i)} and the low-pass filter outputs o f each

DW T stage. A multiplexer (mux) selects the outputs o f the queues (register arrays), and

feeds them to the high-pass (labeled G) and low-pass (labeled H) DW T filter pair. The

outputs ({c tm}, where m denotes the DW T stage) o f the low-pass DW T filter are

dispatched to the queues by a demultiplexer (demux) unit. The high-pass DW T filter

products {cm} are sent to the output directly. The advantage o f this architecture is that

the data flow is regular, hence, it is efficient and relatively easy to implement in

hardware.

m ux

G F ilte r

Figure 8. Knowles' Mux Based DW T Architecture [4]

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Not long after Knowles proposed the mux-based DW T architecture, he and Lewis

proposed possibly the first 2-D DW T architecture [5 1. They analyzed the characteristics

o f the Daub-4 wavelet, and found that the multiplication computations in the Daub-4

DW T can be replaced by shift and add operations. Hence, the total number o f transistors

required to implement the convolver is only about one eighth o f the number o f a

conventional convolver design. The exploitation o f the Daub-4 DW T filter coefficients

in this way is certainly a clever invention, but implementing the same technique on the

other DW T filters is not feasible.

For processing the edges o f an image, they proposed a data scan method, which

snakes through the data, and reverses the scan direction on alternate lines. In this way,

the input data stream is continuous as consecutive samples are only one pixel apart.

Since the filter they proposed is not phase linear, the wavelets must be reversed at line

changes. To reverse the wavelet, the signs o f the coefficients in the normal

reconstruction DW T filters are altered across the edges o f the image. This solution for

the boundary treatment is innovative and efficient for the multiplierless architecture.

However, reversing the wavelet on each line means a extra set o f DW T filters for other

architectures.

Many more DW T architectures have been proposed since 1992. Two types o f

representative wavelet architectures, namely the folded architecture and the digit-serial

architecture, were proposed in [8], This folded architecture is shown as Figure 9. The

delay array on the left side o f Figure 9 is a serial-in-parallcl-out register queue; the

register array on the right side is a FIFO register array with output ports at each register.

The outputs o f the delay array are sent to the high-pass (i.e. G) and low-pass (i.e. 11)

38

with permission of the copyright owner. Further reproduction prohibited without permission.

DW T fillers at every other clock cycle. The high-pass filter outputs arc shifted out as

the final DWT coefficients; the low-pass filter outputs are shifted to the register array.

The switch network selects input data for the DW T filters from the input delay array

and the register array.

The folded architecture o f the synthesis filter is sim ilar to that o f the analysis filter.

The major difference is that the structure o f the input array o f the synthesis filter is also

a register array, which converts the input data to the format (or sequence) required for

the DW T synthesis computation.

The hardware utilization o f the folded architecture is relatively high, but the

interconnection network and the control circuit are complex. It is more suitable for

applications that are sensitive to processing latency, and require the computation output

as early as possible.

OUTIN

H Filter

G Filter

Switch
Network

Figure 9. The l-D Folded Analysis Wavelet Architecture Proposed in [8]

The digit-serial architecture can further improve the hardware utilization efficiency

and reduce the interconnection overhead in the folded architecture. The digit-serial

circuit only processes part o f the word-length o f each sample at each clock cycle. The

number o f bits processed per clock cycle is called the digit size. I f the digit size is I.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

then the digit-serial architecture becomes a bit-serial filter; i f the digit size is the same

as the word length, it becomes a bit-parallel filter. A diagram o f a three-level digit-serial

analysis wavelet filter is shown in Figure 10. In this example, the digit size for the first

DW T stage is ha lf a word-length. The second DW T stage filter is one quarter o f a word-

length; the third stage is one-eighth o f a word-length, and so on. In such way, the

process time o f each sample doubles for every higher DW T stage. Therefore, the

process time for each DW T stage remains the same.

By implementing filters o f different digit sizes for different levels o f the wavelet

analysis or synthesis, the digit-serial architecture can achieve complete hardware

utilization and requires simpler routing. The drawback o f this architecture is the

increase o f the system latency, and the constraint on the word length selection. The

word length must be multiple o f 8 or 16 for a 3-level or 4-level DWT, respectively.

I.IiVFL 2

t
W/4

1

| W/8

1.HVF1. I LHVFI. 3

Figure 10. The Diagram o f the l-D Digit-Serial Architecture [8]

The proposed systolic architecture in [16], as shown in Figure I I , is an

improvement over the digit-serial architecture described above. One feature o f the

systolic architecture is that it computes both the high-pass and the low-pass frequency

coefficients in the same FIR filter to achieve high hardware utilization efficiency. The

40

I I Filter

G Filter

H Filter

G Filter

FI Filter

G Filter

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

systolic architecture consists o f a (liter unit, storage units and a control unit. The filter

unit is a FIR filter reconfigured alternatively at different times as either the high-pass or

low-pass (liters by changing the coefficients at each tap. The control unit directs the

data flow between the storage units and the (liter, and changes the coefficients in the

(liter accordingly. The design o f the control unit is similar to that o f the folded

architecture [8] introduced before. The single filter structure o f the systolic architecture

improves the efficiency and reduces the hardware complexity, but it also increases the

processing latency.

C> MUX

Switch
Network

OUT

INPUT D ELAY

Figure 11. A Systolic Wavelet Architecture [16].

To reduce the latency, a parallel filter architecture implementing a modified

recursive pyramid algorithm (M PRA) is proposed in [10], In the MPRA schedule, the

lower DW T stages (octaves) are performed before the higher octaves in order to avoid

possible clashes. I f the first output o f any octave is scheduled such that there is no

conflict with any o f the lower octave outputs, then it is guaranteed that there w ill be no

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

conflict w ith all o f the outputs o f that octave. The scheduling is critical for reusing the

same filters for different octaves.

The proposed parallel filter architecture for a l-D DW T is shown in Figure 12. The

architecture contains two Z,-tap parallel filters to compute the low-pass and the high-

pass outputs, and a storage unit o f size LJ to store the input samples that are required to

compute the ./octave outputs.

The parallel filter architecture for a 2-D non-separable DW T implementing the

MRPA algorithm is shown in Figure 13. The 2-D parallel filter architecture contains

two programmable parallel filters. Each filter consists o f Z.2 programmable multipliers

and (I? - I) adders to sum up the products. One filter computes the outputs o f two

coefficient bands (LL and LH, or ML and HM). The outputs o f the lowest band (LL) o f

each DW T stage (octave) are stored in one o f the shift register arrays. The sizes o f the

register arrays are shown in Figure 13, where N is the width o f the input image.

> OUT

— •

H Filter G Filter

Shift R eg ister

Shift R eg ister

Shift R egister

Figure 12. The Parallel Filter Architecture for l-D DW7’ [10].

The first octave is computed at every other cycle, and the higher octave

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

compulations arc interspersed between the first octave computations. Since the tille r

size is L x L , the delay in the parallel fille r is different for each octave. Consequently,

the time when the first output o f each octave being computed is different: the higher the

octave, the longer the compulation delay.

In [32], two l-D DW T architectures are proposed that use the polyphase

decomposition technique and the folding technique, respectively. The polyphase

decomposition technique exploits the decimation o f the fast DW T algorithm by

separating the filter coefficients into even-order and odd-ordcr parts. In the even clock

cycles, the input data are fed to the odd part o f the filter; in the odd clock cycles, the

input data are fed to the even part. The outputs o f the even and odd parts are summed to

produce the output, as shown in Figure 14. Compared to the direct implementation o f

the DW T algorithm, the polyphase decomposition filter can reduce the processing time

by a half.

ML and MM

OUT
Parallel FilterParallel Filter

Shift Register Arrav
(A x / .)

Shill Register Arrav
(N12 xL)

Shill Register Arrav
(.N/2'xL)

Figure 13. Block Diagram o f the 2-D Parallel Filter Architecture [10].

The filter shown in Figure 15 employs the coefficient folding technique. Each set

o f multipliers in the architecture is shared by two coefficients. The switches route data

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

through the datapath. Because most o f the components o f the filter are shared, the

coefficient folding architecture reduces the hardware cost o f the datapath by

approximately one half.

IN

OUT

I I Register \y Multiplier (3 Adder

Figure 14. The Decimation Filter Employing the Polyphase Decimation Technique [32].

IN

-► OUT

Figure 15. Decomposition Filter Employing the Coefficient Folding Technique [32],

One advantage o f the polyphase decomposition technique is speed, and a feature o f

the coefficient folding technique is high hardware utilization rate. Combining these two

techniques can produce a fast and efficient DWT architecture. The proposed 2-D

architecture consists o f a transform module, a RAM module, and a multiplexer. The 2-D

transform module employs two folded filters for computing the row transforms (high-

pass and low-pass), and four parallel filters for computing the column transforms

(decomposing the row transform results into LL, LH. ML, and I II I bands). The outputs

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o f llie first stage are stored in the RAM bank and are further decomposed alter the

computation for the first stage is done. The advantages o f the proposed architecture are

near 100% hardware utilization, fast compulation time, regular data How, and low

control complexity.

3.2 Existing Architectures Based on the Lifting Algorithm

One o f the earliest hardware implementations o f the lifting algorithm is the parallel

architecture proposed by Jiang et al. [22J. The proposed parallel architecture, namely

Split-and-Merge, adopts a new Boundary Postprocessing technique, which ensures that

the boundary samples are transformed correctly. The basic idea o f the technique is to

model the DW T as a Unite machine that updates each raw input sample progressively

into a wavelet coefficient. The new boundary processing technique reduces the

otherwise significant communication overhead that normally hampers the efficiency o f

parallel systems. As a result, the proposed parallel architecture requires data to be

communicated only once between neighboring processors for any arbitrary level o f

wavelet decomposition.

The computation procedure o f the parallel architecture is as follows. The first step

is the split operation: the input data are separated into two sets and sent to two

processors. The second step is the merge operation: the data are analyzed/synthesized,

and the processed states and results are stored in the registers. The state information

from the neighboring processor is then combined together with its own corresponding

state information to complete the whole DW T computation.

Since only one inter-processor communication is necessary to exchange boundary

state information to compute the DWT, the proposed parallel algorithm improves the

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

efficiency o f the lifting scheme implementation on a parallel processing network. The

drawback o f Jiang’s parallel architecture is the same as the other parallel processing

implementations: large size and complex communication network.

IN

'A n
OUT

UK

Figure 16. l-D Folded Architecture [33],

In 2001, Lian el al. proposed a folded architecture to improve the hardware

utilization [33] for 5/3 and 9/7 filters. The folded architecture exploited the symmetry

and decimation o f the wavelet filters by using just ha lf o f the hardware necessary for the

standard lifting filter. The diagram o f the proposed folded architecture is shown in

Figure 16. It is sim ilar to its classical filter counterpart [32] in the way that both reuse

the common processing units in the datapath to improve the efficiency o f hardware

utilization. Although the folded architecture appears to be able to achieve 100%

hardware utilization rate, the actual utilization may be much less that. For example, the

scaling multipliers are used only once at each stage, so its utilization rate is 50% or less

for filters that have more than two lifting steps. Since the multipliers are the largest

components in the l-D filters, the utilization o f the scaling multipliers should not be

ignored. Another possible drawback o f the folded architecture is that it might consume

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

more power Ilian the standard architecture due to the more complicated interconnection

and more frequent signal switching o f the DW T filter coefficients, etc.

Andra el al. proposed an architecture that computes one level o f the separable 2-D

DW T at a time [34]. The architecture contains two row processors to compute along the

rows and two column processors to compute along the columns, as shown in Figure 17.

Each row or column processor is constructed according to the basic computation

architecture illustrated in Figure 18. The basic architecture is composed o f adders, a

multiplier, and a shifter. The shifter is used to carry out the scaling step.

EXT. MEM

► MEMORY 1
1 1

R Pl -► R E G l -► RP2

1 1
MEMORY2

1 1
- C P I -> REG2 -► CP2

14.subbund

11,111.4111

RP Row Processor CP Column Processor RP.G Register

Figure 17. Block Diagram o f the 2-D Architecture in [34].

To compute the 2-D DWT, the architecture inputs a block o f size NxAM rom

external memory, and writes to M E M O R Y]. The row processors RP1 and RP2 read in

the data from M EMORY I, compute the horizontal DWT. and write the results to

MEMORY2. When there are enough data for processing in MEMORY2, the column

processors start calculating the vertical DWT. The decomposed subbands LI I, ML, and

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MM are sent to the output, and the LL subband is fed back to M EM ORY! for the next

level o f decomposition.

The major drawback o f this architecture is that the dataflow is irregular for filters

with 2M lifting steps and filters with AM lifting steps. For the 2M filters, the LL

subband is generated at C PI; for the AM filters, the LL subband is generated at CP2.

Since the architecture is designed in such a way that the LL subband can only be written

to MEMORY I through C'P2, the LL subband has to be sent to CP2 through

MEMORY2 first. Hence, there is significant latency for the 2M filters.

/ ' ' !Shin »..... >

Figure 18. Basic Architecture o f Each Processor.

MAC n+1

MAC

Type tType s

Figure 19. Basic Circuits for the Parallel Architecture Proposed in [35],

The parallel architecture proposed by Arguello et al. [35] is a configurable

architecture that is capable o f computing a wide range o f wavelet packet transforms,

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with variations in the type o f fillers, the number o f stages, and the form o f the tree-

structured filter bank. The architecture is a folded filter which requires that the input

data be stored previously in a memory. It is not designed to provide minimum latency

between the input and output. To achieve a configurable 11 Iter, the proposed architecture

employs basic ,v and t circuits (where ,v and t are FIR filters (polynomials) expressed as

in Equation (2.22)) as building blocks, which are shown in Figure 19. They can perform

the basic operations listed in Table 4. The advantage o f this architecture is f le x ib ility ,

and the modular design is easy to implement in l-D designs. The drawback o f the

architecture is that it usually takes more cycles to compute the DW T transforms than the

standard lifting algorithm [20].

Table 4. Basic operations that are carried out by the proposed architecture to compute
the lifting steps

Type v Type t
a„+ Kbn bn + Pan
a„+ Lb„-i bn + Qa„+i

ACC + Lb„_i ACC + Qan+i
a„+ M(bn+ bn.|) b „+ R(an + an+i)

Nan 1/N.bn

In this chapter, we presented some representative DW T architectures ranging from

the classical filters that implement M allat’s algorithm, to the recently proposed lifting

architectures. Each o f these architectures has its own advantages. Some are efficient in

hardware utilization, some feature fast computation, and some require less silicon area

to implement. However, there is still room for improvement and innovation to design

even more efficient architectures. In the following chapters, we w ill propose efficient

architectures based on the lifting algorithm.

49

with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Proposed l-D Architectures"

To implement the lifting algorithm described in Chapter 2, the input signal has to

be first separated into even and odd samples. Each pair o f input samples (one even and

one odd) is then processed according to the specific analysis polyphase matrix. For

many applications, the data can be read no faster than one input sample per clock cycle,

so sample pairs are usually processed at every other clock cycle. Hence, this is a

lim itation on the speed and efficiency o f a direct implementation o f the lifting scheme.

To overcome this bottleneck, the proposed recursive architectures exploit the available

idle cycles and re-use the same hardware to recursively interleave the DW T stages. The

dual-scan architectures thus gain efficiency by keeping the datapath hardware busy with

two different streams o f data.

4.1 The l-D Recursive Architecture

Because o f the down-sampling resulting from the splitting step at each stage in the

lifting-based DWT, the number o f low frequency coefficients is always ha lf the number

o f input samples from the preceding stage. Further, because only the low frequency

DW T coefficients are decomposed in the dyadic DWT, the total number o f the samples

to be processed for an /.-stage l-D DW T is:

A (l + !/2 - t- l/4 + --- + l / 2 ; ' ') = /V (2 - l/2 '- |)< 2 A ', (4.1)

* The architectures described in this chapter were published in references |36||47|.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where N is the number o f the input samples. For a finitc-length input signal, the number

o f input samples is always greater than the total number o f intermediate low frequency

coefficients to be processed at the second and higher stages. Accordingly, there are time

slots available to interleave the calculation o f the higher stage DW T coefficients while

the first-stage coefficients are being calculated.

4.1.1 Design Details

The recursive architecture (RA) is a general scheme that can be used to implement

any wavelet filte r that is decomposable into lifting steps [36], As l-D examples w ill

describe RA implementations o f the Daub-4 and 9/7 wavelet filters. In the next chapter,

we w ill show how the RA can be extended to 2-D wavelet filters. Theoretically, the RA

can be extended to even higher dimensions in a similar way.

The RA is a modular scheme made up o f basic circuits such as delay units, pipeline

registers, multiplier-accumulators (MACs), and multipliers. Since the factored Laurent

polynomials s,(z) and t,{z) for symmetric (biorthogonal) wavelet fillers are themselves

symmetric, and those for asymmetric filters are normally asymmetric, we can use two

kinds o f MACs to minimize the computational cost. The MAC for asymmetric filters

Figure 20. M AC for Asymmetric Wavelet Filters

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(shown in Figure 20) consists o f a multiplier, an adder, and two shifters. The symmetric

MAC (shown in Figure 21) has one more adder than the asymmetric MAC. The shifters

are used to scale the partial results so that accuracy can be better preserved.

Different kinds o f lifting-based DW T architectures can be constructed by

combining the four basic lifting step circuits, shown in Figure 22. For the sake o f

simplicity, the shifters are omitted in Figure 22 and the figures hereafter. The general

construction has the following steps:

Step 1: Decompose the given wavelet 11 Iter into lifting steps [20],

Step 2: Construct the corresponding cascade o f lifting step circuits. Replace each delay

unit in each circuit w ith an array o f delay units. The number o f delay units in the array

is the same as the number o f wavelet stages.

Step 3: At the beginning o f the cascade construct an array o f delay units that w ill be

used to split the inputs for all wavelet stages into even and odd samples. These delay

units are also used to temporarily delay the samples so that they can be input into the

lifting step cascade at the right time slot. Two multiplexer switches are used to select

one even input and one odd input to be passed from the delay units to the first lifting

step.

Step 4: Construct a data flow table that expresses how all o f the switches are set and

Figure 2 1. M AC for Symmetric Wavelet Filters

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

how the delay units are enabled in each time slot. There is latency as the initial inputs

for the first wavelet stage propagate down through the cascade. A free time slot must

then be selected to fix the time when the inputs for the second wavelet stage w ill be sent

into the cascade. A ll higher order stages must also be scheduled into free time slots in

the data How table.

Step 5: Design the control sequencer to implement the data flow table.

a + bz'1 a + bz a fl+z '1) a(l+z)

Figure 22. Circuits for the Basic L ifting Steps

The RA in Figure 23 calculates three stages o f the Daub-4 DWT. while the RA in

Figure 24 calculates the three-stage 9/7 DWT. Because the control sequence o f the RAs

for all wavelets is similar, we w ill discuss the operation o f the RA for only the Daub-4

DW T in more detail.

In Figure 23, the input registers R, (/-1 ,2 ,..., L) and R', (/=3,..., L) hold the input

values for the /"’ DW T stage. Thus the first stage coefficients can be calculated at every

other clock cycle and the data for the other stages can be fed into the lifting step

pipeline during the intervening cycles. Using xy to denote the /"’ coefficient o f the /"’

stage, the DW T coefficients can be calculated in the order shown in Figure 25.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

EnR,.

EnR-?

EnR2

EnRi

Input —£

EnR3

EnR]j

R|„

R3

el.
e fw S I

EL E 2 ^ E3

Ri

V1V
Te, VH

- 0

°L

W EnD,

EnD2

(p E4T /
S4

°2-

R 4 - •

03 T• • •

R‘i

Ol

S2
0|.

0 02 03

EnE>3 - j—I

EnDL

D,

D2

D,
r1̂ S3 04

D|.

a •=-V3 , P = V 3 /4 ,y = (V 3 - 2) / 4 , A , = l , iy=(V3+l) /> /2

Figure 23. l-D Recursive Architecture for the Daub-4 DWT. “ R-’ represents registers,
and “ D” represents delay units. “ Sj” represents control signals for the data How.

EnD,.

EnD-,,

IJnR, -

EnR3 .

EnR, _

H n R |-

In jw t-

1-nRj _

l-nR|__

R|.

l<2

SI EnD,

U» Hn,\a
3 f c, NN

Oh,
- J a j r . a
f e t e ’s ^ .

RnDlr- f

PinV ill aUl|

D u

e -
EnD-,

W '-nDin;

p £ « 4 -
HnD-j

EnD,,

A
-A

0||,
qib

EnD,

EnD,
NN '

Wp7K.qh

Oh

= f e , S5

0 [,

-e - - H r - l

linOirt -

" '■ n T X f

A

03J

0 |,|

S6

a = -1.58613, p=-0.05268, y=0.88291,8=0.44351 <5=1.14960

Figure 24. 1 -D Recursive Architecture for the 9/7 DWT.

-> II

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

------------------------------ ► Calculation Order

^denotes an idle clock cycle where no coefficient is calculated

Figure 25. l-D DW T Coefficient Computation Order

The input registers also synchronize the even and odd samples o f each stage. Since

the first two stages can be immediately processed when the odd samples are ready, no

input register is needed for the odd samples for these two stages. Register D, is a delay

unit for the /'lh stage. After splitting the input data into even and odd parts, the Daub-4

DWT is calculated step-by-step as shown in Table 5. In Table 5, En and 0 „ are the

outputs o f each lifting step; <?_,; and o_,; denote the even and odd intermediate results

o f each lifting step. Since the architecture is pipelined by each MAC unit, the outputs o f

each lifting step are synchronized. As an example, the calculations o f the first pair o f

DWT coefficients are listed bellow:

EI • -Vi = -Vi

01- -'(|.2 = -V0,2

E2: e.u =

02: o_u =«.Y0 l-i-.vn2

^ 3 - e - i . i = P ° - \ I T ^ - i . 1

03. o_| | =o_ j,

E4: ff.u = r 'V o _ ,.l +e_u

04: o ,, = z-'o.,.,

Low frequency DW T coefficient /:/_ ,, = coe_] ,

High frequency DW T coefficient //: //_,, = u(Ae_t , + o _t ,) .

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tabic 5. Data Flow for the Three-Stage l-D Recursive Architecture
X / / is input signal, i and j denote the stage and the sequence, respectively: <?_, y and o . are even and

odd intermediate results o f each lilting step: /_, ; and //., ; are low and high frequency DWT eoeflieients

Clk Input E) ; O) E, Oi e3 ; Oj e4 ; O4 I ■Ji Stage
1 Xo.l
2 Xll.2 Xo.l :Xo.2
J Xo.3 0 -u .0-1.1
4 x ,u Xoj :x 0.4 0-1.1 .0-1.)
5 Xo.5 e-1.2 : 0-1.2 0-1.1 ; O-i, 1 ■
6 Xn.r, Xo.5 .■Xo.i; 0-1,2 ; 0-1,2 u , 1
7 X,l. 7 e -u 0-1.3 0-1.2 .0-1.2
8 Xu.x Xo.? :x o.s 0-1,3 ; 0-i,3 1-1.2 ; U .2 ! 1
9 Xo.v l . u I-u 0-1,4 0.,.4 0-1.3 : 0-1.3
10 Xii./ii Xo.9. Xo II) 0-2.1 ■0-2.1 0-1.4 0-1.4 1-1.3 3 I
11 Xo.il 0-1,5 ■0-1.5 0-1.1 0-1.2 0-1.4 0-1.4
12 Xo. 12 Xo.ll Xo.l 2 0-1.5 ■O-l.S 0-1.1 0-1.2 l - t j ll-t.4 1
13 Xo.13 Us U.4 0-1.6 0-1.6 0-1.5 • O-i.s U l h.2.1 2
14 Xo. I I X iu 5 ■Xo.l 4 e . n 0-2.2 0-1.6 0-1.6 1-1.5 h-,.5 1
15 Xo. 15 0-1.7 0-1.7 0-2.2 0.1 1 0-1.6 0-1.6
16 X o. 16 Xo.l 5 Xo. 16 0-1.7 0-1,7 0-2.2 O.i i 1-1.6 ■h-i.6 1
17 XlU 7 Us I-1.0 0-I.K O-l.S 0-1.7 0-1.7 l . u h .n 2
18 Xo, IK Xo.l 7 Xo.lH 0-2.3 0-2.3 0-I.K O-I.K U l ■h.,.7 1
19 Xo.iv U.I 1-2.2 0-1.9 0-1.9 0-2.3 0.2.3 0-1.H O-I.K
20 x 0.20 Xo. IV Xo.20 0-3.1 0-3.1 0-1,9 0-1.9 0-2.3 0-2.3 Us h-1.8 : 1
21 X0.21 U 7 It-I.K 0-1. w 0-1.10 0-3.1 0-3.1 0-1.9 0-1.9 U s h.2.3 2
22 Xo.22 Xo.21 Xo.22 0-2.4 0-2.4 0-uo 0-1.10 0-3.1 0-3.1 1-1.9 ■h.1.9 1
23 Xl>,22 X II. 21 Xo.22 0-1.11 0-1.1! 0-2.4 0-2.4 0-1.10 0-1.10 U 1 h-.u J

Therefore, the DW T coefficients o f the first stage are generated five clock cycles

after the first input sample is received. The first low frequency DW T coefficient /./,/ is

also stored in register R;. A fter the second low frequency DW T coefficient /./,;> is ready,

/./,/ and l./.i are further processed in the idle cycles as shown in Table 5.

The control signals for the switches in a RA can also be deduced from the

corresponding data flow table (which is Table 5 in this case). The tim ing for the register

enable signals is shown in Table 6. Switches S I, S2 and S3 steer the data flows at each

stage. The tim ing o f the switch control signals is shown in Table 7. Output switch S4

feeds back the low frequency DW T coefficients (except for the last stage) to be further

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

decomposed. The switching timing for S4 is the same as for SI. The problem o f

efficiently scheduling the operations in the lifting step pipelining is sim ilar to the

problem encountered in compiler-supported instruction scheduling o f loops that is

called Software Pipelining [53]. The overlap o f the computation o f lifting step

operations for multiple samples is analogous to the overlap o f instructions from multiple

iterations o f a loop. The pipeline schedules that we used, however, were optimized for

the data dependencies in the DWT.

Table 6. Enable Signals for the Input Registers (k is the sample index) o f the l-D RA
Implementing the D4 DW T

Time, T ,„
(in clock cycles)

Enable Signals

2k EnR, - EnD| "
4k + 4 EnR, - E nD ,"
8 k + 9 EnR3 EnR'3 * EnD3"

2Lk+3x2‘- 2+2,- l -\ Ei iRl E nR ',/ E nD ,."
* The actual times are: Tcn + 2 ' .

The actual times are: Ten + 2/'"/ + Latency from S2 to S3.

Table 7. Input Switch Control T im ing for the l-D RA Implementing D4 DW T

Time, T s
(in clock cycles)

Switch Positions
SI S2 S3 ’

2k + 1 e. 0 , qi
4 k + 6 ^2 02 42
8/:+ 16 e3 03 43

2l'k+3x2l‘~J +2f'+ Latency ei. 0 ,. 41-
* The actual times are: Ts + 2.

The design o f the controller is relatively simple, due to the regularity o f the control

signals for the RA, as shown in Table 6 and Table 7. A ll control signals are generated

by counters and flip-flops controlled by a four-state finite state machine. The counters

generate periodic signals for the longer period (7>4 clock cycles) control signals, and

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the flip-flops produce local delays. The simplified state transition diagram o f the

controller is shown in Figure 26. When the RA receives input samples, it starts to

decompose (analyze) the data. The controller keeps track o f the number o f processed

stages. After all stages have been processed, the controller asserts a ‘ Done’ single, and

returns to the waiting state. I f externally-generated start and stop signals are provided,

the long counter for keeping track o f the number o f input samples is unnecessary.

Compared to other direct implementations o f lifting-based DWTs, the overhead for the

RA controller is very small. The controller normally occupies less than 10% o f the total

silicon area o f the l-D RA.

The remaining elements o f the RA include registers and switches (tri-state buffers).

Since the area o f the switches is small compared to the size o f the whole architecture,

the cost o f the data storing registers in the datapath tends to dominate. For

implementing an T-stage DW T, the RA uses (L -J)(M +\) more registers than a

conventional lifting-based architecture, where M is the number o f delay registers.

Considering that a conventional architecture needs an extra memory bank to store at

least N/2 intermediate DW T coefficients, the RA architecture is more area-efficient in

most applications, where {L - l) {M + \)« N /2 . The power consumption o f the RA is also

likely to be lower than that o f a conventional architecture because the RA eliminates the

memory read/write operations and because all data routing is local. By avoiding the

fetching o f data from memories and the driving o f long wires, the power dissipated by

the RA switches is minimized. Further discussion o f implementation details is beyond

the scope o f this thesis project, but our preliminary analysis reveals the potential o f the

RA architecture in small-size and low power designs.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(
Singe lendb

Analyzing

Figure 26. State Transition Diagram o f the RA Controller

4.1.2 Evaluation

Since the pipeline delay for calculating an /.-stage DWT is / x Tj (where T j is the

latency from input to output) and the sampling-interval for each stage computation

increases by two cycles for each additional stage (shown in Figure 25), the clock cycle

count Tp for processing an //-sample DW T can be expressed as:

The hardware utilization can be defined as the ratio o f the actual computation time to

the total processing time, with time expressed in numbers o f clock cycles. A t each

section o f the pipeline structure, the actual clock cycle count Tc is the number o f sample

pairs to be processed.

TP = N + (L x T,t) + (1 + 2 + ... + 21-2) - N + L x T</+ 21' ' ' -

Tc = (N + N(] - 2 1 ' /'))/2.

Note that N(\ - 2 1 ') is the number o f samples being processed at the second or higher

stages. The busy time Tp o f the corresponding section can be expressed as:

T „ = T p -7 ’/ - N + (L - 1) x Tt l+ 21" 1 -I.

Consequently, the hardware utilization U o f the /.-stage RA is:

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Because U is a continuous concave function o f variable L when L > I, the maximum

hardware utilization can be achieved when dU/dL=0. Ignoring the delay 7’,/, d l l /d L - 0

can be expressed as:

dl! N (L - \)2 -l -L 2 '- '
3 L ~ 2(N + 21"' - I)2

The above equation is true when L - 2~'(log, N + log2(l - 1/ / ,) +1). Assuming L > 1

and N » 4 n , the utilization reaches a maximum o f about 90% when L = 0.51og2A/ and

gradually reduces to around 50% when L=\ or log2A/ For a 5-stage DW T operating on

1024 input samples, the utilization approaches 92%. When the number L o f

decomposition stages increases, the processing time increases significantly and the

utilization drops accordingly. As mentioned above, the delay o f 2A was due to the

increasing separation (2L clock cycles) o f the input values to each stage. I f we decrease

the sampling grid for each stage as soon as all previous stages have Finished, we can

speed up the computation. With a little bit additional o f controller overhead, the

processing time in clock cycles o f an /.-stage DW T can be reduced to:

N + (L x Tti).

When N—>co, the hardware utilization o f the l-D RA approaches 100%. Compared to

the conventional implementations o f the lifting algorithm, the proposed architectures

can achieve a speed-up o f up to almost 100%, as shown in Table 8.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 8. Computation Time and Hardware Utilization lor l-D Architectures

N: Number o f input samples. I t). T,i,.|ay: Circuit delay. I.: Number o f DWT stages

Architecture Computation Time
(clock cycles)

Hardware
Utilization

RA /V-i-T,,/, 50% -
90%

Direct
implementation

2N (l- l/2 l-)+TlfclaJ.L 50%

Folded [33] 2N (l-!/21-)+TllL.,iyL = 100%

4.2 The l-D Dual-scan Architecture

To achieve higher hardware utilization for special cases, we also propose the dual

scan architecture (DSA), which interleaves the processing o f two independent signals

simultaneously to increase the hardware utilization. The l-D DSA is shown in Figure

27. It consists o f a processing element (PE), input and output switches, and two memory

units. The PE is a conventional direct hardware implementation o f the lifting scheme

constructed from the basic building block circuits. The input switches SW are

connected to the two input signals when processing the first stage, and are connected to

the memory when processing the other stages. Switch SWO separates the low frequency

coefficients o f the two input signals. Because the architecture generates one low

frequency coefficient at each clock cycle, SWO is controlled by the system clock. The

output switch SWI is connected to the output only at the final stage. The size o f each o f

memory unit is M/2, where M is the maximum number o f input samples.

The PE for the 9/7 DW T is shown in Figure 28. Note that the DSA PE structure is

almost identical to that o f a two-stage DA architecture. SI and S2 are the input switches

that select the input data source. The other switches in the circuit are synchronized to

the input switches to select the path for each input channel.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input I

Input2 -V W -

SWHi
SW lt

I’K

M em ory

Figure 27. l-D Dual-scan Architecture

The l-D DSA calculates the DW T as the input samples are being shifted in, and

stores the low frequency coefficients in the internal memory. When all input samples

have been processed, the stored coefficients are retrieved to start computing the next

stage.

As the l-D DSA performs useful calculations in every clock cycle, the hardware

utilization for the PE is 100%. The processing time for the I-stage DWT o f two N-

sample signals is N + L x T,/. Compared to conventional implementations for

computing two separate signals, the l-D DSA requires only half the hardware. Hence,

given an even number o f equal-length signals to process, the speedup o f the l-D DSA is

100%.

/
Jnjiull

lo I
^ SI

A

Pul) u

KJii R
-• V

A
- • • *

- e —

y ..
i-ii

- 0 —

Figure 28. The DSA PE Circuit for the 9/7 DWT.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Proposed 2-1) Architectures

A conventional implementation ol'a separable 2-D lifting-based DW T is illustrated

in Figure 29, where separate row and column processors each use a l-D lifting

architecture. The row processor calculates the DW T o f each row o f the input image, and

the resulting decomposed high and low frequency components are stored in memory

bank I. Since this bank normally stores all the horizontal DW T coefficients, its size is

N 2 for an NxN image. When the row DW T is completed, the column processor starts

calculating the vertical DWT on the coefficients from the horizontally decomposed

image. The Ll-I, ML, and MM subbands are final results and can be shifted out; the LL

subband is stored in memory bank II for further decomposition. The size o f memory

bank II is thus at least N2/4. Such a straightforward implementation o f the 2-D DW T is

both time and memory-intensive. To increase the computation speed, we propose a 2-D

RA and a 2-D DSA for the separable 2-D lifting-based DWT.

LL

Mennry I

Row
Processor

Figure 29. Conventional 2-D Lifting Architecture.

63

with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 The 2-D Recursive Architecture

The basic strategy o f the 2-D recursive architecture is the same as that o f its i-D

counterpart: the calculations o f all DW T stages are interleaved to increase the hardware

utilization. Within each DW T stage, we use the processing sequence illustrated in

Figure 30. The image is scanned into the row processor in a raster format, and the tlrst

horizontal DWT calculation is immediately started. The resulting high and low

frequency DWT coefficients o f the odd lines are collected and pushed into two FIFO

registers or two memory banks. The separate storage o f the high and low frequency

components produces a more regular data How and reduces the required output switch

operations, which in turn consumes less power. The DW T coefficients o f the even lines

are also rearranged into the same sequence, and are directly sent to the column

processor together with the outputs o f the FIFO. The column processor starts

calculating the vertical DWT in a zigzag format after one row’s delay.

IX , IX.

1 Row

Column TransformRow Transform

Figure 30. Calculation Sequence o f the 2-D RA

A simplified schematic for the 2-D RA is shown in Figure 31. Note that the row

DW T is similar to that o f the l-D DWT, so the datapath o f the row processor is the

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

same as for the l-D RA. The column processor is implemented by replacing the delay

registers and input circuit o f the l-D RA with delay FIFOs and the circuitry shown in

Figure 31.

The interaction between the row and column processor goes as follows: When the

row processor is processing the even lines (assuming that it starts w ith the 0lh row), the

high and low frequency DW T coefficients are shifted into their corresponding FIFOs.

When the row processor is processing the odd lines, the low frequency DWT

coefficients o f the current lines as well as the previous lines o f coefficients stored in the

FIFOs are sent to the column processor. Register D, is used i f the low frequency

coefficients are generated before their high frequency counterparts. A t the same time,

the high frequency DW T coefficients o f the current lines are shifted into their

corresponding FIFOs, and the outputs o f these FIFOs are shifted into the FIFOs

corresponding to the low frequency. The computations are arranged in such a way that

the processing o f the DW T coefficients for the first and the other stages can be easily

interleaved in neighboring clock cycles. Once the processing o f the low frequency

components is done, the outputs o f both FIFOs are sent to the column processor. The

function o f the exchange blocks, shown as boxes labelled with an X in Figure 31, is to

redirect the data Hows between the FIFOs and the input o f the column processor. As

shown in Figure 32, the exchange block has two input channels, two output channels,

and a control signal. When the control signal SW=(), the data from input channel 1

flows to output channel 1, and the data from input channel 2 flows to output channel 2;

when SW=1, one data stream Hows from input channel 2 to output channel I, and the

other data stream Hows from input channel I to output channel 2. A t the low frequency

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

output o f the column processor, a switch selects the LL subband and sends it back to the

row processor lor further decomposition.

1/2 Row

174 Row
I-nRj 1/8 Row

Row
Processor

Column
I*i ocessor

I/21- Row

174 Row

172'- Row

o, K, 1/2' RmvI

IN I

IN2

Figure 3 1. The 2-D Recursive Architecture

~F
sw=o

O UTI

OUT2

IN I

IN2

SW=1

Figure 32. Exchange Operations

OUT

As an example, a portion o f the data flow for computing an 8x8 sample 2-D Daub-

4 DW T is shown in Table 10. As described before, the first pair (e . i j j and o . i j j) o f the

First stage row transform coefficients are generated at the sixth clock cycle. They are

immediately shifted into the high and low frequency FIFOs, respectively. The

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

consecutive DW T coefficients o f the same row are in turn pushed into their

corresponding FIFOs in the consequent clock cycles until the end o f the row (the 12th

clock cycle in this case). When the first pair o f the row transform coefficients o f the

second row is ready, the low frequency coefficient {e.uS) is sent to the odd input o f the

column processor, and the high frequency coefficient (0 -/ /.2) is pushed into the

corresponding FIFO. The first low frequency coefficient o f the first row (e . / j j) is also

popped out o f the FIFO and sent to the even input o f the column processor; its high

frequency counterpart (o . / j j) is pushed to the low frequency FIFO. After 4 clock cycles,

the column processor generates the first pair o f 2-D DW T coefficients, o f which the low

frequency one (//./,/,/) is temporarily stored in register R2. The row processor starts

further decomposing the low frequency DWT coefficients after the second low

frequency coefficient (//./,2,1) is generated (at the 21st clock cycle in Table 10).

A t the end o f the row transform o f the second row (at the 20lh clock cycle in this

case), both FIFOs for the first stage contain only the high frequency row transform

coefficients o f the first two rows, and start sending these coefficients to the column

processor after 1 clock cycle. As shown in Table 10, the calculation o f the different

stages o f the 2-D DW T is continuous and periodic. Thus the control signals for the data

flow are easy to generate by relatively simple logic circuits.

Sim ilar to the l-D RA case, the control signals for the 2-D RA are deduced from

the data How as shown in Table 10. The timing for the switch signals o f the 2-D RA for

the lifting-based Daub-4 DW T are shown in Table 9, and the enable signals are fixed

delay versions o f these switch signals. Also, similar to the delay reduction method used

in the l-D RA, the delay time o f the 2-D DWT can be minimized. The tim ing o f the

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

control signals for other wavelets is similar, and can be achieved by adjusting the delays

in Table 9.

Table 9. Switch Control Tim ing for the 2-D RA Implementing Daub-4 DWT

Time, Ts
(in clock cycles)

Switch Positions Time, Ts
(in clock cycles)

Switch Positions
SI S2 S3 S4

2k+\ ei Ol 2(1+ \)N +2k+6 E, 0 ,
2 (I+ \)N +4A:+9 e? o2 4 (/+ l)N +4k+ 14 1̂2 o 2

4 (/+ 1)N +8k+ 17 e3 03 8 (/+ 1)7V +8A+22 e3 0 3
2 '- '(/+ l) /V

+2l k+ 1+27;,/,
er ol 2l (!+ \)N

+21' k+3+2T(,L
E i. 0,

Since the high-frequency components are processed one row after the low-

frequency components, as shown in Figure 31 and Table 10, the processing delay o f the

column transform for each stage is roughly one row. Also, because all o f the stages are

interleaved, the total processing time for an L-stage 2-D DW T is:

N x N + N + 2 x L x T j + 21' ' - \ .

Similar to the l-D implementation, a hardware utilization o f about 90% can be achieved

when L is close to log2A/

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

Table 10. Data Flow for the Three-Stage 2-D Recursive Architecture
,v,/ t is input signal. anil k denote the stage, the row and eolumn sequences, respectively; e.,,* and o.,,*
are even and odd intermediate results o f each lilting step; and h.u t, are low and high frequency DWT

coefficients.

Clk Input Row Processor HlHOs lor Stage 1 Column Processor Stage
Hr : Or T r :H r I tig li Frequency Low Frequency Hr ; Or Output

1 •Vw 1 1

2 x 'u i .1 X o i . I . X t m

3 x „ 3. /
4 X'u 4 / X n .3 . i : - X0 .4 .l

5 X'u } . 1

6 X u u 1 X ft S I : X o u i 0 - 5 5 1 - 0 . 1,1.1 0 . 1 1 , 0 . 3 31

7 X'u 7 /
8 X u.S .I X o 7 . / ;X n . / l . l 0 -1 .2 1 : 0 .1 .2 1 e . i . i . h 0 . 12.1 o . i . / . , : 0 . 3 2 1

9 X'u 1 7
10 -'7/ 2 2 X < i . l . } . X lU . 2 O .53.1 : 0 . / . 3. l o - i . i . , : 0 . , 7 , ; e . I . , . , o . i . , . , : 0 . 3 7 . 1: 0 . 33.1

I I X u 3 2

12 X (I 4 2 X n .3 2 - X u 4 2 0 -5 4 .1 : ° . 1.4.1 o . i , I . , - ’ 0 . 3 7 . 1: 0 . i y , ; o . I . 4 . , O - I . I . h 0 - l . 2 . i : 0 - 2 5 . , : 0 . 2 4 i

13 X ,, 3 2

14 X t) r. 2 X o .5. 2 : Xn.u.2 0 - 5 5 2 : 0 . 5 5 2 o - i . 2 , : o - i . 3 . , : o - i 4 1 . ’ 0 - , 1. , 0 . 3 2 . 1: 0 . 3 3 . 1: 0 . 3 4 . 1: 0 . 1 1 O - i . n ■ 0 . 11.2

15 X u 3.2

16 X u n 2 X'o 7 .3 : X li.x .2 0 .5 2 .2 . 0 . 1.2 2 0 - 1.3 l . 'O . l 4 1: 0 . 1 1 1 : 0 . 1 2 1 o . l 3 . , : 0 - 3 4 1: 0 . 3 3 2 : 0 . 1 7 7 0 . 32 .1 : 0 . 52.2

17 X u 1.3

18 X u 2.3 X u 7 3 X „ 3 .1 0 -5 3 .2 : 0 . , 3.2 0 -1 4. 1: 0 . / . I . i ; 0 . i 2 1, - a . i 3 1 O - I 4, 1: 0 . 7 7 2 : 0 . 1 2 2: 0 . 1 3 2 0 -5 3 .1 : 0 - 5 3 2 11- 1 1 , ■ I I * - , , , 1
19 X u 3 3

20 X u 4 3 X u.3 3 - X 0 4 .3 e . 1 4.2 : O . l 4.7 o . i 1 1 : 0 . 1 2 1 : 0 . 1 3 , ; o . i 4 / 0 - 3 3 2 : 0 . 1 2 2 : 0 . 3 3 2: 0 . 1 4 0 - 5 4 . 0 : 0 .1 .4 1 I I - , 7 , i l l * - , 7 , I
21 X'u.7.3 / / . , , , I I . , 2 ,

22 X n f, 3 X i i 5 .3 :X (,.6 .3 O . i . l 3 : O . l . I S 0 . 1 7 , : o . i . 3. i ; a . i 4 , : e . i 13 o . l 2.2: 0 . 3 3 2 : 0 . 5 4 2: 0 . 1 35 0 . 5 1 1 : 0 . 5 5 2 I I - , , , n * . , „ 1
23 X u 7 3
24 X 'u ,» X'u 7.3 X 'u,4 1 e ; . 2 . 3 - . 'O .U 'J 0 . 3 3 . 1: 0 . , . 4 , : o . 1. 1.3: 0 . 32.3 O . l 3 2 :0 .1 4 2 :0 .1 5 3 :0 .1 3 3 0 . 5 2 1 1 0 . 1 2 . 2 H . , .4 .1 : H * -5 4 . i 1
25 X’u / V n . , 3 , I I . , 4 , 0 .7 / 1 0 . 2 1 1

26 X'u 2 V X n. I I X 'u 2 4 : e . l.3 .3 : O . l 3.3 O . 1 4 i O . l 3 3 : 0 .1 7 . , :O . I 3 3 O . l 4 2 : 0 . 1 5 3 : 0 . 5 3 3 : 0 . 1 3 2 O . I 3 I : O . / 3.2 M . , n : 1*1.1-55, 1
27 X u 3.4

28 X'u 4 4 X „ 3 4 - X u 4 4 0 .5 4 .3 1 0 . 1 4 3 0 -3 , .3 :0 .1 2 . , : 0 .3 3 3 :0 - 3 4 3 0 . , 3 3 : 0 . 1 2 3 : 0 . 3 5 3 : 0 . / 4 3 0 . 54.1 : O i l . 4.2 1, 1. , , , . I i h . , . 2.1 1
29 X'U 3 4 0 -7 2 , n . m

30 X'u I, 4 X(>S.4 :X u .e .J 0 -1 .3 4 : O . I . I 4 0 .3 2 3 :0 .3 3 .3: 0 . I j . s i O . 1. 1.3 0 .1 2 .3 :0 .5 3 .3 :0 . I . 4 .3 :0 .1 5 4 0 .0 1 '3 1 0 .1 .3 4 1*1-53.1 . l lh - 5 3 . 1 1
31 X'u 7 4

32 X'u ,4 4 ■ X a .7 4 :: X a :)i.4 O . l .2.4 ,0 .1 .2 .4 O- 3 3 3: 0 . 3 4 3: 0 . 1 1 3: 0 . 3 2 3 0 . 1 3 3 : 0 . 14 .3: 0 . 5 5 4 : 0 . 12.4 0 :5 2 .3 ': O - l l - l I ' l - I . S . l : I ’ l l . 54,1 1
33 X'u. 1 3

34 X'u 2 3 X o . i.S :X q .2.S 0 .3 3 .4 : O . l . 3.4 0 . 1 4 3 : 0 . 1 , . , : o . i 7 3 ; o . , 3 3 O - l 4 S -O . l 1 4 : 0 . 1 3 4 : 0 . 1 3 4 0 -5 3 3 : 0 . 53.4 I I . I I 7 ■ l l * - , n 1
35 X (l 3.)

36 X'u 4 3 X u 3.3 :X n .4 .5 0 -1 .4 4 : O .I .4 4 0 . 3 1 3 : 0 . 3 7 3 : 0 . 3 3 3: 0 . 3 4 3 o . i 1 4 : 0 . 1 7 4 : 0 . 5 3 4: 0 . 5 4 4 0 .5 4 :3 : O .54.4 11-17 7 H *-5 2 ,2 1
37 x 'u 3 3 H . , 1 2 I I - , 2 2

38 X'u 6 3 X a .5 .5 :X u .e .S 0 .1 .3 3 : O . i . i s O - i 2 3 : 0 . 1 3 3: 0 . / 4 3: 0 . 3 1 3 o . l 2.4 : 0 . 5 3 4 : 0 . 1 4 4 : 0 . 11.5 0 . 3 3 3 : 0 . 5 5 4 11-13 7 ■ l h . , 3 3 1
39 X u 7 3

40 X u ,v 7 X’u 7 5 X u .4 3 0 .5 2 .5 : 0 . 1 2 3 0 . 3 3 3: 0 . 3 4 3 : 0 . 1 , 5: 0 . 3 2 3 O -I 3 4 : 0 . 5 4 l i O . I I 5 , '0 . i 2 5 0 .5 2 .3 : 0 -5 2 .4 11-54.2 H * - , 4 7 1
41 X'u , s H . , 3 2 H -1 4 2 0 .7 l 2 : 0 . 2 , 7 0 . 2 51 0 .7 12

42 X'u 2 6 X u . l s - .X o . 2 6 0 -5 3 .5 - .0 .1 3 .3 0 . 1 4 3 : 0.1 , i s : o . i 2 > :e . , 3.s 0 . 54 .4 : 0 . 5 1 5 : 0 . 5 2 .5: 0 . 1 35 0 .5 3 .3 : O .53.4 h i - 5 , 7 1 *1 ,-1 5 2 1
43 X'u 3 6

44 X'u 4 S X l l3 .S :X n 4 .6 0 . 1 4 5 . 0 . 1 4 3 0 . 1 , 5: 0 . , 7 5 : 0 . 1 3 5 , -e . i 4 5 O . l 1 5 : 0 . 5 2 5 : 0 . 53 .5 : 0 . 1 4 5 0 -5 4 .3 : 0 . 5 4 4 1*1-, 7 7 1 ,1 ,-5 2 2 1
45 •'7/ 5 f, 0 -2 7 2 O . l i .1 0 -2 .3 1 . 0 . 2 2 2 1 1 .3 ,1 l / * . 7 l ,

46 X'u 6 6 X 'u i 6 : X u.S 6 e . , i s ■ o . i i r, 0 .1 2 5 : 0-1 3 5: 0 . 1.4 5 : 0 . 3 3 5 0 . 3 2 5 : 0 . 5 3 .5 : 0 . 5 4 .5 : 0 . 1 56 0 -5 1 .3 : 0 - I . I . 6 1*1- 1 , 7 III*.53 .2 1
47 Xu. 7 6

48 X u 3 {, X u .? .S : Xu.S .6 0 -3 7 .6 -.0 . 12.6 0 . 3 3 5 : 0 .1 4 5 : 0 . 3 1 i ' . O . l 2 5 O -I 3 5 :0 .1 4.5 : 0 . 5 l lu 'O .I 3 6 0 .5 2 .5 : 0 .5 2 .6 1*1 -54 2 h h .5 4 .2 1
49 X'u 1 7 0 - 2.1 1 : 0 - 2 1 2 11.7 3 , l l * - 7 7 1

50 X u 2 " X o . l .7 :X o .2 .7 0 .1 3 .6 : 0 .1 3 .6 0 . 3 4 5: 0 . 1 3 3 : 0 . 1 2 5,' 0 - 1 3 5 O . l 4 i : O . I 5 6 : 0 . 5 2 6 : 0 . 1 3 6 0 -5 3 3 : 0 . 5 3 6 l l . l , , I I * . , , 3 1
51 X u 3 "
52 X'u 4 ' X u 3. ? :X u .4.7 0 -1 4 .6 : 0 . 1 4 6 O -I l i - 'O . , 3 5 : O . i j 5: 0 . / 4 5 >■1 I.Sf O - 52 6 : 0 . l 3.6 . ' O . l j , , 0 - 5 4 5 :0 .1 4 .S II., 7 , II*-, 7 3 1
53 X’u 3 - I I . , , , II., 2 3 1 *1 -7 , 1 h l l . 7 1 1 2

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LHi HH0 LH; HH| LHj HH,
■ »

Row Transform Column Transform

Figure 33. Scan Sequence o f the 2-D Dual-scan Architecture

5.2 The 2-D Dual-scan Architecture

in a conventional 2-D DW T algorithm, the vertical DW T is carried out only after

the horizontal DW T is finished. This delay between the row and column computations

lim its the processing speed. The 2-D DSA shortens the delay by adopting a new scan

sequence. In applications that can read two pixels per clock cycle from a data buffer, the

scan sequence o f the 2-D DSA shown in Figure 33 can be used. The row processor

scans along two consecutive rows simultaneously, while the column processor also

horizontally scans in the row DW T coefficients. In this way, the column processor can

start its computation as soon as the first pair o f row DW T coefficients is ready. With

this improvement, the row and column processors can start computing the same stage o f

the DW T within only a few clock cycles o f each other.

The structure o f the 2-D DSA is shown in Figure 34. The registers are used to

separately hold the even and odd pixels o f each row, and to interleave the input pairs o f

each two consecutive rows. The control timing o f the 2-D DSA is shown in Table 1 1,

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where the delay o f the row and column processor is assumed to be I clock cycle. The

row processor o f the 2-D DSA is identical to the direct implementation o f the l-D

DWT. The column processor is obtained by replacing the I-pixel delay units in the row

processor with I-row delay units. The low frequency output switch o f the column

processor directs the LL subband o f each stage DW T to the memory bank. The LL

subimage stored in the memory w ill be returned to the DSA input for further

decomposition after the current DW T stage is finished.

Table I I. Data Flow for the 2-D Dual-scan Architecture

.Yj, is input signal, i , j the row and column sequences, respectively; e.,-/ and o.hj are even and odd
intermediate results ol'eaeli lilting step; , and , are low and high frequeney DWT coefficients

Clk Input Row Processor Column Processor
Fr ; O k U ; H r Fc ; o c l.c ; Me

1 X n x , :
2 x2.i xl2 Xu .-Xu
3 xn Xjj Xu;X2.2 aU . O/J
4 x-i.i x^2 Xj.l :Xj,i ei.l : 01.2 ‘■’u : e,.2
5 X).2 :Xn e2.i . Oi l ;Ol.2 IIU : 111 1.1
6 e2 2 : 02.2 C2 I ■ C2,2 h!u Mil.,
7 02 1 :Ot2 112 1 III 2,
8 III2.1 .MI2.I

Row i ------»

Row/'+l f

j~l<~|=Registers

Figure 34. 2-D Dual-scan Architecture

71

For higher stage
decomposition

MEMORY
(size A'"/4)

Column
ProcessorProcessor

Lit,MM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The processing time for each stage is \/2x.NxN+2xTti. Because only a quarter o f the

coefficients are further decomposed, the total processing time for an /.,-stage 2-D DW T

is:

2/3 x N x N x (I - l/4 A) + 2 x T(,x I.

Compared to a conventional implementation, the DSA uses roughly half o f the time to

compute the 2-D DWT, and the size o f the memory for storing the row transform

coefficients is reduced to M rows, where M is the number o f delay units in a l-D filter.

The comparisons o f the processing time and memory size are shown in Table 12 and

Table 13, respectively. In Table 12. the timing for the RA is based on one input pixel

per clock cycle, while the others are based on two input pixels per cycle.

Table 12. Computation Time and Hardware Utilization for 2-D Architectures

NxN: Size o f the input image. Td, Tdc|iiy: Circuit delay. 1.: Number o f DW T stages

Architecture (9/7 DWT) Computation Time (clock cycles) 1 lardware utilization

RA \ ’xN +N +2xLxl\,+2r '-1 50% - 70%

DS 2/3x/Vx/Vx(|-l/4/-)+2x7>C * 100%
Direct implementation 4/3 x/Vx /Vx (1 -1/4'■)+2 x 7 > L 50%

ACT|34J /Vx/Vx4/3x (1-1 /4a) 7'(/xA * 50%

Table 13. Comparison o f Memory Size for 2-D Architectures

NxN: Size o f the input image. Td. T Jc|.,y: Circuit delay. L: Number o f DW T stages

Architecture Memory Size

RA for 9/7 wavelet 4/V

RA for D4 wavelet I0W
DSA for 9/7 wavelet ,Vx/V/4 + 4W

Direct implementation 5/4 x/Vx/V

ACT|34| for 9/7 wavelet =.Vx.V/4 (external memory)

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Implementation

We implemented the proposed architectures as behavioural-level VHDL models

and confirmed their correctness in simulation. In this chapter, we w ill describe four

implementation examples o f our proposed architectures. A ll o f our V H D L models are

fixed-point designs primarily for the fast verification o f our proposed architectures.

Nevertheless, the VH D L models o f the proposed architectures are still ready to be used

in SOPC (System On Programmable Chip) designs or ASIC (Application-Specific

Integrated Circuits) designs as DW T engines for processing 8-bit input signals. The

fixed-point designs can be easily modified to more precise floating-point designs by

replacing the fixed-point arithmetic units w ith floating-point units and changing the

width o f registers/files to 32-bit or 64-bil wide.

The rest o f the chapter is organized as follows: in the first section, we introduce the

word length selection in the fixed-point DW T hardware implementations: in the second

section, we describe the l-D designs: l-D 9/7 RA and l-D D-4 DSA; in the third

section, we describe the 2-D designs: 2-D 9/7 RA and 2-D D-4 DSA; in the last section,

we present the evaluation o f our designs.

6.1 Word Length Selection

When the signal is converted to digital form, the precision is limited by the number

o f bits available. The finite word length o f the hardware used for digital processing

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

determines the available precision and dynamic range. The selection o f the word length

should satisfy both the dynamic range o f the DW T coefficients and the distortion

tolerance o f the reconstructed signal. The dynamic range o f the signal processing

computation determines the number o f bits required to represent the integer part o f the

DWT coefficients, and it increases with the number o f decomposition stages. The

number o f bits reserved for the integer part should be sufficient to prevent calculation

overflow. To estimate the maximum internal growth o f the lifting algorithm, we first

deduce the equivalent high-pass and low-pass FIR filte r polynomials by reversing the

process o f factoring the DW T filters as follows:

I . For any lifting scheme expressed in polyphase matrix, we have

where G and Jare the lengths o f the high-pass and the low-pass filter, respectively.

"L 1 .v ■• (z) 1 0 AT 0
p(z) = n

;'=| 0 I l j (z) \ 0 1 I K

J - 1 G - l
£ h2i(z) Z g 2, (z)

;=0 k=0 (5.1)
J -1 G '- l

2. For any input signal series [.v,„ .r2))+1] , the 2 x2 matrix in Eq 5.1 is equivalent to

two filters as follows.

G - 1
g(z)= £ gj(z)

i= 0
J -1

h{z)= Z h j(z)
i = 0

(5.2)

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The maximum input signal internal growth o f these filters is [41]:

1=0

•/ - ' l I
Z \hj{z)\
1=0

As an example, for the D-4 filters expressed as:

| h(z) = /?„ + + hzz~2 + h3z~3

[#00 = - V 2 + !h z ' ~ h \ + K z '

. . 1 + 73 , 3 + 73 , 3 -7 3 , 1-73
where /?q — j— , /?j — i— t— ’ 3 ~ i— >

472 472 472 472

their maximum internal growth for each stage o f DW T calculation is:

1.673,
1 + 73 3 + 73 3 -7 3 1-73
472 472 472

+
472

The number o f bits N needs to represent the internal growth for the 4-stage one

dimensional D-4 DW T is A^> log2 (4 x 1.673) ~ 2.7. Hence, we need 3 more bits than

the input signal word length to represent the integer part o f the D-4 DW T coefficients.

Another possible cause o f signal distortion is multiplier product round-off error.

For an M-bit by /V-bit signed multiplication, the result is N +M - 1 bits wide. The round

o ff noise is introduced when we truncate the multiplication result. Determining the

optimal number o f bits to be reserved for the multiplication result is not as

straightforward as estimating the internal signal growth. Designing fixed-point digital

filters with minimum roundoff noise is described in [42], In our research, we used a

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

simpler method to estimate the number o f bits need to represent the decimal part o f the

DW T coefficients.

Since the roundoff noise is the only noise source in the DW T calculation, we can

estimate the acceptable roundoff noise level from the required signal noise ratio (SNR)

or peak SNR (PSNR) o f the DW T caculation. From the SNR and the estimated input

signal variance, we can deduce the noise variance as follows.

SNR = 10logIO
CJ

N

where a 2 is the variance o f the input signal, and <j 2n is the variance o f noise

2 o-.s-cr m =N IQ.VA'A'/IO

Since the variance o f the roundoff noise o f a fixed-point digital filter with N

multiplications is [42]

12

1 'y S___
D 1, 12 o l 1 ' “ | 0.W«/IO
B = — lo g , - = — lo g ,— —-------

2 hl N 2 2 N

where B is the number o f bits representing the decimal part o f the output signal. For

different input signals and DW T filters, B varies siganificantly. As a rule o f thumb, we

may start w ith fr^ =3000 and SNR=50 to calculate the number B for image processing

applications. It should be noted that N is the number o f multiplications for each DW T

filter times the number o f DWT stages.

Using the calculations described above, we estimate that the maximum internal

growth o f the 8-bit integer input signal is 3 bits and the number o f bits for the decimal

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

part is 5 bits. In reality, the negative and positive filter coefficients w ill cancel out part

o f the internal signal growth, and the number o f bits assigned for the decimal part

should be sufficient to represent the minimum filter coefficient. Therefore, we used 16

bits (1 I-b it integer and 5-bit decimal) to represent the DW T coefficients in our designs.

6.2 Implementations of the l-D Architectures

6.2.1 l-D 9/7 Recursive Architecture

The l-D 9/7 RA architecture consists o f a datapath, switching control signal

generators, and a controller. The datapath o f the l-D 9/7 RA design contains a

processing element and an input switch network. The state diagram o f the datapath is

shown in Figure 24. The switching signal generators generate all the signals for

directing the dataflow o f each DW T stage to its assigned registers, as described in

Chapter 4.

Reset = 1

start =
Idle

Disable Processing
lnEn_Sig=0 Finish

count=
number ofstagex 5 +20

Start Counter: count

Figure 35. State Transform Diagram o f the l-D 9-7 R A ’s Controller

The controller is a 5-state controller as shown in Figure 35. The controller

generates an enable processing signal to start the DW T computation when it asserts a

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

start signal, which is synchronized with the first input sample. When an input end signal

synchronized with the last input sample is asserted, the controller starts a counter that

keeps track o f the clock cycles required to complete the DW T calculation.

A Her the last input sample enters the processing clement, the time slots assigned to

the first stage DWT. as shown in Figure 25. are now available to other stages o f DW T

computation. Therefore, the processing o f all the higher stages o f the DW T can be

moved to the time slots assigned for their previous stages, and their calculation

frequencies can also be doubled. The same process is repeated after each lower stage

DW T is finished. In this way. the computation time o f the multiple-stage DWT is

significantly shortened. Since the pipeline length o f the 9/7 processing element is five,

and one zero is appended to the last sample o f each stage to flush the pipeline, the

calculation o f the L-stage 9/7 DW T can be completed in Z,x(5+1) system clock cycles

after the last input sample is received.

When the counter counts up to the preset value (Lx (5+1)), the controller deasserts

the computation enable bit, and returns to the standby (Idle) state, as illustrated in

Figure 35 .

6.2.2 l-D Daub-4 Dual-Scan Architecture

The VHDL model o f the l-D DSA is a simplified design for calculating three-

stage Daub-4 DWT. The design is not refined to process random number o f stages o f

the DWT, but rather for verifying the concept and feasibility o f the DSA. The

architecture consists o f a datapath, as shown in Figure 27, and a controller. The datapath

includes a processing element (PE), as shown in Figure 36. a memory bank, and some

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

switches directing the dataflow. The memory bank is configured as two first-in-first-out

(FIFO) registers. Since the signal length is reduced by ha lf for each higher-stage DW T

computation, we clock the FIFOs at different frequencies to change the virtual length o f

the FIFOs corresponding to the system clock: i f we double the clock o f a FIFO, it w ill

take only ha lf o f time for a signal to travel through the FIFO. In this way we keep the

design simple; however, it needs a higher than system clock frequency to shorten the

virtual length o f a FIFO to less than h a ll'o f its physical length. An alternative design is

for each FIFO to have multiple output ports, which are located at the end o f the FIFO,

and also at the 'A, \'A, ..., length o f the FIFO. The clock frequency o f this design, which

would be ha lf o f the PE clock frequency, could be maintained constant for all o f the

DW T stages.

In p u li

1----1 | <H‘i
r r

Inpul2

S3

Figure 36. Datapath o f l-D Daub-4 DSA

The state transfer diagram o f the controller is shown in Figure 37. The controller

enables the DSA processor when it detects the first input sample, and starts a counter to

sequence the calculation o f the DW T. After a number o f clock cycles, which equals the

pipeline length o f the PE, have elapsed, the controller starts to toggle between the

‘ToFIFOT and the T o F IF 0 2 ’ states. A t the “T oF IF O r state, the controller directs the

high-frequency DW T coefficients o f the first signal flow to FIFO I; at the ‘ToFIF02’

79

with permission of the copyright owner. Further reproduction prohibited without permission.

state, it directs the high-frequency products o f the other signal How to FIF02. The

controller transfers to the 'FinalStg' Slate after the calculation o f the first DW T stage is

complete. A t this stage, the controller doubles the frequency o f (he FIFO clock to

reduce the FIFOs’ virtual lengths. A fter the last samples o f the second stage have

entered the FIFOs, the controller detours the high-frequency product o f the PE to the

output. The controller returns to the id le ’ state after the processing o f all stages has

finished.

Idle Start=l

Disable
DSA Init

Calculation o f the
first input is done

The first stage,
not done

FIFO outputs
to PE PE output

to FIFOl

East sample o f the
first stage processed

PE output
to FIF02

Figure 37. State Transfer Diagram o f I -D D SA’s Controller

6.3 Implementations of the 2-D Architectures

6.2.1 2-D Daub-4 Recursive Architecture

As shown in Figure 31, the 2-D Recursive Architecture consists o f a Row PE, a

Column PE, a controller, registers and memories for temporarily storing the

intermediate calculation results, and switches for directing the dataflows o f the different

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DW T decomposition stages. The tim ing o f the switch signals for the 2-D Daub-4. RA is

shown in Table 9.

The controller sequences the calculation o f the multi-stage DWT, and governs

the row and column transitions. The state transfer diagram o f the controller is shown in

Figure 38. The controller enables processing when it receives the first input sample. A t

the end o f the processing o f each row, the controller performs a zero-padding boundary

treatment by reseting all o f the registers in the Row Processor. A lte r all o f the DW T

stages have been calculated, the controller disables further processing.

Idle
Input Signal
Received

Reset =

Analyzing j Unable ProcessingAnalyzing2FinishDisable Processing

The h'ml o f One
Row Transform Not

Done
Last Sample o f
First Row ReceivedTransform Completed

EndOfRow

Figure 38. State Transfer Diagram o f the 2-D D-4 R A ’s Controller

6.2.1 2-D Daub-4 Dual-Scan Architecture

The structure o f the 2-D DSA is shown in Figure 34. In the 2-D DSA, the memory

bank stores the low frequency sub-image (LL) o f each decomposition stage. Since the

calculations o f 2-D DW T in the DSA is identical to all stages, except that the input

image sizes are different, we only implemented a DSA for calculating one stage o f the

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2-D Daub-4 DWT. Expanding the one-stage design to a mulliple-stage design is

straight forward: add a switch at the low-frequency output o f the column processor for

directing the decomposed subimage LL to a memory, and a pair o f switches for

selecting the input source o f the row processor between the external signal and the

memory.

In the 2-D Daub-4 DSA design, we use row counters and column counters to

generate periodical signals for resetting the internal registers (zero-padding). The

controller is a simple four-state Moore machine determining the start and stop o f the

row processor and the column processor, as shown in Figure 39.

Idle
Input Signal
Received

Reset =

RowPro) Start Row ProcessorFinishDisable Processing

Pirst Sample of
I'irst Row CalculatedTransform Complctci

ColPro

Start Column Processor

Figure 39. State Transfer Diagram o f 2-D DSA

6.4 Evaluation

In order to verify the correctness o f our designs, we used our 2-D architectures to

calculate the 3-stage forward D WT o f the two gray level images shown in Figure 40.

The decomposed images o f the test images calculated by our 2-D Daub-4 recursive

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

architecture are shown in Figure 41. We compared these decomposed images to the

images produced using Mallab (programs can be found in Appendix A), which are

considered zero distortion in our evaluation. The histogram o f the wavelet coefficient

error in three-stage DW T o f the Lena image using the 2-D Daub-4 RA is ploted in

Figure 42; the histograms o f errors in other test images are similar. From Figure 42, we

see that the accuracy o f our 2-D RA architecture is within ±0.3. Since PSNR is a better

criteria in evaluating the quality o f reconstructed images, we also calculated the PSNR

values o f our 2-D architectures in decomposing the selected images. The PSNR and

SNR values o f the decomposed images calculated by our architectures are listed in

Table 14. As discussed in the first section o f this chapter, increasing the word length

can further improve the performance o f the designs.

To evaluate the physical sizes o f the proposed architecture implemented as silicon

layouts, we synthesised our designs with FPGA and ASIC design tools. The proposed

architectures were synthesised and implemented for X ilin x ’s Virtex II FPGA

XC2V250, which is a high-performance medium-size FPGA. The l-D RA

implementing the 3-stage 9/7 lifting-based DW T uses 409 logic slices out o f the 1536

slices available in the FPGA. The 2-D RA implementing the 3-stage Daub-4 DW T uses

879 logic slices, and can compute the DW T o f 8-bit gray level images o f sizes up to

6000x6000 at 50 M flz using the built-in RAM blocks and multipliers in the FPGA. To

estimate the corresponding silicon areas for ASIC designs, we used Synopsys' Design

Compiler [45] to synthesize the above architectures with TSMC's 0 .18-pm standard cell

library aiming for 50 MHz operation. Since the M AC unit is the critical element in the

designs, higher operation frequency can be achieved by implementing faster multipliers

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

or by pipelining the M AC units and minim izing the routing distance o f each section o f

the pipeline. The synthesized designs were then placed and routed using the Silicon

Ensemble tool, and the final layouts were generated by using Cadence Design

Framework II [46]. The core size o f the l-D RA implementing the 3-stage 9/7 DW T is

about 0.177 mm2 (90% o f which is the datapath, 10% is the controller, and the rest is

memory). The core size o f the 2-D RA that calculates the 3-stage Daub-4 DW T o f a

256x256 image is about 2.25 mm2 (about 15% o f which is the datapath, 5% is the

controller, and the rest is memory). The core area could be reduced by reimplementing

the delay units as register files instead o f separate flip-flops, and the performance o f the

proposed architectures could be further improved by optimizing the circuit designs.

Table 14. SNR/PSNR Values for 3-stage forward DWT

Lena Bar jara
SNR PSNR SNR PSNR

Daub-4 69.6529 75.32 69.2755 75.18
9/7 69.1437 74.85 68.7880 74.73

li’

(a) Lena (b) Barbara

Figure 40. Test Images

84

with permission of the copyright owner. Further reproduction prohibited without permission.

(a) Decomposed image o f Lena (b) Decomposed image o f Barbara

Figure 4 1. Decomposed Images o f Test Images

6000

5000

~ 4000 :
0)‘o£
o 3000:
o
e3

2 2 0 0 0 r

1000 r

o1

r.............

,

i

..... -...... - f
‘ i

"7

i

1 i
j

I

i

... i

\

— - A - -
\\

............—

... .
\

0.8 -0.6 -0.4 -0.2 0
Error

0.2 0.4 0.6

Figure 42. Histogram o f the Error o f 3-Stage Decomposition o f Lena

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Conclusions and Future Work

We proposed a recursive architecture and a dual-scan architecture for computing

the DW T based on the lifting scheme. In the previous chapters, we described the

procedures for implementing l-D and 2-D versions o f the RA and DSA for calculating

any lifting-based wavelet transforms. We also illustrated the details o f the hardware

design by describing implementations o f the l-D 9/7 RA, the I-D Daub-4 DSA, the 2-D

Daub-4 RA, and the 2-D Daub-4 DSA as examples.

Compared to previous implementations o f the lifting-based DWT, the proposed

architectures have higher, and hence more efficient, hardware utilization and shorter

computation time. In addition, since the recursive architectures can continuously

compute the DW T coefficients as soon as the input data become available, the memory

size required for storing the intermediate results is minimized. Hence, the sizes and

power consumptions o f both the l-D and 2-D recursive architectures are reduced

compared to other implementations. In addition, since the designs are modular, they can

be easily extended to implement the separable multi-dimensional DW T by cascading

multiple basic l-D DW T processors.

However, there are lim itations in our architecture designs: each specific datapath

can only calculate one type o f lifting-based wavelet. Although it should be relatively

straightforward to design new architectures follow ing our procedure, and many image

applications only use a few types o f DW T. our architectures are not yet capable o f

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

providing the convenience and the generality o f any lifting schemes. Theoretically,

constructing genera) synthesis procedures for the RA and DSA architectures should be

feasible, but that would be beyond the scope o f our thesis research. The proposal o f

such general architectures is one possible direction for future work.

Another direction for future work could be to extend our architectures to implement

the lifting scheme for multiwavelet applications. Multiwavelet analysis has been found

promising in applications, such as image compression and denoising [48][49]. Recent

research has revealed that multiwavelets can also be constructed using the lifting

scheme and any compactly supported multiwavelet can be factored into lifting steps.

Hence, it seems likely that our architectures could be modified to implement

multiwavelets.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

References

[1] A. Grossmann and J. Molet, “ Decomposition o f Hardy functions into square

integrable wavelets o f constant shape” , SIAM J. Malli, Ana., vol. 15. pp. 723-736,

1984.

[2] I. Daubechies, “ Orthonormal bases o f compactly supported wavelets” , Comm. Pure

Appl. Math., vol. 41, pp. 909-996, 1988.

[3] S. Mallat, “ A theory for multiresolution signal decomposition: the wavelet

representation,” IEEE Tram.on Pattern Anal. Machine Intel!., vol. 11, pp. 674-693,

Jul. 1989.

[4] G. Knowles, “ VLSI Architecture for the Discrete Wavelet Transform” , IEE

Electronics Letters, v 26 n 15, pp. I 184-1185, Jul 19 1990.

[5] A. Lewis and G. Knowles, “ VLSI Architecture for 2-D Daubechies Wavelet

Transform without M ultip liers” , Electronics Letters, vol. 27, no. 2, pp. 171-173,

Jan. 1991

[6] I. Daubechies, “ Ten Lectures on Wavelets” , CBMS-NSF Regional Conf. Series in

Appl. Math., Society for Industrial and Applied Mathematics, vol. 61, pp. 279,

Philadelphia, PA, 1992.

[7] J. Kovajcevic and M. Vetterli. “ Nonseparable multidimensional perfect

reconstruction filter banks and wavelet bases for R'1” , IEEE Trans. Inform. Theory,

vol. 38, no. 2, pp. 533-555, Mar. 1992.

[8] K. Parhi and T. Nishitani, “ VLSI Architectures for Discrete Wavelet Transforms” ,

IEEE Trans, on VLSI Systems, vol. 1, no. 2, pp. 191-202, Jun. 1993

[9] A. Cohen, !. Daubechies, and P. Vial, “ Wavelets On the Interval and Fast Wavelet

Transforms” , Applied and Computational Harmonic Analysis, vol. I, pp. 54-81,

Dec 1993.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[10] C. Chakrabarti and M. Vishwanath, “ Efficient Realizations o f the Discrete and

Continuous Wavelet Transforms: From Single Chip Implementation to Mappings

on SIMD Array Computers", IEEE Trans, on Signal Processing, vol. 43, no. 3, pp.

759-769, Mar. 1995

[11] W. Sweldcns and P. Schroder, “ Building Your Own Wavelet at Home". Report

1995:5, Industrial Mathematics Initiative, Department o f Mathematics. University

o f South Carolina, 1995.

[12] M. Carnicer, W. Dahmen, and J.M. Pena, “ Local decomposition o f refinable

spaces” ,/!/;/;/. Coinpul. Harm. Ana!., vol. 3, pp. 127-153. 1996.

[13] C. M. Brislawn, “ Classification o f nonexpansive symmetric extension transforms

for multirate filter banks,” Appl. Comput. Hannon. Anal., vol. 3, pp. 337-357,

1996.

[14] W. Sweldens, “ The lifting scheme: A custom-design construction o f biorthogonal

wavelets” , Appl. Comput. Harmon. Anal., vol. 3, no. 2, pp. 186-200, 1996.

[15] W. Sweldens, “ Wavelets: What next?” , Proc. o f the IEEE, vol. 84, no. 4, pp. 680-

685,1996.

[16] A. Grzeszczak, M.K. Mandal, S. Panchanathan, “ VLSI implementation o f discrete

wavelet transform” , IEEE Trans, on VLSI systems, Part II, vol. 47, no. 12, pp.

1492-1502, 1996.

[17] W. Sweldens, “ The lifting scheme: A construction o f second generation wavelets” ,

SIAMJ. Math. Ana!., vol. 29, no. 2, pp. 511-546, 1997.

[18] G. Uytterhoeven and A. Bultheel, “ The Red-Black wavelet transform” .

Proceedings o f the IEEE Benelux Signal Processing Symposium, Leuven,

Belgium, pp. 191-194, Mar. 1998.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119] W. Sweldens, “ The L ifting Scheme: A New Philosophy in Biorthogonal Wavelet

Construction",,/. Fourier Anal. Appl., vol. 4, pp. 247-269, 1998.

[20] I. Daubechies and W. Sweldens, “ Factoring wavelet transforms into lifting steps’’,

./. Fourier Anal. Appl., vol. 4, no. 3, pp. 245-267. 1998.

[21] L. He, Y. Zeng, “ A Fast Algorithm for Two or More Dimensional Nonseparable

Wavelets” , IEEE Conference on Signal Processing Proceedings, vo l.I, pp. 284 -

287, 12-16 Oct. 1998

[22] W. Jiang and A. Ortega, “ Parallel Architecture for the Discrete Wavelet Transform

based on the Lifting Factorization,” SPIE Conference on Parallel and Distributed

Methods fo r Image processing III, Denver, Colorado, Jul. 1999.

[23] X. Xiong, et a!., “ A Comparative Study o f DCT- and Wavelet-Based Image

Coding” , IEEE Trans, on Circuits and Systems fo r Video Technology!, vol. 9, no.

5, AUG. 1999.

[24] D. Gunawan, “ Denoising Images Using Wavelet Transform” , IEEE Pacific Rim

Conference on Communications, Computers and Signal Processing, Pages:83 -

85, Aug. 1999

[25] J. Kovacevic and W. Sweldens, Interpolating filter banks in arbitrary dimensions,

US Patent No. 6,018,753, Jan. 2000.

[26] Y. Sheng, “ Wavelet Transform” , The Transforms and Applications Handbook,

Second Edition, CRC Press LLC, 2000.

[27] M. Marcellin, et a/., “ An overview o f JPEG-2000", Pro. o f IEEE Data

Compression Conf, Snowbird, Utah, USA, pp. 534-541, 2000.

[28] C. Taswell, “ The what, how and why o f shrinkage wavelet denoising” , Computing

in Science and Engineering, vol. 2, pp. 12-19, May 2000.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[29] H. L. Liao, B. F. Cockburn, and M. K. Mandal, “ Efficient Implementations o f the

Wavelet Transform on the Parallel DSP-RAM Architecture," Proc. o f the

Canadian Conference on Electrical and Computer Engineering (CCECE), pp.

I 189-1 192, Toronto. Canada, 2001.

[30] S. Gnavi, B. Penna, M. Grangetto, E. Magli, G. Olmo, “ Wavelet kernels on a DSP:

a comparison between lifting and filter banks for image coding." Applied Signal

Processing "Special Issue on Implementation o f DSP and Communication

Systems", Vol. 2002, No. 9. pp. 981-989, Sept. 2002.

[31] C. Dolabdjiana, et al., “ Classical low-pass filter and wavelet-based denoising

technique implemented on a DSP: a comparison study” , Ear. Phys. J. AP 20, pp.

135-140, Nov. 2002.

[32] P. Wu and L. Chen, “ An Efficient Architecture for Two-Dimensional Discrete

Wavelet Transform” , IEEE Trans, on Circuits and Systems fo r Video Technology,

vol. 11, no. 4, pp. 536-544, Apr. 2001.

[33] C. Lian, et al., “ L ifting Based Discrete Wavelet Transform Architecture for

JPEG2000,” IEEE International Symposium on C ircuits and Systems (ISCAS

2001), Sydney, Australia, pp. 445-448, May 2001.

[34] K. Andra, C. Chakrabarti, and T. Acharya, “ A VLSI Architecture for Lifting-Based

Forward and Inverse Wavelet Transform," IEEE Trans, on Signal Processing, vol.

50, no. 40, pp. 966-977, A pril 2002.

[35] F. Arguello, et al., “ Architecture for Wavelet Packet Transform Based on L ifting

Steps", J. Parallel Computing, vol. 28, no. 7-8, pp. 1023-1037, August 2002.

[36] I I. Y. Liao, M. K. Mandal, and B. F. Cockburn, “ Efficient Implementation o f the

Lifting-based Discrete Wavelet Transform,” IEE Electronics Letters, vol. 38, no.

18, pp. 1010-1012, Aug. 29, 2002.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[37] JPEG2000 Part I I F inal Committee D raft, 1S0/IEC JTC l/SC 29/WG I,

http://www.jpeg.org.

[38] JPEG Part /, 1S0/1EC IS 10918-1 | ITU-T Recommendation T.81,

http://www.jpeg.org.

[39] DV202 JPEG2000 Video Codec, http://www.analog.com.

[40] A. Alimohammad, S. J. Dillen and B. F. Cockburn, “ DSP-RAM: A S1MD

Processor-in-Memory for Signal Processing,” to be submitted to IEEE

Transactions on Parallel and Distributed Systems.

[41] A. Antoniou, D ig ita l F ilters - Analysis, Design, and Applications, McGraw- H ill

Inc, New York, March 1994.

[42] C. T. Mullis, and R. A. Roberts, “ Synthesis o f Minimum Roundoff Noise

FixedPoint D igital Filters” , IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS, Vol. CAS-23, No. 9, Sep. 1976.

[43] D. B. W illiams, V. K. Madisetti, D ig ita l Signal Processing Handbook, CRC Press

LLC, 2000.

[44] X ilin x ISE Foundation, X ilin x , Inc., Product Version: ISE 3.1/, 2002.

[45] Design Analyzer, Synopsys, Inc., Product Version: 2000.05 -2 , 2000.

[46] Design Framework II, Cadence Design Systems, Inc., Product Version 1.10.

[47] II. L. Liao, M. K. Mandal , and B. F. Cockburn, "Efficient Architectures for l-D

and 2-D Lifting-Based Wavelet Transforms," IEEE Trans, on Signal Processing,

Vol. 52, No. 5, pp. 1315-1326, May 2004.

with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.jpeg.org
http://www.jpeg.org
http://www.analog.com

[48] G. Davis, V. Strela, and R. Turcajova, “ Multiwavelet construction via the lifting

scheme," Wavelet Analysis and Multiresolution Methods, T.-X. Me, Ed.. Marcel

Dekker, Inc., New York, 2000.

[49] S. Goh, Q. Jiang, and T. Xia, ‘ ‘Construction o f biorthogonal multiwavelcts using

the lifting scheme," Appl. Comput. Harmonic Ana!., vol. 9, no. 3. pp. 336-352,

Nov., 2000.

[50] A. N. Netravali and B. G. Haskell, D ig ita l Pictures: Representation, Compression,

and Standards (2nd Edition). Plenum Press, New York. 1995.

[51] Z. Wang, B. F. Cockburn, D. G. E lliott, and W. Krzymien, “ DSP-RAM: A Logic-

Enhanced Memory Architecture for Communication Signal Processing,” 1999

IEEE Pacific Rim Conference on Communications, Computers and Signal

Processing, Victoria, BC, Canada, pp. 475-478, Aug. 22-24, 1999.

[52] C. M. Brislawn. “ Classification o f nonexpansive symmetric extension transforms

for multirate filter banks." Appl. Comput. Harmon. Anal., 3:337-357. 1996.

[53] V. H. Allan et al, “ Software Pipelining," AC M Computing Surveys, vol. 27, no. 3,

September 1995.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

A P P E N D IX A: M A TLA B PRO GRAM S

1. Daub-4 Lifting Algorithm

function Matri.\=d4lilk'ore3(Matrix,length,Inv)

K=(3A0.5+1)/2A0.5*2A 14;
A=-3A0.5*2AM:
B=3A0.5/4*2AI4:
C=(3A0.5-2)/4*2Al4:
Kvcn=Matrix(:. I);
Odd=Matrix(:,2);

%step i
if(lnv==0)

Evcn=Evcn;
Odd=Odd+Even*A;

else
Evcn=Even*(I/K);
Odd=Odd*K;

end

% step 2
i f (lnv==0) Odd=Odd:

for i=l:lenglh/2
i f (i-1)<=0

Delay=0;
else

Delay=Odd(i-l):
end
Event i)=Evcn(i)+B*Odd(i)+Dclay*C;

end
else

Even=Evcn;
for i=l :Iength/2

i f (i+l)>Iength/2
Next=0;

else
Next=Even(i+l):

end
Odd(i)=Odd(i)-Next;

end
end

% step 3
i f lnv— 0

Even=Even:
for i= I :length/2

if (i+l)>length/2
Next=0;

else
Ncxt=Even(i+l);

end
Odd(i)=Odd(i)+Next;

end
else

Odd=Odd;
for i=l:length/2

il'(i-l)<=0
Delay=0;

else
Delay=Odd(i-l):

end
Even(i)=Even(i)-(Odd(i)*I3+Delay*C);

end
end

% step 4
if(lnv==0)

Even=Even*K;
Odd=Odd*(l/K);

else
Even=Evcn;
Odd=Odd-Even*A;

end

Matrix=[Even Odd];

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. 9/7 Lifting Algorithm

function Matrix=lill97core(Malrix.length.lnv)
n=-l.586134342:
b=-().05298011854:
r=0.8829l 10762:
il=0.4435068522;
e= 1.149604398;

Evcn=Malrix(:, I); Odd=Matrix(:,2);
%slcp I
i f (lnv— 0)

Evcn=Evcn;
for i=l :lenglh/2

i f (i-l)<=0
Delay=0:

else
Delay=Even(i-l);

end
Odd(i)=Odd(i)+a*(Even(i)+Dclay);

end
else

Even=Evcn*(l/e);
Odd=Odd*c;

end

% step 2
if(Inv— 0)

for i=I:Iength/2
i f (i+l)>lengtli/2

Next=0:
else

Next=Odd(i+l);
end
Evcn(i)=Evcn(i)+b*(Odd(i)+Next);

end
Odd=Odd;

else
lor i=l:length/2

i f (i+l)>length/2
Next=0;

else
Next=Odd(i+l);

end
Even(i)=Even(i)-d*(Odd(i)+Next);

end
Odd=Odd;

end

% step 3
i f lnv==0

Even=Evcn;
for i=l:lengtli/2

i f (i-l)<=0
Delay=0:

else
Delay=Even(i-l):

end
Odd(i)=Odd(i)+r*(Even(i)+Delay);

end
else

Even=Even:
for i=l:lenglh/2

i f (i-l)<=0
Dclay=0;

else
Delay=Even(i-l);

end
Odd(i)=Odd(i)-r’l'(Even(i)+Delay);

end
end

% step 4
if(lnv==0)

for i=l:length/2
i f (i+!)>lenglh/2

Next=0:
else

Next=Odd(i+l);
cud
Even(i)=Evcn(i)+d*(Odd(i)+Ncxt);

end
Odd=Odd;

else
for i=l:lcngth/2

i f (i+l)>length/2
Nexl=0:

else
Next=Odd(i+l);

end
Even(i)=Even(i)-b'>(Odd(i)+Nexl):

end
Odd=Odd;

end

% step 5
if(lnv==0)

Even=Even*c;
Odd=Odd*(l/e);

else
Even=Even; for i=l:length/2

i f (i-l)<=0
Delay=0:

else
Delay=Even(i-l);

end
Odd(i)=Odd(i)-a*(Evcn(i)+Dclay);

end
end

Matrix=|Even Odd];

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX R: VHDL PROGRAMS

1. l-D 9/7 Recursive Architecture

-- a recursive lift arch, for multi-stage Id 97 DWT
- Ilongyu Liao Aug20/02

- Last update:
LIBRARY ieee;
library' comp,
library io_util;
library std;

use icec.std_logic_l 164.all;
use comp.liftcomp.all;
use std.tcNtio.all;
use io_utiI.tb_utilities.all;
use io_util.io_utils.all;

ENTITY rs97spdup IS
GENERIC (width: positive:9* 16; liro_len:positivc:=l; SigLcn:positive:=64;stage:positive-3);
l’ORT(

InSignal : IN std_logic_vector(width-l downto 0):
clock,reset,start,sigoalend: in stdjogic;
dvvt_coelT_L, dwt_coelT_II: inOUT std_logic_vector(width-l downto 0);
Done: inout stdjogic),

END rs97spdup;

ARCMITECTURE mix OF rs97spdup IS
component rs97_pe

GENERIC(width : positive; filojen:positive;stage:positive;rc:inleger);
I’ORT(

E.O : IN sldJogic_vcclor(width-1 downto 0);
clock,clear,InEn: in stdjogic;
Set0:std_logic_vcctor(3 downto 0):
steplen,stcp2en,slep3en.slep4cn,steplsw,step2sw,step3sw,step‘lsw:sldJogic_veclor(slage-l douuto 0);
dwt_coclT_L. dwl_coelTJl: OU T std_logic_veclor(width-l downto 0));

END component;

component RS97_)dCtrl
generic(stage: positive);
I’ORT(

elk : IN STDLOGIC;
reset : IN STD_LOGIC;
start.signalend : IN STD_LOGIC;
clear:inout stdjogic;
InEn: OUT STOJ.OGIC);

END component;

component rs97_in_sw
GENERIC(width : positive; stage:positive),
I*ORT(

InSignal I,Insignal2 : IN std_logic_vector(width-1 downto 0);
clock,clear: in stdjogic,
cvcn_en,odd_cn,sw:stdjogic_vcctor(stage-l downto 0);
Even,Odd: OU T sld_logic_vcclor(width-l downto 0));

END component;

constant rc:intcger:=l;
constant input_lshift:natural:=6;
constant scalcr:natural:=l4;

signal zeropad:std_logic_vector(input_l.shift-l downto 0):=(othcrs=>'0');
signal clr,lnputEn,NlnEn,LoutSw_Sig:std_logic;
signal EvenlnputEnOrg.OddlnputEnOig, lnputSwOrg:sld_logic_veclor(stage-l downto 0);
signal EvenlnpulEn.OddlnputEn, lnputSw:std_logic_vector(stage-1 downto 0);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

signal
SteplEnOrg,Stcp2EnOrg,Step3EnOrg.Step4EnOrg,StcplSw<)rg,Step2Sw<)rg,Step3Sw'Org,Step4SwOrg:stdlogie_vector(stnge-l
downto 0);
signal Step 1I;n,Step2 En,Slcp3En,!Stcp4 Hn,Step I SwIStcp2.Sw,Stcp3Sw.Step4Sw:.sidJngie_vcctor(stage-1 downto 0);
signal Evcn,Odd:stdJogic_vcctor(width-l downto 0);
signal Sct0:stdjogic_vector(3 downto 0);
signal clkx40rg,clkx4dl,S2enClk,clkx80rg,clkx8DI,S3cnOrg,S3enC'lk :sldJogtc:
signal inpul_sc,L_S2up,l.CoclTsldJogic_veetor(width-l downto 0);
signal SI Macl SelO,S2Macl Set(),S3Macl SctO.SI Mac3!>etO,S2Mac3SctO.S3Mac3SetO:stdJogic;
signal finish: stdjogic;
signal Slcnd,SlendDL,SlendDI.2,S2end,S2endDL,S3end,Sll.ast,S2Lasl,S3Last:stdJogic;
signal Analyzing: stdJogic_vector(stage-1 downto 0);
signal PEenable:stdJogic;

for input_sw: rs97Jn_sw use entity work rs97_in_sw;
for pe: rs97_pe use entity work.rs97_pe;
for Ctrl: RS97_IdCtrl use entity work.rs97 I dctrl;
for Slswl,s2clkdiv,s3clkdiv:t I f use entity comp.tJV;
for Slcn2,Slcn3,SIen4,S2EnRDclay,S2swl.dJTuse entity comp.dJT,
for S2en2,S2en3,S2en4,S3clkdivdl,S3clk,S3en2,S3en3,S3en4,Loulput:dJf use entity comp.dJT;
for Slmux3,Slmux5,S2enlodd,S2mux3,S2mux5,S3enIodd,S3swl,S3mux3,S3mux5:bit_delay use entity comp.bit_delay;
for SlSetO_l,SlSetO_3,S2SctO_l,S2SetO_3,S3SetO_I.S3SetO_3:bit_delay use entity comp bit_de)ay;
for SIScl0dl,S2Set0dl,S3Sel0dl,Slenddelay,Slenddclay2,s2cnddeluy :bi!_delay use entity comp bit_delay;
for slsetend,s2setend,s3setend :tJTuse entity comp.MT;
BEGIN

-- scale the input signal
input_sc<=lnSignal(width-input_lshift-l downto 0) & zeropad;

input switches for DW T Processor -

input_sw: rs97_in_swGENERIC map(w'idth=>width, stage=>stage)
POR T map(

InSignal l=>input_sc,lnsigna)2=>L_S2up.
clock=>clock,clear=>clr,
even_cn=>EvenlnputEn,odd_en=>OddlnputEn,sw=>lnpulSw,
Evcn=>Evcn,Odd=>Odd);

— D W T processor

pe: rs97_pe GENERIC map(wid(h=>width, fifoJen=>fifoJen.stage=>slage.rc=>rc)
PORT map(

E=>Evcn.O=>Odd. clock=>clock,cleai=>clr,lnEn=>lnpulEn,SetO=>SelO,
steplen=>Stepll:n,step2en=>Step2En,step3en=>Slep3En,step4en=>Step4En,
sleplsw=>SleplSw,slep2sw=>Step2SW',.step3sw=>Step3Sw,stcp4sw=>Step4Sw,
dwt_coeff_E=>I.CoefT, dwt_coclT_ll=>dwt_CoelTJI);

— Controller

Ctrl: RS97_IdCtrl generic map(stagc=>slage)
PORT map(

clk=>clock, rcscl=>rescl. start=>start.
signalend=>signalend, clcar=>clr, lnl;n=>lnputEn);

Low frequency coefficients output switches —

LoulSw l: L_S2up<= LCoclTwlten LoutSw_Sig-0' else
(olhers=>,0 '),

LoutSw2: divt_Coeff l.<= I.CoelTwhen l.ou tS w _S ig -I' else
(others=>i0 ');

— enable and switch control signals —

NlnEn<=not InpulEn;

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

enable and switch control signals lor the stage I data Mow -

fivenlnputl;nOrg(0)<=lnputEn;
0 ddlnputl;n0 rg(0)<='0 ';
S ls w l: T _ ff port map(clk=>clock,Notl:n=>Nlnl:n ,q=>InputSwOrg(0)); -- 2i+l
SI mux I : StcplSwOrg(())<=lnputSwOrg(0); -- 2 i+ l
Slcn2: D_FF port m ap(d=>SteplSuOrg(0),clk=>clock,clr=>Nlnl:.n ,q=>Slcp21:nOrg(0)); - 2i+2
Slmux3:bit_delay generic map(del=>2)

port map(elk=>clock,clr=>Nlnl-n ,d=>Stcp2l:nOrg(0),q=>Step2S\vOrg(())); — 2 i+4
S len3:D_FFport map(d=>Stcp2S\vOrg(0),clk=>clock,clr=>NInl:n ,q=>Stcp3l-nOrg(0)). - 2i+5
SI mux4: Stcp3SwOrg(0)<=Stcp3IinOrg(());
SIcn4:D_FF port map(d=>Stcp3S\vOrg(0),clk=>clock,clr=>NlnHn ,q=>Stcp4linOrg(O)); -- 2i+6
SI rmix5: bit_delay generic mnp(del=>2)

port map(clk=>clock,clr=>Nlnl-n ,d=>Stcp4FnOrg(0),q=>Stcp4S\vOrg(0)); - 2 1+8

SlSctO_l:bit_delay generic map(del=>2)
port map(clk=>clock,clr=>NInfin ,d=>signalend,q=>SIMaclSct()); - signalend+2

SISctO_3.bit_dclay genetic m ap(del->4)
port map(clk=>clock,clr=>NlnI:n,d=>SI MaclSetO,q=>SI Mac3SetO), - signalend+6

-- speedup
SISetOdl:bit_delay generic map(dcl=>3)

port map(clk=>clock,clr=>Nlnl;n ,d=>SlMac3SetO,q=>SILasl); — signalend+9
slselcnd:T_FF port niap(clk=>SILast,Nolf;n=>NInEn ,q=> Slcnd);
slenddclay:bit_delay generic map(del=>2)

port map(clk=>clock,clr=>NlnFn ,d=>Slend,q=>SlcndDL); --signalcnd+l I
slenddelay2;bit_delay generic map(del=>3)

port map(clk=>clock,clr=>Nlnl:n ,d=>SlendDI.,q=>SIendD1.2): -signalend+14

Analyzing(0)<=(not SI end) and Inputl-n;
RvenInpulI:n(0)<=l:venlnputEnOrg(0) and Annlyz.ing(O);
OddlnpulEn(())<=OddlnpiilEnOrg(()) and Analvzing(O);
lnputSw(0)<=InputSwOrg(0) and Analyzing(O);
S tcplSw (0)<=SteplS \\Org(0) and Analyzing(O),
Slep2En(0)<=Step2nnOrg(0) and Analyz.ing(O);
Stcp2Sw(0)<=Step2S\\Org(0) and Anaiyzing(O),
Slcp3nn(0)<=Stcp3l:nOrg(0) and Analyzing(O);
Stcp3Sw(0)<=Step3S\\Org(0) and Analyzing(O);
Stcp4En(0)<=Slep4l;nOrg(0) and Analyzing(O);
Step4S\v(0)<=Step4SwOrg(0) and Anaiyzing(O);

enable and control signals lor stage 2 data llow, Delay lor Stage I =9 —

— first, generate 4xClk signal lor stage 2 control signals
s2clkdiv:T_I:F port map(clk=>Step4SwOrg(0),NotEn=>NlnEn ,q=>clkx40rg), ~4i+8~9
- then generate a clock signal with duty=25%, f=4xClk
S2EnRDelay:d_lfport map(d=>clkx40rg.clk=>clock,clr=>NlnEn,q=>clkx4DL); ~ 4 i+ 9 -IO
S2enClk<=clk.\4DL and clkx40rg; —4i+9

EvcnlnputEnOrgt I)<=S2cnClk;
S2enlodd:bit_delay generic map(del=>2)

port ninp(clk=>e!oek,clr=>NlnEn,d=>S2enClk,q=>OddlnputEnOrg(I)); -- 4 i+ l I
S2swl :I3_FF port map(d=>OddlnputEnOrg(I),clk=>clock,clr=>NlnEn ,q=>lnputS\vOrg(1)); - 4 i+12 (mod(12/2)=0)
S2mux I :Stepl SwOrg(I)<=lnputSwOrg(I);
S2en2: D_FF port map(d=>Slepl SwOrgt I),clk=>clock,clr=>NlnEn ,q=>Step2EnOrg(I)), -- 4 i+ l 3
S2mux3:bit_delny generic ntap(del=>4)

port map(clk=>clock,clr=>NInEn ,d=>Slep2EnOrg(l),q=>Step2SnOrg(I)); — 4 i+17
S2en3:D_FF port inap(d=>Stcp2SuOrg(l),clk=>clock,clr=>NlnEn ,q=>Stcp3EnOrg(l)); - 4 i+ l8
S2mux4:Step3SwOrg(I)<=Step3EnOrg(I),
S2en4:D_FF port niap(d=>Step3Sw<)rg(l),clk=>clock,clr=>NlnF.n ,q=>Stcp4EnOrg(l)>; -- 4 it 19
S2mux5:bil_delay generic map(del=>4)

port niup(clk=>clock,clr=>Nln!:n ,d=>Step4EnOrg(l),q=>Step4S«Org(l)), -- 4i+23

S2SetO_l :bit_delay generic map(del=>2)
port ntnp(clk=>clock,elr=>NlnEn ,d=>SI l,asl,q=>S2MaclSetO): -signalcnd t 11

S2SetO_3:bit_delay generic map(del=>4)
port map(clk=>clock,clr=>Nlnlin ,d=>S2MaclSetO,q=>S2Mac3SelO); --signalcnd+l5

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- speedup
S2Sct0dl:bi(_ilelay generic map(del=>3)

port map(clk=>clock,clr=>Nlnlin ,d=>S2Mnc3SelO,q=>S21.ast): - signalcnd+18
s2sctend:TJ;F port map(clk=>S2Lnst,Nollin=>Nlnlin ,q=>S2end);
s2enddel;iy:bit_delay generic map(del=>2)

port m;tp(clk=>clock,clr=>Nlnlin ,d=>S2cnd,q=>S2endDL); --signalend+20

Analyzing! I)<=lnputlin and SlendDL and (not S2cnd);
livenlnputlin(1)<=(EvenlnpulIinOrg(1) and Annlvzing(O));
Oddlnpntl-n(I)<=(OddlnputIinOrB(I) and Analyzing(O)):
lnputSw(l)<=(InputSwOrg(l) and (not S IendDl.) and Inpntlin) or ((not InputSwOrg(O)) and Analyzing! 1));
S tcp lS \\(l)<= (Step 1 S\vOrg(1) and (not S lendDL) and Inputlin) or ((not StcplSwOrg(O)) and Analyzing! I)).
Stcp2lin(l)<=(Stcp2linOrg(l) and (not SlendDL) and Inputlin) or ((not Step2linOrg(l))) and Analyzing! I));
Step2S\v(l)<=(Step2S\vOrg(l) and (not S lendDL) and Inputlin) or ((not Stcp2S\\Org(0)) and Analyzing! 1));
Stcp3lin(l)<=(Step3linOrg(l) and (not SlendDL) and Inputlin) or ((not Step31inOrg(0)) and Analyzing) I));
Stcp3S\v(I)<=(Step3S\vOrg(I) and (not SI cndDL) and Inputlin) or ((not Stcp3S\vOrg(0)) and Analyzing(1)),
Stcp4Iin(l)<=(Stcp4IinOrg(l) and (not S lendDL) and Inputlin) or ((not Step41inOrg(0)) and Analyzing! I));
Slep4S\v(l)<=(Slep4SwOrg(l) and (not S lendDL) and Inputlin) or ((not Step4S\\t)rg(0)) and A nalyzing!I)),

— enable and control signals lor stage 3 --

- generate 8xclk signal
s3clkdiv:T_FF port map(clk=>Step4SwOrg(l),Notlin=>NInEn ,q=>clkx80rg), — 8i+23~26
- dnty=l 2.5% clock
S3clkdivdl:d_ll port map(d=>clkx80rg,clk=>clock,clr=>NlnLin,q=>clkx8dl); -8 i+ 2 6 -2 9
S3enOrg<= (not clkxSdl) and clkx80rg; --8i+23
S3clk:d_ITport niap(d=>S3enOrg,clk=>clock,ch=>NInIin,q=>S3cnClk); ~8i+24

llvenlnpullinOrg(2)<=S3enClk,
S3enlodd:bit_delay generic map(del=>4)

port mnp(clk=>clock,clr=>Nlnlin,d=>S3cnClk,q=>Oddlnpu!linOrg(2)); - 8i+28
S3swl :bil_delay generic ntap(del=>2)

port niap(clk=>clock,clr=>NInlin ,d=>OddlnputlinOrg(2),q=>lnputSuOrg(2)); — 8i+30
(m od((30-l2)/4!=0)

S3mux 1 :Step 1 SuOrg(2)<=lnputSwOrg(2),
S3en2: D_FF port map(d=>SteplS\vOrg(2),clk=>clock,clr=>NlnIin ,q=>Step2linOrg(2)); - 8i+3l
S3mux3:bit_dclay generic map(del=>8)

port map(clk=>clock,clr=>Nlnlin ,d=>Slep21inOrg(2),q=>Step2SwOrg(2)), — 8i+39
S3en3:D_FF port map(d=>Slep2SwOrg(2),clk=>clock,clr=>Nlntin ,q=>Stcp3IinOrg(2)), - 8i+40
S3mux4:Step3S\vOrg(2)<=Step3linOrg(2);
S3en4:D_FF port map(d=>Step3SwOrg(2),clk=>clock,clr=>NInIin ,q=>Slcp4linOrg(2)); - 8 i+41
S3mux5:bit_delay generic map(del=>8)

port map(clk=>clock,clr=>NlnIin ,d=>Step4linOrg(2),q=>Step4SwOrg(2)); — 8i+49

S3SctO_l :bit_dclay generic map(del=>2)
port map(clk=>clock,clr=>Nlnlin ,d=>S2l.ast,q=>S3MaclSetU); -signalend+20

S3Set0_3:bit_dclay generic map(dcl=>4)
port map(clk=>clock,clr=>Nlnlin ,d=>S3MaclSetO,q=>S3Mae3SetO); -signalend+24

- speedup
S3Set0dl:bi!_delay generic niap(del=>3)

port nrap(clk=>clock,clr=>Nlnlin ,d=>S3Mac3SetO,q=>S3Last); - signalend+
s3setend: I FF port mnp(clk=>S3Last,NolI:n=>Nlnlin ,q=>S3end);

Analyzing(2)<=lnputlin and SlendDL2 and (not S3end);
livenlnputlin(2)<=(livenlnputlinOrg(2) and (not S lendDL2) and Inputlin) or (Step3SuOrg(I) and Analyzing(2)),
Oddlnputlin(2)<=(OddlnputlinOrg(2) and (not S lendDI.2) and Inputlin) or (Step! SxvOrgf I) and Analyzing(2));
lnputS\v(2)<=(lnpulS\\Org(2) and (not SlendDL) and Inputlin) or (((Stcp2S\vOrg(l) and (not S2endDI.)) or

(InputSwOrg(O) and S2endDI.)) and Analyzing(2));
SleplS\v(2)<=(SteplSuOrg(2) and (not SlendDL) and Inputlin) or (((Step2SuOrg(I) and (not S2endDI.)) or

(Step I SuOrg(O) and S2endDL)) and Analyzing(2)),
Slep2lin(2)<=(Stcp21:nOrg(2) and (not S lendDL) and Inputlin) or (((S lep3S »O rg(l) and (not S2endDL)) or

(Step21inOrg(0) and S2endDL)) and Annlyzing(2));
Step2S«(2)<=(Step2Sr\Org(2) and (not SlendDL) and Inputlin) or (((Step3linOrg(l) and (not S2endDI.)) or

(Step2SwOrg(0) and S2endDI.)) and Analyzing(2));
Slep3lin(2)<=(Step3linOrg(2) and (not S lendDL) and Inputlin) or (((Step4St\Org(I) and (not S2cndDI.)) or

(Step3IinOrg(0) and S2endDL)) and Analyzing(2));
Slcp3S\\<2)<=(Step3S\vOrg(2) and (not S lendDL) and Inputlin) or (((Step4linO rg(l) and (not S2endDL)) or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Step3SwOrg(0) and S2cndl)l.)) and Anal_vzing(2));
Step4 l:n(2)<=(Stcp4l;nOrg(2) and (not SI endDl.) and Inputlin) or (((S tcp lS uO rg(l) and (not S2endDI.)) or

(Step41:nOrg(0) and S2cnd131.)) and Analyzing(2));
Stcp4Sv\12)<=(Step4SwOrg(2) and (not S lendDL) and Inputlin) or (((S tcp lS nO rg(l) and (not S2endDL)) or

(Step4SwOrg(0) and S2cndlJI.)) and Ana!yzing(2)),
SetO(U)<=S I Mac I SctO or S2Mac I SclO or S3Mac I SctO;
SetO(2)<=SIMac3SelO or S2Mac3SetO or S3Mac3Scl();

Loutpul: D _ l:l: port map(d=>Step4SwOrg(2),clk=>clock,clr=>NlnIIn ,q=>LoutSw_Sig); -- 8i+50
Step I IIn<=lnptitSw;

- l , llcnable<=lnputl-n and (Analyzing(O) or Analyzing! 1) or Analyzing(2));

llnish signal—

— it is done 8 cycles alter the last LoutSw_Sig pulse
proccss(clock,LoutSw_Sig)
variable linishcnt; nalural:=0.
begin

il 'ln p u tl in -I ' then
if rising_edge(LoutSw_Sig) then

linishcnt;=finishcnt+l;
end if;

else
fmishcnt-O;

end if;

ilTtnishcnr>SigLcn/(2** stage) then
fin ish<=T;

else
fin is lK -O 1;

end if;
end process;

 Writing results to data files

output; process(clock)
file lcstoutpulS3l.:text open write_mode is "S3outputL.txt";
file testoulputS3h:text open \vrite_mode is "S3outputlI.txt'1;
file tesloutputS2h:lext open wrile_mode is "S2outputl-l.txt";
file tcstoutputSlh:text open write_modc is "Sloulputll.txt";
file testoutputl; text open write_mode is "outputL.txt";
variable Outl.S I .Outl IS I .OutLS2,OutHS2,OulLS3,OutHS3,OutL: Line;
begin

ifrising_edge(clock)and fin ish-0 ' then
- I l l
i f Step4Sw(0)~ I' then

write(OutHSI,slv_to_bv(dwt_coclT_II),right,8,decimal,false);
writelinc(lestoulputS I h.OutMS I);

elsif Step4S\v(I)=' I 1 then
write(OutllS2,slv_to_bv(d\vt_coeff_l I), right, S.decimal, false);

wrileline(testouIputS2h,OutllS2);
-3 1 1
elsif Step4Sw(2)=’ 11 then

write(Outl IS3,slv_to_bv(dwt_coelM I),right,8,decimal,false);
writeline(testoulpulS3h,OutnS3);

end if;
- 3L
ifl.ou tS w _S ig=T then

write(OulLS3,slv_to_bv(IX'oelT),right,8,decimal,false);
wrileline(testoutpulS3L,OutLS3);

elsif Oddlnputl;n(2 downto l)/="00" or l;venlnpull;n(2 downto I) / - ’00" then
write(OulL,slv_lo_bv(LCocfl), right, 8, decimal, false);

writelinc(lestoutpulL,Oii!L),
end if;

end if;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end process output;
END mix;

-- a controller lor I - 0 Recursive 97 D W T architecture
-created Aug 13/02
- Last update
library ieee;

use ieee.sldJogic_arith.all;
use ieee.std_logic_l 164 all;
use iccc.stdJogic_signcd.all;

E N TIT Y RS97_ldC'trl IS
gcneric(slagc; positivc:=3);
I’ORT(

elk : IN S TD LO G 1C ;
reset : IN STD_LOGIC;
start, signalend: IN STD_LOGIC;
clear:inout std_logic;
InEn: O U T S TD J .O G IC);

END R S97JdC trl;

A R C H ITE C TU R E belt OF RS97_ldCtrl IS
TYPE STATE TYPE IS (idle,analyzing,endofstage,analyzing2,Finish);
SIG NAL state: STATEJTYPE;
signal InEn sig:std logic;

BEGIN
PROCESS (elk)
variable Count,cntselOr.cntselOc.LStage.CntLastRow: natural:=0;
variable counting: stdjogic;
BEGIN

- Number o f stage
l.stage:=stage;
IF reset = T THEN

state <=idle;
ELSIF clk'EVENT A N D elk = T 'T H E N

CASE state IS
W H E N idle =>

- reset everything
counting:-0';

IF start— 11 TH EN
state < = analyzing;

EN D IF;
W H E N analyzing =>

it's ignalend-1' then
stale<=cndofslage;

end if;

when endofslage =>
co u n tin g :-!’,
i f counl=Lslage*5+20 then

slate <= Finish;
else

slate<=analyzing2;
EN D IF;

when analyzing2 =>
ifcount=IO then

state<=cndol'stagc;
end if;

when Finish =>
stalc<=ldle;

end case;

if coun ting -I' then

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

count =count+l;
end il';

END II':
E ND PROCESS;

W ITH stale SELECT
lnEn_sig < = ’O' W IIH N Idle,

T W III-N others;
W ITH state SELECT

clear < = T ’ W IIE N
'O'

Idle,
W H E N others;

END belt;
lnl;n<=lnEn_stg;

- a process element for implementing 9/7 D W T
-- l longyu Liao Jnl 12 /2001
— the module should be cleared before each data frame
-- Last update: Aug8/02

LIB R A R Y icec;
library comp;
use ieee.std_logic_arith.all;
use ieee sld_logic_l 164 all:
use ieee.std_logic_signed.all;
use comp.liftcomp.all;

ENTI TY rs97_pe IS
G E N E R IC (w id tl): positive - 16; filb_len:positive:=l;stage:positive:=3;rc:intcger:=l);
I’ORTf

E ,0 : IN std_logic_veclor(widlh-1 downto 0);
clock,clear,InEn: in stdjogic;
SelO: std_logic_vector(3 downto 0);
steplcn,slep2en,slep3cn,step4en,stepLsw,step2sw,stcp3sw,step4sw:sld_logic_vector(slage-l downto 0);
dwt coclTJ., dwt_coelT_ll: OU T std_logic_veclor(width-l downto 0));

E ND rs97_pe;

A R C H ITE C TU R E sir OF rs97_pe IS
for delay2,delay3,delay4,delays:delay_rs use entity comp dclay_rs;
for macl,mac2,mac3,mac4: mac_sym use entity conip.mac_sym;
for multi,mult2: mult use entity compmult;
for regl ,rcg2,reg3: reg use entity comp leg,

signal alpha,beta,gama,delta,zela,one,ZL'ta_inv:sld_logic_vcctor(width-1 downto 0);
signal el,e2,e3,c4,e5,ol,o2,o3,

o4,o5,sl,s2,s3,s:sld_logic_vector(width-l downto0);
signal NlnEn,SIcn.S2sw2.S3sw2.set0dl:std_logic;
signal lowout,highout:std_logic_vector| w id th s -1 downto 0);
signal delayoull,delayout2,delayout3.delayout4,delayoul5:std_logic_vector(width*stagc-l downto 0);
signal ol_dcluy,rl_in,r2_in,r3_in,r4_in:sld_logic_vector(widlh-l downto 0);
signal NoCtrlSig:std_logic_vector(stage-1 downto 0);

BEGIN
alpha<=" 10 0 1 10 10 0 1111101"; - right shill the original parameters for Mbits
bela<=" 1111110010011100":
gama<="00l 110 0 0 10000010";
delta<="0001110001100010",
zeta<="010 0 10 0 110 0 10 0 11";
onc<=“0100000000000000";
zetn_inv<="00l 101111011)1100";
NoC'trlSig<=(othcrs=>'0'),

e l< = E ,
o I <=0;

- enable signal for the stagel data How
- SI cn

with permission of the copyright owner. Further reproduction prohibited without permission.

--s lcp l
'■--delayl: delay_rs yeneric map(width=>width, len=>fi£o_len, stage=>stage,

rc • >rt:i

— port map(clk=>clock,clr=>clear,enable=>steplen,input=>ol,output=>delayoutl);

--muxl: for index in 1 to stage generate

--begin

ol_delay<= delayoutl(width*index-l downto width*(index-1)) when steplsw(index-
l)='l' else

(others=>'01) when steplsw=MoCtrlSig else
(others=> ' 2 ■);

—end gencrale mux 1;

delny2: delay_rs generic ninp(widlh=>width,len=>filbjcn,stagc=>stagc,rc->rc)
porl ninp(clk=>clock.clr=>clcar,ennble=>stcplen,inpiit=>el,oiitput=>delayout2);

niux2: for index in 1 to stage generate
begin

r1_in<= delayoiit2(width*index-1 downto width‘ (index-1)) when step! su(index-I)= T else
(others=>'0‘) when steplsw=NoCtrlSig else
(others=>'Z');

end generate mux2:

mac I :mac_sym generic map(widtb=>width,add_sc=>l4,res_sc=>l4)
port map(clock=>clock,clear=>clear,Sel()=>Set0(0),acc=>ol,in]=>el,in2=>rl_in,amp=>alpha,

output=>o2);

regI :reg generic map(width=>width)
porl niap(clk=>clock.clr=>clear,en=>lnl:n.input=>rl_in.output=>e2);

-- slep2

delay3: delay_rs generic map(widlh=>width,len=>fifo_len,stage=>stage.rc=>rc)
port map(clk=>clock,clr=>clear,enable=>stcp2en,input=>o2,output=>delayout3),

niux3: for index in I to stage generate
begin

r2_in<= delayout3(width‘ index-1 downto width*! index-1)) when step2suf in d e x -1)-I' else
(others=>'0') when stcp2sw=NoCtrlSig else
(othcrs=>'Z’);

end generate mux3;

mac2:mac_sym generic map(width=>width,add_sc=>l4,res_sc=>l4)
port map(clock=> clock,clear=>clear,SctO=>SetO(l),acc=>e2,inl=>o2,in2=>r2_in,amp=>beta,
output=>e3);

reg2:reg generic map(width=>width)
port map(clk=>clock,clr=>clear,en=>lnr:n1input=>r2_in,output=>o3);

— step3
delay4: delay_rs generic niap(width=>width,len=>fifo_len,stage=>stage,rc=>rc)

port mnp(clk=>clock,clr=>clear,enable=>step3en,inpul=>c3,output=>delayout4),

1110x4: for index in I to stage generate
begin

r3_in<= delaymit4(widtb* index-1 downto width*(index-1)) when step3sw(index-1)=' 11 else
(othcrs=>'0') when stcp3sw=NoCtrlSig else
(others=>'Z');

end generate nuix4;

niac3:mac_sym generic map(widtli=>widlli,add_sc=>l4,rcs_sc=>!4)
porl niap(elock=> elock,clear=>clear,SetO=>SetO(2),acc=>o3,inl=>e3,in2=>r3Jn,anip=>gama,

outpul=>o4);

reg3:rcg generic inap|width=>width)

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

port niap(clk=>clock,clF=>clear.cn=>lnCn,input=>r3Jn.oulput=>e4),

- slep4
dclay.4: delavrs generic mnp(widtli=>widtli,len=>ni'oJen,5lnge=>stage.rc=>rc)

port map(clk” >clock,clr=>clcar,cnable=>step4en,mpul=>o4,output=>delayoul5);

010x5: for index in I to stage generate
begin

o5<= delayout5(widlh*index-l downto \vidlh*(index-1)) when step4sw(index-l)='1' else
(olhers=>'0') when stcp4sw=NoCtrlSig else
(othcrs=>'Z');

end generate muxS;

mac4:mac_sym generic nmp(widtli=>width,add_sc=>l4,res_sc=>14)
port niap(clock=> clock,clenr=>clcar,Set0=>Scl0(3),acc=>c4,inl=>o4,in2=>o5,nmp=>dclta,
oulput=>e5);

limit I :mull generic map(width=>width)
poit map(a->e5,b->zela,p=>lowout);

mult2:mult generic map(widlh=>width)
port map(a=>oS,b=>zetaJnv,p=>highoul);

scalel :dwt_cocff J .<=low out(w id lh*2-3 downto widlh-2)whcn lowoul(w idlh-3)-0' else
lowout(width*2-3 downto width-2)+1:

scale2:dwt_coelTJI<=highout(width*2-3 downto widlh-2) when highoutfwidth-3)=*0' else
highout(widlh*2-3 downto w idlh-2)+l;

END str;

- - input switch for l-D 97 lilting liller
-- Hongyu Liao Aug 12/2002

- Last update: /2002
LIBRARY ieee;
library' comp;
use icec.sld_logic_arith.ali,
use ie e c .s td jo g ic j 164 all;
use icee std_logic_signed.aH;
use comp.liltconip all;

E N TIT Y rs97Jn_sw IS
GENERICfwidth : positive” 16; slage:positive~3);
l’ORT(

InSignal I,Insignal2 : IN std_logic_vector(width-1 downto 0);
clock,clear; in stdjogic;
evcn_en,odd_cn,sw.stdjogic_vector(stage-t downto 0);
Even.Odd: O U T std logic_vcctor(width-l downto 0)),

END rs97 in sw;

A R C H ITEC TU R E str OF rs97_in_sw IS
for reg l: reg use entity comp reg;
for even_rcgs,odd_regs:delay_rs use entity comp.delay_rs;

signal odd_reg_out,even_reg_oul:std logic_vector(widlh*stage-l downto 0);
signal NoCtrlSig:std_logic_vcctor(stage-1 downto 0),
BEGIN

NoCtrlSig<=(otbers=>'0');
- synchronize the even and odd samples
regl :reg generic map(width=>widtb)

port map(clk=>clock,clr=>clear,en=>even_en(0),input=>lnsignalI,output=>even_reg_out(width-1 downto 0));

odd_reg_ou!(width-l downto 0)<=lnsignall;

- for stage 2 and up
evenjegs: delay_rs generic map(widlh=>widtl\, len=> 1, stage=>stagc-1, rc=> I)

port ninp(clk=>clock,clr=>clear1cnable=>evcn_en(stage-1 downto
I),input=>lnsignal2,oulput=>even_reg_out(width*stagc-l downto width));

oddjegs: de la y js generic inap(width=>widlh, len=>l, stage=>stage-l, rc = > I)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

poll map(clk=>clock.clr=>elcar.cnablc=>odd_en(stage-1 downto
I),inpul=>lnsignal2.output=>odd_reg_out(width*stage-l downto width)):

-- there is I cycle delay between the switch signals and the enable signals
- I'or the data flows o f stage 2 and up, which allows the data llows to get to
-- the next step
mux_cven: I'or i in I to stage generate
begin

Evcn<=evcn rcg_out(width*i-l downto width^(i-1)) when s w (i- l)= T else
(olhers=>'0') when sw=NoClrlSig else
fothcrs=>'Z'),

entl generate mux_cven;

m uxodd: I'or i in I to stage generate
begin

Odd<=odd_rcg_out(width*i-l downto w id th *(i- l)) when s\v(i-1)=' 1' else
(others=>'0') when sw=NoClrlSig else
(others=>'/');

end geneiale mux_odd.

END str;

2. l-D Daub-4 Recursive Architecture

-- a recursive lift arch. I'or multi-stage D-4
-- llongyu Liao leb17/02
- Last update
LIB R A R Y ieee;
library' n iy jib ;
use ieee.std_logic_arith.all;
use ieec.std_logic_l 164.all;
use ieee.std_logic_signed.all;
use n iy j ib lillcomp.all;

E N TIT Y rs_Id IS
CIENERICfwidlh : positive:- 16: fifo_len:posilivc:=l;SigLen:posilivc:=32);
I’ORTf

InSignal : IN std_logic_veclor(width-l downto 0);
clock,reset,start: in stdjogic;
dwt_coelT_L, dwt_coelT_H: O U T std_logic_vector(width-l downto 0);
Done: out stdjogic);

END rs ld;

A R C H ITE C TU R E bch OF r s j d IS
component d4lill_rs_dp

GENERICfwidth : positive; IHb_len:positive);
I’ORTf

InSignal I,Insignal2 : IN stdJogic_vector(width-l downto 0);
clock,clear,InEn,Set(),S2enI,S3enI,S2en2,S3en2,S2swl,S3swl,S3enlb: in stdjogic;
dwt_coelT_L. dwt_coelT_ll: O U T sld_logic_vector(width-l downto 0));

END component;

component KSControl
genericfSigLen: positive);
I’ORTf

elk IN S 'I'D LO G IC ;
reset : IN S TD J.O G IC ;
start : IN STD_LOGIC;
lnEn,clear,Set0,S2enl,S3enl,S2en2,S3en2,S2Swl,S3swl,S3cnlb.Done: O U I'S TD I.OGIC),

EN D component;

signal clr,lnSel,S2cnl,S3cnl,S2en2,S3cn2,InputEn,Sctzcro,ClkDivEn,Lout: stdjogic;
signal S2swl,S3swl ,S3enI b:std_logie;
signal zcropad:sldJogic_veclor(5 downto 0):=(others=>'0');
signal input_se,Lsig,Lreedbkl,Lreedbk2:std_logic_veetor(widlh-l downto0);
BEGIN

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

inptil_sc<=lnSignal(width-7 dcnvnto 0) & zeropad;

core: d4lin_rs_dp CiENERIC map(W'idth=>widlh.filb_lcn=>riro_len)
I’O K T map(
InSignal I =>input_sc,lnSignal2=>Lfecdbk I, cloek=>clock, clear=>clr,lnEn=>lnputEn.SelO=>Selzero,
S2cn I =>S2en I ,S3en I =>S3en I ,S2en2=>S2en2,S3en2=>S3en2,S2swl =>S2sw l,
S3swl =>S3swl ,S3enI b=>S3cnI b,dwt_coeff_L=>Lsig, d w lc o e f f l l=>dwl_coeff_l I);

controllenRSControl generic map(SigLen=>SigLcn)
PORT map(
clk=>clock,reset=>resct,slart=>starl, lnEn=>lnputEn,clcar=>clr,setO=>Setz.cro,
S2en I =>S2cn I ,S3en I =>S3en I ,S2cn2=>S2en2,S3en2=>S3en2,S2sw I =>S 2sw l,
S3swl =>S3swl ,S3en I b=>S3en I b,Donc=>Donc);

LSel:d_ITport map(d=>S3en2,clk=>clock,clr=>rcset,q=>Loul);
LI'ecdbkl<=LSig when Lout-O ’ else

(othcrs=>’0'),
dwt_coell_L<=LSig when Lout- I ' else

(othcrs=>'0');
END beh;

- a recursive lilt arch, datapath lor D-4
- Ilongyu Liao (eb 12/2001
- the module should be cleared before use
- Change port map
- Last update: Apr09/2002
LIB R A R Y ieee;
library' m y jib ;
use ieee.std_logic_aritb.all;
use ie e e .s td jo g ic j 164.all;
use ieee.sld_logic_signed.all;
use n iy j ib liltcomp.all;

E N TIT Y d4lifl_is_dp IS
GI:NERIC(width : positive:- 16; rifo_len:posilive:=l);
l’ORT(

InSignall,lnsigna!2 : IN std_logic_vector(width-l downto 0);
clock,clear,InEn,SetO,S2en I ,S3en 1 ,S2en2,S3en2,S2swl ,S3swl ,S3en I b: in stdjogic;
dwt_coelT_L. du1_coefl'_ll: OU T std_logic_vector(widlh-l downto 0));

END d4lil't_rs_dp;

A R C H ITE C TU R E beh OE d4lill_rs_dp IS

signal alpha,beta,gama,one,K,K_inv,zero:std_logic_vector(width-1 downto 0),
signal e l_ in,el_sl,e l_s2,el_s3,el,e2,c3,e4_in,e4.e5,ol,o l_sl,o l_s2,ol_s3,o2,o3.

o4,o5_in,o5,delay_in,sl,s2,s3,slup,s:sld_logic_vector(width-l downto 0);
signal NlnEn,SIen,S2sw2,S3sw2.clrM3:std_logic,
signal lowout,highout:std_logic_vector(width*2-l downto 0);
BECdN

alpha<=" 10 0 1000 10 0 10 0 1 II" ; - right shift the original parameters for Mbits
beta<="000 I I 0 I I I 0 110 I I 0";
gama<="l 111101110 1 M l 11";
one<="0100000000000000";
K <="0! 1110] 110 1000 II" ;
K_inv<="001000010 0 100000";
zero<=(others=>'0');

ol_s l<=lnS ignall;
ol_s2<=lnSignal2;
NlnEn<=not InEn;
- enable signal for the stagel data How
- SI cn
s!scl:T_EI: port map(clk=>clock,clr=>NlnEn ,q=>SIen);

- synchronize; the even and odd samples
regl :rcg generic map(widlh=>widtli)

port map(clk=>clock,clr=>clear,en=>lnEn,inpul=>lnsignall,oulput=>cl_sl);
regl_2:reg generic map(widlh=>widlh)

port map(clk=>clock,clr=>clear,cn=>S2enl,input=>lnsignal2,oulput=>el_s2);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

rcgl_3:rcg generic map(width=>width)
porl map(clk=>clock.cIr=>clear,cn=>S3cnl,input=>lnsignnl2,oulput->el_s3);

reg I _4: reg generic ni;ip(\vitllh=>\vidth)
porl map(clk=>clock.clr=>clear,en=>S3enlb,input=>lnsignnl2,output=>ol_s3):

-- there is 1 cycle delay between the switch signals and the enable signals
-- I'or the data Hows o f stage 2 and up, which allows the data llows to get to
-- the next step
cinmux: c l< = e l_ s l when S le n - I 'e ls e

cl_s2 when S 2 s w l= T else
cl_s3 when S3swl - I ' else
zero;

oinmux: o l< = o I _s I when S le n - I 'e ls e
ol_s2 when S 2 s w l= T else
ol_s3 when S3sw l= 'l'else
zero;

m ad :ntac generic mnp(width=>width,add_sc=>l4,rcs_sc=>l4)
port niap(clock~> clock,clcar=>clcar,acc=>ol,mul=>el,anip->alplta, output=>o2);

rcg2:reg generic inap(widlh=>width)
port map(clk=>clock.clr=>clcar,en=>lnRn,inpul=>el,output=>e2);

mac2:mac generic map(width=>width,add_sc=>l4,res_sc=>!4)
port tnap(clock=> clock,cleai=>clcar,acc=>e2,mul=>o2,amp=>beln, output=>c3);

reg3:rcg generic map(widlh=>width)
port map(elk=>clock,clr=>clear,en=>lnh'n,input=>o2,output=>delay_in);

-- delay unit, 3 delay registers
dl :delay generic map(width=>width,len=>fifo_len)

port map(clk=>clock,clr=>clear,en=>Slen,inpul=>delay_in,oulput=>sl);
d2:dclay generic map(width=>widlh,len=>llfo_len)

port niap(clk=>clock.cli=>clear,en=>S2en2.inpiit=>de)ny_in,output=>s2);
d3:delay generic map(widlh=>width,len=>fifoJcn)

port map(clk=>clock.clr=>clear.en=>S3en2.inpul=>delay_in,output=>s3);

delaymux: o3<= si when S le n - I ' else
s2 when S2cn2=T else
s3 when S 3en2=T else
zero;

— this mac can be cleared for the last high frequency D W T coefficient
mac3:mac generic ninp(width=>width,udd_sc=>l4,res_sc=>l4)

port map(clock=> clock,clcar=>clrM3,acc=>e3,mul=>o3,amp=>gama, output=>e4);
clrM3<=clcar or setO;

rcg4:rcg generic map(widlh=>width)
port niap(clk=>clock,clr=>clcar,en=>lnl:n,inpul=>o3,output=>o4);

mac4:mac generic niap(width=>width,add_sc=>l4,res_sc=>l4)
port map(clock=> clock,cleaF=>clear,acc=>o4,mul=>e4,amp=>one, outpu!=>o5);

m ulti: mult
generic map!width=>width)
port niap(a=>e4,b=>K,p=>lowout);

mult2:mult
generic map(width=>width)
port map(a=>o5,b=>K_inv,p=>highout);

scalel:dwt_coeff_L<=lowout(width*2-3 downto width-2)\\hen lowout(w idth-3)-0' else
lowout(widlh*2-3 downto w idlh-2)+l;

sculc2:dwt_coelT_l l<=highoul(widlh*2-3 downto widlh-2) when highout(w idth-3)-0' else
higliout(wid!h*2-3 downto width-2)+l;

RND belt;

a controller for l -D Kecursive

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-created fob 13/02'
- I.asl update
'library ieee;
use ieee.std jogicarilh all;
use ieee s td jo g ic l 164.all;
use iccc.std_lngic_signcd.all;

E N T IT Y RSControl IS
gcncric(SigLcn: positivc;=8);
PORT(

elk : IN S ID LOGIC;
reset : IN S TD LOGIC;
start : IN STD LOGIC;
lnEn,clear,Set0,S2cn I ,S3en I ,S2en2,S3cn2,S2swl ,S3swl ,S3cn I b.Donc: O U T STD LOGIC)

END RSControl;

A RC H ITEC TU R E a OF RSControl IS
TYPE STATE_TYPE IS (idlc,annlvzing,Stgl End,.Sig2End,Stg3End,Finish);
SIG NAL state. STATE_TYPE;
signal lnlin_sig:std_logic;

BEGIN
PROCESS (elk)
variable EifoDep; positive:=SigI.en;
variable Count,cntDI,cntD2,cntD3,cntD4,cntS2a,entS3a,cntS3a2,cntS3sw,cnlS2b,cntS3b,cnlS2s\v: natural:—0;
variable counting: stdjogic;
BEGIN

IF reset = T THEN
state <=idle;

ELSIF elk 'EVEN T A N D elk = T THEN
CASE state IS

W H E N idle =>
counting;-0';
count:=0;
entS2a:=0;
cntS2sw:=0;
enlS3a =0;
cntS3sw:=0;
cntS3a2;=0;
cntS2b:=0;
cnlS3b -0 ;
S2en 1 < - O’;
S 3 e n l< -0 ';
S 2en2< -0 ’;
S3en2<='0';
set0<-0 ';
IF s ta r t -1' THEN
state <= analyzing;
coun ting :-!’;
END IF;

W H E N analyzing =>
IF count=SigLen+3 THEN

state <= stglEnd;
Set()<--'l';

END IF;

W H E N StglEnd =>
Set0<='0';
il'count=SigLen+8 then

statc<=Stg2End;
S ct0<- I ’;

end if;

W H E N Stg2End =>
SettX— l)-,
il'count=SigLen+l8 then

slate <= Stg3End;
S e t0 < - I ’;

EN D IF;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VVIIliN Slg3lind =>
S et0<-0';
ifcount=SigI.en+20 then

stale <= Finish;
I'N D IF;

when I;jnish =>
state<=ldlc;

cml ease;
if counting-P then

coiint:=counl+I;
i f count >= 2 then

cntS2a:=cntS2a+l;
i f cntS2a = 4 then

S2ent<='P;
cntS2a:=0;

else
S2en I <='0';

end if;
end if;
i f count >= 4 then

cntS2sw:=cnlS2sw+l;
ifcnlS2s\v = 4 then

S 2 s w l< -P ;
cntS2sw:=0;

else
S 2sw l< -0 ';

end if;
end if;
i f count>=6 then

cntS2b:=cntS2b+l;
i f cnlS2b = 4 then

S 2 e n 2 < -!';
cntS2b:=0,

else
S2cn2<-0';

end if;
end if;
ifcount>=3 then

cntS3a:=cntS3a+l;
i f cntS3a = 8 then

S3cn 1 <— I ';
cntS3a:=0;

else
S3enl<—O';

end if;
end if;
ifcount>=7 then

cntS3a2:=cntS3a2+l;
ifcntS3a2 = 8 then

S 3 e n lb < -P ;
cntS3a2:=0;

else
S 3en lb<-0 ';

end if;
end if;
i f cuunt>=IO then

enlS3sw:=cnlS3sw+l;
ifcntS3sw = 8 then

S3swl<='P;
cntS3sw:=0;

else
S 3sw l< -0 ';

end if;
end if;
ifcount>= 12 then

cnlS3b:=cntS3b+l;
i f cntS3b = 8 then

S 3en2<-I';

else
cnlS3b:=0;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S3cn2<='0';
end il;

end if:
end if.

END If :
END PROCESS;

W ITH state SELECT
In E n s ig <= 'O' W H E N Idle,

T' W H EN others;
W IT II stale SELECT

clear < = T W) IE N Idle,
'O' W H EN others;

lnEn<=lnEn_sig;
E N D a;

3. 1-D Daub-4 Dual-Scan Architecture

- - a double scan lilt arch, for multi-stage D-d
-- l longyu Liao 1/23/02
— Last update: Jun28/2001
LIB R A R Y ieee;
library comp;

use iecc.sldjogic arilh all,
use ie e e .s td lo g ic j 164.all;
use icee.std_logic_signed.all;
use comp.liftconip.all;

E N T IT Y d d lilt jn s IS
GENERICfwidth : positive - 16: nibJcn:positive:=l;SigLen:positive:=32);
PORT(

lirslline, sccondline : IN std_logic_vector(width-l downto 0);
clock,reset,start: in stdjogic;
dwt_coelT_L, dwl_coc(TJI: OU T std_logic_vcctor(\vidth-l downto 0);
Done: out stdjogic);

EN D d4lifl_ms;

A R C H ITE C TU R E beh OF d4lilt_ms IS
component d4li!1

GENERIC(width : positive; Hfo_len:positive);
PORT!

lirstline, sccondline : IN sld_logic_vector(width-l downto 0);
clock, enable,clear.InEn.SetO: in std_logic;
dwt_coelT_L, dwt c o e lf j l: O U T std_logic_vector(width-l downto 0));

E N D component;

component DSControl
aeneric(SigLen: positive);
l’ORT(

elk : IN S I D LOGIC;
reset : IN S I D LOGIC;
start : IN STD LOGIC;
Sel_EO,SelJ'IEO,SelJn,ClkCtr,lnEn,SetO,Done: O U T STD_LOGIC);

END component;

signal lirstJnl,sccond_int,Tol;irst,ToSecond, Lout, Tol;ifo,Eifol_in,l'ifo2_in: std_logic_vector(widlh-l downto 0);
signal InSel, EOSel,I;Scl,l'Clk,l:Clk2,cll;x2,clksel,lnputEn,Setzero,high:stdJogic;
signal zeropad:std_logic_vector(5 downto 0):=(others=>'0');
signal first_sc,sccond_sc:stdJogic_veclor(widlh-l dotvnto 0);

for in_swl,in_sw2: mux use entity comp mux,
for lifo l ,lilb2: delay use entity comp delay;
for I_swl,l_svv2: switch use entity comp switch;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tor D_Frcq:T_FF use entity comp.tJT;
for core: iM Iilt use entity work.ddlift;
lor conlrollcr:DSConlrol use entity work.dsconlrol.
BEGIN

liigh<=T;
Hrsl_sc<=!irstlinc(\vidlh-7 downto 0) & zeropad;
second_sc<=sccondline(width-7 downto 0) & zeropad;
in_swl: mux GENERIC map(width=>\vidth)

PORT map(
inputl=>lirst_sc,input2=>lirst_int, Scl=>lnScl, oulput=>ToFirst);

in_sw2: mux GENERIC niap(width=>width)
PORT map(
input I =>seeond_sc,input2=>second jn t , Sel=>InScl, output=>ToSeeond);

core: d4lilt GENERIC map(widtl]=>widlh,llfo_len=>lifo_len)
PORT map(
nrstline=->ToI''irst.secondline=>ToSecond,clock=>clock,
cnablc=>high,clcui->iesel,hiEn->liipulEn,SelO->Setzeio,
dwt_coelT_L=>l.out, dwt_coelif_ll=>dwt_coelT_ll);

controller:DSControl generic map(SigI.en=>Sigl.en)
PORT map(
elk=>cloek,reset=>reset,start=>slart,
Scl_EO=>EOScl,Sc4_FlFO=>FSel,Sel_ln=>lnSel,ClkCtr=:>clksel,
InEn=>lnpulEn,setO=>Selzero.Done=>Done);

L_swl:switch GENERIC map(width=>width)
PORI' map(
input=>Lout,Sel=>EOSel. output I =>dwt_coetT_L, outpul2=>ToFiro);

L_sw2:switch GENERIC ntap(width=>width)
PORT map(
input=>Tol?iro,Sel=>PSel, output 1 =>1-ifo I_in. outpul2=>l;il'o2_in);

D _l;req:T_FF port map (clk=>clock.NotP'n=>resel.Q=>clkx2);

with clksel select
FCIk<= clock when 11' ,

clkx2 when others;

- 180 phase shift lor lilo l clock signal, so that the l.coelT for the first signal can be latched
FCIk2<=not FCIk when clksel—O' else

FCIk when c lkse l-I'; - after I ns;
- A bug in the simulator switching the content o f these two Titos

F ifo l: delay generic map(width=>widlh.lcn=>SigI,en/2)
port map(
clk=>FCIk2,clr=>reset,inpul=>Fifol J n . output=>second_int),~first_int feb07/02

Fifo2: delay generic map(widlh=>widlh.!cn=>SigLen/2)
port map(
clk=>FCIk,clr=>reset,inpul=>Fifo2_in. output=>first int);--second_int

END beh;

- a double scan lili arch, for D-4
- 1 longyul-iao 11/01/2001
- modified for synopsys
- East update: jun08/2002
LIB R A R Y ieee;
library' comp;

use iece.sld_logic_arith.all;
use ieee.std_logic_l 164 all;
use iece.std_logic_signed.all;
use comp.liflcomp all;

E N TIT Y d4lift IS
GENERIC(widlh : positive." 16; fifo_len:posilive:=l);
P O R I(

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Urslline. sccondline IN stdJogic_vcctol(widlh-1 downto 0);
clock, enable,clear.InEn,Sett): In stdjogic;
d w tco e lT J .. dw t_coclT ll: O U T sld logic_vector(\vidth-l downto 0)),

END d4lill;

A R C H ITE C TU R E belt OE d-llilt IS

signal alpha,beta.gama,one,K.KJnv:stdJogic_vcctor(width-1 downto t));
signal cM n,e l,c2,e3,c4Jn,e4,e5,ol,o2,o3,

o4,o5_in,o5,delayJn,zero:stdJogic_vcctor(widtli-l downto 0);
signal Iowout,highout,lowoul2,highout2:sldJogic_vector(width+2 -l downto 0);

for rcgl,rcg2,rcg3,rcg4,reg5:reg use entity comp reg,
for mac I ,mac2,mac3,mac4: mac use entity comp mae;
lor multi,mult2: mult use entity comp.mult,
lor delay I : delay use entity comp delay;
for mux I : mux use entity comp.mux;
for in_cireuit: in_swilch use entitv comp.in_switcli;
BEGIN

alpha<=" 10 0 1 GOO 10010 0 111", — right shift the original parameters for Mbits
beta<="001101110 110110 1",
g a m u t ' l l 11011101101101",
one<="0100000000000000";
K < = " 0 1 1 1 1 0 1 1 1 0 1 0 0 0 1 1";

K J n v < = " 0 1000010 0 1000010";

zero<=(others=>'0');

in_circuit:in_swilch generic map(w;idlh=>width)
port map(nrstline=>Hrstline,secondline=>secondline, cll;=>clock,enable=>lnEn,

odd=>o I ,evcn=>c l_in),

regl :rcg generic map(width=>widlh)
port map(clk=>clock,clr=>clear.input=>el in,output=>el I;

macl :mac generic mnp(widlh=>\vidlh,add_sc=>l4,res_sc=>14)
port map(clock=> clock,clear=>clear,acc=>ol ,mul=>el ,amp=>alpha, output=>o2);

reg2:reg generic map(width=>widlh)
port map(clk=>clock,clr=>clear.input=>el,output=>e2);

mac2:mac generic map(widlh=>width,add_sc=>15,res_sc=>15)
port map(clock=> clock,cleai=>clear,acc=>e2,mul=>o2,amp=>beta, outpul=>e3);

rcg3:reg generic map(widlh=>width)
port map(clk=>clock,clr=>clear,input=>o2,outpul=>delay_in).

delay! delay generic map(widtli=>widlh,len=>fifoJen)
port map(clk=>clock,clr=>clcar,input=>delayJn,outpul=>o3);

mac3:mac generic map(widtb=>widtb,add_sc=>l5,res_sc=>l5)
port map(clock=> c!ock,cleat=>clear,aec=>e3,mul=>o3,amp=>gama, output=>e4_in);

mux I :mtix generic map(widlh=>width)
port map(inputl=>e4Jn,inpu!2=>zero,Sel=>.Set0,output=>c4);

reg4:reg generic m;ip(width=>widtb)
port map(clk=>clock,clr=>clear,input=>o3,output=>o4),

mac4.mac generic map(widlh=>widlh,add_sc=>l4,rcs_sc=>l4)
port map(clock=> clock,c!car=>clear,acc=>o4,mul=>e4,amp=>one, output=>o5);

reg5:reg generic map(width=>widlb)
port mapCclk=>clock,clr=>clcar,input=>e4,outpul=>c5);

m ulti unull generic map(widlh=>width)
port map(a=>e5,b=>K,p=>lowout);

mull2:mult generic map(widtb=>width)
port map(a=>o5,b=>K_mv,p=>bigbout),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

scalel ■.dwt_coefr_L<=lowoul(width*2-3 downto width-2);
scalc2:dwt _coelTJI<=highoul(widlh*2-2 clmvnto width-1);

END belt;

-- a controller lor l-D DoubleScan
-created I /23/02
- Last update
library ieee;
use iccc.stdJogic_arilh.all;
usciccc.std_logic_ll64.all;
use iccc.std_logic_signcd.ali;

E N T IT Y DSControl IS
gcncric(SigLen: posilivc:=8);
PORT(

elk : IN STD LOGIC;
reset : IN STD LOGIC;
start : IN STD LOGIC;
Sel_EO,SclJ:IFO,SclJn,ClkClr,lnEn,SelO,Donc: O U T STD_LOGIC);

EN D DSControl;

A R C H ITE C TU R E a OF DSControl IS
TYPE STATE_TYPE IS (idle,init,ToFil'ol,ToFil'o2,FinalStg,Finish);
S IG NAL state: STATE_TYPE;

BEGIN
PROCESS (elk)
variable FiloDep: positive.-SigLen;
variable Count: natural:=0,
variable counting: stdjogic;
BEGIN

IF reset = ' I ' THEN
state <=idle;

ELSIF clk'EVENT A N D elk = '11 THEN

CASE state IS
W H EN idle =>

IF start—1' THEN
state <= mil,
lnEn<=T;
counting:-!';
EN D IF;
Set0<-0';

W H E N init =>
IF count=6 THEN

state <= ToFi I'o 1;
SelO<=T;

end it;
state <= ToFilo2;

W H E N ToFil'o2 =>
ifcounl=FiroDcp+6 then

state <= FinalSlg;
ln l:n< -0 ';

else
state<=ToFil'ol;

END IF;
when FinalSlg =>

lnEn<=T;
ifcount=Fil'oDcp+7 then

Set0<='0';
end if;
ircount=FiloDep+FiroDep/2+l2 then

S etO < -I',
end if;
il'count=FiloDep+FiroDep/2+l3 then

statc<=Finish;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

InEn<='0’;

EN D a;

end if;
when Finish =>

statc<= idle;
E N D CASE;

il 'c o u n lin g -l' then
count:=coiinl+l;

end if;
END IE;

END PROCESS;

W ITH stale SELECT
SeIJn <= T W H E N FinalSlg,

'O' W H E N others;
W IT H slate SELECT

ClkCtr <= ’) ’ W H E N FinalSlg,
'0' W H E N others;

with slate select
Sel_EO < - T W H E N ToFifo l,

' I ' when ToFifo2,
’O' W H E N others;

with state select
Sel_FIFO <=' I ' W H E N ToFilo2,

'O' W H E N others;
with state select

Done <=' I ' When finish,
'O' when others;

4. 2-D Daub-4 Recursive Architecture

-- a recursive lift arch, for multi-stage 2D (N x M) D-4
- I longyu Liao Aprl 1/02
- the column pe processes the low frequency component first
- and then the hi frequency component so that the data llow
- can be more regular. A p rl4/02
- Last update: M ayl 5/02
LIB R A R Y ieee;
library m v jib ;
library' lib;
library std;

use ieee.std_logic_l I64.all;
use my_lib.liftcomp.all;
use std.textio.all;
use lib.tb_utilities.all;
use lib.io_ulils.all;

E N TITY rs_2d IS
GENERIC (width: positive:3 16; RowSiz:positive:=32; CoLSiz:positive:=32);
FORT)

InSignal : IN std_logic_vector(widlh-l downto 0);
clock,reset.start.RowEnd.FrameEnd: in stdjogic;
dwl_coeff_L, dwt_coeff_H: inOUT std_logic_vector(width-l downto 0),
Done: inout stdjogic);

END rs_2d;

ARCHITECTURE beh OF rs_2d IS
component rs_pe

GENERIC(width : positive; f ifo je n l :positive;rifo_lcn2:positive;Tifo_len3:positive);
P0RT(

E ,0 : IN std_logic_veclor(widlh-1 downto 0);
clock,clear,InEn.SetOSI,Set0S2,Set0S3,S2en2,S3en2: in stdjogic;
dwl_coelT_L, dwt_coelTJ I: O U T std_logic_vector(width-l downto 0));

END component;

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

component RS2dCtrl
generic(RowI.en: positive;Coll.cn:positive);
l-ORTf

elk : IN S TD J.O G IC ;
reset : IN STD_LOGIC:
start,RowEnd.EramcEnd : IN STD LOGIC;
RowEnd_ColumnPE,clear: inout stdjogic;
InEn.SelOrow: O U T STD_LOGIC;
S3enlbc: O U T STD_LOGIC);

END component;

constant inputjsh:natural:=4;
constant scalcr natural-14 ;
signal clr.S2enOrg.S2enlr,.S3enOrg,S3cnlr,S2en2r,S2en2rJnt,S3en2r,lnputEn,NlnEn,Loul:sldJogic;
signal
SI EnR,SIEnC.S2EnR,S2EnC’,S2enDclay,S2EnRDL,S2en2c,S2en2CJnt,S2cn2CJast,S3cn2c,S3cn2CJnt,S3en2CJast,SctOSIC:st
d jo g ic ;
signal SetOSICEn, SctOS2CEn, SetOS3CEn,SetOSICEn_org, SctOS2CEn_org, SetOS3CEn_org: std_logic;
signal SIColswEn,S2CollnpulEn, S3ColInputEn,EifoSI Em sldjogic;
signal S2swl r,S3swl r,S3cnI br,S3cnIbr_int,S3enIr_int:stdJogic;
signal S3cnlbc,S3EvcnRow,S3cnDclay:stdJogic;
signal RowEndJ3otumnPE,RosvEndDl,SelOddRow,SelOddRo\vS2Jnt,SelOddRowS3Jnt,

SelOddRowS3_int2,SelOddRowS2,SelOddRowS3:std Jogic;
signal
SetzcroR,sel0SIR,S2en2rLast,S3en2rI.ast,set0S2R,Set0S2C,Sel0S2CJnt,sel0S3R,SelzeroC,Sct0S3C,Sct0S3REirsl.Scl0S3RLast

:std_logic;
signal Sel()S2C DL stdjogic;
signal clkx80rg,clkx80rgdel :stdJogic;
signal LLIm ageEnSI.doneint :stdJogic;
signal
S2CFil'ol'n,S3CI;irolin,SelOddR_DL,SctOddR_DL2,SelOddRJ3L3,SetOddR_DL4,SetOS2CJI,SetOS2C_ll_int,S3cn2r_DT:stdJo
gic,
signal zeropad:stdJogic_veclor(input_lsh-l downto 0):=(others=>'0'),
signal inpiit_sc.l.Row.llRowXsig:sld logic_vector(width-l downto 0);
signal l.RowS I ,S I RTil'oln.S I Rowli.S I Rowl l.S I RLowOdd:stdJogic_vcclor(width-1 downto 0);
signal LRo\vS2,S2RFifoln,S2RowE.S2Rowll,S2RLowOdd:stdJogic_vcctor(widlh-l downto 0);
signal LRowS3,S3RI;iroln,S3RowE,S3RowM,S3RLowOdd:stdJogic_vector(width-l downto 0);
signal Ecolln,OColln,Ro\vEln_sl,Ro\vEln_s2,Ro\vEln_s3,RowOIn_s3:stdJogic_veclor(\vidlh-l doumto 0);
signal ERowln,ORowln:stdJogic_vector(widlh-l downto 0);
signal S20utLEn,S20ulI-IEn,S30utI.I:n,S30utMEn: stdjogic;

signal SI Ro\vCnt,S2Ko\vCnt,S3Ro\vCnt,SIColCnt,S2ColCnt,S3ColCnt: natural;
constant Lstage:positive.=3;
BEGIN

input_sc<=lnSignal(width-inpulJsh-l downto 0) & zeropad;

-— input switches for Row Processor -—

NlnEn<=not InpntEn;
- enable signal for the stage I data How
-- Slen identifier:
slsel:T_EE port map(clk=>clock,elr=>NlnEn ,q=>SlenR); - 2i+l

- enable signal for stage 2 data How, Dclay+2kM+4i+2
- generate 4xClk signal
s2clkdiv:T_EE port map(clk=>SI EnC,cli=>NInEn ,q=>S2cnR); —4i+2,3
- generate a signal with duty=25%, f=4xClk
S2EnRDe)ay:dJTport map(d=>S2enR,clk=>cloek,clr=>NlnEn,q=>S2cnRDL); -4i+3,4
S2enOrg<=(not S2enRDL) and S2cnK: —4i+2
S2enlr <= l.ElmagelinSI and S2enOrg ; - (2k+l)M+IO+4i+2

- enable signal for stage 3
- generate 8xclk signal
s3clkdiv:TJ;E port map(clk=>S2enOrg,clr=>NlnEn ,q=>clkx80rg); -- 8i+2,3,4,5
S3clkdivdel:d ffport map(d=>clkx80rg,clk=>clock,clr=>NlnEn,q=>clkx80rgdel); —Si+3,4,5,6
S3enOrg<= (not clkxSOrgdel) and clkxSOrg; -8i+2
S3enDcl I : bit_delay generic map (del=>5)

port niap(clk=>elock,eli=>clr,d=>S3enOrg,q=>S3enIrJnt); -- 8i+7
S3EvenRow<=SelOddRowS2_int and (not SelOddRowS2);

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S30ddRoeI)el: bil_delav generic map (dcl=>3)
port map(clk=>clock.clr=>clr,d=>S3EvenRow,q=>SelOddRowS3Jnt); ~4kM +23?

S3cnlr<= S3cnlr_inl and SelOddRowS3_inl, --4kM +23+8i+7
S3cnDel2: bit_delay generic map (del=>4)

port map(clk=>clock,clr=>clr,d=>S3cnlr,q=>S3enl br); - 4 kM + 23+ 8 i+ l I
— stage 3: row pe input switch signal = S3cnl br+3
S3RinSw: bit delay generic map (dcl=>3)

port niiip(clk=>dock.clr=>clr,d=>S3cnlbr,q=>S3swlr); --4 kM + 2 3 + 8 i+ l4
S3RI3elEn:bit_dolay generic map (del=>2)

port map(clk=>elock.clr=>clr,d=>S3swlr,c]=>S3en2r); ~ 4 k M + 2 3 + 8 i+ l6

— synchronize the even anil odd samples
regl :reg generic map(widlh=>widlh)

port map(clk=>elock,clr=>clr,cn=>lnputEn,input=>input_sc,outpul=>RowEln_sl);
regl_2:rcg generic map(widlh=>width)

port map(clk=>cloek.clr=>clr,en=>S2enlr,input=>l,sig,output=>RowEln_s2);
regl_3:rcg generic map(widlh=>widlh)

port map(clk=>elock.cli=>clr,en=>S3enlr,input=>I.sig,oulput=>RowEln_s3);
i eg I _ 4 : i eg generic map(widlh=>widlh)

port map(clk=>clock.clr=>clr,en=>S3enlbr,input=>Lsig,outpul=>Row01n_s3);

— there are delays between the switch signals and the enable signals
-- lor the data llows o f stage 2 and up, which allows the data Hows to get to
— the next step:

Slage 2 swilch signal is a 2 cycle-delay version o f S2cn I r,
S2RInSel:bil_delay generic map (del=>2)

port map(clk=>clock,cln=>clr,d=>S2enlr,q=>S2swlr); — (2 k+ l)M + IO + 4 i+ 4

rcinmux: ERowln<= RowEln_sl when S le n R = T else
RowEln_s2 when S2sw li= 'l'e lse
RowEln_s3 when S3swl r='11 else
(others=>'0'),

roinntux: ORowln<= inpul_sc when SI enR - 11 else
Esig when S2sw] r= T else
Row01n_s3 when S 3sw lr= T else
(others=>'0');

— finable signals for the ilckty units
— 1. Enable signal for the delay unit o f Stage 2

is a 2 cycle delay version o f S2swl r
S2RDclayEn:hit_dclay generic map (del=>2)

port map(clk=>clock.clr=>clr,d=>S2sw'lr.q=>S2en2r_int); — (2k+ l)M +IO +4i+6

- SetO signal for Row PE: set at the same time as the last
enable signals for the delay units

-- SeiO for Stage 2 = last S2 input switch signal+6. where 2cycles for delay from input to delay unit
- and 4 cycles for the delay o f this slage.
S2en2rLast<=(not SelOddRow) and S2en2r_int; -- (2k+2)M +IO +6, M =4i, which is true in almost all cases
S2setOR:bil_delay generic map (del=>4)

port map(clk=>clock.clr=>clr,d=>S2en2rtast,q=>SetOS2R), - (2k+ 2jM +20

- SetO for slage 3: The last S3en2r delay 8 cycles
S3en2rl.ast<=(not S3EvenRow) and S3en2r;
S3selORI.nst:bil_delay generic map (del=>8)

port map(clk=>clock,cli=>clr,d=>S3cn2rl.ast,q=>SetOS3RLasl);
- setO for the first coefficient o f each row
S30ddRDelay4:bit_delay generic niap(del=>l2)

port map(d=>SetOddR_DL2,clk=>clock, clr=>clr,q=>SetOddR_I3L4);
SelOS3RI;irst<=S3en2R and SetOddRJH.4;
SctOS3R<=SetOS3RFirst or SelOS3RLast;

SetzeroR<=setOSIR or se!0S2R or SCI0S3R;

Row Processor

RowPe: rs_pe GENERIC m ap (w id lh=>w id lh ,lifo_ len l=> l,rifo jen2=>l,fifo_ len3=> l)
PORT map(

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

K=>ERowln,0=>ORowln.clock=>cloek,
clear=>clr.lnEn=>lnputEn,SclOSI=>SctOSlR.SetOS2=>SclOS2R,SetOS3=>SctOS3R,
S2cn2=>S2cnOrg.S3cn2=>S3cn2r,
dwt cocll).=>l,Row. dwt_coell'_ll=>IIRow);

Row Counters

process(clock)
begin

il'rising_edgc(clock) then
iflnputl-'n- 1' then

ifsclOSlR- I 1 then
SIRotvCnl<= SIRo\\Cnt+l

end if;
i f sctOS2R=T then

S2RowCnt<= S2RowCnt+l
end if.
i f set()S3R- f then

S3RowCnt<= S3Ro\\Cnt+l
end if;

else
SIRowCnt<=0;
S2RowCnt<=0;
S3Ro\vCnt<= 0 ;

end if;
end if;

end process;

Input circuitry lor Column I’E

- Delays for synchronizing the low and high frequency coefficients
-- Stage I
S IE n C < = n o lS IH n R ;~ 2 i+ l
- I. components delay 3 cycles to synchronize with the h components
SynDelS I : delay generic map(width=>width,len=>3)

port map(clk=>clock,clr=>clr,cn=>lnputl-n,inpul=>LRow,output=>I.RowSI);

- Stage 2,S2en2R delay 1 cvcle as stage2 l.ow output delay enable
- 2kM +2i+2
S2RlloulEnable:bit_delay generic map (del=>6)

port map (clk=>clock,clr=>clr,d=>S2en2rJnt, q=>S2EnC); -(2 k + l)M + IO + 4 i+ l2
- delay 5 cycles to synchronize with the It components, 2 cycles from DclSI output
SynDelS2: delay generic map(width=>width,len=>2)

port map(clk=>clock,clr=>clr,en=>Inputl:n,input=>LRowSl,output=>LRowS2);

- low frequency DYVT row coefficient delay one cycle to sychronize with high
-- frequency coefficient
SynDelS3: delay generic map(width=>width,len=>4)

port map (clk=>clock, dr=>clr, en=>lnpulEn, input=>l.RowS2, oulput=>LRowS3);

- EndolRow signal delayed 8 cycle and passed through a I -I I- to generate
- a row select signal for colnme PH
Rowl:ndDelay:bil_delay generic map (del=>8)

port map(clk=>clock,clr=>clr,d=>RowEnd_Columnl>E,q=>RowEndDl); --kM +7, k>0.

SIRowSel: V_l-T'port map(clk=>RowHndDI,clr=>clr,q=>SelOddRow); --(2k+ l)M + 7~ (2k+ 2)M + 7 , k>=0

- Switches for exchanging the low and high frequency coeffis
- Slage I
SI ExA; S I R I;ifoln<= l.RowS I when SclOddRow='0' else

SI Row! I;
SI ExB: S I RLot\Odd<= l.RowS I when SelOddRow=' I ' else

S IR ow ll;
-- Stage 2
- the select signal frequenct is MJmageHnS 1, delay 11 cycles
SelRowDelS2: bil_delay generic map (del=> 10)

port map (d=>l.l.lmagel:nSl,clk=>clock,clr=>clr,q=>SclOddRowS2_int); --

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(2k+ l)M +20~(2k+2)M +20
S2RowSel: T_FF port map(clk=>SelOddRowS2_int, clr=>clr,q=>SclOddRowS2); -- (4k+ l)M + 20~ (4k+ 3)M + 20

S2ExA. S2KFifoln<= I.RowS2 when SclOddRowS2=T else
S2Rowll;

S2I:\B : S2RLowOdd<= l.RowS2 when SelOddRowS2-O' and SelOddRowS2_int=T else
S2RowII:

-- Stage 3
- the select signal Ircquenct is seloddrows3_int, delay 11 cycles
SelRowOelS3: b itdelay generic map (del=> 19)

port map (d=>SelOddRowS3_int.clk=>clock,clr=>clr,q=>SclOddRowS3Jnt2);
S3RowSel: T_FF port map(clk=>SclOddRowS3_int2, elr=>clr,q=>SelOddRowS3).
S3E.\A: S3RFilbln<= ERowS3 when SclOddRowS3=T else

S3Rowll:
S3ExB. S3RUm Odd<= l.RowS3 when SclOddRowS3-0' and SelOddRowS3_int2=T else

S3Rowll;

-— Col PE Stage 2 Enable — -

-- Stage 2
- The column D W T coefficients are processed when SelOddRowS2=0
-- Fifo enable signal
DelayS2en: bit_de)ay generic map(del=>2)

port map(clk=>clock.clr=>clr,d=>S2enOrg,q=>S2enDelay);--4i+4

ColPES2en: bil_delay generic map(del=>2)
port map(dk=>clock,clr=>clr,d=>S2enDelay,q=>S2en2c_int);--4i+6

S21dle:d_l1'port map(d=>SetOddR_DI.,clk=>clock. clr=>clr,q=>SetOddR_I)L2);
S2en2C<= ((not SelOddR_DI,2) and S2en2C_int) or S2en2C_last,

S2CollnputEn<= (not SelOddRowS2) and S2enDelay;
S2CFiroEn<=S2CollnpulEn or S2enC,

-- Stage 3
OclayS3en: bit_delay generic map(del=>3)

port map(clk=>clock,clr=>clr,d=>S3enlr_int,q=>S3cnDelay);

- Filo2 for storing the even row coefficients------

— Stage I
FifoSIEn<=SIColswEn and SlenR;
LFil'oSI :delay generic map(width=>u'idth,len=>RowSiz/2)

port mnp(clk=>clock,clr=>clr,en=>l:ifoSIEn,input=>SIRFifoln,output=>SlRowE);

IIF iloS I :delay generic map(width=>widlh,len=>KowSiz/2)
port map(clk=>clock,clr=>clr,en=>FilbSI En.input=>HRow,oulput=>SI Rowll);

EFifoS2:delay generic map(width=>width,len=>Row'Siz/4)
port map(clk=>clock,clr=>clr,cn=>S2CFilbEn.input=>S2RFilbln,oulput=>S2RowE);

IIFifoS2:delay generic map(widlh=>width,len=>RowSi?/4)
port ntap(clk=>clock,clr=>clr,cn=>S2CFiroEn,input=>IIRow',outpul=>S2Row,ll);

— Column Pit input 11 lbs lor Slage 3
S3en2rl)cl: bit_delay generic m ap(dcl=>!0)

port map(clk=>clock,clr=>clr,d=>S3en2r,q=>S3en2r_l)L);
S3ldle:bit_dclay generic m ap(del=>l9)

port map(d=>SelOddR_l)l,2,clk=>clock, clr=>clr,q=>SelOddR_DI.3),
S3CollnputEn<= (not SelOddRowS3) and (not SetOddR_OI.3) and S3cnDelay;
S3cn2C_int<= (((not SelOddRowS3) and (not SetOddR_l)I.3)) or SetOS3CEn_org) and S3enDelay;- extra time for

shilling out the last row

S3en2CSig:bit_delay generic map(del=>2)
port map(clk=>clnck,clr=>elr,d=>S3en2C_inl,q=>S3cn2C);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S3CEifoEn<=S3CollnputUn or (S3cr,2r_IJI. and Se!OddRowS3):

U :ifoS3:dclay generic in:ip(widtli=>wiclth,!en=>K(>\\ Siz/8)
port mnp(clk=>clock,clr=>clr.en=>.S3lTiroHn.input=>S3REifoln,output=>S3RowE);

IIKifoS3.delay generic mup(width=>width.lcn=>RowSi7./8)
port map(clk=>clock,clr=>clr,en=>S3CEifoEn,inpul=>IIRow,output=>S3Rowll);

-- Column processor input switches
EColln<=S I RowE when S IC o ls w E n -I' and SI lin R - I ' else

S2RowE when S2CollnputEn=T else
S3RowE when S3CollnputEn- I 1 else

(others=>'0');
OColln<=S I RLowOdd when SI ColswEn- I ’ and S I E nR - I ' else

S2RLowOdd when S2CollnputHn='r else
S3RLowOdd when S3CollnputEn=T else

(olhers=>'0'):

Set 0 for Column PE

S2setOC2:d_ffport tnap(d=>SelOddRowS2,clk=>clock, clr=>clr,q=>SetOddR_OE);

- setO signals for slage 3

— Enable set 0 signal for Slage I
SelO SIC E n_org<-I' when S lRow Cm >=RowSiz+l else

SelOSICEnablc:bit_delay generic map (del=>5) — 5 cycles
port map(clk=>clock,clr=>clr.d=>SetOS I CEn_org,q=>SetOS I CEn);

SctOSIC<=SetOSICEn and SIcnR;

— Enable set 0 signal for Slage 2
SetOS2CEn_org<= SetOSICEn_org and SetOddR DL;
S2cn2C_last<=SetOS2CEn_org and S2cn2C_inl;
SelOS2C<= S2en2CJast;

- Enable set 0 signal for Stage 3
SetOS3CEn_org<= SelOS I CEn_org and SetOddR_DI.3;
S3en2C_last<= SetOS3CEn_org and S3en2C;
SetOS3C<=S3en2C_last;

Column Processor

CoIPe: rs_pe GENERIC map(\vidth=>width,fifo_lenI =>RowSiz,nfo_len2=>RowSiz/2,nfo_len3=>RowSiz^4)
PORT map(
E=>ECol!n.O=>OColln,clock=>clock,
clear=>clr,lnEn=>lnputEn,SclOS I =>SetOS I C.SetOS2=>SetOS2C,SetOS3=>SetOS3C,
S2en2=>S2en2c,S3en2=>S3cn2c,
dw1_eoell^I.=>Esig, dw1_coefl^l l=>dw1_coeli^_l I);

— Column Counters

process(clock)
begin

if rising_cdgc(clock) then
if In p u lE n -I' then

ifse tO S IC - I 1 then
S IColCnt<= S IC olCnt+l ;

end if:
i f setOS2C=T then

S2ColCnt<= S2ColCnt+l ,
end if;
if sctOS3C='r then

S3ColC'nt<= S3ColCnl+l ;
end if;

else
S IC olC n l<= 0 ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S2ColCnt<= u ;
S3ColCnt<= 0 ;

end il;
end if;

end process;

Column I’lr Low Frequency Coell'selector

-- enable signal for LI, D W T cocllkienls, 3 cycle delay o f SclOddRow signal
SI LLScl:bil_dclay generic map (dcl=>3)

porl mnp(clk=>clock,elr=>clr,d=>SclOddRow.q=>I.LlmngcEnS I); ~(2k+1)M+1 0~(2k+2)M +10

- - l.L Subimagc
--LLImagc: I.comp <= Lsig

- LI I Subimage, condition 1:1,11 lor Slage I
LI I Image dw t_coelM . <= Lsig when (LLIm ageEnSl-O 1 and S I EnC— I') else

(olhers=>'0'J;

Controller

conlroller:RS2dCtrl generic map(Rowl.cn=>RowSiz,ColLen=>ColSiz)
FORT map(
clk=>clock,resel=>reset,start=>starl,RowEnd=>RowEnd,I:ramcI:nd=>FrameI:nd,
RowEnd_Coluinnl,E=>RowEnd_ColumnI,E,clcar=>clr,InEn=>lnputEn,sclOrow=>SclOSIR,
S3cnlbc=>S3enlbc);

- counters and control signals.............
- lor switching data Hows o f -----------
- different DWT stages

proccss(clock)
variable cntSIRStarl,cntS2RSlart.cntS3RStart:natural;
begin

if InputEn-0' then
cntSIRStart:=0;
cntS2RStart:=0;
cntS3RStart:=0;
SlColswUn<='0';

else
if cnlSI RSlart=6 then

SlColswl:n<=T';
clsif rising_edge(clock) then

cntS 1 RStart:=cntS I RStart+1;
end if;

end if;
end process;

done_int<= T when SIRowCnt>=RowSiz+4 else ~S3ColCnt>=ColSiz/(2**(I.stage-l)) else
'O';

doncSig:bit_delay generic map (del=>2)
porl map(clk=>clock,clr=>clr,d=>doneJnt,q=>done);

Writing results to data files

S2LOutl;nable: bit_delay generic map (d e l= > I)
port map(clk=>clock,clr=>clr,d=>S2en2C,q=>S20utI,En);

S2I lOutEnable: bit_delav generic map (del=>2)
port map(clk=>clock,clr=>clr,d=>S2en2C,q=>S20utllEn);

S3LOutI:nablc: bit delay generic map (d e l= > l)
port niap(clk=>clock,clr=>clr,d=>S3en2C,q=>S30utI,En);

S3I lOutEnable: bil_delay generic map (dcl=>2)
port map(clfc=>clock,clr=>clr,d=>S3en2C,q=>S30ulHEn);

output: process(clock)

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

file lc.sltiLilpiilS3I. tcxl open w ritem ode is "S3outpulL l.xt";
file tcsloutputS3h:text open w ritem ode is "S3oulputll.txt",
file tcsloiilpLilS2l. tc.xt open w ritejnode is "S2oulputl.l I.txl":
file tcsloulputS2h:tcxt open writc_modc is "S2outpii11l.txt";
file tcstoutputSI ftcxt open wrile mode is "Sloutputl.ll.txt";
lile tcslniilpntSIli:le.xt open w rilem ode is "Sloutpulll.txt";
variable Outl.S l,O utlIS I,O ul!.S2,O utlIS2,O tilLS3,O utl 1S3: l.inc;
variable E: hoolean:=True:
begin

irrising_edgc(clock) then
- I I I
if(S IR ow C nl>=3 and done-O') and EifoSl E n - I' then

\vrile(Outl IS l,slvtoJ>v(dwt_coeflJI),righl.8,decimal,false);
wrileline(testoutpulS I h.Oull IS I):

- I I I I .
clsif (S 1 RowCnl>=2 and SI RowCnt<RowSiz+2 and LLImageEnSI='0') and FilbS I lin -O ' then

write(OutLSI ,slv tojiv(l.sig),right,X.decimal.false);
vvritcline(lesloutputS I I.Oull.S I),

end if;
- 2 1 1
if(S lR o «C n l> = 7 and done-O') and S 20utlII*n=l 1' then

\vrite(Oull IS2,slv lo_bv(dwt_cocllJ I), right, S.decimal.lalse):
\vrileline(tesloiilputS2h,OutllS2):

- 211L
elsif S 20u lLE n = T and (S IR ow Cnt>=4 and SIRowCnt<RowSiz+2) and SelOddRowS2_inl=,0 ’ then

WTite(Outl.S2.slv toJiv(l.sig),right,S.decimal, false),
writelinc(testoulpulS2L,OulLS2);

end if:
- 311
if (S I Rov\Cnl>=l5 and done='0') and S 3 0 u tlIE n = T then

write(Outl lS3,slvjo_bv(dwt_coefr ll),righl,8.dccimal,false);
wr ilelinc(lestoutpulS3h,Oiill IS3),

- 3L
clsil S 3 0 titL E n -1' and (S lR o\vC nl>=7 and SIRo\xCnt<Ro\vSi7.+2) then

wrile(0utLS3.slv toJ>v(Lsig).righl,X.decimal.false);
wrilelinc(lcsloulpulS3L,OulLS3);

end if;
wrilelinetlestoiilpulli.Oulll);

end if;
end process output;

END bch;

- a process element for implementing 2_D D W T
- I longyu Liao Icb 12/20DI
- the module should be cleared before use
- Change port map
- Last update: Aprl 1/2002
LIB R A R Y ieee;
library m y jib ;
use iecc.std. _logic_arith.all;
use iccc.std. J o g icJ 164.311;
use icee.std_logic_signed.all;
use my_lib.liOcontp.all;

EN TITY rs_pe IS
GENERIC!width : positive:3 16; l i fo jc n 1 positive:3 1 ;fil'oJcn2:positivc:=l ;filbJen3:positive:=l);
PORT!

E ,0 : IN std_logic_vector(width-1 downto 0);
clock,dear,InEn.SetOS I ,SetOS2,SetOS3,S2en2,S3en2: in std jogic,
dwt_coeff_L, dwt_coeff_l I: OU T stdJogic_vector(width-l downto 0));

END rs_pe;

A R C IH TE C TU R E belt OE rs_pe IS

signal alpha,beta,gnma,one,K,K inv:std_logie_vector(widlh-l downto 0);
signal el,e2,e3,e4,ol,o2,o3,

o4,o5,delay_in,sl,s2,s3,s:stdJogie_veclor(width-l downto 0);
signal NlnEn,Slen,Slsw2,S2sw2,S3sw2,setO,setOdl:sld_logic;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

signal lowoul,highout:sld_logic_vcctor(width*2-1 downto 0);

--lor nlkmac use cntily m y jib mac;
—for all:mac_b use entity my_lih.muc_b,
lor alhimill use entity n ty jib mult;
for nlhrcg use entity ntyjib .reg:
for alkdelay use entity m y jib delay;
for all:tl_IT use entity m y j ib .d j l ;
BEGIN

alpha<="10010001Ot)10 0 111”; -- right shill the original parameters for Mbits
bcla<=“000l 1011101101 III";
gama<="111110 1110 110 111";
onc<="01OOOOOCIOOOOOOOU",
K<="011110 1110 10 0 0 11
K_inv<=,,001CI00010 0 100000”;

el <=l:.
o I < —O.

NlnEn<=not InlZn;
— enable signal lor the stagel data
— Slen
slsel:T_FI: port map(clk=>clock,clr=>Nlnl;n ,q=>Slcn);

macl :mac generic map(width=>width,add_sc=>l4,rcs_sc=>14)
porl map(clock=>clock,clear=>clear,acc=>ol.mul=>el,amp=>alpha,

oulpul=>o2);

reg2:reg generic map(width=>widlh)
port mup(clk=>clock.clr=>clear,en=>lnIin,input=>el,oiilpul=>e2);

mac2:mac generic map(widlh=>width,add_sc=>14,res_sc=>l4)
port map(cloek=> clock,clear=>clear,acc=>e2,mul=>o2,nmp->bcla,

outpul=>e3):

reg3:reg generic map(width=>width)
poll niap(clk=>dock,clr=>clcar,en=>InEn,input=>o2,output=>delay_in);

- delay unit, 3 delay registers
d I'.delay generic niap(width=>width,lcn=>fifoJcnl)

port map(clk=>clock,clr=>clear,cn=>Slen,input=>delay_in,output=>sl);
d2:delay generic map(widlh=>width,len=>fifo_len2)

port map(clk=>clock,clr=>clear,cn=>S2en2,input=>delay_in,output=>s2);
d3:delay generic map(width=>width,len=>fifo_len3)

port map(clk=>clock,clr=>clcar>cn=>S3cn2,inpul=>delay_in,output=>s3);

- In order to get the last data in the delay units
- the switch signal should has one more cycle than the enable signal
S 1 s\v2<=S I en or SetOS 1;
S2sw2<=S2en2 or SctOS2,
S3sw2<=S3en2 or SctOS3;

delaymux: o3<= si when S ls w 2 -I'e ls e
s2 when S 2sw 2=T else
s3 when S3sw2- 11 else
(o!hers=>,01);

— break the even and odd parts when setO
mac3:mac_b generic map(width=>wtdlh,add_sc=>l4,res_sc=>l4)

port map(clock=> clock,clear=>clear,break=>set0,aec=>e3,mul=>o3,amp=>gama, onlput=>c4),

rcg4:rcg generic map(width=>width)
port map(clk=>clock,clr=>clear,en=>lni;n,input=>o3,output=>o4);

Set0<=Set0S I or Set0S2 or Set0S3;
set0dclay:d_ITport map(d=>setO,clk=>clock,clr=>clear,q=>setOdl);
mac4:mac_b generic rnap(width=>width,add_se=>l4,res_sc=>l4)

port map(clock=> clock,clear=>clear,break=>set0dl,acc=>o4,mul=>c4,amp=>one, outpul=>o5);

mull I rniitll

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

generic map(width=>widlh)
port mup(a=>c‘l.b=>K,p=>lowout):

mult2:nnill
generic map(width=>width)
porl map(a=>o5,b=>K_inv,p=>highout);

sealel :dwt_coel'l J .<=lowout(w idth*2-3 tlownlo width-2)whcn lowoullwidlh-dJ-O1 else
lowout(widlh*2-3 downto w id th -2)+ l:

scnlc2:dwt_coellJI<=highout(width*2-3 downto width-2) when highoiit(witlth-3)-0' else
highoul(width*2-3 downto w id th -2)+ l;

END belt;

- - a controller lor I - I) Recursive
-created feb 13/02
- Last update may 15/02
library ieee;
library m y jib .
use ieee.stdJogic_arith.all;
use iece.std_logic_l 164.all;
use ieee.std_logic_signed.all;
use my_lib.lillcomp.tJT;

E N T IT Y RS2dCtrl IS
generic(RowLen: positive:=8;ColLen:positive:=8),
PORT(

elk : IN S TD J.O G IC ;
reset : IN S TD J.O G IC ;
start,RowEnd.FrameEnd : IN STD_LOGIC;
Rowl:nd_Coluninl’E,clear:inout stdjogic;
InEn.SelOrow: O U T S TD J.O G IC ;
S3enlbc: OU T S TD J.O G IC),

END RS2dClrl;

A RC H ITEC TU R E a OF RS2dCtrl IS
TYPE S TA TE _TY I’E IS (idle,analyzing,endolrow,analvzing2,Finish);
SIG NAL state: STATE_TYPE;
signal lnEn_sig,FrameEndLalch,AppendRowEnd:stdJogic;

BEGIN
PROCESS (elk)
variable Count,cntsetOr,cnlsetOc.LStage,CntLastRow: natural:=0;
variable counting: stdjogic;
BEGIN

- Number o f stage
I.stagc:=3;
IF reset = T THEN

state <=idle;
ELSIE clk'EVENT A N D elk = '1' THEN

CASE state IS
W H E N idle =>

- reset everything
IF s ta r t- I' THEN

stale <= analyzing;
END IF;

W H E N analyzing =>
if RowEnd_ColumnPE=T then

stale<=endofrow;
end if;

when endoliow =>
cntscl0r;=0;
Set0row<='0';
ifcount=RowLen*ColLen+RowLen*Lstage*5+20 then

state <= Finish;
else

state<=analyzing2;
END IF;

when analyzing2 =>

with permission of the copyright owner. Further reproduction prohibited without permission.

cntsel()r:=cnlselOr+l;
if" KowI-'ni.)_Colnninl, li= l 11 then

slate<=cndol'tow;
end if;
S e l0row <-0 ’;

- Set0col<-0';
jfcnlsctOr=2 then

S etO row <-I';
end if;

when Finish =>
statc<=ldle;

end case;

- - add (L + 1+2+ ..+2AL) more lines lor processing the column D W T
— latch FrnmeEnd

i f FramcEndLalch-F then
CntLastRow:=CntLastRinv+l;

lilse
CntLastRow:=0;

end if;
il'CnlLaslRow=RowLen then

AppendRowEnd<=T;
CntI.aslRn\v -0;

else
AppendRowEnd<-0’;

end if,

END IF;
EN D PROCESS;

EatchFrameEnd: l_ITport map (clk=>FramcEnd,clr=>clcar,q=>FrameEndLatch);
RowEnd_ColumnPE<=RowEnd or AppendRowEnd;
W i l l I state SELECT

ln E n _ s ig < = '0 'W IIE N Idle,
T W H EN others;

W i n I state SELECT
clear < = ’ I ’ W I1EN Idle,

'O' W H E N others;

lnEn<=lnEn_sig;
END a;

5. 2-D Dual-Scan Architecture

- a 2 -D double scan lilt arch lor one-stage D -l
— I longyu Liao 4/23/02

- Last update:
Juil28/200t
LIB R A R Y ieee,
library' comp;

use ieee. s td jo g icarilh .a ll;
use iece.std_logic_l 164 all;
use icec.stdJogic_signcd.all:
use comp.liflcomp all.

E N T IT Y d4li0_2d IS
GENERIC!width : positive:9 16; fifo len_Row:positivc:=l;lifoJen_Column:positive:=2;RowSize:

posilivc:=l28;ColSize: positive:— 128);
PORK

first row, secondrow : IN std_logic_vector(width-l downto 0),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

clock.resel.start: In stdjogic;
d w tc o c fM ., d w lc o e lf j l : OU T stdJogic_vector(width-l downto 0);
Done: out stdjogic);

END d4lin_2d:

A R C IIITE C TU R E licit Ok' d4lill_2d IS
component ddlitl

GENERICtwidlh : positive; IIlbJempositive);
PORT!

first line, sccondline : IN s!d_logic_vcclor(width-1 downto 0);
clock, enable,elcar.ltiEn.SelO: in std_logic;
dw tco ellJL . d w tc o c f l j l : O U T std_logic_vcctor(width-l downto 0));

END component:

component DS2DConlroI
generic! RowSize: positivc:=«;ColSize: positive:=8);
l’ORT(

elk : IN STD LOGIC;
reset : IN STD LOGIC,
start : IN STD LOGIC;
InEn.RowSetO.ColSctO, Done: O U T S T D J .O G IC),

EN D component;

signal firstrow_sc,secondrow_sc,l IRow.LRow. stdJogic_vector(width-l downto 0);
signal ColOddl, ColOdd2, Coll’H ln l, Coll’Eln2,I.out, limit: sldJogic_vcctor(width-l downto 0);
signal clkx2, lnputEn,RowSelz.ero,ColSetzero,high:stdJogic;
signal zeropad:std_logic_vector(5 downto 0):=(others=>'0');

lor D _l:req:T_I;l; use entity comp.tJT;
for Rowl’E, Columnl’E. d4lift use entity work d41ift;
for controller:DS2DC'ontrol use entity work,DS2Control;
BEGIN

h ig lK - l':
firslrow_sc<=rirstrow(width-7 downto 0) & zeropad,
secondrow_sc<=secondrow(widlh-7 downto 0) & zeropad;

RowPE: d4lift GENERIC m ap(width=>widtb,fifoJen=>rifoJen_Row)
PORT map(
firstlinc=> firstrow_sc.secondline=> secondrow_sc,clock=>clock.
enable=>high,cleaF=>rescl,InEn=>lnputEn,SetO=>RowSetzcro,
dwt_coelTJ-=>LRo\v, dwt_coeff_ll=>HRow);

ColumnPE: d41ift GENERIC map(width=>width,llfo _len=>fifo len_Colum n)
PORT map(
firstline=>LRow.secondline=>llRow,clock=>clock.
enable=>high,clear=>reset,InEn=>InputEn,SeiO=>ColumnSctzero,
dwt_coeff_L=>dwl_coeffJ., dw t_coeffJI=>dw t_coeffJl);

controller:DS2DCnnlrol generic map(RowSiz.e=>RowSize,ColSize=>ColSize)
PORT map(
clk=>clock,reset=>reset,start=>start,
lnEn=>InputEn,RowselO=>RowSetzero,ColSetO=>Co!Setzero,Done=>Done);

D _l?rcq:T_FF porl map (
clk=>clock,NotEn=>reset,0=>clkx2);

END bob;

— a controller lor 2-D DoubleScan
-created 3/23/02
- Last update
library' ieee;
use ieee.stdjogic arith.all,
use ie e e .s td jo g ic j 164.all;
use ieee std_logic_signed all;

E N T IT Y DS2DConlrol IS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

generic; RowSizc positive =8.ColSize: positive-8).
l’OKT(

elk IN S TD J .O G IC ;
reset : IN S TD J.O G IC ;
start : IN S TD J.O G IC :
lnEn.RowSet(),ColSelO, Done: O U T

END DS2DContrnl:
STDJ.OG1C);

A R C H ITEC TU R E a O I; DS2DControl IS
TYPE S T A T E T Y I’E IS (idle.Rmvl’ro. Coll'ro, Finish);
SIG NAL state STATE _TYPH:

BHGIN
PROCESS (elk)
variable Count: nnlitral:=(>;
variable Count2: natural:=0;
variable counting: stdjogic;
BHGIN

IF reset - T THEN
stale <=idle;

HI.SIF clk’H VHNT A N D elk = ' 1' T l IHN

CASH state IS
W H E N idle =>

IF s ta r t- I' THEN
state <= inil;
ln l;n<=T ;
counting :-1';

END IF;
SelO<-O';

W H E N RotvPro =>
IF count=6 THEN

state <= Coll’ro;
EN D IF’;
ColSelO<=T;

W H E N Coll’ ro =>
ircount2=RowSi7e+3 then

RowSelO<=T;
end if;

ColSetO<-0';

ifcount=RowSize*ColSize+]3 then
state<=Finish;
ln E n<-0 ';

end it;

when Finish =>
state<= idle;

END CASE;
i f coun ting -I' then

coimt:=count+l;
count2:=count2+l;
il'count2=RowSize+3 then

count2;=0;
end if;

end if;

END a;

EN D II
END PROCESS;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 . Component Library: Liftcomp

library ieee:
use iecc.sld_lo|>ic_arilh all;
use iecc.std jogic j 164.all,
use iece.sld_loBic_signeiJ.all,
library lib;
use lib.datalib.all;

PACKAGE liftcomp IS
C O M P O N E N T mull

GENERlC(width : posilivc:= 8),
I’ORTl

a. b IN std_logic_vcctor(width-l downto 0);
p: O U T stdJogic_vector(width*2-l downlo 0));

EN D COM PONENT;

C O M PO N EN T mac
GENERIC(wid!h : positive;2 8;keep:posilive:=8;add_sc:positive:=l ;res_sc:positive:=l);
PORT(clock,clear: in stdjogic;

acc, null,amp IN std_logic_vector(widlh-l downlo 0);
output: O U T stdJogic_vector(width-l downlo 0));

END COM PONENT;

component shifter
GENERIC(\vidtb : positive:2 8:kecp:posilive.-8);
PORT(

input IN stdJogic_vector(widlh*2-l downto 0);
clk.clr : in stdjogic;
output: O U T stdJogic_vcctor(widlh-l downto 0)):

EN D component;

component reg
generic(width:positive:=8),
port(

clk,clr:in stdjogic;
input: in std_logic_vector(width-1 downto 0);
output: out stdjogic_vcctor(width-l downto 0));

end component;

component in_switch
GENERIC(vvidth : positive:2 8);
PORT(

lirstline,sccondline: IN std_logic_vector(width-l downto 0);
elk,enable: in stdjogic;
odd,even: O U T std_logic_vector(width-! downto 0));

end component;

component delay
generic(width:positive:2 8;len:positive:2 l);
port(

clk,clr:in std_logic;
input: in stdJogic_vector(width-l downto 0);
output: out std_logic_veclor(widlh-l downto 0));

end component;

component delay_en
generic(width:posilive:=8;len:posilive:= I);
port(

clk,clr,en:in std_logic;
input: in stdJogic_vcctor(width-l downto 0);
output: out std_logie_veclor(widlh-l downto 0));

end component,

component Irunc
GENERICfwidth : positive;keep:positive;nbi!:positive);
PORT(

input : IN sld_logic_vector(width-l downto 0);
clk.clr in stdjogic.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

output: O U T
END component;

sld_logic_vcclor(kcep-l downlo 0));

component switch
GENERICfwidth : positive);
l’ORT(

input: IN std_logic_vector(width-l downlo 0):
Sel: in stdjogic;
output I , outpul2: O U T stdjogic_vcctor(width-l downto 0));

END component;

component mux
GENERICfwidth : positive™ 8);
I>ORT(

input!,input2: IN stdJogic_veclor(widlh-1 downto 0);
Sel: in stdjogic;
output: O U T sldJogic_veclor(width-l downto 0)):

END component;

component T_EE
pot t(

elk,NotEn:in stdjogic;
Q: out stdjogic);

end component;
END liftcomp;

- a signed adder
LIB R A R Y ieee;
use iecc .s td jo g ic j I64.all;
use ieee.stdJogic_arilh.all;
use iece.sldJogic_signed.all;

E N TIT Y adder IS
GENERICfwidlh : positive:=16);
l’ORT(

a, b : IN std_logic_vector(width-1 downto 0),
s: O U T std_logic_vector(widlh-l downto 0));

END adder;

A RC H ITEC TU R E belt OF adder IS

BEGIN
s<=a+b;

END beh;

— A clock divider
— Hongyu Liao
— last update: I'cb 12/2002
library ieee;
use ie ce .s td jo g ic j 164.all;
use ieee.sld_logic_arith.all;

entity clk_gen is
port(

clk.Etv.in stdjogic;
clkx2,clkx4: inout stdjogic);

end clk_gen;

architecture beh o f dk_gen is
signal FB I: stdjogic;
begin

cLprocess(clk)
begin

il 'E n - l 'lh e n
i f rising_edge(clk) then

clkx2<= not clkx2;
end if;

else

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

clkx2<='0';
end it;

end process;

c2:process(clkx2)
begin

i f Hn=' 1' then
ifrising_edgc(clk) then

clkx4<= not clkx4;
end if;

else
clkx4<-0 ';

end if;
end process;

end beh;

-- A symplc FIFO used as a Delay unit
— I longyu Liao
- la s t update; 11/23/2001
library' ieee;
use ie cc .s td jo g ic j 164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_signed.all;

entity delay is
generic(width:positive:=8;Ien;positive:=l);
port(

clk,clr:in stdjogic;
input: in std_logic_veclor(width-1 downto 0);
output: out sld_logic_vector(width- l downto 0));

end delay;

architecture beh o f delay is
constant M A X : positive:=lcn;
subtype depth is positive range I to M A X ;~R o w Length;
type reg_array is array(depth) ofstd_logic_vector(width-l downto 0);
signal reg:rcg_array;

begin
ft to: process(clk)
begin

ifrising_edgc(clk) then
ifc lr= T th en

output<=(others=>'0');
lor index in depth loop

reg(index)<=(others=>’Ot);
end loop;

else
rcg(I)<=input;
for index in depth loop

ifindex<MAX then
reg(index+1)<=reg(index);

end if;
end loop;
output<=rcg(MAX);

end if;
end if;

end process tifo;
end beh;

- A symple FIFO used as a Delay unit
— I longyu Liao
- la s t update: 11/23/2001
library ieee;
use ie c c .s td jo g ic j 164.all;
use icee.sld_logic_arith.all;
use ieee.sld_logie_signed.all;

entity delay_cn is
generic(width:positive:=8;lcn:positive:=l);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

porl(
clk,clr,en:in stdjogic;
input: in std_logic_vcctor(width-l downlo 0);
output: out std_logic_vcclor(widtli-l downto 0));

end dcluy_cn;

architecture beh of dclay_cn is
constant M A X : positive:=lcn;
subtype depth is positive range I to M A X ;~R o w Length;
type reg_array is array(dcpth) ol'stdJogic_vector(width-l downto 0);
signal reg:reg_array;

begin
n ib : proccss(clk)
begin

if rising_cdgc(clk) then
i f cln=' 1' then

else

end beh:

end if;
end process fifo;

end if;

output<=(othcrs=>'0’);
for index in depth loop

reg(index)<=(others=>'0');
end loop;

ife n - l 'th e n
rcg(l)<=input;

for index in depth loop
ifindex<M A X then

rcg(indcx+l)<=reg(index);
end if;

end loop;
outpul<=reg(MAX):

end if;

— a switch performs the lazy wavelet for double scan arch.
- la s t update:! 1/26/2001
LIB R A R Y ieee;
use ie c c .s td jo g ic j 164.all;

EN TITY in_swi!ch IS
GENERIC(widlh : positive" 8);
PORT(

llrstlinc.secondline: IN stdJogic_vector(width-l downto 0);
elk,enable: in stdjogic; —
odd,even: O U T stdJogic_veclor(widlh-l downlo 0));

END in_switch:

A RC H ITEC TU R E beh OE in_switch IS
signal Sel: s ld jo g ic :-0 ';
signal secondlineDelay: stdJogic_vector(width-1 downto 0);

begin

proccss(clk)
begin

- a T l l ip - l lo p
il'rising_edge(clk) then

if e n a b le -I' then - enable sets when data comes
Scl<=not Sel;
secondlincDelay<=secondline;
i f Sel-O 'then

evcn<=lirstline;
odd<=secondlineDelay;

else
odd<=firstline;
even<=secondlineDelay;

end if;
else

S c l< -0 ’; -m ake sure the data shifting in correct order

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

secondlineDelay<=(othcrs=>'0');
odd<=(olhers=>'0');
even<=(othcrs=>'0');

end il;

end if;
end process;

end beh;

- A M A C
- - 1 longyu Liao, 10/20/2001
- add shillcr for the accumulater input, 1/12/02
-- Last update: 1/12/2001

LIB R A R Y ieee;
use ie c c .s td jo g ic j 164.all;
use ieec.std_logie_arith.all;
use icce.std_logic_unsigncd.all.

E N T IT Y mac IS
GENERIC(width : positives 8; kcep:positive:=8;add_sc:positive:=9;res_sc:positive:=I);
— add_sc; number o f bits shifted for the adder input
-- rcs_sc: number o f bits shitted for the mac result
l’ORT(clock,clear: in stdjogic;

aec, mul.amp : IN std_logic_vcctor(width-1 downto 0);
output: O U T std_logic_vcctor(kecp-l downto 0));

END mac;

A R C H ITE C TU R E str OE mac IS
C O M P O N E N T mult
GENERICfwidth : positive);
l’ORT(

a, b : IN std_logic_veclor(width-1 downto 0);
p: O U T std_logic_vector(w'idth*2-1 downto 0));

END C OM PONENT;

C O M P O N E N T adder
GENERIC(width : positive);
PORT(

a, b : IN std_logic_vcctor(width-l downto 0);
s: O U T std_logic_vector(width-l downto 0));

END C OM PONENT;

component tntnc
GENERICfwidth : posilive;keep:posi!ive;nbi!:positivc);
PORTf

input : IN std_logic_vcctor(width-1 downto 0);
clk.clr in stdjogic;
output: O U T stdJogic_vector(keep-l downto 0));

END component;

signal zero_pad:std_logic_veclor(add_sc-l downto 0);
signal sig_pad:std_logic_vector(w'idth-l downto 0);
signal accJnl:std_logic_veclor(width*2-1 downto 0);
signal mul_out:stdJogic_vector(width*2-l downto 0);
signal nddJn_a,udd_out:sld_logic_vcclor(width*2-l downto 0);

BEGIN
zero_pail<=(otliers=>'0');
--signal extension
sig_pad<=(others=>ncc(width-1));

--shift ace
acc_int<=sig_pad & aec;
add_in_a<= acc_int(width*2-l-add_sc downlo 0) & zcro_pad;

multiplier: mull
generic map(widlh=>width)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

port map(a=>amp.b=>mul,p=>mul_out);

add: adder
generic map(widlh9 >w idlh*2)
porl map(a9 >add_in_a.b9 >mul_out,s=>add_out);

-truncate Ihe result
trunc rcg: trunc

GENERIC mnp(tvidth=> width* 2.keep=>keep,nbit=>res_sc)
port map(input9 >add_out,clk=>clock,clr=>clcar,oulput=>output);

END str;

- M A C library
- I longyu Liao, 10/20/2001
-L a s t update:l I/1 2 /2001

library ieee;
use iecc.std_logic_arith.all;
use ie cc .s td jo g ic j 164.all;
use iccc.std_logic_signcd.all;

PACKAGE mac_comp IS
C O M PO N EN T mult

GENERIC(width ; positive:9 8);
PORT(

a, b : IN stdJogic_vector(width-1 downto 0);
p: O U T std_logic_vcctor(widtb*2-l downto 0));

END COM PONEN T;

COM PONEN T adder
GENERIC(width : positive:9 8):
PORT(

a. b : IN std_logic_vector(width-1 downto 0);
s. O U T std_logic_vcctor(width-1 downto 0));

END COM PONENT;

component shifter
GENERICfwidlh : positive:9 8;kecp:positivc:=8);
PORT(

input : IN std_logic_vector(width*2-1 downto 0);
clk.clr :in stdjogic;
output: O U T std_logic_vector(kcep downlo 0));

END component;

EN D mac_comp;

- A signed multiplier
- Tlongyu Liao, 10/20/2001
- Last update: 22/20/2001
LIBR A RY ieee;
use ieee std_logic_l I64.all;
use ieee.sld_logic_aritb.all;
use iccc.std_logic_signcd.all;

EN TITY mull IS
GENERICfwidlh : positive:9 16);
PORT)

a, b : IN std_logic_vector(width-1 downto 0);
p: O U T std_logic_veclor(width*2-l downto 0));

END mult;

A R C H ITEC TU R E belt OE mult IS
BEGIN

p<=a*b;
END beh;

- a switch dctouring the data How.
-created 1/23/02
- la s t update: 1/23/2002

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIB R A R Y icce,
use ieec.slcl_logic_H04.all;

E N T IT Y mux IS
G E N E R IC fw id lh : positives 8):
PORT!

inpull,input2: IN sld_logie_vector(widlli-1 downto 0);
Sel: in stdjogic:
output: O U T std_logic_vector(width-l downto 0));

END mux;

A R C H ITE C TU R E belt OP mux IS
begin

output<= input I when Sel-O' else
input2 when S e l=T else
(othcrs=>'Z');

end beh;

- A D Hip Hop with svn-clear
- - I longvu Liao
- la s t update: 11/22/2001
library ieee;
use ie e e .s td jo g ic j 164.all;
use iece.std_logic_arith.all;

entity reg is
generic(width:positivc:=8);
l>ort(

elk,clr: in stdjogic;
input: in std_logic_vector(width-l downto 0);
output: out std_logic_vector(width-l downto 0));

end reg;

architecture beh o f reg is
begin

process(clk)
begin

ifris ingedge(clk) then
if'clr=T'then

output<=(others=>'0');
else

outpul<=input;
end if;

end if;
end process;

end beh;

- A simplified shift register
- I longyu Liao, 11 /29/2001
- Last update:! 1/12/2001
LIB R A R Y ieee;
use ieee.std_logic_arith.all;
use ieee.std_logic_l 164.all;

E N TIT Y sh_reg IS
GENHRICtwidth : positives 8);
PORT)

input : IN std_logic_vector(width-l downto 0);
elk,clr : in stdjogic;
num: in posilive:=2;
output: O U T std_logic_vcctor(width-l downto 0));

EN D sh_rcg;

A R C H ITE C TU R E belt OP sh_reg IS
signal zeros: std_logic_vector(width- l downlo 0):=(others=>'0');

BEGIN
process(clk)
begin

if rising_edge(dk) then
if clr— 1' then

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o n I p ii I c=(n t h e rs=>' 0'),
else

output<=input(width-num-l downlo 0) & 7eros(mun-l downto 0),
end il:

end if;
end process;

UNO beh;

-- A simplified right shill only register
- Ilo n g y u Liao, 10/20/2001
-L a s t update:11/9/2001
LIB R A R Y ieee;
use ieee.std_logie_arith.all;
use icec.std_logic_l 164 all;
use iece.std_logie_signed.all;

EN TITY shill IS
GENERIC(width : positive:® 8:rsh:positive;=4):
PORT(

inpul : IN sld_logic_vcclor(width-1 downto 0):
output: O U T std_logic_vcctor(width-1 downto 0));

END shift;

A RC H ITEC TU R E beh OE shift IS
signal fac:std_logic_veetor(width-1 downto 0);
BEGIN

fac<="001000000000000";
output<= sra I ;

END beh;

- A simplified right shill onlv register
- I longyu Liao, 10/20/2001 ’
- change range, 1/9
- Last update: 1/9/2002
LIB R A R Y ieee,
use icce.stdJogic_arith.all,
use ieee.sld_logic_l 164.all;
library lib;
use lib.datalib.all;

E N TIT Y shillcr IS
GENERIC(width : positives 16;keep:positive:=l6);
l’ORT(

input : IN stdJogic_vcctor(widlh*2-l downto 0);
elk,clr : in stdjogic;
output: O U T std_logic_vector(keep-l downto 0)),

END shifter;

A RC H ITEC TU R E beh OE shifter IS
BEGIN
process(clk)
begin

if rising_edgc(clk) then
ifc h = 'l'th c n

output<=(othcrs=>'0');
else
- scale the partial result back

output<=input(width*2-l-(width-Eactor) downto width*2-keep-(width-Eactor));
end if,

end if;
end process;

END beh;

- a switch detouring the data llow.
- created 1/23/02
- last update: 1/23/2002
LIBRARY ieee;
use ieee s!d_logic_l 164.all;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E N TIT Y switch IS
GENERICfwidlh : positive:-8);
I’OKTt

input: IN std_logic_vcclor(width-l downto 0);
Set: in std_logie;
output I , output2: O U T std_logic_vector(width-1 downto 0)):

UNO switch;

A R C 1IITE C I'U R E heh OF switch IS
begin

output I <= input when Sel='0' else
(othcrs=>'0');

oulput2<= input when S e l-I'e ls e
(othcrs=>'0');

end belt:

— A T flipllop
- 1 longyu Liao
-- last update: 1/2*1/2002
library ieee:
use ic e c .s td jo g ic j 164.all;
use iece.std_logic_ai ith.all;

entity T_FF is

poitl
clk.NotL'n:in sld jogic;
Q: out stdjogic);

end T_FF;

architecture belt o f T_FF is
signal FB: s ldjogic;
begin

proccss(clk)
begin

ifN o tE n -0 'th e n
if rising_edgc(clk) then

FB<= not FB;
end il';

else
FB<—O';

end il';
end process;
Q<=FB;

end beh;

-- A register keeps the truncated result
- input: 32bit;outpul:l6bit
-- l-longyu Liao, 1/12/2002
— change range
-L a s t update: 1/12/2002
LIB R A R Y ieee;
use icce.sld_logic_arith.all;
use iece.std_logic_l 164.all;
use iece.sld_logic_signcd.all;
-lib rary lib;
-use lib.datalib.all.

l iN T IT Y trunc IS
GENERICfwidlh : positives32;keep:positive:=l6;nbit:positive:=l);
— nbiCnumbcr ol'bits to be shifted
PORTf

input : IN std_logic_vcctor(width-1 downto 0),
elk.elr : in stdjogic;
output: O U T s!d_logic_vcctor(kccp-l downto 0));

END trunc,

A R C H ITE C TU R E belt OF trunc IS
BEGIN

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

process(clk)
begin

irrising_cdgc(clk) then
il 'c lr= 'r then

oiitput<=(othcrs=>'0’);
else

output<=input(kecp-l+nbil downto nbit);
end if:

end if:
end process;

KND beh;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

