INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI fims
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g.,, maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing

from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NOTE TO USERS

- This reproduction is the best copy available.

®

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

EFFICIENT ARCHITECTURES
FOR 1-D AND 2-D LIFTING-BASED WAVELET
TRANSFORMS

by

Hongyu Liao

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the
requirements for the degree of Master of Science

Department of Electrical and Computer Engineering

Edmonton, Alberta

Fall 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i+l

Library and
Archives Canada

Published Heritage Direction du

Branch

395 Wellington Strest
Ottawa ON K1A ON4

Canada Canada

NOTICE:

The author has granted a non-
exclusive license alloWwing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,

loan, distribute and sell theses

worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliothéque et
Archives Canada

0-494-09221-1

Patrimoine de I'édition

395, rue Wellington
Ottawa ON K1A ON4

Your fite Votre référence
ISBN:
Our file Notre retérence
ISBN:

AVIS:
L'auteur a accordé une licence non exclusive

permettant a la Bibliothéque et Archives

- Canada de reproduire, publier, archiver,

sauvegarder, conserver, transmettre au public
par téelecommunication ou par I'Internet, préter,
distribuer et vendre des théses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique

" et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protege cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian

Privacy Act some supporting
forms may have been removed

from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

Library Release Form

Name of Author: Hongyu Liao

Title of Thesis: EFFICIENT ARCHITECTURES FOR 1-D AND 2-D LIFTING-BASED
WAVELET TRANSFORMS

Degree: Master of Science

Year this Degree Granted: 2005

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific

research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as herein before provided, neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any material
form whatsoever without the author's prior written permission.

Signature

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies
and Research for acceptance, a thesis entitled EFFICIENT ARCHITECTURES FOR 1-D
AND 2-D LIFTING-BASED WAVELET TRANSFORMS submitted by Hengyu Liao in
partial fulfillment of the requirements for the degree of Master of Science.

Dr. Mrinal K. Mandal, Supervisor

Dr. Bruce F. Cockburn, Co-Supervisor

Dr. Duncan G. Elliott

Dr. José Nelson Amaral

Date:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

The lifting scheme reduces the computational complexity of the discrete wavelet
transform (DWT) by factoring the wavelet filters into cascades of simple lifting steps
that process the input samples in pairs. We developed four compact and efficient
hardware architectures for implementing lifting-based DWTs, namely, 1-D and 2-D
versions of what we call recursive and dual-scan architectures. The 1-D recursive
architecture exploits interdependencies among the wavelet coefficients by interleaving.
on alternate clock cycles using the same datapath hardware, the calculation of higher-
order coefficients along with that of the first-stage coefficients. The resulting hardware
wtilization exceeds 90% in the typical case of a 5-stage 1-D DWT operating on 1024
samples. The 1-D dual-scan architecture increases the datapath hardware utilization to
100% by processing two independent data streams together using shared functional
blocks. The recursive and dual-scan architectures can be readily extended to the 2-D
case. The 2-D recursive architecture is roughly 25% faster than conventional
implementations, and it requires a buffer that stores only a few rows of the data array
instead of a fixed fraction (typically 25% or more) of the entire array. The 2-D dual-
scan architecture processes the column and row transforms simultancously, and

eliminates the memory buffer for the row transform coefficients.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I would like to acknowledge my supervisors, Dr. Bruce Cockburn and Dr. Mrinal
Manal, for their patience and support on helping me to finish this thesis.

I would also like to thank the rest of my thesis committee members: Dr. Duncan
Elliott and Dr. José Amaral. Their valuable feedback helped me to improve the thesis in
many ways.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

CHAPTER I INTRODUCTION s cate e ittt ereresernesneresaesersasessnsesssessssessssesinssonssssssansssissssessnsenas 1
LT MOTIVATION Lottt et sias st saae st sss e r e s s ebesba e b ssbeenbaesrsesbsesrsennesnis]

1.2 OVERVIEW OF THE WAVELET TRANSFORM ...oviiriiiieeiieneccreerecveesee e ssreseennas 4

1.3 OUTLINE OF THE THESIS toiciteirrinreesertirsressrenessreeesneererseeiressnsessssessosesesnsesersssssresnnes 6
CHAPTER 2 REVIEW OF WAVELET THEORY wuveieeievrieeiee e iresssrs s enne s srreesans e vesonns 8
2.1 WAVELETS cottiierite it eesentressieeeesttseesarees st raesestssaestbbesessasssssnsessssssessssssbsnessreessnens 8

2.2 MULTIRESOLUTION ANALYSIS AND THE WAVELET TRANSFORM .oovcvveeeneeirenee, 10
2.2.1 CONVENLIONS covvvvveeiirieerieiiirrreriiereeversreesseteessssvbeeesassssstsesssssasesossvasssersesins 10

2.2.2 Multiresolution ANalysis......cceecvevveriiivinionienieneneseeresee e e seessesvessenees 11

2.2.3 The Discrete Wavelet Transform (DWT) .ooveeiiiciniieeeeccie, 13

2.2.4 The Fast Wavelet Transform (FWT) ..o 14

2.2.5 Orthogonal Wavelels ..o eiviiiie ittt sesrae e ee e sr s seeeenane e 17

2.2.6 Biorthogonal Wavelets.......ovveeoreeniinrirceiniceeeneereenie st sneenes 18

2.2.7 The Two-Dimensional DWT ... eireens s eaarees 19

2.3 THE LIFTING SCHEME . .cccittiieittiiiierireesisrtesssieseseisesssstnessssesssssasesnsvsneessssessnsns 20
2.3.1 Introduction to the Lifting Schemeccocvvvievivveinineenienenenreseeenieneens 21

2.3.2 Factoring Wavelet Filters into Lifting Steps...cccvvvvviieiieeiicciineeeens 22

2.4 COMPARISON OF THE CLASSICAL DWT AND THE LIFTING SCHEMEvveeeiirinn, 26

2.5 BOUNDARY TREATMENT .oiiiitiiiiieesirienirneresiieeeesitecssssnesssssessssssesssssnaasessnnsnesases 29
2.5.1 Classical Extension Methods....ccccviiieinveenn e nne e 30

2.5.2 Signal Extension With Liftingceeccoeveniivinniicrincniencen e 32
CHAPTER 3 REVIEW OF EXISTING WAVELET ARCHITECTURES «vveiivreeeeiereesirreesesreeeeaneens 35
3.1 CLASSICAL ARCHITECTURES 1vvvvreveveessirecessirnesserseesrssseesssreessasaesssssanessassnnssninees 37

3.2 EXISTING ARCHITECTURES BASED ON THE LIFTING ALGORITHM .evvveivieveeiveneens 45
CHAPTER 4 PROPOSED [-I) ARCHITECTURES .iitveeciteeireeeereesireeesseeeseessvessssessareessseessrenes 50
4.1 THE 1-D RECURSIVE ARCHITECTURE t..evvvtveeisiiesinreesesestiinneessennreseesessssssnnneessans 50

4.2 THE 1-D DUAL-SCAN ARCHITECTURE 11vecevtsirrenrensreeessrenresssraessvsesesesssseessssensane 6l
CHAPTER 5 PROPOSED 2D ARCHITECTURES ..uvtvevievieseesieesresvesnesieesseesesssesssnesssesnennes 63
5.1 THE 2-D RECURSIVE ARCHITECTURE tvvvvrsveervsrressesrseeerisresseeressserssssensssessanssens 64
S2THE 2-D DUAL-SCAN ARCHITECTURE cvtreieireinenreserreeesssnrrassresissrsseesrneesssssnes e 70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER O IMPLEMENTATION 11ieiviviviseesserteeieernessesseessssssnesesessenns e eeanes peererneenees 13

6.1 WORD LENGTH SELECTION vtiiivivieeccreerreesieeecneesseeersesensronns rrerere e virererereens 73
6.2 IMPLEMENTATIONS OF THE 1-D ARCHITECTURES .vivveeenneinnne rererteerresbesraeenens 77
6.3 IMPLEMENTATIONS OF THE 2-D ARCHITECTURES wvvvivveeiieecivresrevsnesseosressreosseens 80
0.4 EVALUATION 1ttt cniaiassesssseaesssnsssvesssessssnarbbessssessrasssnsesssssreessasersesennes 82
CHAPTER 7 CONCLUSIONS AND FUTURE WORK cveviiieveeerienreesnrevreseresntesimeessesenvesssneens 86
REFERENCES 11t ciitirsciietriireessintnesesseenesvsessassreessssnesssnnsesssssans rerverrenns eererreree e arassrereens 88
APPENDIX A L i e e fe et et 94
APPENDIX B, P e 96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Figure 1. Structure of the Pyramid Algorithm.ccoovveviinecineecees 16
Figure 2. Block Diagram of the 2-D Separable DWTccoviiiiininieeieeeevivescenas 19
Figure 3. The Split, Predict, and Update Steps in the Lifting Scheme. oo, 21
Figure 4. Comparison of the DWT Coefficients Computed by Classic Wavelets and
Lifling SChEmMC ..o 28
Figure 5. Comparison of Subimages Generated by First (classical) and Second
Generation WavelelS. oot a s 29
Figure 6 The Four Possible Cases of Symmetric Signal Extension Using Lifting......... 32
Figure 7. Zero Padding Extension for Short FIR Filters....o.oovviveviniiviievieniesiee e, 34
Figure 8. Knowles™ Mux Based DWT Architecture [4] ..coooivviiiicinecieeeeeriereseee, 37
Figure 9. The 1-D Folded Analysis Wavelet Architecture Proposed in [8].....cccvvvveneee. 39
Figure 10. The Diagram of the 1-D Digit-Serial Architecture [8]....ccoevvvriviicinvirienen. 40
Figure 11. A Systolic Wavelet Architecture [16]. covveiiviniiicceceeecieee e 41
Figure 12. The Parallel Filter Architecture for I-D DWT [10]. oo, 42
Figure 13. Block Diagram of the 2-D Parallel Filter Architecture [10]..ccovvvcvcverinenn. 43
Figure 14. The Decimation Filter Employing the Polyphase Decimation Technique [32].
.. 44
Figure 15. Decomposition Filter Employing the Cocfficient Folding Technique [32]. .44
Figure 16. 1-D Folded Architecture [33]. oo 46
Figure 17. Block Diagram of the 2-D Architecture in [34]. cooevrvevievneeieiecese e, 47
Figure 18. Basic Architecture of Each Processor. ... enesseeenns 48
Figure 19. Basic Circuits for the Parallel Architecture Proposed in [35]..ccccvvevvinnnnne. 48
Figure 20. MAC for Asymmetric Wavelet FIlters ... 51
Figure 21. MAC for Symmetric Wavelet FIlters ... 52
Figure 22. Circuits for the Basic Lifting Steps .c.ccocvevvvvvrecnnn e 53

Figure 23. 1-D Recursive Architecture for the Daub-4 DWT. “R™ represents registers,
and “D™ represents delay units. S} represents control signals for the data

LW . e e e e e s 54
Figure 24. 1-D Recursive Architecture for the 9/7 DWT, i 54
Figurc 25. 1-D DWT CoelTicient Compuiation Order.........ocovvvvcvvnivvivennienineesienessennn 55
Figure 26. State Transition Diagram of the RA Controllerccvvvvvinrennineeereenienns 59
Figure 27. 1-D Dual-scan ArchiteClUIC....oouirierierivirenieie e stsrese st seessnennes 62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figurc 28.
Figure 29,
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39,
Figure 40.
Figure 41.
Figure 42.

The DSA PLE Circuit for the 9/7 DWT . oo sires s evees 62

Conventional 2-D Lifting ArchiteCtUre. ...ovverievviieecieirercrreneeeseeeerenreens 63
Calculation Scquence of the 2-D RA .oioiiieecineneeseeneens 64
The 2-D Recursive ATchileClUre ..ot 66
EXChange OperationsS......cccveiviienieieieerrceeeeee e 66
Scan Sequence of the 2-D Dual-scan Architecture ..ovevevvceeccnennennieneens 70
2-D Dual-scan ArchilCClure.......ovviieeriiir ittt 71
State Transform Diagram of the 1-D 9-7 RA’s Controller.....cccovevveeennennnene. 77
Datapath of 1-D Daub-4 DSA ..o 79
State Transfer Diagram of 1-D DSA’s Controller......c.ccecvvvvivineneeinnninnnenn, 80
State Transfer Diagram of the 2-D D-4 RA’s Controller.......ccoceveiveenenninnne 81
State Transfer Diagram of 2-D DSA oo 82
TSt IMAZES . ceiieit ettt e s e bbb e s 84
Decomposed Images of Test IMages.....eevevreneinennnonienneereris e 85
Histogram of the Error of 3-Stage Decomposition of Lena ..., 85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

Table I. Computational cost of the lifting versus the standard algorithm for

calculating a pair of wavelet coefficientsooecevvviniiviininieeee e, 26
Table 2. Comparison of the classic wavelet and the second-generation wavelet 27
Table 3 Energy of subimages generated by the standard and lifting D-4 DWT............. 28
Table 4. Basic operations that are carried out by the proposed architecture to

compute the [ifHNg SIePS.ccueriiniirereeres e e 49
Table 5. Data Flow for the Thiree-Stage 1-D Recursive Archilecture v..oeeneenvnreienneee. 56
Table 6. Enable Signals for the Input Registers (k is the sample index) of the 1-D RA

Implementing the D4 DWT ..ot 57
Table 7. Input Switch Control Timing for the 1-D RA Implementing D4 DWT 57
Table 8. Computation Time and Hardware Utilization for 1-D Architectures............... 61
Table 9. Switch Control Timing for the 2-D RA Implementing Daub-4 DWT 68
Table 10. Data Flow for the Three-Stage 2-D Recursive Architectureocoeeveeevvenne. 69
Table 11. Data Flow for the 2-D Dual-scan Architecture.......ccococovinnenciecinieeneennennne 71
Table 12. Computation Time and Hardware Ulilization for 2-D Architectures............. 72
Table 13. Comparison of Memory Size for 2-D Architecturesoocvvvvineeieecvinninnnenn 72
Table 14. SNR/PSNR Values for 3-stage forward DWTccocooieiiiiiiieececreenrens 84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Acronyms

9/7 Daubechies 9/7 wavelet [6]

D-4 Daubechics 4-tap wavelet [6]

Daub-4 Daubechics 4-tap wavelet [6]

DCT Discrete Cosine Transform

DSA Dual Scan Architecture

DSP Digital Signal Processing/Processor

DSP-RAM A DSP architecture proposed in [51]

DWT Discrete Wavelet Transform

FIFO First In, First Out

FIR Finite Impulse Response

FWT Fast Wavelet Transform

HH Image subband with high frequency components horizontally and
vertically

HL Image subband with high frequency components horizontally and low
frequency components vertically

IDWT Inverse Discrete Wavelet Transform

JPEG Joint Picture Experts Group

LH Image subband with low frequency components horizontally and high
frequency components vertically

LL Image subband with low frequency components horizontally and
vertically

PE Processing Element

PSNR Peak Signal-to-Noise Ratio

RA Recursive Architecture

SIMD Single Instruction stream, Multiple Data stream

SNR Signal-to-Noise Ratio

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Wavelets have been the subject of a great deal of research recently due, in large part.
to promising applications in signal processing and data compression [26]. Compared to
conventional Fourier analysis, signal analysis using the wavelet transform is more
cffective when analyzing physical situations where the signal contains discontinuities
and sharp spikes. Many promising wavelet applications have been found in such areas
as communications, controls, turbulence, human vision, radar, and ecarthquake
prediction, etc. The wavelet transform has also been shown to be an excellent tool in
data compression applications. For the same perceived visual quality, the 2-D wavelet
transform outperforms the discrete cosine transform (DCT) in image compression [23].
Significantly, the 2-D biorthogonai discrete wavelet transform (DWT) has been adopted

in the recently established JPEG-2000 still image compression standard [37].

1.1 Motivation

There are several trends that are currently motivating the search for improved signal
processing using wavelets. The growth of Internet applications that require the
transmission of sound, images, and video over limited bandwidth communication
channels has been a major motivation for research on digital signal processing and
compression. A more recent factor has been the rise in the popularity of digital
photography, both still image and video. Such applications require techniques that

reduce the volume of data while preserving the apparent quality. Different data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

compression methods offer different trade-offs between the compression cfficiency and
the perceived quality. Another research priority that is especially important in portable
devices is to find improved data compression methods that require less digital hardware
to implement and less power to operalte.

Once solution to the problem of maximizing the perceived image quality while
minimizing the required data size is provided by the JPEG-2000 standard [37]. JPEG-
2000 is a wavelet-based image compression standard that provides both lossy and
lossless compression. Compared to the traditional JPEG standard [38]. JPEG-2000
excels in applications that require greater quality and/or lower bit rates. Although there
are some digital cameras on the market that support JPEG-2000 format image viewing,
no camera offers on-board JPEG-2000 compression so far. One of the reasons for this
appears to be finding a cost-effective solution that may be acceptable to potential
customers. The computational burden of processing the JPEG-2000 algorithm in real-
time is apparently beyond the capacity of the present signal processors in digital
cameras. Recently, Analog Devices developed a JPEG-2000 chip for real-time
applications [39]. However, cost and efficiency are still major considerations for the
manufacturers of such chips. Since the DWT is the most computationally-intensive
algorithm in JPEG-2000, a more cfficient DWT core would likely improve the
performance as well as reduce the cost of a JPEG-2000 processor. In addition. low
power consumption and compact size are also critical priorities in designs for handheld
devices.

Another important application of the wavelet transform is noise filtering or

denoising. Wavelet denoising outperforms traditional filtering techniques in terms of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

clfcctiveness, flexibility and simplicity [24]. The most straightforward method of
wavclet denoising is as lollows: first, calculate the DWT of the input signal: then,
discard thec DWT coefficients that arc less than certain thresholds at cach given
resolution scale: finally, reconstruct the input signal by calculating the inverse DWT
(IDWT) of the remaining DWT coefficients [31]). Wavelet denoising has been
successfully implemented in many real-time processing applications. such as, speech,
radar signals, electrocardiogram-type (ECG-type) signal, and images [28][31]. Since the
computation of the forward and inverse DWT typically consumes most of the CPU time
during wavelet denoising, incorporating eflicient DWT architectures in the above
applications will significantly improve the real-time performance.

In order to satisfy the demand for real-time signal or image processing applications,
improving the hardware implementations of the discrete wavelet transform has become
very important. Many DWT architectures have been proposed in the last decade; most
of them are based on Mallat’s tree algorithm [3]. The lifting scheme is a relatively new,
efficient algorithm for calculating the DWT and constructing wavelet bases. A few
hardware implementations based on the lifling scheme have been proposed in the last
few years [32][33]. However, these lifting-based architectures are not optimized for
applications that read only one input sample at a time. They typically process pairs of
samples. Since many digital systems have only one data bus, it is necessary to develop a
lifting-based architecture that is efficient for a single input at a time applications.

In this thesis, we propose two kinds of lifting-based architectures. which we call the

dual-scan and recursive architectures, to further improve the efficiency of the hardware

implementation by exploiting the decimation structure of the lifting scheme algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The dual-scan architectures process two independent signals (c.g. two rows of an
image) simultancously to achieve 100% hardware utilization. The recursive
architectures interlcave the computations of all stages of the DWT into a shared
datapath to achicve higher hardware utilization rates. The recursive architectures
significantly reduce the memory requirements and off-chip memory access time. so they
are not only faster but also smaller in hardware size and consume less power. Therefore,

the recursive architectures should be especially well suited for hand-held devices.

1.2 Overview of the Wavelet Transform

Wavelets were first introduced in the carly 1980s by J. Morlet as a mathematical
tool for the analysis of scismic signals [1]. In the mid eighties. Mallat and Meyer
introduced multiresolution analysis and the fast wavelet transform [3]. Based on their
research. Daubechies achieved a breakthrough in wavelet research by constructing a set
of compactly supported orthonormal wavelet basis functions [2]. Daubechies™ wavelets
are probably the most popular wavelet bases being used today.

Wavelets are a set of functions (or “building blocks™) that satisfy certain
mathematical requirements and can be used to represent other functions or signals. The
most important property of the wavelets is scalability, which means that a wavelet
function can be dilated to approximate the low frequency components of a signal, as
well as be translated (shified) to localize the time or space information of a signal. This
is analogous to viewing a scene through a zoom lens: you can zoom out 1o see a bigger
but vaguer and less detailed picture, or zoom in to reveal the details of an object in a
more localized area. Hence, one could argued that “scale function™ might have been

more an appropriate name for wavcelets.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contrary to Fourier analysis. which uses sine or cosine basis functions that stretch
out infinitely in time and are highly localized in frequency. the wavelet functions are
finite and localized in both time and frequency. In other words, the sizes of the building
blocks (‘frequency’) of a wavelet transform are finite, and the translation ranges are
limited (‘localized™). Because of this property, the wavelets can not only represent the
low and high frequency components of a signal, they can also represent the time or
location information of the signal. Hence, wavelets tend to be more efficient in
situations where the signal contains discontinuities and sharp spikes.

The DWT underlies the wavelet analysis of digital signals. In the DWT, wavelets
are translated by integers, and usually dilated (scaled) by powers of two. This particular
kind of DWT is called the dyadic DWT [3]. The most widely adopted algorithm for
calculating the DWT is Mallat’s tree algorithm. or the fast wavelet transform (FWT),
which uses filter bank techniques to reduce the DWT computational complexity to
O(n), where n is the number of signal samples (i.e. the signal length).

The lifting scheme, developed by Sweldens in 1996, was first used as a method to
implement a reversible integer DWT [14]. Soon it was found that the lifting scheme
could also be used as a new approach to construct biorthogonal wavelet bases [17]. The
wavelet bases constructed using the lifting scheme are called second-generation
wavelets to distinguish them from the classical wavelets. The second-generation
wavelets are no longer created as the translation and dilation of one wavelet function;
they can instead be constructed entirely in the spatial domain. The lifting scheme can be
used to construct wavelets for grids of arbitrary dimensions and with irregular sampling

intervals [25]. Later, Daubechies and Sweldens showed that any wavelet can be factored

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

into lifting steps. By factoring the existing wavelets into lifting steps. the computational
complexity can be reduced by up to 50% [20]. Duc to the greater efficiency of the new
algorithm, the lifting-based 9/7 and 5/3 wavelet filters have also been adopted in the

recent JPEG-2000 standard [37].

1.3 Outline of the Thesis

The remainder of this thesis is organized as follows:

In Chapter 2, the wavelet transform and related concepts are introduced. The lifting
scheme is also described in this chapter. with an emphasis on the factorization of
wavelet filters. The lifting scheme and the factorization algorithm are the basis of our
research.

Chapter 3 reviews the existing wavelet architectures that have been described in
international journals and conferences. The idea of recursive architectures was inspired
by some of the previous implementations of Mallat’s algorithm.

The proposed 1-D architectures are described in Chapter 4. In this chapter, we first
introduce building blocks for the proposed architectures, and then describe the 1-D
dual-scan architecture and the 1-D recursive architecture. We present the Daubechies-4
and 9/7 wavelet architectures as examples for implementing symmetric and asymmetric
wavclet filters. In Chapter 5, we describe the 2-D dual-scan architecture and the 2-D
recursive architecture. We also show how these architectures can improve the hardware
utilization and reduce the required memory size.

In Chapter 6, we discuss hardware implementation issues associated with the
proposed architectures. All of the proposed architectures were implemented and verified

in simulation using VDL models. We synthesized the recursive architectures using the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Xilinx ISE logic synthesis environment [44] (o determine the actual sizes of the
proposed architectures in a field-programmable gate array (FPGA). To estimate the size
of these architectures in semi-custom integrated circuit designs, we compiled the same
VHDL models using the Synopsys Design Analyzer software tool [45]. and placed and
routed them with the Cadence Design Framework 11 tools [46] provided by Canadian
Microelectronics Corporation (Kingston. ON). Evaluations of the proposed
architectures are also provided in this chapter.

Finally, we conclude our thesis in Chapter 7 by summarizing the contributions, and

proposing possible future extensions of our research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Review of Wavelet Theory

Wavelet theory is a relatively recent development in applied mathematics, and it
has been evolving very fast since it was formally introduced less than two decades ago
[1]. As a matter of fact, new wavelets and new concepts are emerging at such a rate that
the very meaning of “wavelet analysis” keeps changing to incorporate new ideas [14].
In this chapter, we will briefly introduce the formal definitions of key concepts, such as,
wavelets, the discrete wavelet transform. and the lifting scheme. First, we review the

relevant theory of wavelets and the wavelet transform based on classical multiresolution

analysis [3].

2.1 Wavelets
Informally, a wave is an oscillating function of time or space, such as a sinusoid.
The fundamental idea behind wave analysis is to decompose a signal finto a weighted

sum or linear combination of wave functions ‘V';. Thus a function f'is to be expressed as:
f=Ya¥,. 2.0
i

In order to accurately approximate the signal f using a relatively small number of
coefficients «;, it is important to sclect an appropriate family of functions ‘P,. Fourier
analysis is the traditional wave analysis technique in which signals are represented with
weighted sums of sinusoids. A drawback of Fourier analysis is that the individual

sinusoids extend infinitely along the input dimensions. It is difficult, thercfore, to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

accurately represent an impulse signal (a “spike™) using Fourier analysis because the
corresponding Fourier series would require an infinite number of terms. In addition.
localization of the spike in the continuous domain would be unclear from the
spectrum in the frequency domain.

Compared to the wave functions used in Fourier analysis, wavelets are oscillating
waves that are limited in both time (or space) and frequency (or scale). By “limited” we
mean that the amplitude envelopes of the oscillating wavelet basis functions becomes
varnishingly small outside a finite range of time and frequency. This is still not a precise
definition of a wavelet. More precisely, all wavelets have the following properties [14].

I Wavelets are building blocks for representing general functions. If the

wavelet set is denoted by W, (1), for indices j k& = 1.2..... a lincar
expansion of a time domain function f(r) would be

f)= Z Zaj_k‘l’,.k (1) for some set of wavelet coefficients a;.
L'

2. Wavelets as well as most signals of interest are localized in both space and
frequency. This means most of the energy of typical signals tends to be well
represented by only a few expansion coefficients, a;x of the signal's
wavelet decomposition. Hence wavelets are often able to compactly
represent localized features in a signal.

3. Wavelets arc supported by fast transform algorithms. More precisely, the
computational complexity of calculating the wavelet coefficients of a signal

is O(#) or O(nlogn) in the length # of the signal.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Multiresolution Analysis and the Wavelet Transform
A systematic way of constructing a wavelet basis is provided by multiresolution

analysis [3]. First, we introduce some concepts used in our discussions.
2.2.1 Conventions

R is the set of real numbers;

[]
e Zis the set of integers;
e R"is the Euclidean vector space:

Y

n R I
R"=3]: 'y, p, R

Y

e [*(R) denotes Hilbert function space, which is the vector space of square integrable

functions in IR, and L*(R) is defined as:

I(R) = {f(x) R [f2(x)dx < oo}

(/. g) is the inner product of functions fand g.

In Hilbert function space, the inner product of two functions fand g is defined as:

(7.8)= [fx)g(xyx.

In a Euclidean vector space, the inner product <._\j,y>ol‘ two equal length vectors X,y

can be expressed as:

X Y)
<'—¥’ .Jf> NPT iny/ .
i=1
A”)}"

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1/]) is the norm of /. and is defined by| /] = (/. f) -

o A®B is the direct sum of two sets of integers, 4 and B, and where

A®B={a+h:ae Aand /)EB}.

a L b denotes that vectors « and b are orthogonal. Orthogonalty is equivalent to the

.
following condition:
albe(a,b)=0.
o J,, isthe Kronecker delta function, defined by(Si'j = {(l)’ l’jjj

2.2.2 Multiresolution Analysis
In multiresolution analysis [1] we decompose space L*(IR) into a sequence of
nested subspaces V; as follows:
wcV,cV,cV,cV,cV,c-c *}(R)

The relationship between nested subspaces ¥, and V., is given by:

v, <V,

J+1?

Viel,

with their union closure
Raal
,
Ur, =rm,

and their intersection is zero signal, denoted by {0}, which means as j goes (o negative

infinity, I shrinks down to zero.
tenn

ﬂV./ :{O}‘

-

If we define a function f{x) that belongs to one subspace 1}, and the size of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

subspacc V., is twice as large as V. then f{x) has the following propetties:

l. f(e V./r < f(2) e Vj.” (2.2)

2. SNeV o fi-2"k)eV,, kel (2.3)

We call the property in Eq. 2.2 dilation or scaling from one time resolution to the next,
and we call the property in Eq. 2.3 rranslation or shifting in time.

If we can find a function ¢@)e’(R) such that the collection

{p(t—-k):keZ) forms a Riesz basis’ for subspace V%4, then we call this function a

scaling function or futher function. For the other subspaces V), j=0, we can define a set

of functions from the scaling function ¢(7) by scaling and translation as follows:
/2
P, ()=2"p't-k). (2.4)

If we denote the orthogonal complement of V; in V., by W), then by definition V.,
can be decomposed as:

Via=V,®@W, where W LV (2.5)

Al

Hence, L“’(R) can also be expressed as:

LR)=V, =V, 00, 0W e = o W, (2.6)
JE-—w

This means that ¥, is a “coarse-resolution” representation of V., and I¥; represents the

“high-resolution” difference between V., and V. Therefore, the I can also be called

“detail subspaces”.

’ {f(l ~k)ke Z} LS e L(IR) forms a Ricsz basis if the following condition is satisfied:
if O<AsB<o, then A {e IS S e ru-0IFBI{e IFV{e e X (R,
ke

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If we can find a function (1) € W, such that
wi)eW, o w(t—k)eW,,
and the collection (/- k),k € Z, form an orthonormal’ basis for Wy, then w(r) is a

wavelet function or mother function. For the other subspaces W, j#0, we can also

define:
Wi (1) = 2-”21//(2”1 -k). (2.7)

Because we require W, LV, in Eq. 2.5, the corresponding wavelet functions and scaling

functions are orthogonal:

(0,400, 0) = [0, () w,,(dt =0, ke,

2.2.3 The Discrete Wavelet Transform (DWT)

From Eq. 2.6, we have

LHR) = vV, @W, oW ,,®---. wherej, €Z.

Jut!

Therefore, for a specific resolution level j,. any function f(l)e L*(R) can be

represented as a series involving the projections of itself onto the orthonormal

subspaces Vand W:

k2l

0= ¢, kg, 0+ > Sd)y, 0. (2.8)

[g

Replacing ¢, () and y, (1) using Eqs. 2.4 and 2.7, we have

f, (0= Zm: ¢, (K)2"" (271 k) + i icl,(k)2”'3t//(2~’l-—k). 2.9)
k=-—o

k=-w j=j,

* o .
Vector set {vk | ke Z} is orthonormal, il <vk . v,) =0k -).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Consequently, function f{f) is now expanded into a new form of series, called a wavelet
series. The coefficients c/(k) and u'j(k) arc called the discrete wavelet transform
(DWT) of the signal /7). The ¢ (k) represent the low frequency components of the
signal f{r), while the d (k) represent the high frequency components. 1f the wavelet

system is orthogonal (as we assumed before), then the DWT coefficients can be

calculated as the following inner products [26]:
¢,(0)=(f(0.0,,0) = [£(1)- 0, ()l
and

d (k)= (S, 0) = [F(0)w,, (dr.

2.2.4 The Fast Wavelet Transform (FWT)

Since

VocV,and W, cV,,
(1) and () can be expressed in terms of a weighted sum of shifted versions of

p(21):

0 =2 S hk)-pQi k). kel

k=—w

l//(f)—_-\/ii gk)-p(2t—k), kel,

h=—w

where the coefficients /i(k) and g(k) are sequences of real or complex numbers that

uniquely define the scaling function (/) and the wavelet function (1), respectively.

The factor +/2 maintains the norm of the scaling function unchanged.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since V,

=V, @W [we can also rewrite Eq. 2.8 for any resolution level j as

1,(0)= Z Ay e, 0+ y,, (), (1) (2.10)

= [=~

with the /™ transform coefficients A,, and y , atstagej defined by:

A =N2 Z h_ A 2.1
k=—w

Y, =N2 Z Sioar Ay - (2.12)
k=~

The vectors of {#,} and {g,} can be considered to be the filter coefficients of a pair of
low-pass and high-pass digital filters, respectively. If these filters are finite impulse
response (FIR) filters, the computational complexity of the coefficients 4, and Y, is

O(n), that is. linearly proportional to the signal length n. Compared to the DWT defined
in Eq. 2.10, the computational cost is significantly reduced. Hence, the transform
defined in Eqs. 2.11 and 2.12 is called the fast wavelet transform (FWT),

In the FWT algorithm, starting with the scaling coefficients at a given resolution
(stage), the wavelet coefficients can be calculated recursively using Eqs. 2.11 and 2.12,
These two equations can, thercfore, be implemented efficiently using the tree-shaped

filter bank structure shown in Figure I(a). At cach resolution level, the scaling

cocfficients {/1]}01' the previous level are first filtered by the two half-band fiiters, hn]

and g[n], and then the outputs of the filters are decimated by a factor of two. yielding

{/‘L } and {;//_,}. The decimated low-pass filter output signal {ij_,}can be further

j-t
decomposed as shown in the figure. Because of the tree-like structure of the filter bank,

this algorithm is also known as Mallat’s tree algorithm ov the pyraniid algorithm.
[y - IL

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The inverse transform can be obtained by reversing the operations: the original
signal {/ll‘,}at stage j can be reconstructed recursively from the lower resolution

cocfficients using the following equation:

Zj.l = Z /1_/_]_,‘. hy o+ Z Pivr Er-ar (2.13)
k=-o ['=~on
h[n] > 12 A
/1/_1 j-2
h[n] > 12—
/11'
— gln] > {2 —>}/j_2
ginl = L2177,

42 = Down-sampling by a factor of two

(a)
/1j_2 —| 12 h[-n] ,1].4
v
(? » T2 hf-n]
Vi—a—>| t2 gl-n] EV}‘ > /?'J

}/j~l —»| T2 g[-n]

T2 = Up-sampling by a factor of two

(b)

Figure 1. Structure of the Pyramid Algorithm.
a) Two-stage signal decomposition using analysis filters. b) Two-stage signal
reconstruction using synthesis filters, where h{n] and g[n] are the low-pass and high-
pass filter coefficients, respectively.

In Eq. 2.13, note that the filter coefficients {/i} and {g;} arc identical to those used

in Eq. 2.11-12, but they appear in the reverse order. The structure of the corresponding

16

Réproduced with permission of the copyright owner. Further reproduction prohibited without permission.

inverse DW'T pyramid algorithm is shown in Figure 1(b). The DWT coefficients at cach
transform level are first up-sampled (interpolated) by a factor of two, and then filtered
by a pair of synthesis filters g[-n] and h[-n]. where *-n™ denotes the time reversal of the
filter coefficients. The outputs of both filters are summed for further composition at the

next level.

2.2.5 Orthogonal Wavelets

w,Lv
If <(/),,k ON» (l)> =68, Jj.kideZ, then ¢ (1) and w, (1) are
(v, (D (D) =65,
orthonormal. Wavelets that satisfy such conditions are called orthogonal wavelets. The

DWT coefficients {A} and {y} of such wavelets can be calculated by the inner products

of the scaling and wavelet functions as:

ﬂ,,/ = <f’ (/7,.l>
Vit = <f"//,,/> .

According to Parseval’s theorem, the energy of the signal f{7) is equal to the sum of the

energy of their wavelet coefficients:
I =22 +37. 2.14)
/]

Therefore, a decomposition in the orthonormal wavelet basis is considered to be stable

because a slight change in A7) will only cause slight changesin 4, and y,,.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.6 Biorthogonal Wavelets
The conditions for constructing an orthonormal basis can be relaxed to a two-bases
system, with primal and dual bases as follows:

primal: V, W g, (1), y, (1)
dual: V,, W0, (1), w0
Bases that satisfy the conditions

f v, 1w,
v LV,
(0,40, 0)=5,,
(W, 0) =58,

s./’k.‘\/aj'ak"['ez'

are called biorthogonal bases. The wavelet coefficients A and y are calculated by the

following equation set:

/1,./ = </ EZ’,_/)

Vg = <f"//,./> ,
The reverse transform can still be calculated using Eq. 2.13. Hence, for the biorthogonal
wavelets, the tree algorithm can be implemented by using the dual filter pair (h,g) for
decomposing the input signal and the primal filter pair (h,g) for reconstruction.

For the biorthogonal wavelets, Parseval’s theorem does not hold. but the energy of

the wavelet coefTicients is still limited:
AT <X, +2 7, <BIf,
/ !

where 0< A< B <. Biorthogonal wavelets have some special features, one of which

is that it is possible to synthesize biorthogonal wavelets and scaling functions which are

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

symmetric or antisymmetric and compactly supported®. This makes it possible to use

the folding technique for boundary treatment, as will be described in this chapter.

2.2.7 The Two-Dimensional DWT

To calculate a highcr dimensional DW'T, there are two major approaches: one is the
separable algorithm, and the other one uses real (non-separable) multi-dimensional
wavelets [7]. The separable algorithm involves calculating the 1-D DWT for ecach
dimension independently. The structure of the common separable 2-D DWT algorithm
is shown in Figure 2, where G and H represent the lowpass and highpass subband
filters, respectively. We first calculate the 1-D DWT horizontally on the rows of the
input image. and then calculate the 1-D DWT vertically on the columns of coefficients
from the horizontal DWT results. Consequently, the image is decomposed into four
subbands, usually denoted by LL, LH, HL, and HH. The LL subband can then be further

decomposed recursively using the same algorithm.

Vertical DWT

Horizontal DWT 'y 1 [421, LL

H B d2
G+ 2»LH

Tnput

Hip+ {2PHL

G b d2
G {2t HH

Figure 2. Block Diagram of the 2-D Separable DWT

" 2
0 For a lunction £¢) with “finile energy™ (J. 'f (/)l <), iTAN=0 when 1< Ty and 1> 75, then the

interval {71 72) is called the support of £ and we say fhas compact support.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Intuitively, we expect that the separable 2-D DWT would be efficient for
approximating images with important details that arc aligned in the vertical and
horizontal dircctions, but may not be idcal for efficiently representing detail in other
directions. The non-separable 2-D DWTs use real-valued 2-D wavelet bascs, which can
preserve the directional information in the original image. Several methods of
constructing the non-separable wavelet bases have been proposed [7][18]]21].

Since the computational complexity of the separable algorithm is much lower, it is
widely used in most applications. Due to its popularity, we investigated efficient

implementations of this algorithm in our proposed architectures.

2.3 The Lifting Scheme

While new wavelets with desirable properties are in demand, constructing them in
the traditional ways requires significant computational effort. The lifting scheme
provides a simple and efficient new method for constructing and processing wavelets
[11]. Unlike the traditional approaches. the lifting scheme does not rely on the
frequency domain but instead constructs wavelets purely in the spatial domain. Thus,
the lifting scheme is more flexible for building wavelets for specific applications.

The wavelets constructed by the lifting scheme are called second-generation
wavelets;, wavelets restricted to the translations and dilations of one mother wavelet
function are now referred to as first-generation wavelets or classical wavelets. The
second-generation wavelets arc more general since all of the classical wavelets can be
generated by the lifting scheme. The decomposition of any classical wavelet filter into

lifting steps can be casily obtained via the Euclidean algorithm [20].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3.1 Introduction to the Lifting Scheme

As described in the first scction. the wavelet transform of a signal is a multi-
resolution representation ol that signal using wavelets as the basis functions. At each
level, the low-pass part of the signal is decomposed recursively into a high-pass and a
low-pass part at the next lower resolution.

The lifting scheme is an efficient implementation of these filtering operations at

each level when computing a discrete wavelet transform. Suppose we have the original
samples {ﬂm,}ofa signal f{1). We want to decompose, or decorrelate, this signal into the
low resolution part {/1;1-} and the high resolution part {y_l_k}, where the index
Je(=1,-2,-3,..)identifics the decomposition stage or level. The lifting process
consists of three steps: split, predict. and update, as shown in Figure 3.

We begin with a trivial wavelet, called the “Lazy wavelet”, which just splits the

sighal into even and odd parts. This step can be expressed as:

=4 .,
j"A _ Y Ve, 2.14)

/)

A
odd D e

Figure 3. The Split, Predict, and Update Steps in the Lifting Scheme.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Then we predict the even samples {y ,|keZ} from the odd samples

{ A+ ke Z}, based on correlation present in the original data. so that:

'
Vyou =V~ P(A) (2.15)
where P is the predict operator. This is called the real decorrelating step.

Finally, we construct an update operator and update { A keZ} as follows:
Apoax = A+ U 04) (2.16)

These steps can be iterated over decreasing values of the index j creating a multi-level
transform or multi-resolution decomposition.

The inverse transform can be performed by simply reversing the steps and
interchanging the operations + and -. The algorithm for the corresponding inverse

transform can be expressed as:

,'+1,A = ’1/,/« - U(}’,,k)
Yok =Yk +P(/1.,"A,) , —h<j<n, (2.17)

{’1,41.1(} = '/()i’7(ﬂjl+].k’ 7’.,'+|,k)
where » defines the range of the decomposition stage, and the Join function refers to the

interleaved composition of 4 (as odd part) and y (as even part) into a new signal.

2.3.2 Factoring Wavelet Filters into Lifting Steps

It is shown in [20] that any polyphase matrix representing a wavelet transform with
finite filters can be factored into a finite product of upper and lower triangular 2x2
matrices, and a diagonal normalization matrix. Each of these matrices corresponds to a

lifting step. Factoring wavelets into lifling steps can significantly improve the wavelet

b
o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

processing speed if the proper filters are developed. To factor an existing wavelet. the
high-pass and low-pass wavelet transform filters should first be separated into even and
odd parts. Consider the high-pass wavelet filter g(z) and low-pass wavelet filter /i(z) as

follows:
J-
g(2) = 3. 2i(2) (2.18)
J-1 '
h(z)= 2hi(z) (2.19)
where J is the filter length. We can split the high-pass and low-pass filters into even and

odd parts as follows:

2 ~1
g(z)=g,(z)+z g, (z%)

h(z) = /1(,(22) + z_lho(zz)

The filters can also be expressed as an analysis polyphase matrix as follows:

h.(2) g(,(z)} 220,

P(z) =
(2) [h,,m .(2)

Using the Euclidean algorithm [20], which recursively finds the greatest common
divisors of the even and odd parts of the original filters, each of the filter polynomials in

the matrix can be expressed in the form f(z) =¢(2)-q(z)+ b(z). Therefore, the forward

transform polyphase matrix P(z) can be factored into lifting steps as follows:

- n | 0| _,,(,—1) I/K 0
P(z)y=TI i (2 ,
i=1 —.s',-(z_l)] 0] 0 K m<K 2.21)

where si(z) and t(z) are Laurent polynomials* corresponding to the update and
prediction steps, respectively, and K is a non-zcro constant. The inverse DWT is

described by the following equation:

1~
(U]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gy o IV s 1 0Pk 0
P(‘)",-Dl[o 1 Hr,(;) 1“0 1/14 (2.22)

As an example, the low-pass and high-pass filters corresponding to the Daubechies

4-tap wavelet can be expressed as [20]:

h(z)=hy+ Iz + hyz? + bz

g(z)=-hz*+hz' —h +hz

where

|+J— 3+J_ 3- J_ _1-3
f 4f” 4J_ 42

After separating the filters into even and odd parts, and arranging them in the form of

hy

Eq. 2.20, we obtain the polyphasec matrix:

hy+hz" —hz~ /7,}

=P(z)=
P =Fz) [h|+/732"' hyz+h,

The even portions of the filters (polynomials in the first row) can be expressed as:

hy + hzz_l = (/1, +/732_l)s(z) (2
~hz—h =(hz+h)s(z)+gl"(2)

One of the common solutions of the above equations is s(z) = -3 , S0 we have

V2 V2

[] _\/ﬂ 1+3 —1+J§z

hy+hz hyz + h,

* A Laurent polynomial P(x)in the i variables x = (x;, x2, ..., %) is given by

P(x)= Z B xf'...\',f" cwhere B, €€ and 4, the support of P(x), s a linite subsct of
(hyo ik, de o

integer group Z" .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Now, the odd portions of the filters can be expressed as:

[+3

hl +/‘132—l = —\/—_2——/(2)_’_/”:"1-»«'(2)

hyz+h, = %ﬁzr(z)w{,"""(z)

JS3-2

4

We can find a common solution 7(z) = — + z”'. Repeating the above steps, we

.

can further factor the analysis polyphase matrix as:
| 0 J3+1 0
Yoo 1 [M2 (o 0 [\/EHJ"

4 4
J2

Similarly, one Daubechies 9/7 analysis wavelet filter with symmetric coefficients [6]:
h(z)=h(2*+27)+h(z+2")+ by and B, (2) = h(2 +27") + b (z +1)

can be factored as [20]:

~ I a(l+z™) 1 01 y+z™ 1 0f{¢ o0
P(z)= -1
0 I Bl+z) 10 I o(+z) 1[0 ¢

where a=-1.58613, =-0.05268, y=0.88291, 5=0.44351, and ¢=1.14960.

Factoring wavelet transforms into lifling steps can significantly reduce the
computational cost. Asymptotically, for long filters, the cost of computing the lifting
algorithm is roughly one half of the cost of the standard algorithm using the original
filters [20]. For the 9/7 wavelet filter example given above, the computational cost for
each wavelet cocflicient is five multiplications and four additions. Compared to the

traditional Mallat’s tree algorithm, which costs 14 multiplications and additions, we

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

have a spcedup of 56%. Consider a general wavelet filter which is not symmetric, and

hl = 2N and |g| = 2M taps. respectively. The

whose low-pass and high-pass filters have
cost of the standard algorithm is 4(N+M)+2. Assuming || = N, || = N-1, |g.| = M, and
lgo| = M-1, we can factor the (/.. /1,) pair into N steps with the degree of each quotient
set equal to one (i.ce.. |q,| = | for 1< i <N). The (g., g,) pair can be factored into M-N-+1
lifting steps [20]. So the total cost of the lifting algorithm is: 2 (scaling) + 4xN + 2x(M-

i -
N+1) = 2(M+N+2) operations. So we have a speedup of wleO% as the
N+M+1

length of the wavelet filter increases. Table I lists some examples of such comparisons

[20].

Table 1. Computational cost of the lifting versus the standard algorithm for calculating a
pair of wavelet coefficients

Wavelet Standard (ops) Lifting (ops) Speedup
Haar 3 3 0%
D4 14 9 56%
D6 22 14 57%
9/7 23 14 64%
B _spline 17 10 70%
[h[=2N, |g|=2M 4(N+M)+2 2(N+M+2) ~ 100%

2.4 Comparison of the Classical DWT and the Lifting Scheme

We can construct both orthogonal and biorthogonal wavelets vsing the classical
algorithms [2][6], but we can only build biorthogonal wavelets using the lifting scheme
[17]. However, the relatively easy construction of the lifting wavelets makes them
attractive for many applications [11]. In addition, constructing wavelets on an interval

(boundary wavelets) using the lifting scheme requires much less effort and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mathematical training than doing it in the classical way [9][11]. The comparison of
classical wavelets with wavelets constructed using the lifting scheme (second
generation wavelets) is summarized in Table 2,

Although all classical wavelet filters can be factored into lifting steps, the derived
lilting wavelets are no longer the same ones. One obvious reason is that all orthogonal
and biorthogonal wavelet filters will be factored into orthogonal lifting steps. We did an
experiment to demonstrate the difference. We calculated the one-stage D-4 DWT

coefficients of an input series (x,,7=1,2,....100) using both the standard algorithm and

the lifting algorithm. The results are shown in Figure 4. Note that the coefficients
generated by these two kinds of wavelets are similar but not identical. The lifting
algorithm generates larger high frequency components and smaller low frequency
components. This can also be seen by comparing the subimages of an image (Lena
512x512) decomposed by the two wavelets (as shown in Figure 5) and their energies

(in Table 3).

Table 2. Comparison of the classic wavelet and the second-generation wavelet

Classical Wavelets Second-generation Wavelets
Orthogonality Orthogonal/Biorthogonal Biorthogonal
Computational High Low
Complexity
Construction of Difficult Relatively Easy
Wavelets on an (By polynomial
Interval subinterpolation)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

160 T T T T T y T T T

‘ [~—"ctandard slgonthm
140} \ |-+ bftng algosithm 4

100} / ,

fasd
(=3
T

Amplitude
.

N
i=4

-20}

.40 1 L) .
1] 10 20 30 40 50 60 70 80 a0 100

Figure 4. Comparison of the DWT Coefficients Computed by Classic Wavelets and
Lifting Scheme

Table 3 Energy of the subimages generated by the standard and lifting D-4 DWT

Standard D4 Lifted D4
Stage LL LH HL HH LL LLH HL HH
10’ x10° x10° x10° x10° <10” x10° x10”
] 839.3 4.6270 2.406 1.807 20.04 | 4.6039 3.708 2.469

2366.6 | 4.6094 | 4.904 3.632 43.73 | 4.5556 | 6.924 4.420

5593.6 | 4.5771 | 9.382 7.165 TVA3] 44786 | 12.624 | 8.12])

9936.5 | 4.5173 | 18.494 | 13.805 | 123.57 | 4.3579 | 23.084 | 14,902

EE LS I | S

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(5] Hnd 150 2000 250 A0 RN 00 AR A

(b) Subimages generated using the Daub-4 wavelet after being factored into lifting steps

Figure 5. Comparison of Subimages Generated by First (classical) and Second
Generation Wavelets.

2.5 Boundary Treatment

Filter bank algorithms usually assume that the signal lengths are infinite. However,
signals in the real world do not extend infinitely in time or space but are limited to finite
intervals. Generally speaking, simply padding or extending the finitc original signal

with zeros is not appropriate since this would lead to more wavelet coctlicients than the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

original samples. 1f one truncates the transformed function (which is equivalent of
padding zcros to both ends of the signal) to yield the same number of wavelet
coclficients as samples, the resulting transform will badly distort the signal (especially
on boundaries) and thus render perfect reconstruction impossible using an inverse
transform. What we need is some kind of safe signal extension, or to take into account
the finiteness of the signal by changing the transform (using boundary wavelets) near
the boundaries of the signal. Because boundary wavelet filters require changes in the
filter structures, using signal extension is more appropriate and easier for hardware
implementations. In this section, we will review signal extension methods for the DWT

[52].

2.5.1 Classical Extension Methods
In classical signal processing applications, it is common practice to extend the data
for the computations near the finite signal border by replicating the signal using one of

the following three methods:

Zero Padding Extension

The simplest solution is the zero padding extension of a signal: extending the signal
by simply padding zcros at both ends of the signal. However, the number of DWT
coefficients generated by this solution is usually larger than the number of the signal
samples, hence distortion is inevitably introduced in the reconstructed signal. The zero
padding extension can only be implemented in limited situations, such as when the

distortions at the intervals (boundary) ol a signal can be ignored.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Periodic Extension

A second extension method is the periodic extension of the signal: considering the
signal as one period of a periodic signal. Afier the wavelet transform we can simply
discard the coefficients outside of the interval in which the original signal was defined.
Since the computation of a wavelet transform is the convolution of the original signal
with a FIR filter, the transformed cocfficients also represent a periodic signal with the
same period as that of the original signal, and thus the original signal can be recovered
without any problems. However, unless the first and the last samples have the same
value, we will have introduced unwanted discontinuities at the boundaries of the
original signal. These discontinuities will generate larger wavelet coefficients in the

higher frequency region and thus make compression of the signal less efficient.

Symmetric Extension

For biorthogonal wavelet transforms, a better solution is the symmetric extension
of the signal: we extend the finite signal by mirroring it around its endpoints, which
makes the discontinuitics disappear. But the higher order derivatives may still be
discontinuous at the endpoints. Symmetric extension can be considered to be the same
as periodic extension applied to a concatenation of the original signal and a mirrored
copy of the original signal. Hence after filtering, one has to retain twice as many
cocfficients. Fortunately, one can discard half of them if the filters are symmetric,
yielding the same number of coefficients as the original signal length. The calculation
of the DWT using symmetric extension is also called wavelet folding because it is
equivalent to folding the wavelet filter symmetrically at the edges of the signal

intervals.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

While the periodic extension of a discrete signal is straightforward and unique,
there are lour possible ways to extend a discrete signal symmetrically. Figure 6 shows
the four resulting possible symmetric signal extensions. However. to ensure to get a
perfect reconstruction, one has to apply the correct extension in every step of the
decomposition and reconstruction,

extension signal extension
SN T T T T TN .
) 1

[}
i i i
even @ @ o e o & o @ e o o o 2
edd » & O O O O D0 0 O 0 D
i t | |
FELO FELE
| | ' !
! ! | :
even & @ o o e & o @ o o @ e O
odd D00 o0 O O o0 0 0 0 o
! ! ! |
FOLO FOLE

FELO First even, last odd; FELE First even, last even;
FOLO First odd. last odd; FOLE First odd, last even.

Figure 6 The Four Possible Cases of Symmetric Signal Extension Using Lifting.

2.5.2 Signal Extension with Lifting

A very nice property of second-gencration wavelets is that symmetric extension is
always possible. We are no longer limited to symmetric (biorthogonal) wavelets. Even
if one has a lifting decomposition for a non-symmetric wavelet filter bank (e.g.
orthogonal Daubechies wavelets), the implementation using lifting steps can use
symmetric extension.

The simplest zero padding extension is also applicable for many second-generation
wavelets. As introduced above, factoring classic wavelet transforms into lifting steps is

actually replacing the longer wavelet FIR filters with a series of shorter FIRs, which can

|#3]
o

Reproduced with permiséion of the copyright owner. Further reproduction prohibited without permission.

be two- or three-tap filters in most cases. The factored shorter FIRs are obtained by
repeatedly applying the Euclidean algorithm, which finds the greatest common divisor
of the even and odd parts (which can be expressed as polynomials x.(z°) and x,(z%),
respectively) of the original longer FIR. Also. it will always be truc that |x.(z°)|-
Ixo(zD)|<=1 (the difference of the degrees of the two filters), so we can always factor a
classic wavelet into short FIRs not fonger than three taps. But it is well known that
signal extension is not necessary for two-tap wavelets, like the Haar wavelet. Thus, we
can deduce that zero padding can be used in calculating the lifling schemes as long as
each factored step is not longer than three taps.

As shown in Figure 7. when a three-tap predict FIR filter (assuming it is causal)
convolves with a four-sample signal (x;, /=0,1,2,3), the final result after decimation is
Hy, H> and H;. So the odd samples of the original signal and the padded zeros are
updated to H;, Hp, and H; while the even samples remain unchanged. Similarly, the
update filter updates the even samples to L, L, and Ls. Since the inverse wavelet
transform is just the inverse of the forward transform, as introduced above, the even
sample x, can be restored by multiplying the update FIR filter with the padded zero,
DWT coefficients H, and L;. Further, the odd sample x; can be restored from 0, Hy, and
the sample xp, which is restored in the previous step. Similarly, samples x> and x; can be
reconstructed using the coefficients H,, H. and L,. We can observe that the DWT
cocfficients H; and L3 are redundant, and we can also reach the similar result for the
non-causal filters (or one is causal and the other is non-causal) generated by the
factoring process. Thus zero padding can be implemented while maintaining perfect

reconstruction (PR) of the original signal. Zero padding avoids the cxtra storage

(o)
| 93]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

required by other signal extensions and the complicated wavelets on the interval, and

hence tends to result in a simpler hardware implementation.

Even samples

Xy X 0 h
Odd samples - . 0
P 0 N N , (Predict
DWT coefficients (High frequency) 0 H, H, Hs <
Xy X3 0
— \ Update
DWT coefficients (Low frequency) L, L, L;
J
(a) Forward Transform
DWT coefficients (Low frequency) L, L2 Ls
DWT cocfficients (High frequency) 0 H, H, Hs Update
K—V_H__J
X/ X3
DWT cocefficients (High frequency) 0 HI H2 H3 Predict
—— A
Xn A)

(a) Inverse Transform

Figure 7. Zero Padding Extension for Short FIR Filters

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Review of Existing Wavelet
Architectures

With the widespread acceptance of the wavelet transform in more and more
applications, especially its important role in the next generation image and video
processing techniques, efficient hardware implementations of the transform are
attracting more and more attention. The DWT algorithms described in the previous
chapter can be conveniently implemented on modern computers or microprocessors
using a high-level programming language, such as C or BASIC. However, the
computational complexity of calculating the DWT algorithms, cspecially the multi-
dimensional transforms, precludes most general-purpose microprocessors from real-

time applications.

Digital Signal Processors (DSPs) tend to be much more efficient in demanding
DWT and IDWT computations because their structures are optimized for convolution
computations, which are essentially the basic computations for the fast DWTs. As a
matter of fact, the DSPs have been widely applied to speed up the DWT calculation in
many applications [28][29][30]. To improve the efficiency of DSP implementations, it
is critical to shorten the access time for the intermediate DWT coeflicients, which are
processed recursively in the DWT afgorithms. This is even more important for the two-
dimensional, or higher dimensional applications. Excessive or poorly scheduled data

transfer between a DSP and its memory. cspecinlly external off-chip memory, will

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

greatly slow down the computation speed. Therefore, the best DSP implementation may
not be as straightforward as a high-level computer implementation. if maximum

efficiency is to be achicved.

We developed a 1-D DWT implementation on DSP-RAM [29]. DSP-RAM is a
single instruction, multiple data (SIMD) processor with an array of simplified DSP
processors tightly coupled with SRAM local memories [51]. Our implementation fully
exploits the parallel processing and lincar array architecture of DSP-RAM, and is

capable of efficiently computing 1-D DWT pyramid algorithms.

-~

Although conventional DSP processors are faster and more efficient in the DWT
computation, they are not necessarily suitable for applications requiring low power
consumption, low cost, and compact size. In such cases, utilizing dedicated circuits
specially built for processing the DWT may be more appropriate. Because the data
paths of the dedicated circuits are optimized for the DWT computation, and their
control paths are simpler than the instruction execution logic in DSP processors, they
can normally not only process the DWT more efficiently in terms of hardware
utilization and power consumption but much faster (provided they operate at the same
system clock frequency). Much previous work has described attempts to design efficient
DWT architectures based on Matlat's tree algorithm. Recently, a few architectures based
on the lifting DWT have been published. Since the lifting steps can be implemented
with ladder type data flow structures, the natural lifting architectures are different from
the direct FIR implementations. In the following sections, we will first review some
typical classical architectures based on Mallat’s algorithm, and then introduce the lifting

architectures that have been published in recent years.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1 Classical Architectures

An carly DWT architecture was Knowles’ multiplexer-based architecture
published in 1990 [4], as shown in Figure 8. The rectangles on the top of the figure
represent register arrays. This architecture uses these serial-in-parallel-out register
queues to store the input signal samples {s(i)} and the low-pass filter outputs of each
DWT stage. A multiplexer (mux) selects the outputs of the queues (register arrays), and
feeds them to the high-pass (labeled G) and low-pass (labeled H) DWT filter pair. The
outputs ({ctm}, where m denotes the DWT stage) of the low-pass DWT filter are
dispatched to the queues by a demultiplexer (demux) unit. The high-pass DWT filter
products {cy} are sent to the output directly. The advantage of this architecture is that

the data flow is regular, hence, it is efficient and relatively casy to implement in

hardware.
s(i) shiftl ct (i) Shiftm-1ct,, (i)
\ 4 \ S 4 Y_ ¥
D
M E
U ’ll H Filter | MM =D
> U
X X
demux
mux
D
E
U
X

Figure 8. Knowles' Mux Based DWT Architecture [4]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Not long after Knowles proposed the mux-based DWT architecture. he and Lewis
proposed possibly the first 2-D DWT architecture [5]. They analyzed the characteristics
of the Daub-4 wavelet, and found that the multiplication computations in the Daub-4
DWT can be replaced by shift and add operations. Hence, the total number of transistors
required to implement the convolver is only about one cighth of the number of a
conventional convolver design. The exploitation of the Daub-4 DWT filter coefficients
in this way is certainly a clever invention, but implementing the same technique on the
other DWT filters is not feasible.

For processing the edges of an image, they proposed a data scan method, which
snakes through the data, and reverses the scan direction on alternate lines. In this way,
the input data stream is continuous as consecutive samples are only onc pixel apart.
Since the filter they proposed is not phase linear, the wavelets must be reversed at line
changes. To reverse the wavelet, the signs of the coefficients in the normal
reconstruction DWT filters are altered across the edges of the image. This solution for
the boundary treatment is innovative and efficient for the multiplierless architecture.
However, reversing the wavelet on each line means a extra set of DWT filters for other
architectures.

Many more DWT architectures have been proposed since 1992, Two types of
representative wavelet architectures, namely the folded architecture and the digit-serial
architecture, were proposed in [8]. This folded architecture is shown as Figure 9. The
delay array on the left side of Figure 9 is a serial-in-parallel-out register queue; the
register array on the right side is a FIFO register array with output ports at cach register.

The outputs of the delay array are sent to the high-pass (i.c. G) and low-pass (i.e. H)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DWT filters at every other clock cycle. The high-pass filter outputs are shifted out as
the final DWT cocfficients: the low-pass filter outputs are shifted to the register array.
The switch network selects input data for the DWT filters from the input delay array
and the register array,

The folded architecture of the synthesis filter is similar to that of the analysis filter.
The major difference is that the structure of the input array of the synthesis filter is also
a register array, which converts the input data to the format (or sequence) required for
the DWT synthesis computation.

The hardware utilization of the folded architecture is relatively high, but the
interconnection network and the control circuit are complex. It is more suitable for
applications that are sensitive to processing latency, and require the computation output

as early as possible.

G Filter =« OUT
17

Switch
/1__q
:> Network

J L
H Filter

Z

—e

AB[2(le—

L

Keury
1915189y

Keny

~

Figure 9. The I-D Folded Analysis Wavelet Architecture Proposed in [8]

The digit-serial architecture can further improve the hardware utilization efficiency
and reduce the interconnection overhead in the folded architecture. The digit-serial
circuit only processes part of the word-length of each sample at cach clock cycle. The

number of bits processed per clock cycle is called the digit size. If the digit size is I,

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

then the digit-serial architecture becomes a bit-serial filter; if the digit size is the same
as the word length, it becomes a bit-parallel filter. A diagram of a three-level digit-serial
analysis wavelet filter is shown in Figure 10. In this example, the digit size for the first
DWT stage is hall'a word-length. The second DWT stage filter is one quarter of a word-
length; the third stage is one-cighth of a word-length, and so on. In such way, the
process time ol each sample doubles for every higher DWT stage. Therefore, the
process time for cach DWT stage remains the same.

By implementing filters of different digit sizes for different levels of the wavelet
analysis or synthesis, the digit-serial architecture can achieve complete hardware
utilization and requires simpler routing. The drawback of this architecture is the
increase of the system latency, and the constraint on the word length selection. The

word length must be multiple of 8 or 16 for a 3-level or 4-level DWT, respectively.

LEVEL?2
I G Filter| |
. >] W/4
G Filter H Filter l
Ww/2 .
H Filter ,
G Filter
l] I W/8
H Filter
LEVEL | LEVEL 3

Figure 10. The Diagram of the 1-D Digit-Serial Architecture [8]

The proposed systolic architecture in [16], as shown in Figure 11, is an
improvement over the digit-serial architecture described above. One feature of the
systolic architecture is that it computes both the high-pass and the low-pass frequency

cocfficients in the same FIR filter to achieve high hardware utilization efficiency. The

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

systolic architecture consists of a filter unit, storage units and a control unit, The filter
unit is a FIR filter reconfigured alternatively at different times as either the high-pass or
low-pass filters by changing the coefficients at cach tap. The control unit directs the
data flow between the storage units and the filter, and changes the coefficients in the
filter accordingly. The design of the control unit is similar to that of the folded
architecture [8] introduced before. The single filter structure of the systolic architecture
improves the efficiency and reduces the hardware complexity, but it also increases the

processing latency.

>
Z
~

&
&)
w2
—3
¢y
~

Switch > OUT
Network

A A A A

CONTROL
UNIT

IN dl D l DpDMDPDPMD

INPUT DELAY

Figure I1. A Systolic Wavelet Architecture [16].

To reduce the latency, a parallel filter architecture implementing a modified
recursive pyramid algorithm (MPRA) is proposed in [10]. In the MPRA schedule, the
Jower DWT stages (octaves) are performed before the higher octaves in order to avoid
possible clashes. If the first output of any octave is scheduled such that there is no

conflict with any of the lower octave outputs, then it is guaranteed that there will be no

4]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

conflict with all of the outputs of that octave. The scheduling is critical for reusing the
same filters for different octaves.

The proposed parallel filter architecture for a 1-D DWT is shown in Figure 12. The
architecture contains two L-tap parallel filters to compute the low-pass and the high-
pass outputs, and a storage unit of size L.J to store the input samples that are required to
compute the J octave outputs.

The parallel filter architecture for a 2-D non-separable DWT implementing the
MRPA algorithm is shown in Figure 13. The 2-D parallel filter architecture contains
two programmable parallel filters. Each filter consists of L programmable multipliers
and (L* =1) adders to sum up the products. One filter computes the outputs of two
coefficient bands (LL and LH, or HL and HH). The outputs of the lowest band (LL) of
each DWT stage (octave) are stored in one of the shift register arrays. The sizes of the

register arrays are shown in Figure 13, where N is the width of the input image.

v v
H Filter G Filter |——* out

N Lo Shift Register .

tsP

“"\’;—_j Shift Register P N

—o\—‘

201y

A 4

Shift Register |—= “e——

Figure 12. The Parallel Filter Architecture for 1-D DWT [10].

The first octave is computed at cvery other cycle, and the higher octave

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

computations arc intersperscd between the first octave computations. Since the filter
size is Lx L, the delay in the parallel filter is different for cach octave. Consequently,
the time when the first output of each octave being computed is different: the higher the
octave. the longer the computation delay.

In [32], two 1-D DWT architectures arc proposed that use the polyphase
decomposition technique apd the folding technique. respectively. The polyphase
decomposition technique exploits the decimation of the fast DWT algorithm by
separating the filter coefficients into even-order and odd-order parts. In the even clock
cycles, the input data are fed to the odd part of the filter; in the odd clock cycles, the
input data are fed to the even part. The outputs of the even and odd parts are summed to
produce the output, as shown in Figure 14. Compared to the direct implementation of
the DWT algorithm, the polyphase decomposition filter can reduce the processing time

by a half.

¢ ‘ HL and HH

Parallel Filter y-l—]il Parallel Filter OUT

v

v

Shift Register Array L
(N/2'xL)

Shift Register Array
(NI2 x1L)

IN > Shift Register Array
(Nxl)

Figure 13. Block Diagram of the 2-D Parallel Filter Architecture [10].

The filter shown in Figure 15 employs the coefficient folding technique. Each set

of multipliers in the architecture is shared by two coefficients. The switches route data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

through the datapath. Because most of the components of the filter are shared, the
coellicient folding architecture reduces the hardware cost of the datapath by

approximately onc half.

(V

ouT

>

[:] Register V Multiplicr O Adder

O

Figure 14. The Decimation Filter Employing the Polyphase Decimation Technique [32].

St T £t

Figure 15. Decomposition Filter Employing the Coefficient Folding Technique [32].

One advantage of the polyphase decomposition technique is speed, and a feature of
the coefficient folding technique is high hardware utilization rate. Combining these two
techniques can produce a fast and efficient DWT architecture. The proposed 2-D
architecture consists of a transform module, a RAM module, and a multiplexer. The 2-D
transform module employs two folded filters for computing the row transforms (high-
pass and low-pass), and four parallel filters for computing the column transforms

(decomposing the row transform results into LL, LH. HL, and HH bands). The outputs

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the first stage are stored in the RAM bank and are further decomposed after the
computation for the first stage is done. The advantages of the proposed architecture are
near 100% hardware utilization, fast computation time. regular data flow, and low

control complexity.

3.2 Existing Architectures Based on the Lifting Algorithm

One of the earliest hardware implementations of the lifting algorithm is the parallel
architecture proposed by liang er «l. [22}. The proposed parallel architecture, namely
Split-and-Merge, adopts a new Boundary Postprocessing technique, which ensures that
the boundary samples are transformed correctly. The basic idea of the technique is to
model the DWT as a finite machine that updates each raw input sample progressively
into a wavelet coefficient. The new boundary processing technique reduces the
otherwise significant communication overhead that normally hampers the efficiency of
parallel systems. As a result, the proposed parallel architecture requires data to be
communicated only once between neighboring processors for any arbitrary level of
wavelet decomposition.

The computation procedure of the parallel architecture is as follows. The first step
is the split operation: the input data are separated into two sets and sent to two
processors. The second step is the merge operation: the data are analyzed/synthesized,
and the processed states and results are stored in the registers. The state information
from the neighboring processor is then combined together with its own corresponding
state information to complete the whole DWT computation.

Since only one inter-processor communication is necessary to exchange boundary

state information to compute the DWT, the proposed parallel algorithm improves the

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

efficiency of the lifting scheme implementation on a parallel processing network. The
drawback of Jiang’s parallel architecture is the same as the other parallel processing

implementations: large size and complex communication network.

IN 3
= s] e
0 ‘EE—- p ”_‘.’}:n___- N =3
@ zz & B
g > &3 3 83| = |] %%
-
AL]
= > ouT
‘ L d
O —~
T ~T
Q |——p — - .,
@ w3 B8 _‘ =3
a 2 IR > A=
- &3 &3 83

Figure 16. 1-D Folded Architecture [33].

in 2001, Lian et al. proposed a folded architecture to improve the hardware
utilization [33] for 5/3 and 9/7 filters. The folded architecture exploited the symmetry
and decimation of the wavelet filters by using just half of the hardware necessary for the
standard lifting filter. The diagram of the proposed folded architecture is shown in
Figure 16. It is similar to its classical filter counterpart [32] in the way that both reuse
the common processing units in the datapath to improve the efficiency of hardware
utilization. Although the folded architecture appears to be able to achieve 100%
hardware utilization rate, the actual utilization may be much less that. For example, the
scaling multipliers are used only once at cach stage, so its utilization rate is 50% or less
for filters that have more than two lifting steps. Since the multipliers are the largest
components in the 1-D filters, the utilization of the scaling multipliers should not be

ignored. Another possible drawback of the folded architecture is that it might consume

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

more power than the standard architecture due to the more complicated interconnection
and more frequent signal switching of the DWT filter coefTicients. etc.

Andra ef al. proposed an architecture that computes one level of the separable 2-D
DWT at a time [34]. The architecture contains two row processors to compute along the
rows and two column processors to compute along the columns, as shown in Figure 17.
Each row or column processor is constructed according to the basic computation
architecture illustrated in Figure 18. The basic architecture is composed of adders, a

multiplier, and a shifter. The shifter is used to carry out the scaling step.

EXT. MEM
v
—» MEMORY1

v v
RP1 > REGI [RP2

v v
MEMORY?2

v v LILHLHH
— CP1 REG2 CP2 >

RP | Row Processor | CP | Column Processor | REG | Register

L1 subband

Figure 17. Block Diagram of the 2-D Architecture in [34].

To compute the 2-D DWT, the architecture inputs a block of size Nx N from
external memory, and writes to MEMORY 1. The row processors RP1 and RP2 read in
the data from MEMORY!, compute the horizontal DWT, and write the results to
MEMORY?2. When there are cnough data for processing in MEMORY?2, the column

processors start calculating the vertical DWT. The decomposed subbands LH. HL, and

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IHH are sent to the output. and the LL subband is fed back to MEMORY | for the next
level of decomposition.

The major drawback of this architecture is that the dataflow is irregular for filters
with 2M lifting steps and filters with 4M lifling steps. For the 2M filters, the LL
subband is generated at CP1; for the 4M filters, the LL subband is generated at CP2.
Since the architecture is designed in such a way that the LL subband can only be written
to MEMORY through CP2, the LL subband has to be sent to CP2 through

MEMORY?2 first. Hence, there is significant latency for the 2M filters.

PN AL BN
Ly RV L
T AT T
- N i N
<L —- i -
o] |
,5\,"2/, i ;
i

Figure 18. Basic Architecture of Each Processor.

v

a,] N a,. —I"E} a,
Ebml Ly '

MAC
S

Types Type t

Figure 19. Basic Circuits for the Parallel Architecture Proposed in [35].

The parallel architecture proposed by Arguello et al. [35] is a configurable

architecture that is capable of computing a wide range of wavelet packet transforms,

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with variations in the type of filters, the number of stages, and the form of the tree-
structured filter bank. The architecture is a folded filter which requires that the input
data be stored previously in a memory. It is not designed to provide minimum latency
between the input and output. To achieve a configurable filter, the proposed architecture
employs basic s and ¢ circuits (where s and ¢ are FIR filters (polynomials) expressed as
in Equation (2.22)) as building blocks, which are shown in Figure 19. They can perform
the basic operations listed in Table 4. The advantage of this architecture is flexiblility,
and the modular design is easy to implement in 1-D designs. The drawback of the
architecture is that it usually takes more cycles to compute the DWT transforms than the

standard lifting algorithm [20].

Table 4. Basic operations that are carried out by the proposed architecture to compute
the lifting steps

Type s Type t
a, + Kby, b, + Pa,
ay + Lbn-l bn + Qam-l
ACC+ Lby., ACC + Qapey
ay + M(b, + by.y) by + R(a, + an+))
Na, 1/Neb,

In this chapter, we presented some representative DWT architectures ranging from
the classical filters that implement Mallat’s algorithm, to the recently proposed lifting
architectures. Each of these architectures has its own advantages. Some are cfficient in
hardware utilization. some feature fast computation, and some require less silicon arca
to implement. However, there is still room for improvement and innovation to design
even more cfficient architectures. In the following chapters, we will propose efficient

architectures based on the lifting algorithm.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Proposed 1-D Architectures’

To implement the lifting algorithm described in Chapter 2, the input signal has to
be first separated into even and odd samples. Each pair of input samples (one even and
onc odd) is then processed according to the specific analysis polyphase matrix. For
many applications, the data can be read no faster than one input sample per clock cycle,
so sample pairs are usually processed at cvery other clock cycle. Hence, this is a
limitation on the speed and efficiency of a direct implementation of the lifting scheme.
To overcome this bottleneck, the proposed recursive architectures exploit the available
idle cycles and re-use the same hardware to recursively interleave the DWT stages. The
dual-scan architectures thus gain efficiency by keeping the datapath hardware busy with

two different streams of data.

4.1 The 1-D Recursive Architecture

Because of the down-sampling resulting from the splitting step at each stage in the
lifting-based DWT, the number of low frequency coefficients is always half the number
of input samples from the preccding stage. Further, because only the low frequency
DWT coclficients are decomposed in the dyadic DWT, the total number of the samples
to be processed for an L-stage 1-D DWT is:

NU1/241/4+-+172"y=NQ@-1/2""") < 2N, .1

* The architectures described in this chapter were published in references [36]{47).

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where N is the number of the input samples. For a finite-length input signal, the number
of input samples is always greater than the total number of intermediate low frequency
coefficients to be processed at the second and higher stages. Accordingly, there are time
slots available to interleave the calculation of the higher stage DWT coefficients while

the first-stage coefficients are being calculated.

4.1.1 Design Details

The recursive architecture (RA) is a general scheme that can be used to implement
any wavelet filter that is decomposable into lifting steps [36]. As 1-D examples will
describe RA implementations of the Daub-4 and 9/7 wavelet filters. In the next chapter,
we will show how the RA can be extended to 2-D wavelet filters. Theoretically, the RA

can be extended to even higher dimensions in a similar way.

d

Figure 20. MAC for Asymmetric Wavelet Filters

oD

The RA is a modular scheme made up of basic circuits such as delay units, pipeline
registers, multiplier-accumulators (MACs), and multipliers. Since the factored Laurent
polynomials s,(z) and 1,(z) for symmetric (biorthogonal) wavelet filters are themselves
symmetric, and those for asymmetric filters are normally asymmetric, we can use two

kinds of MACs to minimize the computational cost. The MAC for asymmetric filters

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(shown in Figure 20) consists of a multiplicr, an adder, and two shifters. The symmetric
MAC (shown in Figure 21) has one more adder than the asymmetric MAC. The shifters

are used to scale the partial results so that accuracy can be better preserved.

N
oD
[Lams /

Figure 21. MAC for Symmetric Wavelet Filters

Different kinds of lifting-based DWT architectures can be constructed by
combining the four basic Vliﬂing step circuits, shown in Figure 22. For the sake of
simplicity, the shifters are omitted in Figure 22 and the figures hereafter. The general
construction has the following steps:

Step 1: Decompose the given wavelet filter into lifting steps [20].

Step 2: Construct the corresponding cascade of lifting step circuits. Replace each delay
unit in each circuit with an array of delay units. The number of delay units in the array
is the same as the number of wavelet stages.

Step 3: At the beginning of the cascade construct an array of delay units that will be
used to split the inputs for all wavelet stages into even and odd samples. These delay
units are also used to temporarily delay the samples so that they can be input into the
lifting step cascade at the right time slot. Two multiplexer switches are used to sclect
one even input and one odd input to be passed from the delay units to the first lifting
step.

Step 4: Construct a data flow table that expresses how all of the switches are set and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

how the delay units are enabled in each time slot. There is latency as the initial inputs
for the first wavelet stage propagate down through the cascade. A free time slot must
then be selected to fix the time when the inputs for the second wavelet stage will be sent
into the cascade. All higher order stages must also be scheduled into free time slots in
the data flow table.

Step 5: Design the control sequencer to implement the data flow table.

a-+bz a(1+z’"h a(l+2)
Figure 22. Circuits for the Basic Lifting Steps

The RA in Figure 23 calculates three stages of the Daub-4 DWT. while the RA in
Figure 24 calculates the three-stage 9/7 DWT. Because the control sequence of the RAs
for all wavelets is similar, we will discuss the operation of the RA for only the Daub-4
DWT in more detail.

In Figure 23, the input registers R; (/=1,2,..., L) and R'; (i=3,..., L) hold the input
values for the /" DWT stage. Thus the first stage coefficients can be calculated at every
other clock cycle and the data for the other stages can be fed into the lifting step
pipeline during the intervening cycles. Using x;; to denote the j'h coefficient of the /M

stage, the DWT coefficients can be calculated in the order shown in Figure 25.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

—

EnR;, Ry _%
. oo O3 St
EnR; e Fly P2y B3
R3
EnR; R, € \ao A EnDy — p,
EnR
1 R] EnDz
Input “‘[‘{ oy P
0, 0] 02 03
: S2 E Ds
EnR; R3 _53 To, e
EnR;, — — R},
EnDy, Du

o=—+3,p=3/4,7y=(3-2)/4,2=1,0=(3 +)/2 ,o=0".

Figure 23. 1-D Recursive Architecture for the Daub-4 DWT. “R” represents registers,
and “D” represents delay units. “S;” represents control signals for the data flow.

=—1.58613, f=—0.05268, y=0.88291, 6=0.44351 c=1.14960

Figure 24. 1-D Recursive Architecture for the 9/7 DWT.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Idle

Stage
Stage
Stage
input

.
.
o

Xoi

X X.12

. Lot .
Xo2 Xog Xes Nos

K

ot
.

.
oo No7 Now

.

X7

. . >
o 3 . .,
% o . % %
ot 4 e o R

L ol oot .
Xow Xogo Xoor Xogz Xosz Xoas Xors Xous

Calculation Order

#denotes an idle clock cycle where no coefficient is calculated

Figure 25. 1-D DWT Coefficient Computation Order

X8

The input registers also synchronize the even and odd samples of each stage. Since

the first two stages can be immediately processed when the odd samples are ready, no

input register is needed for the odd samples for these two stages. Register D; is a delay

unit for the /" stage. After splitting the input data into even and odd parts, the Daub-4

DWT is calculated step-by-step as shown in Table 5. In Table 5, E, and O, are the

outputs of each lifting step; ¢_, , and o_, , denote the even and odd intermediate results

of each lifting step. Since the architecture is pipelined by each MAC unit, the outputs of

each lifting step are synchronized. As an example, the calculations of the first pair of

DWT coefficients are listed bellow:

El: X, =X,
Ol xy, =X,
E2: e, =X,

D0, =axy, +Xx,,

E3: e, =fo_, +e_,

03: 0, =0,

Ed: e, =z""yo_,, +e.,

04: 0., =z"0,,

Low frequency DWT coeflicient /: [, =we_, |

High frequency DWT coefficient . /i, =v(de_, +0_,)).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

X, ; is input signal, i and j denote the stage and the sequence, respectively: ¢

odd intermediate results of cach lifting step: /1, and /1

Table 5. Data Flow for the Three-Stage [-D Recursive Architecture
 and 0_, ,areeven and

-t

1.1

Clk | Input E;; O E,; O E;; O, Es; O, ;i h Stage

) Xy g

2 Xp2 Xo0.1:X02

3 Xng e ;0.0

4 X4 Xo3:X04 é-l.l ;0-1)

5 Xys €2 :0.12 €.t ;011

6 Xog X5 Xu6 €.52.0.52" Lk |
7 Xg7 €43 ;043 .43 :0.03

8 o Xg.7; X0y e.1,3;0.1.3 s ihaa]
9 Xy Lyg. Lo €.44;014 L €.03:0.03

10 | Xpm | Xno: Xom | €25 .00 | €54,0. Lpsihas 1
1 X , 5045 | €14.€p2 | €ig;0u440| ,

12 | Xoso | Xuur:Xoiz: eis 0us | eqpCpr | lighyg | 1
13 | xpu3 Lz by | €y6:096 s 0as | Loyl 2
14 | Xogs | Xog3:Xogs | €22 002 | g6 ;0.4 hasihgs 1
15 1 xuus €47 .07 | €2 005 €604

16 | Xyys | Xous.Xous €.r7:0.47 | €25.027 | Lig:hyg |
17 | xu7 Lis:lis | €.18,0.s e.17:0.47 | la2. has 2
18 | Nouw | Xpg7:Xogs | €235 003 | e4s.048 Lyzihys |
19 | xpu Loy lor | €19:0409 | €23, 0235 | €48:048

20 Yoo Xo.19 : X020 .31 0.3 C.iy:0.19 €23 .:0.23 : Lig hys 1
21 Xo21 | Lz Dy | egan 0000 €31 .05 | €yyi0ps | Loz hag 2
22 | xp2 | Xozi:Xe2: | €24 .02y |'€40 00| €3 034 | Livihiy 1
23 | xpor | Xpor:Xp22 | €grr Or | €24 024 | gy iOpin)| lsy Dy 3

are Jow and high frequency DWT coetficients

Therefore, the DWT coefTicients of the first stage are generated five clock cycles

after the first input sample is received. The first low frequency DWT coefficient /., ; is

also stored in register R, After the second low frequency DWT coefficient /., > is ready,

Iy and /., > are further processed in the idle cycles as shown in Table 5.

The control signals for the switches in a RA can also be deduced from the

corresponding data flow table (which is Table 5 in this case). The timing for the register

enable signals is shown in Table 6. Switches S1, S2 and S3 steer the data flows at each

stage. The timing of the switch control signals is shown in Table 7. Output switch S4

feeds back the low frequency DWT coefficients (except for the last stage) to be further

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

decomposed. The switching timing for S4 is the same as for S1. The problem of
cfficiently scheduling the operations in the lifting step pipelining is similar to the
problem cncountered in compiler-supported instruction scheduling of loops that is
called Software Pipelining [53]. The overlap of the computation of lifting step
operations for multiple samples is analogous to the overlap of instructions from multiple
iterations of a loop. The pipeline schedules that we used, however, were optimized for
the data dependencies in the DW'T.

Table 6. Enable Signals for the Input Registers (£ is the sample index) of the 1-D RA
Implementing the D4 DWT

Time, Ty, Enable Signals
(in clock cycles)
2k EnR; - EnD,
4k + 4 EnR. - EnD, "’
8k+9 EnR3 EnR’; ' EnD; “
2 3% 2l EnR, EnR'.’ EnD

* The actual times are: T,, + 2",
*% . e -
The actual times are: Ty + 25" + Latency from 82 to S3.

Table 7. Input Switch Control Timing for the 1-D RA Implementing D4 DWT

Time, T, Switch Positions
(in clock cycles) S| S2 S3°
2k+ 1 e 0) q
4k + 6 €2 02 2
8/("‘ 16 €3 03 q3
2 43527 2 Latency e, 0] qi.

* The actual times are: T, + 2,

The design of the controller is relatively simple, due to the rcgularity of the control
signals for the RA, as shown in Table 6 and Table 7. All control signals are generated
by counters and flip-flops controlled by a four-state finite state machine, The counters

generate periodic signals for the longer period (7>4 clock cycles) control signals, and

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the Mip-flops produce local delays. The simplified state transition diagram of the
controller is shown in Figure 26. When the RA receives input samples. it starts to
decompose (analyze) the data. The controller keeps track of the number of processed
stages. After all stages have been processed. the controller asserts a *Done’ single, and
returns to the waiting state. If externally-generated start and stop signals are provided,
the long counter for keeping track of the number of input samples is unnecessary.
Compared to other direct implementations of lifting-based DWTs, the overhead for the
RA controller is very small. The controller normally occupies less than 10% of the total
silicon area of the 1-D RA.

The remaining elements of the RA include registers and switches (tri-state buffers).
Since the area of the switches is small compared to the size of the whole architecture,
the cost of the data storing registers in the datapath tends to dominate. For
implementing an L-stage DWT, the RA uses (L-1)(M+1) more registers than a
conventional lifting-based architecture, where M is the number of delay registers.
Considering that a conventional architecture needs an extra memory bank to store at
least N/2 intermediate DWT coefficients, the RA architecture is more arca-cfficient in
most applications, where (L-/)(M+1)<<N/2. The power consumption of the RA is also
likely to be lower than that of a conventional architecture because the RA eliminates the
memory read/write operations and because all data routing is local. By avoiding the
fetching of data from memories and the driving of long wires, the power dissipated by
the RA switches is minimized. Further discussion of implementation details is beyond
the scope of this thesis project, but our preliminary analysis reveals the potential of the

RA architecture in small-size and low power designs.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LT
=
~
\~E§mgc Er

1d}3
N

Figure 26. State Transition Diagram of the RA Controller

4‘.1.2 Evaluation

Since the pipeline delay for calculating an L-stage DWT is L x T, (where 7 is the
latency from input to output) and the sampling-interval for each stage computation
increases by two cycles for cach additional stage (shown in Figure 25), the clock cycle
count 7p for processing an N-sample DWT can be expressed as:

Tp =N+ LxTH+ (1 +2+ .. +28y=N+LxT,+2"-,

The hardware utilization can be defined as the ratio of the actual computation time to
the total processing time, with time expressed in numbers of clock cycles. At each
section of the pipeline structure, the actual clock cycle count 7¢ is the number of sample

pairs to be processed.

Te =N + N(1 =292,

Note that N(1-2"")is the number of samples being processed at the second or higher

stages. The busy time 7} of the corresponding section can be expressed as:
Ty=Tp-Ty=N+(L-1)x T,+2"" 1.

Conscquently, the hardware utilization U of the L-stage RA is:

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N+N(1=2"")

. x 100% (4.1)
AN +2M" 4 (L-1)xT, = 1)

Us=Tc/Tyx 100% =

Because U is a continuous concave function of variable L when L > 1, the maximum
hardware utilization can be achicved when dU/OL=0. Ignoring the delay 7y, OU/AL=0

can be expressed as:

oU _ N(L-12" -2 0
8L 2AN+2"M'-1)?

The above equation is true when L=27"(log, N +log,(1-1/L)+1). Assuming L > |

and N >> /N , the utilization reaches a maximum of about 90% when L = 0.5log,N, and
gradually reduces to around 50% when L=1 or logoN. For a 5-stage DWT operating on
1024 input samples, the utilization approaches 92%. When the number L of
decomposition stages increases, the processing time increases significantly and the
utilization drops accordingly. As mentioned above, the delay of 2" was due to the
increasing separation (2° clock cycles) of the input values to each stage. If we decrease
the sampling grid for each stage as soon as all previous stages have finished. we can
speed up the computation. With a little bit additional of controller overhead, the
processing time in clock cycles of an L-stage DWT can be reduced to:
N+ (L X T(/)

When N—m, the hardware utilization of the 1-D RA approaches 100%. Compared to
the conventional implementations of the lifting algorithm, the proposed architectures

can achieve a speed-up of up to almost 100%, as shown in Table 8.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 8. Computation Time and Hardware Utilization for 1-D Architectures

N: Number of input samples. Ty, Taugy: Circuit delay. 1.: Number of DWT stages

Architecture Computation Time Hardware
(clock cycles) Utilization
RA N+TyL 50% -
90%
Direct AN(1-172%)+T g L 50%
implementation
Folded [33 AN 1725)T ey L ~100%

4.2 The 1-D Dual-scan Architecture

To achieve higher hardware utilization for special cases, we also propose the dual-
scan architecture (DSA), which interleaves the processing of two independent signals
simultaneously to increase the hardware utilization. The 1-D DSA is shown in Figure
27. It consists of a processing clement (PE), input and output switches, and two memory
units. The PE is a conventional direct hardware implementation of the lifting scheme
constructed from the basic building block circuits. The input switches SW are
connected to the two input signals when processing the first stage, and arc connected to
the memory when processing the other stages. Switch SWO0 separates the low frequency
coefficients of the two input signals. Because the architecture generates one low
frequency coefficient at each clock cycle, SWO is controlled by the system clock. The
output switch SW1 is connected to the output only at the final stage. The size of each of
memory unit is M/2, where M is the maximum number of input samples.

The PE for the 9/7 DWT is shown in Figure 28. Note that the DSA PE structure is
almost identical to that of a two-stage DA architecture. S1 and S2 are the input switches
that select the input data source. The other switches in the circuit are synchronized to

the input switches to select the path for each input channel.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SW0e—] .
SW1 | Memory
Inputl Pl —
Input2 .“_ | > 1

Figure 27. 1-D Dual-scan Architecture

The 1-D DSA calculates the DWT as the input samples are being shifted in, and
stores the low frequency coefficients in the internal memory. When all input samples
have been processed, the stored coefficients are retrieved to start computing the next
stage.

As the 1-D DSA performs useful calculations in every clock cycle, the hardware
utilization for the PE is 100%. The processing time for the L-stage DWT of two M-
sample signals is N + L x T, Compared to conventional implementations for
computing two separate signals, the 1-D DSA requires only half the hardware. Hence,
given an even number of equal-length signals to process, the speedup of the 1-D DSA is

100%.

Qt qn

S3 Ss

b 5 an \' Eal) ., - q?.
* ¥ 1

Inputt

o i
rall
'
,ll]
Enby vt J J
LR C
S

13

Inpnt2

S—D

Figure 28. The DSA PE Circuit for the 9/7 DWT.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Proposed 2-D Architectures

A conventional implementation of a separable 2-D lifting-based DWT is illustrated
in Figure 29, where separate row and column processors each use a 1-D lifting
architecture. The row processor calculates the DWT of each row of the input image, and
the resulting decomposed high and low frequency components are stored in memory
bank I. Since this bank normally stores all the horizontal DWT coefficients, its size is
N? for an NxN image. When the row DWT is completed, the column processor starts
calculating the vertical DWT on the coefficients from the horizontally decomposed
image. The LH, HL, and HH subbands are final results and can be shifted out; the LL
subband is stored in memory bank 11 for further decomposition. The size of memory
bank 11 is thus at least N*/4. Such a straightforward implementation of the 2-D DWT is
both time and memory-intensive. To increase the computation speed, we propose a 2-D

RA and a 2-D DSA for the separable 2-D lifting-based DWT.

Menory |
LH LH
. Ro Col :>
Input image :> Pmce‘;vsor Plt())cle]:s:r | Output LI, HLHH
i LL
Menory

Figure 29. Conventional 2-D Lifting Architecture.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 The 2-D Recursive Architecture

The basic strategy of the 2-D recursive architecture is the same as that of its 1-D
counterpart: the calculations of all DWT stages are interleaved to increasc the hardware
utilization. Within cach DWT stage, we use the processing sequence illustrated in
Figure 30. The image is scanned into the row processor in a raster format, and the first
horizontal DWT calculation is immediately started. The resulting high and low
frequency DWT coefTicients of the odd lines are collected and pushed into two FIFO
registers or two memory banks. The separate storage of the high and low frequency
components produces a more regular data flow and reduces the required output switch
operations, which in turn consumes less power. The DWT coefficients of the even lines
are also rearranged into the same sequence, and ure directly sent to the column
processor together with the outputs of the FIFO. The column processor starts

calculating the vertical DWT in a zigzag format after one row’s delay.

Hed e Hp Ha, LiLo Lo Ly LG |1 TiLo|TIL [FIL; L,
RAATREMENERIMIZISMIIEMIRIa AR EN
1 Row B .
y 7k
Row Transform Column Transform

Figure 30. Calculation Scquence of the 2-D RA

A simplified schematic for the 2-D RA is shown in Figure 31. Note that the row

DWT is similar to that of the 1-D DWT, so the datapath of the row processor is the

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

same as for the 1-D RA. The column processor is implemented by replacing the delay
registers and input circuit of the 1-D RA with delay FIFOs and the circuitry shown in
Figure 31.

The interaction between the row and column processor goes as follows: When the
row processor is processing the cven lines (assuming that it starts with the 0" row), the
high and low frequency DWT coefficients are shifted into their corresponding FIFOs.
When the row processor is processing the odd lines, the low frequency DWT
coefficients of the current lines as well as the previous lines of coefficients stored in the
FIFOs are sent to the column processor. Register D; is used if the low frequency
coefficients are generated before their high frequency counterparts. At the same time,
the high frequency DWT coefficients of the current lines are shifted into their
corresponding FIFOs, and the outputs of these FIFOs are shifted into the FIFOs
corresponding to the low frequency. The computations are arranged in such a way that
the processing of the DWT coefTicients for the first and the other stages can be easily
interleaved in neighboring clock cycles. Once the processing of the low frequency
components is done, the outputs of both FIFOs are sent to the column processor. The
function of the exchange blocks, shown as boxes labelled with an X in Figure 31, is to
redirect the data flows between the FIFOs and the input of the column processor. As
shown in Figure 32, the exchange block has two input channels, two output channels,
and a control signal. When the control signal SW=0, the data from input channel 1
flows to output channel 1, and the data from input channel 2 flows to output channel 2;
when SW=1, one data stream flows from input channel 2 to output channel 1, and the

other data stream flows from input channel [to output channel 2. At the low frequency

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

output of the column processor, a switch selects the LL subband and sends it back to the

row processor for further decomposition.

|

)

— E, .

x‘,'fi‘”
']If,,'

Ly xl‘—l 1/8 Rowl K. L
Row x[122- Row Column
Processor I - 0, Processor
y e

I—'—-—]' l—o
—=-o. — _(%3',\ Oc M

1221 Roy

=chis(crs =chisicrs 1/2 Row | =FIFOs =l€xchungcs

Figure 31. The 2-D Recursive Architecture

INI =r-e-»e——> OUTI INI m:}c:ﬁ OUTI

IN2 c=leepe=t—> OUT2 O IN2 = —>
SW=0 SW=

Figure 32. Exchange Operations

As an example, a portion of the data flow for computing an 8x8 sample 2-D Daub-
4 DWT is shown in Table 10. As described before, the first pair (e, and 0., ;) of the
first stage row transform cocfficients are genecrated at the sixth clock cycle. They are

immediately shifted into the high and low frequency FIFOs, respectively. The

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

consccutive DWT coefficients of the same row are in turn pushed into their
corresponding FIFOs in the consequent clock cycles until the end of the row (the 12"
clock cycle in this case). When the first pair of the row transform coefficients of the
second row is ready, the low frequency coefficient (e.; ;) is sent to the odd input of the
column processor, and the high frequency coefficient (0.;,2) is pushed into the
corresponding FIFO. The first low frequency coefficient of the first row (e.;.;;) is also
popped out of the FIFO and sent to the even input of the column processor; its high
frequency counterpart (0.;5,;) is pushed to the low frequency FIFO. After 4 clock cycles,
the column processor generates the first pair of 2-D DWT coefTicients, of which the low
frequency one (/1) is temporarily stored in register R, The row processor starts
further decomposing the low frequency DWT coefficients after the second low
frequency coefficient (//.;) is generated (at the 21" clock cycle in Table 10).

At the end of the row transform of the second row (at the 20"™ clock cycle in this
case), both FIFOs for the first stage contain only the high frequency row transform
coefficients of the first two rows, and start sending these coefficients to the column
processor after 1 clock cycle. As shown in Table 10, the calculation of the different
stages of the 2-D DWT is continuous and periodic. Thus the control signals for the data
flow are easy to generate by relatively simple logic circuits.

Similar to the 1-D RA case, the control signals for the 2-D RA are deduced from
the data flow as shown in Table 10. The timing for the switch signals of the 2-D RA for
the lifting-based Daub-4 DWT are shown in Table 9, and the enable signals are fixed
delay versions of these switch signals. Also, similar to the delay reduction method used

in the 1-D RA, the delay time of the 2-D DWT can be minimized. The timing of the

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

control signals for other wavelets is similar, and can be achieved by adjusting the delays

in Table 9.

Table 9. Switch Control Timing for the 2-D RA Implementing Daub-4 DWT

Time, Ty Switch Positions Time, T Switch Positions
(in clock cycles) Sl S2 (in clock cycles) S3 S4
2kt] e o1 2(1+)N +2k+6 E 0,
2(/+1)N +4k+9 e 07 4(1+ N +dk+14 Ea 0,
4(I+1)N +8k+17 €3 03 8(/+ 1N +8k+22 Es (O}
2T+ N e oL, 25+ 1N E,. O
+25 ket 1427 L, +2- k43427,

Since the high-frequency components are processed one row after the low-

frequency components, as shown in Figure 31 and Table 10, the processing delay of the

column transform for each stage is roughly one row. Also, because all of the stages are

interleaved, the total processing time for an L-stage 2-D DWT is:

NxN+N+2xLxTy+25 71,

Similar to the 1-D implementation, a hardware utilization of about 90% can be achieved

when L is close to logoV.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 10. Data Flow for the Three-Stage 2-D Recursive Architecture
X438 input signal. i, j and k denote the stage, the row and column sequences, respectively; e, x and 0,4
are even and odd intermediate results of cach lilting step; £, and A, are low and high frequency DWT
cocllicients.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CIk | Input |— Row Processor _ FIFOs for Stage | i Column Processor Stage
Eg : Og Lg 1l High Frequency Low Frequency L Oc Output

1 | xpay

2 \voagt Xog Xaay

3 oy

4| Noas | Xogr:Xoas

5 Xysy

0 | Nyes] Xosr:Xosy | €401 50500 (AN 0.111

7 | xXu7s

8 | Nows | Xpzs:Xosy | €21:0951 (NN WY 041000121

9 {Xusz

0 | Xoz2 | ' Xoso:%022 Veyss 0457 €y 00003 O p 115 0..2050-1,31

REETE

12 {xgun | Xpao:Xosp teyyy 0y leg ey i€ ylo))50.050.030.,

13 Xysa

W [xpro | XpszsXos2 1000200701 €0200€0 350060000000 |0.0200.0510.040°0. 121 €571 1407

15 RV

16 | Noxo| Xo72:Xuss | €422 00207 €0 500€.00 10015100124 0. 317004 150.112°0.0 22 €557 €457

17 | xus

18 | Xoza | Yoss Xaas | €032:0053]000000.0000.0200050[0.03000.0 120022032 €57 €52t Wy sthapi])
19 1 x4

20 [Nysa| X033:%043 | €442:0.542 100570 2050.13170.054]001.20.12200.1320-1 45| €457 €007 Moy Ihyay 1
20 I xpsa il sy

22 | Xooa| Xosa:Xoga | €ps3:000510.0,00.53050.5417€0 310, 2200320044205, 5000 50520 Wysy thysy |
23 Xy73

24) Xows | Xog3Xo8s | €28 0023 10.05400.0500€.00 50,0230, 3250.0420.0130.5 250055700538 Wigy My, 1
25 | xpyaMlyay Hyuslessy 000,

20 | ¥ypq | Xoja Xos3i] @395 00 351000 07€0030€0 2300033 (0042000304530 55|05y 032 0)RRy]
27 Ny id

28 | Nuys | XozaXogd 1€043:0.045] €30 25C 33003 10.0150.1230.1530.14510:4) 043 Ay a; Wil 1
29 Xy €21 0229

30 | Xons " X5 Xugy | €008 0:000] €025€.055€0 450005 01230-1530-143:0-1 14| C1 L 3s g pal Mg sy Ity 54|)
31 Xy

32 (Xuwa {XgrasXase | €2y 0024 1€ 533005350 130.42300.330.4430.5,50 €5 ¢35 4 hhyyyl |
33 x5

34 | Xuos | Xojs:Xoos | €034:0.030€043000 150022015300 450 1500250 50 p3y Copag| s hips] |
35 Xo3s

36 | Xpus | Xoss Xnys | €054:00540]0.00350.0250.0350.0050.0 1 0-12500.05.00.144€093 €yt Hyan Mhias]
37 | xoss|llyyy Moo

38 [Xoas | Xoss Xuas | €005:0.005]0.4280.0 33505501500 240.1340.440.105[0.043 0.psa yzs hysa] 1
39 1xp7s

A0 | xuws | Nozs Xows | €25 :0.025]0.0350.143€0 150125 101 3.40-143/0.415:0.1 250133 0404 Wyyo Mryus] |
) | xopa iz Hyyoles,. 0.0, €204 €012

42 | xpaa | XogaiXooe [€ras:0.435| 0.0 e 15€050€035100440.0050.0250.03500.1335.0.0350M55 Alyyol 1
43 | 330

A4 | Xoso | Xogo:Xoae | €0a5 045 | Cpysi€y 25/ 35€.0450.0150.1250.0550.451043 0594|150 hhyap] |
45 | Xys0 €220 Cooy ool sy, 2
46 | Xua | Nnsa:Xuae | €106:0006] 10500360 45005 10.0250.13550.145:0-7 16| €05 - €ags|Mys, Ny ss] 1
47 [Xuz0

48 | Nuwn | Xoga: Xose | €-126:0-0261€.035€0 45500030025 [0. 35014501060 20] €125 : €26 | My g My 0]]
49 \x,;- 0.7 050 sy thoyy | 2
50 | Xopz | Xo07:%027 | €036:0.036|€-1050.4 15701 250 0-0350.1450-1 16701 26:0.5 36 €035 : Czgl ygs Myps| |
51 R

52 | vpao | Xosz: Ko7 | €6 0upua 1001500025 0.0 3500405100 1600.026:0.036:0.05d €qs €paal Wags Mhass !
53 RO /I.[/ 3 //1 23 hi.» 11 -/I/I,:] Ji 2

69

” @%’. LLo [MEG] LLy [HE T LL: [HL, [LLs FHLy
29 ' R RSEES BRI :

PP T e L, |FIFLG| LF, [H, | Vs [T [L35 1y
; .‘.“*ﬁém'_‘ 3 T — » -
IR TS R RES BN
g Ll 2

.
[

Row Transform Column Transform

Figure 33. Scan Sequence of the 2-D Dual-scan Architecture

5.2 The 2-D Dual-scan Architecture

In a conventional 2-D DWT algorithm, the vertical DWT is carried out only after
the horizontal DWT is finished. This delay between the row and column computations
limits the processing speed. The 2-D DSA shortens the delay by adopting a new scan
sequence. In applications that can read two pixels per clock cycle from a data bulfer, the
scan sequence of the 2-D DSA shown in Figure 33 can be used. The row processor
scans along two consccutive rows simultancously, while the column processor also
horizontally scans in the row DWT cocfficients. In this way, the column processor can
start its computation as soon as the first pair of row DWT coefficients is ready. With
this improvement, the row and column processors can start computing the same stage of
the DWT within only a few clock cycles of each other.

The structure of the 2-D DSA is shown in Figure 34. The registers are used to
separately hold the even and odd pixels of each row, and to interleave the input pairs of

each two consecutive rows. The control timing of the 2-D DSA is shown in Table 11,

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where the delay of the row and column processor is assumed to be 1 clock cycle. The

row processor of the 2-D DSA is identical to the direct implementation of the 1-D

DWT. The column processor is obtained by replacing the 1-pixel delay units in the row

processor with I-row delay units. The low [requency output switch of the column

processor directs the LL subband of cach stage DWT to the memory bank. The LL

subimage stored in the memory will be returned to the DSA input for further

decomposition after the current DW'T stage is finished.

Table I1. Data Flow for the 2-D Dual-scan Architecture

x;;is input signal, i, j the row and column sequences, respectively; e,; and o, are even and odd
intermediate resulls of cach lilting step; 1, and A, arce low and high frequency DWT coellicients

Row Processor Column Processor
Clk Input - 3
l.‘,R . ()R LR s ”R lic ; Oc L(‘ S ”C
1 Xey X2
2 Xog4 X2 XNog X2
3 X301 N30 Xi2:X22 €11 .00
4 Xag_ X402 Mo N er2.052 €1y .€52
5 N3o2.Xyo €27 .02 011012 ”),) .-”1],/
6 €13 .032 €2} €22 ’I//'/ ;/lll/‘/
7 0y 0322 //g‘/ ; ”}3/
8 ll/_)./ B /I/Ig !
For higher stage MEMORY
decomposition (size N°/4)
LL
Rowi —— R Lr E R '—0
- N '\ . Lc —(‘ e—» HL
RHR Ex He R Ec
Row i+l *] Row Column
Processor Processor
— ——e
Oc¢
] Falll Rt [F] ¥ Hc —— LH,HH

=chislcrs

Figure 34. 2-D Dual-scan Architecture

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The processing time for cach stage is 1/2xNxN+2xT,. Because only a quarter of the
cocfficients are further decomposed, the total processing time for an L-stage 2-D DWT
is:

23xNxNx(1-1/4%+2x Tyx L
Compared to a conventional implementation, the DSA uses roughly half of the time to
compute the 2-D DWT, and the size of the memory for storing the row transform
coefficients is reduced to M rows. where M is the number of delay units in a 1-D filter.
The comparisons of the processing time and memory size are shown in Table 12 and
Table 13, respectively. In Table 12, the timing for the RA is based on one input pixel

per clock cycle, while the others are based on two input pixels per cycle.

Table 12. Computation Time and Hardware Utilization for 2-D Architectures

NxN: Size of the input image. Ty, Ty Cireuit delay. L: Number of DWT stages

Architecture (9/7 DWT) | Computation Time (clock cycles) Hardware utilization
RA NxNA+N+2x[x Ty +28 o] 50% - 70%
DS 2/3xNxNx(1 -1/4")+ 2% Tx L. =100%
Direct implementation I3 NXNx(1-1/4") 42 T x 1L 50%
ACT[34] NxNxa/3x (1-1/4")+ Tx 1., ~ 50%

Table 13. Comparison of Memory Size for 2-D Architectures

NxN: Size of the input image. Ty Ty Cireuit delay. L: Number of DWT stages

Architecture Memory Size
RA for 9/7 wavelet 4N
RA for D4 wavelet 10N
DSA for 9/7 wavelet NxN/4 + 4N
Direct implementation 5/4xNxN
ACT|[34] tor 9/7 wavelet =VxN/4 (external memory)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Implementation

We implemented the proposed architectures as behavioural-level VHDL models
and confirmed their correctness in simulation. In this chapter, we will describe four
implementation examples of our proposed architectures. All of our VHDL models are
fixed-point designs primarily for the fast verification of our proposed architectures.
Nevertheless, the VHDL models of the proposed architectures are still ready to be used
in SOPC (System On Programmable Chip) designs or ASIC (Application-Specific
Integrated Circuits) designs as DW'T engines for processing 8-bit input signals. The
fixed-point designs can be easily modified to more precise floating-point designs by
replacing the fixed-point arithmetic units with floating-point units and changing the

width of registers/files to 32-bit or 64-bit wide.

The rest of the chapter is organized as follows: in the first section, we introduce the
word length selection in the fixed-point DWT hardware implementations: in the second
section, we describe the 1-D designs: 1-D 9/7 RA and 1-D D-4 DSA; in the third
section, we describe the 2-D designs: 2-D 9/7 RA and 2-D D-4 DSA; in the last section,

we present the evaluation of our designs.

6.1 Word Length Selection
When the signal is converted to digital form, the precision is limited by the number

of bits available. The finite word length of the hardware used for digital processing

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

determines the available precision and dynainic range. The selection of the word length
should satisfy both the dynamic range of the DWT coefficients and the distortion
tolerance of the reconstructed signal. The dynamic range of the signal processing
computation determines the number of bits required to represent the integer part of the
DWT coefficients, and it increases with the number of decomposition stages. The
number of bits reserved for the integer part should be sufficient to prevent calculation
overllow. To estimate the maximum internal growth of the lifting algorithm, we first
deduce the equivalent high-pass and low-pass FIR filter polynomials by reversing the

process of factoring the DWT filters as follows:

1. For any lifting scheme expressed in polyphase matrix, we have

a5l 0 o[k o
P(z)_,g,[o | ”:I,-(z) 1“0 I/KJ

S Se, (2)
A4 2
2 o 52k 5.1

- s

J—1 G-I
[=

where G and J are the lengths of the high-pass and the low-pass filter, respectively.

2. For any input signal series [.\'2,, xm,], the 2x2 matrix in Eq 5.1 is equivalent to

two filters as follows.

G-l
g(2)= 2 gi(z)
) i=0
J-1 (5.2)
h(z)= % hi(z)
| i=0
74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The maximum input signal internal growth of these filters is [41]:

J-1
_Z gi(z)|

? lh,(z)l

As an example, for the D-4 filters expressed as:

Wzy=h+hz +hz7 + bz
g(2)=—=hz*+hz' = h + hz!

1443 . 3+43 3-3 -3

where A, = h = = Jh, = ,
N RN N R N

their maximum internal growth for each stage of DWT calculation is:

i

3+\/_
w2 |

ll+f|
vk

~1.673.

\/_

The number of bits NV needs to represent the internal growth for the 4-stage one-

dimensional D-4 DWT is N > log, (4x1.673)~2.7. Hence, we need 3 more bits than

the input signal word length to represent the integer part of the D-4 DWT coelTicients.

Another possible cause of signal distortion is multiplier product round-off error,
For an M-bit by N-bit signed multiplication, the result is N+A/-1 bits wide. The round-
off noise is introduced when we truncate the multiplication result, Determining the
optimal number of bits to be reserved for the multiplication result is not as
straightforward as estimating the internal signal growth. Designing fixed-point digital

filters with minimum roundoff noise is described in [42]. In our research, we used a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

simpler method to estimate the number of bits need to represent the decimal part of the

DWT coefficicents.

Since the roundofT noise is the only noise source in the DWT calculation. we can
estimate the acceptable roundofT noise level from the required signal noise ratio (SNR)
or peak SNR (PSNR) of the DWT caculation. From the SNR and the estimated input

signal variance, we can deduce the noise variance as follows.

SNR =10log,, 2,

Oy

where o is the variance of the input signal, and o} is the variance of noise

2

ol = Oy
N 7 1 ASNRIO
10 NR/

Since the variance of the roundoff noise of a fixed-point digital filter with N

multiplications is [42]

2-2/1
o2 =N .
v 12°
o ,_Os
= = SNR/O
B= -llo 8 20 :-llog2 1o
2 N 2 N

where B is the number of bits representing the decimal part of the output signal. For

different input signals and DWT filters, B varies siganificantly. As a rule of thumb, we
may start with o§ =3000 and SNR=50 to calculate the number B for image processing
applications. It should be noted that N is the number of multiplications for each DWT

filter times the number of DWT stages.

Using the calculations described above, we estimate that the maximum internal

growth of the 8-bit integer input signal is 3 bits and the number of bits for the decimal

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

part is 5 bits. In reality, the negative and positive filter coefficients will cancel out part
of the internal signal growth. and the number of bits assigned for the decimal part
should be sufficient to represent the minimum filter coefTicient. Therefore, we used 16

bits (11-bit integer and 5-bit decimal) 1o represent the DW'T coefficients in our designs.

6.2 Implementations of the 1-D Architectures
6.2.1 1-D 9/7 Recursive Architecture

The 1-D 9/7 RA architecture consists of a datapath, switching control signal
generators, and a controller. The datapath of thel-D 9/7 RA design contains a
processing element and an input switch network. The state diagram of the datapath is
shown in Figure 24. The switching signal generators generate all the signals for
directing the dataflow of each DWT stage to its assigned registers, as described in

Chapter 4.

Reset =1

start = |

Disable Processing

InEn_Sig=0 Enable Processing

Infin_Sig=1

count=

number ol stagex 5 +20 Last Sample

Received:
Signalend= (

Start Counter: count

Figure 35. State Transform Diagram of the 1-D 9-7 RA’s Controller
The controller is a 5-state controller as shown in Figure 35. The controller

generates an cnable processing signal to start the DWT computation when it asserts a

77

Reproduced with pérmission of the copyright owner. Further reproduction prohibited without permission.

start signal. which is synchronized with the first input sample. When an input end signal
synchronized with the last input sample is asserted, the controller starts a counter that

keeps track of the clock cycles required to complete the DWT calculation,

After the last input sample enters the processing clement. the time slots assigned to
the first stage DWT. as shown in Figure 25, are now available to other stages of DWT
computation. Therefore, the processing of all the higher stages of the DWT can be
moved to the time slots assigned for their previous stages, and their calculation
frequencies can also be doubled. The same process is repeated afler each lower stage
DWT is finished. In this way. the computation time of the multiple-stage DWT is
significantly shortened. Since the pipeline length of the 9/7 processing element is five,
and one zero is appended to the last sample of each stage to flush the pipeline, the

calculation of the L-stage 9/7 DWT can be completed in Lx(5+1) system clock cycles

after the last input sample is reccived.

When the counter counts up to the preset value (Lx (5+1)), the controller deasserts
the computation enable bit, and returns to the standby (Idle) state, as illustrated in

Figure 35 .

6.2.2 1-D Daub-4 Dual-Scan Architecture

The VHDL model of the I-D DSA is a simplified design for calculating three-
stage Daub-4 DW'T. The design is not refined to process random number of stages of
the DWT, but rather for verifying the concept and feasibility of the DSA. The
architecture consists of a datapath, as shown in Figure 27, and a controller. The datapath

includes a processing clement (PE), as shown in Figure 36. a memory bank, and some

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

switches directing the dataflow. The memory bank is configured as two first-in-first-out
(FIFO) registers. Since the signal length is reduced by half for each higher-stage DWT
computation, we clock the FIFOs at different frequencies to change the virtual length of
the FIFOs corresponding to the system clock: if we double the clock of a FIFO. it will
take only half of time for a signal to travel through the FIFO. In this way we keep the
design simple; however, it nceds a higher than system clock frequency to shorten the
virtual length of a FIFO to less than half of its physical length. An alternative design is
for each FIFO to have multiple output ports, which are located at the end of the FIFO,
and also at the %5, %, ..., length of the FIFO. The clock frequency of this design, which

would be half of the PE clock frequency, could be maintained constant for all of the

DWT stages.

Inputi

Input2 =

Enl)m
Jans
pdt

‘o

Enl),

Figure 36. Datapath of 1-D Daub-4 DSA

The state transfer diagram of the controller is shown in Figure 37. The controller
enables the DSA processor when it detects the first input sample, and starts a counter to
sequence the calculation of the DWT. After a number of clock cycles, which equals the
pipeline length of the PE, have clapsed, the controller starts to toggle between the
“ToFIFO1" and the *ToFIFO2’ states. At the *ToFIFO!” state, the controller directs the

high-frequency DWT coefficients of the first signal flow to FIFOI; at the “ToFIFO2’

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

state, it directs the high-frequency products of the other signal flow to FIFO2. The
controller transfers to the *FinalStg® State after the calculation of the first DWT stage is
complete. At this stage, the controller doubles the frequency of the FIFO clock to
reduce the FIFOs’ virtual lengths. After the last samples of the second stage have
entered the FIFOs, the controller detours the high-frequency product of the PE to the

output. The controller returns to the ‘Idle’ state afier the processing of all stages has

finished.
Start=1
Disable
NSA
Calculation of the
first input is done
FIFO outputs -
to PE PE output

1o FIFO1

L.ast sample of the
first stage processed

PE output
to FIFO2

Figure 37. State Transfer Diagram of 1-D DSA’s Controller

6.3 Implementations of the 2-D Architectures

6.2.1 2-D Daub-4 Recursive Architecture

As shown in Figure 31, the 2-D Recursive Architecture consists of a Row PE, a
Column PE, a controller, registers and memories for temporarily storing the

intermediate calculation results, and switches for directing the dataflows of the different

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DWT decomposition stages. The timing of the switch signals for the 2-D Daub-4 RA is
shown in Tablc 9.

The controller sequences the calculation of the multi-stage DWT, and governs
the row and column transitions. The state transfer diagram of the controller is shown in
Figure 38. The controller enables processing when it receives the first input sample. At
the end of the processing of each row, the controller performs a zero-padding boundary
treatment by‘ reseting all of the registers in the Row Processor. After all of the DWT

stages have been calculated, the controller disables further processing.

Input Signal
Received

Reset = |

Enable Processing

Analyzing2

Disable Processing

The End of One
Row

Transform Not
Done

Last Sample of

Transform Completed First Row Received

Figure 38. State Transfer Diagram of the 2-D D-4 RA’s Controller

6.2.1 2-D Daub-4 Dual-Scan Architecture

The structure of the 2-D DSA is shown in Figure 34. In the 2-D DSA, the memory
bank stores the low frequency sub-image (LL) of each decomposition stage. Since the
calculations of 2-D DWT in the DSA is identical to all stages, except that the input

image sizes are different, we only implemented a DSA for calculating one stage of the

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2-D Daub-4 DWT. Expanding the one-stage design to a multiple-stage design is
straightforward: add a switch at the low-frequency output of the column processor for
directing the decomposed subimage LL to a memory, and a pair of switches for
selecting the input source of the row processor between the external signal and the

memory.

In the 2-D Daub-4 DSA design, we use row counters and column counters to
generate periodical signals for resetting the internal registers (zero-padding). The
controller is a simple four-state Moore machine determining the start and stop of the

row processor and the column processor, as shown in Figure 39.

Input Signil
Received

Disable Processing Start Row Processor

First Sample of’

Transform Complete First Row Calculated

ColPro

Start Column Processor

Figure 39. State Transfer Diagram of 2-D DSA

6.4 Evaluation
In order to verify the correctness of our designs, we used our 2-D architectures to
calculate the 3-stage forward DWT of the two gray level images shown in Figure 40.

The decomposed images of the test images calculated by our 2-D Daub-4 recursive

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

architecture are shown in Figure 41. We compared these decomposed images to the
images produced using Matlab (programs can be found in Appendix A). which are
considered zero distortion in our evaluation. The histogram of the wavelet coefficient
error in three-stage DWT of the Lena image using the 2-D Daub-4 RA is ploted in
Figure 42; the histograms of errors in other test images are similar. From Figure 42, we
see that the accuracy of our 2-D RA architecture is within +0.3. Since PSNR is a better
criteria in evaluating the quality of reconstructed images, we also calculated the PSNR
values of our 2-D architectures in decomposing the selected images. The PSNR and
SNR values of the decomposed images calculated by our architectures are listed in
Table 14. As discussed in the first section of this chapter, increasing the word length
can further improve the performance of the designs.

To evaluate the physical sizes of the proposed architecture implemented as silicon
layouts, we synthesised our designs with FPGA and ASIC design tools. The proposed
architectures were synthesised and implemented for Xilinx’s Virtex II FPGA
XC2V250, which is a high-performance medium-size FPGA. The 1-D RA
implementing the 3-stage 9/7 lifting-based DWT uses 409 logic slices out of the 1536
slices available in the FPGA. The 2-D RA implementing the 3-stage Daub-4 DWT uses
879 logic slices, and can compute the DWT of 8-bit gray level images of sizes up to
6000x6000 at 50 MHz using the built-in RAM blocks and multipliers in the FPGA. To
estimate the corresponding silicon areas for ASIC designs, we used Synopsys™ Design
Compiler [45] to synthesize the above architectures with TSMC’s 0.18-um standard cell
library aiming for 50 MHz operation. Since the MAC unit is the critical element in the

designs, higher operation frequency can be achieved by implementing faster multipliers

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

or by pipclining the MAC units and minimizing the routing distance of cach section of
the pipeline. The synthesized designs were then placed and routed using the Silicon
Ensemble tool, and the final layouts were generated by using Cadence Design
Framework Il [46]. The core size of the 1-D RA implementing the 3-stage 9/7 DWT is
about 0.177 mm? (90% of which is the datapath, 10% is the controller, and the rest is
memory). The core size of the 2-D RA that calculates the 3-stage Daub-4 DWT of a
256x256 image is about 2.25 mm* (about 15% of which is the datapath, 5% is the
controller, and the rest is memory). The core area could be reduced by reimplementing
the delay units as register files instead of separate flip-flops, and the performance of the

proposed architectures could be further improved by optimizing the circuit designs.

Table 14. SNR/PSNR Values for 3-stage forward DWT

Lena Barbara
SNR PSNR SNR PSNR
Daub-4 69.6529 75.32 69.2755 75.18
9/7 069.1437 74.85 68.7880 74.73

BLAN
(a) Lena (b) Barbara

Figure 40. Test Images

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) Decomposed image of Lena (b) Decomposed image of Barbara

Figure 41. Decomposed Images of Test Images

U ST

Num. of Coefficient

08 06 04 -02 02 04 o8

Error

Figure 42. Histogram of the Error of 3-Stage Decomposition of Lena

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Conclusions and Future Work

We proposed a recursive architecture and a dual-scan architecture for computing
the DWT based on the lifting scheme. In the previous chapters, we described the
procedures for implementing 1-D and 2-D versions of the RA and DSA for calculating
any lifting-based wavelet transforms. We also illustrated the details of the hardware
design by describing implementations of the 1-D 9/7 RA, the 1-D Daub-4 DSA, the 2-D

Daub-4 RA, and the 2-D Daub-4 DSA as examples.

Compared to previous implementations of the lifting-based DWT, the proposed
architectures have higher, and hence more cfficient, hardware utilization and shorter
computation time. In addition, since the recursive architectures can continuously
compute the DWT coefficients as soon as the input data become available, the memory
size required for storing the intermediate results is minimized. Hence, the sizes and
power consumptions of both the 1-D and 2-D recursive architectures are reduced
compared to other implementations. In addition, since the designs are modular, they can
be easily extended to implement the separable multi-dimensional DWT by cascading
multiple basic 1-D DWT processors.

However, there arc limitations in our architecture designs: each specific datapath
can only calculate one type of lifting-based wavelet. Although it should be relatively

straightforward to design new architectures following our procedure, and many image

applications only use a few types of DWT, our architectures are not yet capable of

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

providing the convenience and the generality of any lifling schemes. Theoretically,
constructing gencral synthesis procedures for the RA and DSA architectures should be
feasible, but that would be beyond the scope of our thesis rescarch. The proposal of

such gencral architectures is one possible direction for future work.

Another direction for future work could be to extend our architectures to implement
the lifting scheme for multiwavelet applications. Multiwavelet analysis has been found
promising in applications, such as image compression and denoising [48][49]. Recent
research has revealed that multiwavelets can also be constructed using the lifting
scheme and any compactly supported multiwavelet can be factored into lifting steps.
Hence, it seems likely that our architectures could be modified to implement

multiwavelets.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

[1] A. Grossmann and J. Molet, “Decomposition of Hardy functions into square

[2]

[3]

(4]

[5]

[6]

[7]

[8]

[9]

integrable wavelets of constant shape”. SIAM J. Math. Ana., vol. 15, pp. 723-736,
1984.

I. Daubechies, “Orthonormal bases of compactly supported wavelets”, Comm. Pure

Appl. Math., vol. 41, pp. 909-996, 1988.

S. Mallat, “A theory for multiresolution signal decomposition: the wavelet
representation,” JEEE Trans.on Pattern Anal. Machine Intell., vol. 11, pp. 674-693,
Jul. 1989,

G. Knowles, “VLSI Architecture for the Discrete Wavelet Transform”, /EE
Electronics Letters, v26 n 15, pp. 1184-1185, Jul 19 1990.

A. Lewis and G. Knowles, “VLSI Architecture for 2-D Daubechies Wavelet
Transform without Multipliers”, Electronics Letters, vol. 27, no. 2, pp. 171-173,

Jan.1991

1. Daubechies, “Ten Lectures on Wavelets”, CBMS-NSF Regional Conf. Series in
Appl. Math., Society for Industrial and Applied Mathematics, vol. 61, pp. 279,
Philadelphia, PA, 1992,

J. Kovajcevi¢ and M. Vetterli. “Nonseparable multidimensional perfect
reconstruction filter banks and wavelet bases for R"™, JEEE Trans. Inform. Theory,

vol. 38, no. 2, pp. 533-555, Mar. 1992,

K. Parhi and T. Nishitani, “VLSI Architectures for Discrete Wavelet Transforms”,

IEEE Trans. on VLSI Systems, vol. 1, no. 2, pp. 191-202, Jun. 1993

A. Cohen, I. Daubechies, and P. Vial, “Wavelets On the Interval and Fast Wavelet
Transforms™, Applied and Computational Harmonic Analysis, vol. 1. pp. 54-81,

Dec 1993.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[10] C. Chakrabarti and M. Vishwanath, “Efficient Realizations of the Discrete and
Continuous Wavelet Transforms: From Single Chip Implementation to Mappings
on SIMD Array Computers™, IEEE Trans. on Signal Processing, vol. 43, no. 3. pp.
759-769, Mar. 1995

[11] W. Sweldens and P. Schroder, “Building Your Own Wavelet at Home™, Report
1995:5, Industrial Mathematics Initiative, Department of Mathematics. University

of South Carolina, 1995.

[12] M. Carnicer, W. Dahmen, and J.M. Pena, “Local decomposition of refinable

spaces”, Appl. Comput. Harm. Anal., vol. 3, pp. 127-153. 1996.

[13] C. M. Brislawn, “Classification of nonexpansive symmetric extension transforms
for multirate filter banks,” Appl. Comput. Harmon. Anal., vol. 3, pp. 337-357,
1996.

[14]) W. Sweldens, “The lifting scheme: A custom-design construction of biorthogonal

wavelets”, Appl. Comput. Harmon. Anal., vol. 3, no. 2, pp. 186-200, 1996.

[15] W. Sweldens, “Wavelets: What next?”, Proc. of the IEEE, vol. 84, no. 4, pp. 680-
685, 1996.

[16] A. Grzeszczak, M.K. Mandal, S. Panchanathan, “VLSI implementation of discrete
wavelet transform”, IEEE Trans. on VLSI systems, Part 1, vol. 47, no. 12, pp.
1492-1502, 1996.

[17] W. Sweldens, “The lifting scheme: A construction of second generation wavelets”,

SIAM J. Math. Anal., vol. 29, no. 2, pp. 511-546, 1997.

[18] G. Upytterhoeven and A. Bultheel, “The Red-Black wavelet transform™,
Proceedings of the IEEE Benclux Signal Processing Svmposium, leuven,

Belgium, pp. 191-194, Mar. 1998.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

W. Sweldens, “The Lifting Scheme: A New Philosophy in Biorthogonal Wavelet

Construction™, J. Fourier Anal. Appl., vol. 4, pp. 247-269, 1998,

l. Daubechies and W. Sweldens, “FFactoring wavelet transforms into lifting steps”,

J. Fourier Anal. Appl., vol. 4, no. 3, pp. 245-267. 1998,

L. He, Y. Zeng, “A Fast Algorithm for Two or More Dimensional Nonseparable
Wavelets”, IEEE Conference on Signal Processing Proceedings, vol.1, pp. 284 -

287, 12-16 Oct. 1998

W. Jiang and A. Ortega, “Parallel Architecture for the Discrete Wavelet Transform
based on the Lifting Factorization,” SPIE Conference on Parallel and Distributed

Methods for Image processing 111, Denver, Colorado, Jul. 1999.

X. Xiong, et al., “A Comparative Study of DCT- and Wavelet-Based Image
Coding”, IEEE Trans. on Circuits and Systems for Video Technology, vol. 9, no.

5, AUG. 1999.

D. Gunawan, “Denoising Images Using Wavelet Transform™, IEEE Pacific Rim
Conference on Communications, Computers and Signal Processing, Pages:83 —

85, Aug. 1999

J. Kovacevic and W. Sweldens, Interpolating filter banks in arbitrary dimensions,

US Patent No. 6,018,753, Jan. 2000.

Y. Sheng, “Wavelet Transform™, The Transforms and Applications Handbook,

Second Edition, CRC Press LLC, 2000.

M. Marcellin, er al., “An overview of JPEG-2000", Pro. of IEEE Data
Compression Conf., Snowbird, Utah, USA, pp. 534-541, 2000.

C. Taswell, “The what, how and why of shrinkage wavelet denoising”, Computing

in Science and Engineering, vol. 2, pp. 12-19, May 2000.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[29] H. L. Liao, B. F. Cockburn, and M. K. Mandal, “Efficient Implementations of the
Wavelet Transform on the Parallel DSP-RAM Architecture,” Proc. of the
Canadian Conference on Electrical and Computer Engineering (CCECE), pp.

1189-1192, Toronto, Canada, 2001,

[30] S. Gnavi, B. Penna, M. Grangetto, E. Magli, G. Olmo, “Wavelet kernels on a DSP:
a comparison between lifting and filter banks for image coding.” Applied Signal
Processing "Special Issue on Implementation of DSP and Communication

Systems", Vol. 2002, No. 9. pp. 981-989, Sept. 2002.

[31] C. Dolabdjiana, er al., “*Classical low-pass filter and wavelet-based denoising
technique implemented on a DSP: a comparison study”, Eur. Phys. J. AP 20, pp.
135-140, Nov. 2002.

[32] P. Wu and L. Chen, “An Efficient Architecture for Two-Dimensional Discrete
Wavelet Transform”, /EEE Trans. on Circuits and Svstems for Video Technology,

vol. 11, no. 4, pp. 536-544, Apr. 2001.

[33] C. Lian, er al., “Lifting Based Discrete Wavelet Transform Architecture for
JPEG2000,” [EEE International Symposium on Circuits and Systems (ISCAS
2001), Sydney, Australia, pp. 445-448, May 2001.

[34] K. Andra, C. Chakrabarti, and T. Acharya, “A VLSI Architecture for Lifting-Based
Forward and Inverse Wavelet Transform,” JEEE Trans. on Signal Processing, vol.

50, no. 40, pp. 966-977, April 2002,

[35] F. Arguello, et al., “Architecture for Wavelet Packet Transform Based on Lifting

Steps™, JJ. Parallel Computing, vol. 28, no. 7-8, pp. 1023-1037, August 2002.

[36] H. Y. Liao, M. K. Mandal, and B. F. Cockburn, “Efficient Implementation of the
Lifting-based Discrete Wavelet Transform,” IEE Electronics Letters, vol. 38, no.

18, pp. 1010-1012, Aug. 29, 2002.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[37] JPEG2000 Part Il Final Committee Drafi, 1ISO/IEC JTC 1/SC 29/WG 1,

hitp://www . jpeg.org.

[38) JPEG Part I 1SO/NEC IS 10918-1 | ITU-T Recommendation T.81,
http://www . jpeg.org.

[39] DV202 JPEG2000 Video Codec, hitp://www.analog.com.
[40] A. Alimohammad. S. J. Dillen and B. F. Cockburn, “DSP-RAM: A SIMD
Processor-in-Memory for Signal Processing,” to be submitted to [EEE

Transactions on Parallel and Distributed Systems.

[41] A. Antoniou, Digital Filters — Analysis, Design, and Applications, McGraw- Hill
Inc, New York, March 1994.

[42] C. T. Mullis, and R. A. Roberts, “Synthesis of Minimum Roundoff Noise
FixedPoint Digital Filters”, IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS, Vol. CAS-23, No. 9, Sep. 1976.

[43] D. B. Williams, V. K. Madisetti, Digital Signal Processing Handbook, CRC Press
LLC, 2000.

[44] Xilinx ISE Foundation, Xilinx, Inc., Product Version: ISE 3.1, 2002.

[45] Design Analyzer, Synopsys, Inc., Product Vession: 2000.05 -2, 2000.

[46] Design Framework II, Cadence Design Systems, Inc., Product Version 1.10.

[47] H. L. Liao, M. K. Mandal , and B. F. Cockburn, "Efficient Architectures for 1-D

and 2-D Lifting-Based Wavelet Transforms," IEEE Trans. on Signal Processing,
Vol. 52, No. 5, pp. 1315-1326, May 2004,

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.jpeg.org
http://www.jpeg.org
http://www.analog.com

[48] G. Davis, V. Strela, and R. Turcajova, “Multiwavelet construction via the lifting
scheme,” Wavelet Analvsis and Multiresolution Methods, T.-X. He, Ed., Marcel

Dekker, Inc., New York, 2000.

[49] S. Goh, Q. Jiang, and T. Xia, “Construction of biorthogonal multiwavelcts using
the lifting scheme,” Appl. Comput. Harmonic Anal., vol. 9, no. 3. pp. 336-352,
Nov., 2000.

[50] A. N. Netravali and B. G. Haskell, Digital Pictures: Representation, Compression,
and Standards (2nd Edition). Plenum Press, New York. 1995,

[51] Z. Wang, B. F. Cockburn, D. G. Elliott, and W. Krzymicn, “DSP-RAM: A Logic-
Enhanced Memory Architecture for Communication Signal Processing,” 1999
IEEE Pacific Rim Conference on Communications, Computers and Signal

Processing, Victoria, BC, Canada, pp. 475-478, Aug. 22-24, 1999.

[52] C. M. Bristawn, “Classification of nonexpansive symmetric extension transforms

for multirate filter banks.” Appl. Comput. Harmon. Anal., 3:337-357. 1996.

[53] V. H. Allan et al, “Software Pipelining,” ACM Computing Surveys, vol. 27, no. 3,
September 1995,

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A: MATLAB PROGRAMS

1. Daub-4 Lifting Algorithm

function Matrix=d4liflcore3(Matrix,length, Inv)

K=(370.5+1)/270.5*2" 1 4;
A=-3M1.5%2M14:
B=3/0.5/4%2"14:
C=(370.5-2)/4*27 14
Even=Matrix{:.1);
Odd=Matrix(:.2);

% step |

il (Inv==0)
Even=Even;
Odd=0dd+Even*A;

¢lse
Even=Even*(1/K);
0dd=0dd*K;

end

Yo step 2
if (Inv==0) Odd=0dd:
for i=1:length/2
il (i-1)<=0
Delay=0;
clse
Delay=0dd(i-1):
end

Even(i)=Even(i)+B*0dd(i)+Delay*C;

end
clse
Even=Even;
for i=1:length/2
if (i+1)>length/2
Next=0;
clse
Next=Even(i+1);
end
Odd(i)=0dd(i)-Next;

end
end

% step 3
if Iny==
Even=Even;
for i=1:length/2
il (i+1)>length/2
Next=0;
clse
Next=Even(i+1);
end
Odd(i)=0dd(i)+Next;
end
else
0dd=0dd;
for i=1:length/2
il (i-1)<=0
Delay=0;
clse
Delay=0dd(i-1):

end

end
end

% step 4
if (Inv==0)
Even=Even*K;
Odd=0dd*(1/K);
clse
Even=Even;
Odd=0dd-Even*A;
end

Matrix=[Even Odd];

Repfoduced with permission of the copyright owner. Further reproduction prohibited without permission.

Even{i)=Even(i)-(0dd(i)*B+Declay*C);

94

2. 9/7 Lifting Algorithm

function Matrix=1ifl97core(Matrix.length. Inv)
a=-1.586134342;

b=-0.05298011854:

r=0.8829110762;

d=0.4435068522;

¢=1.149604398;

Even=Maltrix(:,1); Odd=Matrix(:,2);
Y% step |
if (Inv==0)
LEven=Even;
for i=1:length/2
if (i-1)<=0
Delay=0:
clse
Delay=Even(i-1);
end
0Odd(i)=0dd(i)+a*(Even(i)+Delay);
end
clse
Even=Even*(1/c);
Odd=0dd*e;
end

Yo step 2
if (Inv==0)
for i=1:length/2
if (i+1)>length/2
Next=0;
clse
Next=0dd(i+1);
end
Even(i)=Even(i)+b*(Odd(i)+Next);
end
0dd=0dd;
clse
for i=}:length/2
if (i+1)>length/2
Next=0;
else
Next=0dd(i+1);
end
Even(i)=Even(i)-d*(Odd(i)+Next);
end
0dd=0dd;
end

Yostep 3
il Inv==
Even=Lven;
for i=1lengih/2
if (i- <=0
Delay=0:
else
Delay=Even(i-1):
end
Odd(i)=0dd(i)+r*(Even(i)+Delay);
end
else

Even=Liven:
for i=1:length/2
if (i-1)<=0
Delay=0;
clse
Delay=Even(i-1);
end
Odd(i)=0dd(i)-r*(Even(i)+Delay);
end
end

Y step 4
if (Inv==0)
for i=1:length/2
if (i+D)>length/2
Next=0:
clse
Next=0dd(i+1);
cnd
Even(i)=Even(i)+d*(Odd(i}+Next);
end
Odd=0dd;
clse
for i=1:length/2
if (i+1)>length/2
Next=0:
clse
Next=0dd(i+1);
end
Even(i)=Even(i)-b*(Odd(i)+Next);
end
0dd=0dd;
end

Yo step 5
il (Inv==0)
Even=Even*e;
Odd=0dd*(1/e);
clse
Even=Even; fori=1:length/2
il (i-1)<=0
Delay=0;
else
Delay=Even(i-1);
end
Odd(i)=0dd(i)-a*(Even(i)+Delay);
end
end

Matrix=|{Even Odd];

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

APPENDIX B: VHDL PROGRAMS

1. 1-D 9/7 Recursive Architecture

-~ a recursive lift arch. for multi-stage 1d 97 DWT
-~ Hongyu Liao Aug20/02

-- Last update:

LIBRARY icec;

library comp;

library io_util;

library std;

use icee.std_logic_1164.all;
use comp.liftcomp.all;

use std textio.all;

use io_util.tb_utilities.all;
use io_util.io_utils.all;

ENTITY rs97spdup IS
GENERIC (width: positive:= 16; fifo_len:positive:=1; SigLen:positive:=64;stage: positive:=3);

PORT(
InSignal :IN std_logic_vector(width-1 downto 0);
clock,reset,start,signalend: in std_logic;
dwi_coelt_L, dwt_coeff H: inQUT std_logic_vector(width-1 downto 0);
Done: inout std_logic),

END rs97spdup;

ARCHITECTURE mix OF rs97spdup 1S
component 1s97_pe
GENERIC(width : positive; fifo_len:positive;stage:positive;re:integer),
PORT(
IO JIN std_logic_vector(width-1 downto 0);
clock,clear,InEn: in std_logic;
Set0:std_logic_vector(3 downto 0);
steplen,step2en,step3en.stepden stepl sw,step2sw,step3sw,stepdswistd_logic_vector(stage:1 downto 0);
dwt_coel?_L, dwt_coeff_H: OUT std_logic_vector(width-1 downto 0)),
END component;

component R597_1dCtrl
generic(stage: positive);

PORT(
clk JIN STD_LOGIC;
reset JIN STD_LOGIC;
start,signalend (IN STD_LOGIC,
clear:inout std_logic;
Inkn: QUT STD_LOGIC),

END component;

component £s97_in_sw
GENERIC{width : positive; stage:positive),
PORT(
InSignall,Insignal2 @ IN std_logic_vector(width-1 downto 0),
clock,clear: in std_logic;
even_cn,odd_cn,swistd_logic_vector(stage-1 downto 0);
Even,0dd: OUT sid_logic_vector(width-1 downto 0));
END component;

constant rc:integer:=1;
constant input_Ishift:natural:=6;
constant scaler:natural:=14;

signal zeropad:std_logic_vector(input_Ishift-1 downto 0):=(others=>'0');

signal clr,Inputkin NInEn, LoutSw_Sig:std_logic;

signal EvenlnputEnOrg,OddInputEnOrg, InputSwOrg:std_logic_vector(stage-1 downto 0);
signal EvenlnputEn,OddinputEn, InputSwistd_logic_vector(stage-1 downto 0);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

signal

Stept EnOrg, Step2EnOrg, Step3tinOrg. Stepd EnOrg, Stepl SwOrg, Step2SwOrg, Step3SwOrg, StepdSwOrg:std_logic_vector(stage-1
downto 0);

signal Step) En,Step2Bn,Step3En,Stepd1in,Stepl Sw,Step2Sw, Step3Sw.StepdSwestd_logie_vector(stage-1 downto 0);
signal Bven,Odd:std_logic_vector(width-1 downto 0),

signad Set0:std_logic_vector(3 downto 0,

signal clkx40rg,clkxddl,S2enClk,clkx80rg,ctkx8DELS3enOrg,S3enClk :std_logic:

signal input_sc,L_S2up,L.Coclt:std_togic_vector(width-1 downto 0).

signal S1Mac1Set0,82Mac] Set0,S3Mac] Set0,S 1 Mac385et0,52Mac3Set0,.S3IMac3Setd):std_logic:

signal finish: std_logic;

signal Slend,S1endDL,S1endD1.2,S2end,S2endDL,S3end,S 1 Last,S2Last, S3Last:std_logic;

signal Analyzing: std_logic_vector(stage-1 downto 0);

signal PEenable:std_logic:

for input_sw: rs97_in_sw usc entity work.rs97_in_sw;
for pe: 1s97_pe usc entity work.rs97_pe;
for Ctrl: RS97_1dCtrl use entity work.rs97_ 1 dctrl;
for STswi,s2clkdiv,s3cikdivit_ {1 use entity comp.i_fT:
for S1en2,S1en3,S1end, S2EnRDelay,S2sw!.d_{T use entity comp.d_{T,
for 82¢n2,82en3,82end,83clkdivdl,S3clk,83en2,53en3,83end, Loutput:d_{1 use entity comp.d_IT;
for SImux3,SImux5,S2entodd,S2mux3,82mux5,S3enl odd,$3swl,S3mux3,S3mux5:bit_delay use entity comp.bit_delay,
for S1Set0_1,51Set0_3,52Set0_1,S28ct0_3,83Set0_1,83Set0_3:bit_delay use entity comp.bit_delay;
tor S18ct0dl,S28¢t0d],83Sct0dl,S1enddelay,SVenddelay2,s2enddelay :bit_delay use entity comp.bit_delay;
for slsetend,s2setend,s3sctend :t_fT use entity comp.t_iT;
BEGIN
-~ scale the input signal
input_sc<=InSignal(width-input_Ishift-1 downto 0) & zcropad;

---- input switches tor DWT Processor ----

input_sw: 1s97_in_sw GENERIC map(width=>width, stage=>stage)
PORT map(
InSignalt=>input_sc,Insignal2=>1_S2up,
clack=>clock,clecar=>clr,
cven_en=>EveninputEn,odd_en=>0QddinputEinsw=>InpuiSw,
Even=>Even,0dd=>0dd),

PORT map(
E=>Even,0=>0dd. clock=>clock,clear=>clr,InEn=>InputEn,Sct0=>Sel0,
steplen=>Stepl En,step2en=>Step2En,step3en=>Step3En,stepden=>Step4in,
steplsw=>Step1 Sw,step2sw=>Step2Sw,step3sw=>Step3Sw,stepdsw=>Stepd Sw,
dwi_coelf_L=>1.Cocfl, dwt_coell_=>dwi_Coell_H);

Ctrl: RS97_1dCtr generic map(stage=>stage)
PORT map(
clk=>clock, reset=>reset, start=>start,
signalend=>signalend, clear=>clr, InEn=>InputEn);

-- Low [tequency coellicients output switches --

LoutSwi: L_S2up<= LCocll when LoutSw_Sig="0' clse
(others=>'0"),

LoutSw2: dwi_Coefl_L<= L.CoelT when LoutSw_Sig="1" else
(others=>'0"),

--- enable and switch control signals ----

NinEn<=not InputEn,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-- enable and switch control signals for the stage 1 data Dow --

EvenlnputEEnOrg(0)<=Inputkn;
OddInputEnOrg(0)<='0';
Stswl: T_{1 port map(clk=>clock,Notlin=>NInEn ,q=>InputSwOrg(0)); -- 2i+1
Simux!: Stepl SwOrg(0)<=InputSwOrg(0), -- 2i+1
Sten2: D_FF port map(d=>Step! SwOrg(0),clk=>clock,cJr=>NInEn ,q=>Step2En0rg(D)); -- 2i+2
STmux3:bit_delay generic map(del=>2)

port map(clk=>clock,clr=>NInkn ,d=>Step2EnOrg(0),q=>Step2SwOrg(0)); -- 2i+4
Sten3:D_FF port map(d=>8tep2SwOrg(0),clk=>clock,clr=>NInln ,q=>Step3EnOrg(0)). -- 2i+5
STmuxd: Step38wOrg(0)<=Step3EnOrg(0);
Stend:D_FF port map(d=>Step3SwOrg(0),clk=>clock.clr=>NiInEn ,q=>Step4EnQrg(0)); -- 2i+6
SImuxS: bit_delay generic map(del=>2)

port map(clk=>clock,clr=>NinEn ,d=>Stepd EnOig(0),q=>Stepd SWOrg(0)); -- 2i+8

S1Set0_1:bit_delay peneric map(del=>2)

port map(clk=>clock,cl=>NInEn ,d=>signalend,q=>81 MaclSet0), -- signalendH-2
SISct0_3:bit_dcluy generic map(del==>4)

port map(cik=>clock,clr=>NInEn,d=>§ 1 Mac1Set0,q=>S1 Mac3Set0); -- signalend+6

-- speedup
S1Set0dl:bit_delay generic map(del=>3)

port map(clk=>clock,clr=>NinEn ,d=>§1Mac3Set0,q=>S I Last); -- signalend+9
slsetend:T_FF port map(clk=>S1Last,NotEn=>NInEn ,q=>Slend),
slenddelay:bit_delay generic map(del=>2)

port map(clk=>clock,clr=>Ninlin ,d=>8lend,q=>S lendDL); --signalend+11
stenddelay2:bit_delay generic map(del=>3)

port map(clk=>clock.cl=>NInEn ,d=>$1endDL,g=>S lendD1.2): --signalend+14

Analyzing(0)<=(not Slend) and InputEn;
EveninputEEn(0)<=EvenlnputEnOrg(0) and Analyzing(0);
OddInputEn(0)<=0ddInputEnOrg(0) and Analyzing(0Y,
nputSw(0)<=InputSwOrg(0) and Analyzing(0);

Step 1 Sw(0)<=Stept SwOrg(0) and Analyzing(0),
Step2En(0)<=Step2EnOrg(0) and Analyzing(0);
Step2Sw(0)<=Step2SwOrg(0) and Analyzing(0);
Step3En(0)<=Step3EnOrg(0) and Analyzing(0);
Step3Sw(0)<=Step3SwOrg(0) and Analyzing(0),

Step4 En(0)<=Step4EnOrg(0) and Analyzing(0);

Stepd Sw(0)<=Stepd SwOrg(0) and Analyzing(0),

-- enable and control signals for stage 2 data flow, Delay for Stage1=9 --

-- first, generate 4xClk signal for stage 2 control signals

s2clkdiv:T_FF port map(clk=>Step4SwOrg(0),NotEn=>NInEn ,q=>clkx40rg), --4i+8~9

-- then generate a clock signal with duty=25%, f=4xCIk

S2EnR Delay:d_{t port map(d=>clkx40rg.clk=>clock clr=>NInEn,g=>clkxdDL); ~-4i+9~10
S2enClk<=clkx4DL and clkx40rg; -~4i+9

EvenlnputEnOrg(1)<=82¢nClk;
S2entodd:bit_delay generic map(del=>2)

port map(clk=>clock,clr=>NInLn,d=>S2enClk,q=>0ddInputEnOrg(1)); -- 4i+11
S2swl:D_FF port map(d=>0ddInputEnOrg(1),clk=>clock,clr=>NInEn ,q=>InputSwOrg(1)); -- 4i+12 (mod(12/2)=0)
S2mux1:Step1 SwOrg(1)<=InputSwOrg(1),
S2en2: D_FF port map(d=>Step ! SwOrg(1),clk=>clock,clr=>NInEn ,q=>Step2EnOrg(1)), -- 4i+13
S2mux3:bit_delay generic map(del=>4)

port map(clk=>clock,clr=>NInEn ,d=>8tep2EnOrg(1),g=>Step2SwOrg(1)); -- 4i+17
S2en3:D_FF port map(d=>Step2SwOrg(1),clk=>clock,clr=>NInEn ,q=>Step3EnOrg(1)), -- 4i+18
S2mux4:Step3SwOrg(1)<=Step3EnOrg(1);
S2end:D_FF port map(d=>Step3SwOrg(1),clk=>clock,clr=>Ninkin ,g=>StepdBnOrg(1)); -- 4i+19
S2mux5:bit_delay generic map(del=>4)

port map(clk=>clock,clr=>NInEn ,d=>StepdinOrg()),q=>Stepd SwOrg(1)); -~ 4i+23

$28et0_1:bit_delay gencric map(del=>2)
port map(clk=>clock,clr=>NInEtn ,d=>81Lasl,q=>82Mac1 Set0). --signalend+11

S28et0_3:bit_delay generic map(del=>4)
port map(clk=>clock,clr=>Ninkin ,d=>82Mac|Set0,q=>52Mac38e10); --signalend+15

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-- speedup
S28ctOdi:bit_delay generic map(dei=>3)
port map(clk=>clock,clr=>NInlin ,d=>82Mac38¢10,q=>S2Last): -~ signalcnd+18
s2sctend:T_FF port map(clk=>82Last,NolEn=>NInln ,q=>82cnd);
s2enddetay:bit_delay gencric map(del=>2)
port map(clk=>clock,clr=>NInLn ,d=>82end,q=>S2endDL); --signalend+20

Analyzing(1)<=Inputlin and SlendDI and (not S2cend);

EvenlnputBEng 1 <=(EveninputEnOrg(1) and Analyzing(0));

OddInputEn(1)<=(OddInputEEnOrg(1) and Analyzing(0)):

InputSw(1)<=(InputSwOrg(1) and (not STendDL) and Inputlin) or ((not InpwtSwOrg(0)) and Analyzing(1));
SteplSw(l)<=(Step1 SwOrg(1) and (not SlendDL) and InputEn) or ((not Step1 SwOrg(0)) and Analyzing(1)).
Step2En(1)<=(Stcp2EnOrg(1) and (not SlendDL) and Inputlin) or ((not Step2EnOrg(0)) and Analyzing(1));
Step2Sw(1)<=(Step2SwOrg(1) and (not SlendDL) and Inputlin) or ((not Step2SwOrg(0)) and Analyzing(1)):
Step3En()<=(Step3LinOrg(1) and (not SlendDL) and InputEn) or ((not Step3EnOrg(0)) and Analyzing(1)):
Step3Swi)<=(Step3SwOrg(1) and (not StendDL) and Inputkin) or ((not Step3SwOrg(0)) and Analyzing(1));
Step4En(1)<=(Step4EnOrg(1) and (not SlendDL) and InputlEn) or ((not Step4inOrg(0)) and Analyzing(1));
StepdSw()<=(Step4SwOig(1) and (not SlendDL) and InputEn) or ((not StepdSwOrg(0)) and Analyzing(1));

-- chable and control signals for stage 3 --

-- generate 8xclk signal

s3ctkdiv:T_FF port map(clk=>Step4SwOrg(1),NotEn=>NInEn ,q=>clkx80rg), -- §i+23~26
-- duty=12.5% clock

S3clkdivdl:d_f1 port map(d=>clkx80rg,clk=>clock,cl=>NInEn,q=>clkx8dl); --81+26~29
S3enOrg<= (not clkx8dl) and clkx80rg, --8i+23

S3clk:d_f1 port map(d=>83enOrg,clk=>clock,cli=>NInEn,q=>S3enCik); --8i+24

EvenlnpulEnOrg(2)<=53enCIk,
S3enlodd:bit_delay generic map(del=>4)

port map(clk=>clock,clr=>NInl:n,d=>S3enClk q=>QddInputEnOrg(2)); -- 8i+28
S3swl:bit_delay generic map(del=>2)

port map(clk=>clock,clr=>NInlin ,d=>Oddlnputi:nOrg(2),q=>InputSwOrg(2)); -- 8i+30

(mod((30-12)/4!1=0)

S3mux1:Stepl SwOrg(2)<=InputSwOrg(2),
S3en2: D_FF port map(d=>Stepl SwOrg(2),clk=>clock clr=>NInEn ,q=>Step2EnOrg(2)), -- 8i+31
S3mux3:bit_delay generic map(del=>8)

port map(clk=>clock,clr=>NInEn ,d=>S1ep2EnOrg(2),q=>Step2SwOrg(2)), -- 8i+39
S3en3:D_FF port map(d=>81ep2SwOrg(2),clk=>clock,clr=>NInEn ,q=>Step3EnOrg(2)), -- 8i+40
S3mux4:Step3SwOrg(2)<=Step3inOrg(2);
S3end:D_FF port map(d=>S1ep3SwOrg(2),clk=>clock,clr=>NInEn ,q=>StepdEnOrg(2)); -- 8i+d 1
S3mux5:bit_delay generic map(del=>8)

port map(clk=>clock,clr=>NInEn ,d=>Step4EnOrg(2),q=>StepdSwOrg(2)); -- 8i+49

$3Set0_1:bit_delay generic map(del=>2)

port map(clk=>clock,clr=>NInEn ,d=>82Last.g=>S$3Mac1Sct0). --signalend+20
$3Set0_3:bit_delay generic map(del=>4)

port map(clk=>clock,clr=>NInEn ,d=>S3Mac Set0,q=>83Mac3Sct0), --signalend+24

-- speedup
$3Set0dl:bit_delay generic map(del=>3)

port map(clk=>clock,clr=>NInEn ,d=>S3Mac3Set0,q=>S3Last); -- signalend+
s3setend: T_FF port map(clk=>83Last,NotEn=>NInkn ,q=>53cnd),

Analyzing(2)<=Inputlin and STendDL2 and (not S3end);

EveninputEn(2)<=(EvenInputinOrg(2) and (not S1endDI.2) and InputEn) or (Step3SwOrg(1) and Analyzing(2)),

OddInputin(2)<=(0ddInputEnQOrg(2) and (not SlendD1.2) and Inputlin) or (Step! SwWOrg(1) and Analyzing(2)),

InputSw(2)<=(InputSwOrg(2) and (not StendDL) and Inputlin) or ({(Step28SwOrga(1) and (not S2endDL)) or
(InputSwOrg(0) and S2endDL.)) and Analyzing(2));

Step 1 Sw(2)<=(Stept SwOrg(2) and (not StendDL) and InputEn) or (((Step2SwOrg(1) and (not S2endDL)) or
(Stepl SwOrg(0) and S2endL)) and Analyzing(2)),

Step2En(2)<=(Step2EnOrg(2) and (not §1endDL) and InputEn) or (((Step38SwOrg(1) and (not S2endDLL)) or
(Step2EnOrg(0) and S2endDL)) and Analyzing(2));

Step2Sw(2)<=(Step2SwOrg(2) and (not SlendDL) and Inputlin) or (((Step3LinOrg(1) and (not S2endDL)) or
(Step2SwOrg(0) and S2endDIL)) and Analyzing(2));

Step3En(2)<=(Step3EnOrg(2) and (not S1endDL) and Inputlin or (((StepdSwOrg(1) and (not S2endDLL)) or
(Step3EnOrg(0) and S2endDL)) and Analyzing(2));

Step3Sw(2)<=(Step3SwOrg(2) and (not STendDL) and InputEn) or (((Step4EnOrg(1) and (not S2endDL)) or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

(Step3SwOrg(0) and S2endidNL)) and Analyzing(2)):

Stepd En(2)<=(StepdEnOrg(2) and (not SlendDL) and Inputlin) or (((Step! SwOrg(1) and (not S2endDLL)) or
(Step4EnOrg(0) and S2endDL)) and Analyzing(2)).

StepdSwi2)<=(Stepd SwOrg(2) and (not SlendDL) and Inputlin) or (({Step1SwOrg(1) and (not S2endDL)) or
(StepdSwOrg(0) and S2end L)) and Analyzing(2)),

Set0(0)<=S I Mac1Set0 or S2Mac! Set0 or S3Mac!Set0;

Set0(2)<=81Mac3Se10 or S2Mac3Set0 or S3Mac3Sel0;

Loutput: D_FF port map(d=>StepdSwOrg(2),clk=>clock,clr=>NInEn ,qg=>LoutSw- Sig); -- 8i+50
Stepl En<=InputSw;,

--PLenable<=InputEn and (Analyzing(0) or Analyzing(1) or Analyzing(2)),

-- it is done 8 cycles alter the last LoutSw_Sig pulsc
process(clock, LonSw_Sig)
variable finishent: natural:=0,
begin
i InputEn='l" then
if rising_cdge(LoutSw_Sig) then
finishent:=finishcnt+1;
end if}
clse
finishent:=0;
end il

if linishent>Sighen/(2* *stage) then
finish<='1";
clse
finish<='0",
end if}
end process;

----- Writing results to data files --——-

output: process(clock)

file testoutputS3L.:text open write_mode is "S3outputL.txt";

file testoutputS3h:text open write_maode is "S3outputH.ixt”;

file testoutputS2h:text open write_mode is "S2outputl.ixt”;

file testoutputSTh:text open write_mode is "SToutputH.txt";

file testoutputl: text open write_mode is "outputL.txt”;

variable OutL.81,0utliS1.0utl.S2,0utHS2,0ul.S3.0utHS3,0utl: Line;
begin

it rising_edge(clock) and finish="0" then
-~ 1H
it Step4Sw(0)="1" then
write(OutHS |, slv_to_bv{dwt_coetT_H),right,8,decimal, false),
writeline(testoutputS 1h,OutHS1);
elsif StepdSw(1)="1" then
write(OwHS2,slv_to_bv(dwt_coeft_H),right 8.decimal,false),
writeline(testoutputS2h,OutHS2);
- 311
elsif StepdSw(2)='1" then
write(Outl183,slv_to_bv(dwt_coeftf”_I1),right,8,decimal,false);
writeline(testouwtpwt$3h,0utlS3),
end if}
- 3L
it LoutSw_Sig="}' then
write(Outl.83,slv_to_bv(L.Coctt),right,8,decimal false);
writeline(testoutput S3L.,0wLS3),
elsil’ OddInputEn(2 downto 1)/="00" or EvenlnputEn(2 downto 1)/="00" then
write(Outl,slv_to_bv(L.Cocft),right,8,decimal,lalse),
writeline(testoutputL,OQutl),
end il
end i}

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end process output,
END mix;

-- a controller for 1-D Recursive 97 DWT architecture

--created Augl3/02
-- Last update
library icee:

use ieee.std_logic_anth.all;
use icee.std_logic_1164.all;
use icce.std_logic_signed.all,

ENTITY RS97_1dCirl IS
generic(stage: positive:=3);
PORI(
clk CIN
reset CIN
start, signalend: IN
clear:inout std_logic:
InEn: OUT
END RS97_1dCtrl;

ARCHITECTURE beh OF RS97_1dCel 1S

STD_LOGIC;
STD_LOGIC;
STD_LOGIC:

STD_LOGIC);

TYPE STATE_TYPE 1S (idle,analyzing,endofstage,analyzing2 Finish);

SIGNAL state: STATE_TYPE,

signal InEn_sig:std_logic:
BEGIN

PROCIESS (clk)

variable Count,entsetOr.entsetOc. LStage,CntlLastRow: natural:=0;

variable counting: std_logic;
BEGIN
-- Number of stage
Lstage:=stage,
IFreset ="1' THEN

state <=idle;
ELSIF clk'EVENT AND clk ='1' THEN
CASE state IS

end case;

WHIN idle =>
-- reset everything
counting:='0",

IF start="1" THEN
state <= analyzing,;
END IF;
WHEN analyzing =>
it signalend="1" then
state<=cndofstage;
end if}

when endofstage =>
counting:='l";
i count=Lstage*5+20 then
state <= Finish;
clse
state<=analyzing2;
END IF;

when analyzing2 =>
il count=10 then
state<=endofstage;
end if]

when Finish =>
state<=ldle;

il counting="1" then

Reproduced with permissibn of the copyright owner. Further reproduction prohibited without permission.

101

count'=count+1;

end if;
END)7
END PROCESS;
WITH state SELECT
InEn_sig <='0' WIIEN Idle,
e WHEN others;
WITH state SELECT
clear <='1'WIIEN Idle,
o WHEN others;

InEn<=InLn_sig:
END beh;

-- a process element for implementing 9/7 DWT

-- Hongyu Liao Jul12/2001

-~ the module should be cleared before cach data frame
-- Last update: Aug8/02

LIBRARY ieec;

library comp;

use icee.std_logic_arith.all;
use ieee.std_logic_1164.all;
use iece.std_logic_signed.all;
use comp.liftcomp.al;

ENTITY rs97_pe IS
GENERIC(width : positive:= 16; lilo_len:positive:=];stage:positive:=3;rc:integer:=1);

PORT(
EO VIN std_logic_vector(width-1 downto 0).
clock,clear,InEn: in std_logic;,
Set0: std_logic_vector(3 downto 0);
steplen,step2en step3en stepden,step] sw,step2sw,step3sw,stepdswistd_logic_vector(stage-1 downto 0);
dwt_coeft_L., dwt_coefl”_1: OUT std_logic_vector(width-1 downto 0)),
END 1597 _pe;

ARCHITECTURE str OF 1s97_pe 1S

for delay2.delay3.delay4.delay3:delay_rs use entity comp.delay_rs:
for mac!,mac2,mac3,macd: mac_sym use entity comp.mac_sym;
for mult),mult2: mult use entity comp.mult;

for reg1,reg2,reg3: reg use enlity comp reg;

signal alpha,beta,gama,delta, zeta,one, zeta_inv:std_logic_vector(width-1 downto 0);
signal el,e2,e3,e4.¢5,01,02,03,
04,05,51,52,53,s:51d_logic_vector(width-1 downto 0);
signal NInEn,S1en. $2sw2,83sw2,setOdl:std_logic;
signal towout, highout:std_logic_vector{width*2-1 downto 0);
signal delayoutl delayout2 delayout3.delayoutd. delayowt5:std_logic_vector(width*stage-1 downto 0);
signal ol _dclay,rl_in,i2_in,r3_in,rd_in:std_logic_vector(width-1 downto 0);
signal NoCtriSig:std_logic_vector(stage- 1 downto 0);

BEGIN
alpha<="1001101001111101"; -- right shift the original parameters for 14bits
beta<="1111110010011100";
gama<="0011100010000010";
delta<="0001 110001 100010",
zeta<="0100100110010011",
one<="0100000000000000";
zeta_inv<="0011011110101100";
NoCtriSig<=(others=>'0"),

el<=E;
0l<=0;

--.enable signal for the stage! data flow
--Slen

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- stepl
--delayl: delay_rs genceric map(width=>width, lep=>fifo_len, stage=>stage,
rc=>rc)

-- port map(clk=>clock,clr=>clear,enable=>steplen, input=>0l,output=>delayoutl);
--muxl: for index in 1 to stage generate

--begin
ol_delay<= delayoutl(width*index-1 downto width*(index-1)) when steplsw(index-
1)="'1' else

(others=>'0"') when steplsw=NoCtrlSig else
- (others=>'2"'};
--end generate muxl;

delay2: delay_rs generic map(width=>width,len=>{ifo_len,stage=>stage,re=>rc)
port map(clk=>clock.cl=>clear,enable=>steplen,input=>cl,output=>delayout2),

mux2; for index in 1 to stage generate
begin
ri_in<= delayout2(width*index-1 downto width*(index-1)) when steplsugindex-1)="1' clse
{others=>'0") when steplsw=NoCtr!Sig else
(others=>'Z2");
end generate mux2;

macl:mac_sym generic map(width=>width,add_sc=>14,res_sc=>14)
port map(clock=> clock,clear=>clear,Set0=>8e10(0),acc=>01,in1=>¢1,in2=>r1_in,amp=>alpha,
output=>02),

regl:reg generic map(width=>width)
port map(clk=>clock.cl=>clear.en=>InEninpui=>ri_inoutput=>c2);

-- step2
delay3: delay_rs generic map(width=>width,len=>fifo_len stage=>stage.re=>rc)
port map(clk=>clock,cl=>clear.enable=>step2en,input=>02,output=>delayout3);
mux3: for index in 1 1o stage generate
begin
12_in<= delayout3(width*index-1 downto width*(index-1)) when step2sw(index-1)='1" else
(others=>'0") when step2sw=NoCtriSig else
(others=>'7"),
end generate mux3;
mac2:mac_sym generic map(width=>width,add_sc=>14,res_sc=>14)
port map(clock=> clock,clear=>clear,Set0=>Set0(I),acc=>e2,in1=>02,in2=>r2_in,amp=>beta,
output=>e3);
reg2:reg generic map{width=>width)
port map(clk=>clock,clr=>clear,en=>InEn, input=>r2_in,output=>03);
--step3

delay4: delay_rs generic map(width=>width Jen=>fifo_len stage=>stage.re=>rc)
port map(elk=>clock.cl=>clear,enable=>step3en, input=>c3, output=>delayoutd),

muxd: for index in 1 to stage generate
begin
r3_in<= defayoutd(width*index-1 downto width*(index-1)) when step3sw(index-1)='1" else
(others=>'0") when step3sw=NoCtrlSig clse
(others=>'"7");
end generate muxd4,
mac3:mac_sym generic map(width=>width add_sc=>14 res_sc=>14)
port map(clock=> clock,clear=>clear, Set0=>8etd(2),acc=>03,in1=>¢3,in2=>r3_in,amp=>gama,
output=>04),

reg3ireg generic map(width=>width)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

port map(clk=>clock.cl=>clear.en=>Inln,input=>13_in onput=>ed);

-~ stepd
delays: delay_rs generic map(width=>width,len=>{1fv_len stage=>stage. re=>re)
port map(clk=>clock,clr=>clear,enable=>stepden, input=>04, output=>delayoul5);

mux5: for index in 1 to stage generate
begin
o5<= delayoutS(width* index-1 downto width*(index-1)) when stepdswiindex-1)='1" ¢lse
(others=>'0") when stepdsw=NoCtrlSiy else
(others=>'2"),
end generale muns;

macd:mac_sym generic map(width=>width,add_sc=>14 res_sc=>14)
port map(clock=> clock clear=>clear,Sct0=>Se10(3),acc=>c4,in1=>04,in2=>05,amp=>delta,
output=>¢5);

multlh:mult generic map(width=>width)
port map(a=-e5, b=2zeta,p=>lowout),

mult2:mult generic map(width=>width)
port map(a=>05,b=>zcta_inv,p=>highout),

scalel:dwt_coelt_L<=lowout(width*2-3 downto width-2)when lowou(width-3)="0" elsc
lowout(width*2-3 downto width-2)+];
scale2:dwt_coelf_H<=highout(width*2-3 downto width-2) when highout{width-3)='0' clse
highout(width*2-3 downto width-2)+1;
END str;

-- input switch tor 1-1 97 lifting filter
-- Hongyu Liao Augl2/2002

-- Last update: /2002

LIBRARY iceg;

library comp,

use iece.std_logic_arith.all;

use ieee.std_logic_1164.all;

use icce.std_logic_signed.all;

use comp.liftcomp.all,

ENTITY rs97_in_sw 1S
GENERIC(width : positive:= 16; slage:positive:=3);
PORTY(
InSignall,Insignal2 :IN std_logic_vector{width-1 downto 0),
clock,clear: in std_logic;
even_enodd_enswistd_logic_vector(stage-1 downto),
Even,0dd: OUT std_logic_vector(width-1 downto 0));
END rs97_in_sw,

ARCHITECTURE str OF rs97_in_sw IS
for reg) .. reg use entity comp.reg,
for even_regs,odd_regs:delay_rs use entity comp.delay_ss;

signal odd_reg_out,even_reg_out:std_logic_vector(width*stage-1 downto 0);
signal NoCtriSig:std_logic_vector(stage-1 downto 0);
BEGIN
NoCtriSig<=(others=>'0"),
-- synchronize the even and odd samples
regl:reg generic map(width=>width)
port map(clk=>clock,clr=>clear,en=>even_en(0),input=>Insignal | ,output=>¢ven_reg_out(width-1 downta 0));

odd_reg_out(width-1 downto 0)<=Insignall;

-- for stage 2 and up

even_regs: delay_rs generic map(width=>width, len=>1, stage=>stage-1, re=>1)
port map(clk=>clock clr=>clear,enable=>cven_en(stage-1 downto
1),input=>Insignal2,output=>even_reg_ow(width*stage-1 downto width));

odd_regs: delay_ss generic map(width=>width, len=>1, stage=>stage-1, re=>1)

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

port maplctk=>clock.chr=>clear.enable=>o0dd_en(stage-1 downto
1), input=>Insignal2.output=>o0dd_reg_out(width*stage-1 downto width)):

- there is 1 eyele delay between the switch signals and the enable signals
-~ tor the data flows of stage 2 and up, which allows the data fows to get o
-- the next step
mux_even: foriin 1 to stage generate
begin
Even<=even_reg_out(width*i-1 downto width*(i-1)) when sw(i-1)="1" else
{others=>'0") when sw=NoCl1rlSig else
(others=>'7"),
end generate mux_even;

mux_odd: for i in 1 to stage generate
begin
Odd<=odd_reg_out(width*i-1 downto width*(i-1)) when sw(i-1)='1" else
(others=>'0") when sw=NoCirlSig else
(others=>'Z');
end generate mus_odd,

IEND str;

2. 1-D Daub-4 Recursive Architecture

-« a recursive lift arch. for multi-stage D-4
-- Hongyu Ligo feb!7/02

-- Last updale:

LIBRARY icee;

library my_lib;

use ieee.std_logic_arith.all;

use teee.std_logic_1164.all;

use jece.std_logic_signed.all;

use my_libdiflcomp.all;

ENTITY rs_td IS
GENERIC(width : positive:= 16: fifo_len:positive:=|;SigLen:posilive:=32),

PORT(
InSignal :IN std_logic_vector(width-1 downto 0);
clock,reset,start: in std_logic;
dwt_coefl_L, dwt_coefl_H: QUT std_logic_vector(width-1 downto 0);
Done: out std_logic);
END rs_ld;
ARCHITECTURE beh OF rs_1d 1S

component d4lifi_rs_dp
GENERIC(width : positive; lifo_len:positive);
PORT(
InSignall Insignal2 :IN std_logic_vector(width-1 downto 0);
clock,clear,InEn,Set0,52en1,S3enl,82¢n2,83¢n2,82s5w1,83sw1,S3enl b in sid_logic;
dwt_coeft_L., dwi_coeft_H: OUT std_logic_vector(width-1 downto 0));
END component;

component RSConltrol
generic(Siglen: positive),

PORTY(
clk CIN STD_LOGIC;
resel CIN STD_LOGIC;
start 1IN STD_LOGIC;

InEn,clear,Set0,52¢n1,83en1,82en2,83en2,528w1,S3sw1,S3en 1 b,Done: OUTSTD_LOGIC),
END component;

signal clr,InSel,$2en1,83en1,52en2,53en2,InputEn, Setzero, CIkDivEn, Lout:std_logic,
signnl $2sw1,S3sw1,S3enl bistd_logic;

signal zeropad:std_logic_vector(5 downto 0):=(others=>'0");

signal input_sc,Lsig,lfeedbk 1, Livedbk2:std_logic_vector(width-1 downto 0),

BEGIN

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

inpul_sc<=inSignal(width-7 downto 0) & zeropad:

core: d4hift_rs_dp GENERIC map(width=>width.fifo_len=>1ifo_len)
PORT map(
InSignall=>input_sc,inSignal2=>Llecdbk clock=>clock, clear=>clr,InEn=>Inputn.Scl0=>Setzero,
S2enl=>S2enl,S3enl=>83enl,S2en2=>S2en2,83cn2=>83cn2, 525wl =>82swl,
S3swl=>83swl,S3en1b=>S3en1b,dwt_coeft_L=>Lsig, dwi_coefl_H=>dwi_coell_I1);

controller:RSControl generic map(Siglen=>Siglen)
PORT map(
clk=>clock,reset=>reset, start=>start, InEn=>Inputin clear=>clr,set0=>Setzero,
S2enl=>82enl.83enl=>83en,S2en2=>52en2,53en2=>53¢n2, 825w =>S2sw]
S3swl=>83swl S3enlb=>S83en1b,Done=>Done):

LSel:d_tT port map(d=>S3en2,clk=>clock,clr=>reset,g=>Lowt);
Lleedbk1<=LSig when Lout="0" clse
(others=>'0'),
dwt_coefl”_L<=LSig when Lout="1" else
{others=>'0");
END beh;

-- a recursive lift arch. datapath for D-4
-- Hongyu Liao feb12/2001

-~ the module should be cleared betore use
-~ Change port map

-- Last update: Apr09/2002

LIBRARY icec;

library my_lib;

use icce.std_logic_arith.all;

use icee.std_logic _1164.all,

use icee.std_logic_signed.all;

use my_lib liftcomp.all;

ENTITY ddlifi_rs_dp IS
GENERIC(width : positive:= 16; fito_len:positive:=1),
PORT(
InSignall.Insignal2 :IN std_logic_vector{width-1 downto 0);
clock,clear,InEn,Set0,82ent,S3ent,$2¢n2,83en2,S2sw!,S3swl,S3enl b: in std_logic:
dwt_coetl_L, dwi_coefl” H: OUT std_logic_vector(width-1 downto 0));
END d4lift_rs_dp;

ARCHITECTURE beh OF ddlift_rs_dp IS

signal alpha,beta,gama,one, KK _inv,zero:std_logic_vector(width-1 downto 0),
signal el_inel_sl,el_s2.el_s3,cl.c2,e3,ed_in,cd.c5,0l,01_sl,01_s2,01_s3.02,03.
04,05_in,05,delay_in,s1.52,53,s1up,s:s1d_logic_vector(width-1 downto 0);
signal NInEn,S1en,S2sw2,83sw2.cIrM3:std_logic;
signal lowout, highout:std_logic_vector(width*2-1 downto 0);
BEGIN
alpha<="1001000100100111"; -- right shifl the original parameters for 14bits
beta<="0001101 {10110110";
gama<="1111101110110111",
one<="0100000000000000";
K<="0111101110100011";
K_inv<="0010000100100000";
zero<={others=>'0"),

ol_sl<=InSignall;

ol_s2<=InSignal2,

NInkn<=not Inlin,

-- enable signal for the stagel-data Mow

--Slen

s1selT_FI port map(clk=>clock,clr=>NInEn ,g=>S1en),

-- synchronize the even and odd samples
regl:reg generic map(width=>width)

port map{clk=>clock,cl=>clear,en=>InEn,input=>Insignal L ,output=>¢1_sl),
regl_2:reg generic map(width=>width) :

port map(clk=>clock,cl=>clear,en=>82en input=>Insignal2,ontput=>c|_s2),

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

regl_3:reg generic map{width=>width)

port map(clk=>clock clr=>clear,en=>S3enl,input=>Insignal2 output=>¢|_s3),
regl_d:reg generic map(width=>width)

port map(clk=>clock.clr=>clear,en=>83ent b input=>Insignal2 output=>o1_s3);

-- there is 1 cycle delay between the switch signals and the enable signals
-- lor the data Nows of stage 2 and up, which allows the data Mows to get to
-- the next step
cinmux: el<=c¢l_s| when Slen='1" else

cl_s2 when S2swl="1" clse

cl_s3 when S3swi='1"else

zeru,
oinmux: ol <= ol_sl when Slen='1" clse

0l_s2 when S2swi="1" else

ol_s3 when S3swi='"l" else

zero,

mact:mac generic map{width=>width,add_sc=>14,res_sc=>14)
port map{clock=> clock clear=>clear,acc=>0 1, mul=>clamp=>alpha, output=>02);

reg2:reg generic map(width=>width)
port map{clk=>clock.cl=>clear,en=>InEn,input=>el output=>¢2);

mac2:mac generic map(width=>width,add_sc=>14,res_sc=>14)
port map(clock=> clock,clear=>clear,acc=>¢2,mul=>02, amp=>beta, output=>e3);

reg3:reg generic map(width=>width)
port map(clk=>clock cl=>clear,en=>InEn input=>02,output=>delay_in),

-- defay unit, 3 delay registers
dl:delay generic map(width=>width len=>1ifo_len)

port map(clk=>clock clr=>clear,en=>S$1en,input=>delay_in,output=>st1);
d2:delay generic map(width=>width, len=>(ifo_len)

port map(clk=>clock.cl=>clear,en=>82en2.input=>delay_in,output=>s2),
d3:delay generic map(width=>width, len=>fifo_len)

port map(clk=>clock.clr=>clear.en=>S3en2.input=>delay_in,output=>s3);

delaymux: 03<=s1 when Sten="1" else
s2 when S2en2="1" clse
53 when S3en2="1' clse
zero;

-- this mac can be cleared for the last high frequency DWT coeflicient
mac3:mac generic map(width=>width,add_sc=>14,res_sc=>14)

port map(clock=> clock,clear=>clrM3,acc=>c3,mul=>03,amp=>gama, output=>ed);
clrM3<=clcar or sct0;

regd:reg generic map(width=>width)
port map(clk=>clock,cl=>clear,en=>InEn,inpul=>03,output=>04);

mac4:mac generic map(width=>width,add_sc=>14,res_sc=>14)
port map(clock=> clock,clear=>clear,acc=>04,mul=>¢d, amp=>one, output=>05),

muhth:muh
generic map(width=>width)
port map(a=>c4,b=>K, p=>lowout);
multZ:mult
generic map(width=>width)
port map(a=>03,b=>K_inv,p=>highout);
scaled :dwi_coefl_L<=lowout{width*2-3 downto width-2)when lowoul{width-3)='0" else
lowout(width*2-3 downto width-2)+1,

scale2:dwi_coell_H<=highout(width*2-3 downto width-2) when highout(width-3)='0' ¢lse
highout{width*2-3 downto width-2)+1;

END beh;

- - i controller for 1-D Recursive

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

--created feb13/02

-« Last update

library icee;

use icee.std_logic_arith.all;
use ieeestd_logic_1164.all;
use icce.std_logic_signed.all;

ENTITY RSControl IS
generic(Siglen: positive:=8),

PORT(
clk CIN STD_LOGIC;
reset CIN STD_LOGIC;
start JIN STD_LOGIC.

InEn,clear,Sct0,82en1,53en1,52en2,S3¢en2,82sw1,S3sw1,S3ent b,Done: OUTSTD_LOGIC),
EEND RSControl.

ARCHITECTURE a QF RSControl 1S

TYPE STATE_TYPE IS (idle,analyzing,Stg 1 End,Stg2End,Stg3End, Finish),

SIGNAL state: STATE_TYPE;

signal InEn_sig:std_logic;

BEGIN

PROCESS (cIk)

variable FifoDep: positive:=Siglen;

variable Count,cntDd1,entD2,entD3,cntDd4,cntS2a,cntS3a,cntS3a2,entS3sw,cniS2b,cntS3b,enS2sw: natural:=0;

variable counting: std_logic: '

BEGIN

IF reset ='1' THEN
state <=idle,
ELSIF cIk' EVENT AND clk ='1' THEN
CASE state IS
WHEN idle =>

counting:='0";
count:=0;
cntS2a:=0,
cntS2sw:=0;
cntS3a:=0;
cntS3sw:=0;
cntS3a2:=0;
cn1S2bh:=0;
cntS3b:=0;
S2enl<='0",
S3ent<="0",
S2en2<="0",
S3en2<="0";
set0<='0";
IF start="1' THEN
state <= analyzing;
counting='1";
END IF;

WHEN analyzing =>
IF count=SiglLen+3 THEN
state <= stgl nd;
Set0<="1";
END IF;

WHEN Stgl End =>
Set0<='0";
if count=Siglen+8 then
state<=Stg2End,
Set0<="1";
end if;

WHEN Stg2lind =>
Set0<='0";
i'count=Siglen+18 then
slate <= Stg3lind;
Set0<="]";
END IF;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

WIIEN Stg3lind =>
Set0<='0";
if count=Sigl.en+20 then

state <= Finish:

END I,

when Finish =>

state<=Idle;
end case;
if counting="1" then

count:=count+1;

if count >=2 then
entS2a:=cntS2a+1;

i entS2a =4 then
S2ent<="1",
cntS2a:=0;

clse
S2enl<='0";

end if}

end il

i count >=4 then
cntS2swi=cntS2sw+1;
if cntS2sw =4 then

S2swi<="1";

cntS2sw:=0;
else

S2swl<="0";
end if’

end if;

il count>=6 then
cntS2b:=cntS2b+1;
i'entS2b =4 then

S2en2<="]";

cntS2b:=0;,
else

S2en2<='0",
end if}

end if}

i count>=3 then
cntS3a:=cntS3a+l;
ifcntS3a = 8 then

S3enl<="]";

cntS3a:=0,
clse

S3enl<=0";
end if}

end if;

if count>=7 then
cntS3a2:=cntS3a2+1;
ifcnt83a2 = 8§ then

S3enib<='1"

cntS3a2:=0;
clse

S3enlb<='0;
end if;

end i}

if count>=10 then
entS3swi=cnIS3sw+l;
if cntS3sw = 8 then

S3swi<="l";

cS3sw:=0;
else

S3swl<='0",
end if;

end if;

if count>= 12 then
cnlS3b:i=cntS3b+1;
ifcntS3b = 8 then

S3en2<="1",
cntS3h:=0,
clse

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83en2<="0",

end il
end if:
end ifl
END I
END PROCISS;
WITH state SELECT
InEn_sig <="'0' WHEN Idle,
N WHEN others;
WITH state SELECT
clear <='1' W]IEN Idle,
o WHEN others;

InEn<=InEn_sig;
END a;

3. 1-D Daub-4 Dual-Scan Architecture

-- a double scan lift arch. for multi-stage 1D-4
-- Hongyu Liao 1/23/02

-- Last update: Jun28/2001

LIBRARY icee;

library comp;

usc icce.std_logic_arith.all;
use icee.std_logic_1164.all;
use icee.std_logic_signed.all;
use comp.liftcomp.all;

ENTITY ddlift_ms IS
GENERIC(width : positive:= 16; fifo_len:positive:=1;Siglen: positive:=32);

PORT(
firstline, secondline : IN std_logic_vector(width-1 downto 0);
clock,reset,start: in std_logic:
dwt_coell’ L, dwi_coeft_11: QUT std_logic_vector{width-1 downto 0);

Done: out std_logic);
END ddlift_ms;

ARCHITECTURE beh OF ddlift_ms IS
component d4lift
GENERIC(width : positive; fifa_len:positive);
PORT(
firstline, secondline : IN std_logic_vector(width-1 downto 0);
clock, enable,clenr. InEn,Set0: in std_logic;
dwt_coelf_L, dwt_coelf”_H: QUT std_logic_vector(width-1 downto 0));
END component;

component DSControl
generic(Siglen: positive);

PORTY(
clk JIN STD_1.OGIC;
reset CIN STD_LOGIC;
start VIN STD_LOGIC;

Sel_EO,Scl_FIFO,Scl_In,CIkCtr,InEn,Set0,Done: OUT STD_LOGIC),
END component;
signal first_int,second_int, ToFirst, ToSccond, Lout, ToFifo,Fifol_in,Fifo2_in: std_logic_vector(width-1 downto 0);
signal InSel, EOSel,FSel, FCIk,FCIk2,cikx2,clksel, InputEn,Setzero, high:std_logic;
signal zeropad:std_logic_vector(5 downto 0):=(others=>'0'"),
signal first_sc,sccond_sc:std_logic_veclor(width-1 downto 0),

for in_swl,in_sw2: mux usc entity comp.mux,
for {ifo], 11102 delay use entity comp.delay;
tor I_swl,|_sw2: switch use enlity comp.switch;

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for D_Freq:T_FF use entity comp.t_iT:
for core: d4lifl usc entity work.ddliit;
for controller:DSContro! use entity work.dscontrol,
BEGIN
high<="1",
first_sc<=lirstline(width-7 downto 0) & zeropad;
second_sc<=sccondline(width-7 downto 0) & zeropad.
in_swi: mux GENERIC map(width=>width)
POR'T map!(
inputl=>first_sc,input2=>first_int, Scl=>InScl, output=>ToFirst),

in_sw2: mux GENERIC map(width=>width)
PORT map(
inputl=>second_sc,input2=>second_int, Sel=>InSel, output=>ToSeccond):

core: d4hift GENERIC map(width=>width,lifo_len=>{ifo_len)
PORT map(
firstline=>ToFirst.sccondline=>ToSccond,clock=>clock,
cnable=>high,clemr=>1esel, InEn=>Inputlin, Set0=>Setzero,
dwi_coett_L=>Lout, dwi_coelt_H=>dwt_coefl_l1);

controller:DSControl generic map(Siglen=>Sigl.en)
PORT map(
clk=>clock,reset=>reset,start=>start,
Sel_EO=>LEQSel,Sel_FIFO=>FSel,Sel_In=>InSel CIkCte=>clksel,
InEn=>Inputlin set0=>Setzcero.Done=>Done),

L_sw!:switch GENERIC map(width=>width)
PORT map(
input=>Lout,Sel=>E0Sel. outputl=>dwt_coetl__L, output2=>TaFifa);

L_sw2:switch GENERIC map(width=>width)
PORT map(
input=>ToFifo,Scl=>FSel, output!=>Fifo] _in. output2=>Fifo2_in);

D_Freq:T_FF port map (clk=>clock NotEn=>resel.Q=>clkx2);

with clksel select
FClk<=clock when')',
clkx2 when others;,

-- 180 phase shift for fifo] clock signal, so that the Leoelt for the first signal can be latched
FCIk2<=not FCIk when clksel=0' else
FCIk when clksel='1"; -- after 1 ns;
-- A bug in the simulator swilching the content of these two fifos
Fifol: delay generic map(width=>width len=>Sigl.en/2)
port map(
clk=>FCIk2 clr=>reset,inpm=>Fifo1_in, output=>second_int);--first_int teb07/02

Fifo2: detay generic map{width=>width len=>Sipglen/2)
port map(
clk=>FCik clr=>reset,input=>Fifo2_in. output=>{irst_int);--second_int
END beh;

-- & double scan lift arch. for D-4
-- longyu Liao 11/01/2001

-- modified for synopsys

-- Last update: jun08/2002
LIBRARY icee;

library comp;

use icee.std_togic_arith.all,
use jece.std_logic_| 164.all;
use iece.std_logic_signed.all;
use comp.liftcomp.all;

ENTITY d4lift IS
GENERIC(width : positive:= 16; fifo_len:positive:=1);
PORT(

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i

firsthine, secondline : IN std_logic_vector(width-1 downto 0);

clock, enable,clear,Inkn,Sct0: in std_logic;

dwi_coett_L, dwi_cocfT_H: OUT std_lopic_vector(width-1 downto 0));
END ddlift; :

ARCHITECTURE beh OF d4lin 1S

signal alpha,beta,gama,one, K. K_inv:std_logic_vector(width-1 downto 0);

signal el _in,el,e2,e3,04_in,ed,¢5,01,02,03,
od,05_in,05,deiay_in,zero:std_logic_vector(width-1 downto 0);

signal lowout, highout,lowout2 highow2:std_logic_vector(width*2-1 downto 0);

for regl,reg2,reg3,regd,regS:reg use entity comp.reg,

for mac1,mac2,mac3,macd: mac use enlity comp.mac;,

for multl,mult2: mult use entity comp.mult;

for defay1: delay usc entity comp.delay;

for mux1: mux use entity comp.mux:

for in_circuit: in_switch use entity comp.in_switch:

BEGIN
alpha<="1001600100100111", -- right shift the original parameters for 14bits
beta<="0011011101101101";
gama<="]111011101101101",;
one<="(100000000000000";
K<="0111101110100011",
K_inv<="0100001001000010";

zero<=(others=>'0');
in_circuit:in_switch generic map(width=>width)
port map(firsthine=>{irstline,secondline=>secondline, clk=>clock,enable=>InEn,

odd=>o01 even=>¢l_in),

reglireg generic map(width=>width)
port map(clk=>clock.clr=>clear.input=>¢1_in,output=>cl),

mac]:mac gencric map(width=>width,add_se=>14,res_sc=>14)
port map{clock=> clock,clear=>clear,acc=>01,mul=>¢] amp=>alpha, output=>02),

reg2:reg generic map(width=>width})
port map(clk=>clock.cl=>clear,input=>¢1, output=>¢2);

mac2:mac generic map(width=>width,add_sc=>15 res_sc=>13)
port map(clock=> clock,clear=>clear,ace=>¢2,mul=>02,amp=>beta, output=>¢3);

reg3:reg gencric map(width=>width)
port map(clk=>clock cl=>clear,input=>02, output=>delay_in).

delayl:delay generic map{width=>width len=>{ifo_len)
port map(clk=>clock,clr=>clear,input=>delay_in,output=>03),

mac3:mac generic map(width=>width,add_sc=>15,res_sc=>15)
port map(clock=> clock,clear=>clear,ace=>e3 mul=>03 amp=>gama, omtpu=>e4_in);

mux!:mux generic map(width=>width)
port map(input =>ed_in,input2=>zero,Sel=>Set0,output=>cd),

regd:reg generic map(width=>width)
port map(clk=>clock,cl=>clear,input=>03,output=>04),

mac4:mac generic map(width=>width,add_sc=>14 res_sc=>14)
port map(clock=> clock,clear=>clear,acc=>o4,mul=>cd,amp=>one, output=>05},

regS:reg generic map(width=>widih)
port map(clk=>clock clr=>clear,input=>cd,output=>c3),

mult!:mult generic map(width=>width)
port map(a=>e5,b=>K p=>lowout),

muliZ:muit generic map(width=>width)
port map(a=>05,b=>K_inv,p=>highout),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

scalel:dwt_cocfi_L<=towoul(width*2-3 downto width-2);
scale2:dwt_coelf_H<=highout(width*2-2 downto width-1);

END beh;

- a controller for 1-D DoubleScan
--created 1/23/02

-- Last update

library icce;

use icce.std_logic_arith.all;

use icee.std_fogic_1164.all;

use iece.std_logic_signed.all,

ENTITY DSControl IS
gencric(Siglen: positive:=8),

PORT(
clk CIN $TD_LOGIC;
reset CIN STD_LOGIC;
start JIN STD_LOGIC;
Sel_EO,Sel_FIFO,Sel _In,CIkCtr,InEn,Set0,Done: OUT STD_LOGIC);
END DSControl;

ARCHITECTURE a OF DSControl IS
TYPE STATE_TYPE IS (idle,init, ToFifol, ToFifo2,FinalStg,Finish),
SIGNAL state: STATE_TYPE;

BEGIN
PROCESS (clk)
variable FifoDep: positive:=Siglen;
variable Count: natural:=0;
variable counting: std_logic;
BEGIN
IF reset ="1' THEN
state <=idlc;
ELSIF clk'EVENT AND clk ='1' THEN

CASE state IS
WHEN idle =>

IF stant="1* THEN
state <= init;
InEn<="1";
counting:='1";
ENDIF,
Set0<="0",

WHEN init =>
1F count=6 THEN
state <= ToFifol,;
Set0<="1";
end if,
state <= ToFilo2;

WHEN ToFifo2 =>
if count=FifoDep+6 then
state <= FinalStg;
InEn<="0,
clse
state<=ToFilo!,
END IF;
when FinalStg =>
Inin<="1";
if count=FifoDep+7 then
Set0<="0";
end if,
it count=FifoDep+FifoDep/2+12 then
Set0<="1",
end if;
if count=FifoDep+FiloDep/2+13 then
state<=Finish;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

InEn<="0";
end if;
when Finish =>
state<= idle;
END CASE;
it counting="1" then
count:=count+1;
end if}
ENDIF;
END PROCESS;

WITH state SELECT

Sel_In <='l1'WHEN FinalStg,
'0' WILIEN others;
WITH state SELECT
ClkCir <='1I"'WHEN FinalStg,
‘0 WHEN others;
with state sclect
Sel_EO <="I'WHEN ToFifol,
1" when ToFifo2,
0 WLHEN others;
with state select
Sel_FIFQ<="']' WHEN ToFifo2,
0 WHEN others;

with state sclect
Done <='1' When finish,
‘0" when others;
END a;

4. 2-D Daub-4 Recursive Architecture

-- a recursive lift arch. for multi-stage 2D (NxM) D-4

-- Hongyu Liao Apr!1/02

-- the column pe processes the low frequency component first
-- and then the hi frequency component so that the data flow
-- can be more regular. Apr14/02

-- Last update: May15/02

LIBRARY iece;

library my_lib;

library lib;

library std,

use iece.std_logic_1164.all;
use my_lib.liftcomp.all.
use std.textio.all;

use lib.tb_utilities.all;

use lib.io_utils.all;

ENTITY rs_2d IS
GENERIC (width: positive:= 16; RowSiz:positive:=32; CoLSiz:positive:=32)
POR'T(
InSignal :IN std_logic_vector(width-1 downto 0);
clock,reset,start,RowEnd, FrameEnd: in std_logic;
dwt_coeff_L, dwt_coeff’_H: inOUT
Done: inout std_logic);
ENDs_2d;

ARCHITECTURE beh OF rs_2d 1S
component 1s_pe

]

std_logic_vector(width-1 downto 0),

GENERIC(width : positive; fifo_lenl:positive;fifo_len2:positive:fifo_len3:positive),

PORTY(
5,0 CIN
clock,clear,InEn,$et0S1,5¢1082,Se1053,82¢n2,83en2: i
dwi_coelf_L, dwt_coell_I1: OUT std_logic_
ENI component;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

std_logic_vector(width-1 downto 0);

n std_logic;
vector(width-1 downto 0)),

114

component RS2dCtrl
generic(Rowlen: positive;Coll.en:positive);

PORT(
clk JIN STD_1LOGIC;
reset JIN STD_LOGIC:
stort, RowEnd, Framelind CIN STD_LOGIC;

RowEnd_ColumnPE clear:inout std_logic;

InEn,SctOrow: OUT STD_LOGIC;

S3enlbe OUT STD_LOGIC),
END componcnt;

constant input_Ish:natural:=4,

constant scaler:natural =14

signal clr.S2enOrg.82en 11,S3enOrg,S3enlr,S2en2r,S2en2r_int,S3en2r, InputEn,NinEn,Lout:std_logic;
signal

ST1EnR,STEnC.S2EnR,82EnC,S2enDelay,S2EnRDL,S2en2¢,S2en2C_int,S2en2C_last,S3en2¢,S3en2C_int,S3en2C_last,Set0S1C:st

d_logic,

signal Set0S1CEn, Set0OS2CEn, Set0S3CEn,Set0S1CEn_org, Se10S2CEn_org, Set0S3CEn_org: std_logic;

signal S1ColswEn,S2ColInputkin, S3ColInpiEn, FifoS1 En:std_logic;

signal S2sw1r,S3sw1r,S3enibr,S3enlbr_int,S3enlr_intstd_logic,

signal 83en]be,S3EvenRow,S3enDelay:std_logic;

signal Rowlind_ColumnPE RowlndD1, SelOddRow,SelOddRowS2_int,SelOddRowS3_int,
SelOddRowS3_int2,SelOddRowS2,SelOddRowS3:std_logic;

signal

SetzeroR,5e10S 1 R,82en2rLast,S3en2rlast,set0S2R,Set0S2C,5et082C_int,set0S3R, SetzeroC,Set0S3C,SctOS3RFirst, Sct0S3 R Last
sstd_logic;

sighal Set0S2C_DL std_logic,

signal clkx80rg,clkx80rgdel :std_logic;

signal LLImageEnS1 done_int :std_logic;

signal

S2CFitolin,S3CFifolin,SctOddR_DL,SetOddR _D1L.2,SetOddR_DI3,SetOddR_D1.4,Se10S2C_11,8¢1082C _11_int,$3cen2r_DL:std_

gic;

signal zeropad:std_logic_vector(input_lsh-1 downto 0):=(others=>'0"),

signal input_sc.LRow.HRow Lsig:std_logic_vector(width-1 downto 0);

signal LRowS1,SIRFifoln,S1RowE,SIRowH,S1RLowOdd:std_logic_vector(width-1 downto 0),

signal LRowS2, S2RFifoln, S2Rowl:,S2RowH,S2RLowOdd:std_logic_vector(width-1 downto 0);

signal LRowS3,S3RFifoln, $3RowE,S3RowH,S3RLowOdd:std_logic_vector(width-1 downto 0),

signal Ecolln,0Colln RowEIn_s1,RowkIn_s2,RowEln_s3,RowOIn_s3:std_logic_vector(width-1 downto 0);
signal ERowIn ORowln:std_logic_vector(width-1 downto 0);

signal S20utLEn S20uthin, S30utl.En S30utHER: std_logic;

signal STRowCnt,$2RowCnt,S3RowCnt,S1ColCnt,S2ColCnt,S3ColCnt: natural;
constant Lstage:positive:=3;
BEGIN

input_sc<=[nSignal(width-input_Ish-1 downto 0) & zeropad,

---- input switches for Row Processor ----

NInEn<=not InputEn;

-- enable signal for the stage | data flow

-- Slen identificr:

slsel:T_FI port map(clk=>clock,clr=>NInlin ,q=>S1cnR); -- 2i+]

-- enable signal-for stage 2 data flow, Delay+2kM+4i+2

-- generate 4xCIk signal

s2ctkdiv:T_FF port map(ctk=>$1EnC,cl=>NInEn ,q=>S2enR); --4i+2,3

-- generate o signal with duty=25%, =4xClk

S2EnRDelay:d_IT port map(d=>82enR,clk=>clock clr=>NInEn,q=>S2enRDLY); --4i+3,4
S2enOrg<=(not S2¢nRDL) and §2¢nR; --4i+2

S2enlr <= LLImageEnS1 and S2enOrg ; -- (2k+1)M+10+4i+2

-- enable signal for stage 3
-- generate 8xelk signal
s3clkdiv:T_FF port map(clk=>82enQrg,cl=>NInEn ,q=>clkx80rg); -- 8i+2,3,4,5
S3clkdivdel:d_f1 port map(d=>clkx80rg,clk=>clock,cl=>NInkn,g=>clkx8O0rgdel); --8i+3,4,5,6
S3enOrg<= (not clkx80rgdel) and clkx80rg; --8i+2
S3enDell: bit_detay generic map (del=>5)

part mapielk=>clock cle==clr,d=>83en0rg,q=>83enlr_int), -- 8i+7
S3EvenRow<=8elOddRowS2_int and (not SelOddRowS?2),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

lo

115

$30ddRoceDel: bit_delay generic map (del=>3)

port map(clk=>clock.clr=>clr,d=>83EvenRow,q=>S¢lOddRowS3_int); --dkM+23?
S3enlr<= S3enir_int and SelOddRowS3_int, --4kM+2348i+7
S3enDel2: bit_delay generic map (del=>4)

port map(clk=>clock clr=>clr,d=>83enr,g=>83enl br); -- dkM+2348i+1 1
-- stage 3: row pe input switch signal = S3en1br+3
S3RinSw: bit_delay generic map (del=>3)

port map(clk=>clock.ch=>clr,d=>83en 1 br,q=>83swlr); --dkM+23+8i+14
S3RDellin:bit_delay generic map (del=>2)

port map(clk=>clock.clr=>¢lr,d=>S3swlir,g=>S3en2r); --dkM+23+8i+16

-- synchronize the even and odd samples
regl:reg generic map(width=>width)

port map(clk=>clock cli=>clr,en=>InputEn,input=>input_sc,output=>RowEIn_s!),
regl_2:reg generic map(width=>width)

port map(clk=>clock.cl=>¢Ir,en=>82en 1 input=>Lsig,output=>RowEIn_s2);
regl_3:reg generic map(width=>width)

port map(clk=>clock.clr=>clr,en=>83enlr,input=>Lsig,output=>RowEIn_s3),
regl_d:reg generic map(width=>width)

port map(elk=>clock clr=>clr,en=>83en1 br,input=>Lsig,output=>RowOln_s3),

-- there are delays between the switch signals and the enable signals
-- for the data flows of stage 2 and up, which allows the data flows to get to
-- the next step:
-- Stage 2 swilch signal is a 2 cycle-delay version of §2enlr,
S2RInSel:bit_delay generic map (del=>2)
port map(clk=>clock,cli=>clr,d=>82en1r,q=>82swir); -- (2k+1)M+10+4i+4

reinmux: ERowln<= RowEIn_s} when SlenR='1" else
RowEIn_s2 when S2swir="]" else
RowEIn_s3 when S3swir="l" clse
(othurs=>'0"y,

roinmux: ORowln<= input_sc when SlenR="1" else
Lsig when S2swir='1" else
RowOIn_s3 when S3swir='l" else
(others=>'0");

-- Enable signals for the delay units
-- 1. Enable signal for the delay unit of Stage 2
-- is a 2 cycle delay version of S2swlr
S2RDelayEn:bit_delay generic map (del=>2)
port map(clk=>clock.cl=>clr,d=>82swirq=>82en2r_int); - (2k+1)M+10+4i+6

-- Set0 signal for Row PE: set at the same time as the last --
-- cnable signals for the delay units

-- Sel0 for Stage 2 = last S2 input switch signal+6, where 2cycles for delay from input to delay unit
-- and 4 cycles tor the delay of this stage.
S2en2rLast<=(not SclOddRow) and S2en2r_int; -- (2k+2)M+10+6, M=41i, which is true in almost all cases
S2setOR:bit_delay generic map (del=>4)
port map{clk=>clock.cl=>clr d=>82cen2rLast,q=>Set0S2R); -- (2k+2)M+20

- Set0 for stage 3: The last S3en2r delay 8 cycles

S3en2rlast<=(not S3EvenRow) and S3en2r;

S3setOR Last:bit_delay generic map (del=>8)

port map(clk=>clock cl=>clr,d=>S3en2rlast,q=>Sct0S3R Last),
-- 5¢10 for the first coefTicient of each row
S30ddRDelayd:bit_delay generic map(del=>12)
port map(d=>SetOddR_DL2 clk=>clock, clr=>clr,g=>SctOddR_DL4);

Set0S3RFirst<=83¢n2R and SetOddR_DIL4;

Set0S3R<=8et0S3RFirst or SL10S3R Last;

SetzeroR<=sctOS IR or set0S2R or s¢t0S3R;

RowPe: rs_pe GENERIC map(width=>width,{ifo_lenl=>1 filo_len2=>1,filo_len3=>1)
PORT map(

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1:=>ERowin, 0=>0Rowln clock=>clock,

clear=>clr.Inkin=>InputEn,Se10S 1 =>8c10S 1R, Set0S2=>8ct082R, Set0$3=>Sct0S 3R,
S2en2=>82en0rg.S3en2=>83¢en2r,

dwt_coett_L=>L.Row. dwi_coclt_l1=>11Row),

--- Row Counters --eeeeeeee

process(clock)
begin
il rising_edge(clock) then
if InputEn='1" then
i'set0OS IR="}" then
S1RowCni<= SIRowCnt+1 ;
end if;
if setOS2R="1" then
S2RowCnt<= S2RowCnt+1 ;
end if)
il set0S3R="1" then
S3RowCnt<= S3RowCnt+] ;

end if}
clse
STRowCnt<=0,
S2RowCnt<=0;
S3RowCnt<=0,
end if;
end if}
end process;
-------- Input circuitry tor Column PE --ceevez-

-~ Delays for synchronizing the low and high frequency coeflicients
-- Stage 1
S1EnC<=not S1EnR; -- 2i+1
-- L. components delay 3 cyvcles to synchronize with the h components
SynDelS1: delay generic map(width=>width len=>3)
port map(clk=>clock,cl=>clr,en=>InputEn,input=>LRow,output=>LRowS1);

-- Stage 2,82en2R defay 1 cvele as stage2 Low output delay enable
-- 2kM+2i+2
S2RHoutEnable:bit_delay generic map (del=>6)
port map (clk=>clock,clr=>clr,d=>82en2r_int, ¢=>S2EnC); --(2k+1)M+10+4i+12
-- delay 5 cycles to synchronize with the h components, 2 cycles from DelS1 output
SynDelS2: delay generic map(width=>width,len=>2)
port map(clk=>clock cl=>clr,en=>InputEn,input=>1L.RowS 1 output=>LRowS2),

-- low frequency DWT row coefficient delay one cycle to sychronize with high
-- Irequency coeflicient
SynDelS3: delay generic map(width=>width,len=>4)
port map (clk=>clock, clr=>clr, en=>InputEn, input=>L.RowS2, oulput=>LRowS3),

-- EndofRow signal delayed 8 cycle and passed through a T-FF to generate
-- a row select signal for colume PE
RowEndDelay:bit_delay generic map (del=>8)
port map(clk=>clock,clr=>clr,d=>RowEnd_Columnl’i,q=>RowEndD1); --kM+7, k>0,

S1RowSel: T_FF port map(clk=>RowEndDI cl=>clr,q=>S¢lOddRow); --(2k+1)M+7~(2k+2)M+7, k>=0

-- Switches for exchanging the low and high frequency cocelf's
-- Stage |
S1ExA: SIRFifoln<= LRowS] when SelOddRow="0" clse

S1Rowll;
S1ExB: SIRLowOdd<= LRowS! when SelOddRow="1" else

S1Rowl;
== Stage 2
-- the select signal frequenct is LLImageEnS1, delay 11 cycles
SelRowDelS2: bit_delay generic map (del=>10)

port map (d=>1.LImageEnS | clk=>clock clr=>clr,q=>SelOddRowS2_int); --

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(2k+1M420~02k+2)M+20
S2RowSel: T_FF port map(clk=>SclOddRowS2_int, clr=>clr,g=>SclOddRowS2); - (4k+1)M+20~(4k-+3)M+20

S2ExA: S2RFifoln<= L.LRowS2 when SelOddRowS2="1" ¢lse
S2Rowl;

S2ExB: S2RLowOdd<= LRowS2 when SelOddRowS2=0" and SelOddRowS2_int="1" else
S2Rowl:

-- Stage 3
-~ the select signal frequenct is seloddrows3_int, delay 11 cycles
SelRowDelS3: bit_delay generic map (det=>19)
port map (d=>8elOddRowS3_int.clk=>clock,clr=>¢lr,q=>SelOddRowS3_int2);
S3RowScl: T_FF port map(clk=>SclOddRowS3_in2, clr=>clr,q=>SelOddRowS 3);
S3ExA: S3RFiloln<= LLRowS3 when SclOddRowS3="1" ¢ise

S3RowH:
S3ExB: S3RLowOdd<= LRowS3 when SclOddRowS3="0" and SelOddRowS3_in2="1" clse
S3Rowik

---- Col PE Stage 2 Enable ----

-~ Stage 2
-- The column DWT coeflicients are processed when SelOddRowS2=0
-- Fifo enable signal
DelayS2en: bit_delay generic map(del=>2)
port map(clk=>clock.cl=>clr,d=>82enOrg,q=>S2enDelay).--4i+4

ColPES2en: bil_delay generic map(del=>2)

port maptelk=>clock, elr=>clr,d=>S2enDelay,q=>S2en2c_int),--4i+6
S2ldle:d_ft port map(d=>SctOddR_DL,clk=>clock. clr=>clr.g=>SetOddR_DL2),
S2en2C<= ((not SetOddR_I3L.2) and S2en2C_int) or $2en2C_last;

S2Collnputiin<= (not SelOddRowS2) and §2¢enDelay;
S2CFifoEn<=82ColInputlin or S2enC,

-- Stage 3
DelayS3en: bit_delay generic map(del=>3)
port map(clk=>clock,clr=>clr,d=>83enlr_int,q=>S3enDelay),

-- Fifo2 for storing the even row coeflicients ------

-- Stage |

FitoS1En<=81Colswlin and SlenR;

LFiloS1:delay generic map(width=>width len=>RowSiz/2) .
port map(clk=>clock clr=>clIr,en=>FifoS1 En,input=>S 1 RFifoln,output=>S | RowE),

HFifoS1:delay generic map(width=>widih,len=>RowSiz/2)
port map(clk=>clock clr=>clr.en=>FifoS1En.input=>HRow,output=>S | RowH),

LFifoS2:delay generic map{width=>width fen=>RowSiz/d)
port map(clk=>clock,clr=>¢Ir.en=>S2CFifoEn.input=>82RFifoln,output=>S2Rowlk);

HFifoS2:delay generic map(width=>width len=>RowSiz/4)
port map(clk=>clock,clr=>clr,en=>S2CFifoln,input=>HRow,output=>52Rowll);

---- Column PE input fifos for Stage 3
S3en2rDel: bit_delay generic map(del=>10)
port map(cltk=>clock,clr=>clr,d=>83en2r,q=>83en2r_DL);
S3ldle:bit_delay generic map(del=>19)
port map(d=>SctOddR_DL.2,clk=>clock, clr=>clr,q=>SctOddR_D1.3),
S3CollnputEn<= (not SelOddRowS3) and (not SetOddR_DL3) and S3enDelay;
S3en2C_int<= (((not SelOddRowS3) and (not SetOddR_DI1.3)) or Set0S3CEn_org) and S3enDelay:-- extra time for

shilting out the last row

S3en2CSig:bit_delay generic map(del=>2)
port map(clk=>clock clr=>clr,d=>83cn2C_int,q=>83en2C);

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S3CFifoEn<=83Collnputlin or {S3ci2r_DL. and SelOddRowS3):

LFito83:dclay generic map(width=>width Jen=>RowSiz/8)
port map(clk=>clock clr=>clr.en=>83CFiloEn.input=>S3R Fifoln,output=>S3Rowk),

HI o8 3:delay generic map(width=>width, len=>RowSi2/8)
port map(clk=>clock clr=>clr,en=>S3CFifoEn,input=>11Row,output=>S3RowH),

== Column processor input switches
EColIn<=81Rowl: when S1ColswEn="1" and STEnR="1" ¢lse
S2RowE when S2ColInputlin="1" else
S3RowkE when S3Collnputkin="1" else
(others=>'0");
OColln<=SIRLowOdd when S1ColswEn='1' and STEnR="1" else
S2RLowOdd when S2CollnputEn='1" else
S3RLowOdd when S3Collnputkin="1" clse
(others=>'0"):

$2s5et0C2:d_{1 port map(d=>SelOddRowS2,clk=>clock, clr=>clr,q=>SetOddR_DL),
-- set0 signals for stage 3

-- Enable set 0 signal for Stage |
Set0SICEn_org<='l' when S1RowCni>=RowSiz+! else
0,
Se10S 1 CEnable:bit_delay generic map (del=>5) -- 5 cycles
port map(clk=>clock,clr=>¢lr.d=>Set0S1CEn_org,q=>Set0S 1CEny;
Set0S1C<=8et0S1CEn and Slenk;

-- Enable set 0 signal for Stage 2

Se1082CEn_org<= SctOSICEn_org and SctOddR_DL:
S2en2C_last<=Set0S2CEn_org and S2en2C_int;
Se1082C<= S2en2C_last,

-- Enable set 0 signal for Stage 3
Set0S3CEn_org<=Sct0S 1 CEn_org and SetOddR_DL3;
S3en2C_last<= Set0S3CEn_org and S3en2C;
Set0S3C<=83en2C_last,

ColPe: rs_pe GENERIC map({width=>width, fifo_len1=>RowSiz.fifo_len2=>RowSiz/2,{ifo_len3=>RowSiz/4)
PORT map(
=>EColln,0=>0ColIn,clock=>clock,
clear=>cir,InEn=>InputEn,Sct0S1=>Sct081C.Set0S2=>8ct0S2C,Set0S3=>S8et0S3C,
S2en2=>82en2c¢,83en2=>83enc,
dwi_coell’_L=>Lsig, dwt_coetf_l1=>dwt_cocfl_I1},

--- Column Counters -----------

process(clock)
begin
if rising_edge(clock) then
il InputEn="1" then
i set0S1C="1" then
S1ColCnt<= S1ColCnt+] ;
end if;
if set0S2C="1" then
S2CoICm<= S2CoICm+1 ;
end if;
if set083C="1" then
$3ColCnt<=S3ColCnt+1 ;
end if}
else
S1CoICnt<=0 ;

19

Reprodﬁced with permission of the copyright owner. Further reproduction prohibited without permission.

§2ColCpte=0
S3ColCnt<=0;

end il
end il
end process;
---------- Column PE Low Frequency CoelY selector «-eeeeeee-

-- enable signal for LI DWT coeflicients, 3 cycle delay of SelOddRow signal
SILLScl:bit_delay generic map (del=>3) .
port map(clk=>clock,clr=>¢lr,d=>Sel0ddRow.q=>LLImageEnS 1), —-(2k+1)M+10~2k+2)M+10

-- LL Subimage
--LLImage: Lcomp <= Lsig

-- LH Subimage, condition 1: LH for Stage |
LHImage: dwi_coel!_]. <= Lsig when (LLImageEnS1="0' and S1EnC='1") else
(others=>'0");

controller:RS2dCtr] generic map(RowlLen=>RowSiz,ColLen=>ColSiz)
PORT map(
clk=>clock,reset=>reset, start=>start, RowEnd=>RowEnd, FrameEnd=>FrameEnd,
RowEnd_ColumnPE=>RowEnd_ColumnPE clear=>clr,InEn=>InputEn,sctOrow=>Sc10S IR,
S3enlbe=>83enlbe);

------- counters and control signals ---------
------- for switching data flows of -=sve--n-
------- different DWT stages P

process(clock)
variable cntS1RStart.cntS2RStart.entS3R Start:natural;
begin
if InputEn="0" then
cntS1RStart:=0;,
cntS2RStart:=0;
cntS3RStart:=0;,
S1Colswiin<="0".

clse
it entS1RStart=6 then
S1ColswEn<=']";
clsif rising_edge(clock) then
cntSTRS1ar:=cntS1RStart+1;
end if;
end if}

cnd process;

done_int<="1' when SIRowCnt>=RowSizt4 clse --S3ColCnt>=ColSiz/(2**(Lstage-1)) else
0
doneSig:bit_delay generic map (del=>2)
port map(clk=>clock,clr=>clr,d=>done_int,q=>done),

S2L0utkinable: bit_delay generic map (del=>1)

port map(clk=>clock,clr=>clr,d=>82en2C,q=>S20utLEn),
S2HOutEnable: bit_delay generic map (del=>2)

port map(clk=>clock,clr=>clr,d=>$2¢en2C,q=>S20utl1En);
S3LOutEnable: bit_delay generic map (del=>1)

port map(clk=>clock,clr=>clr,d=>83en2C,q=>S30uLEn);

S310uLEnable: bit_delay generic map (del=>2)
port map(clk=>clock,clr=>clr,d=>83en2C,q=>S30utHEn);

output: process(clock)

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fil¢ testoutpwtS31text open write_mode 18 "S3outputl. (xt":

file testoutputS3h:text open write_mode is "S3outputtlist”,

file testoutputS2L:text open write_mode is *S2outputLIx1";

file testowtputS2hitext open wiite_mode is "S2outpuitlix®;

file testoutputS1:text open write_made s “SToutputlHLtxt";

{ile testoutputS Thitext open write_mode is "SToutpuLast";

variable OutLS1T,0utl1S1,0uL.S2,0ut1152,0utl.S3,0utl183: Linc;
-- variable I boolean:=True:

begin

if rising_cdge(clock) then
-
i (STRowCnt>=3 and done="0") and IFitoS1En="1" then
write(OutlIS 1slv_to_bv(dwt_coelt_H),right.8 decimal false);
writeline(testoutputS 1h,0utls1);
- 1ML
elsif (S1RowCnt>=2 and S1RowCnt<RowSiz+2 and LLImageEnS1='0') and FifoS1En="0' then
write(OutLS1,slv_to_bv(Lsig), right,8 decimal false);
writcline(testoutputS11L,0utLS 1),
end if’
- 2H
i (STRowCni>=7 and done='0") and S20uti IEn="1" then
Write(Outh1S2 slv_to_bv(dwi_coctt_H),right,8,decimal, false);
writeline(testoutputS2h,0utl1S2);
- 2HL
elsif S20utL.En="1" and (S1RowCnt>=4 and S1RowCnt<RowSiz+2) and SelOddRowS2_in(='0" then
write(Outl.S2.slv_to_bv(Lsig),right,8,decimal, false),
writeline(testoutputS2L,0utl.§2).
end if:
- 3H
It (STRowCnt>=135 and done='0") and S30OutHEn="1" then
write(OwlI83,stv_to_bv(dwt_coeft_H),right,8.decimal false);
writeline(testoutputS3h,0utHS3),
-3L
elsif S30uLER="1" and (SI1RowCnt==7 and S1RowCnt<RowSiz+2) then
write(Outl.S3.slv_to_bv(Lsig).right,8 decimal.false),
writeline(testoutputS3L,0utLS3);
end if;
- writeline(testoutputh,Outll),
end if}
end process output;
END beh;

-- a process element for implementing 2_D DWT
-- HMongyu Liao feb12/2001

-- the module should be cleared before use
-- Change port map

-- Last update: Aprl1/2002

LIBRARY icee;

library my_lib;

use iece.std_logic_arith.all;

use iece.std_logic_1164.all;

use jcee.std_logic_signed.all;

use my_lib.liftcomp.all;

ENTITY 1s_pe IS

GENERIC(width : positive:=16; fifo_len1:positive:=1;fifo_len2:positive:=1,fifo_len3:positive:=1});
PORT(

5,0 JIN std_logic_vector(width-1 downto 0);

clock,clear,InEn,Set0S1,Set082 8et083,52en2,83en2: in sid_logic,

dwt_coeft_L, dwi_coefl_I1: OUT std_logic_vector(width-1 downto 0));

END rs_pe;

ARCHITECTURE beh OF 1s_pe IS

signal alpha,beto,gama,one, K, K_inv:std_logic_vector(width-1 downto 0),
signal el,¢2,e3,ed,01,02,03,

od,05,delay_in,sl,s2,53,5:std_logic_vector(width-1 downto 0);
signal NInEn,STen,S1sw2,82sw2,835w2,set0,set0dl:std_logic,

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

signal fowout,highout:std_logic_vector{width*2-1 downto 0);

--for all:mac usc entity my_lib mac;

--for all:mac_b use entity my_lib.mae_b;

for almult use entity my_lib.mult;

for all:reg use entity my_lib.reg:

tor all:delay use entity my_lib delay:

for all:d_{T use entity my_lib.d_IT;

BEGIN
alpha<="1001000100100111"; -- right shilt the original parameters for 14bits’
beta<="0001101110110110";
gama<="1111101110110111";
one<="0100000000000000",
K<="0111101110100011";
K_inv<="0010000100100000";

el<=E,;
0l<=0;

NInEn<=not InEn;

-- enable signal for the stage! data tlow

--Slen

slsel:T_FF port map(clk=>clock,clr=>NInEn ,q=>S1en),

macl:mac generic map(width=>width,add_sc=>14,res_sc=>14)
port map(clock=> clock,clear=>clear,acc=>01.mul=>cl ,amp=>alpha,
outpul=>02);

reg2:reg generic map(width=>width)
port map(clk=>clock.clr=>clear,en=>InEn,input=>¢l output=>e2),

mac2:mac generic map(width=>width,add_sc=>14 res_sc=>14)
port map(clock=> clock,clear=>clear,acc=>e2,mul=>02,amp=>beta,
output=>¢3):

reg3:reg gencric map(width=>width)
port map(clk=>clock,cl=>clear,en=>InEn,input=>02,output=>delay_in);

-~ delay unit, 3 delay registers
di:delay generic map(width=>width len=>fifo_lenl)

port map(clk=>clock,clr=>clear,en=>$ [en,input=>delay_in,output=>s1);
d2:delay generic map(width=>width len=>fifo_len2)

port map(clk=>clock clr=>clear,en=>82en2.input=>delay_in,ontput=>s2),
d3:delay generic map(width=>width len=>fifo_len3)

port map(clk=>clock,cl=>clear,cn=>83en2,input=>delay_in,output=>s3),

-~ In order to get the last data in the delay units

-- the switch signal should has one more cycle than the enable signal
Slsw2<=Slien vy Set0S1;

S25w2<=S2¢n2 or Set0S2;

S3sw2<=83en2 or Set083;

delaymux: 03<=s] when Slsw2="' elsc
52 when S2sw2="1" ¢lse
s3 when S3sw2='1" ¢lse
(others=>'0");

-- break the even and odd parts when set0
mac3:mac_b generic map(width=>widih,add_sc=>14,res_sc=>14)
port map(clock=> clock,clear=>clear,break=>sct0,acc=>e3,mul=>03,amp=>gama, oulput=>c4),

regd reg generic map(width=>width)
port map(clk=>clock clr=>clear,en=>InEn, input=>03,output=>o04),

Sct0<=Sct0S! or Sct0S2 or Set0S3;
setOdelay:d_IT port map(d=>set0,clk=>clock,clr=>clear,q=>set0dl);
macd:mac_b generic map{width=>width,add_se=>14,res_sce=>14)
port map(clock=> clock,clear=>clear,break=>set0dl,acc=>04,mul=>cd,amp=>ane, outpui=>05);

el mult

Reproduced with pérmission of the copyright owner. Further reproduction prohibited without permission.

122

peneric maplwidth=>width)
port mapla=>ed b=>K, p=>lowout);

mult2:mult
generic map(width=>width)
port mapta=>05,b=>K_inv,p=>highout),

scalel:dwi_coefl_L<=lowout(width*2-3 downto width-2)when lowout(width-3)='0' else
lowout(width*2-3 downto width-2)+1:
scale2:dwi_coefl_H<=highout(width*2-3 downto width-2) when highout(width-3)="0" clse
highout(width*2-3 downto widih-2)+1;
END beh;

-- a controller for 1-D Recursive
--created feb13/02

-~ Last update may 15/02

library icec;

library my_lib;

use icee.std_logic_arith.all;

usc iece std_logic_1164.all;

usc iece.std_logic_signed.all;
use my_lib.liftcomp.t_{t;

ENTITY RS2dCtrl IS
generic(RowLen: positive:=8;ColLen:positive:=8),
PORT(
clk CIN STD_LOGIC;
reset JIN STD_LOGIC:
start, RowEnd, FrameEnd 1IN STD_LOGIC,

Rowlind_ColumnPE clear:inout std_logic;,

Inkin,SetOrow: OUT STD_LOGIC;

S3enlbe; OUT STD_LOGIC),
END RS2dCurl;

ARCHITECTURE a OF RS2dCtrl IS
TYPE STATE_TYPE IS (idle,analyzing,endofrow,analyzing2 Finish),
SIGNAL state: STATE_TYPE;
signal InEn_sig,FramelndLatch, AppendRowEnd:std_logic;
BEGIN
PROCESS (clk)
variable Count,cntsetOr.cntsetOc, L Stage,CntLastRow: natural:=0;
variable counting: std_logic;
BEGIN
-- Number of stage
Lstage:=3;
IF reset ='1' THEN
state <=idle;
ELSIF clk'EVENT AND clk ='1' THEN
CASE state 1S
WHEN idle =>
-- reset everything
IF start="1' THEN
stafe <= apalyzing;
END IF;
WHEN analyzing =>
if RowEnd_ColumnPE='1' then
stale<=endofrow;
end if]

when endofrow =>

cntsetOr=0;

SetOrow<="0";

i'’count=RowLen*ColLen+RowLen* Lstage*5+20 then
state <= Finish;

else
state<=analyzing2;

END IF,

when analyzing2 =>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

entsetOr:=cntsctOr+1;

if RowEnd_ColumalPE='1" then
state<=cndofrow;

end if;

. SetOrow<="(}";
- SctOcol<="0)";
' if entsetOr=2 then

SetOrow<="]";

end if;

when Finish =>
state<=Idle;
end case;

== add (L+1+2+._+27L) more lines for processing the column DWT

-- latch FrameEnd

it FrameEndLach="1" then
CntLastRow:=CntlLastRow+1;

Llse
CntLastRow;=0;

end if;

il CntLastRow=RowlLen then
AppendRowEnd<="1";
CntLastRow:=0,

else
AppendRowEnd<='0);

end if;

END IF;
END PROCESS;

LatchFrameEnd: t_{f port map (clk=>FrameEnd,clr=>clear,q=>FrameEndLatch);
Rowlind_ColumnPE<=Rowlind or AppendRowEnd;
WITH state SELECT
InEn_sig <='0' WIIEN Idle,
' WHEN - others;
WITH state SELECT
clear <='1"WHEN Idle,
0 WHEN others;

InEn<=InEn_sig,
END a;

5. 2-D Dual-Scan Architecture

- 2-D double scan lift arch. for one-stage D-4
-- Hongyu Liao 4/23/02

-- Last update:
Jun28/2001
LIBRARY iece;
library comp;

use ieee.std_logic_arith.all;
use ieee.std_logic_1164.all;
use icee.std_logic_signed.all;
use comp.lificomp.all;

ENTITY ddlift_2d 1S .
GENERIC(width : positive:= 16; ifo_len_Row:positive:=1;fifo_len_Column:positive:=2;RowSize:
positive:=128;ColSize: positive:=128);
PORT(
firstrow, secondrow : IN std_logic_vector(width-1 downto 0);

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

clock.reset,start: in std_logic:
dwi_coetl” L, dwi_coe!t_H: OUT std_logic_vector(width-1 downto 0);
Done: out std_logic).

END ddlifi_2d:

ARCIHITECTURE beh OF ddlifi_2d 1S
component ddlift
GENERIC(width : positive; lifo_len:positive);
PORT(
firstline, sccondline : IN std_logic_vector(width-1 downto 0);
clock, enable,clear, InEn,Set0: in std_logic;
dwt_coelt”_L. dwt_cocfl”_H: QUT std_logic_vector(width-1 downto 0)),
ENI3 component:

component DS2DControl
generic(RowSize: positive:=8;ColSize: positive:=8),

PORTY(
clk JIN STD_LOGIC;
resel JIN STD_LOGIC:
start TIN STD_LOGIC;
InEn, RowSet0,ColSct0, Done: QOUT STD_LOGIC),

END component;

signal firstrow_se,secondrow_se,11Row. LRow: std_logic_vector{width-1 downto 0);

signal ColOdd1, ColOdd2, ColPEInl, ColPEIn2,Lout, Hout: std_logic_vector(width-1 downto 0);
signal clkx2, InputEn,RowSetzero,ColSetzero high:std_logic;

signal zeropad:std_logic_vector(5 downto 0):=(others=>'0'),

tor D_Freq:T_FF use entity comp.t_{¥;
for RowPE, ColumnPLi: d4lit use entity work dahify;
for controller:DS2DControl use entity work.DS2Control;

BEGIN

high<='1".

firstrow_sc<=firstrow(width-7 downto 0) & zeropad,

secondrow_sc<=sccondrow(width-7 downto 0) & zeropad,

RowPE: d4lift GENERIC map(width=>width,lifo_len=>fito_len_Row)
PORT map(
firstline=> firstrow_sc,secondline=> secondrow_sc,clock=>clock.
enable=>high,clcar=>reset, InEn=>Inputlin,Sct0=>RowSetzero,
dwi_coell_L=>LRow, dwi_coeff_H=>HRow),

ColumnPE: ddlift GENERIC map(width=>width,lifo_len=>fifo_len_Column)
PORT map(
firstline=>LRow.secondline=>HRow,clock=>clock.
enable=>high,clear=>reset, InEn=>InputEn,Setd=>ColumnSetzero,
dwt_coeft’_L=>dwl_coef!_L, dwt_coefl’_H=>dwt_coeft_H);

controller:DS2DControl generic map(RowSize=>RowSize,ColSize=>ColSize)
PORT map(
clk=>clock,reset=>resct,start=>start,
InEn=>InputEEn,Rowset0=>RowSctzero,ColSet0=>ColSetzero, Done=>Done),

D_Freq:T_FF port map (
clk=>clock,Notlin=>reset, Q=>clkx2),

EEND beb;

-=a controller for 2-D DoubleScan
--crented 3/23/02

-- Last update

library icee,

use icee.std_logic_arith.all;

use icee.std_togic_1164.all;

use jeee:std_logic_signed.all;

ENTEFY DS2DConlrol 1S

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

generic(RowSize: positive =8.ColSize:

PORT(

clk IN
reset JIN
start CIN

END DS2DControl;

ARCHITECTURE a OF DS2DControl IS

positive:=8§),

STD_LOGIC;
STD_LOGIC:
STD_LOGIC:
InEEn,RowSet0,ColSetQ, Done: QUT

STD_LOGIC),

TYPE STATE_TYPEIS (idle,RowPro, ColPro, Finish);

SIGNAL state: STATE_TYPE;

BEGIN
PROCESS (clk)
variable Count: natural:=0;
variable Count2: natural:=0;
variable counting: std_logic:
BEGIN
IF reset ='1" THEN
state <=idle;
ELSIF clk'EVENT AND clk ="1' THEN
CASE state IS
WHEN idle =>
IF start="1' THEN
state <= init,
InEn<="l";
counting:='1";
ENDIF;
Set0<="0";
WHEN RowPro =>
1F count=6 THEN
state <= ColPro;
END IF,
ColSel0<="";
WHEN ColPro =>
if coum2=RowSize+3 then
RowSel0<=1";
end if;
ColSet0<=0";
if count=RowSize*ColSize+13 then
state<=Finish;
InEn<=0";
end if}
when Finish =>
state<= idle;
END CASE;
il"’counting="1" then
count:=count+;
couni2:=count2+I;
i count2=RowSize+3 then
count2;=0;
end if;
end if}
END IF;
END PROCESS;
END a;

Reproduced with permission of the copyright owner

. Further reproduction prohibited without permission.

126

6. Component Library: Liftcomp

library icce:

use iece.std_logic_arith all;
use iece.std_logic_1164.all;
use ieee.std_logic_signed.all;
library lib;

use lib.datalib.all;

PACKAGE liftcomp IS
COMPONENT mult
GENERIC(width : positive:= 8).
POR'T(
a b “IN std_logic_vector(width-1 downto 0);
p:OUT std_togic_vector(width*2-1 downto 0));
END COMPONENT;

COMPONENT mac
GENERIC(width : positive:= 8;keep:positive:=8;add_sc:positive:=1;res_sc:positive:=1);
PORT(clockclear: in std_logic:
acc, mulamp JIN std_logic_vector(width-1 downto 0);
output: OUT std_logic_vector(width-1 downto 0});
END COMPONENT;

component shifter
GENERIC(width : positive:= 8:keep:positive:=8);

PORTY(
input -IN std_logic_vector(widith*2-1 downto 0),
clk,clr :in std_logic;
output: OUT std_logic_vector(width-1 downto 0)).

END component;

component reg
generic(width:positive:=8),
port(
clk,clrin std_logic;
input: in std_logic_vector(width-1 downto 0);
output: out std_logic_vector(width-1 downto 0));
end component;

component in_switch
GENERIC(width : positive:= 8);

PORT(
firstline,secondline: IN std_logic_vector(width-1 downto 0);
clk.enable: in std_logic;
odd,even; OUT std_Jogic_vector(width-1 downto 0));

end component;

component delay
generic(width:positive:=8;len:positive:=1);
port(
clk,elr:in std_logic;
input: in std_logic_vector(width-1 downto 0),
output: out std_logic_vector(width-1 downto 0));
end component;

component delay_en
generic(width:positive:=8;len:positive:=1),
pori(
clk,clr,enzin std_logic;
input: in std_logic_vector(width-1 downto 0).
output: out std_logic_vector(width-1 downto 0));
end component;

component trunc
GENERIC(width : positivekeep:positive; nbit:positive),
POR'T(
inpu CIN std_logic_vector(width-1 downto 0);
clk,clr T std_logic;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

output: OUT std_logic_vector(keep-1 downto 0));
END component; '

component switch
GENERIC(width : positive);
PORT(
input: IN std_logic_vector(width-1 downto 0);
Sel: in std_logic;
outputl, outpui2: OUT std_logic_vector(width-1 downto 0));
END component;

component mux
GENERIC(width : positive:= 8),
PORTY(
inputl,input2: IN std_logic_vector(width-1 downto 0);
Sel: in std_logic;
output: QUT std_logic_vector(width-1 downto 0)):
END component;

component T_FF
port(
clk,NotEn:in std_logic;
Q: out std_logic),
end component,
END liftcomp;

-~ a signed adder

LIBRARY iecee;

use icee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_Jogic_signed.all;

ENTITY adder IS
GENERIC(width : positive:=10),
PORT(
a, b . IN std_logic_vector(width-1 downto 0),
s: OUT std_logic_vector(width-1 downto 0));
END adder;

ARCHITECTURE beh OF adder 1S

BEGIN
s<=a+b;

END beh;

-- A clock divider

-- Hongyu Liao

-- last update: feb12/2002
library icee;

use ieee.std_Jogic_1164.all;
use icee.std_logic_arith.all;

entity clk_gen is
port(
clk, Encin std_logic;
clkx2,clkx4: inout std_logic),
end clk_gen;

architecture beh of clk_gen is
signal FBL: sid_logic:
begin
cl:process(clk)
begin
if En='1" then
if rising_edge(clk) then
clkx2<= nol clkx2;
end if}
clse

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

clkx2<='0",
end if;
end process;

c2:process(clkx2)
begin
i En="1" then
it rising_cdge(clk) then
clkxd<= not clkxd;
end il;
else
clkxd<='0",
end it
end process;
end beh:;

-= A symple FIFO used as a Delay unit
-- Hongyu Liao

-- last update: 11/23/2001

library icec;

use icee.std_logic_1164.all;

use iece.std_logic_arith.all;

use icee.std_logic_signed.all;

enlity delay is
generic(width:positive:=8;len:positive:=1),
port(
clkclr:in std_logic;
input: in std_logic_vector(width-1 downto 0);
output: out std_logic_vector(width-1 downto 0));
end delay,

architecture beh of delay is
constant MAX: positive:=len;
subtype depth is posilive range | 10 MAX;--Row Length;
type reg_array is array(depth) of std_logic_vector(width-1 dewnto 0);
signal reg:reg_array,
begin-
fifo: process(clk)
begin
if rising_edge(clk) then
if'clr="1" then
output<=(others=>'0'),
for index in depth loop
reg(index)<=(others=>'0");
end loop;
clse
reg(1)<=input;
for index in depth loop
if index<MAX then
reg(index+1)<=reg(index);
end if;
end loop;
output<=reg(MAX),
end if;
end if,
end process fifo;
end beh;

-- A symple FIFO used as a Delay unit
-- Hongyu Liao

-- last update: 11/23/2001

library icce;

use icee.std_logic_1164.all;

use icee.std_logic_arith.all;

use icce.std_logic_signed.all;

entity delay_cn is
generic{ width:positive:=8:lcn:positive:=1);

129

‘Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pori(
clk,clrencin std_logic;
input: in std_logic_vector(width-1 downto 0);
oulput; out std_logic_vector(width-1 downto 0)),
end delay_en;

architecture beh of delay_en is
constant MAX: positive:=len;
subtype depth is positive range | to MAX;--Row Length,
type reg_array is array(depth) of std_logic_vector(width-1 downto 0),
signal regireg_array;

begin
lifo: process(clk)
begin
if rising_cdge(clk) then
il'clr='1" then
output<=(others=>'0"),
for index in depth loop
reg(index)<=(others=>'0');
end loop;
clse
it en="1" then
reg(1)<=input,
for index in depth loop
if index<MAX then
reg(index+1)<=rep(index)
end if’
end loop;
output<=reg(MAX):
end if]
end if;
end if;
end process fifo;
end beh;
-- a swilch performs the lazy wavelet for double scan arch.
-- last update: 11/26/2001
LIBRARY icec;
use jeee.std_logic_1164.all;
ENTITY in_swilch IS
GENERIC(width : positive:= 8);
PORTY(
firstline,secondline: IN std_logic_vector(width-1 downto 0);

clk,enable: in std_logic; --
odd,even; QUT std_logic_vector(width-1 downto 0));
END in_switch;

ARCHITECTURE beh OF in_switch IS

signal Sel: std_logic:='0";

signal secondlineDelay: std_logic_vector(width-1 downto 0),
begin

processclk)
begin
--a T fip-llop
if rising_edge(cik) then
if enable='1" then -- enable scts when data comes
Scl<=not Sel;
secondlineDelay<=secondling,;
il'Sel='0" then
even<=firstline;
odd<=secondlineDelay;
clse
odd<=firstline;
even<=sccondlineDelay,;
end if;

- Sel<="0"; --make sure the data shifting in correct order

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

secondlincDelay<=(others=>'0");
add<=(others=>'0'),
even<=(others=>'0');

end if;

end if;
end process;
end beh;

-- AMAC

-- Hongyu Liao, 10/20/2001

-- add shifter for the accumulater input, 1/12/02
-- Last update: 1/12/2001

LIBRARY icec;

use icee.std_logic_1164.all;
usc icee.std_togic_arith.all;

usc icee.std_logic_unsigned.all,

ENTITY mac IS

GENERIC(width : positive:= 8, keep:positive:=8:add_sc:positive:=9;res_sc:positive:=1);
-~ add_sc: number of bits shified for the adder input

-~ res_sc: number ol bits shifted for the mac result

PORT(clock,clear: in std_logic;
acc, mul amp JIN std_logic_vector(width-1 downto 0);
output; OUT std_logic_vector(keep-1 downto 0)),

END mac:

ARCHITECTURE str OF mac 1S
COMPONENT mult
GENERIC(width : positive);
POR'T{(
o, b 1IN std_logic_vector(width-1 downto 0);
p: OUT std_logic_vector(width*2-1 downto 0));
END COMPONENT;,

COMPONENT adder
GENERIC(width : positive);

PORT(
ab JIN std_logic_vector(width-1 downto 0);
s:OUT std_legic_vector(width-1 downto 0)),

END COMPONENT;

component trunc
GENERIC(width : positive;keep:positive;nbit:positive),

PORT(
input 1IN std_logic_vector(width-1 downto 0);
clk.clr 1in std_logic;
output: OUT std_logic_vector(keep-1 downto 0));

END component,

signal zero_pad:std_logic_vector(add_sc-1 downto 0);
sipnal sig_pad:std_logic_vector(width-1 downto 0);
signal acc_int:std_logic_vector(width*2-1 downto 0);
signal mul_out:std_logic_vector(width*2-1 downto 0),

signal add_in_a,add_out:std_logic_vector(width*2-1 downto 0);

BEGIN
zero_pad<=(others=>'0");
--signal extension
sig_pad<=(others=>acc(width-1)),
--shifl acc
acc_int<=sig_pad & acc;
add_in_a<= ace_int(width*2-t-add_sc downto 0) & zero_pad,;

multiplier: mult
generic map(width=>width)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

J

port map(a=>amp.b=>mul.p=>mul_out),

add: adder
generic map(width=>width*2)
port map(a=>add_in_a,b=>mul_out,s=>add_out),

--truncate the result
trunc_reg: trunc
GENERIC map(width=> width*2 keep=>keep,hbit=>res_sc)
port map(input=>add_out,clk=>clock,cl=>clear,output=>output);

END str;

-- MAC library
-- Hongyu Liao, 10/20/2001
-- Last update:11/12/2001

library icee;

use icee.std_logic_arith.all;
use iece.std_logic_1164.all;
use icee.std_logic_signed.all;

PACKAGE mac_comp IS

COMPONENT mult
GENERIC(width ; positive:= 8),
PORT{(
ab CIN std_logic_vector(width-1 downto 0);

p: OUT std_logic_vector(width*2-1 downto 0));
END COMPONENT,

COMPONENT adder
GENERIC(width : positive:= 8):
PORT(
a.b JIN std_logic_vector(width-1 downto 0);
s: OUT sid_logic_vector(width-1 downto 0)),
END COMPONENT;

component shifter
GENERIC(width : positive:= 8;keep:positive:=8),

PORT(
mput 1IN std_logic_vector(width*2-1 downto 0),
cik.clr :in std_logic;
output: OUT std_logic_vector(keep downto 0));
END component;

END mac_comp;,

-- A signed multiplier

-- Hongyu Liao, 10/20/2001
-- Last update: 22/20/2001
LIBRARY icee;

use icee.std_logic_t164.all;
use ieee.std_logic_arith.all;
use icee.std_logic_signed.all;

ENTITY mul 1S
GENERIC(width : positive:= 16),
PORT(
a, b JIN std_logic_vector(width-1 downto 0),
p: OUT std_logic_vector(width*2-1 downto 0));
END muly;

ARCHITECTURE beh OF mult 1S
BEGIN

p<=atb;
END beh;

-- a switch detouring the data flow.

-- created 1/23/02
-- last update: 1/23/2002

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIBRARY icee;
usc icee.std_togic_1104.all;

ENTITY mux IS
GENERIC(width : positive:= 8);
PORTY(
inputl,input2: IN std_logic_vector(width-1 downto 0);
Sel: in std_togic:

output: QUT std_logic_vector(width-1 downto 0));

END mux;

ARCHITECTURE beh OF mux 1S

begin
output<= input! when Sel='0' else
inpt2 when Sel="1" else
(others=>'Z');
end beh;

- A D {lipllop with syn-clear
-- Hongyu Liao

-- last update: 11/22/2001
library iece;

use ieece.std_Jogic_1164.all,
use icee.std_logic_arith.all;

entity reg is
generic(width:positive:=8),

port(
clk,clr:in std_logic;
input: in std_logic_vector(width-1 downto 0);
output: out std_logic_vector(width-1 downto 0)),
end reg;

architecture beh of reg is

begin
process(clk)
begin
il'rising_edge(clk) then
ifelr="1" then
output<=(others=>'0"),
clse
output<=input;
end if}
end if;
end process;
end beh;

-- A simplified shift register
-- Hongyu Liao, 11/29/2001
-- Last update:11/12/2001
LIBRARY icce;

use icee.std_logic_arith.all;
use icee.std_logic_1164.all;

ENTITY sh_reg IS
GENERIC(width : positive:= 8),

PORT(
input CIN std_logic_vector(width-1 downto 0);
clk,cir sin std_logic;
num: in positive:=2;
output: OUT std_logic_vector(width-1 downto D))

END sh_reg:

ARCHITECTURE beh OF sh_reg 1S
signal zeros: std_logic_vector{width-1 downto 0);=(others=>'0"),
BEGIN
process(clk)
begin
if rising_edge(clk) then
il elr="1" then

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(7%
{93

output<=(others=>'0'),
clse
output<=mput(width-num-1 downto 0) & zeros(num-1 downto 0);
end if}
end if;
end process;

END beh;

-- A simplificd right shilt only register
-- Hongyu Liao, 10/20/2001

-- Last update: 11/9/2001

LIBRARY icee;

usc icee.std_logic_arith.all;

usc icce.std_logic_1164 all;

use icee.std_logic_signed.all

ENTITY shift IS
GENERIC(width : positive:= 8:rsh:positive:=4);
PORT(
input JIN std_logic_vector(width-1 downto 0);
oulput: OUT std_logic_vector(width-1 downto 0)); -

END shift;

ARCHITECTURE beh OF shift IS
signal fac:std_logic_vector(width-1 downto 0);
BEGIN
fac<="001000000000000";
output<=sra 1;
END beh;

-- A simplilicd right shift only register
-~ Hongyu Liao, 10/20/200]

-- change range,1/9

-- Last update:1/9/2002

LIBRARY icee;

use icee.std_logic_arith.all;

use icee.std_logic_1164.all;

library lib;

use lib.datalib.all;

ENTITY shifler IS
GENERIC(width : positive:= 16;kcep:positive:=16);
PORTY(
input 1IN std_logic_vector(width*2-1 downto 0);
clk.clr 1in std_logic;
output: OUT std_logic_vector(keep-1 downto 0));
END shifter,
ARCHITECTURE beh OF shifter IS
BEGIN
process(clk)
begin

if rising_edge(clk) then
if cl="1" then
output<=(others=>'0'),
else
-~ scale the partial result back
output<=input{width*2-1-(width-Factor) downto width*2-keep-(width-Factor));
end if;
end if}
end process,
END bely;
-- a swilch detouring the data 1ow.
-- ereated 1/23/02
-- last update:1/23/2002

LIBRARY icce,
use iece.std_logic_1164.all;

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ENTITY switch 1S
GENERIC(width : positive:= 8),

PORT(
input: IN std_logic_vector(width-1 downto 0);
Sel: in std_logic;
outputl, output2: OUT std_logic_vector(width-1 downto 0)):
. END switch;
ARCHITECTURE beh OF switch 1S
begin
outputt<= input when Scl='0’ clse
(others=>'0"),
output2<= input when Sel="1" clse
(others=>'0"),
end beh:

-- AT flipflop

-- Hongyu Lo

-~ last update: 1/24/2002
library icee:

use icee.std_logic_1164.ali;
usc ieee.std_logic_arith.all;

entity T_FF is

pori(
clk.NotEn:in std_logic;
Q: out std_logic),

end T_FF;

architecture beh of T_FF is
signal FB: std_logic;

begin
process(clk)
begin
if NotEn='0" then
if rising_edge(clk) then
FB<=not FB;
end if}
else
FB<=0"
end if}
end process;
Q<=FB;
end beh;

---A register keeps the truncated result
-- input: 32bit;output: 1 6bit
-- Hongyu Liao, 1/12/2002
-- change range

-- Last update: 1/12/2002
LIBRARY icee;

use icce.std_logic_anth.all;
use iece.std_logic_1164.all;
use iece.std_logic_signed.all;
--library lib;

--use lib.datalib.all;

ENTITY trunc 1S
GENERIC(width : positive:= 32;keep:positive:=16;nbit positive:=1);
-- nbit:number of bits to be shifted

PORT(
input VIN std_logic_vector(width-1 downto 0),
clk,clr in std_logic;
output: OUT std_logic_vector(keep-1 downto 0)),
IEND trunc,

ARCHITECTURE beh OF trune 1S
BEGIN

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

process(clk)
begin
if rising_edge(clk) then
ifelr="1" then
output<=(others=>'0");
else
output<=input(keep-1+nbit downto nbit);
end if: ‘
-~ end il
end process;

END beh;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

J

6

