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Abstract

The nonadiabatic dynamics of model proton-coupled electron transfer (PCET) reactions

were investigated for the first time using a surface-hopping algorithm based on the solution

of the mixed quantum-classical Liouville (MQCL) equation. This method provides a rigor-

ous treatment of quantum decoherence effects in the dynamics of mixed quantum-classical

systems, which is lacking in Tully’s fewest switches surface hopping (FSSH) approach com-

monly used for simulating PCET reactions. Within the MQCL approach, the transferring

proton and electron are treated quantum mechanically while the remainder of the system,

including the donor, acceptor, and solvent, is treated classically. The classical degrees of

freedom (DOF) are evolved on both single adiabatic potential energy surfaces (PESs) and

on coherently coupled pairs of adiabatic PESs, while in FSSH they are evolved only on single

adiabatic PESs. To demonstrate the applicability of MQCL approach to the study of PCET,

we focused on a reduced model that had been previously studied using FSSH. This model is

comprised of three DOF, including a proton, an electron, and a collective solvent coordinate.

The proton and electron are allowed to transfer in one dimension between two point charges,

representing the donor and the acceptor, which are positioned at a fixed distance from each

other. Both concerted and sequential [either proton transfer before electron transfer (i.e.,

PT-ET) or electron transfer before proton transfer (i.e., ET-PT)] PCET reactions were stud-

ied within the context of this model. We studied these mechanisms in detail under various

subsystem-bath coupling conditions and gained insights into the dynamical principles under-

lying these reactions. Notably, an examination of the trajectories which successfully undergo

PCET (i.e., both the proton and electron, initially near the donor, transfer to the acceptor)

reveals that the system spends the majority of its time on the mean of two coherently cou-

pled adiabatic PESs. While on this mean surface, the classical DOF evolve differently than
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on the other surfaces and an observable of interests acquires a phase factor. Fluctuations of

the classical coordinates can cause this phase factor to oscillate in time differently for each

trajectory and, as a result, averaging over an ensemble of trajectories can lead to destructive

interference when calculating an expectation value of an observable. In this way, the MQCL

approach is able to incorporate decoherence, which is not captured in the FSSH approach.

Due to this fundamental difference between the two methods, the percentages of successful

PCET reactions obtained via MQCL drastically differ from those obtained via FSSH.

To gain insight into the differences between the MQCL and FSSH approaches for calculating

PCET observables, we calculated the time-dependent populations of the ground, first-excited,

and second-excited adiabatic states for the ET-PT mechanism in the same PCET model and

compared them to both the exact quantum and FSSH results. We found that the MQCL

population profiles show a significant improvement over the FSSH ones, and are in good

agreement with the exact quantum results. All of the mean PESs were shown to play a

direct role in the dynamics of the state populations. Interestingly, our results showed that

the population transfer to the second-excited state can be mediated by the dynamics on the

mean of the ground and second-excited state PESs, via a sequence of nonadiabatic transitions

that bypasses the first-excited state PES altogether. This is made possible by nonadiabatic

transitions between different mean surfaces, which is the manifestation of coherence transfer

in MQCL dynamics. We also investigated the effect of the strength of the coupling between

the proton/electron and the collective solvent coordinate on the state population dynamics.

Drastic changes in the population dynamics are observed, which can be understood in terms

of the changes in the PESs and the nonadiabatic couplings. In addition, we investigated the

state population dynamics in the PT-ET and concerted versions of the model. The PT-ET

results revealed the participation of all of the mean surfaces, albeit in different proportions

iii



compared to the ET-PT reaction, while the concerted results revealed that the mean of the

ground and first-excited state PESs only plays a role.

We finally present a derivation of a novel mixed quantum-classical formula for calculating

PCET rate constants that starts from the quantum mechanical expression for the time

integral of the flux-flux correlation function. The resulting time-dependent rate coefficient

has a dynamical part involving MQCL time evolution of the product species operator and

an equilibrium part. This formula is general, not requiring any prior assumptions about

the parameters of the system. Furthermore, since MQCL dynamics is used to evolve the

product species operator, this approach treats decoherence on a more solid footing than the

FSSH-based methods. The applicability of this formula is demonstrated on an extended

version of the previously studied PCET model, where now the collective solvent coordinate

is coupled to a harmonic oscillator bath. Our result for the rate constant is found to be

in good agreement with the numerically exact result obtained via the quasi-adiabatic path

integral method.
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Chapter 1

Introduction

1.1 PCET in biology and chemistry

Proton-coupled electron transfer (PCET), which is a proton transfer coupled to an electron

transfer, is at the heart of important biological processes such as photosynthesis, respiration,

and DNA repair [3]. To illustrate the role of PCET, let us consider photosynthesis as an

example. Photosynthesis is the process by which the solar energy is converted into the

chemical energy stored in chemical bonds of carbohydrates. This solar energy is used to

split off water’s hydrogen from oxygen. Then, hydrogen is combined with carbon dioxide

(absorbed from air or water) to form glucose and release oxygen:

6CO
2
+ 6H

2
O −−→ C

6
H

12
O

6
+ 6O

2
(1.1)

A deep understanding of this ubiquitous reaction may lead to a clean and sustainable solution

to the increasing worldwide demand for energy. Thus, we briefly discuss this reaction in more

detail.

Photosynthesis begins when light is absorbed by proteins called photosynthetic reaction cen-

ters found inside chloroplasts (in green plants). The photosynthetic complex, Photosystem

II, is the first protein complex involved in solar energy conversion. It is comprised of at least

99 cofactors: 35 chlorophyll a, 12 beta-carotene, two pheophytin, three plastoquinone, two

heme, bicarbonate, 25 lipids, and seven n-dodecyl-beta-D-maltoside detergent molecules,

1
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PCET mechanisms, where either ET precedes PT (i.e., ET-PT) or PT precedes ET (i.e,

PT-ET).

Among these steps, normally EPT is the one that follows reaction pathways that avoid high-

energy intermediates. One should know that EPT is different from HAT, though in some

cases this difference can be very subtle. In EPT, electrons and protons transfer from different

orbitals on the donor to different orbitals on the acceptor. An example of EPT is illustrated

in step 2 of the comproportionation reaction in Fig. 1.3. In this step, a concerted transfer

occurs with the electron transferring from a metal-based dπ orbital at RuII−OH
2

2+ to a dπ

acceptor orbital at RuIV−−O2+. Proton transfer occurs from a σ(O−H) orbital at Ru(II) to

an O-based lone-pair orbital at RuIV−−O2+ [10, 11].

Figure 1.3: An example of a concerted electron-proton transfer (EPT), reprinted
(adapted) with permission from Ref. 3. Copyright (2015) American Chemical Society.

In EPT, the e–/H+ donor orbitals and e–/H+ acceptor orbitals must interact electronically,

enabling simultaneous transfer. Normally formation of a hydrogen-bond is the first step

for making such an interaction possible, e.g. step 1 in Fig. 1.3. At last, the simultaneous

transfer of an electron and proton occurs if this motion is faster than the periods of the

coupled vibrations (tens of femtoseconds) and solvent modes (∼1 ps) [12].

On the other hand, in HAT, both the transferring electron and proton come from the same

orbital in one of the reactants. Figure 1.4 represents an example of HAT in the oxidation

of benzaldeyde by RuIV(bpy)
2
(py)(O)2+. The transferring electron and proton both come

from the same σ(C−H) bond of the benzaldehyde.

MS-EPT refers to either transferring of an electron and proton from a donor species to

different acceptors or from different donors to one acceptor species. As an example, one
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Figure 1.4: An example of hydrogen atom transfer, reprinted (adapted) with permission
from Ref. 3. Copyright (2015) American Chemical Society.

can refer to the quenching of triplet C
60

and tetracene fluorescence by phenols which is

strongly enhanced through addition of pyridines [13]. Based on kinetic measurements and

independent spectroscopic data, the quenching is the result of a trimolecular transition state

in which an electron transfer occurs from the phenol to the excited molecule while a proton

transfers from the phenolic OH to the pyridine nitrogen.

It should be noted that the nomenclature used to describe concerted electron-proton transfer,

i.e. EPT, has not been standardized and other terms are being used in the literature to

describe the same elementary step, including concerted proton-electron transfer (CPET)

[14], electron transfer proton transfer (ET-PT) [15], concerted electron-proton transfer (CEP)

[16], and concerted proton-coupled electron transfer (concerted PCET) [17]. The last term is

what we use in this thesis to differentiate the concerted mechanism of the transfer of a proton

and electron from the sequential mechanisms. A schematic representation of the reactions

studied in this thesis are depicted in Fig. 1.5.

Concerted 
PCET

D H A D H A
ET

D H A
ET

D H A

PT PT

·
+

·
−

+− ··

Sequential PCET

Sequential PCET

Figure 1.5: A schematic representation of concerted and sequential PCET reactions. D
represents the donor and A represents the acceptor species.
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1.3 Theoretical challenges

Due to the importance of PCET in chemical and biological reactions, it is not surprising that

this phenomenon has been the subject of numerous experimental [3, 14, 18–23] and theoretical

[18, 24–30] studies over the past two decades. A deep understanding of the mechanisms

of PCET reactions, however, is complicated by both the quantum mechanical nature of

the transferring protons and electrons and the size and complexity of the environments in

which they occur. Ideally, a full quantum dynamical treatment should be used to study

these reactions, but the large number of degrees of freedom in the surrounding environment

renders such a treatment impossible. To circumvent this problem, simplified models of

complex systems may be studied to gain qualitative insights into the PCET mechanisms

and/or mixed quantum-classical schemes, which treat the transferring protons and electrons

quantum mechanically and the environmental degrees of freedom classically, may be used to

gain quantitative information about PCET reaction rates.

Another theoretical challenge in the study of PCET reactions is related to the different

timescales of motions encountered in these systems. There are three distinct timescales in

PCET. Electrons move on the fastest timescale, protons move on an intermediate timescale,

and the solvent and heavy atoms of the solute move on the slowest timescale[31]. Hence,

it is convenient to treat the transferring electrons and protons quantum mechanically, to

include effects such as zero point energy and tunnelling, while the heavy particles may be

treated classically. If a distinct separation of timescales exists, then one could invoke two

adiabatic approximations for PCET, namely that the electrons respond instantaneously to

the proton and solvent motion and, likewise, the protons respond instantaneously to the

solvent motion. However, this is not always a valid approximation for PCET reactions since

electron transfer reactions in solution are often nonadiabatic with respect to the solvent

motion [32–34]. When the electrons do not respond instantaneously to the solvent motion

then most likely they will not respond instantaneously to the proton motion either, which is

typically faster than the solvent motion. A similar behaviour is expected for proton motion

compared to the solvent motion. This is due to the presence of long hydrogen bonds, which

results in weak couplings between electron donors and acceptors. Thus, an accurate mixed

quantum-classical description of PCET reactions should take all the nonadiabatic couplings

in the system into account.
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1.4 Mixed quantum-classical dynamics (MQCD)

Mixed quantum-classical dynamics (MQCD) approaches treat a few degrees of freedom

(DOF) in a subsystem of interest quantum mechanically, while the remaining DOFs in the

environment are treated classically. The last few decades have witnessed the emergence of

various mixed quantum-classical approaches for simulating nonadiabatic dynamics of chemi-

cal and biological systems. The most well-known of these methods is Fewest Switches Surface

Hopping (FSSH), introduced by Tully and Preston in 1971 [35, 36] and later improved in

the early 90s [37, 38]. In this approach, an ensemble of classical trajectories is evolved on

single adiabatic potential energy surfaces with stochastic nonadiabatic transitions between

surfaces. Over the years, improved versions of FSSH have been introduced, including second-

quantized surface hopping (SQUASH) [39] and global flux surface hopping (GFSH) [40, 41]

to name a few. Other MQCD approaches include mixed quantum-classical Liouville (MQCL)

dynamics [56, 58] and mixed quantum-classical Bohmian dynamics [59–61].

Semi-classical approaches have also been introduced, which treat the subsystem and envi-

ronmental DOF on an equal footing. Such approximate schemes include the classical Wigner

(CW) approximation [42–44], centroid molecular dynamics [45], and ring-polymer molecular

dynamics (RPMD) [46].

Quantum mechanics/molecular mechanics (QM/MM) [47–51] has also proved useful in sim-

ulating large and complex systems. It provides a feasible way for addressing the electronic

structure problem, while the aforementioned methods address the molecular dynamics prob-

lem.

1.4.0.1 Fewest switches surface hopping (FSSH)

Tully’s FSSH is one of the most widely used mixed quantum-classical methods for simulating

the nonadiabatic dynamics of quantum processes in condensed phase systems. Compared

to other MQCD methods, it is more computationally efficient, making simulations of large

systems feasible. It is also conceptually simple, representing a quantum wave packet in terms

of an ensemble of independent trajectories. The multiple steps in an FSSH simulation can

be summarized as follows:

7
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1. The time-independent Schrödinger equation, ĥ|α;Q〉 = Eα(Q)|α;Q〉, for the quantum

subsystem is solved for a fixed configuration of the classical DOF, Q, to obtain the adiabatic

energies, Eα(Q), and the corresponding adiabatic states, |α;Q〉.

2. A time-dependent wave function is defined as |Φ(t)〉 =
∑

k Ck(t)|α;Q〉 , where Ck(t) are

complex-valued expansion coefficients.

3. Substitute this wavefunction into the time-dependent Schrödinger equation to obtain

i~Ċk =
∑

j

Cj(Vkj − i~Q̇ · dkj) (1.5)

where the coupling potential between two states is given by

Vkj = 〈αk;Q|ĥ(Q)|αj ;Q〉 (1.6)

and the nonadiabatic coupling vector between the two states is defined as

dkj(Q) = 〈αk;Q|∇Q|αj ;Q〉 (1.7)

Equation 1.5 is integrated numerically as the trajectory of the classical DOF is propagated

on the single state k in order to obtain the amplitudes Ck of each quantum mechanical state

at a given time t.

4. Hellmann-Feynman forces, the forces on each classical DOF due to the quantum subsys-

tem, are calculated as follows

Fαk
(Q) = −〈αk;Q|

∂ĥ

∂Q
|αk;Q〉 (1.8)

These forces along with the remaining classical forces are used to update the positions and

velocities of the classical DOF via Newton’s equations of motion.

5. The “fewest switches” algorithm apportions trajectories among states according to the

quantum probabilities |Ck(t)|
2 with the minimum required number of quantum transitions.

According to this algorithm, the probability of switching from the current state k to all other

8
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states j during the time interval between t and t+∆ is

gkj =
bjk(t+∆)∆

akk(t+∆)
(1.9)

where akk = CkC
∗

k is the population of state k and bjk = 2~−1Im(α∗

jkVjk)− 2Re(α∗

jkQ̇ · dkj).

Whether or not a switch to any state j occurs is determined by comparing gkj to a randomly

generated number between 0 and 1. The transition occurs, or is accepted, if the probability

of transition is greater than the random number. This switching procedure ensures that, for

a large ensemble of trajectories, the fraction of trajectories assigned to any state k at any

time t will equal the quantum probability |Ck(t)|
2.

6. If the transition is accepted, then the velocities of the classical DOFs are shifted to

conserve energy. If the transition is rejected, then the classical DOFs continue to evolve on

the adiabatic PESs corresponding to the current state.

7. Steps 1 to 6 are repeated for each time step of the MD simulation.

FSSH has been widely used to study the dynamics and rates of charge transfer reactions

including PCET [28, 62–65]; however, there have been some issues with the accuracy of

the method [66–69]. To represent a wave packet, one needs to satisfy conservation of the

total energy of the ensemble of the trajectories, while allowing energy exchange between

individual trajectories. Although each trajectory conserves energy in FSSH, the decoupled

classical trajectories do not exchange energy and hence cannot properly represent a quantum-

mechanical wave packet. As a result, FSSH suffers from neglecting decoherence which is the

collapse of the quantum superposition when coupled to a classical environment. FSSH evolves

the wave function coherently and although there were attempts to add corrections to account

for decoherence, they were ad hoc in nature [70, 71]. It has been shown that in the case of

the spin-boson model, FSSH yields time-reversible dynamics only with zero friction and for

certain initial energies. However, under other conditions, the value of the electronic wave

function is not periodic and FSSH is unable to recover the correct Marcus’ golden rule scaling

unless decoherence added to the algorithm [72, 73].
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1.4.0.2 Mixed quantum-classical Liouville (MQCL) approach

The mixed quantum-classical Liouville (MQCL) surface-hopping algorithm is based on the

numerical solution of the quantum-classical Liouville equation (QCLE) [74–85], which rig-

orously accounts for quantum coherence/decoherence effects in mixed quantum-classical dy-

namics. In the MQCL approach, the classical DOF are evolved either on single adiabatic

potential energy surfaces or on the mean of two adiabatic surfaces corresponding to two co-

herently coupled states [83, 84], as opposed to just on single adiabatic surfaces as in FSSH.

To illustrate the differences between these two approaches for calculating condensed phase

charge transfer rates, it has been found [87] that the MQCL approach yields a proton trans-

fer rate constant for the Azzouz-Borgis model [86] of a proton transfer reaction in a phenol

trimethylamine complex dissolved in CH3Cl that is approximately twice as large as that

given by FSSH [88]. Owing to its more rigorous treatment of coherence/decoherence effects,

the MQCL approach is expected to yield more accurate rate constants for condensed phase

PCET reactions and may also shed new light on their underlying mechanisms.

As in all MQCD approaches, one considers a quantum subsystem that is coupled to a classical

environment, whose Hamiltonian is given by

Ĥ (Q,P ) =
P 2

2M
+ Ve(Q) +

p̂2

2m
+ V̂s(q̂) + V̂c(q̂, Q)

≡ He(Q,P ) + ĥs(q̂, p̂) + V̂c(q̂, Q)

≡ He(Q,P ) + ĥ(Q), (1.10)

where m, q̂, and p̂ are the vectors of masses, positions, and momenta of the n quantum

DOF, respectively; M , Q, and P are the vectors of masses, positions, and momenta of the

N classical DOF, respectively; He = P 2

2M
+ Ve and ĥs = p̂2

2m
+ V̂s are the environment and

subsystem Hamiltonians, respectively; V̂c is the subystem-environment coupling potential

energy and ĥ = ĥs + V̂c [throughout this text, operators are capped (e.g., Â)]. The state

of this mixed quantum-classical system can be represented in terms of the partial Wigner

transform [89] of the density operator, ρ̂, over the environmental DOF:

ρ̂W (X, t) =

(

1

2π~

)N ∫

dZeiP ·Z/~〈Q− Z/2|ρ̂(t)|Q+ Z/2〉, (1.11)
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where X = (Q,P ). When m/M � 1, the dynamics of ρ̂W (X, t) can be accurately described

by the QCLE [58, 79]:

∂

∂t
ρ̂W (X, t) = −

i

~

[

ĤW (X, t) , ρ̂W (X, t)
]

+
1

2

({

ĤW (X, t) , ρ̂W (X, t)
}

−
{

ρ̂W (X, t) , ĤW (X, t)
})

, (1.12)

where [· · · ] is the commutator and the Poisson bracket {· · · } is defined as

{

ÂW (X, t) , B̂W (X, t)
}

= ÂW (X, t)
(←−
∇P

−→
∇Q −

←−
∇Q

−→
∇P

)

B̂W (X, t) . (1.13)

Here,
−→
∇Q/P and

←−
∇Q/P are gradient operators with respect to Q/P which act on the term

to the right and left of them, respectively.

The quantum subsystem may be represented in terms of an adiabatic basis, |α;Q〉, which

are the solutions of ĥ(Q)|α;Q〉 = Eα(Q)|α;Q〉. In this representation, the QCLE is given by

[79]
∂ραα

′

W (X, t)

∂t
= −i

∑

ββ′

Lαα′,ββ′ρββ
′

W (X, t), (1.14)

where the evolution operator is defined as

iLαα′,ββ′ ≡ (iωαα′ + iLαα′)δαβδα′β′ − Jαα′,ββ′ . (1.15)

In the above equation, the classical Liouville operator, iLαα′ , is given by

iLαα′ =
P

M
·

∂

∂Q
+

1

2

(

Fα
W + Fα′

W

)

·
∂

∂P
. (1.16)

When the quantum state indices are equal (i.e., α = α′), the classical evolution is carried out

subject to the Hellmann-Feynman forces, Fα
W = −〈α;Q|∂V̂c(q̂,Q)

∂Q
|α;Q〉, on a single adiabatic

surface Eα(Q). However, when the quantum state indices are different (i.e., α 6= α′), the

classical evolution is carried out on the mean of two adiabatic surfaces, [Eα(Q) +E′

α(Q)]/2,

accompanied by quantum phase oscillations of frequency ωαα′ = (Eα − Eα′)/~. The term

responsible for nonadiabatic transitions and the associated changes in the bath momentum
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(to conserve energy) is given by

Jαα′,ββ′(t) = −
P

M
· dαβ

(

1 +
1

2
Sαβ ·

∂

∂P

)

δα′β′

−
P

M
· d∗α′β′

(

1 +
1

2
S∗

α′β′ ·
∂

∂P

)

δαβ , (1.17)

where Sαβ = Fα
W δαβ − Fαβ

W ( P
M
· dαβ)

−1 = Eαβdαβ(
P
M
· dαβ)

−1, dαβ = 〈α;Q| ∂
∂Q
|β;Q〉 is the

nonadiabatic coupling vector matrix element, and Fαβ
W is the off-diagonal matrix element of

the force.

Formally, the solution of the QCLE for ραα
′

W (X, t) can be written as

ραα
′

W (X, t) =
∑

ββ′

(

e−iL̂t
)

αα′,ββ′

ρββ
′

W (X) . (1.18)

A numerical solution may be obtained using the sequential short-time propagation (SSTP)

algorithm [83], which is based on a decomposition of the propagator into short-time segments.

Dividing the time interval t into S segments such that the jth segment has length ∆tj =

tj − tj−1 = ∆t (where ∆t is the time step), gives

ρ
α0α

′

0

W (X, t) =
∑

(α1α
′

1
)...(αSα

′

S
)

[

S
∏

j=1

(e−iL̂∆tj )αj−1α
′

j−1
,αjα

′

j

]

ρ
αSα

′

S

W (X), (1.19)

where the short-time propagator is approximated by

(e−iL̂∆tj )αj−1α
′

j−1
,αjα

′

j
≈ Wαj−1α

′

j−1
(tj−1, tj)e

−iLαj−1α
′

j−1

∆tj

×
(

δαj−1αj
δα′

j−1
α′

j
+∆tJαj−1α

′

j−1
,αjα

′

j

)

(1.20)

and Wαj−1α
′

j−1
(tj−1, tj) = e

−iωαj−1α
′

j−1

∆tj
is the phase factor for that segment. In the SSTP

algorithm, Monte Carlo sampling is used to evaluate the multi-dimensional sums over quan-

tum indices in Equation 1.19. A typical surface-hopping trajectory generated by this al-

gorithm is composed of segments in which the classical DOF evolve on a single adiabatic

surface (when αj = α′

j) and on the mean of two surfaces (when αj 6= α′

j), as governed by

the first term in Equation 1.20. These segments are interrupted by nonadiabatic transitions,

as governed by the second term in Equation 1.20, which cause the classical DOF to hop

to a new surface (or mean surface), followed by evolution on this surface. The details for
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propagating a system starting from an initial condition {X,α0, α
′

0
} via the SSTP algorithm

are provided in Refs. 83 and 84.

1.4.0.3 FSSH vs. MQCL

In this section, we point out the advantages of the MQCL approach over FSSH:

1) FSSH was not derived from the quantum Liouville equation, but instead has been justified

on empirical grounds. On the other hand, the MQCL equation was rigorously derived from

the quantum Liouville equation in the limit of m
M

<< 1, where m and M are the masses of

quantum and classical DOFs, respectively.

2) The time evolution of FSSH classical trajectories occurs on single adiabatic potential

energy surfaces (PESs), while in MQCL, the evolution occurs not only on single PESs but

also on the average of these PESs.

3) FSSH is incapable of treating decoherence, which as mentioned previously stems from

the lack of energy exchange between independent trajectories. In MQCL, while a trajectory

evolves on a mean surface the observable in question acquires a phase factor [83, 84]. Fluctu-

ations of the classical coordinates can cause this phase factor to oscillate in time differently

for each trajectory, so averaging over an ensemble of trajectories can lead to destructive

interference in the expectation value of an observable. In this sense, MQCL is able to treat

decoherence.

4) FSSH is also incapable of treating recoherence properly while owing to the mean surface

evolution, MQCL is capable of capturing recoherence.

1.5 Outline of thesis

Motivated by the need to properly incorporate all nonadiabatic couplings involved in a PCET

reaction and to properly treat coherence/decoherence effects, our method of choice in this

thesis is MQCL dynamics. In Chapter 2, we apply MQCL dynamics to the study of a reduced

model of a PCET reaction. Since this work constitutes the first application of the MQCL

approach to PCET, the model is chosen to be the same as that in Refs. 90, 91, and 92
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(which is based on a charge transfer model developed in Ref. 93). By varying the parameters

in the model Hamiltonian, PCET can either occur concertedly or sequentially between two

positively charged ions. In Chapter 3, we use MQCL dynamics to calculate the adiabatic

state populations for the same model. The results in this chapter will show a novel picture

of nonadiabatic PCET reactions, thanks to MQCL dynamics. In Chapter 4, we derive a

general, MQCL-based expression for the time-dependent rate coefficient of a PCET reaction

and apply it to an improved version of the previously studied model to calculate the rate

constant of a concerted PCET reaction. This rate constant is compared to the exact one for

this model to assess the validity of our expression. Conclusions and future work are described

in Chapter 5. Since atomic units are used commonly in this thesis, Table I contains several

useful conversions from atomic units to SI and common units.

Table 1.1: Some useful unit conversions.

One atomic unit (a.u.) SI units Common units

Length 5.29× 10−11 m 5.29 Å
Energy 4.36× 10−18 J 627.5 kcal/mol
Time 2.42× 10−17 J 0.0242 fs

Velocity 2.19× 106 m/s

14



Chapter 2

An Analysis of Model

Proton-Coupled Electron Transfer

Reactions via the Mixed

Quantum-Classical Liouville

Approach

2.1 Introduction

A deep understanding of the mechanisms of PCET reactions is complicated by both the quan-

tum mechanical nature of the transferring protons and electrons and the size and complexity

of the environments in which they occur. To circumvent this problem, simplified models

of complex systems may be studied to gain qualitative insights into the PCET mechanisms

and/or mixed quantum-classical schemes may be used to gain quantitative information about

PCET reaction rates.

Tully’s FSSH [37] is one of the most widely used mixed quantum-classical methods for sim-

ulating the nonadiabatic dynamics of quantum processes in condensed phase systems. This

method was applied to PCET for the first time in 1997 by Fang and Hammes-Schiffer [90].
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They studied a simple model containing three coupled degrees of freedom, which represent

a proton, an electron, and a solvent mode. The proton and electron were treated quan-

tum mechanically, while the solvent mode was treated classically. By varying the model

parameters, the authors investigated the nonadiabatic dynamics of both sequential (viz., ET

followed by PT and PT followed by ET) and concerted PCET mechanisms. In a subsequent

study [91], several different methods for incorporating decoherence into FSSH (which, on its

own, evolves the wave function coherently) were applied to a similar model exhibiting a large

number of avoided curve crossings. It was found that the agreement between the FSSH and

exact quantum results for the adiabatic state populations was excellent at very short times

(up to 19 fs), but at longer times, the results begin to differ and remain significantly different

for the duration of the time (i.e., 168 fs). This deviation is most likely due to an improper

treatment of decoherence.

In this Chapter, we employ for the first time a surface-hopping algorithm based on the nu-

merical solution of the quantum-classical Liouville equation which is called MQCL [74–85]

to study PCET. Since the MQCL inherently and rigorously accounts for quantum coher-

ence/decoherence effects in mixed quantum-classical systems, it is expected to yield more

accurate rate constants for condensed phase PCET reactions and may also shed new light

on their underlying mechanisms. In fact, for the Azzouz-Borgis model of a proton transfer

reaction in a phenol trimethylamine complex dissolved in CH3Cl [86], it was found that the

MQCL gives a proton transfer rate constant that is approximately twice as large [87] as

that given by FSSH [88], thereby highlighting the differences between the two approaches

for treating condensed phase charge transfer reactions.

Since this work constitutes the first application of the MQCL approach to PCET, we chose to

study the same model as in Refs. 90, 91, and 92 (based on a charge transfer model developed

in Ref. 93) to (1) demonstrate the applicability of this method to PCET reactions, (2)

compare and contrast, wherever possible, with the results of the standard FSSH approach in

Ref. 90, and (3) investigate the role played by mean surface evolution in the concerted and

sequential mechanisms for a range of subsystem-bath couplings. This chapter is organized as

follows: The three PCET models studied in this work are presented in Section 2. Section 3

summarizes the simulation details for generating nonadiabatic quantum-classical dynamics.
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Section 4 presents and discusses the results for the model PCET reactions and concluding

remarks are made in Section 5.

2.2 PCET model

The reduced model of a PCET reaction considered in this work contains three coupled degrees

of freedom, representing a proton, an electron, and a solvent mode. The PCET reaction

occurs between two positively charged ions, referred to as the donor (D) and acceptor (A),

which are separated by a fixed distance dDA. The coordinates of the proton and electron,

denoted by qp and qe, respectively, are measured relative to D and they move from D to A

only in one dimension, along the D–A axis (see Fig. 2.1).

Figure 2.1: Schematic representation of the one-dimensional PCET model studied in this
work. The protonic and electronic potentials (Vp and Ve, respectively) are superimposed
onto the donor(D)−acceptor(A) axis. The protonic and electronic coordinates (qp and qe,

respectively) are defined relative to the donor.

The coordinate of the collective solvent mode to which the proton and electron are coupled,

is denoted by Q. Within our approach, the proton and electron are treated quantum me-

chanically, whereas the solvent mode is treated classically. The Hamiltonian of this mixed

quantum-classical system is given by

Ĥ = K̂p + K̂e +Ks + V̂p(qp) + V̂e(qe) + V̂pe(qp, qe) + V̂pes(qp, qe, Q) + Vs(Q)

≡ ĥ+Ks. (2.1)

Here, K̂p and K̂e denote the kinetic energy operators of the proton and electron, respectively,

Ks is the kinetic energy of the solvent mode, and ĥ = Ĥ−Ks. The protonic potential energy
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operator V̂p, as can be inferred from Fig. 2.1, is a double-well potential given by

V̂p(qp) =
12∆E

(a2 − a1)3(2a3 − a1 − a2)

[

q4p
4
− (a1 + a2 + a3)

q3p
3

+ (a1a2 + a1a3 + a2a3)
q2p
2
− (a1a2a3)qp

+
a2
2
(a2

2
− 2a2(a1 + a3) + 6a1a3)

12

]

, (2.2)

where a1 and a3 correspond to the positions of the two minima, where proton is near the

donor or acceptor, respectively. a2 corresponds to the position of the maximum between a1

and a3 and ∆E is the energy difference between the minimum at a1 and a2. The electronic

potential energy operator, V̂e, corresponding to the Coulombic interactions between the

electron and the donor and acceptor charges, is given by

V̂e(qe) = −
CeCDerf(qeD/ξeD)

qeD
−

CeCAerf(qeA/ξeA)

qeA
+ e−5.0(qe+5.0) + e−5.0(dDA−qe+5.0), (2.3)

where Ce, CD, and CA are the partial charges of the electron, donor, and acceptor, respec-

tively, and qeD and qeA are the distances between the electron and the donor and acceptor,

respectively. In this work, both ξeD and ξeA are chosen to be equal to 1. The two last terms

are added for numerical stability, they are repulsive terms that prevent the electron from

travelling too far beyond the donor and acceptor. The potential energy operator correspond-

ing to the Coulombic interaction between the proton and electron is given by

V̂pe(qp, qe) = −
CpCeerf(qpe/ξpe)

qpe
, (2.4)

where qpe = |qp− qe| is the distance between the proton and electron. The coupling between

the solvent coordinate and the proton and electron is bilinear in form and is given by the

following operator:

V̂pes(qp, qe, Q) = −Csp(Q−Qo
p)(qp − qop)− Cse(Q−Qo

e)(qe − qoe), (2.5)

where Csp and Cse are the coupling parameters of the proton and electron to the solvent,

respectively, and Qo
p, Q

o
e, q

o
p, and qoe are free parameters. When Q < Qo

p/e
and q < qo

p/e
,

the proton/electron is stabilized near the donor. Conversely, if Q > Qo
p/e

and q > qo
p/e

, the
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proton/electron is stabilized near the acceptor. Finally, the dynamics of the classical solvent

mode is governed by a harmonic potential of the form

Vs(Q) =
1

2
msωs

2(Q−Qo)
2, (2.6)

where ms and ωs are the mass and frequency, respectively, of the collective solvent mode. It

should be noted that for Hamiltonians with bath terms that are harmonic and subsystem-

bath coupling terms that are linear in the bath coordinates, MQCL dynamics is exact. The

only approximation made in the sequential short-time propagation (SSTP) solution of the

MQCL equation is the momentum-jump approximation, which has been shown numerous

times to be a very good approximation.

By varying the parameters in the Hamiltonian, one can generate systems in which the proton

and electron transfer take place in a concerted fashion and systems in which the transfer is

sequential, i.e., PT before ET (i.e., PT-ET) and vice versa (i.e., ET-PT). The parameter

values used to investigate the concerted, sequential PT-ET, and sequential ET-PT mecha-

nisms are presented in Table 1. The main differences between the three sets of parameter

values are as follows: The partial charges on the proton and electron are chosen to be higher

(i.e., ±0.32) in the concerted case than in the sequential cases (i.e., ±0.15) since the at-

traction between the proton and electron should be higher for them to transfer together.

In order for the proton and electron to transfer in a concerted fashion, they should also

be similarly coupled to the solvent and therefore their respective couplings are chosen to

be equal (i.e., Csp = Cse). In contrast, in the case of sequential transfer, the proton and

electron should experience different degrees of coupling to the solvent. In addition to the

differences in the couplings to the solvent, the parameters Qo
p, Q

o
e, and Qo are different for

each mechanism. Namely, Qo
p = Qo

e = Qo in the case of concerted PCET, Qo
p < Qo and

Qo
e > Qo for PT-ET, and Qo

e < Qo and Qo
p > Qo for ET-PT. In all cases, the midpoint of

the donor−acceptor distance coincides with the barrier tops of the protonic and electronic

potentials (i.e., qop = qoe = dDA/2).

The validity of these parameters is confirmed by examining the 2D potential energy surfaces

(PESs) as a function of qp and qe in Fig. 2.2. For example, if one examines the 2D PES

of concerted PCET, top row in Fig. 2.2, at Q = −0.4 a.u., which is before the midpoint of

the D–A distance or the barrier tops of the protonic and electronic potentials, the well at
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Table 2.1: Parameters values (in atomic units) for the concerted PCET (top), sequential
PT-ET (middle), and ET-PT (bottom) reactions.

ms = 22000.0 Qo = 0.0 ωs = 3.72× 10−4

a1 = 2.5 a2 = 3.0 a3 = 3.5 ∆E = 1.2× 10−2

dDA = 6.0 CD = 0.6 CA = 0.6
Cp = 0.32 Ce = 0.32 qop = 3.0 qoe = 3.0
Qo

p = 0.0 Qo
e = 0.0 Csp = 2.0× 10−3 Cse = 2.0× 10−3

ms = 22000.0 Qo = −0.4 ωs = 4.0× 10−4

a1 = 3.5 a2 = 4.0 a3 = 4.55 ∆E = 1.2× 10−2

dDA = 8.0 CD = 0.6 CA = 0.6
Cp = 0.15 Ce = 0.15 qop = 4.0 qoe = 4.0
Qo

p = −0.6 Qo
e = 0.0 Csp = 1.0× 10−2 Cse = 2.0× 10−3

ms = 22000.0 Qo = −0.3 ωs = 4.0× 10−4

a1 = 3.5 a2 = 4.0 a3 = 4.5 ∆E = 1.2× 10−2

dDA = 8.0 CD = 0.55 CA = 0.55
Cp = 0.15 Ce = 0.15 qop = 4.0 qoe = 4.0
Qo

p = 0.0 Qo
e = −0.6 Csp = 3.0× 10−2 Cse = 4.0× 10−3

qp = 2.5 a.u./qe = 0.0 a.u. has the lowest depth. It means that both proton and electron

are near the donor. On the other hand, at Q = +0.4 a.u., which is after the barrier tops of

the protonic and electronic potentials, the well at qp = 3.5 a.u./qe = 6.0 a.u. has the lowest

depth. It means that both proton and electron are near the acceptor. At Q = 0.0 a.u., which

coincides with the barrier tops of the potentials, both of these wells show the same depth,

i.e. both proton and electron are at the midpoint between the donor and the acceptor.

2.3 Simulation details

To carry out the SSTP algorithm, one needs to solve the time-independent Schrödinger

equation at each step of the simulation:

ĥ|α;Q〉 = Eα(Q)|α;Q〉, (2.7)

where ĥ is the model Hamiltonian given in Eq. 2.1. This involves expanding the adiabatic

wave function |α;Q〉 in an orthonormal set of two-particle basis functions as

|α;Q〉 =
∑

m,n

cαmn|φp(m)〉|φe(n)〉, (2.8)
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Figure 2.2: The 2D PESs as a function of qp and qe at different solvent configurations
for concerted PCET (top row), sequential PT-ET (middle row), and the sequential ET-PT
(bottom row) mechanisms. Q values are in Å but qp and qe values in this figure are given

in a.u.

where |φp(m)〉 and |φe(n)〉 are one-particle basis functions and are chosen to be the solutions

of the quantum harmonic oscillator for a proton and an electron, respectively, i.e.,

φp(m)(qp) = 〈qp|φp(m)〉 = (2mm!
√
π)−1/2α1/2

p e−α2
p(qp−qop)/2Hm(αp(qp − qop)), (2.9)

and

φe(n)(qe) = 〈qe|φe(n)〉 = (2nn!
√
π)−1/2α1/2

e e−α2
e(qe−qoe)/2Hn(αe(qe − qoe)), (2.10)
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where m and n are integers and Hm(q) is a Hermite polynomial. For convergence, we used a

total of 625 two-particle basis functions in the expansion in Eq. 2.8, i.e., 0 < {m,n} < 24. The

one-particle protonic and electronic functions are centred at qop and qoe , respectively, and αp =

3.97 Å−1 and αe = 0.32 Å−1. We solve the eigenvalue problem, hc = cE, at each molecular

dynamics step to obtain {cαmn} and {Eα}, where h is the 625×625 Hamiltonian with matrix

elements h
{ij}{kl} = 〈φp(i)φe(j)|ĥ(Q)|φp(k)φe(l)〉. The matrix elements h

{ij}{kl} are calculated

using the trapezoid rule with 100 points evenly spaced over the range qp = 1.06/1.59 Å to

qp = 2.12/2.65 Å for the protonic integrals in the case of the concerted/sequential mechanisms

and 700 points over the range qe = −3.17 Å to qe = 6.35 Å for the electronic integrals in the

case of all mechanisms.

The nonadiabatic coupling matrix element, dαβ , for this model is given by:

dαβ =
−1

∆Eαβ

〈α;Q|
∂ĥ

∂Q
|β;Q〉

=
1

∆Eαβ

∑

mnkl

cαmnc
β
kl[Csp〈φp(m)|(qp − qop)|φp(k)〉δnl + Cse〈φe(n)|(qe − qoe)|φe(l)〉δmk],

(2.11)

and the Hellmann-Feynman forces, Fα
W , are given by:

Fα
W = −〈α;Q|

∂ĥ(Q)

∂Q
|α;Q〉

=
∑

mnkl

cαmnc
α
kl[Csp〈φp(m)|(qp − qop)|φp(k)〉δnl + Cse〈φe(n)|(qe − qoe)|φe(l)〉δmk]. (2.12)

After summing the Hellmann-Feynman forces and the classical forces, the classical degrees

of freedom are propagated using the velocity-Verlet algorithm with a time step of 2.4 fs.

2.4 Results

2.4.1 Adiabatic potential energy surfaces and nonadiabatic couplings

The ground (1,1) and first-excited (2,2) state adiabatic potential energy surfaces (and the

corresponding mean surfaces [(1,2) or (2,1)]) as a function of the solvent coordinate for the

concerted, sequential PT-ET, and sequential ET-PT mechanisms are shown in Fig. 2.3.
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Figure 2.3: Adiabatic potential energy surfaces as a function of the solvent coordinate, Q,
for the concerted (top), PT-ET (middle), and ET-PT (bottom) reactions. The blue curves
correspond to the ground and first excited state surfaces, while the red curves correspond

to the mean surfaces.

In this work, the dynamics is restricted to the two lowest states since based on our prelim-

inary calculations, which are also confirmed by Ref. 90, the higher excited states are rarely

populated for the range of initial momenta considered here. For concerted PCET (top panel

of Fig. 2.3), both the ground and first excited state surfaces are symmetric about Q = 0 Å.

The minimum energy gap of 0.44 kcal/mol between the surfaces occurs at the barrier top of

the ground state surface (i.e., at Q = 0 Å). The ground state surface exhibits two minima,
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one at Q = −0.4 Å and the other at Q = 0.4 Å, corresponding to stable solvent configura-

tions in which the proton and electron are near the donor and acceptor, respectively. We

have confirmed this by examining the ground state adiabatic wavefunction in Fig. 2.4 where

at a negative value of Q, i.e. to the left of the energy barrier, the wavefunction is centred

at the donor site but for a positive value of Q, i.e. to the right of the barrier, it is centred

at the acceptor site. At Q = 0.0 Å the wave function has spread towards both the donor

and the acceptor sites, note that both contours in the middle panel of the ground state in

Fig. 2.4 have positive signs.

Figure 2.4: The ground and the first excited state wave functions for the concerted PCET
as a function of the solvent configuration.

In contrast to the ground state surface, the excited state surface exhibits a single minimum

at Q = 0.0 Å. An examination of the excited state wave functions reveals that for Q = −0.21

Å, the proton and electron are near the acceptor, while for Q = +0.21 Å they are near the

donor. Note that the two contours in all the excited state panels in Fig. 2.4 have opposite

signs showing the presence of a node in the first excited state wavefunction. The mean

surface exhibits a shallow well, whose minimum occurs at Q = 0.0 Å. In the concerted case,
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a PCET reaction takes place when the system starts at the donor site on the ground state

surface (i.e., at Q < 0.21 Å) and moves to the acceptor site on the ground state surface (i.e.,

at Q > 0.21 Å).

In the case of sequential PCET, the ground and first excited state surfaces are asymmetric

about the ground state barrier tops, see Fig. 2.3 for close-ups on the barrier top regions and

Fig. 2.5 for the full surfaces. For PT-ET, the ground state surface has a barrier top centered

Figure 2.5: Potential energy surfaces of PT-ET (top), and ET-PT (bottom) mechanisms
as a function of solvent configuration.

at Q = −0.46 Å, the excited state surface exhibits one main well (with two shallow wells

flanking it), and the mean surface exhibits a relatively flat region centered at Q = −0.46

Å (with two shallow wells flanking it). The minimum energy gap between the ground and

first exited states is 0.33 kcal/mol. For ET-PT, the ground and first excited state surfaces are

more asymmetric about the ground state barrier top than the PT-ET surfaces, and the mean

surface exhibits a broad barrier top. The minimum energy gap is 0.46 kcal/mol at Q = −0.02

Å. The characters of the ground state wave functions at different solvent configurations are

shown in Fig. 2.6 for both sequential mechanisms.
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Figure 2.6: The ground state wave functions for the sequential PCET mechanisms as a
function of the solvent configuration.

For PT-ET, the ground state wave function reveals that at Q = −0.5 Å (i.e., to the left of

the barrier top), both the proton and electron are near the donor, while at Q = −0.32 Å the

proton transfers to the acceptor but the electron remains at the donor. However, at Q = 0.11

Å, both the proton and electron are located near the acceptor. Hence, once the proton has

transferred to the acceptor, there is no barrier associated with the motion of the solvent as

the electron transfers to the acceptor. For ET-PT, the situation is reversed. The ground

state wave function reveals that at Q = −0.48 Å (i.e., to the left of the barrier top), both the

proton and electron are near the donor, while at Q = −0.16 Å (i.e., to the left of the barrier

top) the electron transfers to the acceptor but the proton remains at the donor. However,

at Q = 0.16 Å, both the proton and electron are located near the acceptor. Examination

of the first excited state wave functions for PT-ET and ET-PT reveals that at Q equal to

0.42 Å and 0.45 Å, respectively, the proton and electron are near the acceptor. Therefore, a

successful reaction takes place when the system starts at the donor site on the ground state
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surface (viz., at Q < −0.6 Å and -0.2 Å for PT-ET and ET-PT, respectively) and moves

to the acceptor site on either the ground or excited state surfaces (viz., at Q > 0.11 Å and

0.42 Å for the ground and first excited states, respectively, of PT-ET and Q > 0.2 Å and

0.4 Å for the ground and first excited states, respectively, of ET-PT).

To gain insight into the strength of the nonadiabatic coupling between the adiabatic surfaces

and, hence, into the regions where nonadiabatic transitions are likely to occur, we calculated

|d12| as a function of the solvent configuration Q for the various PCET mechanisms. In the

right-hand panels of Fig. 2.7, we show |d12| vs. Q for concerted PCET (top panel), PT-ET

(middle panel), and ET-PT (bottom panel). As expected, |d12| is peaked at the Q values

corresponding to the ground state barrier top where the energy gap between the ground and

first excited state surfaces is the smallest. We also see that |d12| attains higher values in

ET-PT than in PT-ET than in concerted PCET. This is a reflection of the differences in the

energy gaps and relative curvatures of the ground and first excited state surfaces between the

mechanisms. When we zoom in on the section of the PT-ET graph corresponding to lower

|d12| values (see insets of Fig. 2.7), we see “bumps” on either side of the barrier top, which

stretch over a relatively wide range of solvent configurations, and are due to the presence of

wells on the excited state surface (see Fig. 2.5). Therefore, outside of the barrier top region,

one can still expect some nonadiabatic transitions to occur (albeit to a much lesser extent

than in the barrier top region).

In the following section, we describe the nature of the nonadiabatic dynamics observed in

the concerted, sequential PT-ET, and sequential ET-PT mechanisms. In each case, we

initialized trajectories with several different momenta, Pi, but with the same value of the

solvent coordinate, Qi.

2.4.2 Nonadiabatic dynamics

2.4.2.1 Concerted PCET mechanism

We generated an ensemble of 1000 trajectories, starting from Qi = −0.24 Å on the ground

state for the following values of the initial momentum: Pi =4.0, 7.0, 10.0, and 15.0 a.u. Each

trajectory is terminated when it reaches a donor or acceptor configuration in the reactant or

product well (i.e., |Q| > 0.21 Å) on the ground state surface. For this ensemble of trajectories,
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Figure 2.7: Nonadiabatic coupling strength, |d12|, as a function of the solvent coordinate,
Q, computed for concerted PCET (top panels), PT-ET (middle panels), and ET-PT (bottom
panels). The insets zoom in on the sections corresponding to lower |d12| values. Left panels:
Lower proton/electron-solvent coupling. The coupling constants for concerted PCET, PT-
ET, and ET-PT are Csp = Cse = 5× 10−4, Csp/Cse = 2.5× 10−3/5× 10−4, and Csp/Cse =
7.5 × 10−3/1 × 10−3, respectively. Right panels: Higher proton/electron-solvent coupling.
The coupling constants for concerted PCET, PT-ET, and ET-PT are Csp = Cse = 2×10−3,

Csp/Cse = 1× 10−2/2× 10−3, and Csp/Cse = 3× 10−2/4× 10−3, respectively.

we started by examining the percentage of trajectories, % PCET, which successfully go from

the reactant well on the ground state to the product well on the ground state, whether

adiabatically or nonadiabatically. The top panel of Fig. 2.8 illustrates % PCET as a function

of the initial momentum. After an initial decrease from 100% to 71% in going from Pi = 4.0

a.u. to Pi = 7.0 a.u., % PCET remains relatively constant with increasing Pi. This should be

contrasted with the results in Ref. 90, where substantial decreases in % PCET are observed
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Figure 2.8: Percentage of trajectories which successfully undergo a PCET reaction (de-
noted by % PCET) and the percentage of these trajectories which contain 0, 2, 4, 6, 8, and
10 nonadiabatic transitions (denoted by 0 jumps, 2, jumps, etc.) as a function of the initial

momentum for the concerted (top), PT-ET (middle), and ET-PT (bottom) reactions.

with increasing Pi. This difference is due to the fact that our dynamics can occur on the mean

surface, whose shallow well can facilitate the PCET. Also shown in the top panel of Fig. 2.8

are the percentages of the sub-ensemble of trajectories that successfully underwent PCET

with 0 (i.e., adiabatic), 2, 4, 6, 8, and 10 nonadiabatic transitions. It should be noted that

only even numbers of jumps were considered since successful PCETs cannot terminate on the

mean surfaces. At Pi = 4.0 a.u., 100% of PCETs occur adiabatically, but when Pi increases

to 7.0 a.u., there is a large drop in the percentage of adiabatic PCETs to 46% due to the

onset of nonadiabatic transitions. For Pi ≥ 10.0 a.u., we see that the percentages of reactive
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trajectories undergoing any number of jumps do not change significantly with increasing Pi,

with ∼ 50% of PCETs occurring adiabatically, ∼ 23% nonadiabatically via two nonadiabatic

transitions, and ∼ 27% nonadiabatically via four or more nonadiabatic transitions. This

means that beyond Pi = 7.0 a.u., approximately 0.50×72%=36% of the entire ensemble of

trajectories undergo PCET adiabatically, 0.23×72%=17% undergo PCET via two jumps,

and 0.27×72%=19% undergo PCET via four or more jumps. As can be seen, the majority

of reactive, nonadiabatic trajectories follow the (1, 1)→ (1, 2)/(2, 1)→ (1, 1) pathway, and a

smaller percentage follow the (1, 1)→ (1, 2)/(2, 1)→ (2, 2)→ (1, 2)/(2, 1)→ (1, 1) pathway.

The top panel of Fig. 2.9 presents the percentage of time spent on the various surfaces over

the ensemble of 1000 trajectories. We see that for Pi = 4.0 a.u., 100% of the time is spent

on the (1,1) surface. For this initial momentum, the system is unable to make any jumps.

However, as Pi is increased, we see a large initial drop in the time spent on the (1,1) surface

to 19% (and eventually to 7% for Pi = 15.0 a.u.), an increase in the time spent on the (1,2)

and (2,1) surfaces to 70%, and a gradual increase in the time spent on the (2,2) surface to

26% for Pi = 15.0 a.u. The increases in the (1,2)/(2,1) and (2,2) percentages take place

since the system has sufficient momentum to frequently enter into the strong nonadiabatic

coupling region. It should be noted that in the limit of a sufficiently large ensemble, the (1,2)

and (2,1) percentages should be equal. Overall, these results underscore the importance of

mean surface evolution in the ensemble.

2.4.2.2 Sequential PT-ET mechanism

We generated ensembles of 1000 trajectories, starting from Qi = −0.58 Å on the ground

state for the following values of the initial momentum: Pi =5.0, 7.0, 10.0, 15.0, and 25.0

a.u. Each trajectory is terminated when it reaches an acceptor configuration on either the

ground or first excited state (i.e., Q > 0.11 Å and Q > 0.42 Å, respectively) or returns to

a donor configuration (i.e., Q < −0.6 Å) on the ground state. % PCET varies from 0% to

100% to 72% to 72% to 87% in going from Pi = 5.0 a.u. to Pi = 25.0 a.u., not exhibiting

any noticeable trend beyond Pi = 7.0 a.u. (see middle panel of Fig. 2.8). The minimum

momentum, i.e., Pi = 7.0 a.u., at which trajectories begin to undergo PCET reactions is

somewhat higher than that in the concerted case, i.e., Pi = 4.0 a.u. This is a reflection of the

longer distance between the donor and acceptor for PT-ET than for concerted PCET (see
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Figure 2.9: Percentage of time (out of the entire ensemble) spent on the ground state
(1,1), mean [(1,2) and (2,1)], and first excited state (2,2) surfaces as a function of the initial
momentum for the concerted (top), PT-ET (middle), and ET-PT (bottom) mechanisms.

Table 1), which leads to a higher ground state barrier for PT-ET than for concerted PCET

(see Fig. 2.3). Increasing the initial solvent momentum beyond Pi = 15.0 a.u. leads to a

higher % PCET since the probability of nonadiabatic transitions from the (1,2)/(2,1) to the

(1,1) and (2,2) surfaces becomes high enough such that more jumps to these surfaces occur

outside of the barrier top region. This should be contrasted with what was found in Ref. 90,

where % PCET starts at 9%, fluctuates, and ultimately reaches its maximum value (83%)

at the highest Pi value of 25 a.u. In this case, the absence of mean surface evolution would

prevent the possibility for % PCET to dramatically increase for the intermediate values of

the initial momentum.
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The middle panel of Fig. 2.8 shows the percentages of the sub-ensemble of trajectories that

successfully underwent PCET with 0, 2, 4, 6, 8, and 10 nonadiabatic transitions. For Pi =

10.0 a.u., in contrast to the concerted case, we see that the percentages of 2- and 4-jump

trajectories is significantly higher, viz., 38% and 15%, respectively (at the expense of 0-

jump trajectories). When Pi is increased from 10.0 a.u. to 25 a.u., the percentages change,

with each profile exhibiting a different behaviour. The 0-jump contribution increases to a

maximum (41% at Pi = 15 a.u.) and then decreases; the 2-jump contribution decreases

to a minimum (34% at Pi = 15 a.u.) and then increases dramatically; the 4- and 6-jump

contributions decrease gradually (while the higher jump contributions become negligible).

The trends of the percentages of time spent on each surface are very similar to those of

concerted PCET, but the magnitudes are somewhat different (see middle panel of Fig. 2.9).

Of particular note, we see that less time is spent on the (2,2) surface and more time on the

mean surfaces than in concerted PCET, for all initial momenta in common. In going from

Pi = 15.0 a.u. to Pi = 25.0 a.u., we see that the percentages of time spent on the mean

surfaces exhibit very slight decreases, while the percentage of time spent on the (2,2) surface

increases slightly. Again, we see that evolution on the mean surfaces plays an important role

in the ensemble (∼ 80% for Pi ≥ 10.0).

2.4.2.3 Sequential ET-PT mechanism

We generated ensembles of 1000 trajectories, starting from Qi = −0.5 Å on the ground state

for the following (relatively high) values of the initial momentum: Pi =23.5, 28.0, and 30.0

a.u. Each trajectory is terminated when it reaches a donor or acceptor configuration on

either the ground or excited state surface (viz., |Q| > 0.2 Å or |Q| > 0.4 Å, respectively).

From the bottom panel of Fig. 2.8, we see that % PCET increases from 87% to 98% as Pi

is increased. This is in stark contrast to what was found in Ref. 90, where % PCET ranges

from 8% to 74% in going from Pi =23.5 to 30.0 a.u. This difference is due to the fact that

our dynamics can occur on the mean surface, whose convex shape can strongly enhance the

PCET.

The bottom panel of Fig. 2.8 also shows the percentages of the sub-ensemble of trajectories

that successfully underwent PCET with 0, 2, 4, 6, 8, and 10 nonadiabatic transitions. As
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Pi increases from 23.5 to 30.0 a.u., the percentages of 0- and 2-jump trajectories do not

change significantly, while the percentage of 4-jump trajectories increases substantially (from

3% to 10%). In contrast to the case of PT-ET, for similarly high values of the momenta

(viz., Pi = 23.5 a.u. of ET-PT vs. Pi = 25.0 a.u. of PT-ET), there is a smaller percentage

of adiabatic trajectories (29% for ET-PT vs. 32% for PT-ET), a larger percentage of 2-

jump trajectories (68% for ET-PT vs. 54% for PT-ET), and a smaller percentage of 4-jump

trajectories (3% for ET-PT vs. 9% for PT-ET).

As in the concerted and PT-ET cases, the trajectories spend much of their time (∼ 70%) on

the (1,2) and (2,1) surfaces for all initial momenta. However, it is interesting to note that for

these relatively high values of Pi, we see a substantial percentage (23 − 30%) of time spent

on the (1,1) surface, in contrast to the concerted and PT-ET cases. This is likely due to

an increase in the percentages of 2-jump trajectories (relative to the concerted and PT-ET

cases) that take the system away from the (1,2) and (2,1) surfaces and back to the (1,1)

surface.

2.4.2.4 Role of phase factor

A unique feature of the MQCL surface-hopping algorithm is the phase factor from Eq. 1.20,

Wαj−1α
′

j−1
(tj−1, tj) = e

−iωαj−1α
′

j−1

∆tj
, which enters into the evolution of an observable [83,

84]. Fluctuations of the classical coordinates can cause this phase factor to oscillate in time

differently for each trajectory and, therefore, averaging over an ensemble of trajectories can

lead to destructive interference in the expectation value of an observable. Therefore, one way

to gauge the decohering effect of the environment on the quantum subsystem is to compute

the average of the real part of W(t), 〈Re[W(t)]〉, over an ensemble of trajectories starting

from a given Qi and a distribution of momenta centred around a given Pi (corresponding to a

temperature of 300 K). In Fig. 2.10, we see that 〈Re[W(t)]〉 (averaged over 1000 trajectories)

exhibits a different decay time and profile for each PCET mechanism considered.

In the case of concerted PCET, PT-ET, and ET-PT, 〈Re[W(t)]〉 decays to zero in 50− 150

fs, 75− 100 fs, and 75 fs, respectively. Although the initial decay rates are different for each

mechanism, in general, the initial decay rate increases as Pi is increased. These results suggest
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Figure 2.10: Average of the real part ofW(t), 〈Re[W(t)]〉, over an ensemble of trajectories
starting from Qi =-0.24, -0.58, and -0.5 Å and initial momentum distributions (correspond-
ing to a temperature of 300 K) centred around different Pi, for the concerted (top), PT-ET

(middle), and ET-PT (bottom) reactions, respectively.

that phase effects are important when studying PCET processes on ultrafast timescales, and

will differ depending on the mechanism in question.

2.4.3 Effect of proton/electron-solvent coupling strength

We investigated the effect of varying the coupling strength between the proton/electron

and the solvent on the nonadiabatic coupling, |d12|, in order to gain insight into how this
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will affect the nonadiabatic dynamics. The results for the original coupling strength are

contrasted with those for a lower coupling strength in Fig. 2.7. For concerted PCET, as

the coupling strength increases, we see that the overall distribution of |d12| values becomes

narrower and grows in height. This is mainly due to the change in the relative curvatures

of the ground and excited state surfaces. Therefore, as the coupling strength increases, the

probability of nonadiabatic transitions becomes very high at the barrier top and drops off

quickly outside of this region. That being said, at lower coupling strengths, the probability

of nonadiabatic transitions is higher outside of the barrier top region. For PT-ET, increasing

the coupling not only causes an increase in the central peak height of the distribution, but

also a shift in the peak position to larger Q values. Therefore, as the coupling strength

increases, the region where the probability of nonadiabatic transitions is highest shifts to

larger Q values. For ET-PT, increasing the coupling also causes an increase in the central

peak height. Thus, in all three cases, increasing the coupling will significantly affect the

nonadiabatic dynamics, but not necessarily in the same way.

In Fig. 2.11, we show the effect of varying the coupling strength between the proton/electron

and the solvent on % PCET (based on ensembles of 1000 trajectories) for each value of

the initial momentum. For each mechanism, the seven different sets of coupling constants

studied are listed in Table 2 in order of increasing coupling strength (note that the original

ratio of Csp to Cse is maintained for each mechanism).

Table 2.2: Seven sets of proton/electron-solvent coupling constants (i.e., {Csp, Cse}) con-
sidered in this study for the three PCET mechanisms, ranging from low (1) to high (7)

coupling. All values are in atomic units.

Coupling constants
1 2 3 4 5 6 7

Concerted
Csp 1× 10−4 5× 10−4 1× 10−3 2× 10−3 3× 10−3 4× 10−3 8× 10−3

Cse 1× 10−4 5× 10−4 1× 10−3 2× 10−3 3× 10−3 4× 10−3 8× 10−3

PT-ET
Csp 5× 10−4 2.5× 10−3 5× 10−3 1× 10−2 1.5× 10−2 2× 10−2 4× 10−2

Cse 1× 10−4 5× 10−4 1× 10−3 2× 10−3 3× 10−3 4× 10−3 8× 10−3

ET-PT
Csp 3.75× 10−3 7.5× 10−3 1.5× 10−2 3× 10−2 6× 10−2 1.2× 10−1 2.4× 10−1

Cse 5× 10−4 1× 10−3 2× 10−3 4× 10−3 8× 10−3 1.6× 10−2 3.2× 10−2

In the concerted case (see top panel of Fig. 2.11), as the coupling strength is increased

for Pi = 4.0 and 7.0 a.u., % PCET first decreases, then increases to 100%, and, beyond

a certain threshold coupling strength, drops to zero since the barrier becomes too high for

reactions to occur, see Fig. 2.12. This behaviour is likely due to the fact that for coupling

strengths lower than the threshold coupling strength, trajectories traversing towards the
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Figure 2.11: Percentage of trajectories which successfully undergo a PCET reaction as a
function of the coupling strength between the proton/electron and the solvent for various
initial momenta, Pi, for the concerted (top), PT-ET (middle), and ET-PT (bottom) reac-
tions. The x-axis labels, 1− 7, represent seven sets of coupling constants {Csp, Cse} (values

given in Table 2), listed in order of increasing strength.

acceptor configuration may return to the donor side via the mean surface, while at the

threshold coupling strength the energy gaps are sufficiently high to inhibit nonadiabatic

transitions, but the barrier is low enough to allow all of the trajectories to reach the stable

acceptor configuration. For Pi = 10.0 a.u., % PCET decreases gradually and then suddenly

drops to zero, whereas for Pi = 15.0 a.u., % PCET decreases gradually up to a certain

intermediate coupling strength, but then increases. In this case, there is no sudden drop

to zero, since for Pi = 15.0 a.u. the system has sufficient kinetic energy to overcome the

barrier. It should be noted that several points were omitted from the top panel of Fig. 2.11,
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Figure 2.12: Adiabatic potential energy surfaces for the seven different proton/electron-
solvent coupling strengths (listed in order of increasing strength from 1 to 7), computed for
the concerted mechanism with Pi = 10.0 a.u. Note that for coupling strength 7, the reaction

barrier is sufficiently high that the system remains in the donor state for this Pi.
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since for these particular combinations of Pi and coupling strength the system gets “stuck”

on the mean surface for a long time and, as a result, these trajectories could not terminate

within a reasonable amount of time (for Pi =4.0 a.u./strength=3, 7.0 a.u./strength=3, 10.0

a.u./strength=6, and 15.0 a.u./strength=6, 374, 733, 711, and 957 trajectories terminated,

respectively). In contrast, the percentage of successful adiabatic PCETs (see top panel

of Fig. 2.13) is lower than % PCET for intermediate and high coupling strengths (except

for the coupling strengths where the Pi = 4.0 and 7.0 a.u. percentages spike to 100% before

dropping to zero). Therefore, the fact that % PCET is larger than the percentage of successful

Figure 2.13: The percentage of trajectories which undergo adiabatic reaction as a function
of the coupling strength between the proton/electron and the solvent for various initial
momenta, Pi, for the concerted (top), sequential PT-ET (middle), and ET-PT (bottom)
reactions. The x−axis labels 1 − 7 denote seven sets of coupling constants {Csp, Cse}, in
order of increasing strength. The results were obtained using the MQCL surface-hopping

method.
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adiabatic PCETs is directly due to nonadiabatic transitions. Similar trends are observed in

the case of PT-ET (see middle panel of Fig. 2.11). Here, we see that % PCET drops to zero

for all initial momenta and the coupling strength at which the drop occurs increases with

increasing initial momenta. The percentage of successful adiabatic PCETs is higher than %

PCET for some low coupling strengths, but lower than % PCET for intermediate and higher

coupling strengths (see middle panel of Fig. 2.13) than in the case of % PCET. This indicates

that nonadiabatic transitions can play a dual role, inhibiting PCETs under low coupling

conditions and enhancing them under higher ones. In the case of ET-PT (see bottom panel

of Fig. 2.11), % PCET increases to a maximum value at a coupling strength of 4, followed by

sudden drops to zero for all initial momenta considered. In stark contrast, the magnitudes

of the percentages of successful adiabatic PCETs are much lower and gradually decrease

as the coupling strength is increased for all values of the initial momentum considered (see

bottom panel of Fig. 2.13). Thus, for this mechanism, these initial momenta, and these

coupling strengths, nonadiabatic dynamics on the mean and excited state surfaces leads to

a dramatic change in the reaction dynamics.

The effect of varying the coupling strength between the proton/electron and the solvent

on 〈Re[W(t)]〉 (with the average calculated in the same fashion as in the previous subsec-

tion) is shown in Fig. 2.14. In all three mechanisms, higher coupling to the solvent leads

to a faster initial decay of 〈Re[W(t)]〉, as expected, with a faster decay occurring for con-

certed PCET compared to the sequential PCETs. However, the rates and profiles of the

decays are mechanism-dependent. For example, under low coupling conditions, a long-lived

lower-frequency oscillation in 〈Re[W(t)]〉 is observed in the case of concerted PCET, while

short-lived high-frequency oscillations are observed in the sequential PCETs. These plots

demonstrate the sensitivity of the phase factor to the solvent dynamics in the various mech-

anisms and, hence, emphasize the importance of including this phase factor for a proper

treatment of the decoherence in a wide range of ultrafast PCET reactions.

2.5 Concluding remarks

In this Chapter, we presented the first application of quantum-classical Liouville dynamics

to the study of PCET. A minimal model of a condensed phase PCET reaction consisting
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Figure 2.14: Average of the real part of W(t), 〈Re[W(t)]〉, over an ensemble of trajec-
tories starting from Qi =-0.24, -0.58, and -0.5 Å and an initial momentum distribution
(corresponding to a temperature of 300 K) centred around Pi = 10, 10, and 28 a.u. for the
concerted (top), PT-ET (middle), and ET-PT (bottom) reactions, respectively, calculated

for three different sets of proton/electron-solvent coupling strengths.

of a proton, an electron, and a solvent coordinate was studied, which had been investigated

previously using the FSSH method [90]. Varying the model’s parameters allowed us to study

both concerted and sequential PCET mechanisms under a wide range of subsystem-bath

couplings. For each mechanism, we generated an ensemble of 1000 trajectories, starting

from the same position of the solvent on the ground adiabatic state (corresponding to the
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donor configuration) but different values of the momentum, to study the effect of increas-

ing the momentum on the nonadiabatic dynamics. Successful PCETs end in the acceptor

configuration (on the ground state in the case of concerted PCET and either the ground

or excited state in the case of the sequential PCETs), occurring either adiabatically on the

ground state or nonadiabatically after transitions between states.

In the case of concerted PCET, as the initial momentum is increased, the percentage of

successful PCET reactions displays an initial decrease but then remains relatively constant.

Except for the lowest initial momentum (viz., Pi = 4.0 a.u.), approximately half of these

PCETs occur adiabatically and the other half nonadiabatically via primarily the following

pathway: (1,1)→(1,2)/(2,1)→(1,1). Interestingly, for Pi = 7.0 a.u., the percentage of 4-jump

trajectories is higher than for any other value of the initial momentum in any mechanism.

In the case of PT-ET, increasing the initial solvent momentum beyond Pi = 15.0 a.u. leads

to a higher % PCET since more nonadiabatic transitions from the (1,2)/(2,1) to the (1,1)

and (2,2) surfaces occur outside of the barrier top region. As in the case of concerted PCET,

the 0- and 2-jump reactive trajectories are the two main contributors. In the case of ET-PT,

increasing the initial solvent momentum over the range of high initial momenta considered

leads to an increase in the percentage of successful PCET reactions (to almost 100%). It also

substantially increases the percentage of 4-jump reactions, at the expense of the adiabatic

and 2-jump reactions. Overall, our results for % PCET drastically differ from those in

Ref. 90 due to the fact that, regardless of the mechanism, large amounts of time are spent

on the mean surface for all initial momenta. This underscores the importance of including

the mean surface, (α, α′), in the nonadiabatic dynamics, especially when it is significantly

different in character from the (α, α) and (α′, α′) surfaces. While on the mean surface, the

observable in question (e.g., a rate constant) acquires a phase, which can lead to either

constructive or destructive interference upon averaging over an ensemble of trajectories. For

each PCET mechanism considered, we observed a different decay profile for the average of

the real part of the phase factor, 〈Re[W(t)]〉, suggesting that coherence/decoherence effects

may be important when studying ultrafast PCET processes and may vary from mechanism

to mechanism.

We also investigated the effects of varying the coupling strength between the proton/electron

and the solvent on % PCET and on 〈Re[W(t)]〉 for all three mechanisms. In the case of %
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PCET, we found that both the weight and nature of the role played by nonadiabatic dynamics

depends on the coupling strength, initial momentum, and the mechanism considered. For all

mechanisms studied, % PCET suddenly drops to zero at high coupling strengths due to the

emergence of high reaction barriers. In addition, in most cases, nonadiabatic transitions to

the various surfaces facilitate PCETs, but in some cases they can inhibit PCETs. In the case

of the phase factor, an increase in the coupling strength leads to a faster decay of 〈Re[W(t)]〉,

with faster initial decays observed in concerted PCET than in the sequential ones. We also

found that the rates and profiles of these decays are mechanism-dependent.

Given the more rigorous basis of the MQCL surface-hopping approach and the fact that

it yields significantly different results than the FSSH approach for the minimal model con-

sidered in this study, the MQCL method could provide new insight into the nonadiabatic

dynamics of a wide range of PCET reactions and, therefore, form the basis for future inves-

tigations of PCET reactions in more complex systems.
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New Insights into the Nonadiabatic

State Population Dynamics of

Model Proton-Coupled Electron

Transfer Reactions from the Mixed

Quantum-Classical Liouville

Approach

3.1 Introduction

Over the years, experimental studies have focused on the thermodynamic and mechanis-

tic aspects of PCET [3, 14, 18–23, 94–99]. Using stop-flow and flash-quench techniques

combined with fluorescence, absorption, or EPR spectroscopies, reduction potentials under

various pHs and solvent kinetic isotopes effect may be measured to determine the Gibbs

free energy changes, rate constants, and equilibrium constants of these reactions. To gain

theoretical insight into such quantities, on the other hand, the quantum nature of the trans-

ferring proton(s) and electron(s) and their interactions with the atoms and molecules in
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their environment must be properly taken into account. Owing to the mass scale separation

between these two sets of degrees of freedom (DOF), a mixed quantum-classical treatment

of the reaction dynamics is appropriate. However, a proper treatment of the nonadiabatic

effects in such systems is important for accurate calculations of PCET observables.

Hammes-Schiffer and co-workers have simulated PCET dynamics extensively [25–28] using

the Fewest-Switches Surface Hopping (FSSH) method [100]. However, FSSH has been shown

to yield inaccurate results due to its inability to treat decoherence [69, 72, 101]. This issue

becomes especially pronounced under strong subsystem-bath coupling conditions [101]. Sev-

eral improvements to FSSH have been made over the years, but they are ad hoc in nature

[40, 41, 70, 71, 102–104]. In the second chapter of this thesis we developed an MQCL al-

gorithm to study a model PCET reaction based on the fact that MQCL rigorously treats

quantum coherence/decoherence effects. We showed that MQCL can yield qualitatively dif-

ferent results than FSSH for this model, under a variety of conditions. These differences

were attributed to the fact that the MQCL trajectories spend the majority of their time

on the mean surfaces. In light of this, we believe that the MQCL method will allow us to

more accurately compute PCET rate constants and investigate ways of controlling PCET

reactions.

Herein, we use MQCL-based surface hopping dynamics to calculate adiabatic state pop-

ulations under different proton/electron−solvent coupling conditions for the same three-

dimensional model studied in the second chapter of this thesis. A detailed description of

the model, including the Hamiltonian and the necessary parameter values, were presented

in the last chapter. The MQCL dynamics of an observable is presented in the next section,

as well as the the details of the corresponding simulations in section 3. In section 4 of this

chapter, which includes results and discussions, we first present the MQCL results for the

time-dependent adiabatic state populations in a sequential version of the model, the ET-

PT mechanism, and compare them to the available exact quantum and FSSH results [92].

Based on the agreement between MQCL and exact results, we then present the population

results for the concerted PCET and sequential PT-ET versions of the model.1 Finally, the

concluding remarks will be made in section 5.

1The exact quantum and FSSH results are not available for these cases.
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3.2 MQCL dynamics of an observable

The Hamiltonian of a mixed quantum-classical system, which is comprised of a quantum

subsystem coupled to a classical environment, is given by

Ĥ (Q,P ) =
P 2

2M
+ Ve(Q) +

p̂2

2m
+ V̂s(q̂) + V̂c(q̂, Q), (3.1)

where m, q̂, and p̂ are the vectors of masses, positions, and momenta of the n quantum

DOF, respectively; M , Q, and P are the vectors of masses, positions, and momenta of the

N classical DOF, respectively; P 2

2M
+Ve is the environmental Hamiltonian and p̂2

2m
+ V̂s is the

subsystem Hamiltonian; and V̂c is the subystem-environment coupling potential energy.

Quantum operators may be represented in an adiabatic basis, {|α;Q〉}, which are the so-

lutions of ĥ(Q)|α;Q〉 = Eα(Q)|α;Q〉, where ĥ = p̂2

2m
+ V̂s + V̂c. In this basis, the MQCL

equation for the evolution of an observable Â is [79]

∂Aαα′

W (X, t)

∂t
= i
∑

ββ′

Lαα′,ββ′Aββ′

W (X, t), (3.2)

where Aαα′

W (X, t) is the partial Wigner transform [89] of an observable Â, X = (Q,P ), and

the QCL super-operator is given by

iLαα′,ββ′ = (iωαα′ + iLαα′)δαβδα′β′ − Jαα′,ββ′ . (3.3)

In the above equation, iLαα′ is the classical Liouville operator:

iLαα′ =
P

M
·

∂

∂Q
+

1

2

(

Fα
W + Fα′

W

)

·
∂

∂P
. (3.4)

When the quantum state indices are equal (i.e., α = α′), the classical evolution is carried out

on a single adiabatic surface, Eα(Q), whereas when the quantum state indices are different

(i.e., α 6= α′), the classical evolution is carried out on the mean of two adiabatic surfaces,

[Eα(Q)+Eα′(Q)]/2, accompanied by quantum mechanical phase oscillations with frequency

ωαα′ = (Eα − Eα′)/~. The term Jαα′,ββ′ is responsible for nonadiabatic transitions and the
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associated changes in the momenta of the classical DOF, and is defined as

Jαα′,ββ′(t) = −
P

M
· dαβ

(

1 +
1

2
Sαβ ·

∂

∂P

)

δα′β′ −
P

M
· d∗α′β′

(

1 +
1

2
S∗

α′β′ ·
∂

∂P

)

δαβ ,

(3.5)

where Sαβ = Fα
W δαβ − Fαβ

W ( P
M

· dαβ)
−1 = Eαβdαβ(

P
M

· dαβ)
−1, where Fαβ

W is the off-diagonal

matrix element of the force and dαβ = 〈α;Q| ∂
∂Q

|β;Q〉 is the nonadiabatic coupling matrix

element.

Within the MQCL formalism, the expectation value of an observable Â(t) is given by

A(t) =
∑

αα′

∫

dXAαα′

W (X, t)ρα
′α

W (X), (3.6)

where ρα
′α

W (X) is the Wigner transform of the density operator. A(t) may be calculated using

the sequential short-time propagation (SSTP) algorithm, which provides a numerical solution

of the MQCL equation [83, 84]. This algorithm generates an ensemble of surface-hopping

trajectories, containing segments in which the classical DOF evolve either on single adiabatic

surfaces (α,α) or on the mean of two surfaces (α,α′) [where α 6= α′]. These segments are

interspersed with nonadiabatic transitions, which cause the classical DOF to hop to a new

surface (or mean surface), followed by evolution on this surface. We note that, according

to the algorithm, only one state index in the pair (α,α′) changes in any given nonadiabatic

transition.

3.3 Simulation details

The general form of the PCET model Hamiltonian considered in this study is given by

Ĥ = K̂p + K̂e +Ks + V̂p(q̂p) + V̂e(q̂e) + V̂pe(q̂p, q̂e) + V̂pes(q̂p, q̂e, Q) + Vs(Q)

≡ ĥ+Ks + Vs(Q), (3.7)

where V̂p and V̂e denote the protonic and electronic potential energy operators, respectively,

V̂pe is the potential energy operator corresponding to the Coulombic interaction between the

proton and electron, Vs(Q) is a harmonic potential corresponding to the classical solvent
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coordinate, V̂pes is a bilinear potential corresponding to the coupling between the solvent

coordinate and the proton-electron subsystem, K̂p and K̂e denote the kinetic energy operators

of the proton and electron, respectively, Ks is the kinetic energy of the solvent coordinate,

and ĥ = Ĥ −Ks−Vs. The detailed forms of the potential energy terms may be found in the

second chapter of this thesis as well as Refs. 17 and 90.

In this study, we adopt a substantially more efficient approach for solving the time-independent

Schrödinger equation, ĥ|α;Q〉 = Eα(Q)|α;Q〉, than in our first study [17]. For the first time

step of the simulation, the equation is solved by expanding an adiabatic wave function |α;Q〉

in an orthonormal set of two-particle basis functions:

|α;Q〉 =
∑

m,n

cαmn|φp(m)〉|φe(n)〉, (3.8)

where |φp(m)〉 and |φe(n)〉 are one-particle basis functions that are taken to be the solutions

of the quantum harmonic oscillator for a proton and an electron, respectively, i.e.,

φp(m)(qp) = 〈qp|φp(m)〉 = (2mm!
√
π)−1/2α1/2

p e−α2
p(qp−qop)/2Hm(αp(qp − qop)), (3.9)

and

φe(n)(qe) = 〈qe|φe(n)〉 = (2nn!
√
π)−1/2α1/2

e e−α2
e(qe−qoe)/2Hn(αe(qe − qoe)), (3.10)

where qp and qe are the protonic and electronic coordinates, respectively, m and n are integers

and Hm(q) is the mth Hermite polynomial. We have found that the range 0 < {m,n} < 24

(which gives rise to 625 two-particle basis functions) is sufficient for convergence, with the

one-particle protonic and electronic functions centred at qop and qoe (which are both equal

to 1.58 Å for the concerted mechanism and to 2.12 Å for the sequential mechanisms), and

αp = 3.97 Å−1 and αe = 0.32 Å−1. The hc = cE eigenvalue problem is solved for the {cαmn}

and {Eα} by diagonalizing the 625 × 625 Hamiltonian with matrix elements h
{ij}{kl} =

〈φp(i)φe(j)|ĥ(Q)|φp(k)φe(l)〉. The matrix elements h
{ij}{kl} are calculated using the trapezoid

rule with 100 points evenly spaced over the range qp = 1.06/1.59 Å to qp = 2.12/2.65 Å for

the protonic integrals in the case of the concerted/sequential mechanisms and 700 points

over the range qe = −3.17 Å to qe = 6.35 Å for the electronic integrals in the case of all

mechanisms. For the next time step, the 17 lowest-energy adiabatic states are used as the
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basis functions, while at each subsequent time step, the 17 updated adiabatic states are

used as the basis functions. We have performed tests to ensure that this smaller basis set is

sufficient for convergence.

The quantum subsystem is initially in the ground state and the initial positions and momenta

of the classical solvent coordinate are sampled from the following Wigner distribution:

ρW (X) ∝ exp

[

−2α(Q−Qo)
2 −

(P − Po)
2

2~2α

]

, (3.11)

where α = 25 a.u. was used for all simulations in this study to allow for a direct comparison

with the FSSH and exact results in Ref. 92. This corresponds to Gaussian distributions with

standard deviations σQ = (4α)−
1

2 and σP = (α~2)
1

2 . For the ET-PT, PT-ET, and concerted

PCET mechanisms, ensembles of 2×107, 5×106, and 2×106 trajectories, respectively, were

propagated from these initial conditions. For the first time step, the nonadiabatic coupling

matrix elements of this model are calculated according to

dαβ =
−1

∆Eαβ

〈α;Q|
∂ĥ

∂Q
|β;Q〉

=
1

∆Eαβ

∑

mnkl

cαmnc
β
kl[Csp〈φp(m)|(qp − qop)|φp(k)〉δnl + Cse〈φe(n)|(qe − qoe)|φe(l)〉δmk],

(3.12)

and the Hellmann-Feynman forces, Fα
W , are calculated using

Fα
W = −〈α;Q|

∂ĥ(Q)

∂Q
|α;Q〉

=
∑

mnkl

cαmnc
α
kl[Csp〈φp(m)|(qp − qop)|φp(k)〉δnl + Cse〈φe(n)|(qe − qoe)|φe(l)〉δmk].(3.13)

For each subsequent time step, the |φp〉’s and |φe〉’s in Eqs. 3.12 and 3.13 are replaced with

the 17 lowest-energy adiabatic states from the previous time step. The classical solvent

coordinate is propagated using the velocity-Verlet algorithm with a time step of 2.4 fs.

In this study, we calculate the time-dependent adiabatic state populations and coherences

between two different adiabatic states α and α′. Therefore, the operators of interest are the

projection operator corresponding to adiabatic state α,

P̂α(t) = |α;Q〉〈α;Q|, (3.14)

48



Chapter 3. Nonadiabatic state populations

and the off-diagonal operator

Ĉαα′(t) = |α;Q〉〈α′;Q|, (3.15)

respectively. The expectation values of the various P̂α(t)’s and Ĉαα′(t)’s are calculated

according to Eq. 3.6 using the SSTP algorithm, with Â(t) = P̂α(t) and Â(t) = Ĉαα′(t), re-

spectively. To facilitate the convergence of the expectation values, we restrict the occurrence

of nonadiabatic transitions to regions where the nonadiabatic coupling matrix elements have

relatively large values. In addition, preliminary calculations have shown that the fourth adi-

abatic state is rarely populated, so we restrict our simulations to the three lowest states. For

the ET-PT calculations, we apply an observable-cutting filter [84] to reduce the statistical

fluctuations.

In the case of the ET-PT mechanism, we also investigate the dynamical effects of varying

the strength of the coupling between the solvent coordinate and the proton/electron, which

has a bilinear form given by

Vpes(qp, qe, Q) = −Csp(Q−Qo
p)(qp − qop)− Cse(Q−Qo

e)(qe − qoe), (3.16)

where Csp/Cse are the parameters representing the strength of the coupling between the

proton/electron and the solvent coordinate. Specifically, we consider three different sets of

{Csp, Cse} values, which are listed in Table I in increasing order of strength from I to III.

Table 3.1: Three sets of proton/electron-solvent coupling constants (i.e., {Csp, Cse}) for
the ET-PT mechanism. All values are in atomic units.

I II III

Csp 1.5× 10−2 2.2× 10−2 3× 10−2

Cse 2× 10−3 3× 10−3 4× 10−3
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3.4 Results and discussion

3.4.1 Sequential ET-PT mechanism

3.4.1.1 Potential energy surfaces and nonadiabatic couplings

The upper panel of Fig. 3.1 illustrates the ground (1,1), first excited (2,2), and second excited

(3,3) state adiabatic potential energy surfaces (PESs) and the corresponding mean surfaces

[(1,2) or (2,1)], [(1,3) or (3,1)], and [(2,3) or (3,2)] as a function of the solvent coordinate

for the sequential ET-PT mechanism and the set III coupling constants. For the sake of

brevity, we refer to the mean surfaces as (1,2), (1,3), and (2,3), respectively, within the text.

The minimum energy gap between the (1,1) and (2,2) surfaces is 0.46 kcal/mol, occurring
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Figure 3.1: Top panel: Ground (1,1), first excited (2,2), and second excited (3,3) state
adiabatic PESs as a function of the solvent coordinate, Q, for the ET-PT model. The blue
curves correspond to these surfaces, the red curves correspond to the mean surfaces between
adjacent surfaces, and the green curve corresponds to the mean surface between the ground
and second excited state surfaces. Bottom panel: Absolute values of the nonadiabatic
coupling matrix elements, |d12|, |d23|, and |d13| as a function of the solvent coordinate, Q.

at Q = −0.02 Å. The minimum energy gaps between the (2,2) and (3,3) surfaces are 1.72
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and 1.62 kcal/mol, occurring at Q = −0.26 Å and Q = 0.24 Å, respectively. These three

gaps correspond to regions where nonadiabatic transitions are most probable, as confirmed

by the plots of the nonadiabatic coupling matrix elements versus the solvent coordinate in

the lower panel of Fig. 3.1. As seen in this figure, the absolute value of the nonadiabatic

coupling between the (1,1) and (2,2) states, |d12|, is peaked at the Q value corresponding

to the ground state barrier top where the energy gap between the (1,1) and (2,2) surfaces

is the smallest. Similarly, the absolute value of the nonadiabatic coupling between the

(2,2) and (3,3) states, |d23|, contains two peaks that flank the |d12| peak (albeit with lower

intensities) at the Q values corresponding to the minimum energy gaps between the (2,2)

and (3,3) surfaces. The (1,1) and (3,3) surfaces are well-separated in energy for all solvent

configurations, resulting in small values of |d13| (see lower panel of Fig. 3.1). However, due to

the relatively large |d12| and |d23| values at Q = −0.02 Å and Q = −0.26/0.24 Å, respectively,

the dynamics on the (1,3) surface is expected to facilitate the population transfer between the

ground and second excited states through the following sequence of nonadiabatic transitions:

(1,1)→(1,2)→(1,3)→(2,3)→(3,3). By construction, the mean surfaces exhibit features of the

adiabatic PESs comprising them. The (1,2) mean surface has a broad, asymmetric barrier

top which slants downwards towards product configurations. By contrast, the (2,3) surface

has two humps, located at the minimum energy gaps between the (2,2) and (3,3) surfaces,

separated by a shallow well at Q = −0.02 Å. The (1,3) mean surface (depicted in green) has

a barrier top at Q = −0.02 Å, with two shallow depressions on either side of it.

3.4.1.2 Time-dependent state populations and coherences

To calculate the time-dependent state populations using Eqs. 3.6 and 3.14, an ensemble of

2× 107 trajectories was generated using the set III coupling constants, starting from initial

conditions sampled from the Wigner distribution in Eq. 3.11 with Qo = −0.5 Å and Po = 23.5

a.u. The time evolution of the populations of the three lowest adiabatic states out to 7000

a.u., calculated via the MQCL method (red), is shown in Fig. 3.2. For comparison, the

FSSH (green) and fully quantum (blue) results from Ref. 92 are also shown in this figure.

As can be seen, the agreement between the MQCL and fully quantum results for all states

is almost perfect till ∼1500 a.u. Between ∼1500 a.u. and ∼3500 a.u., the MQCL and fully

quantum results are in good (but not perfect) agreement, while for the remainder of the
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Figure 3.2: Top panel: Time evolutions of the populations of the ground (1,1), first-excited
(2,2), and second-excited (3,3) adiabatic states for the ET-PT model, calculated via MQCL,
FSSH, and exact quantum dynamics. Middle panel: The percentage of trajectories on each
surface as a function of time. Bottom panel: Time evolutions of the (1,2), (2,3), and (1,3)

coherences, calculated via MQCL.

time, the agreement is almost perfect again. The slight deviation between the MQCL and

fully quantum results in the range of 1500 − 3500 a.u. may stem from the fact that the

solvent often resides in the region of strong nonadiabatic coupling between the ground and

first excited state (around Q = −0.02 Å) during this period, thereby making it difficult for

52



Chapter 3. Nonadiabatic state populations

MQCL to generate the exact values. As seen in Fig. 3.2, many trajectories evolve on the (1,2)

and (1,3) mean surfaces during this period, which causes the observable to acquire a phase

W(t) = ei
∫ t

0
ω12(t

′
)dt′ in time. As can be seen, MQCL shows a significant overall improvement

over FSSH in capturing the exact population dynamics in this PCET model. Given the

high level of agreement between the MQCL and exact quantum results, we later present

and discuss the results of the time-dependent populations for models exhibiting sequential

PT-ET and concerted PCET mechanisms.

To gain insight into the participation of the various surfaces in the population dynamics, we

present the percentage of trajectories in the ensemble on each surface as a function of time.

The results out to 7000 a.u. are shown in the middle panel of Fig. 3.2. Starting from the (1,1)

surface, the trajectories begin to hop to the (1,2) and (1,3) mean surfaces within ∼250 a.u.

At ∼600 a.u., the increasing percentages of trajectories on these surfaces begin to deviate as

some trajectories hop to the (2,2) and (2,3) surfaces. Ultimately, the majority of trajectories

end up on the (1,1), (1,2), and (1,3) surfaces, giving rise to plateaus at 59%, 13%, and 22%,

respectively. Interestingly, coherence transfer is observed as the (2,3) percentage increases

at the expense of the (1,3) percentage (at ∼600 a.u.) and the (1,2) percentage decreases at

the gain of the (1,3) percentage (at ∼1500 a.u.). The percentage of trajectories on the (2,2)

surface reaches its maximum at ∼1500 a.u., followed by a gradual decrease for the remainder

of the time. This is likely due to downward nonadiabatic transitions from (2,2) to (1,2),

which in turn leads to a larger number of downward transitions from (1,2) to (1,1) relative

to upward ones from (1,1) to (1,2) and thereby increase/decrease the (1,1)/(2,2) population.

Overall, these results underscore the importance of mean surface dynamics in the evolution

of the state populations.

Using the same ensemble, we also calculated the time-dependent (1,2), (1,3), and (2,3)

coherences using Eqs. 3.6 and 3.15. As can be seen in the bottom panel of Fig. 3.2, the (1,2)

coherence exhibits the largest magnitude and is the most long-lived, exhibiting pronounced

oscillations over the whole time period considered. The smaller (1,3) and (2,3) coherences

decay to zero in ∼3000 a.u. These results underscore the importance of coherent dynamics

in the calculations of observables on sub-picosecond timescales.
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3.4.1.3 Effect of proton/electron-solvent coupling strength

The effect of reducing the subsystem-solvent coupling strength on the ground, first excited,

and second excited state PESs (and their corresponding mean surfaces) is shown in Fig. 3.3.

Two different sets of the coupling constants are considered: Csp = 1.5×10−2/Cse = 2.0×10−3

(i.e. weakest) and Csp = 2.2 × 10−2/Cse = 3.0 × 10−3 (i.e. intermediate). For comparison,

we also show the results for the strongest coupling case considered in the previous sections.

In the strongest coupling case, highly stable reactant and product wells exist on all surfaces,

with energy barriers exceeding 100 kcal/mol (see top left panel of Fig. 3.3). Upon decreasing

the coupling constants to the intermediate values, we see a drastic destabilization of the

reactant and product wells on all surfaces (see middle left panel of Fig. 3.3). In the weakest

coupling case, this destabilization is even more pronounced, such that the reactant and

product wells on the (2,3) and (3,3) surfaces disappear (see bottom left panel of Fig. 3.3). In

the right-hand panels of Fig. 3.3, we zoom in on the regions of the surfaces around Q = 0 Å.

Notably, in going from the strongest to the weakest coupling case, the (1,2) surface becomes

flatter, the distance between the locations of the minimum energy gaps between the (2,2)

and (3,3) surfaces increases, and there is an overall compression of the surfaces. Thus, given

the drastic changes in the shapes of surfaces upon decreasing the coupling constants, we

expect the nonadiabatic population dynamics to vary drastically.

The effect of varying the subsystem-solvent coupling strength on the nonadiabatic coupling

matrix elements is shown in Fig. 3.4. As can be seen, the peak heights and widths of all

three matrix elements decrease and increase, respectively, as the subsystem-solvent coupling

strength decreases. Moreover, in the case of |d23|, the inter-peak distance increases with

decreasing coupling strength. Therefore, decreasing the coupling strength decreases the

probability of nonadiabatic transitions for solvent configurations giving rise to the minimum

energy gaps between adiabatic PESs. However, the range of solvent configurations over

which nonadiabatic transitions have non-negligible transition probabilities becomes wider

with decreasing coupling strength.

The time evolution of the populations of the three lowest adiabatic states, calculated via

the MQCL method, for the three subsystem-solvent cases are shown in Fig. 3.5. In going

from strongest to intermediate coupling, we see a drastic increase in the (2,2) population

at the expense of the (1,1) population, despite the decrease in |d12| at the barrier top.
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Figure 3.3: Left panels: Ground (1,1), first excited (2,2), and second excited (3,3) state adi-
abatic PESs as a function of the solvent coordinate, Q, for the ET-PT model, corresponding
to different proton/electron-solvent coupling strengths: Csp = 1.5× 10−2/Cse = 2.0× 10−3

(weakest), Csp = 2.2× 10−2/Cse = 3.0× 10−3 (intermediate), and Csp = 3.0× 10−2/Cse =
4.0 × 10−3 (strongest). The blue curves correspond to the (1,1), (2,2), and (3,3) surfaces,
the red curves correspond to the mean surfaces between adjacent surfaces, and the green
curve corresponds to the mean surface between the ground and second excited state surfaces.

Right panels: Close-ups of the surfaces around Q = 0 Å.

However, as mentioned previously, the range of reactant solvent configurations over which

nonadiabatic transitions have non-negligible transition probabilities becomes wider than in

the strongest coupling case, which leads to an increased number of nonadiabatic transitions

to the (2,2) surface through the (1,2) surface. In addition, due to the wider and flatter

nature of the (1,2) surface, the solvent coordinate can spend more time on this surface

resulting in more pronounced phase oscillations in the (2,2) population than in the strongest
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Figure 3.4: Absolute values of the nonadiabatic coupling matrix elements |d12| (top panel),
|d23| (middle panel), and |d13| (bottom panel), as a function of the solvent coordinate, Q,
for the ET-PT model, corresponding to different proton/electron-solvent coupling strengths:
Csp = 1.5× 10−2/Cse = 2.0× 10−3 (weakest), Csp = 2.2× 10−2/Cse = 3.0× 10−3 (interme-

diate), and Csp = 3.0× 10−2/Cse = 4.0× 10−3 (strongest).

coupling case. Eventually, these oscillations dampen out due to decoherence. At ∼3100 a.u.,

the (2,2) population begins to decrease at the expense of an increasing (1,1) population,

decreasing more than in the strongest coupling case due to the wider |d12| profile. In the

lowest coupling case, there is an almost complete population reversal between the ground and

first excited state within ∼1500 a.u. due to a further increase in the range of reactant solvent

configurations over which nonadiabatic transitions have non-negligible 1 → 2 transition

probabilities. Finally, despite the major differences in the (1,1) and (2,2) populations, the
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Figure 3.5: Time evolutions of the populations of the ground (1,1), first excited (2,2), and
second excited (3,3) adiabatic states for the ET-PT model, calculated via MQCL, corre-
sponding to different proton/electron-solvent coupling strengths: Csp = 1.5 × 10−2/Cse =
2.0 × 10−3 (weakest), Csp = 2.2 × 10−2/Cse = 3.0 × 10−3 (intermediate), and Csp =

3.0× 10−2/Cse = 4.0× 10−3 (strongest).

differences between the (3,3) populations in the three cases are quite minor.

3.4.2 Sequential PT-ET mechanism

3.4.2.1 Potential energy surfaces and nonadiabatic couplings

We next consider the sequential PT-ET mechanism with coupling constants Csp = 1× 10−2

and Cse = 2 × 10−3, which are the same as those used in Refs. 17 and 90 for studying

PT-ET and are very similar to the set I coupling constants used herein for ET-PT. The

corresponding PESs are shown in the top panel of Fig. 3.6. Owing to the similarity of the

coupling constants to those of the set I ET-PT case, the corresponding PESs have similar

overall profiles, although there are differences in the relative heights of the energy barriers on

the various surfaces and the values of the solvent coordinate corresponding to the wells. For

example, the ground state reaction barrier is only ∼4 kcal/mol, compared to ∼11 kcal/mol

in the ET-PT case, and is not centered at the midpoint between the donor and the acceptor

as in the ET-PT case (i.e. at Q = 0.0 Å), but rather at Q = −0.46 Å. There is a well on the

(2,2) surface centered at Q = −0.46 Å, giving rise to a minimum energy gap of 0.33 kcal/mol
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Figure 3.6: Top panel: Ground (1,1), first excited (2,2), and second excited (3,3) state
adiabatic PESs as a function of the solvent coordinate, Q, for the PT-ET model. The blue
curves correspond to these surfaces, the red curves correspond to the mean surfaces between
adjacent surfaces, and the green curve corresponds to the mean surface between the ground
and second excited state surfaces. Bottom panel: Absolute values of the nonadiabatic
coupling matrix elements, |d12|, |d23|, and |d13| as a function of the solvent coordinate, Q.

with the (1,1) surface. At Q = −1.16 and 0.25 Å, there are two minimum energy gaps

between the (2,2) and (3,3) surfaces of ∼1.25 kcal/mol. The (1,2) surface is rather flat over

the range of solvent configurations depicted, while the (2,3) surface has a parabolic shape.

However, in contrast to the set I ET-PT case, the (1,2) surface possesses a very shallow well,

which can trap the solvent coordinate in the barrier top region while on this surface and

thereby increase the incidence of (2,2)→(1,2)→(1,1) transitions with respect to the ET-PT

case. Similar to in ET-PT, the (1,3) surface bridges the (1,2) and (2,3) surfaces, creating a

pathway for nonadiabatic transitions to the second excited state.

The nonadiabatic coupling matrix elements as a function of the solvent coordinate are pre-

sented in the bottom panel of Fig. 3.6. They are similar in shape and magnitude to what

is observed in the ET-PT (weakest coupling) case, including a large |d12| peak, two smaller
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|d23| peaks, and two very small |d13| peaks. As expected, the main difference is in the loca-

tions of the peak maxima. Therefore, for this set of coupling constants, one can expect state

population profiles for PT-ET that are qualitatively similar to those seen in the weakest

coupling case of ET-PT.

3.4.2.2 Time-dependent state populations and coherences

The time-dependent populations of the three lowest adiabatic states are shown in the top

panel of Fig. 3.7. They were calculated using an ensemble of 5 × 106 trajectories starting

from initial conditions sampled from the Wigner distribution in Eq. 3.11 with Qo = −0.58

Å and Po = 15 a.u. As can be seen, the (1,1) population drops abruptly (within ∼1200 a.u.)

to ∼10%, while the (2,2) population rises to ∼90% during this time. However, at ∼2500 a.u.,

the (1,1)/(2,2) population begins to increase/decrease due to nonadiabatic transitions back

down to the ground state. By the end of the simulation, the (1,1) population is substantially

higher than the (2,2) population (75% vs. 20%, respectively). The (3,3) population begins to

rise at ∼1500 a.u., but remains very small (∼3%). These populations should be contrasted

with those in the ET-PT (weakest coupling) case, which exhibit a similar population reversal

initially but, at later times, the (1,1) population is substantially lower than the (2,2) popula-

tion (28% vs. 67%, respectively). This difference is likely due to the fact that, in the PT-ET

case, the (1,2) surface possesses a very shallow well, which can lead to a larger number of

(2,2)→(1,2)→(1,1) transitions compared to the ET-PT case.

In the middle panel of Fig. 3.7, we plot the percentage of trajectories in the ensemble on each

surface as a function of time. We see that the percentage of trajectories on (1,1) immediately

starts to decrease (since the solvent coordinate is initialized in a strong nonadiabatic coupling

region), dropping to ∼35% in ∼1200 a.u, and continues to grow slightly over the remaining

time. The percentage of trajectories on (1,2) increases to ∼44% during the first ∼800 a.u.,

exceeding the percentage of trajectories on (1,1) and the percentage of trajectories on (1,2)

in the ET-PT case, and continues to grow slightly over the remaining time. This should

be contrasted with the set I ET-PT case, in which the percentage of trajectories on (1,1)

decreases to ∼26% in ∼1800 a.u., and the percentage of trajectories on (1,2) increases to

∼32% during the first ∼1200 a.u. (see Fig. 3.8 for the set I ET-PT percentages). This

difference in the times is mainly due to the fact that Q0 = −0.58Å (which is close to the value
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Figure 3.7: Top panel: Time evolutions of the populations of the ground (1,1), first excited
(2,2), and second excited (3,3) adiabatic states for the PT-ET model, calculated via MQCL.
Middle panel: The percentage of trajectories on each surface as a function of time. Bottom

panel: Time evolutions of the (1,2), (2,3), and (1,3) coherences, calculated via MQCL.

of the solvent coordinate at the barrier top) in the PT-ET case, while Q0 = −0.5Å (which

is substantially less than the value of the solvent coordinate at the barrier top) in the ET-

PT case. The percentage of trajectories on (2,2) increases to ∼15% in the first ∼1000

a.u. (c.f. ∼11% in the weakest coupling case of ET-PT), followed by a gradual decrease to

∼5% over the remaining time. A major difference between the PT-ET and set I ET-PT
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Figure 3.8: The percentage of trajectories on each surface as a function of time (top
panel) and the time evolutions of the (1,2), (2,3), and (1,3) coherences (bottom panel) for
the ET-PT model under the weakest proton/electron-solvent coupling conditions (i.e. Csp =

1.5× 10−2/Cse = 2.0× 10−3).

results is seen in the percentage of trajectories on the (1,3) surface. In the PT-ET case, this

percentage rises only to ∼11%, while in the ET-PT case it reaches ∼33%. The percentage of

trajectories on the (2,3) surface is slightly higher in the ET-PT case than in the PT-ET case,

i.e. 5% and 3%, respectively. These two results collectively explain the higher population of

the (3,3) state in the set I ET-PT case than in the PT-ET case (i.e. 8% and 3%, respectively)

and underscore the important role played by the (1,3) surface in populating the (3,3) state

in the ET-PT case. There is some evidence of coherence transfer, as the (1,2) percentage

decreases at the slight gain of the (1,3) percentage between 1000− 2000 a.u.

Examining the time-dependent coherences in the bottom panel of Fig. 3.7, we see further

evidence of the important dynamical role of the (1,2) mean surface, as the (1,2) coherence

rises to 1.38 (c.f. 0.95 in the weakest coupling case of ET-PT) and remains non-zero over

the time period considered. This is consistent with the large percentage of trajectories on
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(1,2) and its gradual increase over the time period considered (see middle panel of Fig. 3.7).

Interestingly, the large rise and fall of the (1,2) coherence up to ∼1000 a.u. coincides exactly

with the large rise in the (2,2) population, suggesting that this highly coherent dynamics

enhances the pumping of population to the first excited state. The (1,3) coherence exhibits

a very low-magnitude oscillation initially and quickly becomes zero for the remainder of the

time. On the other hand, the (2,3) coherence, although very small, exhibits oscillations

over the time shown. This should be contrasted with the set I ET-PT case, where we see

a similar (1,3) coherence profile, but a substantially larger and longer-lived (2,3) coherence

(see bottom panel of Fig. 3.8).

3.4.3 Concerted PCET mechanism

3.4.3.1 Potential energy surfaces and nonadiabatic couplings

Finally, we consider the concerted PCET mechanism with coupling constants Csp = 2×10−3

and Cse = 2 × 10−3, which are the same as those used in Refs. 17 and 90 for studying

concerted PCET and are similar to the set I coupling constants used herein for ET-PT

and PT-ET. The corresponding PESs are shown in the top panel of Fig. 3.9. In contrast

to the sequential mechanisms, the PESs are symmetric about Q = 0.0 Å, where both the

electron and proton are at the midpoint between the donor and the acceptor (see middle

panel of Fig. 3 in Ref. 90). The (1,1) surface has a double-well profile, with very shallow

reactant and product wells. The minimum energy gap of 0.46 kcal/mol between the (1,1)

and (2,2) surfaces occurs at the ground state barrier top. The (1,2), (2,2), and (3,3) surfaces

are parabolic in shape. Over the range of solvent configurations shown, there are no small

energy gaps between the (2,2) and (3,3) surfaces. The (1,3) surface is quite flat between −0.5

to 0.5 Å. Due to the large energy gaps between the (2,2) and (3,3) surfaces, the (1,3) surface

is not expected to play a facilitating role in promoting population to the second excited state

in the concerted PCET case.

An examination of the nonadiabatic coupling matrix elements in the bottom panel of Fig. 3.9

reveals that |d12| has a relatively broad peak centered at Q = 0.0 Å and a relatively

lower maximum value of 4.3 Å−1 (compared to the other mechanisms at similar coupling

strengths). |d23| remains small and constant (on average, ∼0.23 Å−1) over the range of
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Figure 3.9: Top panel: Ground (1,1), first excited (2,2), and second excited (3,3) state
adiabatic PESs as a function of the solvent coordinate, Q, for the concerted PCET model.
The blue curves correspond to these surfaces, the red curves correspond to the mean surfaces
between adjacent surfaces, and the green curve corresponds to the mean surface between the
ground and second excited state surfaces. Bottom panel: Absolute values of the nonadiabatic
coupling matrix elements, |d12|, |d23|, and |d13| as a function of the solvent coordinate, Q.

solvent configurations shown, while |d13| is ∼0.1 Å−1 for most of the solvent configurations

shown and is exactly 0.0 Å−1 at Q = 0.0 Å.

3.4.3.2 Time-dependent state populations and coherences

The time-dependent populations of the three lowest adiabatic states are shown in the top

panel of Fig. 3.10. They were calculated using an ensemble of 2 × 106 trajectories starting

from initial conditions sampled from the Wigner distribution in Eq. 3.11 with Qo = −0.24

Å and Po = 10 a.u. As can be seen, the (1,1) population drops to ∼44% in ∼2000 a.u., while

the (2,2) population rises to ∼56% in this time. This should be contrasted with the ET-PT

(weakest) coupling and PT-ET cases, where we saw almost complete population inversions

between the (1,1) and (2,2) states. At ∼2000 a.u., the (1,1)/(2,2) population begins to slowly

increase/decrease and continues to do so till 7000 a.u., where the (1,1) and (2,2) populations
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Figure 3.10: Top panel: Time evolutions of the populations of the ground (1,1), first
excited (2,2), and second excited (3,3) adiabatic states for the concerted PCET model,
calculated via MQCL. Middle panel: The percentage of trajectories on each surface as a
function of time. Bottom panel: Time evolutions of the (1,2), (2,3), and (1,3) coherences,

calculated via MQCL.

become equal at 50%. This should be contrasted with the ET-PT/PT-ET case, whose (1,1)

population is substantially less/greater than the (2,2) populations at 7000 a.u. The (3,3)

population remains zero over this time, while in the sequential cases the second excited state

becomes populated for similar values of the coupling constants. This is consistent with the
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fact that there are no regions of strong nonadiabatic coupling between the (2,2) and (3,3)

surfaces in the concerted case.

An analysis of the percentage of trajectories in the ensemble on each surface as a function

of time (see middle panel of Fig. 3.10) reveals that only the (1,1), (1,2), and (2,2) surfaces

play important roles in the dynamics, which explains the fact that the second excited state

never becomes populated. Ultimately, the (1,1), (1,2), and (2,2) percentages reach 42%, 45%,

and 11%, respectively. The decrease in the percentage of trajectories on the (1,1) surface is

almost fully compensated by the increase in the percentages of trajectories that hop to the

(1,2) and (2,2) surfaces. The negligible percentage of trajectories on the (1,3) surface clearly

distinguishes the nonadiabatic dynamics in the concerted case from that in the sequential

cases.

Examining the time-dependent coherences in the bottom panel of Fig. 3.10, we see further

evidence of the important dynamical role of the (1,2) mean surface, as the (1,2) coherence

rises to 0.75 (c.f. 0.95 in the weakest coupling case of ET-PT) and remains non-zero over

the time period considered. As in the PT-ET case, we see that the rise and fall of the (1,2)

coherence up to ∼2000 a.u. coincides exactly with the rise in the (2,2) population. However,

unlike in the sequential mechanisms, the (1,3) and (2,3) coherences are zero for all times.

3.5 Concluding remarks

In this chapter, we used the MQCL method to simulate the dynamics of the adiabatic state

populations in a model PCET reaction. To illustrate the utility and accuracy of the MQCL

method, we first calculated the time-dependent populations of the three lowest adiabatic

states of a sequential ET-PT model for which fully quantum and FSSH results are available.

The MQCL results were found to agree well with the fully quantum results and to be sub-

stantially better than the FSSH results. In light of this, we studied the effect of reducing

the coupling strength between the proton-electron subsystem and the solvent environment

on the population dynamics of the ET-PT model. We found that this leads to a higher pop-

ulation of the (2,2) state, which is due to an increased role of the (1,2) surface at early times.

By varying several parameters in the Hamiltonian, we also simulated the time-dependent

populations of the sequential PT-ET and concerted PCET models (for which fully quantum
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and FSSH results are not available) and contrasted them with those of the weakest coupling

case of the ET-PT model.

The good agreement of the MQCL results with the fully quantum ones for the ET-PT model

stems from the evolution of the classical DOF not only on single adiabatic PESs, but also on

their corresponding mean surfaces. For all mechanisms studied, the percentage of trajectories

in the ensemble on each surface at a given time reveals that large fractions of the ensemble

reside on the mean surfaces after some initial period of time. In particular, we found that the

(1,2) and (1,3) surfaces are the most important mean surfaces in the nonadiabatic dynamics

of the sequential mechanisms. Interestingly, our results show that the (1,3) surface can act

as a bridge between the (1,2) and (2,3) surfaces (as manifested by the two small energy gaps

with the (1,2) surface and one with the (2,3) surface), thereby providing another channel

for population transfer to the (3,3) state. Thus, population transfer to the second excited

state can occur via a sequential population transfer route, e.g. (1, 1) → (1, 2) → (2, 2) →

(2, 3) → (3, 3), or can by-pass the (2,2) surface altogether via a coherence transfer route,

e.g. (1, 1) → (1, 2) → (1, 3) → (2, 3) → (3, 3). Under similar coupling conditions, the

percentage of trajectories that hop initially from (1,2) to (1,3) is lower in the PT-ET model

than in the ET-PT one, while the percentage of trajectories that hop initially from (1,2) to

(2,2) is higher in the PT-ET model than in the ET-PT one. Consequently, the sequential

transfer route is likely more prevalent in the PT-ET model, while the coherence transfer route

is more prevalent in the ET-PT one. These observations are consistent with the fact that the

(1,3) coherence attains a slightly larger magnitude in the ET-PT model than in the PT-ET

model, while the (1,2) coherence attains a larger magnitude in the PT-ET model than in the

ET-PT model. In both cases, the (2,3) coherence is long-lived, but it attains a substantially

larger magnitude in the ET-PT case than in the PT-ET case. In the concerted PCET model,

the (3,3) surface is substantially higher in energy than the (2,2) surface and, therefore, the

(3,3) state does not become populated. In this case, the (1,3) surface is not involved in the

nonadiabatic dynamics, but rather the (1,2) surface facilitates the population of the first

excited state via the (1,1)→(1,2)→(2,2) route. This is also reflected in the evolution of the

coherences, as the (1,3) and (2,3) coherences are always zero.
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Calculating Proton-Coupled

Electron Transfer Rate Constants

via the Mixed Quantum-Classical

Liouville Approach

4.1 Introduction

The rates of PCET reactions have been the subject of great attention by experimentalists

[3, 12, 14, 18, 19, 105]. Electrochemistry has been one of the main tools for revealing the

concerted nature of PCET reactions, which were long believed to be stepwise in nature

[106, 107]. Thermal PCET reactions have been investigated by means of a combination

of cyclic voltammetry and preparative-scale electrolysis [108], stopped-flow techniques [20,

95, 109, 110], and flash-quench methods [96–99]. The oxidation of phenol with a family of

pendent bases, for example, has exhibited evidence of concerted PCET based on a primary

isotope effect, very high rate constants, and the dependence of the rate constants on the

driving force [109]. The relationship between the experimental standard free energy of such

reactions and the corresponding rate constant is well captured by the Marcus-Hush-Levich

model [111–117].
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Theoretical investigations of PCET rates have also been carried out over the years. In the

nineties, Cukier derived a PCET rate constant expression, working in a basis of localized

initial and final electron/proton states [31, 118, 119]. Assuming a sufficiently small electronic

coupling, the transition rate between these two states was obtained via Fermi’s Golden

Rule. The resulting expression is valid in the nonadiabatic regime of charge transfer, but by

modifying the prefactor in this expression, one could also study cases with large electronic

couplings (i.e., the adiabatic regime). Over the span of two decades, Hammes-Schiffer and

coworkers have used FSSH to calculate PCET rate constants in various limits [25, 32, 120,

121]. Using Fermi’s Golden Rule, they described concerted PCET in terms of nonadiabatic

transitions between reactant and product electron-proton vibronic states. The total rate

constant is then obtained by summing over the rate constants associated with all pairs of

reactant and product vibronic states which are weighted by the reactant state Boltzmann

probabilities. Over the years, there have been debates over the reliability of the results

obtained from FSSH. For example, in a benchmarking study of the spin-boson model, it was

shown that FSSH is unable to recover the correct scaling of Marcus’ golden-rule rate with

diabatic coupling [72, 73]. This was attributed to the inability of FSSH to treat decoherence.

Although several schemes have been devised for incorporating decoherence into FSSH, they

are ad hoc in nature [70, 71]. In another approach, Miller and co-workers extended the

RPMD method to directly simulate condensed phase PCET reactions. Their method, unlike

the pre-existing rate theories, does not require prior mechanistic information about a given

PCET reaction and can be used in different regimes of electronic and vibrational coupling

[122]. In case of

In the last chapters, we have shown the applicability of the MQCL formalism to study the

nonadiabatic dynamics of PCET reactions, while accounting for decoherence effects. The

objective of the present chapter is to extend this formalism for calculating PCET rate con-

stants, starting from the time integral of the flux-flux correlation function of the reactant

and product states [123]. The exact correlation function will be taken as the starting point;

then, a quantum-classical approximation will be made to the dynamical part of the expres-

sion, and the calculation of the full quantum equilibrium structure is simplified greatly by

making a high-temperature approximation involving the classical DOF. This is a very good

approximation, since we are particularly interested in thermal PCET reactions.
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4.2 PCET model

In Ref. 124, Ananth and Miller developed a way for characterizing reactive pathways in more

realistic versions of the PCET models in Ref. 90, in which the solvent polarization coordinate

is coupled to a bath of harmonic oscillators. Herein, we develop an MQCL-based formalism

for calculating PCET rate constants for systems that can be represented by such models.

These models can be described by the following Hamiltonian

Ĥ =
p2p
2mp

+
∑

j

P 2

j

2Mj

+
p2s
2ms

+ Vp(qp) + Ve(qp, qs) + Vps(qp, qs) + Vb(Q), (4.1)

where {qp, pp,mp}, {qs, ps,ms}, and {Qj , Pj ,Mj} denote the positions, momenta, and masses

of the proton, solvent polarization, and bath oscillators, respectively. Within our mixed

quantum-classical approach, the proton and electron are treated quantum mechanically,

whereas the solvent polarization and bath modes are treated classically. The protonic po-

tential energy, Vp, corresponding to a double well potential, is given by

Vp(qp) = −
mpω

2
p

2
q2p +

m2
pω

4
p

16V0

q4p − λq3p, (4.2)

where ωp is the proton vibrational frequency and V0 is the energy difference between the

minimum and maximum points of the potential. The potential energy matrix corresponding

to the donor and acceptor electronic states in the diabatic representation, is given by

Ve(qp, qs) =





V11(qp) + Vep(qp) V12(qs)

V12(qs) V22(qs)− Vep(qp)



 (4.3)

where the electron–proton coupling is given by Vep(qp) = µ2tanh(φqp), the solvent polariza-

tion potentials in the donor and acceptor states are given by V11(qs) = 1

2
msω

2
s(qs − qs1)

2

and V22(qs) = 1

2
msω

2
s(qs − qs2)

2, respectively, and V12(qs) is the diabatic coupling be-

tween the donor and acceptor states. The proton–solvent coupling is given by Vps(qp, qs) =

−µ1qstanh(φqp). The harmonic bath potential, Vb, is given by

Vb =
1

2
Mjω

2

j

(

Qj −
cjqs
Mjω2

j

)

, (4.4)
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where Mj and ωj are the mass and frequency of bath oscillator j, respectively. The bath is

characterized by an Ohmic spectral density

J(ω) = ηωexp (−ω/ωc) , (4.5)

where η denotes the strength of the coupling between the solvent polarization and bath

modes and ωc is the cut-off frequency. Discretizing this spectral density yields N harmonic

oscillators with frequencies [125]

ωj = −ωc ln

(

j − 0.5

N

)

, (4.6)

and coupling constants,

cj = ωj

(

2ηMjωc

Nπ

)
1

2

. (4.7)

In Ref. 124, the authors used several parameter sets to mimic the different PCET mecha-

nisms (i.e., concerted or sequential), which were based on the parameter sets in Ref. 90. In

general, one may parametrize this model Hamiltonian for a system of interest by obtaining

the parameters from electronic structure calculations and/or experiments. This form of the

Hamiltonian provides the basis for the derivation of a quantum-classical rate coefficient in

the following section.

4.3 Derivation of the time-dependent rate coefficient

4.3.1 General quantum-classical expression

The derivation of a mixed quantum-classical time-dependent rate coefficient starts from the

quantum mechanical expression for the time integral of a flux-flux correlation function [123].

In this subsection, we provide a brief summary of the theory found in Refs. 126 and 127

(for the complete details of the derivation, please refer to these references). The resulting

quantum-classical expression is general and will form the basis for our derivation of a practical

expression for calculating rate constants of PCET reactions in the next subsection.

70



Chapter 4. Rate Theory

The rate constant for a transformation A 
 B may be calculated from the time integral of

the quantum mechanical flux-flux correlation function

kAB =
1

neq
A

∫

∞

0

dt〈ĵA; ĵB(t)〉, (4.8)

where neq
A is the equilibrium density of the reactant species, ĵA = i

~
[Ĥ, Â] is the flux of

reactant species operator Â, ĵB = i
~
[Ĥ, B̂] is the flux of product species operator B̂, and

the flux-flux correlation function is expressed in terms of the Kubo-transformed correlation

function,

〈ĵA; ĵB(t)〉 =
1

β

∫ β

0

dλ

〈

eλĤ(
i

~
[Ĥ, Â])e−λĤ ĵB(t)

〉

(4.9)

where β = 1/kT . For the purposes of a simulation, it is convenient to consider the time-

dependent rate coefficient defined as the finite time integral of the flux-flux correlation func-

tion,

kAB(t) =
1

neq
A

∫ t

0

dt′〈ĵA; ĵB(t
′)〉 =

1

βneq
A

〈
i

~
[B̂(t), Â]〉. (4.10)

To arrive at a mixed quantum-classical version of the time-dependent rate coefficient, one has

to first partition the total system into a subsystem of interest and a bath and then perform

a partial Wigner transform over the bath variables. One can ultimately show that one form

of the quantum-classical time-dependent rate is

kAB(t) =
2

~βneq
A

∑

αα′

∫

dX Im[Bαα′

W (X, t)Wα′α
A (X, 0)] (4.11)

where

Wα′α
A (X, 0) =

∑

α1α
′

1

∫

dX ′A
α1α

′

1

W (X ′)Wα′

1
α1α

′α(X ′, X, 0). (4.12)

In the above equations, X ≡ (Q,P ) and the various operators are represented in the basis

of adiabatic states, defined by the eigenvalue problem ĤW (Q)|α;Q〉 = Eα(Q)|α;Q〉. In

Eq. 4.12, the initial values of the matrix elements of the spectral density W (X ′, X, 0) are

71



Chapter 4. Rate Theory

given by [128]

Wα′

1
α1α

′α(X ′, X, 0) =
1

(2π~)2νZQ

∫

dZdZ ′e−
i
~
(P ·Z+P ′

·Z′
)

× 〈α′;Q|〈Q+
Z

2
|Q′ −

Z ′

2
〉|α1;Q

′〉

× 〈α′

1;Q
′|〈Q′ +

Z ′

2
|e−βĤ |Q−

Z

2
〉|α;Q〉 (4.13)

where ν is the coordinate-space dimension and ZQ is the partition function. Since 〈Q+Z
2
|Q′−

Z′

2
〉 = δ(Q+ Z

2
−(Q′− Z′

2
)) is a delta function, then Q+ Z

2
= Q′− Z′

2
and Z ′ = 2(Q′−Q− Z

2
).

Therefore, Eq. 4.13 may be simplified to give,

Wα′

1
α1α

′α(X ′, X, 0) =
1

(2π~)2νZQ

∫

dZe−
i
~
(P ·Z+P ′

·(2Q′
−2Q−Z))

× 〈α′;Q|α1;Q
′〉〈α′

1;Q
′|〈Q′ +

1

2
(2Q′ − 2Q− Z)|e−βĤ |Q−

Z

2
〉|α;Q〉

=
1

(2π~)2νZQ

e−
2i
~
P ′

·(Q′
−Q)

∫

dZe−
i
~
(P−P ′

)·Z

× 〈α′;Q|α1;Q
′〉〈α′

1;Q
′|〈2Q′ −Q−

Z

2
|e−βĤ |Q−

Z

2
〉|α;Q〉 (4.14)

4.3.2 PCET rate coefficient

For the PCET model studied in this chapter, the matrix element A
α1α

′

1

W (Q′) is associated

with the PCET reactant state and may be defined as

A
α1α

′

1

W (Q′) = (|φ1

e〉〈φ
1

e|h(−qp))
α1α

′

1 , (4.15)

where |φ1
e〉 is the donor electronic diabatic state and h(−qp) is the Heaviside step function

that depends on the protonic coordinate, qp. If qp > 0 then h(qp) = 1, whereas if qp < 0

then h(qp) = 0. Similarly, the matrix element associated with the PCET product state

is Bαα′

W = (|φ2
e〉〈φ

2
e|h(qp))

α1α
′

1 , where |φ2
e〉 is the acceptor electronic diabatic state. The

adiabatic wave function |α;Q〉 may be expanded in an orthonormal set of two-particle basis

functions as

|α;Q′〉 =
∑

m,n

cαmn(Q
′)|φm

p 〉|φn
e 〉, (4.16)
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where |φm
p 〉 is chosen to be the mth eigenfunction of the quantum harmonic oscillator for a

proton. The index n runs over the electronic diabatic states, i.e., it varies from 1 (donor) to

2 (acceptor). Using this expansion, we may now evaluate Eq. 4.15 to obtain

A
α1α

′

1

W (Q′) = 〈α1;Q
′||φ1

e〉〈φ
1

e|h(−qp)|α
′

1;Q
′〉

=
∑

i,k

∑

j,l=1,2

cα1

ij c
α′

1

kl 〈φ
j
e|〈φ

i
p||φ

1

e〉〈φ
1

e|h(−qp)|φ
k
p〉|φ

l
e〉 (4.17)

We may then write Wα′α
A (X, 0) in Eq. 4.12 as

Wα′α
A (X, 0) =

1

(2π~)2νZQ

∑

α1α
′

1

∫

dX ′

∑

i,k

∑

j,l=1,2

cα1

ij c
α′

1

kl 〈φ
j
e|〈φ

i
p||φ

1

e〉〈φ
1

e|h(−qp)|φ
k
p〉|φ

l
e〉

× e−
2i
~
P ′

·(Q′
−Q)

∫

dZe−
i
~
(P−P ′

)·Z

× 〈α′;Q|α1;Q
′〉〈α′

1;Q
′|〈2Q′ −Q−

Z

2
|e−βĤ |Q−

Z

2
〉|α;Q〉 (4.18)

To simplify Eq. 4.18, we first focus on matrix element 〈2Q′ − Q − Z
2
|e−βĤ |Q − Z

2
〉. The

Hamiltonian of the total system, Ĥ, may be partitioned into the kinetic energy of the envi-

ronment and the remainder, ĥ. Considering this partitioning, one may factorize eβĤ using a

symmetric Trotter decomposition [129] as

e−βĤ = e−β ĥ
2 e

−β
∑

i

P2
i

2Mi e−β ĥ
2 . (4.19)

We may insert this result into the matrix element to obtain

〈2Q′ −Q−
Z

2
|e−βĤ |Q−

Z

2
〉

= 〈2Q′ −Q−
Z

2
|e−β ĥ

2 e
−β

∑
i

P2
i

2Mi e−β ĥ
2 |Q−

Z

2
〉

=

∫

dQ1dQ2〈2Q
′ −Q−

Z

2
|e−β ĥ

2 |Q1〉〈Q1|e
−β

∑
i

P2
i

2Mi |Q2〉〈Q2|e
−β ĥ

2 |Q−
Z

2
〉

=

∫

dQ1dQ2e
−β ĥ

2
(2Q′

−Q−

Z
2
)〈2Q′ −Q−

Z

2
|Q1〉〈Q1|e

−β
∑

i

P2
i

2Mi |Q2〉〈Q2|Q−
Z

2
〉e−β ĥ

2
(Q−

Z
2
)

= e−β ĥ
2
(2Q′

−Q−

Z
2
)〈2Q′ −Q−

Z

2
|e

−β
∑

i

P2
i

2Mi |Q−
Z

2
〉e−β ĥ

2
(Q−

Z
2
). (4.20)
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Substituting this expression back into Eq. 4.18 and inserting two completeness relations

involving α2 and α3, we obtain

Wα′α
A (X, 0) =

1

(2π~)2νZQ

∑

α1α
′

1
α2α3

∫

dX ′

∑

i,k

∑

j,l=1,2

cα1

ij c
α′

1

kl 〈φ
j
e|〈φ

i
p||φ

1

e〉〈φ
1

e|h(−qp)|φ
k
p〉|φ

l
e〉

× e−
2i
~
P ′

·(Q′
−Q)

∫

dZe−
i
~
(P−P ′

)·Z

× 〈2Q′ −Q−
Z

2
|e

−β
∑

i

P2
i

2Mi |Q−
Z

2
〉〈α′;Q|α1;Q

′〉

× 〈α′

1;Q
′|e−β ĥ

2
(2Q′

−Q−

Z
2
)|α2; 2Q

′ −Q−
Z

2
〉

× 〈α2; 2Q
′ −Q−

Z

2
|e−β ĥ

2
(Q−

Z
2
)|α3;Q−

Z

2
〉〈α3;Q−

Z

2
|α;Q〉. (4.21)

In order to further simplify Wα′α
A (X, 0), it is convenient to consider the various components

separately. We first consider the 〈2Q′−Q− Z
2
|e

−β
∑

i

P2
i

2Mi |Q− Z
2
〉 term and rewrite it explicitly

in terms of the product of states over all the classical DOFs,

〈2Q′ −Q−
Z

2
|e

−β
∑

i

P2
i

2Mi |Q−
Z

2
〉

=
∏

i

〈2Q′

i −Qi −
Zi

2
|e

−β
P2
i

2Mi |Qi −
Zi

2
〉

=
∏

i

∫

dPi〈2Q
′

i −Qi −
Zi

2
|e

−β
P2
i

2Mi |Pi〉〈Pi|Qi −
Zi

2
〉

=
∏

i

1
√
2π~

∫

dPi〈2Q
′

i −Qi −
Zi

2
|e

−β
P2
i

2Mi |Pi〉e
−

i
~
Pi(Qi−

Zi
2
)

=
∏

i

1
√
2π~

∫

dPie
−β

P2
i

2Mi 〈2Q′

i −Qi −
Zi

2
|Pi〉e

−

i
~
Pi(Qi−

Zi
2
)

=
∏

i

1

2π~

∫

dPie
−β

P2
i

2Mi e
i
~
Pi(2Q

′

i−Qi−
Zi
2
)e−

i
~
Pi(Qi−

Zi
2
)

=
∏

i

1

2π~

∫

dPie
−β

P2
i

2Mi e−
i
~
Pi(2Qi−2Q′

i)

=
∏

i

1

2π~

∫

dPie
−

β
2Mi

[P 2

i +
2iMiPi

β~
(2Qi−2Q′

i)]

=
∏

i

1

2π~

∫

dPie
−[

β
2Mi

(Pi+
iMi
β~

(2Qi−2Q′

i))
2
+

β
2Mi

M2
i

β2~2
(2Qi−2Q′

i)
2
]

=
∏

i

1

2π~
e
−

Mi
2β~2

(2Qi−2Q′

i)
2

∫

dPie
−

β
2Mi

(Pi+
iMi
β~

(2Qi−2Q′

i))
2.

(4.22)

To arrive at the final line of Eq. 4.22, we inserted a complete set of momentum states,
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∫

dPi|Pi〉〈Pi|, and then used the fact that 〈Q|P 〉 = 1
√

2π~
e

i
~
P ·Q. By letting ui =

√

β
2Mi

[Pi +

iMi

β~
(2Qi − 2Q′

i)] and dui =
√

β
2Mi

dPi, the integrals over Pi may be solved to obtain
√

2Miπ
β

.

Hence, the above expression simplifies to

〈2Q′ −Q−
Z

2
|e

−β
∑

i

P2
i

2Mi |Q−
Z

2
〉 =

∏

i

√

Mi

2βπ~2
e
−

Mi
2β~2

(2Qi−2Q′

i)
2

. (4.23)

Inserting this expression back into Eq. 4.21 results in

Wα′α
A (X, 0) =

1

(2π~)2νZQ

∑

α1α
′

1
α2α3

∫

dQ′dP ′

∑

i,k

∑

j,l=1,2

cα1

ij c
α′

1

kl 〈φ
j
e|〈φ

i
p||φ

1

e〉〈φ
1

e|h(−qp)|φ
k
p〉|φ

l
e〉

× e−
2i
~
P ′

·(Q′
−Q)

∫

dZe−
i
~
(P−P ′

)·Z
∏

i

√

Mi

2βπ~2
e
−

2Mi
β~2

(Qi−Q′

i)
2

× e−
β
2
Eα2

(2Q′
−Q−

Z
2
)e−

β
2
Eα3

(Q−

Z
2
)〈α′;Q|α1;Q

′〉〈α′

1;Q
′|α2; 2Q

′ −Q−
Z

2
〉

× 〈α2; 2Q
′ −Q−

Z

2
|α3;Q−

Z

2
〉〈α3;Q−

Z

2
|α;Q〉 (4.24)

Next, since we are often interested in studying PCET reactions at high temperatures, we

make a high temperature approximation on the environmental coordinates, i.e., we as-

sume that limβ→0

√

Mi

2βπ~2
e
−

2Mi
β~2

(Qi−Q′

i)
2

= δ(Qi − Q′

i). Evaluating these delta functions

in Wα′α
A (X, 0) leads to

Wα′α
A (X, 0) =

1

(2π~)2νZQ

∑

α1α
′

1
α2α3

∑

i,k

∑

j,l=1,2

cα1

ij c
α′

1

kl 〈φ
j
e|〈φ

i
p||φ

1

e〉〈φ
1

e|h(−qp)|φ
k
p〉|φ

l
e〉

×

∫

dP ′

∫

dZe−
i
~
(P−P ′

)·Ze−
β
2
Eα2

(Q−

Z
2
)e−

β
2
Eα3

(Q−

Z
2
)

× 〈α′;Q|α1;Q〉〈α′

1;Q|α2;Q−
Z

2
〉〈α2;Q−

Z

2
|α3;Q−

Z

2
〉〈α3;Q−

Z

2
|α;Q〉.

(4.25)
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To carry out the integration over P ′, we use the definition of the Dirac delta function,
∫

dP ′e
i
~
P ′

·Z = 2π~δ(Z). Hence,

Wα′α
A (X, 0) =

1

(2π~)νZQ

∑

α1α
′

1
α2α3

∑

i,k

∑

j,l=1,2

cα1

ij c
α′

1

kl 〈φ
j
e|〈φ

i
p||φ

1

e〉〈φ
1

e|h(−qp)|φ
k
p〉|φ

l
e〉

×

∫

dZδ(Z)e−
i
~
P ·Ze−

β
2
Eα2

(Q−

Z
2
)e−

β
2
Eα3

(Q−

Z
2
)

× 〈α′;Q|α1;Q〉〈α′

1;Q|α2;Q−
Z

2
〉〈α2;Q−

Z

2
|α3;Q−

Z

2
〉〈α3;Q−

Z

2
|α;Q〉

(4.26)

Now, we can carry out the integration over Z using the fact that
∫

dZδ(Z)f(Z) = f(0):

Wα′α
A (X, 0) =

1

(2π~)νZQ

∑

α1α
′

1
α2α3

∑

i,k

∑

j,l=1,2

cα1

ij c
α′

1

kl 〈φ
j
e|〈φ

i
p||φ

1

e〉〈φ
1

e|h(−qp)|φ
k
p〉|φ

l
e〉

× e−
β
2
Eα2

(Q)e−
β
2
Eα3

(Q)

× 〈α′;Q|α1;Q〉〈α′

1;Q|α2;Q〉〈α2;Q|α3;Q〉〈α3;Q|α;Q〉 (4.27)

The four Dirac delta functions in this equation tell us that non-zero contributions arise when

α = α3 = α2 = α′

1
and α1 = α′. Finally, Wα′α

A (X, 0) simplifies to

Wα′α
A (X, 0) =

e−βEα(Q)

(2π~)νZQ

∑

i,k

∑

j,l=1,2

cα
′

ij c
α
kl〈φ

j
e|〈φ

i
p||φ

1

e〉〈φ
1

e|h(−qp)|φ
k
p〉|φ

l
e〉. (4.28)

We may now simplify the sums in Eq. 4.28. First, we rewrite the sums as

∑

i,k

∑

j,l=1,2

cα
′

ij c
α
kl〈φ

j
e|〈φ

i
p||φ

1

e〉〈φ
1

e|h(−qp)|φ
k
p〉|φ

l
e〉 =

∑

i,k

∑

j,l=1,2

cα
′

ij c
α
kl〈φ

j
e|φ

1

e〉〈φ
i
p|h(−qp)|φ

k
p〉〈φ

1

e|φ
l
e〉.

(4.29)

Due to the two Dirac delta functions, this expression has a nonzero value if and only if

j = l = 1. Therefore, we obtain

∑

i,k

cα
′

i1 c
α
k1〈φ

i
p|h(−qp)|φ

k
p〉 =

∑

i,k

cα
′

i1 c
α
k1

∫

+∞

−∞

dqpφ
i
p(qp)h(−qp)φ

k
p(qp)

=
∑

i,k

cα
′

i1 c
α
k1

∫

0

−∞

dqpφ
i
p(qp)φ

k
p(qp) (4.30)
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Finally, Bαα′

W (X, t) in Eq. 4.11 may be evaluated in a similar fashion to A
α1α

′

1

W (X ′), yielding

the final expression for the time-dependent rate coefficient

kAB(t) =
2

~βneq
A

∑

αα′

∫

dX Im

[

∑

ik

cαi2(t)c
α′

k2(t)

∫

∞

0

dqpφ
i
p(qp)φ

k
p(qp)

×
∑

lm

cα
′

l1 (0)c
α
m1(0)

∫

0

−∞

dqpφ
l
p(qp)φ

m
p (qp)

]

e−βEα(Q)

(2π~)νZQ

. (4.31)

In the long time limit, the time-dependent rate coefficient, kAB(t), decays to zero. However,

if there is a sufficiently large separation between the timescales of the chemical reaction and

the transient microscopic dynamics, the rate coefficient first decays to a plateau from which

the rate constant, kAB, can be extracted (see Fig. 4.1).

kAB(t)

t

kAB

Figure 4.1: The rate coefficient, kAB(t), as a function of time. The dotted line indicates
the value of the rate constant, kAB .

In summary, the mixed quantum-classical expression for the PCET rate coefficient in Eq. 4.31

was rigorously derived from the quantum mechanical expression for the flux-flux correlation

function. Apart from the high temperature approximation made on the classical DOF, it

constitutes a general formula for calculating PCET rate constants in systems where the

environment of the transferring proton and electron can be treated classically to a good

approximation. In contrast to Cukier’s expressions, our expression can simultaneously handle

adiabatic and nonadiabatic charge transfer. It also improves upon FSSH-based methods,

which are ad hoc and do not properly account for decoherence.
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4.4 Simulating the time-dependent rate coefficient

In this section, we explain how each component of the time-dependent coefficient in Eq. 4.31

is simulated in practice.

4.4.1 Sampling the thermal equilibrium distributions

In order to generate properly distributed initial conditions for calculating the time-dependent

rate coefficient, one must sample the thermal equilibrium distributions e−βEα(Q)/ZQ for each

value of α. We obtain initial values of the classical positions and velocities of the solvent

polarization and bath oscillators from Gaussian distributions with standard deviations σvs =

(βms)
−

1

2 and σqs = ω−1
s (βms)

−

1

2 for the solvent polarization and σVj
= (βMj)

−

1

2 and

σQj
= ω−1

j (βMj)
−

1

2 for the bath coordinates. For the purposes of the calculation, the mean

of qs is chosen such that the initial values of qs correspond to reactant configurations.

Now that initial values of the positions and velocities have been selected, one needs to then

sample from e−βEα(Q)/ZQ for each value of α. This can be done by first considering that we

are interested in averages of the form

∑

αα′

∫

dX · · ·
e−βEα(Q)

ZQ

, (4.32)

where ZQ =
∑

α

∫

dXe−βEα(Q). For convenience, we illustrate the sampling procedure for

the case of a two-state system, although this can be generalized for any number of states. In

this case, we may write the average explicitly as

∫

dX · · ·
e−βE1(Q)

ZQ

+

∫

dX · · ·
e−βE1(Q)

ZQ

+

∫

dX · · ·
e−βE2(Q)

ZQ

+

∫

dX · · ·
e−βE2(Q)

ZQ

(4.33)
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where the first two terms correspond to αα′ = 11 and αα′ = 12 and the latter two correspond

to αα′ = 21 and αα′ = 22. Let us first consider the 11 term. It may be rewritten as follows,

∫

dX · · ·
e−βE1(Q)

∫

dX(e−βE1(Q) + e−βE2(Q))

=

∫

dX · · ·
e−βE1(Q)

∫

dXe−βE1(Q)(1 + e−β(E2−E1))
×

∫

dXe−βE1(Q)

∫

dXe−βE1(Q)

=

(

∫

dX · · · e−βE1(Q)

∫

dXe−βE1(Q)

)(

∫

dX(1 + e−β(E2−E1))e−βE1(Q)

∫

dXe−βE1(Q)

)

−1

(4.34)

Thus, the 11/12 term may be calculated as follows. One generates an ensemble of initial

values of the positions and velocities. For each set of initial positions and velocities, one

equilibrates the system on the ground-state surface, E1(Q), at the desired temperature using

a Nosé-Hoover chain thermostat. [130] A Nosé-Hoover chain thermostat is needed, since the

dynamics of the classical harmonic oscillators is non-ergodic when a Nosé-Hoover thermostat

is used. This generates an ensemble of initial conditions with the proper canonical distri-

bution, from which microcanonical trajectories are run to propagate the time-dependent

product species operator. The 11/12 term may be assembled by calculating the ground state

average within the first set of brackets in Eq. 4.34 and then reweighting it by the inverse

of the ground state average of (1 + e−β(E2−E1)) within the second set of brackets. One can

follow a similar procedure for calculating the 21/22 term, where now the equilibration is

performed on the E2(Q) surface and the first-excited state average is reweighted by the in-

verse of the first-excited state average of (1 + e−β(E1−E2)). It should be noted that, as per

Eq. 4.31, one must also calculate
∑

lm cα
′

l1 (0)c
α
m1

(0)
∫

0

−∞

dqpφ
l
p(qp)φ

m
p (qp) at the beginning of

each microcanonical trajectory.

4.4.2 Simulating the time evolution of the product species operator

After sampling the initial conditions, one must simulate the time evolution of the product

species operator by evaluating
∑

ik c
α′

i2 (t)c
α
k2(t)

∫

∞

0
dqpφ

i
p(qp)φ

k
p(qp) in Eq. 4.31. In particular,

the time evolutions of cα
′

i2 (t) and cαk2(t) may be simulated using the SSTP algorithm described

in Chapter 1.
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4.4.3 Calculating the equilibrium density of the reactant species

The equilibrium density of the reactant species is given by

neq
A =

1

(2π~)νZQ

∑

αα′

∫

dXΘαα′

A e−βHα , (4.35)

where ΘA is the reactant Heaviside step function. For the PCET reaction, neq
A may be

written explicitly as

neq
A =

1

(2π~)νZQ

∑

αα′

∫

dX(|φ1

e〉〈φ
1

e|h(−qp))
αα′

e−βHα , (4.36)

where the matrix elements of the reactant Heaviside function are given by Eq. 4.30. Evaluat-

ing this expression involves the same considerations as in the first subsection of this section.

4.5 Results for PCET model

In this section, we present results for Model I in Ref. 124. The parameters for this model

are included in Table 4.1.

Table 4.1: Parameters for the model Hamiltonian in Eq. 4.1. All values are in atomic units
except the temperature, T , which is in Kelvin.

ms = 22000 ωs = 3.72× 10−4 q1s = −2.13 q2s = 2.13
mp = 1836.1 ωp = 1.04× 10−2 V0 = 1.2× 10−2 µ2 = 5.84× 10−3

µ1 = 1.1× 10−3 V12 = 2.45× 10−2 φ = 8.0 λ = 0.0
N = 12 Mj = ms η = msωs T = 300

4.5.1 Solving the time-independent Schrödinger equation

Before presenting the results, we explain how we solved the time-independent Schrödinger

equation, ĥ|α;Q〉 = Eα(Q)|α;Q〉, at each time step of the simulation where ĥ is the Hamil-

tonian in Eq. 4.1 without the purely classical terms. As mentioned earlier, this first involves
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expanding the adiabatic wave function |α;Q〉 in an orthonormal set of two-particle basis

functions:

|α;Q〉 =
∑

m,n

cαmn|φ
m
p 〉|φn

e 〉, (4.37)

where |φm
p 〉 is chosen to be the mth eigenfunction of the quantum harmonic oscillator for

a proton and |φn
e 〉 is the nth electronic diabatic state, where n varies from 1 (donor) to

2 (acceptor). Thus, for M protonic basis functions, the 2M × 2M Hamiltonian matrix is

composed of matrix elements given by h
{ij}{kl} = 〈φi

pφ
j
e|ĥ|φk

pφ
l
e〉, where the protonic integrals

may be computed numerically using

φi
p(qp) = 〈qp|φ

i
p〉 = (2ii!

√
π)−1/2α1/2

p e−α2
p(qp−qop)/2Hi(αp(qp − qop)). (4.38)

Here, Hi(q) is the ith Hermite polynomial, αp = 3.97 Å−1, and qop = 0 Å. The integrals are

calculated using the trapezoid rule with 300 points evenly spaced over the range −0.79 <

qp < 0.79 Å. It was determined that M = 20 protonic states was sufficient for converging the

eigenvalues. After constructing the Hamiltonian matrix, the eigenvalue problem, hc = Ec,

is solved at each step of the simulation to obtain {cαmn} and {Eα}.

4.5.2 Results

In our calculations of kAB(t), we considered the participation of the two lowest adiabatic

potential energy surfaces (PESs). In the upper panel of Fig. 4.2, we show the ground and

first-excited state PESs as a function of the solvent polarization coordinate, qs, for this model.

We see that the reactant/product energy barrier on the ground PES is 1.0 kcal/mol=1.68

kT . A minimum energy gap of 0.5 kcal/mol at qs = 0 Å separates the ground and first

excited state PESs. The absolute value of the nonadiabatic coupling between these two

surfaces, |d12|, as a function of qs is depicted in the lower panel of the Fig. 4.2. As expected,

it is peaked at qs = 0 Å, indicating that nonadiabatic transitions are most probable in the

barrier-top region.

Next, we present the results of the time-dependent rate coefficient, kAB(t) in Eq. 4.31 for

Model 1, calculated using the SSTP algorithm. We first calculated the adiabatic rate coef-

ficient, which involves propagating the product species operator using adiabatic dynamics.
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Figure 4.2: Upper panel: The ground and first-excited state PESs as a function of qs for
Model 1. Lower panel: The absolute value of the nonadiabatic coupling between these two

surfaces, |d12|, as a function of qs.

This calculation involved 5 × 105 trajectories with a time step of 20 a.u. As can be seen

in the left panel of Fig. 4.3, the rate coefficient first increases to its transition state theory

value, followed by a decrease to a plateau of kAB(t ∼ 9000 a.u.) = 0 a.u. (depicted by the

red line). Thus, our adiabatic calculation yields a rate constant of 0 a.u., indicating that

our form of the rate coefficient is not suitable for calculating the adiabatic contribution to

the rate constant. (N.B.: This occurs due to the form of the rate coefficient.) For the

calculation of the nonadiabatic rate coefficient, we used 50 × 106 trajectories with a time

step of 100 a.u. We also applied an observable-cutting filter [84] to reduce the statistical

fluctuations. As can be seen, the nonadiabatic rate coefficient exhibits a similar behaviour

to the adiabatic one, but plateaus to a non-zero value of 1.47 × 10−6 a.u., yielding a rate

constant of kAB = 1.47× 10−6 a.u. (see right panel of Fig. 4.3). Comparing the value of our

rate constant to the exact value of 1.71 × 10−6 a.u. reported in Ref. 124, we see that our

mixed quantum-classical approach performs well, attesting to the reliability and applicability

of our approach for calculating PCET rate constants. There are several possible reasons for
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the discrepancy between our average and the exact result, including the approximations that

are inherent to the MQCL approach and SSTP algorithm, the use of only two states in the

calculation, and an insufficient number of trajectories.
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Figure 4.3: The adiabatic (left) and nonadiabatic (right) rate coefficients as a function of
time, kAB(t). The dotted red lines indicate the plateau values.

4.6 Conclusion

We derived a novel formula for computing the rate constant of a PCET reaction. The deriva-

tion of the time-dependent rate coefficient starts from a general mixed quantum-classical

expression for a reaction A 
 B [126–128], which originates from the time integral of the

quantum mechanical flux-flux correlation function. By introducing species operators that are

suitable for monitoring a PCET reaction, we carry out a derivation of the time-dependent

rate coefficient for a PCET reaction. The resulting rate coefficient has a dynamical part

involving the time evolution of the product species operator and an equilibrium part. This

formula is general, not requiring any prior assumptions about the parameters of the system.

Furthermore, since MQCL dynamics is used to evolve the product species operator, this

approach treats decoherence on a more solid footing than the FSSH-based methods. We

then show how to simulate this rate coefficient in practice, paying special attention to the

equilibrium sampling part due to its non-trivial nature. This approach was then applied to

a more realistic version of the PCET model studied in the last two chapters, where now the

solvent polarization coordinate, qs, is coupled to a dissipative bath of harmonic oscillators.

Our result for the rate constant for this model was in good agreement with the exact result.
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5.1 Concluding remarks

This thesis presents the first-ever application of MQCL dynamics to the study of PCET

reactions. As it is the first study of its kind, it has been first conducted on a reduced

model of a condensed phase PCET reaction consisting of a proton, an electron, and a solvent

polarization coordinate and then on an extended version of the model in which a dissipative

bath is also coupled to the solvent coordinate. The results in this thesis are compared and

contrasted with available FSSH and exact quantum results whenever possible [90, 92, 124].

By varying the parameters in the model Hamiltonians, we were able to study both concerted

and sequential PCET reactions.

The nonadiabatic dynamics of the various mechanisms in a two-level version of the model

PCET reaction was first probed via a trajectory analysis, whereby ensembles of 1000 trajec-

tories were generated using the same initial configuration but different momenta in each case.

The percentages of successful PCET reactions were calculated, where a successful reaction

was defined as one that started on the ground state reactant site and ended up on either the

ground or the first excited state product site. To gain a better idea of the nonadiabatic tran-

sitions between the adiabatic states, the corresponding nonadiabatic coupling vectors were

also calculated for each mechanism, all of which were peaked at the solvent configurations

corresponding to the minimum energy gaps between the (1,1) and (2,2) states. One of the

main features differentiating MQCL from FSSH is the presence of the mean surfaces between
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adiabatic states that can facilitate nonadiabatic transitions. In this case, for example, the

transitions between (1,1) and (2,2) occurs via (1, 1) → (1, 2)/(2, 1) → (2, 2) (since in any

transition only one of the indices is allowed to change). Thus, in contrast to the adiabatic

dynamics results, the nonadiabatic results are expected to be different than the FSSH ones.

Indeed, the percentages of successful PCET reactions for all three mechanisms were drasti-

cally different from FSSH. Further examination revealed that the majority of the time spent

by trajectories in the ensembles was on the mean surfaces (1,2) or (2,1) and not on the (1,1)

and (2,2) surfaces. These results underscore the importance of taking into account the mean

surfaces in the calculations of observables.

This trajectory analysis demonstrated the differences between MQCL and FSSH trajectories,

but there was still the question of how different would the expectation values of observables

be and how closely would the MQCL results agree with exact quantum ones. Hence, we

next calculated the time-dependent adiabatic state populations for the ET-PT mechanism

in a three-level version of the same model, since both FSSH and exact quantum results were

available to compare with. To accomplish this, our MQCL code had to be generalized for the

treatment of an n-level system and modified to calculate an observable, viz., state populations

in this case. The agreement between the MQCL and fully quantum populations is very good

for the most part, while the FSSH populations show deviations from the fully quantum results

starting at early times. In light of this good agreement, we also calculated the populations

for the PT-ET and concerted PCET mechanisms. To gain insight into the role of the various

surfaces in populating the adiabatic states, the percentages of trajectories in the ensembles

on each surface at a given time were also calculated. For all mechanisms studied, we found

that large fractions of the ensemble reside on the mean surfaces after some initial period of

time. In particular, it was found that the (1,2) and (1,3) surfaces were the most important

mean surfaces in the nonadiabatic dynamics of the sequential mechanisms for this model. In

fact, the (1,3) surface acts as a bridge between the (1,2) and (2,3) surfaces, thereby providing

another channel for population transfer to the (3,3) state. Overall, we found that population

transfer to the second-excited state can occur via a sequential population transfer route,

e.g. (1, 1) → (1, 2) → (2, 2) → (2, 3) → (3, 3), or can by-pass the (2,2) surface altogether via

a coherence transfer route, e.g. (1, 1) → (1, 2) → (1, 3) → (2, 3) → (3, 3).

The role of decoherence in the nonadiabatic dynamics of these model PCET reactions was
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explored by calculating the phase factor and time-dependent coherences between adiabatic

states. When the classical DOF are on the mean surface, the observable in question gains

a phase, Wαj−1α
′

j−1
(tj−1, tj) = e

−iωαj−1α
′

j−1

∆tj
. Fluctuations of the classical coordinates can

cause this phase factor to oscillate in time differently for each trajectory and, therefore, aver-

aging over an ensemble of trajectories can lead to destructive interference in the expectation

value of an observable. In Chapter 2, we calculated the real part of phase factor, 〈Re[W(t)]〉,

averaged over 1000 trajectories for the various mechanisms. Interestingly, they exhibited a

decay profile which was different for each PCET mechanism. These results allowed us to

gauge the importance of quantum decoherence in PCET reactions. In Chapter 3, we directly

calculated the time-dependent (1,2), (1,3), and (2,3) coherences between the corresponding

adiabatic states. In the case of the ET-PT mechanism, the (1,2) coherence exhibited the

largest magnitude and was the most long-lived, while the smaller (1,3) and (2,3) coherences

decay to zero much earlier. The most interesting result was the non-zero (1,3) coherence,

which confirmed the importance of the (1,3) mean surface in nonradiatively populating the

excited states. In the case of the PT-ET mechanism, the (1,2) coherence becomes more

important, which is consistent with the large percentage of trajectories on (1,2) in this case.

The (1,3) coherence exhibits a very low-magnitude oscillation initially and quickly becomes

zero for the remainder of the time, which is consistent with the lower (3,3) population in

PT-ET than ET-PT. In the concerted PCET case, the only important coherence is the (1,2)

coherence and along with the zero (1,3) and (2,3) coherences, we also see that the (3,3) state

never gets populated. These results underscore the importance of coherent dynamics in the

calculations of observables on sub-picosecond timescales.

In Chapters 2 and 3, we also investigated the effects of varying the coupling strengths be-

tween the proton/electron and the solvent on the nonadiabatic PCET dynamics. Increasing

the coupling strength stabilizes the minima on the ground and excited adiabatic surfaces,

which leads to a higher ground state energy barrier and thereby lower percentage of suc-

cessful PCET reactions. On the other hand, it decreases the minimum energy gap between

the ground and first excited state surfaces and, as a result, |d12| values becomes narrower

and grows in height. This leads to a higher probability of nonadiabatic transitions at the

barrier top which can help trajectories to overcome the energy barrier. These phenomena

significantly affect the nonadiabatic dynamics in all three mechanisms but not necessarily

in the same way, which is apparent in the percentages of successful PCET trajectories. The
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behaviour of these percentages is case-specific, however, in all cases, this percentage suddenly

drops to zero at high coupling strengths due to the emergence of very high reaction barriers.

An increase in the coupling strength also affects the phase factor, as it leads to a faster

decay of 〈Re[W(t)]〉. Furthermore, given the drastic changes in the shapes of the surfaces

at different coupling strengths, a drastic change in the time-dependent state population dy-

namics was expected. The results of this study for the ET-PT mechanism were presented in

Chapter 3. It was found that, in going from the strongest to the intermediate coupling, there

is a drastic increase in the (2,2) population at the expense of the (1,1) population. However,

after some time, the (2,2) population begins to decrease at the expense of an increasing

(1,1) population, decreasing more than in the strongest coupling case due to the wider |d12|

profile. In the lowest coupling case, there is an almost complete population reversal between

the ground and first-excited state populations at early times. Despite the major differences

in the (1,1) and (2,2) populations, the differences between the (3,3) populations in the three

cases are quite minor.

Since the MQCL formalism was found to be capable of successfully calculating an observable

such as a state population, we then proceeded to derive a novel formula for calculating

the time-dependent rate coefficient for a PCET reaction, from which one can extract the

PCET rate constant. This derivation started from the fully quantum expression for the time

integral of the flux-flux correlation function, followed by various mixed quantum-classical

approximations. The resulting rate coefficient has a dynamical part involving MQCL time

evolution of the product species operator and a tractable equilibrium sampling part, which

was obtained by invoking a high-temperature approximation on the environmental DOF.

This formula is general, not requiring any prior assumptions about the parameters of the

system. Furthermore, since MQCL dynamics is used to evolve the product species operator,

this approach treats decoherence on a more solid footing than FSSH. The resulting algorithm

was implemented into a code and, to confirm its reliability, we applied it to a PCET model

for which an exact rate constant is available. This model is based on the model studied in

Chapters 2 and 3, but now a harmonic bath is also coupled to the solvent coordinate. We

extracted the rate constant for the concerted PCET mechanism studied from the plateau

value of the time-dependent rate coefficient. The calculated rate constant was in good

agreement with the exact result, thereby confirming the reliability of our MQCL-based rate

coefficient formula.
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Given the (i) more rigorous basis of the MQCL surface-hopping approach, (ii) the fact that

it yielded significantly different results than the FSSH approach for the reduced model con-

sidered in this study, and (iii) the good agreement between the MQCL results and exact

quantum ones, we believe that the MQCL method could provide new insight into the nona-

diabatic dynamics of a wide range of PCET reactions. Insights gained by studying reduced

models can also facilitate the understanding of factors which control PCET rates in more

complex systems. MQCL will be especially useful for treating cases in which FSSH struggles,

i.e., cases that exhibit complex coherence dynamics.

5.2 Future plans

A great deal of research has focused on thermal PCET reactions due to their critical role in

biological systems. However, the fact that PCET reactions occur at the heart of solar-energy-

harvesting systems underscores the importance of photo-induced PCET as well. Compared

to thermal PCET reactions, little is known about PCET reactions of electronically excited

molecules. The results of our studies over the past few years revealed new aspects of the

nonadiabatic dynamics of PCET reactions. More specifically, the MQCL method has proven

to be appropriate for calculating population of adiabatic states, which would be an observ-

able of interest in studies of photo-induced PCET. In such cases, the classical DOF in the

system would need to be initialized on excited electronic states and not on the ground state.

Carrying out the dynamics on excited-state potentials may require including more states in

our calculations than what we have considered till now. The presence of mean surfaces in the

MQCL method generates an enormous number of possibilities for nonadiabatic pathways be-

tween the states and hence may provide a more accurate picture of the photo-induced PCET

dynamics.

Moreover, studying PCET in real, complex systems will bring us closer to designing more

efficient energy conversion systems. Studying PCET reactions in such systems may be made

more feasible with the aid of quantum mechanics/molecular mechanics (QM/MM), so I would

like to expand the territory of my MQCL studies to incorporate QM/MM methods as well.

In this case, the choice of QM method is crucial, namely, the electronic structure method

should be sufficiently accurate for the system of interest as well as computationally efficient.
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The MM force field also should be chosen such that it accurately describes the part of the

system outside the QM subsystem and its interactions with the QM region. For example, in

the case of photosynthetic systems, the “right” QM/MM approach could provide an efficient

yet accurate way to study the mechanisms and rates of each oxidation step of the Kok cycle

and the roles of the nearby tyrosine and water molecules.
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