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Abstract

In behavioural psychology experiments, we try to ask and answer questions about

real life phenomena. For example, we may be interested in learning how long it takes

for someone to react to a red light turning green whilst driving. Arguably, this is

a hard question to answer due to the difficulty in actually collecting the data. One

concession that might be made is to ask a similar question in a much more controlled

environment. For example, if we want to know the average response time to look at a

salient target, we may design a study that attempts to isolate this response. Perhaps

a dot is shown on a computer screen, and we measure the average response to initiate

a saccade. This is valid science, but it is hard to say that it represents real life. Real

life is dynamic, and as a consequence, much more noisy. We don’t sit in rooms with

isoluminant lighting at exactly 40cm from the screen and try to move ‘as fast and

accurately as possible’ in our everyday life. In this thesis, I attempt to challenge these

assumptions through the use of eye and body tracking techniques. I conducted three

studies, each increasingly giving up experimental control to collect more naturalistic

data.

In the first study, I demonstrate that tightly-synchronized simultaneous collection

of laboratory-grade eye- and body-tracking can be used to generate accurate 3D gaze

vectors that have sub-centimetre accuracy in optimal conditions. Generating 3D gaze

vectors is a challenging problem because there are no widely used established cali-

bration routines. This study aimed to answer this question. Participants completed

four different calibration routines, where the pupil position data was used as an input

to a model that predicts gaze position in 3D space. A validation procedure is used
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to assess model performance when the experimenters know exactly when and where

the participant is supposed to be looking. Finally, participants complete a previ-

ously validated ecologically valid task known as the Pasta Task to assess the model’s

performance during real-world behaviour. This study provides tangible advice for

researchers interested in collecting naturalistic simultaneous eye and body tracking

data.

In the second study, I use a consumer-grade eye tracker and a simple hand tracker

(i.e. a computer mouse) to record the behaviour of participants as they navigate

through a menu interface modeled after the popular video game, Mass Effect 3. This

work was conducted as part of a Mitacs Accelerate internship with BioWare in Ed-

monton, Alberta. The purpose of this study was, in technical terms, to find key per-

formance indicators to aid user experience researchers at BioWare. In other words,

I collected eye and mouse tracking data and analyzed the data to find when users

were having trouble. Typically user experience researchers use qualitative measures

such as interviews, surveys, and technical reports to uncover problematic areas of user

experience known as friction points. Here, I use eye and hand tracking to attempt to

quantify friction as a dynamic (i.e. not static) process. I demonstrate a methodology

that allows for the detection of friction points based on gaze and movement signals.

I conducted both an in-person (local) cohort as well as a remote cohort collected

using webcam based eye tracking. I show that many of the same patterns of friction

that occur in the local cohort also occur in the remote cohort, suggesting that the

increased noise (due to decreased experimental control) in the remote cohort did not

overpower the signal. The study provides evidence that many of the techniques and

tools used in the laboratory can be adapted for use in digital environments.

In the third study, I assessed the feasibility of using eye tracking in a clinical

setting to augment the neurological assessment of vertigo. Vertigo is a condition that

manifests as extreme dizziness due to imbalance in the vestibular system. Diagnosis

is challenging because vertigo is not a single disease entity but the cardinal symptom
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of different diseases of varying etiology ranging from benign to deadly. The high

stakes involved in assessing a potentially life-threatening prognosis (in the case of a

brainstem stroke, for example) requires extra care and resources dedicated to these

patients such as computed tomography (CT), or magnetic resonance (MR) imaging.

A typical neurological battery will assess the vision of the patient to test oculomotor

function, which is critical for diagnosis. Here, we created a simple systematic screen-

based set of stimuli that approximates the neurological assessment given to a patient

with vertigo symptoms. We used a portable eye tracker to collect eye position during

the approximately five minute stimulus presentation. Moreover, the data collection

was performed by someone without any background in eye tracking, testing the claims

of modern eye tracker manufacturers regarding ease-of-use and portability. Data

were collected from both normative controls as well as patients. The assessment was

designed to be systematic and easy to use, completing in around 5 minutes. We

found that control participants worked well for the stimulus, yet patients produced

poor quality data. We created analysis pipelines for the data and speculate on the

use of such a device to increase the efficacy of a physician performing neurological

examinations on dizzy patients.

These studies, taken together, are an investigation of how we can start to use

many of the laboratory technologies out in the wild and the resultant successes and

limitations.
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1.1 Motivation

One of the reasons we do science is to learn something about ourselves, and the world

around us. Science is a vigorous process; we have to be incredibly careful with our

assumptions, data collection procedures, and analysis techniques. We do not want to

get anything wrong, or at least get it wrong because we are being careless. We achieve

this through control. Control of our experimental setups, control of the dependent

variables we collect, and control over the statistical analyses that we perform. We

do this because, again, we want to be right. But at some point, being right does

not matter if it does not reflect reality anymore. Sometimes, the way that we study

behaviour does not reflect to how people actually behave.

The world is a dynamic and noisy place. To study a phenomenon, we try to distill

it into its individual parts to make it easier to study. However, this reductionist

approach can lead us to oversimplify the complex phenomena we set out to study and

ignore the richness and diversity of real-world situations. Understanding the roles

and limitations of control, and how they affect our study of psychology, is important

for contextualizing the findings that emerge from our research.

1.1.1 The role of experimental control

Experimental control is the ability to manipulate and measure variables in a way that

allows for a cause and effect relationship to be established. In scientific terms, we want

to manipulate only the independent variable and measure the dependent variable and

test if there are any differences following the manipulation. For example, imagine you

are a chemist who is interested in investigating the effect of two different temperatures

on a chemical reaction. Here, it would be important to ensure that the amount and

concentration of each chemical, the amount of stirring, and the length of reaction is

identical between the two samples. In other words, the only thing that is different

between the two samples is the temperature applied. Following measurement, any
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differences noted could be more easily attributed to the change of temperature and

not anything else. But, not all fields can afford the same level of control over the

environment that the data is collected in. In this example, there is not a lot of wiggle

room for variability. The two chemical samples are assumed to be identical, we can

measure the exact temperature of the reaction, and we can ensure we are completing

the task in the same amount of time. While in this example, it is relatively simple

to achieve experimental control, psychology presents some unique challenges due to

the complexity and variability of human behaviour and the difficulty in isolating and

controlling for all relevant variables.

Achieving experimental control in a human psychology experiment is not as straight-

forward. In this case, there are several considerations that need to be made that do

not apply to the chemistry example above. First, humans are variable. Not every-

one is the same, nor do they necessarily have the same personality, preferences, or

abilities. Of course, these are factors that can alter the outcome of an experiment.

Second, there are ethical considerations that need to be made for humans; some ma-

nipulations may not be appropriate or feasible. As researchers, we must respect and

care for our subjects. Third, many of the phenomena are incredibly complex and

difficult to isolate from other behaviours. As an example, one such behaviour, social

attention, can be challenging to study because it is hard to isolate the essence of a

social interaction.

Probing this idea of what defines a social interaction, a study by Laidlaw et al. [1]

investigated participants’ eye movements while sitting in a waiting room. In this study

a confederate posing as another research participant was either physically present or

shown on a computer screen. The authors found that participants looked at the other

person less when they were physically present, suggesting that social attention (via

eye movements) is heavily modulated by the ‘mere opportunity for social interaction’.

This study demonstrates how easily behaviour can be modified by something as sim-

ple as another person being physically present. Additionally, we know that humans
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tend to behave differently when they know they’re being watched. For example, many

people are familiar with white coat syndrome, a well-known phenomenon in the med-

ical community which describes the rise in blood pressure, anxiety and perspiration

that some patients experience during routine checkups [2, 3]. Even in a laboratory

setting, participants have been found to be more likely to ‘choke’ when being watched

by an experimenter [4]. It is perhaps useful to look at these responses not as noise in

the data, but rather as part of the data itself; this is how people are truly feeling in

the moment.

So, how do we know what signals matter and what do not? For example, in

a psychophysics experiment, it may not be clear what should be used to measure

reaction time—brain signals, eye movements, body movements or some other signal.

This is not to say that it is not possible to achieve some level of control in psychology

experiments, but rather it requires careful consideration of the inherent variability

of human beings. One of the ways researchers do this is by being clever in the way

they design experiments to isolate the behaviours they wish to study. However, it

is important to note that sometimes these experiments may not have a real-world

analog, yet we still try to apply the results to real life. So how do we create analogous

tasks?

Imagine you are a psychology researcher who is interested in understanding what

people pay attention to when choosing a box of cereal off the shelf at the supermarket.

To assess attention, you elect to record where people look and how they move, which

is treated as a proxy for attention. One of the problems here is that it is very difficult

to record these kinds of signals in a supermarket. One reason might be the increased

noise that is inherent to this type of environment. Second, the ergonomics of recording

this kind of data are challenging to say the least. To alleviate these concerns, a

concession you might make is to take the person out of the supermarket entirely, and

put them in a setting that that controls for the noise and distractors. Since you only

care about where someone is looking and what they ultimately choose, you might
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reduce the task to a digitized version that shows three different rows of cereal brands

on a computer screen. Then, to make sure you are getting consistent data, you make

sure the person is seated in a chair at a fixed distance from the screen, and adjust

the lighting to ensure optimal data collection. The study as described does a good

job of isolating the phenomena we are interested in studying, but it does not reflect

the natural action anymore. If a researcher wants to study the natural behaviour,

it logically follows that the task should be as natural as possible, even if it means

including more noise in the data. To achieve this, the researcher should choose signals

that are robust to noisy environments, such as eye and body movements. Eye and

body movement signals have value because they are the modalities we use to collect

information and interact with our environments.

1.1.2 Why record gaze and movement data?

Humans are visual creatures. One of the ways we learn about our world is by looking

at it. The way that we move our eyes reflects the cognitive processes occurring in the

brain [5]. It naturally follows then, that our recording of the eyes should grant insight

into the inner cognitive workings of the mind. Previous work has demonstrated the

intrinsic link between visual behaviour and cognition in a variety of tasks including

visual search [6, 7], reading [6, 8], visual working memory [9, 10], and during natu-

ralistic movements [11–14]. It tends to be difficult to obtain high quality data from

naturalistic tasks due to the challenges with control explained previously. For exam-

ple, Land & Lee [11] investigated where participants looked when they were steering

a car around a bend. The presumption for this study was that no equivalent labo-

ratory analog task existed, and the best option was to record the eye movements of

actual drivers whilst driving. Here, the authors found that drivers relied on a tangent

point in the bend approximately 1 to 2s prior to beginning the turn. It is likely that

the pressures (and distractors and noise) the driver faced impacted their behaviour,

which cannot be modeled in a laboratory task. For instance, the eye movements
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(and intense manual labour to analyze them) are robust enough to survive extra-

neous noise that the environment provided, which suggests that eye movements can

(and should) be recorded in natural contexts to get the best representation of the

behaviour a researcher in interested in. Of course, eye movements are just one part

of a set of complex behaviours such as guiding the hands (or steering wheel in this

case) to complete a larger goal. Clearly, how we look and how we move is important

to understanding cognition.

Our limbs are the primary way we interact with our environment. For instance,

envision waking up to an unfamiliar hotel room to an alarm during a business trip,

which you fumble to deactivate. To an outside observer, your hand movement’s speed,

accuracy, and trajectory may indicate that you’re not acquainted with the environ-

ment. Just like when we watch someone attempt a new sport, we can perceive their

lack of experience through their actions. The way we move, similar to eye movements,

is also an indicator of the dynamic cognitive processes in brain. For example, studies

investigating reaching behaviour have shown that direct reaches are associated with

higher confidence than indirect reaches in both hand [15–19] and mouse movements

[20–24]. Recording movement then, is important to understanding the goals of an in-

dividual. Movements of the hand in particular are closely linked with the movements

of the eyes. This is because we use visual input to direct our actions—known as

eye-hand coordination. Evidently, studying both of these modalities simultaneously

will give the most information about the intentions of someone’s actions, which could

be useful to understand the context of the behaviour.

Studying visuomotor activity provides a unique and dynamic understanding of hu-

man perception. By tracking where someone looks and how they interact with their

surroundings, we can gain insight into their attentional focus and decision-making

processes. While static measures such as attention heatmaps or movement trajecto-

ries may provide some useful data, they fail to capture the complexity of our dynamic

interactions with the world around us. Furthermore, the relationship between vision
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and action is not static, and visuomotor recordings allow us to track this relationship

over the course of an entire task dynamically. In the above example studying cereal

brand preference on a shelf, a static measure such as fixation time would fail to cap-

ture important dynamics. For example, if someone alternates between two different

choices, a measure such as total fixation time on each object does not include how

many times the person oscillated between the choices. In this example, the oscillating

behaviour is an important indicator of indecision.

Clearly, multimodal dynamic visuomotor data has a lot of value for understanding

human behaviour. Despite its richness, it does tend to be more challenging to inter-

pret. While this may seem like a downside, it gives researchers the opportunity to

decide what they consider useful in their data.

1.1.3 What counts as useful?

People do not naturally sit in isoluminant rooms at exactly 40 cm from their com-

puter screen and consistently move “as fast and accurately as possible”. Of course,

specific questions require specific setups, but if we want to understand how people

naturally behave, we should move towards more natural data collection techniques

and experimental designs. And, as the preceding section details, focusing data col-

lection on gaze and movement behaviours is a prime target. Arguably, experimental

designs that effectively capture the dynamics and complexities of the environment

and encourage real behaviours will have more utility than analogous lab-based tasks.

Utility is often defined by the person who is receiving the data. To a grocery store

manager, understanding how people navigate and interact with the shelves in their

store is much more useful than the laboratory equivalent described above. Of course,

a professor running a laboratory that studies attentional mechanisms may have an

entirely different set of criteria they consider important. In a similar vein, if a website

designer wants to optimize their website, it would make sense to have users navigate

their actual website rather than an equivalent recreation. Knowing how people focus
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their attention on the website is useful in understanding attentional mechanisms, but

it is unlikely that the website designer will be able to apply this knowledge directly.

Useful data should make predictions while representing the underlying phenomena

being studied. Sitting in a dark room staring at dots on a screen has little ecological

value because it does not reflect what humans actually do.

Here, I will attempt to persuade you that giving up control in order to better

understand natural human behaviour is a justifiable trade-off. Visuomotor recordings

are the best way to measure natural human behaviours because they are objective

measures of how someone actually operates in the world. While more noise may be

present in the data, I will show that it does not prevent useful metric extraction whilst

allowing for data collection in more real-world settings.

1.1.4 This thesis in context

In the following thesis, I will present three distinct studies that have varying levels

of control applied to each. The link between the studies is intended to be a gradated

loss of control the experimenter has over the participants, the environment the data

is collected in, and the dependent variables themselves while encouraging natural

behaviours to emerge. If we want to study these behaviours, we have to measure

them in the context that we are interested with the tools that we have. Additionally,

it is also important to target the end-user of the generated data for each study. Below

I will give a high-level description of the studies in this thesis, with a more fulsome

description later on.

In the first study, I took one step away from a traditional controlled data collection

paradigm and targeted scientists who are interested in collecting data from real-world

tasks in a laboratory. Gaze behaviours were assessed during calibration sequences to

generate models to predict where someone is looking in 3D space. The models were

validated and assessed on a naturalistic task known as the Pasta Box task [14, 25,

26], where participants are given free movement of their bodies to complete the task.
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The second study moved out of the lab and into the world of user experience

(UX). UX is a field that necessitates real-world behaviours because researchers want

to assess how users actually use their products. I assessed the gaze patterns and mouse

movements of participants tasked with navigating a simple video-game inspired menu

system. Natural movements were critical because I aimed to detect friction points:

unhelpful slowdowns experienced while using the menu system. A simple instructional

prompt manipulation was used to encourage exploration of the menu system without

giving the users any specific instructions. The output of this study was intended for

UX designers and researchers to allow for the improvement of their products.

The third study moved into the most difficult environment thus far: the clinic. This

was the most ambitious study, which ultimately hit the limit of the current technology.

Eye tracking data was collected from patients experiencing dizziness at the University

of Alberta hospital. A clinically inspired set of stimuli were presented to the patients,

designed to be akin to a clinical neurological exam. The study assessed the feasibility

of collecting data in a completely uncontrolled environment such as a hospital stroke

clinic. The target user here was the attending physician, who could use the output

of such a device to improve clinical diagnostic efficiency. Here, although we tried to

collect reach trajectory data, ultimately the patients were unable to complete this

portion of the task.

I use both eye tracking and movement analysis to assess real-world questions about

the behaviours that humans exhibit within their environments, ranging from a ded-

icated laboratory motion-capture room, to measuring user experience whilst navi-

gating video game inspired menus, to eye movements from patients at the hospital.

I hope to convince you, the reader, that as control decreases (and noise increases),

there are still useful metrics buried in the data that can be captured through eye and

body movement recordings.
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1.2 Vision and eye tracking

1.2.1 From vision to vision for action

Understanding the relationship between vision and action is crucial in studying natu-

ral behaviours from a psychological perspective. Contemporary psychology has swung

the pendulum between control and naturalistic behaviour towards control over the

last few decades. This is perhaps in part because for a long time we thought of

perception, and specifically visual perception, as a passive process. Because earlier

psychology research neglected the embodied aspect of human experience, we thought

it was appropriate to put people in dark rooms hitting buttons to respond to tar-

gets. Of course, on the surface, we know that these types of behaviours are not

reflective of how people actually behave. Rather, we believe they isolate the neural

and behavioural mechanisms that we are interested in studying. Over time, it was

recognized that perception plays a critical role in facilitating action. In the following

section I will discuss the gradual shift from pure vision research towards vision for

action.

Prior to the 1980’s, vision research was almost exclusively perceptual in nature

[27]. In fact, in 1948 Lashley [28] once famously concluded that visual processing did

not extend beyond the striate cortex. There have been debates about whether the

primary function of vision is to construct perceptual experiences through bottom-up

edge-detection techniques [29], or whether it involves top-down processes moderated

by the frontal cortex [27], which enable the selection of predefined stimuli present on

the retina [30]. Much of the work done at this point was investigating the functional

segregation of the brain, opting to study the mechanistic features of visual processing,

and not studying the behavioural outputs of vision.

The visual system’s non-monolithic nature was some of the first evidence presented

by Schneider [31], who used golden hamsters to demonstrate that lesions in the stri-

ate cortex led to pattern discrimination deficits, while tectal ablations eliminated
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visually guided head orienting responses toward food. Schneider called this evidence

for two visual systems at play. Work in the early 1970’s demonstrated that two vi-

sual systems also existed in parallel in the frog brain [32]. Ingle sought to dissociate

the function of the visual thalamus from that of the optic tectum by ablating the

tectum. Accidentally, he found that allowing fibers from the affected eye to regen-

erate over the course of 6-8 months to the ipsilateral tectal hemisphere resulted in

mirror-symmetrical frog snapping behaviors towards prey, but barrier avoidance was

unaffected. This suggested the presence of two distinct visual systems, similar to the

work by Schneider.

Mishkin & Ungerleider [33] provided some of the first evidence that vision was split

into two distinct cortical pathways in primates. Mishkin & Ungerleider demonstrated

lesions that disconnected parieto-preoccipital areas from striate cortex resulted in the

monkeys having trouble either 1) identifying an object or 2) being able to localize it in

space. They determined that if the lesion was found to be dorsal to the parietal cortex

it resulted in localization deficits, but ventral lesions lead to object identification

deficits. These deficits were evidence of what Mishkin et al. called the “where” and

“what” visual pathways. A fundamental issue with this interpretation is that is does

not question what the output of such a system would be used for—how does the brain

use this information for interaction?

Answering this question was the seminal work of Goodale and Milner [35]. This

work work demonstrated vision is critical for initiating and guiding movements through

space, suggesting that cortical visual processing was not necessarily “what” and

“where”, but rather “what” and “how”. Going further, Goodale [27] argues that

vision for perception is literally only half of the story; vision is also used extensively

for action [35–38], and in fact is controlled through a different set of mechanisms

than those used for perception (for an excellent review, see Gallivan & Goodale [39]).

These separate pathways have now become known as the dorsal and ventral visual

streams. Colloquially, the dorsal and ventral visual streams are now known as the
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”action” and ”perception” streams, respectively [27]. In short, the control of action

is necessarily an online process, requiring quick moment-to-moment adjustments for

efficient interaction. In contrast, perception typically does not update as quickly, as

objects do not tend to change frequently over time. As a result, the perception stream

updates much slower. The two streams work in parallel and are not thought to be

hermetically sealed from one another [27, 40]. Both streams are intimately linked

and work together in complementary roles, controlling our behaviour and allowing

for adaptation. For example, as I am sitting here, I would like to take a drink from

my coffee cup. My ventral (perception) stream processes the image on my retina

and tells me that there is a coffee cup. To actually reach for the cup, however, my

dorsal (action) stream processes my end-effector’s (i.e. my hand’s) path to the cup

by converting the visual coordinates into motor commands. The dorsal stream pro-

cesses information at a much higher rate than the ventral stream, making it much

more suitable for temporally sensitive adjustments around any potential obstacles

[41]. Just as I am about to grasp the cup, a cat jumps on the desk and nearly knocks

it over. The dorsal stream is able to quickly recalculate my reach trajectory so I can

save the cup before it hits the ground. Of course, in the real world, we perform these

kinds of movements all the time. When reaching into our pantry to get a can of soup,

we have to avoid all of the other items that are in the way to navigate our hand to

the can. The visual system’s ability to convert between visual and motor coordinates

is nothing short of incredible, and tracking the movement of the eyes is one of the

primary ways that we can gain insight into how this conversion takes place.

1.2.2 History of eye tracking

Eye tracking is a technique that records the pupils, which is typically used to calculate

gaze position in space. One of the earliest known attempts to non-invasively track

the eye’s position was by Dodge & Cline [42], who were able to successfully quantify

horizontal eye angle velocities using a photographic method that recorded eye move-

12



ments onto a piece of sensitive film. This proved to be a useful endeavor, as it was

the first demonstration of what normal movements of the eyes look like. Crucially,

this method did not provide real-time feedback to researchers who were interested

in using the eye movements themselves as a feedback signal into their experimental

design. It was not until 1939 that both horizontal and vertical movements of the

eyes were recorded using electrooculographic electrodes placed around the eyes [43,

44]. This method, although more invasive, was the first time that eye movements

were recorded in real-time (and in fact were, to attempt to quantify the presence of

nystagmus in the eyes [45]). Later on, Yarbus [46] used a complex mirror system to

record movements of the eyes and was the first to observe that eye movements were

intrinsically linked to the cognitive goals of the participant. In this regard, Yarbus

was a pioneer in the eye tracking community and the first to make this association.

When a subject was told to look at painting with varying instructions, he noted that

the gaze patterns differed depending on what the participant was trying to achieve.

Early on, fixations were mostly on the faces of the subjects in the painting, whereas

later on fixations tended to be on extraneous objects (e.g. chairs, tables) [47]. Over

time, it was observed that the subjects continued this pattern, suggesting there was

structure behind these eye movements. This observation, which may seem obvious

by today’s standards, was critical for the understanding of the role of eye movements

for perception. In recent times, rapid technological improvements have meant that

tracking the eyes is easier and more affordable than ever before.

1.2.3 Contemporary eye tracking

In modern times, we use specialized devices known as eye trackers. Generally speak-

ing, eye trackers use cameras pointed at the eyes to track the pupil. There are a

multitude of methods used to track the pupil, but many eye trackers tend to use a

combination of video-based and infrared-based approaches. In modern psychology,

there are two main types of eye trackers typically used: desktop and head mounted.
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Desktop systems tend to have have much higher spatial and temporal resolution at

the cost of being stationary. Additionally, these systems usually require fixing the

head position, but this is not always the case. The more portable head-mounted eye

tracker allows for free movement of the head, but usually still requires a dedicated

computer during recording.

Desktop eye tracking

Desktop eye tracking refers to the method of recording the eye movements of a par-

ticipant sitting in front of a computer screen. A typical desktop eye tracker, such as

the EyeLink 1000 (SR Research, Ottawa, Canada), offers high spatial and temporal

resolution, but does not permit a large amount of free head movements. There is,

however, a burgeoning field of monitor-mounted eye trackers, such as the Tobii Eye

Tracker 4C (Tobii Research AB, Sweden) and the Gazepoint GP3 [48]. These sys-

tems are intended for use on a dedicated desktop machine in order to track the gaze

position on a monitor. An advantage of these systems is that they do not require

the end-user to wear any equipment and can non-invasively record the user’s gaze

position at relatively high frequencies (typically 90-150hz).

Finally, webcam-based eye tracking algorithms have become popular in the last few

years. A consumer grade webcam (e.g. laptop or monitor-mounted webcam) is used to

record video of the participant’s eyes, from which a pupil position can be ascertained.

These techniques typically require a more intensive calibration procedure, but can

yield relatively high quality eye tracking data [49]. Webcam eye tracking is especially

suitable for remote eye tracking tasks because almost every computer in modern times

will have an attached webcam. These options work well for tasks that are relatively

stationary, but an eye tracker that allows for free head movements may be desirable.
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Head mounted eye tracking

Mounting the eye tracker on the head of the participant allows the researcher to ac-

count for head movements. Earlier versions of these eye trackers were typically still

quite cumbersome and expensive (e.g. EyeLink II, SR Research Ltd.), but modern

head-mounted eye trackers tend to be lightweight, portable, and much more afford-

able. Portable systems, such as the Pupil Labs Core [50] use a video-based deep-

learning approach to detect the pupil, as well as to track other pupillometric data.

Because these systems are portable, they are more suitable for deployment outside of

traditional eye tracking laboratories, such as in a public grocery store [51]. These de-

vices facilitate data collection in the wild. Recording naturalistic behaviour requires

minimal restrictions for the participant, and these devices give freedom of movement

to the person being recorded, making them suitable for real-world tasks.

1.3 Movement and motion capture

1.3.1 History

One of the earliest examples of capturing an animal in motion was the famous record-

ing of The Horse in Motion by Muybridge [52]. These were a series of chronometric

photographs that captured the movement of a horse as it galloped by. This was one

of the first earnest attempts to better understand the biomechanics of how a horse

moves. This study was no easy feat; multiple cameras were needed to photograph

the running horse, which used an electrical shutter system custom engineered for the

study. A long wall of white planks were erected to allow for enough brightness to

develop the individual frames. Muybridge found that there were times when all four

of the horse’s feet were off the ground (and tucked underneath, facing each other).

This was some of the first evidence that capturing snapshots in time of moving sub-

jects could have great scientific value, such as being able to quantify the movement

of animals. This technique would come to be known as motion capture.
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Although commercial systems that recorded movement became available in the

late 1970’s, some researchers still opted to use more primitive methods to effectively

motion track animals’ movements [53]. As an example, Ellard et al. [53] recorded

Mongolian gerbils jumping varied distances to investigate the strategies used to es-

timate distance. To quantify their movement the researchers projected each frame

onto a digitizing tablet, which was connected to a computer. On each frame, the

head and leg positions were mapped manually. Clearly, this approach was valuable

but incredibly cumbersome for anything more than a few seconds worth of data. Over

time, affordable devices known as motion capture systems became available that were

suitable for use in human biomechanical and movement studies.

Motion capture (sometimes called mo-cap) is a technique used to record human

movement in two or three dimensions. In the context of human behaviour, it is an

especially useful tool to help quantify various aspects of movement. For example,

reach-to-grasp studies can record the exact timing, trajectory, and final destination

of the hands [15, 17, 19, 54], from which metrics such as velocity, acceleration, and

completion time can be derived. Studying reaching is a non-invasive way of studying

the function of the brain. It can be argued that one of the primary outputs of the

brain is movement, and using motion tracking to study these outputs gives us deeper

insights into the inner workings of cognition and attention [22, 55–57]. Freeman et al.

[22] gives a compelling argument that hand movements in particular contain “motor

traces of the mind”, suggesting motion capture can be used as an effective non-

invasive tool to study brain systems. As stated earlier, there is extensive evidence

that movement is regularly updated via cognitive processing [16, 27, 35, 36, 58,

59], and recording these movements shows us the other side of the coin: how the

control signals generated in the brain manifest as movements. Below, I will discuss

three prominent and commonly used types of contemporary mo-cap: passive/active

systems, markerless motion capture, and mouse tracking.
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1.3.2 Contemporary motion capture

Passive and active systems

Today, there are a multitude of options for collecting mo-cap data. One of the most

common systems used is an infra-red emitting diode (IRED) camera tracking system

(e.g. OptiTrack, or Optotrak devices). As their name suggests, these systems work

through the use of infra-red cameras that reflect light off of either passive (i.e. with

IRED reflective tape) or active (i.e. powered IREDs) markers to track movement in

3D space. In general, both work approximately the same way; the camera system uses

an algorithm to triangulate the location of the marker in 3D space using the known

positions of the tracking cameras. Typically, these systems require an extensive cal-

ibration procedure prior to use each time. The result is real-time tracking of body

movements with the trade-off of requiring a large amount of space for the tracking

camera system to be installed. These systems tend to have very high temporal (e.g.

>hundreds of samples per second) and spatial (e.g. below 0.1mm with proper calibra-

tion) resolution during data collection. Because there are multiple cameras (usually

around 8 or more in the case of a full-body motion capture system1), data collection

methodologies must be restricted to collection in a room dedicated to mo-cap. To put

it bluntly, these systems are usually unsuitable for data collection in the real world,

as they are much too cumbersome and cannot be properly set up in every space.

Markerless motion capture

Today, it is possible to collect mo-cap data using consumer-grade camera systems,

such as a mobile phone. The algorithms powering these techniques are known as

markerless mo-cap. More recently, markerless mo-cap systems have been steadily

improving as the hardware required to power the algorithms becomes cheaper. This

is achieved using deep neural networks to track desired targets on individual video

1It is worth noting that depending on the experimental setup, only one or two cameras may be
necessary depending on the vantage point of the cameras.
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frames. DeepLabCut [60] was originally developed to track animals that could not

feasibly have mo-cap markers attached, such as laboratory mice or wild animals. The

same principals can be applied to tracking humans (see Figure 1.1 for an example).

The resulting data can be exported into a familiar time-series format and can be

analyzed in many of the same ways that traditional mo-cap data is processed. One

drawback is that DeepLabCut currently does not natively support real-time process-

ing and output at the time of writing2, making it unsuitable for studies that require

real-time feedback for the participant. One such system that specifically allows for

real-time feedback is MediaPipe [61]. MediaPipe is a framework that is capable of

using video frames as an input, and through a pre-trained model, can detect and

superimpose pose estimates, hand position, and even iris detection3. These types of

systems will likely overtake the passive and active systems in popularity due to their

easy ability to deploy almost anywhere using almost any kind of recording medium.

Mouse tracking

In some cases, we may only care about the movement of the hands, such as during

a computerized task. Thankfully, the primary way that most users interact with

their computers is with a computer mouse, whose movements can be recorded using

either custom or already available software (e.g. MouseTracker: [21]). An advan-

tage of recording mouse movements is that the recording does not impact the user’s

experience at all, as opposed to dedicated motion capture setups which require track-

ing markers to be physically attached to the participant. Trajectory, velocity, and

interaction (e.g. clicks) can be collected very easily, and all contain a wealth of infor-

mation. Mouse trajectories, like reaches, have been demonstrated to be susceptible to

information presented on a screen [20–24]. For example, a study by Rheem et al. [24]

demonstrated that mouse trajectories were susceptible to cognitive loading, scaled to

2There is, however, a tool under active development known as DeepLabCut-Live that aims to allow
for this in the near future (https://github.com/DeepLabCut/DeepLabCut-live).

3MediaPipe is also capable of doing object detection, tracking, hair segmentation, and many others.
A full and current description of capabilities can be found at https://google.github.io/mediapipe/
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Figure 1.1: An example of a still frame extracted from a video trained in DeepLabCut
of an astronaut exercising on the International Space Station. Each dot is a location
chosen to track for the duration of the video, with the lines superimposed showing
their trajectory over time. It is worth noting that DeepLabCut allows the end-user
to track an arbitrary number of locations, joints, or positions in a video.
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the perceived task difficulty. Participants performed a dual task, where response time

and movement trajectory deviations were larger when presented with a harder task

to complete. This is in line with studies demonstrating that movement trajectories

are known to deviate more when the actor is less confident in their response [17,

39, 62], meaning mouse movements are analogous mechanistically and functionally to

real-world reaches. Given that much of our time as humans is spent using computers

(and devices such as smart phones, tablets, and laptops), this is an arguably easier

medium to collect real-world data on.

1.4 Synchronization of eye and motion capture streams

Individually collecting eye and motion tracking data is relatively simple. However,

many experimental designs benefit from the simultaneous recording of gaze and move-

ment signals. Unfortunately, this is not as straightforward to achieve. To study the

temporal dynamics of the coupling of gaze and movement, a methodology is required

to ensure the signals can be effectively compared.

For example, in a simple reach-to-grasp task, gaze predicts fixation at the point

where the index finger tends to grasp [63, 64]. To effectively calculate the offset

between when someone looks at the target (via eye tracking) and when they actually

interact (via motion capture), the signals need to be synchronized. Simply recording

the streams at the same time is not an appropriate method, as it typically results

in a large amount of manual work to synchronize the streams post-hoc [14, 65], as

timestamp drift or data collection errors can occur. To effectively extract these kinds

of measures, we must use a more sophisticated approach for synchronization.

As previously stated, one of the many challenges of concurrently recording gaze

and movement is the time synchronization of the streams. Eye-hand coordination is

a tightly coupled dynamic process which necessitates synchronization to accurately

study. In their raw formats, gaze and motion capture data are in a time-series format.

That is, each sample (e.g. x, y coordinates) is marked with a timestamp. The times-
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tamps associated with each sample however, are not always from the same source.

For example, gaze and movement data recorded simultaneously on the same machine

may have different timestamps due to the hardware used. When we assess expected

relationships, such as gaze appearing on a target prior to reaching for it, it is critical

that the timing of these events is known. Luckily, this tight coupling can be achieved

through software.

Lab Streaming Layer (LSL) is a software library that aims to solve the multi-modal

data streaming problem [66]. At a high level, LSL accepts time series data streams

and gives each sample a timestamp from a common source (see Figure 1.2). The

timestamp source is the host operating system’s internal high resolution clock, which

boasts high resolution and accuracy with minimal drift. LSL also applies a drift

correction algorithm to ensure that long periods of recording do not have incremental

drift. Additionally, LSL has minimal hardware requirements, making it suitable to

use on low-powered hardware (such as single board computers or mobile phones) to

effectively create portable data collection systems outside of the laboratory.

In this thesis, I use the LSL framework extensively to synchronize gaze, movement,

and stimuli control signals. My approach is easy to implement, and results in high-

quality synchronization of an arbitrary number of modalities. In the following studies,

the data collection streams are programmed using the available language bindings for

C# and Python.

1.5 Previous attempts of “in the wild” eye track-

ing and movement data collection

Depending on the specific task it is deployed for, eye tracking can be synonymous with

gaze tracking; collecting information about where the user is looking. When studying

natural behaviour, gaze can be used as a tool to gain insight into the inner cognitive

workings of the brain. Hayhoe & Ballard [13] posit that one of the main roles of gaze

is to guide where and when to fixate on targets so they can be interacted with. It
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Lab Streaming Layer

Eye tracking data

Motion capture data

<auxiliary data>

Synchronized data file

Figure 1.2: A high-level diagram demonstrating the core of Lab Streaming Layer’s
(LSL) functionality. Data on the left (eye tracking data, mouse data, and any number
of other miscellaneous streams) are piped into LSL using an inlet function. LSL then
timestamps the incoming data, and uses a drift correction algorithm to ensure the
timing remains stable. The data is then put into a binary-encoded format which can
be easily processed in many different environments.
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is hard to separate cognitive goals from the eye movements that precede them; they

are inextricably linked. Land et al. [67] found evidence that elements of cognitive

planning were encoded in the eye movement signals. This enables the extrapolation

and prediction of the eye movements necessary to perform tasks, ranging from basic,

such as individual saccades, to intricate ones, such as making a sandwich or a cup

of tea. Zooming in on the individual movements that make up the completion of a

simple task such as sandwich making, we see that the eyes take on a clear assistive role

for reaching. The role of the eyes in reach-to-grasp movements is well documented

[35, 58, 68, 69], where the primary role of the eyes is to collect information that

can be exploited. In general, the eyes collect information to create a motor plan

that the hands execute. As mentioned earlier, there is a functional division between

the two types of vision—vision-for-action (dorsal) and vision-for-perception (ventral)

stream—in the primate cerebral cortex. To understand how the brain generates and

utilizes motor plans, it is necessary to observe how we move in our environments.

But, moving outside of the laboratory is not an easy process. Recording eye move-

ments “in the wild” (i.e. outside of the laboratory) is challenging, as many eye trackers

lack portability and are difficult to use in non-lab settings. However, as stated earlier,

many technological advances have made naturalistic data collection more feasible, and

work needs to be done to show their usefulness in real-world settings. Previous re-

search has shown that attention processes may differ between the lab and real-world

environments [13, 70]. As a result, behavior in real-world settings may also differ.

Foulsham et al. [70] conducted a study to determine if those who are immersed in

the real world (e.g. out in public) pay attention to the same things as those who are

not (e.g. those watching a video playback of the immersed person’s experience in the

laboratory). This was an early study assessing the deployment of eye tracking outside

of the lab, so much of the equipment was very bulky and required a large backpack to

house the necessary equipment for data collection. An interesting finding came from

how the participants tended to look at pedestrians, depending on how far away they
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were and if they were physically present. Those walking around outside (i.e. wearing

the eye tracker) tended to look more at pedestrians further away rather than up close,

and the opposite was found in the laboratory participants. Previous work has found

that there are a multitude of reasons that humans will not look at others in certain

social situations [1, 71], but when the social aspect is removed, humans are more

likely to stare at others—something most people would find awkward. This work is a

good example of why we collect real-world eye tracking data: human eye movement

patterns are not the same between those in the real world, and those who are merely

observing an approximation of the real world. Given that one of the primary roles of

the eyes is to collect information for motor planning, it is reasonable that the resul-

tant motor behaviour would also be modified. An important aspect then, is knowing

how to design studies that capture these differences in humans.

Several experimental design approaches have been developed to promote more nat-

uralistic behaviours during research, as reported by various studies [11, 12, 67, 72–

74]. However, one particular approach stands out for its attempt to challenge the

traditional methods and assumptions related to cognitive processes involved in com-

mon human behaviours. This approach is referred to as cognitive ethology [72, 73],

and it questions some of the fundamental assumptions regarding cognitive process

invariance while offering a framework for investigation. For example, are the same

cognitive (and motor) processes used when someone reaches for a box of Kraft Dinner

from their pantry as when they reach for an identical box but in a highly controlled

laboratory experiment? The answer is not so clear, but some evidence suggests that

even being watched performing a task can change your behaviour. An eye tracking

study investigating eye contact during one-on-one interviews in-person or via a video

feed showed that interviewer eye contact was able to modify the participant’s viewing

habits only in the in-person condition [75]. This suggests that there is something

inherently different about an in-person interaction as compared to an artificial (i.e.

video feed) interaction. These studies give a glimpse of the type of data that is being
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missed out on, suggesting that ‘more natural’ behaviours result in notably different

cognition and eye behaviours. These studies provides credibility to cognitive ethol-

ogy’s prediction that lab-based studies may not generate completely accurate models

which may be at best limited in predictive power, and at worst misleading. While

this study may not be a perfect analog for comparing real life to laboratory studies,

it provides evidence that there is, at the very least, value in studying naturalistic

behaviours to augment current models and theories of attention.

Moving out of the laboratory requires us to re-evaluate many of the assumptions

we make about data collection in general. Many cognitive scientists adhere to strict

rules around the data collection environment itself; data must be collected in identical

environments between participants with factors such as the lighting, auditory noise

level, and the position of the participant in the room being controlled. The reasoning

for this is simple: it reduces noise in the data. For some studies, this is critical,

such as in electroencephalography (EEG) studies. EEG studies typically require

quiet, isoluminant spaces to collect data as the sensors tend to be sensitive to this

kind of environmental noise [76, 77]. But, why study these behaviours if they are

not natural? Gramann et al. [78] argues that the primary function of the brain is

to produce optimized motor outputs in dynamic environments, and understanding

these natural dynamics of the brain necessitates a natural collection environment.

In fact, a multitude of EEG studies have started to collect data in more real-world

environments, challenging many of the original assumptions [78–83]. Taken together,

these studies suggest that collecting (and analyzing) data known to be especially

sensitive to noise in the real world is not only technically possible, but capable of

being collected with current iterations of hardware. If even sensitive tools can collect

data in real-world environments, why not more robust tools such as eye trackers and

motion capture systems?
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1.6 Aims and objectives

As I stated previously, moving outside of the lab is the best way to understand

real, naturalistic, visuomotor human behaviour. But, it is fraught with the problems

of losing experimental control, and most importantly for this thesis, the quality of

the gaze and movement data you can collect. The primary aim of this thesis is to

demonstrate that it is possible to deploy some of the tools visuomotor scientists use

in real-world contexts to obtain data consistent with how humans actually behave.

Using eye-tracking and motion capture, in the following thesis I show the results

of three distinct studies. These three studies all incorporate both eye and motion

tracking in an attempt to quantify various behaviours. The studies are meant to be

read in the context of a gradated movement from laboratory-based to the real world.

In the first study, I demonstrate that synchronized simultaneous collection of

laboratory-grade eye- and body-tracking can be used to generate highly accurate 3D

gaze vectors that have sub-centimetre accuracy in optimal conditions. Generating 3D

gaze vectors is a challenging problem because there are no widely used established

calibration routines. This study aimed to answer this question. To fully capture

naturalistic behaviours, it was critical that the movements of the participant were

unrestricted. We allowed free movement throughout the study using a portable eye

tracker and motion capture. Gaze and body movements were recorded to determine

where participants were looking and when they interacted with their environment.

Participants completed four different calibration routines, where the pupil position

data was used as an input to a model that predicts gaze position in 3D space. A

validation procedure is used to assess model performance when the experimenters

know exactly when and where the participant is supposed to be looking. Finally,

participants complete a previously validated task known as the Pasta Task [14, 26,

84] to assess the model’s performance on a real-world behaviour. Here, we assessed

the performance of the resultant models generated form the calibration data and
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speculate on its use for future real-world tasks.

In the second study, I use a consumer-grade eye tracker and a mouse tracking

to record the behaviour of participants as they navigate through a menu interface

modeled after the popular video game, Mass Effect 3 [85]. This work was conducted

as part of a Mitacs Accelerate internship with BioWare in Edmonton, Alberta. The

original aim of this research was to identify significant performance metrics that could

assist UX researchers at BioWare in enhancing user experience. In other words, I

collected synchronized eye and mouse tracking data and analyzed the data to find

when users were having trouble. In this field, typically qualitative measures such as

interviews, surveys, and technical reports are used to uncover problematic areas of UX

known as friction points. UX research is a field that benefits greatly from real-world

data collection. I collected data from real users both in person as well as remotely

over the internet, with little restrictions on their behaviours or computer setups. I

use eye and hand tracking to attempt to quantify friction as a dynamic process. I

demonstrate a methodology that allows for the detection of friction points based on

gaze and movement signals. I show that many of the same patterns of friction that

occur in the local cohort also occur in the remote cohort, suggesting that the increased

noise (due to decreased experimental control) in the remote cohort did not overpower

the signal.

In the third study, I attempted to move into the most challenging environment thus

far: the clinic. The clinic can be a very chaotic space for recording high quality data.

Here, I attempted to push the capabilities of eye tracking to its limit by collecting data

from patients admitted to the University of Alberta hospital with a chief complaint

of dizziness. Typically, neurological assessments are used to determine the etiology

of the illness the patient is facing, which is performed in the clinic. If physicians

are able to make accurate diagnoses in such a chaotic environment, perhaps a device

designed to augment the diagnostic process should work in the same way. A portable

device consisting of a laptop computer with a head-mounted eye tracker was used to

27



present an easy-to-use stimulus to patients in a standard hospital bed. The stimulus

was derived from a standard clinical neurological exam, and was designed to be easy

to use by non-expert eye tracker users. Additionally, the output of the device was

useful eye movement metrics that an attending physician could use to improve the

efficacy of their clinical exam. Initially, we intended to collect reaching behaviour to

be analyzed using markerless motion capture software, but this proved too difficult

for the patients to complete. While the device did technically work, the patients were

simply too sick to give data that was possible to analyze. The device was also tested

on a control group (i.e. normative age-similar participants) to determine if the non-

expert data collector biased the data quality. The control group gave high quality

data, suggesting that such a device is feasible, but may be beyond the current limit

of eye tracking technology for such a use case. Finally, I speculate on the value and

potential use cases in clinical and non-clinical settings.
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Chapter 2

Generating accurate 3D gaze
vectors using synchronized eye
tracking and motion capture

A version of this work was previously published as: S.A. Stone, Boser, Q.A., Dawson T.R., Vette,
A.H., Hebert, J.S., Pilarski, P.M., & Chapman, C.S. Generating accurate 3D gaze vectors using
synchronized eye tracking and motion capture. Behavior Research Methods, doi:10.3758/s13428-
022-01958-6. This work has been reproduced with permission from Springer Nature. ©Scott Stone.
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Abstract

Assessing gaze behaviour during real-world tasks is difficult; dynamic bodies moving

through dynamic worlds make gaze analysis difficult. Current approaches involve

laborious coding of pupil positions. In settings where motion capture and mobile eye

tracking are used concurrently in naturalistic tasks, it is critical that data collection

be simple, efficient, and systematic. One solution is to combine eye tracking with

motion capture to generate 3D gaze vectors. When combined with tracked or known

object locations, 3D gaze vector generation can be automated. Here we use combined

eye and motion capture and explore how linear regression models generate accurate

3D gaze vectors. We compare spatial accuracy of models derived from four short

calibration routines across three pupil data inputs: the efficacy of calibration routines

were assessed, a validation task requiring short fixations on task-relevant locations,

and a naturalistic object interaction task to bridge the gap between laboratory and

“in the wild” studies. Further, we generated and compared models using spherical

and cartesian coordinate systems and monocular (Left or Right) or binocular data.

All calibration routines performed similarly, with the best performance (i.e., sub-

centimetre errors) coming from the naturalistic task trials when the participant is

looking at an object in front of them. We found that spherical coordinate systems

generate the most accurate gaze vectors with no differences in accuracy when using

monocular or binocular data. Overall, we recommend one-minute calibration routines

using binocular pupil data combined with a spherical world coordinate system to

produce the highest quality gaze vectors.
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2.1 Introduction

The majority of laboratory examinations of eye gaze are highly constrained and reliant

on the assumption that gaze behaviors are task-invariant [86]. That is, many labo-

ratory tasks do not reflect naturalistic behaviours. Common sense says that where

someone is looking is dependent upon both eye and head movements [87, 88], mean-

ing head position must be accounted for when calculating and analyzing gaze. Most

studies investigating hand-eye coordination circumvent this problem by restricting

head movements through the use of a chin rest [89]. In the real world, we are free to

gaze at objects throughout our full field of view, or even anywhere in our 3D space,

provided we can turn and move. But, in the lab, the areas the participant can interact

with are typically severely limited, such as restricting gaze to a computer monitor or

tabletop [90, 91]. Controlling for such environmental variables lets researchers ask

specific questions about the motor and neural mechanisms that govern hand-eye coor-

dination but fail to ask how gaze performs in natural settings. When collecting data

outside of the laboratory, it is simply not feasible nor ecologically valid to restrict

movement of the head or restrict gaze to the interaction with a limited amount of

space. Additionally, real-world data tends to be much more difficult to process and

analyze because of the permissive setting in which it is collected; free movement of

the body is encouraged, as it more closely reflects natural behaviour.

Collecting data outside of the laboratory—or “in the wild”—is challenging [89];

determining fixations from dynamic bodies moving through dynamic worlds is a non-

trivial problem to solve. A few studies have collected data while performing simple

every-day activities [12, 26, 92–94]. For example, Land & Hayhoe [92] found that

eye behaviours were similar across different use cases, such as during making a cup

of tea or preparing a sandwich. They found eye movements could be broken down

into four systematic categories: locating (the target), directing (the hands to the tar-

get), guiding (the hands during movement), and checking (if the condition has been
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satisfied). These general rules of interaction help inform us of potential systematic

analyses that can be performed on the data. Data recorded “in the wild” also tend

to be harder to parse into fractional chunks for analysis; Lappi [89] describes some

of these common issues when collecting real-world natural gaze behaviours. In his

review, Lappi suggests that complex eye movement behaviours are built from combi-

nations of primitive eye behaviours such as fixations, saccades, and pursuits. These

primitive building blocks can be used as indices to break complex tasks into digestible

blocks that can be analyzed more similarly to controlled lab-based experiments.

Over the last decade eye tracking technology has become cheaper and easier to

use. Traditional eye tracking headsets tended to be bulkier and required the head

position to be fixed, whereas newer eye trackers such as the Pupil Labs Core [50]

are more portable and do not require a fixed head. One common consideration of

designing an eye tracking study is the time-consuming manual labour required for

cleaning and analysis [26, 65, 94, 95]. Much of this manual labour is centred around

two primarily video based categorization steps: 1) the cleaning of the pupil data, most

of which is difficult to automate because of the nature of data quality from individual

participants and 2) the assignment of fixations to objects in the world on the “world

camera”, an outward facing camera attached to a head mounted eye tracker. This

portion of analysis is so time consuming that many researchers will only analyze a

subset of data rather than the whole [96–98]. For example, Parr et al. [98] were only

able to analyze every third trial of their prosthetic hand-eye coordination task. A

major concern is that a subset of data does not always represent the population-level

statistics of the entire dataset—effects could be driven by outliers. Secondly, this

leaves open the possibility of incorrect coding, leading to lower quality data that may

contain additional errors, influencing statistical tests. Optimizing the volume of data

analysis possible would have great benefits for statistical power and data reliability.

Motion capture (mo-cap) is a technique used to record human movement in 3D

space [99] and, when combined and synchronized with eye tracking, offers a solution

39



for automating real-world gaze analysis. Human movement science greatly bene-

fits from this technology, as it allows for the quantification of movements during

reach-to-grasp [17, 100] or reach-to-point [101–103] behaviours. Additionally, mo-cap

technology comes in many forms, including infrared-based or the burgeoning field of

markerless-motion-capture [104], both of which are typically capable of integrating

with eye tracking headsets. Tracking gaze during movement grants insight into the

strategies that different populations may use when completing the same task. For ex-

ample, research into gaze strategies during reach-to-grasp behaviours has uncovered

key strategic differences in normative [95] versus prosthetic arm users [65, 94, 105],

where prosthesis users tend to move much slower, fixate longer, and do not “look

ahead” to the intended target location after grasping.

While the synchronized collection of eye tracking and mo-cap data is not trivial,

tools such as Lab Streaming Layer (LSL; SCCN [106]) have made this process much

easier. However, once you have two synchronized data streams, it is not easy to

determine where someone is looking based on raw data. Here we explore a technique

requiring the experimenter to collect a separate eye-calibration data file, specifically

for the purposes of building a model that will map head and pupil positions to a

three dimensional (3D) gaze vector in a common world coordinate system. A 3D

gaze vector is a line that extends from the head out into 3D space to predict where

the participant is looking in world-space [107–109]. During these eye-calibration trials,

participants are asked to focus on a tracked mo-cap marker (in our task on the tip

of a calibration “wand”) as it moves through space, typically for about a minute.

In the 2D eye tracking space, there does exist some guidelines and recommendations

to generate gaze points. However, to our knowledge, despite the increasing number

of studies that use 3D gaze vectors to assess behaviour, no standardized and very

few recommended calibration routines exists. That is, how should you best move

the tracked “wand”-marker through space? In addition, what data should be used to

build predictive models, including which coordinate frame(s) or binocular / monocular
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data, depending on how pupil data were recorded.

With the goal of providing researchers interested in naturalistic tasks recommenda-

tions and guidelines for expected accuracy, we generated and assessed 3D gaze vector

models from all possible combinations of: four different calibration routines, two co-

ordinate frames, and three sets of pupil data inputs. Our results describe an approach

that is capable of generating accurate (sub-centimetre and below one visual degree

in the best case) 3D gaze vectors (GVs) using the position of the pupils and the 3D

location of the participant’s head in space. To create the GVs, we use a linear regres-

sion algorithm to train models based on input pupil positions time-synchronized to

the 3D location of a calibration wand. Then, we assess their spatial accuracy across

a variety of data sets.

2.2 Methods

2.2.1 Equipment

Eye tracking data were collected using a Pupil Labs Core (200Hz; [50]) USB eye

tracking headset. Lab Streaming Layer (LSL; [106]) was used to synchronize eye

tracking and mo-cap data. The official Pupil Labs LSL plugin was used in conjunction

with the Pupil Capture software to directly send data into the LSL datastream. Mo-

cap data were collected using an OptiTrack mo-cap system (two systems were used

throughout the study as the lab was upgraded: initially a 12-camera Flex 13 system,

120Hz; then a 14-camera Prime 13-W system, 200Hz). The OptiTrack systems were

calibrated using the included Motive program to have a spatial accuracy of 0.1mm or

less. A custom program was written in C# to pass frame data from the OptiTrack

Motive application to the LSL datastream for synchronization. Rigid clusters of

reflective markers were fixed to the participant and objects in the environment to

track the position and orientation of the Head, Right Hand (centred approximately

dorsally), Task Cart, Side Cart, Pasta Box (in Task data), and a Calibration Wand (in
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calibration data). Marker clusters were also fixed to the participant’s pelvis, trunk,

upper arms, forearms, and left hand in as described by Boser et al. [110], but these

data were not used in the current study. It is worth noting that theoretically any

combination of eye tracker and mo-cap system could be used, provided they collect

time series data as synchronized 2D pupil positions (in eye camera coordinates) and

3D marker position (in mo-cap).

2.2.2 Participants

Twenty-one undergraduate and graduate students from the Department of Psychology

research pool at the University of Alberta participated in this study. All participants

were right-handed, had normal or corrected-to-normal vision, and were naive to the

tasks. Eight participants were collected using the OptiTrack Flex 13 system at 120

Hz, and 13 were collected on the OptiTrack Prime 13-W system at 200 Hz. One

participant was removed due to recording errors (poor tracking quality), for a total

of twenty participants. This study was approved by the University of Alberta Health

Research Ethics Board under protocol Pro00087329 and ethical protocols were in

adherence to the 1964 Declaration of Helsinki.

2.2.3 Procedure

Each test of data quality consisted of 3 sets of Calibration/Validation trials and 2

sets of 10 Task trials, proceeding in the following order:

1. Calibration/Validation set

2. Task set

3. Calibration/Validation set

4. Task set

5. Calibration/Validation set
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Each Calibration/Validation set included four Calibration trials (one of each type

described below) and one Validation trial presented in a pseudo-random order. Each

Task set included 10 repetitions of the previously published Pasta Box task (see [26]

for a full description of the task parameters). In short, the Pasta Box task requires

the participant to move a rectangular box of pasta between three key locations: the

Side Cart, the Green shelf, and the Blue shelf. In between each of the reaches, the

participant must touch the Home position (see Fig. 2.4 and section 2.2.3 for a visual

representation of the task and relevant spaces). Each trial takes approximately 15

seconds to complete. In total, participants performed 12 Calibration trials (3 repeti-

tions of each of 4 types), 3 Validation trials and 20 Task trials. Not all participants

had usable data for every trials; we discuss dealing with missing data and removal in

section 2.2.4.

Calibration Trials

Participants were asked to track the position of a single spherical mo-cap marker (14

mm diameter) with their eyes for about one minute per trial. The participant could

move their head freely while tracking the marker. The marker was placed at the

tip of a 40 cm wand which moved through the task space in one of four Calibration

routines:

1. Experimenter Sweep (ES): The experimenter moved the wand in slow S-shaped

curves along each of the room-coordinate axes (parallel to floor, left/right, par-

allel to floor in/out, parallel to wall up/down).

2. Self Sweep (SS): Replicating ES but with the participant holding the wand and

replicating the movements.

3. Experimenter Paint (EP): The experimenter moved the wand to each of the

relevant locations in the Pasta Box task (minus Neutral, see below) and explored

small (10-20 cm in each dimension) volumes at these locations.
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A) Experimenter Sweep B) Self Sweep

C) Experimenter Paint D) Stationary Target

Figure 2.1: The Calibration routines used in the present study, with traces in grey
showing example wand movements over time. Each routine takes approximately one
minute to complete. The black inverted ‘t’ shaped object is the calibration wand
used in all routines. In all quadrants, the blue sphere represents the participant’s
head position, with the Orange target to the participant’s right and the wand being
directly in front of the participant. A) The Experimenter Sweep (ES) routine. The
experimenter stands to the participant’s left and waves the wand in s-shaped patterns
through space, covering all three dimensions roughly equally (only up/down move-
ments shown in figure). B) The Self Sweep (SS) routine. Identical in procedure to
the ES routine, but the participant themselves carry out the wand movements. C)
The Experimenter Paint (EP) routine. The experimenter stands to the right of the
participant and moves the wand for approximately 15 seconds in small volumes at
four locations relevant to the later Task trials: the Side Cart, the Home position,
the Green Shelf and the Blue Shelf. D) The Stationary Target (ST) routine. The
participant locks their gaze on the wand, which is fixed to the table. The participant
moves their head up, then down, then centers, then left, then right (i.e., in the form
of a cross), then rotates their head in swirl-like motions while maintaining fixation
on the tip of the wand.
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4. Stationary Target (ST): The wand was fixed to the table directly in front of the

participant (˜60 cm away), who was asked to maintain fixation on the wand-tip

while nodding their head up and down, returning to centre, then turning it left

and right, then rotating it in a clockwise then counterclockwise spiral.

The intention for each of these trials was to create calibration routines with a

diversity of different coverages in terms of both task and pupil-position space (see

Fig. 2.1 for the wand movements, and Fig. 2.2 for example corresponding pupil

positions).

Validation Trials

Participants were asked to fixate on 5 stationary targets (see Fig. 2.4 for locations)

presented at Task-relevant locations for ˜5 s, in a specific sequence, and at least 2

times each. An auditory beep signalled the start of the first fixation and beeped every

5 seconds thereafter to signal a switch to the next Task-relevant location in this order:

Neutral → Side Cart → Blue Shelf → Home → Blue Shelf → Green Shelf

→ Home → Green Shelf → Side Cart → Home → Neutral.

This order of 11 fixations mirrors the order these locations are visited during the

actual Task trials.

Task Trials

The set-up for the Pasta Box task is shown in Fig. 2.3. Participants began each Task

trial with their hand on the Home position and their eyes fixating on the Neutral

target, marked by a mo-cap marker. A beep then cued them to initiate an object

interaction sequence consisting of three movements:

1. Reach and grasp the Pasta Box at the Side Cart, move it to Green Shelf then

return hand to Home;

2. Reach and grasp the Pasta Box at Green Shelf, move it to Blue Shelf then

return the hand to Home;
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B) Self Sweep

C) Experimenter Paint D) Stationary Target

A) Experimenter Sweep

Figure 2.2: Example corresponding gaze patterns associated with each of the cali-
bration routines. Pupil position from one eye is shown over the course of the entire
calibration. A) The Experimenter Sweep (ES) routine: the gaze seems to be slightly
jittery because the participant has to constantly adjust to the experimenter’s wand
position. B) The Self Sweep (SS) routine: the gaze pattern is much more smooth,
because the participant is moving the wand while simultaneously fixating on the tip.
C) The Experimenter Paint (EP) routine: gaze locks to four different locations, which
slightly overlap because the participant was free to move their head and likely tends
toward central fixation on each location. D) The Stationary Target (ST) routine:
the head is moved in a cross-like movement (up, down, centre, left, right) then in
swirl-like movements for approximately one minute.
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Figure 2.3: A still shot of a participant midway through completing one trial of the
Pasta Task. From left-to-right there are four coloured rectangular markers which
are the Side Cart (orange), Home (pink), Green Shelf (green), and Blue Shelf (blue)
locations respectively. For each trial, the participant picks up the pasta box on the
Side Cart, and moves it to the Green Shelf, then the Blue Shelf, and finally back to
the Side Cart. Between each grasp, the participant touches the Home position with
their right hand. Note that the participant is wearing mo-cap marker plates on their
body, but for the purposes of the present study, only the right hand markers were
used for pre-processing and analysis.
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Head

Neutral

Blue Shelf 
Gaze Vectors

Green Shelf

Home

Right Hand

Pasta Box
Side Cart

Figure 2.4: The locations, objects, and markers critical for all three tasks. The five
locations are shown: Neutral, Side Cart, Home, Green Shelf, and Blue Shelf. For the
Pasta Box task, the participant moved the box from location to location (see 2.2.3).
The Head rigid body was used to determine the origin of the resulting gaze vectors.
The Right Hand’s velocity profile was used to determine when the participant picked
up or dropped off the pasta box (see 2.2.4). All 72 gaze vectors generated are shown
in pink, with most being close to the target object (pasta box), and some performing
rather poorly.
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3. Reach and grasp the Pasta Box at Blue Shelf, move it to the Side Cart then

return the hand to Home. At the end of the task the participant also returns

their gaze to the neutral marker.

The task was demonstrated to each participant visually. The participant was given

as many practice trials as they felt necessary to be comfortable with the sequence of

movements.

2.2.4 Data Processing

Pre-processing

Mo-cap data were exported from Motive and run through custom MATLAB scripts

to check for marker name consistency and remove residual sections of noisy data

(marker displacements of more than 5 mm between frames, and islands of data less

than 100 ms in duration). Mo-cap and eye tracking data were then synchronized to

the mo-cap frame rate using the common timestamps in the LSL datastream files.

The combined data were imported into our custom software platform for integrated

analysis of eye and mo-cap data; the Gaze and Movement Assessment Tool (GaMA;

[65]). Within GaMA, raw pupil position data was cleaned by: 1) Removing any data

points outside of pupil camera bounds (<0 or >1); 2) Removing any data points

more than 4 standard deviations away from the mean position; 3) Removing any

data points with velocities greater than 6 (meaning the pupil was travelling across

the entire camera 6 or more times per second). After this removal, any gaps < 50

ms were filled using the inpaint nans [111] function in MATLAB then, any remaining

islands of data < 50 ms were deleted. Finally, the pupil data were filtered in MATLAB

using a 4th order zero-lag low-pass Butterworth filter with a cutoff frequency of 10

Hz. A 10 Hz cutoff was chosen because the demands of the tasks do not depend on

eye dynamics with movements more than 10 times / second. Also within GaMA, the

mo-cap data were filtered using a 4th order zero-lag low-pass Butterworth filter with

a cutoff frequency of 6 Hz. Rigid bodies, represented as both a position and rotation,
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were defined using the clusters of markers attached to the participant’s head and

hand, as well as objects in the environment. For the Task trial data, virtual objects

were also created to represent the position, orientation and extent of the objects in

the environment (Task Cart, Side Cart, Pasta Box).

Gaze Vector Modelling

The cleaned eye and motion data were then used to generate predictions of the di-

rection the participant was looking in 3D space, or “gaze-in-world” vectors, herein

referred to as GVs. The process of generating a single GV consists of two steps:

1. Generate eye gaze models using data from a specific Calibration trial

2. Use the eye gaze models to predict the GV direction at each frame in a given

trial

In step 1, Calibration data are used to fit three eye gaze models. Each model takes

pupil position data as input and predicts a single coordinate of the 3D gaze fixation

point relative to the Head rigid body coordinate system in the 3D mo-cap space. For

example: one model might use pupil position data to predict only the x-coordinate

of the fixation point relative to the head, a second, separate model would be used to

predict only the y-coordinate, etc. Each eye gaze model was generated using the built-

in MATLAB function fitlm with the ‘quadratic’ model specification and robust

fitting using the ‘bisquare’ weight function.

In this study we explored three options for model input (pupil input data from

right eye only [xr,yr], left eye only [xl,yl], or binocular data [xl,yl,xr,yr]), as well as

two options for expressing the fixation point relative to the Head coordinate system

(Cartesian [x,y,z] coordinates, or Spherical [r, θ, ϕ] coordinates). We anticipated that

using the Spherical coordinate system would increase accuracy of the GV direction

because it isolates depth of fixation to the ‘r’ model, whereas in Cartesian, all three

models are influenced by depth of fixation.
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In step 2, once the eye gaze models were generated for a given Calibration trial

and set of parameters (left/right/both eyes × cartesian / spherical coordinate sys-

tem), they were used to predict the coordinates of the fixation point relative to the

head at each frame in a given Calibration, Validation, or Task trial. The known

transformation between the Head rigid body coordinate system and global mo-cap

coordinate system is then used to calculate the position of the fixation point relative

to the global coordinate system. The GV is represented by the line originating at the

head rigid body origin (mid forehead), passing through the fixation point, extending

infinitely forward and away from the head in the direction of the fixation point (see

Fig 2.5). It is important to note that only the direction of the GV was used in sub-

sequent analysis, the distance from the head to the predicted fixation point was not

considered.

Dependent Measures

We conducted separate analyses to assess GV accuracy in each of the three types of

data collected (Calibration, Validation and Task). For each analysis, we collapsed

across the 3 repetitions of a given Calibration type by finding which of the repeti-

tions performed the “best” on that data. This involved eliminating abnormally poor

GVs (those whose average distance from the target of analysis were 30 cm or more

away), then taking the remaining GV with the lowest average distance to targets (see

below). One participant was removed from the Calibration dataset, three from the

Validation dataset, and two from the Task dataset because of average errors above

30cm. An advantage of this approach was this it allowed participants to be included

for analysis that may have had errors in recording one repetition of Calibration data.

As linear distance error does not account for the perspective of the participant, we

also calculated the visual angle error simultaneously for each trial. The visual angle

error accounts for the distance between the subject’s eyes and the target object.
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YHCS

ZHCS

Head CS

Global CS Global CSGlobal CS
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rHCS

Fixation Point
(rHCS, θHCS, ΦHCS)

θHCSA) Cartesian B) Spherical

Fixation Point
(XHCS, YHCS, ZHCS)

Figure 2.5: A visual demonstration of the differences between the Cartesian and
Spherical coordinate systems used. The tip of the black wand is the gaze fixation
point in both coordinate systems. A) The Cartesian coordinate system: coordinates
are represented by coordinate triplets of [x,y,z]. Here, the wand tip is only repre-
sented by its offset from the origin. A consequence is that the depth of the wand is
embedded in all of the dimensions. B) The Spherical coordinate system: coordinates
are encoded as triplets of [r,θ, ϕ]. Here, the wand tip is described in terms of the
angular and euclidean distance from the head. As a consequence, euclidean distance
(i.e., depth) can be sequestered to a single coordinate. As our goals did not require
depth estimates, we were able to train our models without the depth information.
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Calibration Trials The dependent measure for Calibration trials was the mean

3D distance between a given GV and the Wand Tip over the entire trial. To reiterate

from above, distances were always calculated as the minimum distance between the

GV line and the Wand Tip point, meaning the depth of fixation along the GV was

not a determinant of accuracy.

For each of the 12 Calibration trials we generated all 72 possible GVs (12 Calibra-

tion files × 2 Coordinate systems × 3 pupil data inputs). For each coordinate system

and input data combination, we compared the three repetitions of GVs of the same

type (e.g., across the 3 ES GVs that were Cartesian and with Both eyes) across all 12

Calibration trials to find the one that performed the best. Note that trials were not

tested on the data used to train the model. First, we eliminated GV outliers (those

with GV to Wand Tip distances > 30 cm), then we took the median performance

for each of the 3 repetitions across the remaining Calibration trials. The repetition

with the lowest median performance was then selected as the Best and used for the

remaining analyses.

Validation Trials The dependent measure for Validation trials was the mean 3D

distance between a GV and each of the Task Relevant target locations. To extract

these Task Relevant target looks, we isolated 1 second epochs of stable-gaze data in

the 5 s between the cueing-beeps. For example, between the first and second beep,

participants were instructed to look at the Neutral target. Within this 5 s window,

we use a modified moving mean algorithm to find the 1 s of data where 1) there was

at least 50% of detected pupil and 2) the L or R pupil data has the lowest velocity.

This process generates 11 stable-gaze epochs, three for the Home location and two

each for the remaining four Task-relevant locations. For each of the five Task-relevant

locations, the reported distance is the mean over these stable-gaze epochs.

Similar to the Calibration trials, but across the 3 Validation trials, we selected

the best GV within a set of repetitions by comparing their performance across the 5
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locations. First, we eliminated outliers (over 30 cm mean distance from any location),

then took the one with the minimum median distance across all Validation trials and

the five locations as the best GV.

Task Trials The dependent measure for the Task trials was the mean 3D distance

between a given GV and the nearest bounding box face of the Neutral (4 cm cube) or

Pasta Box (9 x 4 x 18 cm; see Fig. 2.4) object at specific locations and times during

the interaction task. Eye gaze behaviour is well understood for this task, as described

in Lavoie et al. [94] and Williams et al. [65]. Following the same procedure as in this

earlier work, each task trial was segmented into specific movements and movement-

phases (Reach, Grasp, Transport and Release) using detailed procedures described

elsewhere [94]. For this analysis, we isolated looks toward the Neutral marker at the

start of the trial and looks toward the Pasta Box each time it was being grasped (just

prior to object pickup) and released (just after object dropoff). Previous work using

this identical task shows that there are fixations to these objects around these times

on almost every trial [94]. These were single frame events that occurred once (for the

look to Neutral) or twice (for the looks toward the Pasta Box at the Side Cart, Green

Shelf and Blue Shelf locations) per location. Distances to locations with two looks

were averaged.

Similar to the Calibration and Validation trials, across the 20 possible Task trials

we selected the best GV within a set of repetitions by comparing their performance

across the 4 locations (note no interactions occurred at the Home location so it was

not included in the Task trial analysis). First, we eliminated outliers (over 30 cm

mean distance from any object), then took as the best GV the one with the minimum

median distance across all Task trials and the four locations.
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2.3 Results

Statistical analysis was performed in JASP 0.16.1 [112]. Repeated-measures ANOVAs

(rmANOVAs) were used to analyze the three trial types, which used the same par-

ticipant pool but were statistically independent from one another. We conducted

statistical analysis on two independent sets of data: a linear distance error (centime-

tres) and a visual angle error (degrees) to account for distance. All results below are

reported with the linear distance error (LD) first and visual angle error (VA) second.

We opted to use a conservative statistical approach, correcting α for the number of

tests run in each family as described by Cramer et al. [113]. Each of the trial types

were considered a family for this analysis. All p values were Greenhouse-Geisser

corrected if sphericity was violated and more than two levels existed in the factor.

2.3.1 Factors for rmANOVA

For clarity, here we lay out all of the factors and their levels input into each rmANOVA.

The Coordinate factor describes the type of coordinate frame used. The Eye factor

describes whether monocular (left or right) or binocular data were used. The Cali-

bration factor describes the routine when testing on Calibration data. The Predict-

edCalibration factor describes what data were input into the model to calculate the

errors. The Location factor describes the specific location that the participant was

to interact with.

Levels All Coordinates had two levels: Cartesian and Spherical. Eye had three lev-

els: Right, Left, and Both. Calibration had four levels: ExperimenterSweep, Paint,

Self, and Stationary (see 2.2.3). PredictedCalibration had four levels: Experimenter-

Sweep, Paint, Self, and Stationary. Location had five levels in the Validation trials:

Neutral, SideCart, Home, GreenShelf, and BlueShelf but only four levels in the Task

trials: Neutral, SideCart, GreenShelf, and BlueShelf (see Fig. 2.4).

55



2.3.2 Calibration Trials

Here, we ran an rmANOVA on a 2 (Coordinate) × 3 (Eye) × 4 (Calibration) × 4

(PredictedCalibration) design.

A significant main effect of Coordinate was detected (LD: F(1,1) = 72.984, p <

0.001, η2 = 0.024; VA: F(1,1 = 100.586, p < 0.001, η2 = 0.020), where a model

generated using Spherical data had lower error than with Cartesian data (see Fig.

2.6). A significant main effect of Calibration was detected (LD: F(1,1.971) = 11.894, p

< 0.001, η2 = 0.050; VA: F(1,2.058) = 12.393, p < 0.001, η2 = 0.047), with Stationary

data on average performing best. A significant main effect of PredictedData was

detected (LD: F(1,1.870) = 8.660, p < 0.001, η2 = 0.128; VA: F(1,2.294) = 6.995,

p < 0.001, η2 = 0.119), with Stationary data being predicted more accurately in a

Spherical coordinate system. A significant Coordinate × PredictedData interaction

was detected (LD: F(1,1.259) = 18.377, p < 0.001, η2 = 0.015; VA: F(1,1.215) =

24.979, p < 0.001, η2 = 0.016), where Stationary data were the hardest to predict

when predicted by non-Stationary models, but performed well when predicted by a

Stationary Calibration model. A significant Coordinate × Calibration interaction

was detected (LD: F(1,2.589) = 20.498, p < 0.001, η2 = 0.012; VA: F(1,2.114) =

26.167, p < 0.001, η2 = 0.010), with Stationary data again being hard to predict,

unless it is predicted by a Stationary model. A significant Coordinate × Calibration

× PredictedData interaction was detected (LD: F(1,4.338) = 4.942, p < 0.001, η2 =

0.006; VA: F(1,3.834) = 7.644, p < 0.001, η2 = 0.006), driven by the performance of

Stationary data on non-Stationary Calibration models (see Fig. 2.6B and D).

All other tests were either not significant or were rejected because they did not

meet Cramer’s adjusted α criterion [113].

2.3.3 Validation Trials

We used an rmANOVA on a 2 (Coordinate) × 3 (Eye) × 4 (Calibration) × 5 (Loca-

tion) design.
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Figure 2.6: Plots showing the average performance of the models in linear distance
(LD) and visual angle (VA) errors for the Calibration trials. The legend in the top
right denotes which Calibration data was used during assessment. The top row are
plots of LD errors (in mm) and the bottom row shows VA error (in degrees). The left
plots are Spherical coordinate data, and the right plots are Cartesian coordinate data.
95% confidence intervals are used around each mean, with the observed scores that
make up that mean plotted as translucent points. In all plots, the X axis denotes
the Calibration routine used to train the model. A) Mean error of the Spherical
LD models tested. Error is shown in mm at each location. B) Mean error of the
Cartesian LD models tested. Error is shown in mm at each location. C) Mean error
of the Spherical VA models tested. Error is shown in degrees at each location. D)
Mean error of the Cartesian VA models tested. Error is shown in degrees at each
location.
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A significant main effect of Coordinate was detected (LD: F(1,1) = 25.928, p <

0.001, η2 = 0.008; VA: F(1,1) = 33.716, p < 0.001, η2 = 0.003), where a model

generated using Spherical data had lower error than with Cartesian data. A significant

Coordinate × Calibration interaction was detected (LD: F(1,2.501) = 7.838, p <

0.001, η2 = 0.006; VA: F(1,3) = 7.274, p < 0.001, η2 = 0.002), where the Spherical

models tended to outperform Cartesian models, except when testing on Stationary

data (see 2.7B).

All other tests were either not significant or were rejected because they did not

meet Cramer’s adjusted α criterion.

2.3.4 Task Trials

For the Task data, we were concerned with the performance of the GVs on real-world

data. Here, we ran an rmANOVA on a 2 (Coordinate) × 3 (Eye) × 4 (Calibration)

× 4 (Location) design.

A significant main effect of Coordinate system was detected (LD: F(1,17) = 21.475,

p < 0.001, η2 = 0.008; VA: (F(1,17) = 18.748, p < 0.001, η2 = 0.006), where Spherical

models had lower errors than Cartesian models (see Fig. 2.8). A significant main effect

of Location was detected (LD: F(1,3) = 37.102, p < 0.001, η2 = 0.202; VA: F(1,3) =

20.550, p < 0.001, η2 = 0.083), where the SideCart location was the most difficult to

predict, resulting in the highest errors overall (see Fig. 2.8A). A significant Coordinate

× Calibration interaction was detected (LD: F(1,3) = 7.396, p = 0.001, η2 = 0.006;

VA: F(1,3) = 11.177, p = 0.001, η2 = 0.004), with Spherical data outperforming

Cartesian data in all cases except for Stationary data.

All other tests were either not significant or were rejected because they did not

meet Cramer’s adjusted α criterion.
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Figure 2.7: Plots showing the average performance of the models in linear distance
(LD) and visual angle (VA) errors for the Validation trials. The plots on the left side
are the average LD and VA errors (A, C) for each location in the Validation task (X
axis). The legend here indicates what type of pupil input data was used. The plots on
the right side the average LD and VA errors (B, D) for each of the Calibration types
used as inputs to the models (X axis). The legend in the top right indicates whether
a Spherical or Cartesian model was used. 95% confidence intervals are used around
each mean, with the observed scores that make up that mean plotted as translucent
points. A) Mean error generated at each of the locations (along the X axis) is shown
for each type of Eye data used. Error is shown in millimetres at each location. B)
Mean error generated each of the Calibration routines used is shown for Spherical
and Cartesian models. Error shown in millimetres for each Calibration routine. C)
Mean error generated at each of the locations (along the X axis) is shown for each
type of Eye data used. Error is shown in degrees at each location. D) Mean error
generated each of the Calibration routines used is shown for Spherical and Cartesian
models. Error shown in degrees for each Calibration routine.

59



Neutral SideCart GreenShelf BlueShelf Neutral SideCart GreenShelf BlueShelf

0

50

100

150

200
Li

ne
ar

 d
is

ta
nc

e 
(m

m
)

Both
Left
Right

Neutral SideCart GreenShelf BlueShelf Neutral SideCart GreenShelf BlueShelf

0

5

10

15

Vi
su

al
 a

ng
le

 (d
eg

re
es

)

A) Spherical B) Cartesian

C) Spherical D) Cartesian

Figure 2.8: Plots showing the average performance at each location, split by the pupil
input data in linear distance (LD) and visual angle (VA) errors for the Task trials.
95% confidence intervals are used around the mean points. The X axis denotes the
Location during the Pasta Box task for all plots. A) Mean LD error for a Spherical
coordinate system at each Location. Note that errors are below a centimetre when
the participant is fixating on the Neutral marker (i.e., directly in front) or at the
pasta box on the Blue Shelf. B) Mean LD error for a Cartesian coordinate system
at each Location. C) Mean VA error for the Spherical coordinate system at each
Location. Note that errors are below one degree of visual angle when fixating on
either the Neutral marker or at the pasta box on the Blue Shelf. D) Mean VA error
for a Cartesian coordinate system at each Location.
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2.4 Discussion

Here we describe a method for generating 3D GVs using combined eye tracking and

mo-cap data. We achieve this by collecting Calibration data where the eyes are

continuously fixated on a tracked mo-cap marker, and using it to train a set of linear

models to predict the 3D coordinates of the gaze fixation point. Within this method

we explored four different Calibration routines (ES, SS, EP, ST), three options for eye

input into the model (binocular, left, right), and two options for model coordinate

system (spherical and cartesian).

We describe a set of four one-minute calibration procedures and their performance

relative to one another in three different, but related analyses. All Calibration pro-

cedures were similar in that the goal of each was for the participant to fixate on

a specific mo-cap marker for the duration of the procedure. We propose a simple

model-based assessment (MATLAB’s fitlm function) that allows us to give a recom-

mendation for the best Calibration procedure based on the average GV error from a

known location. First, we assessed a model trained on a Calibration routine’s eye and

mo-cap data calculating its error when testing on all other Calibration procedures’

input data. Second, the participant completed several Validation trials. During these

trials, the participant fixated on different areas of interest for long (˜5 s) periods of

time to effectively emulate eye gaze behaviour during our Pasta Box task [26, 65, 94,

110], allowing us to assess error at each area of interest used during the task. Finally,

participants performed a real-world task where they were instructed to perform the

described Pasta Box task. Here, we demonstrate that our analysis techniques extend

to data that were not recorded for the express purpose of being put through this anal-

ysis pipeline. That is, we can assess real-world task data and calculate performance

metrics to best determine which Calibration procedure to use.

With respect to the type of coordinate system used to predict the gaze fixation

point relative to the head, the results demonstrate that using a Spherical coordi-
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nate system generally results in a GV with a more accurate direction than using

a Cartesian coordinate system as well as lower error overall. This result is aligned

with our prediction, as we expected that the depth of fixation would be difficult to

model based on pupil position data alone. It is worth noting that the reduction in

error appeared to be systematic across all Calibration routines used—Spherical out-

performs Cartesian. Although we did not assess gaze depth in the current study,

when a Cartesian coordinate system is used, both the depth of fixation and direc-

tion of gaze are partially represented in all three eye gaze models (the x, y, and z

coordinates). Whereas, using spherical coordinates confines the depth to one model

(the ‘r’ coordinate) which does not impact the direction of the GV. In future work

we intend to further explore the accuracy of the depth of the fixation point. How-

ever, the present work indicates that when only the direction of gaze is of interest, a

spherical coordinate system should be used to generate GVs. When comparing each

Calibration procedure on their ability to predict Calibration data, all models perform

relatively well, with Stationary performing the best. However this is driven by the

fact that all Calibration procedures (excluding Stationary) appear to have a difficult

time predicting Stationary data. The Stationary routine was intended to allow the

eyes to explore the maximal range of trackable pupil-space (see Fig 2.2D) while the

actual target remained constant in space, potentially leading to a more robust model.

The Stationary Calibration takes advantage of the compensatory vestibular-ocular

response (VOR; [114]), in that the eyes and head move, but the gaze target remains

static. The approach for the Stationary Calibration is one of quantity over quality;

during the Stationary routine, data is collected from almost all accessible areas of the

pupil, but not a lot of time is spent at each location nor are many of these locations

generally useful during the Pasta Box task.

While it may be tempting to conclude that Stationary performs best overall, the

data actually collected during Validation and Task trials do not reflect this same

level of pupil space exploration. It is also important to consider that data collected
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during actual trials do not typically result in the pupil being located in positions

on the eye consistent with the Stationary routine. Therefore, despite the advantage

that the Stationary routine appears to show for Calibration data, the fact that it

did not perform better during the more ecologically valid Validation and Task trials

leads us to recommend using a Calibration routine that reflects the dynamics of

eye exploration necessary during task completion. Anecdotally, explaining the Paint

Calibration procedure was the simplest to perform and is extensible to any task,

while the Experimental Sweep procedure was the easiest to keep consistent between

sessions. Therefore, one of these two would be our recommendation for ease and

consistency without sacrificing performance for ecologically valid data.

The Validation task was designed to mimic the behaviours that occur during a

typical Pasta Box trial while still giving control over where the participant is looking

and when. During a real trial, it is much more difficult to intrinsically know where

the participant should be looking. These results are in line with the Calibration

results, suggesting that Spherical coordinates result in more accurate GVs. One of

the challenges the model faces is when the participant turns to fixate on the Side

Cart, which results in higher error. Side Cart error appears to be worse when using

data from Both pupils, and performs best when using monocular data, notably from

the Left eye. One possible explanation for this is that the Left eye is always in view

of the cameras when fixating on the target at the Side Cart, whereas the Right eye is

potentially lost for a short duration. It is possible that using a ‘hybrid’ approach with

monocular pupil data input, constantly switching to the ’better’ eye, could result in

superior performance. However, this is to be investigated and cannot currently be

stated for certain. Regardless, it does suggest that collecting data from both eyes

gives the most flexibility and opportunity to maximize data quality across sessions

and even within a task. The Validation dataset functions as a ‘sanity check’ to ensure

that the performance of the model is at least in line with our expectations: instead of

tracking a moving marker (e.g., the wand during Calibration trials), the participant
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is fixating on a single static marker at a Task-relevant location. Performance appears

to be similar to the Calibration trials analysis, suggesting the Validation dataset has

done its job.

The Task results demonstrate that performance of the model has been effective

on real-world data using a well-documented task [26, 65, 94, 110]. Previous work

has shown that normative participants tend to fixate on the object they are about

to interact with (or about to stop interacting with) for several hundred milliseconds

[5, 12, 115]. Assessing performance on a real-world task is challenging because the

behaviours of the participant are not controlled beyond simple verbal instructions

(e.g., pick up the pasta box and move it to a new location) or visual demonstrations.

However, we can use the principals described by Lappi [89] and [12] to find points

in time when we expect the participant to initiate a reaching behaviour, such as a

fixation on the object to be interacted with. With the identified fixation, we assessed

error at this time point as the minimum distance between the 3D GV and the Pasta

Box. Overall, performance of the model looked good; errors were remarkably low

(see Fig. 2.8A & C). The average error for a Spherical coordinate system was below

a centimetre and under a degree of visual angle for Task trials. We were surprised

to find that error was lowest in the Task trials as they were the least-controlled in

terms of participant instruction. However, when the participant turned their head,

the error was significantly higher than at other areas.

Currently, there do not seem to be any standardized calibration procedures that

also allow for the assessment of performance during real-world task use. Here we show

a methodology that allows anyone with access to an eye tracker that outputs pupil

locations in 2D space and a motion tracker in 3D space to generate GVs that can have

as low as sub-centimetre error. While we did not find that any particular Calibration

routine’s data significantly outperformed any other, we found that using a Spherical

coordinate system generated significantly less error on average when compared to

a Cartesian coordinate system. Further, we suggest using a calibration routine that
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reflects the actual behaviours of the participant during task completion. For example,

if the task involves looking at and reaching towards specific areas, a calibration routine

that includes eye and hand movements towards those locations should generate higher

quality models, or at minimum match the task demands and therefore be easier to

employ.

2.5 Conclusion

We found that, when recording synchronized eye and mo-cap data for the purpose of

producing accurate 3D gaze vectors, there are a few useful rules of thumb:

1. For fixations to real objects positioned in front of participants, gaze vectors

generated using this approach will result in an average error of about 1-2 cm. If

within peripersonal space (around 60 cm distance), this corresponds to about 1

visual degree.

2. A spherical coordinate system will on average produce more accurate gaze vec-

tors (when depth is not considered).

3. Locations that require a head turn typically result in an accuracy falloff, adding

about 2-3 cm of error in our data.

4. The best way to minimize error is to ensure quality data by making sure the

eye tracker is properly fitted and the cameras are getting sufficient coverage of

the eyes.

5. Binocular data, while not always the most accurate, gives the option to use

either or both of the eyes when generating gaze vector models.

6. The calibration routine used should reflect the locations in space that the par-

ticipant will be interacting with. More data is not always better.
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Data Availability and Open Practices

All data and analysis scripts used in the present study are available at the following

link: https://osf.io/znvwb/. This study was not preregistered prior to data collection

or analysis.
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Chapter 3

Unconscious frustration:
dynamically assessing user
experience using eye and mouse
tracking

A version of this work was previously published as: S.A. Stone, Chapman, C.S. Unconscious frus-
tration: using eye and mouse tracking to dynamically assess user experience on a menu interface.
Proceedings of the ACM on Human-Computer Interaction, doi:10.1145/3591137. ©Scott Stone
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Abstract

Eye-tracking has become easier to deploy in user experience (UX) studies to get a

sense of where users attend to during interactions. Additionally, mouse tracking

grants insights into the cognition driving the user’s behaviours and end goals, as can

measuring the coordination between the eye and mouse-cursor. We created a menu

navigation task based on a popular video game to assess two populations: a local

cohort, and a remote cohort. We used two different eye trackers (monitor-mounted

hardware, and a webcam-based algorithm; local used both simultaneously, remote

used webcam only) with concurrent mouse tracking to detect friction in the UX.

We found that both eye trackers had similar performance and revealed a previously

undetected friction point. We argue this friction point was only detected because of

the use of quantified, coordinated unconscious behaviours (eye and hand movements).

The methods demonstrated are easily integrated into current UX studies with minimal

cost.
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3.1 Introduction

3.1.1 Background: user experience

Measuring user experience (UX) is difficult and many of the methods employed in

UX research (UXR) are qualitative [116, 117]. These approaches have obvious value,

but make the critical assumption that the end-user is consciously aware of their own

experiences. However, users can have a poor experience and not have cognitive access

to the reasons why. For example, a user could be unconsciously focused on an irrele-

vant but visually salient part of a menu but not be able to recognize that distracted

behaviour upon later reflection. As a result, users can be confused for reasons they

may not be able to articulate. Using traditional qualitative methods, this uncon-

scious frustration is hard (or impossible) to measure. While quantitative research

has been conducted in UXR, few solid methodologies exist in the field [118–121].

Here, we investigate if a systematic quantitative approach to measuring unconscious

behaviour by simultaneously recording eye gaze and mouse movements improves our

interpretation of user behaviour.

3.1.2 Background: tracking the eyes and hands

As highlighted in the example above, where you look can be tightly linked to your ex-

perience but often falls below a threshold of awareness. Therefore, tracking a person’s

gaze is an important tool for measuring a person’s unconscious experience. Fortu-

nately, eye tracking has become more portable and affordable in recent years. An eye

tracker records the position of the pupils, which can be transformed into a projected

gaze position. Eye movements can inform us about the cognitive processes used to

interact with our environment [12, 13, 122]. For example, Land & Hayhoe analyzed

eye movements while participants completed a simple tea- or sandwich-making task.

In general, the eye movements encoded the necessary steps to complete the task, and

a generalized model was capable of predicting the order of behaviours. The increased
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portability of newer eye trackers has made it easier to extend eye-tracking studies

outside of the laboratory. For example, monitor-mounted gaze tracking devices can

be had for as little as two hundred US dollars and the advent of webcam eye track-

ing has made it possible to collect data from almost anyone in the world right from

their own home. Due to this widespread availability, webcam eye tracking is specif-

ically useful in the field of UXR as it grants access to the context UX researchers

are most interested: naturalistic interaction. However, what is not clear is whether

a webcam eye tracker can be used as a drop-in replacement for a more conventional

monitor-mounted eye tracker given that it is likely to have lower temporal and spatial

resolution.

While eye tracking can provide information about what a person may be seeking

or distracted by, eyes typically are not used as an input device. Therefore, to un-

derstand the chain from information to input that ultimately results in a particular

experience, we also need to measure how people interact with their workspace. For

digital UX, the most common input device is a computer mouse, whose movements

can be easily collected during interaction. Measuring hand movements grants insight

into the dynamics of cognition (for a review, see [22]). Freeman et al. argue that

motor and cognitive systems in the brain are not independent, but rather deeply in-

termingled. Movements are continuously updated through visual cognition over time

[27, 35, 36, 58]. Recording even simple hand movements can therefore offer deep

insight into cognitive processes and how they dynamically unfold [15, 16, 19, 123,

124]. Simultaneous eye and mouse tracking may therefore grant deeper insight into

the UX assessment process than previous methods.

3.1.3 Related works: eye and hand tracking in UXR

A primary goal of UXR is to understand what produces high quality experiences

that promote end-user adoption (for a detailed review, see [125]). A major barrier

to adoption is when a user experiences a friction point - an interaction that confuses
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or slows down the user. A useful test bed for friction points, and therefore a good

candidate for us to test the collection of eye and hand movement data, is a user inter-

face (UI). UIs are one of the primary ways that we interact with computer software,

and how users navigate through UIs presents many opportunities for both conscious

and unconscious friction points to arise. Because the eyes and the hands are the

primary medium for users to interact with the UI, recordings will encode points of

friction, but it can be tricky to interpret and analyze the data. One method is to

collapse the data across time to get a static look at user performance. For example,

when interacting with web pages, users tend to look at the areas they are about to

interact with [118–121, 126]. An intuitive way to visualize static data is known as a

heatmap, which requires collapsing across time to calculate averaged statistics. But,

static data interpretations like heatmaps fail to capture real human behaviours which

are typically dynamic, with reach and gaze trajectories being updated in real-time

[27, 127].

Dynamic measures, then, may be best suited to accurately detect friction points,

especially those of which the user is not aware. One way to collect coarse dynamic

measures is by splitting the data into natural phases. Here, a phase can coincide with

the user’s current goal. For example, if a user was attempting to send an email on a

web page, the task could ostensibly be split into three phases: 1) locating the button

to compose an email, 2) composing the email and 3) locating and clicking on the

send button. Friction can be detected in any or all of the phases, but if an analysis

collapses across the entire task the researcher will be puzzled as to when the actual

friction occurred. Navigating through a UI is similar and their structure therefore

offers a useful scaffolding onto which we can structure an analysis of behaviour. A

user will have a goal of the menu object they are trying to get to, and getting there

will require the user to complete several ‘sub-goals’ before reaching their destination.

For our purposes, we can split the eye and mouse time-series data into these phases

to better identify unconscious points of friction.
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Importantly, this rich time series data contains information not only about where a

person looks and how they move, but also can be used to measure the tight coupling

that typically exists between the eye and the hand. That is, within each phase of

a task, an intuitive notion is that coordination between the eyes and the hands is

necessary for effective interaction [128]. What is less intuitive is an effective way to

calculate this relationship dynamically. One tool quantifies this eye-mouse coordina-

tion by calculating the velocities of both the hands and the eyes (i.e. the mouse cursor

and gaze position) and checks 1) if they are going in the same direction (i.e. similar

vectors) and 2) if the velocities are close to one another. This method generates what

is known as a Tlead value [129], which approximates how far ahead the eyes are of

the mouse cursor (or vice versa). Here, we can use the Tlead value as a measurement

of the relationship that exists between the eyes and the hands dynamically. These

types of measures are best used in dynamic environments, which most UX tends to

exist in.

3.1.4 Assessing dynamic behaviours

In the following study, we investigated the utility of tracking mouse and gaze position

using both a monitor-mounted eye tracker and a webcam eye tracker during natural-

istic, video game-based UI menu navigation. We did this in three distinct ways: 1)

splitting the task into smaller ‘phases’ such that each phase could be analyzed indi-

vidually, 2) assessing the hand-eye coordination relationship dynamically over these

phases and, 3) collecting data in two groups: a local and a remote cohort which had

either simultaneous hardware and webcam-based eye tracking (local) or only webcam

(remote)

We predicted that user friction could be detected through eye and hand movements

when a UI interaction was broken into task relevant phases. Additionally, we were

interested in the limitations of webcam-based eye tracking, and whether its shortcom-

ings would prevent its effective use as a UXR tool. To address these questions, we
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collected data from two cohorts. The first cohort (Local) was studied in-person using

two types of eye trackers (dedicated hardware and webcam), whereas the second co-

hort (Remote) completed the task remotely through the Amazon MTurk service using

webcam eye tracking only. At the beginning of each trial, participants were given a

task to complete through a simple text prompt. We experimentally induced friction

by cuing participants about their specific goal using either a Direct prompt or an In-

direct prompt. Direct prompts were explicit about which menu items to interact with

and in what order, while Indirect prompts were more vague, presenting the task at a

much higher level. We predicted that the Indirect prompts would be harder for the

participants to complete, resulting in longer completion times and more mouse and

gaze movement. Our goal was that this intentional manipulation would validate our

measures such that any other changes could be taken as signs of naturally occurring

friction. To address our second aim of determining the utility of webcam eye trackers,

the dedicated hardware and webcam eye trackers were directly compared in the Local

cohort to get a sense of the overall accuracy and performance of each. We predicted

that even in the face of reduced temporal and spatial accuracy, webcam eye trackers

would be capable of detecting any friction points identified using the higher-quality

eye tracker. Finally, the Remote cohort allowed us to test if the effects found in the

Local cohort could be replicated using only a webcam and where we did not control

the collection environment. We predicted that we would see similar friction points in

both the Remote and Local cohorts, while also not introducing a significant amount

of noise into the data.

3.2 Methods

3.2.1 Participants

Ethical approval was granted by the University of Alberta Human Research Ethics

Board under protocol Pro00087329 and ethical protocols were in adherence to the
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1964 Declaration of Helsinki.

Ten BioWare employees were recruited for the local-cohort (all male, mean age:

30.6 ± 5.2 years). All participants gave informed consent to participate in the current

study. Three participants had to be removed from the data pool (one had unusable

data, and two had recording errors). We acknowledge that this is a gender biased

sample, but it was a convenience sample and likely reflects the actual gender imbalance

in this industry.

Thirty-eight subjects participated in the remote-cohort using the Amazon MTurk

and Prolific platforms (19 females, mean age: 30.6 ± 9.5 years). All remote subjects

gave informed consent to participate in the current study. No participants were

removed from the dataset. All remote participants were paid $7.50 USD for their

participation in this study.

3.2.2 Equipment

For the local cohort, two different eye trackers were used. The first was a Tobii Eye

Tracker 4C: a consumer-grade monitor-mounted eye tracking solution, which offers

data collection at 90 Hz at a cost of around $200 CAD. The second was a consumer-

grade webcam (Logitech C270), capable of collecting data at a resolution of 1280×720

pixels at 30 frames per second. The purpose of this webcam was not to find the most

powerful or feature-rich device, but rather to use a webcam that a typical person may

own. Additionally, a standard optical wired desktop mouse was used (Dell MS116).

For the remote cohort, subjects required their own computer with a physical mouse

(instead of a trackpad) and a webcam. We did not discriminate on the quality of the

webcam, as we were interested to collect data from a wide range of computer setups.

As such, we do not know the average resolution or collection frequency (i.e. frames

per second) of the webcams used in the remote portion of data collection. What we

can report is that the average sampling rate of the webcam eye tracker algorithm

[130] was 15.17Hz (± 8.56Hz), which reflects not just the capabilities of the webcam,
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but also a participant’s computer specifications and internet connection speed.

Software

For the Local cohort, custom software was written in C# to access and collect data

from the Tobii eye tracker using the official Tobii SDK. Additional programs were

also written to access and collect data about the mouse position and mouse clicks

over time, again in C#1. Because there are multiple data streams that are being

recorded simultaneously, it is important to ensure that all of these data streams

are synchronized using a common source for time-stamping. We used Lab Streaming

Layer [66], a data stream synchronization library designed specifically for this purpose.

For the webcam-based eye tracker (Local and Remote cohorts), we used an im-

plementation built by Labvanced [130] that is capable of tracking gaze positions on

the screen in their platform. At the beginning of each trial, a short (30s) calibration

task appeared on the screen where the participant was guided to fixate on points in a

circle. Through the use of websockets, a custom program written in Python triggered

the recording of gaze positions on the screen, giving access to the timing information

so we could later synchronize the webcam gaze data back to the mouse and other

gaze (Tobii) data (Local cohort only).

For the Remote cohort, we relied on the built-in Labvanced mouse tracker, which

sampled data at 60hz and was automatically synchronized with the Labvanced eye

tracking data.

3.2.3 Task

The menu navigation task used for this study was designed in Labvanced. Labvanced

is an online site-as-a-service that allows users to create and deploy psychology exper-

iments [130]. Because we were interested in replicating an authentic user experience,

1All of the software used to collect the data are open source and available at the following
URLs: https://github.com/scottastone/TobiiGazeLSL and https://github.com/scottastone/
MouseLSLGUI
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we recreated the main menu layout from a popular video game created by BioWare:

Mass Effect 3 (ME3; [85]). The Labvanced task is an abstract version of the menus

displayed in ME3 without any of the complex visual elements present in the original

game (e.g such as the bright colours, or starry backgrounds; see Figure 3.1). We

wanted users to navigate to common menu destinations, where typical users make

adjustments such as to the game audio, in-game settings, or graphical settings. We

replicated the following menu options, herein referred to as goal frames : Accomplish-

ments, Gameplay, Graphics, Mouse, Narrative, and Sound.

The general procedure of the task is as follows: the participant is given a prompt

where they are given a goal to complete. Once acknowledged, the participant then

navigates through the menu to the goal frame where they perform a target interac-

tion (e.g. check a box, find a piece of information, adjust a scroll bar, etc), before

navigating back to the main menu to click on “Exit game”. This will trigger the

beginning of the next trial. For an example visual of the general flow of the task, see

Figure 3.1. In the example, the user is told to navigate to the Graphics goal frame

and to turn on ‘Antialiasing’.

Task design

Two types of prompts were presented to the participant throughout the task: a Direct

or Indirect prompt.

A Direct prompt is a clear and concise set of instructions that guides the user

towards a specific end goal by providing the names of intermediary menu buttons

that they need to click on or adjust in order to reach the target.. An example of an

Direct prompt is: “Go to Extras - Options - Gameplay and turn Hints on.”. This

prompt is meant to give direct instructions about which buttons to click on, while

taking away any extra information.

The Indirect prompt aims to mimic the thought process of a video game player

who wants to access the settings menu to make necessary adjustments. For example,
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End the trial

Navigate to goal frame

On goal frame

Figure 3.1: A waterfall representation of the order of frames that the participant will
encounter in a typical trial. At the top left is the first frame of the trial the user will
see, known as the prompt. The prompt contains all of the instructions necessary to
complete the trial. Each frame contains a goal target, which is highlighted in green
in this figure only for clarity. Upon clicking continue (bottom centre of the left-most
frame; not shown), the participant will enter the next frame (moving clockwise),
starting the trial. The user continues to navigate through the menu until they reach
the goal frame (bottom right frame). This is the ”Navigate to the goal frame” phase.
The participant then completes the given task on the goal frame (”On goal frame”).
Next, the participant will work to ”End the trial” by moving backwards (moving
counter-clockwise) in the menu towards the first frame they encountered following
the prompt. Here, they must click ”Exit game” to start the next trial.
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one prompt might be “You notice you are having trouble hearing the characters’

dialogue in game. Go and turn on the subtitles.”. These prompts are necessarily

more abstract in that they give less direct information to the player, but enough

information to complete the task. As previously discussed, this manipulation was

introduced specifically because we expected the Indirect prompts to be more difficult

for the end user. In general, if any friction occurred during the task, the Indirect

prompt should exacerbate that friction.

This task design was chosen to allow the participant to more fully explore the task

space without being explicitly told to do so. An Indirect prompt does exactly this.

Some of this time spent exploring will not be fruitful, which we interpret as unwanted

friction. Conversely, we expected Direct prompts to have less exploration time, as the

interim buttons needed to reach the goal frame are given directly. However, some goal

frames will require lots of exploration (such as Accomplishments) because providing

information is their primary role, rather than being used to make adjustments (i.e.

Graphics goal frame). The key difference here then, is understanding the context in

which the goal frames should be used in order to detect friction within them.

3.2.4 Procedure

For the Local cohort, the participant was brought into the room and seated in a

comfortable computer chair. They were given the opportunity to adjust the height,

lumbar, and arm heights to ensure they were comfortable for the duration of the

experiment. They were then positioned in front of the computer monitor (27” Dell,

2560x1440 pixels, 60Hz), approximately 40cm away. If the participant was wearing a

mask, they were asked to remove it, as the webcam eye tracking algorithm does not

work with one on. Each participant was given up to 10 practice trials on the task to

familiarize themselves with the procedure, though none of the participants needed all

10. Upon ensuring that the participant was comfortable and understood the task, the

experimenter began the study and left the room. The participant was given a total of
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96 trials (48 Direct prompts and 48 Indirect prompts). The task took approximately

one hour to complete.

Remote cohort subjects received on-screen instructions to seat themselves com-

fortably and ensure they had ample lighting in the room. Collecting data remotely

meant we had no guarantees of environment or posture, nor could we know what

hardware was being used by the participant (e.g. monitor size and resolution were

not collected). Each participant was given up to 10 practice trials on the task to

familiarize themselves with the general flow of the study. After completing webcam

calibration, the participant was given a total of 104 trials (52 Direct prompts and

52 Indirect prompts). The task took approximately one hour to complete. For the

remote cohort only, we re-balanced the task to include more equal representation of

each goal frame. As such, instead of having a total of 96 trials, participants completed

a total of 104 trials2. The basic presentation of the prompt and overall flow of the

task however remained identical and took the same amount of time.

3.3 Dependent Variables

There are four general categories of data collected: time, mouse, gaze, and coordi-

nation. Within each category subdivided the data into three measures defined by

distinct phases: navigating to the goal frame, on the goal frame, and ending the trial

(see Figure 3.1 to see how the phases were split). Please note that the results of

mouse data are not reported in the main text, as its dynamics are captured by the

coordination measure. For full reporting of the mouse data, refer to Appendix B.

Time

All time data are reported in seconds, split into each of the three phases.

2All of the prompts can be found at the data repository: https://osf.io/f49xg/
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Gaze

Gaze distance (e.g. the cumulative amount of movement) in each phase was calcu-

lated. To test for the predicted accuracy drop off in webcam data we calculated two

additional gaze measures for the interactions on the goal frame: time in goal target

and minimum distance to goal target. Time in goal target is the amount of time the

gaze was within the bounds of the goal target, which was the piece of information

that needed to be interacted with on the goal frame. Minimum distance is the small-

est distance between any gaze sample and the bounds of the goal target, with this

value achieving 0 if the gaze was within the goal target at any time. A lower accu-

racy system should have a larger minimum distance and less time in target. All gaze

data are reported in standardized units and was sampled at 90 hz (Tobii data) and

approximately 20 hz (Webcam data), which were up-sampled to 90hz for analysis.

The units were standardized by converting all pixel coordinates to fit the Labvanced

coordinate space of 800 × 450 units.

Coordination

The amount of time the eyes and hands moved together was quantified using Tlead

[129] and examined across each phase. Tlead calculations necessitate data that are

sampled at identical frequencies, meaning the gaze and mouse data must be re-

sampled to a common sampling rate. While the calculation of Tlead returns three

possible values: NaN proportion (meaning one or both of the data streams are decou-

pled from one another), positive proportion (gaze leading the cursor), and negative

proportion (cursor leading gaze), we were primarily interested in the amount of cou-

pling observed. Therefore, for our analysis, we collapsed Tlead into the percent of

time the eyes and hands were either coupled (e.g. signed; non-NaN) or decoupled

(NaN). Importantly, not all interactions require tight eye-hand coupling; sometimes

our eyes collect information in one space, but our hands work in another. Our novel

use of Tlead allows us to quantify tasks that require tight coupling versus those that
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force eye-hand decoupling.

3.4 Results

3.4.1 Statistical test designs

All statistics were calculated using Jamovi 2.3.18 [131]. Repeated measures ANOVA

(rmANOVA) were sphericity-corrected using the Greenhouse-Geisser estimate of the

F statistic where necessary.

For the Local cohort, because two different eye trackers were used concurrently,

tests that investigate gaze-based measures have a 6 × 2 × 2 rmANOVA design: 6

GoalFrames (accomplishments, gameplay, graphics, mouse, narrative, sound), 2 Con-

ditions (Direct, Indirect) and 2 Eyetrackers (Webcam and Monitor-mounted). Mouse

and time measures were identical regardless of the eye tracker used, so the rmANOVA

design only required a 6 × 2 design (GoalFrame × Condition). To test coordination

measures, we used an rmANOVA with a 6 × 2 × 2 design (GoalFrame × Condition

× Eyetracker).

Since we were interested in comparing the performance of the Remote and Local

cohorts, we also used a mixed ANOVA with a 6 × 2 × 2 design (GoalFrame ×

Condition) for within subjects and the subject Cohort (Local-webcam, Remote) as

the between subjects factor to compare across all of our measures. For these tests,

only results with significant main effects of Cohort or interactions involving Cohort

will be reported.

3.4.2 Statistics: Time

Time: to navigate to the goal frame

These data are the average time that it took a participant to locate the intended

goal frame given by the prompt. In the Local cohort, a main effect of GoalFrame

was detected (F(1,1.411) = 15.274, p = 0.003, η2 = 0.403), with Narrative taking the

longest for participants to find. The Remote cohort showed the same pattern with no
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interactions involving Cohort. A main effect of Cohort was detected (F(1,1) = 4.503,

p = 0.039, η2 = 0.041), where the Remote cohort took longer, which we interpret to

be an expertise effect between the cohorts.

Time: on the goal frame

This is the average amount of time the participant spent to complete the task on

the goal frame given by the prompt. In the Local cohort, a main effect of Condition

was detected (F(1,1) = 35.743, p < 0.001, η2 = 0.014), with Indirect prompts taking

longer than Direct prompts. This suggests that Indirect prompts do in fact take longer

to complete, agreeing with our earlier prediction. A main effect of GoalFrame was

detected (F(1,1.791) = 160.472, p < 0.001, η2 = 0.898), with Accomplishments taking

the longest time to complete the task, followed by Sound. A significant GoalFrame

× Condition interaction was detected (F(1,13.104) = 10.236, p = 0.002, η2 = 0.024),

where users tended to take longer when given an Indirect prompt on all goal frames

with the exception of Narrative. The Remote cohort showed the same pattern and

the cohort comparison showed no significant main effects or interactions involving

Cohort.

Time: to end trial

This is the average time it takes for the user to end the trial after they make the

intended manipulation on the goal frame. In the Local cohort, a main effect of

Condition was detected (F(1,1) = 7.889, p = 0.031, η2 = 0.074), where participants

took longer to end the trial on Indirect prompts than Direct prompts. The Remote

cohort showed the same pattern and the cohort comparison showed no significant

main effects or interactions involving Cohort.
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Figure 3.2: The eye distance traveled over the course of an entire trial split by the
phase. Data for both the Local and Remote cohorts are shown, split by the type
of eye tracker used. The green circles and lines are webcam eye tracker data from
the Local cohort, the orange circles and lines are the Tobii eye tracker data from the
Local cohort, and the purple circles and lines are the webcam eye tracker data from
the Remote cohort. The X axis shows which kind of prompt was presented to the
participant. The Y axis shows the average distance traveled in units. Each data point
is scatter-plotted under each mean. 95% confidence intervals are plotted around the
means. A significant main effect of Condition demonstrates that Indirect prompts
result in more distance being traveled. A significant interaction between Condition
× Eyetracker shows the webcam accumulates more error over time.
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3.4.3 Statistics: Gaze

Gaze: distance to navigate to the goal frame

This is the average distance in pixels that the gaze traveled on the screen when the

participant was navigating to the goal frame. See Figure 3.3A. In the Local cohort,

a significant main effect of GoalFrame was detected (F(1,1.530) = 16.732, p < 0.001,

η2 = 0.306), with Narrative goal frames requiring the most gaze distance to find.

A significant main effect of Eyetracker was detected (F(1,1) = 8.819, p = 0.025, η2

= 0.067), with the webcam eye tracker overestimating the distance traveled relative

the monitor-mounted system. A significant GoalFrame × Eyetracker interaction was

detected (F(1,1.983) = 6.539, p = 0.012, η2 = 0.001), where goal frames that required

more time to complete also resulted in higher estimates for distance traveled for

webcam eye tracker data relative to the monitor-mounted eye tracker. This suggests

the webcam eye tracker likely overestimates the distance traveled and this effect

scales with time. The Remote cohort showed the same pattern with no interactions

involving Cohort. A main effect of Cohort was detected (F(1,1) = 5.233, p = 0.027,

η2 = 0.069), where Remote participants moved their eyes more, likely due to the

expertise differences between the cohorts.

Gaze: distance on the goal frame

This is the average distance in pixels that the gaze traveled on the screen when the

participant was on the intended goal frame completing the task outlined by the given

prompt. See Figure 3.3B. In the Local cohort, a significant main effect of Condi-

tion was detected (F(1,1) = 17.499, p = 0.006, η2 = 0.016), where Indirect prompts

required more eye movements than Direct prompts. Again, this supports our ear-

lier prediction that Indirect prompts are more difficult, and will thus take longer

to complete with more eye movements. A significant main effect of GoalFrame was

detected (F(1,2.151) = 60.987, p < 0.001, η2 = 0.566), with Accomplishments re-

quiring the most gaze movements overall. A significant main effect of Eyetracker was

87



detected (F(1,1) = 16.356, p = 0.007, η2 = 0.134), where the webcam eye tracker

overestimated the distance traveled relative to the monitor-mounted eye tracker. A

significant GoalFrame × Condition interaction was detected (F(1,2.482) = 5.090, p

= 0.016, η2 = 0.034), where Indirect prompts resulted in higher distances traveled,

with the exception of on Mouse and Narrative goal frames. A significant GoalFrame

× Eyetracker interaction was detected (F(1,1.251) = 14.540, p = 0.004, η2 = 0.039),

where goal frames that took longer to complete had disproportionately higher dis-

tances traveled for the webcam eye tracker versus the monitor-mounted eye tracker.

A Condition × Eyetracker interaction was detected (F(1,1) = 11.591, p = 0.014, η2

= 0.000), where the webcam eye tracker resulted in a higher travel distance difference

(compared to the monitor-mounted eye tracker) on Indirect prompts. For the cohort

comparison, a significant main effect of Cohort was detected (F(1,1) = 4.857, p =

0.033, η2 = 0.041), where Remote participants had more gaze movements on the goal

frame. A significant GoalFrame × Cohort interaction was detected (F(1,1.142) =

7.607, p = 0.006, η2 = 0.046), where Remote participants had more gaze movements

on the Accomplishments goal frame. A significant Condition × Cohort interaction

was detected (F(1,1) = 9.685, p = 0.003, η2 = 0.002), where Remote participants

had more gaze movements when given a Indirect prompt, again likely attributed to

the Remote cohort’s inexperience with the menu layout. A visual summary of these

results can be seen in Figure 3.3B.

Gaze: distance to end trial

This is the average distance in pixels that the gaze traveled on the screen when the

participant had completed the task outlined by the prompt and was on their way to

end the current trial. In the Local cohort, a significant main effect of Condition was

detected (F(1,1) = 20.480, p = 0.004, η2 = 0.028), where Indirect prompts resulted

in more gaze distance traveled. A significant main effect of Eyetracker was detected

(F(1,1) = 25.193, p = 0.002, η2 = 0.504), where the webcam eye tracker traveled
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Figure 3.3: Plots of the gaze distance in two phases: navigation and on the goal
frame. Data for both the Local and Remote cohorts are shown, split by the type
of eye tracker used. The green circles and lines are webcam eye tracker data from
the Local cohort, the orange circles and lines are the Tobii eye tracker data from
the Local cohort, and the purple circles and lines are the webcam eye tracker data
from the Remote cohort. The X axis has each of the goal frames (with Accompl.
and Gamepl. for Accomplishments and Gameplay, respectively). The Y axis is the
distance traveled in standardized units. The underlying data are scatter-plotted under
each mean. 95% confidence intervals are plotted around the means. A) The average
gaze distance traveled navigating to the goal frame. Here, we can see an increase in
the amount of gaze movement required to enter the Narrative goal frame, regardless
of the participant pool or eye tracker used. B) The average gaze distance traveled
while on the intended goal frame. Here, we can see that Accomplishments required
more gaze movements relative to other frames. The Remote cohort looked around the
most, which is indicative of their relative inexperience with the menu and variable
collection environment.

a further distance. A significant Condition × Eyetracker interaction was detected

(F(1,1) = 9.421, p = 0.022, η2 = 0.004), where the web cam eye tracker traveled

more during the Indirect prompts. The Remote cohort showed the same pattern and

the cohort comparison showed no significant main effects or interactions involving

Cohort.

Gaze: minimum distance to goal target

This is the minimum distance between the gaze and the goal target(s) on the goal

frame throughout an entire trial. A significant main effect of Eyetracker was detected

(F(1,1) = 21.146, p = 0.004, η2 = 0.486), where the webcam eye tracker had higher
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distances to any of the goal targets on screen, confirming the webcam eye tracker

was overall less spatially accurate. A main effect of Cohort was detected (F(1,1)

= 7.589, p = 0.009, η2 = 0.092), where the Remote cohort had a lower minimum

distance. A significant Cohort × Condition interaction was detected (F(1,1) = 4.907,

p = 0.032, η2 = 0.006) where the Local cohort had a larger decrease in minimum

distance between conditions than the Remote cohort.

Gaze: on target time

This is the average amount of time the gaze data were within the bounds of any of

the intended targets on the goal frame outlined by the prompt. A value of 0 indicates

that gaze was never within the bounds of the goal targets on the goal frame. In the

Local cohort, a significant main effect of GoalFrame was detected (F(1,2.317) = 2.317,

p < 0.001, η2 = 0.073), where gaze was within the bounds of the goal targets on the

Narrative goal frame. A significant main effect of Condition was detected (F(1,1) =

7.342, p = 0.035, η2 = 0.005), where Indirect prompts lead to a longer dwell time

on the goal targets. A significant main effect of Eyetracker was detected (F(1,1)

= 69.095, p < 0.001, η2 = 0.663), where the webcam eye tracker had significantly

less time spent within the target bounds. A significant GoalFrame × Eyetracker

interaction was detected (F(1,2.324) = 13.451, p < 0.001, η2 = 0.064), where the

time spent on the Narrative goal frame using the monitor-mounted eye tracker had

disproportionately more time spent within the target goal target bounds than other

goal frames. A significant Condition × Eyetracker interaction was detected (F(1,1)

= 6.840, p = 0.040, η2 = 0.004) where the amount of time gaze data were within the

bounds of the goal target was equal across Condition, whereas the monitor-mounted

eye tracker had higher values for Indirect prompts. For the cohort comparison, a

main effect of Cohort was detected (F(1,1) = 4.269, p = 0.045, η2 = 0.036), where

the Remote cohort looked at targets for longer, likely reflecting their inexperience

with the menu system. A significant GoalFrame × Cohort interaction was detected
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Figure 3.4: The average proportion of TleadNaN values for each type of goal frame.
Data for both the Local and Remote cohorts are shown, split by the type of eye tracker
used. The green circles and lines are webcam eye tracker data from the Local cohort,
the orange circles and lines are the Tobii eye tracker data from the Local cohort,
and the purple circles and lines are the webcam eye tracker data from the Remote
cohort. The X axis has each of the goal frames (with Accompl. and Gamepl. for
Accomplishments and Gameplay, respectively). The Y axis is proportion of TleadNaN

values as a ratio. The underlying data are scatter-plotted under each mean. 95%
confidence intervals are plotted around the means. Here, we can see that there are
significantly more TleadNaN values on the Accomplishments goal frame, suggesting
that the eyes and hands are dissociated from one another for this task. The eyes are
drawn to search on one part of the screen while the hands click relatively stationary
in another.

(F(1,3.755) = 2.491, p = 0.049, η2 = 0.018), where the Remote cohort looked at

targets on most goal frames more, with the exception of Narrative and Sound.

3.4.4 Statistics: Coordination

Coordination: Tlead

This is the percent of time the eyes and hands were uncoupled. In the Local cohort, a

significant main effect of GoalFrame was detected (F(1,2.059) = 241.902, p < 0.001,

η2 = 0.762), where the the eyes and hands were disproportionately uncoupled on the

Accomplishments goal frame relative to the others. A significant main effect of Eye-

tracker was detected (F(1,1) = 209.679, p < 0.001, η2 = 0.016), where data collected
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with the Webcam were more coupled. A significant GoalFrame × Eyetracker inter-

action was detected (F(1,2.144) = 6.413, p = 0.011, η2 = 0.000), where the Webcam

eye tracker had a larger difference between coupled and uncoupled proportions for all

goal frames. See Figure 3.4 for a visual of the results. For the cohort comparison, no

main effect of Cohort was detected. A significant GoalFrame × Cohort interaction

was detected ((F(1,2.521) = 3.881, p = 0.016, η2 = 0.006), which seems to be driven

by the Local cohort showing slightly more coupling on the Narrative goal frame. A

significant Condition × Cohort interaction was detected ((F(1,1) = 16.663, p < 0.001,

η2 = 0.003), where the Remote cohort had a slightly larger difference between the

prompts given.

3.5 General Discussion

3.5.1 Main findings

We collected eye, hand and coordination measures in two cohorts of participants as

they completed a simple UI navigation task. For the Local cohort, we investigated a

consumer-grade monitor-mounted eye tracker and directly compared it to a simulta-

neously recorded webcam-based eye tracking algorithm. Because both datasets were

recorded concurrently in the Local cohort, we were able to directly compare perfor-

mance. To our surprise, we found that the webcam produced sufficient data quality

to be directly comparable to the more sophisticated monitor-mounted eye tracker in

revealing important features of a user’s experience. While the temporal and spatial

resolution was much lower in the webcam data, we were still able to detect a friction

point in the menu design that has not, to our knowledge, been discovered previously.

For the Remote cohort we looked exclusively at webcam data and did a between

groups comparison to the Local data to investigate if our findings would hold once

the experimental control over hardware and environment was removed.

In general, we found similar results across both cohorts. In terms of the initial
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prompt used, an Indirectly worded prompt resulted in worse performance than a Di-

rect one (see Figure 3.2). That is, users took longer and moved both their mouse and

eyes more with an Indirect prompt. In both cohorts, we also found two candidate

points of friction. The first candidate friction point was on the Accomplishments goal

frame, where participants spent a significant amount of time locating given accom-

plishments. The second candidate friction point was navigating to the Narrative goal

frame. A conventional analysis using only time-based measures would have concluded

that these two delays were both indicators of friction. However, our unique analysis of

eye and mouse movements, and especially their coordination, paints quite a different

picture. For the Accomplishments frame, we saw an increase in eye-hand decoupling

(see Figure 3.4), indicating much more eye movement than mouse movement. In

context of the task given, this was in fact a reasonable result; the Accomplishments

task required repeatedly clicking a button with the mouse while reading and search-

ing through text descriptions that appeared with each click. This required lots of

gaze movements and few mouse movements, suggesting that the eyes and hands had

distinct roles. As a result, this is actually the expected behaviour rather than a

point of friction. By comparison, the delay when navigating to the Narrative frame

was accompanied by more eye and hand movements, which remained coupled. The

extended search time and increased eye and hand movements indicate confused and

inefficient exploration (eye) and exploitation (hand). Only the collection and analysis

of gaze and movement behaviours was able to disambiguate these cases and identify

a true point of friction.

3.5.2 Local versus Remote cohorts

While the level of congruence between the two cohorts was remarkable, especially

considering the lack of experimental control over the conditions in which the Remote

cohort was tested, one key difference between cohorts was the level of experience. The

Local cohort were all employees of the company that developed the video game the UI

93



task was based on, whereas the Remote cohort did not necessarily have any experience

with video games. Collecting data from less-experienced users can help pinpoint po-

tential issues that the more experienced group may have simply adapted to over time.

For example, a new video game player may not be familiar with game-specific termi-

nologies used in the menus (e.g. graphical options such as vertical synchronization,

or mouse sensitivity adjustments). Our findings support this conclusion, showing

that the Remote cohort was significantly slower and had more gaze and hand move-

ments than the Local cohort, but only when they were operating on the goal frame

(see Figure 3.3). That is, they exhibited no difference in the mechanics of the task

(moving the mouse, clicking buttons, exiting each trial) and their inexperience was

only evident when task relevant knowledge was expected to play a significant factor.

Interestingly, regardless of the level of experience, the friction point described above

naturally emerged in the data for users in both cohorts. As researchers, we are able

to pinpoint specifically when the friction was occurring, and provide actionable in-

sight into how to fix the problem. Here, we saw that all users tended to have issues

finding the Narrative goal frame, and one potential reason for this could be that the

name of the menu is ambiguous or may not reflect its contents for most users. A UX

researcher could test this hypothesis by altering the menu’s name and testing if the

friction still exists. It is also possible to imagine expertise-dependent adjustments UX

designers may wish to use, such as tailoring an experience better suited for a novice

as compared to an expert user. Additionally, it is important for the UX researcher to

contextualize the utility of friction. Some friction can actually be useful to ensure a

user is paying attention to critical components and can lead to higher user satisfaction

[132].

Recording gaze and mouse data gives insights into the end-user’s behaviour, most

of which is unconsciously controlled [22, 27, 35, 36, 57, 133]. Typically, when as-

sessing user interfaces, researchers use qualitative approaches such as interview-style

questions aimed at probing the end-user’s conscious experience [125]. We argue that
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while a qualitative approach might lend to some insights about the overall experience,

some friction points cannot be uncovered simply because users themselves may not

be aware they were experiencing friction. Here, we argue that the methods employed

in the present study demonstrate that friction can be detected through the use of

easy-to-deploy hardware and software at a minimal cost. It is important to note that

this study did not exhaustively compare the performance of hardware and software

eye trackers (for a study investigating this, please see Wisiecka et al. [134]), so it

is important that the researcher knows the inherent limitations of the implementa-

tion they choose. Additionally, UX researchers can augment their current approaches

by adding our methodology at little (i.e. monitor-mounted eye tracker) to no (i.e.

webcam eye tracker) cost, both financially and methodologically.

The webcam eye tracker was less accurate and had a lower temporal resolution than

the dedicated eye tracker, but this did not impede data analysis or interpretation for

our design. However, if high accuracy or temporal resolution is a necessity for the

experimental design, webcam eye tracking may not be a suitable choice. For example,

researchers interested in speed-accuracy trade-offs would likely benefit from higher-

powered systems. When looking at the minimum gaze distance to any of the targets,

we found that the webcam was consistently about 20 pixels (or 6.25 units3) away

from the goal target in the Local cohort. An offset or threshold can boost accuracy,

but target size matters. Improved eye-tracking algorithms may reduce the need for

dedicated systems in future studies as spatial and temporal accuracy increases.

3.5.3 Moving beyond the laboratory

In general, we look at the data in the Remote group as an exercise in a cognitive

ethology-based approach towards data collection [73]. Cognitive ethology calls for

moving beyond some laboratory-based assumptions (e.g. cognitive process invariance

and control) to better understand the naturalistic variance that occurs in real-world

3The collection environment was 800x450 units, and we can extrapolate pixels if we know the monitor
resolution, which we did for the Local cohort.
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complex tasks [72, 73, 135, 136]. In the Remote cohort, the noise in the collection

environment did not appear to overwhelm the signal as evidenced by the similar

findings between the studies. Arguably, some scientific findings lose sight of the real-

world implications of their research; the environment in which the data were collected

is not similar to how people actually behave. This approach challenges many of the

control assumptions we as scientists make when conducting our studies. Is it critical

that the users sit exactly 40cm from the screen? Does the lighting of the room need

to be identical between participants? Our results suggest that, at least in this case,

that may not be necessary. It is hard to know what the trade-off between data quality

and real-life applicability truly is unless we are conducting ecologically valid studies

in the first place. Perhaps it is reasonable to sacrifice data quality for the sake of

having a closer understanding of the cognitive processes in the environment they are

naturally practiced. This is particularly true for UX researchers interested in getting

a deeper insight into how and where users actually use and encounter their products.

3.5.4 Privacy

Naturally, as we move towards more seamless data collection (i.e. the participant may

not even realize their gaze is being tracked), privacy concerns arise. Many webcam eye

tracking algorithms are collected and processed on the local machine (e.g. WebGazer

[120, 137] and Labvanced [130]) or obtains the user’s consent prior to recording [130]

and thus require the end-user to be aware of its presence. The current iteration of the

algorithm used in the present task also required inter-stimulus calibration periods,

making it obvious to the end-user that their gaze was being recorded. However, in

the future it is likely that gaze tracking models will become advanced enough to not

require frequent re-calibrations and as a result may become functionally invisible to

the end user. We believe that the end-user should always be made aware of (and

asked for consent for) the recording of their data, as eye movement patterns can be

used to identify unique individuals [138]. This is a major concern that will likely

96



require legislation to capably handle.

3.5.5 Conclusion

Many qualitative methods are used simply because they make logical sense; who

else would know better about the user’s experience than the user themselves? We

provide evidence that there’s more than one way to find friction in a design, and it

is not mutually exclusive to the current methods used. Eye and mouse tracking can

provide a wealth of knowledge to the UX researcher at very little cost. The presented

methods may currently be suitable for UX researchers, with the caveat that there is no

standardized (or easy) way to analyze the data. Analysis requires intimate knowledge

of data cleaning methods from eye and mouse trackers. Future use of eye and mouse

tracking in UXR should include efforts to, ironically enough, improve the experience

of the UX researchers through standardized tools for cleaning and analysis.
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Chapter 4

Eye tracking in the clinic: an
investigation of an easy-to-use
automated clinical eye movement
assessment
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Abstract

Vertigo is a type of dizziness that makes people feel as if they are moving or spinning

when they are not. It is caused by problems in the vestibular system, usually in the

inner ear or in the brain. Vertigo is a major cause of visits to emergency departments

(around 2-3 % of all visits). Accurate diagnosis is important to guide treatment, as

patients with vertigo from stroke (i.e. central vertigo) benefit from rapid therapy and

stroke prevention treatment, whereas vertigo caused by inner ear problems (periph-

eral vertigo) can benefit from other specific therapies. However, challenges in the

evaluation of vertigo exist: 1) the physician exam may not be sensitive or standard-

ized enough to detect subtle but crucial indicators, and 2) the expertise needed to

perform and interpret the assessment may not be present. Eye-tracking technology

can augment clinical assessment of the patient, providing additional information to

the physician. Here, we assess the feasibility of leveraging advances in eye-tracking

technology to develop a system for assessing vertigo, thereby improving the diagnos-

tic process in the emergency department and the clinic. The intended goal of this

project is to determine what it will take to create a system capable of collecting and

analyzing eye movements in patients with vertigo in acute care settings to improve

the speed and accuracy of vertigo diagnosis. While we did find that an uncontrolled

environment is capable of generating high quality data, it is important to consider

the medical state of the participant to ensure continuous data collection. We found

that our device was capable of collecting and calculating eye tracking metrics that

are usable by a trained clinician for augmenting diagnosis. The device was easily

deployed by a prior medical professional with no eye tracking training, suggesting

that it can be deployed in many different use cases. Overall, we discuss the findings,

limitations, and future directions for such a device to be successfully deployed in an

uncontrolled environment.
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4.1 Introduction

Vertigo is a sub-type of dizziness caused by vestibular system imbalance. Accurate

diagnosis of vertigo often requires the expertise of a neurologist [139, 140]. Vertigo is

a major burden for patients and the health system, with more than 4 million visits

in US emergency departments, making up an estimated 2-3% of all visits [141–145].

Broadly speaking, there are two main categories of vertigo: peripheral and central,

classified based on etiology. Peripheral vertigo may be caused by variable pathology

within the vestibular organs, which induce sensations of movement. Examples of

peripheral vertigo include benign paroxysmal positional vertigo, vestibular neuronitis

and Menniere’s disease. These diseases, while symptomatically similar across patients,

tend to be difficult to diagnose because they present so similarly. Central vertigo, a

much more serious diagnosis, is caused by injury to brain areas such as the brainstem,

cerebellum, or thalamus. Central lesions (i.e. stroke) can lead to poor outcomes or

death if left undiagnosed and untreated. Clearly, this is not something a well-trained

physician would want to mix up. Current best practices for vertigo diagnosis include

a clinical examination (e.g. the HINTS test: head-impulse, nystagmus, test-of-skew

[146–148]) and high resolution brain imaging. When dealing with vertigo patients,

central and peripheral causes can be easily conflated, making it much more difficult to

provide an accurate diagnosis. However, discerning a deadly etiology of vertigo (e.g.

brainstem stroke) from a non-life threatening peripheral cause therefore relies on the

availability of computed tomography (CT) or magnetic resonance imaging (MRI)

scanners, and unfortunately, even these modalities have a high early false negative

rate for central vertigo [146]. If a tool can easily supplement clinical examinations

with relevant metrics, it has the potential to enhance patient outcomes, making it a

valuable asset.

The current gold standard for diagnosing vertigo is the HINTS exam: a three-

step bedside oculomotor examination [146] consisting of: 1) the head impulse, 2)
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nystagmus assessment and, 3) test of skew. For the head impulse test, the patient

is asked to fixate on a stationary landmark in the room. The examiner, using their

hands, will jerk the patient’s head in a pseudo-random order to evoke gaze corrections.

For the nystagmus assessment, the patient fixates on a moving object (such as the

examiner’s finger) while holding their head still as the object is moved laterally back

and forth several times. Typically, the examiner will pause at the extremes of gaze,

as nystagmus can be exaggerated at these positions. For the test of skew, each eye

is covered individually, and any changes of gaze or re-fixations are noted, as this can

be a sign of a pathological etiology. The key output of the HINTS test is evidence

of the vertigo being either central or peripheral in origin, where evidence is more

clear in high- or medium-risk patients, but caution should be applied in low-risk

populations [149]. When performed correctly, the HINTS exam has been shown to

have an almost 98% sensitivity for ischemic stroke. However, despite its efficacy, the

HINTS exam is not always used. The HINTS exam may not be performed simply

due to a perceived lack of time [148, 149], or due to concerns of causing additional

damage (e.g. vertebral dissections, [150]). A study by McDowell & Moore [148] found

that only 5% of vertigo patients had the head impulse test performed, a discrepancy

the authors attribute to physician unfamiliarity or a preference for relying on patient

history. Given that the bulk of the HINTS exam is assessing what the eyes are doing

during the perturbations, it should be possible to non-invasively record the eyes. In

using such a device, you should be able to achieve the high sensitivity of the HINTS

exam while overcoming its barriers to usage, thereby improving vertigo diagnoses.

Promisingly, recent advancements in eye tracking technology has resulted in an

increased availability of mobile eye trackers, potentially suitable for use in the clinic.

Eye trackers are capable of producing an objective assessment of eye movements,

including direction, frequency, and speed. Eye trackers have historically been very

expensive (˜$50,000+) bulky laboratory equipment that require specialized training

to use and analyze the resultant data. Recently, affordable (<˜$5,000) portable eye
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trackers such as the Pupil Labs Core [50] have become available, permitting use out-

side of the laboratory and specialized testing centers. These eye trackers are capable

of recording pupil positions at high frequencies and resolutions, making them com-

parable to the expensive systems but much more portable. Such a system, working

within the confines of a high stress emergency department, could be used to augment

the vertigo clinical exam. Currently, very few studies have attempted to investigate

the efficacy of such a system, owing to the fact that there are a number of barriers to

its deployment. First, eye trackers are complex devices that usually require advanced

training to use, and many medical professionals do not have this training. Second,

objective assessments may be difficult as emergency room consults tend to be high-

stress dynamic situations, and uncontrolled environments can make assessment that

much harder. Finally, vertigo patients are likely to be difficult to collect eye move-

ment data from for a multitude of reasons, including the fact that they may be unable

to open their eyes for long enough periods of time to record high quality data. In

the current study, we address these issues in turn to test the feasibility of deploying

mobile eye-tracking a diagnostic aid for vertigo when it presents in the emergency

department.

It is also important to acknowledge a barrier that is largely outside of our control—

the willingness of clinical experts to adopt new technology. While the use of automa-

tion and systematic assessments has improved the efficacy of many health care systems

over the past half century, many physicians are still wary of new technology being

used for diagnostic purposes, especially when it comes to liability [151, 152]. Although

these concerns are valid, there are cases where the benefits of a new approach are so

evident that it can overcome hesitancy. For example, digital blood pressure monitors

are preferred over aneroid (mechanical) monitors, despite being slightly less accurate

[153]. This is because human interpretation can factor in the general error when

evaluating the results. Furthermore, the minor perceived error is outweighed by the

improved efficiency gained from using a digital device, effectively rendering the error
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insignificant. It is crucial to take this perspective into account when utilizing tools

like eye trackers in clinical spaces. By being aware of their limitations and not relying

solely on the device for diagnosis, greater efficiency can be achieved. We believe that

eye trackers, when used and deployed similarly to how we use digital blood pressure

monitors, are capable of providing valuable diagnostic information while requiring

minimal training. One problem though, is eye trackers typically require extensive

training for effective use.

To effectively deploy a rapid clinical assessment tool, we need to recognize that it

is untenable to expect every end-user to be extensively trained on research-typical eye

tracker use. Because such a tool would necessarily be used in high-stress scenarios

(e.g. ambulatory and emergency department care), the end-user (i.e. data collector)

will not have time to do any level of troubleshooting if anything were to go wrong.

As such, a goal of the present study was to specifically recruit a person without

any eye tracking training to act as the primary data collector. We chose to use

a regular healthcare worker with no prior eye tracking experience to challenge the

claims of many modern eye tracker manufacturers who claim ease of use, portability,

and general use cases outside of the laboratory. If this is truly the case, we should

be able to see high quality data collected by a non-expert in non-laboratory settings.

However, if data collection proves difficult, the data quality should be relatively low.

Assuming a task can be designed that can be run by a non-expert, it is still impor-

tant that the task captures the key features of impairment that the typical clinical

exam is testing for. In the case of a typical neurological evaluation of a patient, this

involves multiple eye movement tests [154, 155]. The objective of these tests is to

identify any impairments, as they can help pinpoint the location of brain damage,

if it is present. For instance, a person who cannot smoothly pursue a moving ob-

ject may have damage to the cerebro-ponto-cerebellar pathway [156]. Although this

encompasses many brain regions, determining that the problem is neurological can

be critical for patient care and potentially life-saving. While many of these tests are
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easy to administer, some can be challenging to assess accurately. For instance, a

physician’s observation of smooth pursuit eye movements may not capture important

quantitative information such as average velocity or aberrant eye movements. Ad-

ditionally, a physician can be distracted by their environment and miss important

details without any specific fault. By contrast, an eye tracker can specifically capture

this information. Therefore, in addition to targeting the deployment of our tasks

to a non-expert, it was equally important that we designed tasks that matched key

clinical features. Of course, the clinic is unlike the laboratory-based settings that eye

tracking is collected in.

As we think about moving into the clinic, it is important to be cognizant of the

critical differences that may affect good experimental design. For instance, clinics are

much more chaotic than laboratories—who tend to control many of the environmental

aspects of the room. While some studies have assessed eye tracker use outside of

the lab [157, 158], the purpose of many of these studies was to collect naturalistic

data from a normative population. For example, Hessels et al. equipped participants

with an eye tracker while they navigated through several crowds to investigate eye

gaze behaviours and how social affordances (e.g. eye contact) can modulate gaze

behaviours. They found that, despite a lack of control on the environment, it was

still possible to maintain a significant degree of control over the experiment while

allowing the subject to maintain many degrees of freedom. This suggests that eye

trackers (and perhaps many other tools of the lab) could be deployed outside of

highly-controlled laboratory spaces. However, some environments may prove to be

particularly challenging such as clinics or emergency departments.

To summarize, with the advancement in technical and physical capabilities of mod-

ern eye trackers, deployment in clinics should be possible. However, there are many

challenges to working in a busy clinical environment. For example, eye tracking expe-

rience is rare outside of research laboratories, meaning a the device should be usable

by a non-expert. Another challenge arises from even being able to quantify clinically
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relevant measures. An assessment device should be able to quantify aspects of a neu-

rological exam in a way that is intuitive the attending physician such that it can be

used to augment their diagnosis. However, uncontrolled settings such as clinics and

emergency departments can mean high quality data is difficult to collect for reasons

beyond the data collector’s control. High traffic, loud noises, and salient distractors

can make it difficult for both the data collector and the patient to give their full

attention to the task. Clearly, a diagnostic rapid assessment tool should overcome

these barriers if it is to be considered for use in a clinical setting.

To test how well such a system can be deployed in a busy clinical environment,

we explored collecting diagnostic eye tracking data in the clinic—an uncontrolled

environment, and with data collection performed by a health care worker with no

prior expertise in eye tracking. Here, we created a simple digitized test battery akin

to what an attending physician would administer to a suspected vertigo patient. The

primary goal was to collect data and calculate useful metrics to help differentiate

between peripheral and central vertigo. We assessed the test battery on control

participants, and attempted to validate the data on vertigo patients. The patient

group were all patients who were admitted to the University of Alberta Hospital with

a chief complaint of dizziness (see Table 4.1 for a description of the patients). The data

were collected shortly after the patient was admitted to the hospital. A control group

allowed us to see if the collection was affected by the data collector. We expected that

data quality would be high for both groups, with the patient group having slightly

noisier data. In order to determine feasibility of such a system, we aimed collect data

outside of laboratory settings in both the control and patient groups.

4.2 Materials and methods

To overcome the difficulties of implementing a rapid assessment tool in a clinical set-

ting, we developed a neurological test battery that was derived from clinical practice

and designed for ease of use and deployment. We devised a portable test battery that
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can be set up at a patient’s hospital bed. The test was run on a laptop computer and

consisted of 5 sub-tasks that utilized a mobile eye tracker to record eye movements.

Data were collected by a single retired health care professional to assess usability and

portability.

4.2.1 Task & system

We created a task that was designed to be deployed on a portable laptop. The task

itself contained 5 sub tasks akin to the neurological tests a physician would conduct on

a patient. Using this system, we recorded the pupils of the participant for the duration

of the experiment using a mobile eye tracker. The system itself was designed to be

portable, such that all of the equipment could be stored in a backpack so it was ready

to go when needed. Additionally, it was designed to be easy to use with minimal

training required for use.

4.2.2 Equipment

We use a Pupil Labs Core eye tracking headset (pupil-labs.com; [50]), a low-cost, light-

weight, mobile, open-source hardware and software solution that records the pupils at

up to 200 Hz. The headset is designed to allow for free movement of the head and does

not require a chin-rest bar. The Core software records the data and allows for pupil po-

sitions to be passed into Lab Streaming Layer (LSL; https://github.com/sccn/liblsl).

LSL is a middle-layer software that handles synchronization between data streams

to ensure all data use a common timestamping source and do not drift over time.

LSL is capable of taking an arbitrary number of data streams (in our case, the eye

tracking data and stimulus labels) and synchronizing them, ensuring that all of the

data are timestamped and do not drift relative to each other. LSL was used to align

timestamps from when stimuli appear on screen to the timestamps of the eye track-

ing data. This step is critical to ensure eye tracking data are synchronized to when

stimuli appear on screen. Importantly, we only recorded the position of the pupils,
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and not gaze data (i.e. the position in space being looked at).

The task was deployed on a laptop computer. The specific laptop was a Dell XPS

15 7590 with a i7-9750H processor and a 15” screen (1920x1080 resolution). We chose

this laptop because it had a reasonably powerful processor, which was necessary for

running the eye tracker program, and because it was lightweight (1.81kgs) and fit in

a backpack. For the control participants, the laptop was placed in front of them on a

dining table at a measured distance of 40cm. For the patients, it was placed on the

bedside table rotated to be in front of the patient at a measured distance of 40cm.

4.2.3 Eye tracking procedure

A battery of five procedures was developed that approximates what an attending

neurologist may administer to a vertigo patient (for more detail see Goebel [154]. We

aimed for a contact-free exam, since this was identified as a potential issue for why the

HINTS exam does not see widespread use. We attempted to replicate the procedures

that are typically performed manually by the attending physician, who may sometimes

use simple props such as a pen to facilitate the test. Each procedure was explained

verbally to the participant just prior to starting each task. Upon confirming the

participant understands, the test begins with the experimenter pressing the space bar

on the laptop computer. The following descriptions first explain the task a physician

would use to measure this behaviour, followed by details of our implementation.

Stare fixation

The physician will ask the patient to fixate on a stationary object (such as the physi-

cian’s finger) while observing eye behaviour. The fixation period typically lasts for

around 20s. The purpose of this test is twofold: 1) to determine if the patient is

capable of simple fixation and 2) to assess presence of nystagmus.

Our implementation of this task is shown in Figure 4.1A, where the patient would

fixate on a centerally presented white cross on a black background for approximately
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20s. The cross was 10 pixels wide and 10 pixels tall with a thickness of 4 pixels.

Smooth pursuit

The physician usually performs this test by moving their finger smoothly from left to

right or up to down while the patient maintains fixation on the tip. Finger movement

is typically paused at the extreme peripheries of vision (i.e. far left, right, top, or

bottom hemifields) to observe if nystagmus is present.

Our implementation of this task is shown in Figure 4.1B1. The patient will track

the dot as it smoothly moves to each of the end locations on the screen, where it

pauses. For the first part of the task, the dot will move to the edge and immediately

move back to the centre of the screen. For the second part, the dot will move to the

edge and hold its position.

The target shown on screen was a white dot on a black background with a diameter

of 20 pixels. For each location, the dot would move from the centre of the screen to

the extremes of the screen over the course of 2 seconds at a constant velocity. For

example, for the left movement, the dot would start in the centre of the screen and

move to the left side of the screen over the course of 2 seconds. During the hold

portions of the task, the dot would hang at the extreme position for 3 seconds before

moving back to the centre of the screen.

Target jump

Using two fingers on opposite sides of the patient’s field of view, the physician will ask

the patient to fixate—through a saccadic movement of the eyes—on the noted finger.

This can be performed by simply audibly saying instructions (e.g. “Left, right, left”)

or through salient movements (i.e. wiggling fingers). Here, the ability to perform the

action as well as the delay and inaccuracy (overshoot) of the targeted jump can be

important clinical markers.

1Note that only horizontal movements are shown here, but the task also included a vertical portion
as well.
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Our implementation is shown in Fig. 4.1C, where a centre cross appears and shortly

after a stimulus (dot) will appear on either the left or right side of the screen, which

the patient must fixate on. This repeats 20 times.

The target shown on screen is a white dot on a black screen that has a diameter

of 20 pixels. The dot alternates between the left and right side of the screen, with

a fixation cross shown in between movements. The dot’s position was determined

by dividing the width of the screen in pixels by 20 and positioning the dot either at

the beginning or the end of this 1/20th interval. For example, for a screen width of

1080 pixels, the dot would be placed at either pixel 54 or 1026. The dot stays on

the screen for a pseudorandom amount of time sampled from a uniform distribution

between 0.5s and 1.5s.

Vestibulo-ocular response (VOR)

The VOR allows for someone to move their head while still maintaining fixation on

a target. Similar to the Fixation test, the physician will hold their finger in a static

position, while asking the patient to fixate but simultaneously turn their head from

left to right, then up and down in a cross-like pattern.

Our implementation is shown in Figure 4.1D. A white centre cross is drawn on

the black screen, and the patient is instructed to maintain fixation on the cross while

turning their head. The centre cross is the same size as the cross used in the Stare

task.

Brightness

The eyes’ ability to adjust to light is a critical function of the eye. A physician may

use a flashlight or flicker the lights and see if the patient’s pupils respond, or if there

is a disparate response between the eyes. This test can determine if nerve damage

has occurred (e.g. CN III - oculomotor) or if there are disparate responses between

the eyes.
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Our implementation is shown in Figure 4.1E. A black background with a white

cross is shown for 5s, after which the background turns white, eliciting a pupillary

constriction. The centre cross is the same size as the cross used in the Stare task.

4.2.4 Motivation

While all of the tests listed above are typically performed by either an attending

emergency physician or neurologist, they can be incredibly hard to quantify; how

much did the eyes move? How quickly did the pupils contract to light? How well

did the patient track the moving finger tip? Additionally, it can be difficult to be

systematic in stimulus presentation; did the physician always move their finger at

the same velocity? Did they use the same flashlight? Did they move their finger

the same distance? The purpose of standardizing these tests is that it allows for the

result to be quantified. Moreover, standardizing the tests allows us to standardize

and automatically extract measures from the resultant data files. This allows for two

key advantages: 1) it makes the data collection much simpler and 2) results can be

generated instantly at the end of the task.

We created versions of each of the above tests in software, made to be presented

on a laptop computer. For a description and visualization of how these stimuli looked

to the participants, see Figure 4.12.

4.2.5 Data collection

Data collection was performed by a 59 year old female retired physician who special-

ized in the care of geriatric individuals. She had extensive experience communicating

with patients, but did not have any prior experience with eye tracking or data collec-

tion for the purposes of a scientific study. The data collector was given approximately

45 minutes of training for fitting the eye tracker and ensuring reasonably good data

quality prior to beginning the study. Between data collection sessions, general advice

2The code for the stimuli generation can be found at https : / /github . com/scottastone/
StrokeNystagmusAnalysis
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and guidance was given as necessary, for example such as if technical issues arose

(e.g. eye tracker not connecting to the computer, general computer maintenance, or

questions about data quality). In general, the data collector worked independently

and was able to collect the data with little guidance.

4.2.6 Software

A custom Python program was written to present the stimulus to the participant.

Two key guiding principles were used when considering the development of this pro-

gram: 1) the stimulus should be very easy to deploy—starting the program should

be as simple as clicking to start and 2) the program should run ”on-rails”, meaning

it should require very little input from the data collector. Adjustments to the user

experience aspects of the program were made such that the data collector simply has

to place the computer 40cm in front of the participant, fit the eye tracker, and start

a single program to collect the data. Prior to beginning each task, verbal explana-

tion of the task is given to the participant. The data were then automatically saved,

organized, and uploaded to a secure server such that the data collector did not have

to do anything post-collection.

4.3 Environment

One of the key contributions of the present study is the use of an uncontrolled envi-

ronment to collect data. Typically, eye tracking studies will be deployed in controlled

environments such as laboratory settings. In this case, it is critical that an uncon-

trolled environment is used (e.g. emergency department, hospital room, the home

of an individual) to truly assess the usability of the device. It is important that the

device is tested in the same way it is intended to be used in the real world. In this

way, we hope to be more ecologically valid in the sense that the measures we are

deriving from our data more closely match how a physician would actually use this

tool and the kind of data that a patient would actually provide.
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Figure 4.1: Each of the stimuli presented the patient, as described in section 4.2.3.
Each stimulus represents what would be presented on the screen. A) The stare
condition: a fixation cross is drawn to the centre of the screen, which the patient
fixates on for 20 seconds. B) The pursuit condition: a dot appears on the screen and
moves to the left, right and eventually up then down. This repeats a second time,
but the dot will hold at its terminal position for approximately 1.75 seconds. Note
that only left and right movements are shown here for brevity. C) The target jump
condition: a fixation cross is drawn to the centre of the screen, and after a short time
(approx 2s), a dot is drawn on either the left or right side of the screen, which the
participant is instructed to shift their gaze towards. After the dot disappears, the
participant fixates on the centre cross again, which reappears. D) The vestibulo-ocular
response (VOR) condition: a centre fixation cross is drawn to the screen, which the
patient is told to lock their gaze to. With their gaze locked on the cross, the patient
turns their head left, then right, then tilts up then down. E) The brightness condition:
the patient fixates on the centre cross and after approximately 5s, the screen turns
white, testing the patient’s pupillary response times.
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4.4 Participants

Ethical approval was granted by the University of Alberta Human Subject Committee

(PRO00066577).

4.4.1 Controls

Data from fifteen control participants was collected (7 female, mean age: 54.2 ± 21.4

years) in an uncontrolled setting—the home of the data collector. All participants

gave informed consent to participate in the present study.

4.4.2 Patients

Data from seven patients was collected (2 female; mean age 56.7 ± 14.5 years) at the

University of Alberta Hospital. All patients gave informed consent to participate in

the present study. All patients were admitted with a chief complaint of vertigo. A

summary of the patient data can be found in Table 4.1.

Patient ID Sex Age Nystagmus HINTS Stroke Diagnosis

P1 M 39 No No Yes Left PICA stroke

P2 M 70 Yes No No Peripheral vertigo

P3 F 45 Yes Yes No Peripheral vertigo

P4 M 39 Yes No Yes Right lateral medullary stroke

P5 M 63 No No Yes Intraparenchymal hemorrhage

P6 M 63 No No Yes Right PICA stroke

P7 F 78 No No No Cranial nerve VI palsy

Table 4.1: A description of all admitted patients in the study. General information
about sex and age were collected, as well as whether nystagmus was present. The
HINTS column marks whether or not the battery was used on the patient. Stroke
presence and the appropriate diagnosis is listed in the last 2 columns.
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4.4.3 Data

Eye data

During each of the above procedures, the pupils of both eyes were recorded as X,Y

coordinate pairs over time. All of the data were pre-processed using a custom Python

script. In short, the data were recorded to the XDF file format, which contained

both the eye position data (with timestamps) as well as the named stimulus labels to

demarcate each of the stimuli in the methods above.

Cleaning

Raw pupil position data was cleaned by: 1) Removing any data points outside of

pupil camera bounds (<0 or >1); 2) Removing any data points more than 4 standard

deviations away from the mean position; 3) Removing any data points with velocities

greater than 6 (meaning the pupil was travelling across the entire camera 6 or more

times per second). After this removal, any gaps < 50 ms were filled using the inpaint -

nans [111] function in MATLAB then, any remaining islands of data < 50 ms were

deleted. Finally, the pupil data were filtered in MATLAB using a 4th order zero-

lag low-pass Butterworth filter with a cutoff frequency of 10 Hz. A 10 Hz cutoff

was chosen because the demands of the tasks do not depend on eye dynamics with

movements more than 10 times per second.

4.5 Analysis

The stimuli were analyzed to derive measures that would be intuitive to an attending

clinician and match the features they’d typically look for in a manually administered

exam. An analysis procedure will be described for each of the stimuli.

4.5.1 Stare

For the Stare task, the participant was asked to simply fixate on a cross presented

in the centre of the screen for 20 seconds. During this time, the XY position of each

118



pupil was recorded. To analyze this data, a dispersion calculation algorithm was

used. The dispersion of the pupil locations over time gives a description of how still

the eyes are able to stay during a fixation. Below is a general description of how the

dispersion of the Stare data was calculated.

1. We calculated an error ellipse representing the uncertainty of the data at a

specified level of confidence. It takes three inputs: a confidence interval (as a

chisquare value), mean, and a covariance matrix.

2. The eigenvalues and eigenvectors of the covariance matrix encode the size and

orientation of the error ellipse, with the angle between the largest eigenvector

and the x-axis.

3. The function returns the center, size and angle of the error ellipse. The size of

the ellipses are interpreted as the major (i.e. width) and minor (i.e. height)

axes.

Error ellipses were calculated, and the sizes of the width and height of the ellipse

were used to give an intuitive representation of how much the eyes remained stationary

during fixation. The units are normalized between 0 and 1 along each dimension.

Here, a high value (e.g. > 0.1) would indicate that 95% of the data can be found within

0.1 of the mean. In general, a low dispersion value along each dimension indicates that

the ellipse fit tightly to the data, and the eyes were relatively stationary throughout.

A clinician could interpret this value as: a lower value to zero being indicative of

normative behaviour, and a higher value being indicative of a potential oculomotor

problem (e.g. nystagmus). The width and height of the ellipse are rotated according

to the angle of the camera that recorded the eye movements. It is important to note

that due to the arbitrary nature of the camera placement and ellipse fitting routine,

the labels of width and height are arbitrary, but used to be descriptive of the axes.
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Clinical relevance

Stable gaze fixation is a common test used during a neurological assessment in both

adults and pediatric vertigo patients [154]. When a physician asks a patient to fixate

on a stationary object in space, they are observing the pupils for signs of nystagmus

and other motor disorders that prevent stable fixation [154, 159]. If the eyes are not

able to hold fixation, the spread of the pupil position over time will be wide. The

width and height values of the ellipses are quantified values that a clinician can use

to assess how stable the gaze is: the lower the value, the more stable the fixation.

Additionally, a larger error in one of the axes can be indicative of a specific neu-

rological etiology. For example, upbeat nystagmus can be caused by damage to the

brainstem (medulla and pons) or the midbrain [160]. It could potentially be useful

to compare the size of the axes to one another as a way to quantify how much move-

ment is occurring in either horizontal and vertical space. Since the data are rotated

arbitrarily (by the ellipse fitting algorithm), it would be necessary to visually inspect

the eyes during movement to determine which axis belongs to horizontal and vertical

movement.

Examples of what the ellipse fitting algorithm looks like in practise can be found in

Section 4.5.1. Here, we can see four different test cases for the dispersion calculation.

In general, the control data appear to be tightly fit. We show exemplar good and

poor quality patients to show the general trend of data quality. The patient (good)

data are much more diffuse, with clusters of points appearing further apart, but the

ellipse still fits the data reasonably well. The patient (poor) data are extremely far

apart, leading to a very poor fit. Finally, uniformly sampled random noise (0 to 1) is

used to demonstrate a good fit with poor quality underlying data. The spread of the

data results in a very large width and height, spanning the entire capture area.

120



Patient (poor) Noise

0 1

0

1

0.125 0.25 0.375 0.5 0.625 0.75 0.875

0.143

0.286

0.429

0.571

0.714

0.857

Control Patient (good)ControlControlControlA B

C D

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8

0 80 160 240 320 400 480

0

100

200

300

400

0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

700

Figure 4.2: Here, four plots of eye dispersion data are shown. The X and Y axis
of each plot are scaled to the control data to allow for easy reference. Individual
pupil positions are plotted in black, represented in black, with a green error ellipse
indicating the uncertainty at a 95% confidence level. For the top row, the blue line
is the height of the ellipse, and the red line is the width. A) Control data is shown,
scaled between 0 and 1 on each axis. This is used as a reference to demonstrate the
scale difference between control and patient data. B) Exemplar “good” patient data
is shown. Here, we can see that the X axis has to be scaled up 8x to plot the data
and ellipse. The Y axis has to be scaled up over 70x to capture all of the data. C)
Common patient data, categorized as “poor”. Here, the scale of the X and Y axes
must be scaled to 480x and 400x respectively to effectively plot the data. The control
data plotted at this scale would be too small to effectively see. D) Noise reference
data to get a sense of the worst possible case. Here, we see the X and Y axes must
be scaled 800x and 700x respectively to plot the data. The noise data are sampled
from a uniformly distributed sequence. Again, the control data would be too small
to notice plotted at this scale.
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4.5.2 Pursuit

The ability to smoothly pursue an object in space requires tight oculomotor control,

driven primarily by cerebrocortical areas of the brain [156]. Inability or deficits in

smooth pursuit are indicative of a problem with either a motor nerve or brain function,

potentially giving evidence for centrally derived vertigo. Here, we assess two main

components of smooth pursuit: velocity stability and the ability to start and stop

smooth pursuits. The pursuit task has two parts: 1) following the smooth movement

of the object and 2) fixation on the object. To capture these two aspects, we calculated

the velocity during movement and fixation, as well as the dispersion during fixation.

Velocity was calculated as the change in position over time. Dispersion was calculated

during fixation identically to the Stare task.

In general, a low relatively constant velocity should be expected as the eyes smoothly

track the object on the screen. Spikes or drops in velocity are indicative of oculo-

motor problems, suggesting the subject is having trouble maintaining fixation. The

velocity of the cleaned XY position data per eye was computed by taking the norm

of the gradient of the position data. For the dispersion, we should expect to see a

tight dispersion (and elliptical fit) during the fixation portion, indicating the eyes

were still.

Clinical relevance

When assessing pursuit, the eyes should be able to steadily track a moving object

without having to ‘catch up’ or jump ahead. Assessing smooth pursuit gives insight

into the brain’s ability to predict where an object is going to be, and the ability to

start and stop eye movements. A trained physician would look at the patient’s eyes to

see if their eyes are smoothly moving whilst tracking the object, and note any jumps

or lags [154, 161]. Additionally, they will also assess the ability to hold their gaze

at extreme positions, testing for the occurrence of nystagmus [154, 159]. Here, we

quantify how smoothly the eyes were able to track the moving dot (velocity means)
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and the state of the eyes at the edges of the screen (dispersion at the hold positions).

A physician could interpret a low average velocity and a tight dispersion at the hold

positions as normative responses. A high average velocity indicates that the eyes had

to catch up or jump ahead of the target many times, suggesting a possible underlying

motor problem that could be neurological in origin. An inability to consistently fixate

at the hold positions will result in a large dispersion being calculated. This behaviour

could be interpreted as the presence of nystagmus, which could be assessed in the

same way as the Stare task.

4.5.3 Vestibulo-ocular reflex (VOR)

The VOR is a compensatory reflex that allows gaze fixation to remain stable on

the retina during head movements. The vestibular system detects movements in the

head, which are transmitted to the brain stem and eventually the extraocular muscles

responsible for controlling the eyes [162]. Damage to any of these areas can produce

deficits in the VOR response. These deficits can be detected as an inability to stabilize

gaze during head rotations, meaning the pupil position will not move congruently with

the head. We can assess this by calculating how well the pupil movements match the

expected head movements. For example, while fixating on a stationary target, and

nodding the head up and down, then left and right, the movement of the pupils should

resemble a cross (see Fig 4.3 for an example). One challenge that arises is the location

of the pupil camera; it will be on an angle relative to the eye. We can generate a

model that attempts to fit a cross to the generated eye movements that corrects for

the angle of the pupil eye tracker camera. This is done as follows:

1. Using the cleaned XY pupil position data (per eye), an orthogonal linear least

square fit is performed using a custom MATLAB function3. The function fits a

line to the data, while attempting to minimize the residual error and remaining

3This function was originally written by Per Sundqvist and is available on the MATLAB File Ex-
change
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Control Patient (good) Patient (poor) NoiseA. B. C. D.

Figure 4.3: A visual example of data from a single eye collected during the VOR task,
with the XY data points plotted in blue, the mean of the XY data plotted in as a
green dot, and the fitted cross drawn in red. Three participants and an example of
noise are shown. Cleaned data is shown for each participant. A) In the control data,
the cross fits quite well, and the data are not noisy, resulting in a lower error. B)
An example of good patient data, which are more noisy (even post-cleaning), which
results in a cross that fits relatively well, but the data are much more spread out
resulting in a higher error. C) The poor quality patient data are even worse. Further,
it does not resemble a cross and cannot be easily interpreted. D) An example of
uniformed distributed noise with a cross fit. This is one of the worst cases for fit, as
data are randomly spread over the entire collection area.

orthogonal to the line.

2. An orthogonal line is generated using the ‘orthogonalLine‘ function [163], drawn

across the mean of the XY data.

3. For each point, the minimum Euclidean distance to either of the two lines is

calculated.

4. The root-mean-squared error is taken of the Euclidean distances.

A returned value of 0 would indicate that the data perfectly fit the cross, and a

value of 1 would indicate the worst possible fit. To get a sense of what normative

data looks like, we calculated the cross fit error and compared it to some worst case

scenario data.

Clinical relevance

Deficits in the VOR can give hints for localizing neurological damage, such as to

the cerebellum [164] or vestibular system [154, 165]. Typically, the VOR is assessed
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during the head impulse of the HINTS exam [154, 166], where saccades during the

impulse are taken as a sign of vestibular imbalance. In our task, these saccades would

show up during head rotations to the affected side. Additional saccades would result

in the overall shape of the data being less ’cross-like’, and result in a higher error.

It is possible that the current analysis could benefit from saccade detection, but the

data quality from patients was too low. A physician could interpret a low error (i.e.

more cross-like) to be indicative of a normative VOR response, and a higher error as

a signal that the patient should be investigated further for cerebellar or vestibular

lesions.

4.5.4 Jump

Saccadic eye movements are controlled by many brain areas, including the frontal

lobes, brain stem, and various oculomotor nuclei [154, 167]. Brain stem damage is

associated with slowed and delayed saccades [154], with isolated slowed horizontal

movements being diagnostically different from vertical [168]. Inaccurate saccades can

be a sign of damage to the cerebellar vermis and fastigial nuclei [169]. The participant

is shown a cross in the centre of the screen to fixate on and, after some amount of

time, a target (a white dot) will show up on either the left or right side of the screen.

It is important that the subject is not anticipating the stimulus, so the inter-trial

interval is sampled from a pseudorandom uniform distribution.

For metrics, we calculate the reaction time as well as accuracy. To calculate the

reaction time, pupil position data converted into velocities and then standardized (i.e

Z-score). Peaks in the velocities are interpreted as saccades, and reaction time is

calculated as when the velocity reaches at least 5% of the peak velocity (previously

used in Stone et al. [124], see Figure 4.4). Accuracy is calculated by determining if

the eyes went in the correct direction of the stimulus. These measures are in line with

what physicians attempt to quantify manually [144, 154, 168], where high reaction

times and inaccurate saccades are cause for concern.
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Figure 4.4: An example plot of the eye velocities during a jump in the Jump task.
The x axis is time (seconds) and the y axis is velocity as a standardized unit (z-
score). The top plot is the left eye data, and the bottom plot is right eye data. The
maximum velocity is annotated with a black arrow, and the ¿5% threshold used to
calculate reaction time is marked with a red annotated arrow. It is worth noting that
this value is the first value beyond the threshold, so it may not be exactly 5% of the
maximum velocity. Both eyes are shown to give a sense of the amount of variance
that exists between the eyes, but also allows us to see if there are any non-consensual
responses.
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Clinical relevance

Deficits in the ability to make meaningful saccades give hints as to where damage may

have occurred. As stated above, a physician may interpret a delayed saccade onset as

a sign of brain stem damage. The current task only assesses horizontal saccadic jumps,

but could easily be modified to include vertical jumps. A high average response time

could be interpreted as a deficit in starting saccades, providing valuable diagnostic

information. While accuracy was reduced to a simple binary response, the inability to

make saccades in the correct direction (or multiple saccades being needed, interpreted

as an incorrect saccade) can have diagnostic value. These metrics, when interpreted

properly, can provide useful information to the attending physician.

4.5.5 Brightness

This task is split into two phases: a dark phase and a bright phase. The participant

is told to fixate on a white centre cross on a black screen (i.e. identical to the stare

task), and after around five seconds, the background turns white (see Fig 4.1E). This

causes a pupillary constriction reflex as the eyes adjust to the light. This is meant to

approximate shining a flashlight in the eyes.

The original intention of this task was to calculate parity of the pupillary constric-

tion response between the eyes, but the data quality was too poor to conduct this

analysis. Even in control participants, we did not see usable data that we speculate

is because of the version of the Pupil Labs recording software used at the time4.

Instead, we used the first five seconds of the data (i.e. the dark phase) to calculate

a secondary stare dispersion measurement. For details of how this was calculated, see

the Stare section.

4It does appear that more recent versions of the software have fixed a bug, so this may be feasible
in a future iteration of this study.
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Clinical relevance

It is well known that shining a light into the eyes elicits a pupillary constriction reflex.

In general, normal humans will have a consensual (ipsilateral and contralateral) re-

sponse regardless of which eye the light is shone in [170, 171], and non-responsiveness

is indicative of neurological problems [170–173]. For example, it is possible to dif-

ferentiate between an intracranial pathology (mass lesions and/or damage to the

hypothalamus, midbrain, and pons) and circulatory arrest based on the pupillary

response alone [171]. The ability to detect an abnormal response and report that

information to a trained physician could speed up the diagnosis of a brain trauma

patient.

4.6 Results

We used descriptive statistics to demonstrate the overall performance in the control

and patient groups. Measures collected from the control group can be found in Table

4.2. Measures from the the patient group are shown in Table 4.3.

Following cleaning, 25.4 ± 27.2% of the data was lost in the controls. To better

understand this number, below are the data loss following cleaning for each procedure.

For Stare data, an average of 15.1 ± 22.9% the data was lost. For Pursuit, an average

of 21.5 ± 25.4% of the data was lost. For Jump, an average of 25.6 ± 27.1% of

the data was lost. For VOR, an average of 36.1 ± 20.7% of the data was lost. For

Brightness, an average of 28.8 ± 36.2% of the data was lost.

The patient data had much more data loss following cleaning. Across all procedure

types, an average of 73.9 ± 35.1% was lost. When split by the procedure, the data

loss was relatively similar regardless of the procedure. For Stare data, an average of

74.1 ± 41.1% of the data was lost. For Pursuit, an average of 69.8 ± 38.3% of the

data was lost. For Jump, an average of 68.4 ± 37.8% of the data was lost. For VOR,

an average of 73.2 ± 33.1% of the data was lost. For Brightness, an average of 83.8
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± 31.5.% of the data was lost. Even from just this data we can tell that the quality

of patient eye data was very poor and will make subsequent analysis challenging.

4.6.1 Performance

The device was capable of collecting data in both the control and patient groups. In

general, there were few issues with device dropout or technological issues, demonstrat-

ing that the device was capable of being deployed in an uncontrolled environment.

None of the participants dropped out of the study, and the study was completed in

typically less than 10 minutes. Data from all of the subtasks (with the exception of

Brightness) are shown in Tables 4.2 and 4.3.

In the control data, it is worth noting one subject (C12) was not able to generate

usable Stare dispersion data, due to a temporary dropout of pupil data.

In the patient data, the data appear to be much more variable, with much higher

means and large standard deviations. Here, we believe that this data is poor quality

due to the patient’s general inability to complete the tasks, but not due to a failure

of the device itself. Additional evidence of the poor quality data can be found in

Figures 4.3 and 4.5.1C.

4.6.2 Control data

The control data, in general, were relatively homogenous. This provides a useful

baseline from which subjects who deviate (i.e. have higher or lower values) could be

used as a signal of disease. All referenced data can be viewed in Table 4.2.

Stare

Data was collected from each pupil separately to test the consistency of the dispersion

algorithm. Testing each eye individually also gives the advantage of being able to

detect non-consensual responses between the eyes. In the Stare dispersion column of

Table 4.2, we can see that the width (x) and height (y) of the ellipses between the
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eyes are remarkably similar to one another, with the average width being 0.0090 ±

0.0047 and 0.0097 ± 0.0080 for P0 and P1. The average height was 0.0105 ± 0.0068

and 0.108 ± 0.0093 for P0 and P1. Given that the control subjects did not have any

noted visuomotor disorders, we would expect the response from each eye to be similar

to one another.

Pursuit

Pursuit data are split into three columns: Pur. hold dispersion, Pur. hold vel., and

Pur. move vel.. Pur. hold dispersion describes the pupil dispersion over time while

holding fixation on the extreme positions of the Pursuit task. Similarly, Pur. hold

vel. describes the velocity of the pupils during the hold fixation portion. Finally,

Pur. move vel. describes the average velocity of the eyes while the eyes are smoothly

tracking the object.

The average hold dispersion width was 0.0075 ± 0.0049 and 0.0072 ± 0.0046 for

P0 and P1. The average height was 0.0075 ± 0.0054 and 0.0056 ± 0.0046 P0 and P1.

The average hold velocity (i.e. fixation) was 0.0003 ± 0.0004 and 0.0001 ± 0.0005

for P0 and P1. The velocities only had a single value per eye. The average move

velocity (i.e. smooth tracking) was found to be 0.0006 ± 0.0011 and 0.0003 ± 0.0001

for P0 and P1.

These measures are good descriptors for what a trained clinician would be looking

for. A high degree of dispersion may suggest the presence of a neurological etiology.

The velocity of the pupils while fixating on the stationary object can help discern

if issues are arising during the smooth pursuit portion of the task or the fixation

portion. Spikes in velocity during smooth movement would manifest as a higher

average velocity, suggesting the eyes may be ‘jumping ahead’ or trying to catch up

to the smoothly moving object. It is also interesting to note that the hold velocities

are approximately twice as low in the hold state as compared to the movement state.

This would make sense, as holding the eyes on a single target should result in lower
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velocities.

VOR

The VOR task tests how well the eyes are able to maintain a stable gaze while the

head is moving. Each eye was assessed independently to see if the response was

consensual. In our case, the movement of the eyes over time looks like a cross (see

Figure 4.3 for an example), where the better the eyes are able to hold fixation on

the central fixation point, the better fit the algorithm calculates (to get a better

understanding of how the algorithm worked, read Section 4.5.3).

In general, we found that the control subjects were able to complete the task easily,

as shown by their mean results (Table 4.2). The average VOR error was 0.0018 ± 0.009

and 0.016 ± 0.007 for P0 and P1. The average response from both eyes was roughly

0.017, whereas randomly sampled noise elicited a result of around 0.17—over ten times

more error. Here, we think this result is quite useful for assessing someone’s ability to

use the VOR reflex, because deficits can be indicative of neurological damage. This

measure appears to be relatively consistent between subjects, suggesting that it might

be useful as a normative baseline measure.

Jump

The Jump task is designed to assess saccadic eye movements. Two measures are

extracted from the data: accuracy and reaction time.

In general, most participants had a high accuracy value, with the average perfor-

mance being close to 90%. Due to the way accuracy is calculated, it is possible that

some participants with low accuracy values did not necessarily look in the opposite

direction, but rather they either failed to respond to the stimulus, or they correctly

looked at the stimulus and pre-emptively moved back towards the central fixation

cross. In these cases, an incorrect response is calculated.

We calculated the eye movement reaction time for each stimulus. The average
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reaction time was around 250 ms, which is consistent with what we see in humans in

similar tasks [174].

4.6.3 Patient data

Overall, the data quality from the patient group was poor. Average data loss following

cleaning was 73.4%. In the following sections, results from each task will be discussed

and compared to data generated from uniform random distributions. The data appear

to be more similar to noise than to control data, suggesting that the recording quality

was low. All referenced data can be viewed in Table 4.3.

Stare

Data was collected from each pupil separately to test the consistency of the dispersion

algorithm. In the Stare dispersion column of Table 4.3, we can see that the width (x)

and height (y) of the ellipses are much larger than that of the control data. Here, we

have some evidence that the patient data is more similar to randomly sampled noise

than it is to the control data (see Section 4.6.3A, note the logarithmic axis).

Here, the average width was 0.298 ± 0.253 and 0.164 ± 0.153 for P0 and P1. The

average height was 0.367 ± 0.326 and 0.138 ± 0.144 for P0 and P1.

The patient data roughly falls into two categories: good and poor (for an example

of each, see Section 4.5.1, Patient (good) and Patient (poor)). The good data, while

much more disperse than the control data, at least appear to be roughly clustered.

When using the control data as a scale, good patient data appears to have 7x more

dispersion than the reference control. The poor patient data are much more diffuse—

with the fitted ellipse being about 480x as large as the reference control. In this case,

it is likely that the poor patient data is heavily influenced by noise.

Pursuit

Identically to the control data, Pursuit data are split into three columns: Pur. hold

dispersion, Pur. hold vel., and Pur. move vel.. For the Pur. hold dispersion task,
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again we see that the underlying data quality appears to be poor.

The average hold dispersion width was 0.150 ± 0.153 and 0.185 ± 0.178 for P0 and

P1. The average height was 0.211 ± 0.282 and 0.184 ± 0.170 P0 and P1.

The average hold velocity (i.e. fixation) was 0.019 ± 0.022 and 0.017 ± 0.014 for

P0 and P1. The velocities only had a single value per eye. The average move velocity

(i.e. smooth tracking) was found to be 0.018 ± 0.017 and 0.017 ± 0.016 for P0 and

P1.

When compared to control data, we can again see that the patient data are more

similar to noise data than control data (see Section 4.6.3B), where control data had

approximately 90 times less dispersion than the patient data. For the Pur. move vel.

data, we can see that the patients have much higher average velocities, but it is not

possible to compare this data to a noise baseline. The Pur. hold vel. data show a

similar pattern to the Pur. move vel, yet it would be reasonable to expect the hold

data to have lower overall velocities than the movement data.

VOR

As discussed in the control data, each eye was assessed independently to see if the

response was consensual. The task, when done properly, will result in a ‘cross-like’

shape of the resulting pupil data (see Figure 4.3 Control data for an example). Using

the two patient examples in Figure 4.3, we can see that at best, a patient data does

not look exactly cross-like and at worst appears to be a smattering of dots somewhat

randomly dispersed. It is worth noting that the quality of the fit is quite poor on

most of the patients. The average VOR error is 0.063 ± 0.049 and 0.041 ± 0.018 for

P0 and P1. For reference, the VOR cross-fitting yielded an average of 0.167 ± 0.019.5

See Figure 4.3 for an example of noise.

On average, the cross fitting procedure produced 3 times more error when assessing

patient data versus control data. In Section 4.6.3D we can see that the algorithm

5This was calculated from 1000 simulations of uniformly distributed noise.
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assessed on uniform sampled noise results in a error much higher than the patient

data, suggesting that there may be more signal remaining in the noisy data. This

is evidenced in the patient data in Figure 4.3, where there are data points that do

appear to fall along a cross, but much more of the data is corrupted by noise.

Jump

Identical to the control data, two measures were extracted from the data: accuracy

and reaction time.

Here, the accuracy is relatively low, with an average accuracy of 58.9%—a value

just above chance. It is not clear if the patients simply were not accurate in their

responses or if the eye tracker was unable to reliably track the eyes during the task.

When looking at the reaction time data, we can see that the mean reaction time

between subjects is around 330ms. This is not unexpected, as it is slower than what

we would expect for simple saccade reaction times. It is difficult to determine if these

slower responses are because of the illness of the patient, or if it is due to the poor

quality in the underlying data.

4.7 Discussion

We developed a test battery that approximates real-world assessments and is user-

friendly for non-expert data collectors, which allowed us to evaluate the feasibility

of collecting data in a clinical setting. There were three distinct goals we had when

we conceived of this study. The first was using a non-expert to act as the primary

data collector. This was very important because it is not reasonable to expect all

end-users of a product to be experts to use it. Further, new technologies tend to be

difficult to deploy in hospitals due to physician unfamiliarity [151, 175]. One way to

alleviate this is by making the technology easy to use. We succeeded in this regard,

as a non-expert was capable of easily collecting data with few issues. Our second

goal was collecting metrics that are useful in a clinical context. Our metrics were
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)

Figure 4.5: (Caption is on the next page.)
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Figure 4.5: General results from the control and patient populations. For all plots,
he black dots are data from patients, with the horizontal black bar being the mean
response. The other colored dots are data from control participants. The green star
is a noise reference, where each task was assessed on uniformly distribution random
values. The 95% confidence interval is shown for control data only. A) The stare
dispersion values are shown for each pupil. The X axis denotes the width and height
of the generated ellipse for each pupil. The Y axis is dispersion in normalized units
on a logarithmic scale. The blue bar is the average width of the ellipse, with the
individual participants plotted as blue dots. The red bar is the average height of
the ellipse, with individual participants plotted as red dots. In general, the patients
have a dispersion about 1.5 magnitudes larger than the controls, likely due to the
poor quality data. B) The dispersion values for the hold periods of the pursuit task
are shown for each pupil. The X axis denotes the width and height of the generated
ellipse for each pupil. The Y axis is dispersion in normalized units on a logarithmic
scale. The blue bar is the average width of the ellipse, with the individual participants
plotted as blue dots. The red bar is the average height of the ellipse, with individual
participants plotted as red dots. Here, again the average patient response appears to
be about 1.5 magnitudes larger than control data, again likely due to poor quality
data. C) The pupil velocity data during the pursuit task are shown for each pupil.
The X axis is the pupil being assessed. The Y axis is the average velocity of the eyes
while the eyes are moving during the pursuit task on a logarithmic scale. Similar
to other data, the pupils of patients appeared to be moving around 1.5 magnitudes
faster than controls. D) The root-mean-square error of the VOR cross fitting analysis
technique is shown for each pupil. The X axis the pupil being assessed. The Y axis
is the root-mean-square of the error from fitting the cross on a logarithmic scale. In
general, we can see that the patient data did not fit the calculated cross as well (for an
example of patient data, see Figure 4.3). E) Jump reaction time is shown. Here, the
data in grey are from control participants. The Y axis is reaction time in milliseconds
on a linear scale. In general, there is an average response time of around 250ms,
with patients being about 330ms. F) The proportion of correct saccades is shown.
Again, the data in grey are from control participants. In general, the control patients
performed much better than the patients, who on average performed a correct saccade
around 58% of the time.
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derived from neurological assessments typically performed on patients experiencing

vertigo symptoms [154]. Again, we were successful in generating quantifiable metrics

that a health care professional could interpret and use to augment their diagnosis.

Finally, for the device to truly be useful, we aimed to test it in the same uncontrolled

environment that it would ostensibly be deployed in during actual use (for a discussion

on this topic, see [176]). We used two uncontrolled environments to collect data, and

found that the characteristic of being uncontrolled did not appear to negatively impact

data collection. The data collector was able to successfully collect data from control

participants, however, we found that the data quality was too low for proper analysis

in the patient population. We found that the device performed well, but the state

of the participant was much more influential on the quality of the data than we had

previously expected.

Our test battery consisted of five components and was developed to approximate

the real-world assessments that physicians use to evaluate the eye movements of

patients with vertigo symptoms. The software was designed to be user-friendly and

require minimal training to use. To test this, all data were collected by a research

assistant with no prior eye tracking or research experience. This approach was chosen

to evaluate the viability of collecting data in a clinical setting where an eye tracking

expert will not be available. Initially, the device and software were tested on control

subjects to gauge the feasibility of collecting non-patient data in an uncontrolled

environment. We found that the system was effective and capable of generating

measures that could potentially be useful in a clinical setting. We attempted to test

this on a patient population that requires eye movement assessments for effective

diagnosis. Patients with a primary complaint of dizziness were selected for the study

because they often have associated eye movement disorders, which could prove to

be a fruitful testing bed. Because the patients primarily complained of vertigo, we

suspected it may be difficult to collect high-quality eye tracking data because many

vertigo patients experience nausea when their eyes are open for extended periods of
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time [154, 159]. In general, we found this to be true.

Data were collected from control participants in a non-laboratory setting. The

data collector was able to fit the eye tracker, and complete the stimulus presentation

procedure with minimal issues. In general, the entire procedure took less than 10

minutes, including the time of fitting the eye tracker. We found that we were able to

generate relatively consistent data across controls (see Section 4.6.3 and Table 4.2).

The data quality, was first assessed visually to see if it matched the expected pat-

terns. For example, the expected pattern of eye movements during the VOR task

was expected to be in the shape of a cross (see Figure 4.3 for an example of control

versus patient data). We found that this was true, and in general control participants

tended to have more ‘cross-like’ data than the patients. Additionally, for the Stare

task, we expected the data to be plotted closely together (during fixation) and again

this was found to be true (see Section 4.5.1).

In general, the data quality from the patients was poor (see Section 4.6.3 for overall

results). We speculate this is primarily because of the state of the patients when they

were admitted. Because the patients were experiencing extreme vertigo, many found

it too difficult to complete the tasks, yet none opted to drop out of the study. While

initially, we were disappointed by this finding, it allowed us to assess one of our

primary goals of the study: did the data collector influence the quality of the data?

When compared to the control data, it is obvious that the data collector was not at

fault for the data quality, as issues with data collection should have equally affected

both controls and patients. In short, it appeared that the subjects were simply too ill

to complete the task. This is useful for creating a future iteration of the device that

could potentially eliminate some of the longer tasks and opt for a smaller number

with a shorter duration.

Perhaps it is not surprising that the patients were unable to produce high-quality

data. Despite their eagerness to participate, we were not fully cognizant of the lim-

itations posed by vertigo, which impacted their ability to maintain focus even on a
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simple fixation cross. For this particular group of patients, collecting high-quality

data without making substantial modifications to the software to accommodate for

the difficulty in keeping their eyes open seemed unrealistic. To address this issue, it

may be worth exploring tasks that are more accommodating for patients who strug-

gle to keep their eyes open for extended periods. Additionally, there are two main

strategies to enhance the data collection process and obtain high-quality data without

sacrificing the user-friendliness of the software. The first would be to reduce the task

space to one or two assessments such as Stare and Pursuit and reduce the amount

of time needed to collect data. The second is to re-target to a patient population

that would be more easily assessable such as those with smooth pursuit deficits due

to strabismus, but critically without dizziness [177]. This falls beyond the scope of

the present study, yet would make for a valuable area of future research.

The emergency department (ED) plays a vital role in the diagnostic process in hos-

pitals. However, the demanding nature of EDs can pose challenges to maintaining a

completely objective and systematic approach to diagnostic procedures. For example,

when a patient presents with a suspected brainstem stroke, the pressure to make an

accurate diagnosis can make it challenging to conduct exams such as the HINTS test.

Eye trackers, by providing objective and quantifiable data, could help ED physicians

make informed decisions for patients. This study represents a preliminary attempt at

introducing advanced laboratory tools like eye trackers into the clinical setting and

gauges the potential benefits and limitations of utilizing these tools. This of course

necessitates real-world data collected in the same environment that diagnostic proce-

dures are performed. Gathering real-world data is essential because when evaluating

a system intended for clinical use, it should be tested under the same conditions

and environment in which it will eventually be deployed. However, collecting data

immediately after a patient’s admission is challenging due to various factors. The

logistics of data collection from patients can be difficult as it requires someone to be

available at all times. Additionally, patients may not be in a state that allows for
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data collection. Furthermore, the range of symptoms among patients can be broad,

making it difficult to compare data across patients. Understanding these limitations

early on in the development cycle allows for us to iterate on the current design and

improve it for future deployments.

This study aims to investigate the use of eye tracking technology in clinical settings.

The initial objective was to collect and analyze data from patients with vertigo, in or-

der to identify markers that suggest more severe symptoms, such as those associated

with a stroke. Although this goal was not fully achieved, the data collected sug-

gests 1) this system is technically feasible, and 2) minimal expertise is required for its

deployment. The results of the present study suggest that, despite encountering logis-

tical difficulties in data collection, it is feasible to imagine a clinical setting where the

system is easily accessible and available to all staff. Future iterations of this system

should be tested in more clinically useful areas, such as ambulatory or pre-hospital

care. Because the system was developed with portability in mind, it can be easily de-

ployed almost anywhere. The system, requiring only a laptop and eye tracker, is ideal

for deployment in rural clinics with limited access to clinical technology [178, 179].

The laptop and eye tracker are stored in a backpack in between patients, meaning it

is easy to grab to collect data. Another potential area of deployment is within lower

stress environments that would benefit from quantified data, such as an optometrist’s

office. Optometrists regularly seek out and deploy new technology within their prac-

tises, and tend to have a favourable view on exploring newer technologies, especially

if it increases the administrative workflow [180]. One study showed that minimal

experience is needed to optimally detect small eye movements [181], suggesting that

a well-tuned algorithm could potentially replace this component. An obvious use case

for this device could be simply quantifying many of the eye movement components of

a standard examination, such as smooth pursuit, fixation, and saccades. Eye trackers

could be especially useful to increase the accuracy of diagnosis while simultaneously

reducing the workload for the optometrist.
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4.8 Conclusion

In summary, this study investigated deploying an eye tracker in an environment that

is fundamentally difficult to control for the purpose of providing useful clinical infor-

mation. A simple-to-deploy task was developed based on neurological examination

principles. Critically, data collection was performed by physician with no prior eye

tracking experience to show that data quality is not dependent on the operator’s ex-

perience. Overall, the device was successful in generating useful metrics in an uncon-

trolled environment on control participants. However, some technological limitations

prevented useful values from being generated in our preferred population: patients

admitted with vertigo. Finally, we showed that it is technically possible to generate

clinical metrics that an attending physician could use to augment their diagnosis of

a patient.

Below are the key takeaways from this study:

1. It is important to target the end-user of the data being collected.

2. Collecting data in uncontrolled settings is possible and fruitful, depending on

the context.

3. Eye tracking expertise is not necessarily needed to collect high quality eye track-

ing data.

4. Consider the context and environment critical when developing tools for real-

world use, and ensure to validate them in similar environments to their intended

use.
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Chapter 5

General Discussion
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Control plays a critical role in most scientific study designs. The purpose of this

thesis was to investigate gaze and body movement data collection in environments

that necessitate real-world behaviours at the cost of experimental control. As a conse-

quence of removing experimental control, I hoped to demonstrate that the validity of

the data would increase. As I said in the Introduction, I hope I’ve convinced you, the

reader, that as control decreases (and noise increases), there are still useful metrics

buried in the data. Of course, as we have come to find, the usefulness of a metric

depends entirely on who is interpreting it. Each of the studies in this thesis reduced

control in order to target an end-user in charge of data interpretation. The impor-

tance of this cannot be overstated. Investigating data collection in environments

that require real-world behaviors at the cost of experimental control raises important

questions about the usefulness of metrics and who is interpreting them. As control

decreases and noise increases, it becomes even more crucial to identify the most rel-

evant and informative metrics for the end-user responsible for data interpretation,

whether it be psychologists studying attentional mechanisms or grocery store owners

seeking to understand consumer behavior.

Recall the earlier example of the psychologist interested in understanding what

cereal customers choose at a supermarket. Here, it is important to consider a) what

kind of data is going to be collected, b) what kind of metrics are going to be pro-

duced from this data and, c) who is going to be interpreting the metrics. We can

imagine two different groups of people who might want to interpret the resulting data

metrics. The first are psychologists who are interested in studying human attention

behaviour mechanisms. The second are grocery store owners who simply want to

better understand what cereals people are buying. For these two groups, a different

study altogether might be run. For the psychologist, you might focus on visual search

mechanisms and make predictions based some attentional theory of mind, which may

entail a study design that isolates the particular mechanism the theory implicates.

The grocery store manager, on the other hand, might be more interested in practical
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recommendations for their store, such as which cereals to stock or how to better dis-

play them. Therefore, they might want a study design that provides more actionable

insights, such as which cereals are the most popular or which ones are more likely

to be purchased when placed at eye level on the shelf. Ultimately, the data collec-

tion, metrics produced, and interpretation of results should be tailored to the specific

goals and needs of the intended audience. The critical difference between these two

designs is the output, driven primarily by the ecological validity of the behaviours

being performed.

The goal here is to comprehend human behavior, which necessitates understanding

behavior within its contextual framework. The central theme of this thesis centers on

the interplay between behavior and context, specifically, the extent to which behavior

can be quantified within a given context, as well as how our attempts to measure

behavior can influence it. We call this the tension between experimental control,

or the ability to tightly manipulate variables in a laboratory setting, and ecological

validity, or the extent to which findings can be generalized to real-world contexts.

Measuring visuomotor behavioral outputs such as eye and body movements is one

way to understand human behavior within its contextual framework. In this thesis, I

explore the tension between experimental control and ecological validity, or the extent

to which findings can be generalized to real-world contexts. By measuring visuomotor

behavioral outputs, I aim to demonstrate how this tension plays out in the study of

human decision-making processes.

5.1 What is the real world?

This discussion aims to situate my studies on the spectrum from high control, low

validity to low control, high validity. In the following section, I will discuss the use of

the term “ecological validity” and its place in modern psychology. I argue that the

term is poorly defined and often misused. Below I will discuss a brief history of the

term, and how it is used in contemporary psychology and neuroscience research.
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5.1.1 Ecological validity

To many psychologists, studying real-world behaviours is synonymous with using an

‘ecologically valid’ study design. Ecological validity as a term was originally coined

by Egon Brunswik, who described it as the “correlation between a proximal sensory

cue (e.g., retinal stimulation) and a distal object-variable (e.g., object in the envi-

ronment)” ([182]; paraphrased by [176]). In short, it is the relationship between

how things are in the real world and how they are represented—in this case, how

‘matched’ the object is in the environment on the retina. This definition is very

different from how we think of and use the term ecological validity today, which is

generally comparing how closely laboratory studies resemble and generalize to the

real world. Brunswik thought of psychology as a science of organism-environment

relations, where it is important to understand the relationships between how things

are perceived in a specific environment, or ecology (for a review of the history of the

term, read Holleman et al. [176]). While this is a concrete definition, it fails to re-

flect how many psychologists use the term nowadays, which is not typically explicitly

defined, as critiqued by Holleman et al. [176]. In general though, we should strive

to create and conduct experiments in a manner that most closely resembles what

the researchers think the natural environment would provide. My use of the terms

ecological validity and real-world are meant to reflect this goal; collecting data in the

contexts in which we think natural behaviours emerge is key to understanding how

people actually behave.

So what does it mean to conduct research in the ‘real-world’? Arguably, there is

no such thing as the ‘real-world’, as it does not have a clear definition or any specific

properties. Perhaps a good approach is to specify the behaviours and the context in

which we are interested in studying them. For example, to best study where humans

look when being asked to pass the salt at dinner time, it would make sense to track the

eyes of a person who is actively eating dinner rather than trying to create a analogous
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laboratory-based task. This is peak ecological validity because we are capturing a

behaviour in its natural form in the environment that it actually takes place in. Of

course, this experimental design is more difficult to collect and analyze the underlying

data than a laboratory-based task that may contain the same required movements.

However, what is not clear is whether the tools we use in visuomotor behavioural

neuroscience—eye-trackers, motion-trackers—are capable of collecting data in these

naturalistic environments. The results of the three studies presented give credence to

this idea, and further suggest that these tools are capable of being deployed outside

the lab to generate actually useful metrics despite a clear increase in noise. Further,

there is a clear trend in the technology powering these techniques becoming cheaper

and more portable over time, suggesting that conducting such studies will become

increasingly feasible in the near future.

5.1.2 Each study in context

Below, I will discuss each of the three studies in this thesis in the following framework.

First, I will give a summary of the study and the main findings. Second, I will discuss

where the study falls on the spectrum from control to validity. Third, I will discuss the

limitations of the study, and how these were shaped by where it sat on the spectrum.

Finally, I will discuss the utility of the study - who was the audience and what do

the findings mean when factoring in the environment and behaviour being studied.

5.2 Study 1: eye and body tracking in the lab

5.2.1 Summary

In the first study, I used simultaneous eye and body tracking and had participants

complete a simple everyday task: pick up and move an object around. This study was

conducted in a controlled laboratory space, but critically the task was designed to

be more naturalistic than typical laboratory-based tasks. One key part of the study

that promoted the emergence of natural behaviours was the use of a head-mounted
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eye tracker as well as an open motion capture collection space. The participant was

fitted with motion capture marker plates, but was otherwise free to move. As a con-

sequence, allowing more free movement essentially permits more noise to be present

in the resulting data. Arguably, this task has more real-world relevance because

participants are free to choose how they move. When contrasted with many other

studies investigating visuomotor reach-to-grasp movements, the participant tends to

be restricted to a seat in front of a computer or tabletop [63, 69, 183, 184]. Clearly,

this is not how humans naturally behave, so it unclear how the findings of many of

these studies apply to the real world. Allowing free movement was crucial for this

study to have any level of ecological validity. The purpose of this task was twofold:

1) participants could perform a complex behaviour with minimal restrictions and,

2) to generate a set of recommendations for scientists interested in collecting three

dimensional gaze vectors from participants who were able to move freely.

For eye tracking, we used a Pupil Labs Core eye tracker, which had a low-profile

form factor and granted free head movements. For motion capture, we used OptiTrack

motion capture systems to track the body and environment. One of the technical hur-

dles overcome during this study was the simultaneous collection and synchronization

of eye and body movements. To solve this, the lab streaming layer (LSL) library

was used to synchronize the data from the eye tracker and motion capture systems.

Ensuring the eye and motion capture data were using the same timestamps was nec-

essary, as a key component of the calibration procedure was tracking the eyes while

fixating on a moving wand. Four different calibration procedures were used, which

involved the participants fixating on the tip of a wand that was either stationary or

moved in a pattern. The resultant eye movements were recorded for the purpose of

generating a model that was capable of predicting the 3D gaze location based on the

location of the pupils in the eyes.

A simple quadratic regression model was used to predict 3D gaze vector direction

based on 2D pupil position in each eye and either a Cartesian or Spherical coordi-
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nate system representing the location of the calibration wand in space. Each of the

four calibration models were then assessed on a) calibration data, b) validation task

data, or c) pasta box task data. The pasta box task was a real-world task in which

participants picked up and moved a pasta box from point to point [14, 25, 84, 124,

185]. The validation task used the same positions the participant would move the

pasta box, but critically only required fixation on these points instead of interaction.

Put simply, the validation task allowed us to know exactly where a participant was

looking. This framework gave us a compelling way to assess the resultant gaze vector

models.

In general, we found that it was possible to generate highly accurate gaze vectors

that corresponded to about 1-2cm of linear error, or around 1 visual degree (if in

peripersonal space, around 60cm distance) even during the pasta box task trials. Ad-

ditionally, our use of the spherical coordinate system (as opposed to the more typical

Cartesian system) also reduced the amount of error in the gaze vectors. While the

models were robust, head turns tended to introduce more error, likely because these

kinds of eye movements were not represented in the model training input. We also

found that binocular data, if given the option, should always be recorded but mostly

for redundancy. There are points where a single camera may be collecting a higher

quality signal than the other, and relying on both camera signals then will reduce

the overall quality. We speculate on the possibility of a dynamic system that chooses

which eye to collect data from using an algorithm that assesses quality over time. Fi-

nally, and perhaps the most important finding, was that the calibration routine used

by the researchers should reflect the locations in space that the participant is actu-

ally going to interact with. If a researcher wishes to collect real-world data, natural

behaviours should be used to inform this design.
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5.2.2 Spectrum

It is worth noting that although the task completed during this study was inspired

by real-world behaviours [14, 25, 84, 124, 185], it is still relatively highly-controlled

compared to the other studies in this thesis. As a consequence, the real-world validity

of this study is low. For this study, we took a single step away from the control

paradigms typically deployed during visuomotor reach-to-grasp tasks by allowing free

head and body movements. But, the study still took place in a laboratory setting,

where the lighting, camera placement, eye tracker fitting, and intermediate tasks were

highly controlled.

This study was an earnest attempt to try to predict gaze behaviour in a less

controlled task representative of one that could take place in real life. One possible

way to increase the validity of this study is to deploy the models generated in real

situations, which would still require the researchers to carefully interpret the output.

It is possible that such a system could exist in the future, but as of today, no system

exists that can capture the combined gaze, movement and environment data necessary

to generate 3D gaze vectors mapped to labelled real world objects from non-laboratory

settings.

5.2.3 Limitations

The first study is arguably the least ecologically valid of the three. The task itself

is understandable as a naturalistic task that almost everyone performs on a daily

basis, but does not take place in the same context that we are truly interested in.

Because it is simply not feasible (or possible) to deploy the eye and body tracking

system used in the home of each individual participant, concessions had to be made.

What this study shows is that it is feasible to collect and analyze this kind of data.

Earlier studies investigating natural behaviours, such as the tea-making [67] and

sandwich making [12] tasks (both are discussed together in [122]) showed that natural

behaviours were vastly underrepresented in the literature. In the sandwich making
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task, participants were asked to make a sandwich and pour themselves a glass of

cola. For this task, they were intentionally given no instructions to encourage natural

behaviours to emerge. We aimed to mimic this paradigm, but the techniques and

methodologies we used necessitated a laboratory setting. Additionally, although the

technology was seen as quite portable and lightweight at the time, even more portable

eye tracking (and motion capture) systems have become available since the time this

study was conducted.

With the recent advent of markerless motion capture systems (e.g. [60, 61, 104])

and even more portable eye tracking systems, it could be possible to actually record

people moving about and interacting with objects in their daily lives. This study was

a first step towards this goal. The methods in this study could likely be applied to

these technologies, providing a more intimate look at the natural behaviours humans

use in their lives.

5.2.4 Utility

The output of this study was aimed at researchers who are interested in collecting

real-world behaviours in the laboratory. To be even more specific, it is for researchers

who want to conduct visuomotor behavioural studies interested in generating 3D

gaze vectors. As such, the findings in this study are intended for a more technical

audience who may have a more intimate understanding of the inherent limitations

and capabilities of the hardware used. In the conclusion of the study, we gave six

key rules of thumb to consider when collecting naturalistic visuomotor behaviour in

the lab. Of these, I would argue the most important piece of advice is to make sure

the task used to assess behaviour reflects the actual real-world behaviour you are

interested in studying. If the task does not reflect real life, it will have considerably

low utility.
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5.3 Study 2: eye and body tracking in the wild

5.3.1 Summary

In the second study, I made my first attempt at moving eye and body tracking

outside of the laboratory. This study was completed during an internship at BioWare

in Edmonton, Alberta. Here, I explored a research field known as user experience

research (UXR), which typically uses qualitative methodologies such as interview

and subjective reports to study and understand user behaviours. One of the goals

of this study was to explore bringing quantitative measures to UXR by exploring

visuomotor behaviour. Clearly, a wealth of valuable information is embedded in the

way our eyes and hands work together. The stimulus for this study was a simple menu

navigation task. The menu was based on a popular video game menu system (Mass

Effect 3; BioWare), where various options to modify the gameplay are embedded.

For this study, I was interested in exploring the use of eye and hand movements to

detect when users were not optimally navigating the menu system. This is a concept

known as friction. It is worth noting that not all friction is necessarily bad friction;

sometimes added friction can help ensure a user has a better understanding of the

product through the facilitation of slow thinking [186, 187]. Bad friction is something

that does not facilitate a successful interaction [186]. For example, imagine the last

time you browsed a website with a poor layout.

I used eye and mouse tracking while users navigated the menu while given either a

direct or indirect prompt. The direct prompt was meant to give step-by-step instruc-

tions (i.e. more explicit) while indirect prompts gave directions using more casual

language (i.e. implicit). I predicted that the direct prompts would result in less fric-

tion overall, and the indirect prompts would more closely reflect the behaviours of

a user possibly confused—i.e. more akin to a new user of the menu. As this study

did not take place in a controlled laboratory setting, this was a good opportunity to

assess the usability of eye and mouse tracking in the wild. Additionally, I was able to
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collect data from remote participants using online data collection services. This data

was collected using webcam-based eye tracking algorithms [130]. The main findings

of this study were 1) it is possible to collect and analyze eye and mouse tracking

data in a relatively (compared to laboratory-based) uncontrolled setting, 2) the tasks

can be split into natural phases to grant a deeper insight into where friction may be

occurring, 3) metrics that calculate the dynamic relationship between the eyes and

the hands (i.e. Tlead; [129]) can be co-opted to understand user intention and 4)

webcam-based eye tracking is feasible, albeit with the penalty of having lower spatial

and temporal resolution. This study gave credibility to the idea that not only can eye

and mouse tracking data be collected outside of the lab, but it is capable of generat-

ing valuable information. These techniques, if deployed by an expert user experience

researcher, can augment the UX design process to better suit user needs.

5.3.2 Spectrum

For this study, I collected data from two different sets of participants: a local and

remote cohort. For the local cohort, I had a high level of control over the behaviours

and contexts in which the participants acted. Here, the computer hardware, webcam,

lighting, room temperature, and essentially every aspect of the environment was kept

consistent between participants. For the remote cohort, I had very little control over

any of these factors, providing more opportunity for noise to augment the data. While

noise was certainly present in both cohorts, the variability in the hardware (webcam,

computer, mouse) and environmental aspects altered the data. Still, I found that the

data was of sufficient quality.

Overall, the level of control ranged from high (local cohort) to low (remote cohort).

The resultant utility of the data was high. A key finding was the persistent friction

point that occurred when users navigated to the Narrative sub-menu, regardless of

the cohort. This suggested 1) the noise inherent in the remote cohort was not enough

to overpower the signal and 2) quantitative user experience is a feasible real-world
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application of naturalistic data collection paradigms. In short, this study showed

that natural behaviours can be quantified in non-laboratory settings with a direct

application in UX research and design.

5.3.3 Limitations

In this study, I collected real-world data from participants using a simple user interface

with the intent to uncover points of friction. For scientific findings to be applicable to

real-life, the data should be derived from naturalistic behaviours. This study, while

not a perfect representation of ecological validity, took some of the necessary steps to

see if our scientific control assumptions hold up when being applied to real behaviours.

One obvious finding was that as experimental control decreases, analysis difficulty

increases. Because the participants were given considerable freedom to complete the

task, it is harder to systematically analyze the resulting data. We partially solved this

issue by dynamically splitting the data into phases based on what stage of completing

the task the user was on (i.e. navigating to, on, and away from the goal frame). This

approach could be refined to even smaller sub-phases, such as prior to clicking on a

specific button on a goal frame. Significant value can be gained from analyzing these

interactions as a considerable amount of effort is invested in refining frequently used

functions on websites, for example [188].

The menu system here was designed to be similar to the menu system in Mass Effect

3, rather than simply using the video game itself. Feasibility testing was performed

using the actual game as a collection platform, but was quickly abandoned as it was

too difficult to modify the game’s source code to output the markers and variables

required to do the analysis ultimately performed. For example, it was not possible

for the game engine to output the location of any particular button on the screen, as

the user interfacing code was performed using an internal scripting language that the

game engine could not interface with. Future games (and game engines) would heavily

benefit from making this kind of data accessible for external analysis, as studies like
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this one could be performed on the native version of the game rather than recreations.

Of course, the time (and therefore financial) investment needed to ensure access to

this kind of data is high, and more work should be conducted to further demonstrate

value in UX fields.

Additionally, the experimenter must place a lot of trust in the participants to

complete the task as designed. In especially the remote cohort, it was impossible

to know if the participant truly understood the study until at least the analysis

is complete. One of the main limiting factors was pre-processing of the data; it

is harder to use a ‘one-size-fits-all’ approach; data need to be carefully analyzed

individually, at least initially. Regardless of the difficulty, the result was fruitful data

that were able to inform us of two candidate friction points; the Accomplishments and

Narrative menu options. Qualitatively, it was relatively easy to contextualize these

findings into their validity as actual friction the user was experiencing, or simply a

byproduct of the task itself. Because the study was intended to provide probative

value of collecting quantitative measures for UX research designs, the goal was rather

vague—find friction in the user interface. While the experience was worthwhile, future

quantitative UX studies should probably be constrained to specific questions, such as

predicted problem areas, to reduce the analysis burden on the researcher.

5.3.4 Utility

This study necessitated real-world behaviour because its purpose was to develop met-

rics that a UX designer could use to inform their design decisions. Most UX research

relies heavily on qualitative methods [125], but this study demonstrates that quan-

titative methods are potentially just as fruitful and can be used in conjunction with

more traditional methods. Many UX researchers will rely on user reports about a

product’s usability, but arguably many users may not even be aware they are experi-

encing unwanted friction. The data here can be interpreted by trained UX researchers

to uncover friction points that qualitative methods may miss, which gives very spe-
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cific information about when and where the user was experiencing friction. Of course,

the context of the behaviour is still the most important aspect of determining intent,

such as when users navigated on the Accomplishments goal frame as opposed to the

Narrative goal frame.

5.4 Study 3: eye tracking in the clinic

5.4.1 Summary

The objective of my third study was to determine the requirements for developing

a device that produces valuable diagnostic data for medical professionals examining

patients who suffer from dizziness. Typically, a neurologist will administer a neuro-

logical exam to assess the basic cognition and movement of the eyes. This test usually

involves fixating on a stable target, smoothly pursuing a moving target, saccades be-

tween two targets, assessing the vestibulo-ocular reflex1, and assessing pupillary light

reactivity.

For this study, I created a device that records the pupils during a digitized version

of the basic neurological exam described above. The primary output of the device,

following analysis, are quantified metrics that a trained physician can use to augment

their diagnostic process. The device used a Pupil Labs Core eye tracker, which was

attached to a portable laptop computer. Critically, the device was designed to be

easy to use by novice eye tracking users, with all of the data collection being per-

formed by a non-expert. We sought to see if a non-expert was a reasonable source

of noise being introduced into the data, as the main users of such a device would

be non-expert health care professionals. Data were collected from two populations:

a control group and patients experiencing vertigo. One of the primary motivating

factors behind this study was determining if it was possible to deploy an eye tracker

in an uncontrolled environment that was still capable of generating clinically useful

information. Clinics and emergency departments tend to be both visually and audi-

1This is not always assessed, as sometimes it is not feasible to move the head of the patient.
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torily busy, with patients coming and going, medical devices beeping, and patients

tending to be nervous to begin with. These factors contributed to the uncontrolled

nature of the environment, making it an excellent testing ground for determining

feasibility of such a device.

In general, it took less than ten minutes to collect data from each patient and the

role of the data collector was minimal. Prior to the beginning of each sub-task, the

data collector simply had to explain the task to the patient and hit a single key to

begin. To determine the influence of the patient group, the control group was collected

in a similarly uncontrolled environment. In general, the data quality in the control

participants was much higher than that of the patients. This was not unexpected,

but ultimately the data quality of the patients was too poor to properly analyze.

This provided evidence that it was not the environment alone that caused the poor

quality, but rather was likely due to the patients’ inability to keep their eyes open for

the duration of the task. The high data quality of the control group demonstrated

that not only was the device capable of generating usable diagnostic metrics, the data

collector was also not the likely cause of the poor data quality in the patient group,

suggesting that an expert eye tracking researcher is not required to collect data in

the wild. Clinically inspired metrics were generated, and their potential value to a

healthcare profession is speculated upon for the potential to improve the efficacy of

a standard neurological exam.

5.4.2 Spectrum

The metrics generated here fall squarely in the “low control, high validity” category.

The setting precluded the possibility of controlling many aspects of the environment,

such as the auditory noise level, or the lighting. In this way, the metrics have high

validity because the data were recorded in the exact kind of environment that such

a device would be deployed in. Although we found that the noise overpowered the

signal in patient population, the controls provided evidence that it was not due to
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the implementation of the software or the hardware. The patients in this study were

perhaps too sick to participate, and it simply may not be possible to collect eye

position data.

It is also worth noting that this may have been a point of failure where the tech-

nology is not mature enough for deployment in such uncontrolled settings.

5.4.3 Limitations

Working in a clinical setting is extremely challenging for many reasons. Because

the focus of this study was collecting data from patients experiencing symptoms of

vertigo—where symptoms can range from benign to completely debilitating. Unfor-

tunately, because vertigo diagnoses tend to overlap with stroke, many of the patients

in the present study were too sick to reliably collect data from. However, this was one

of the proposed purposes of this research: we did not know if collecting eye movement

data was a reasonable request from these kinds of patients. Because the perceived

payoff was great—augmented data to increase the likelihood of a correct diagnosis,

preservation of hospital imaging resources—and the relative burden on the patient

was minimal, it was preferable to collect data in the environment in which the patient

is naturally displaying their symptoms.

The device in its current form may be better suited for medical procedures that

have more predictable patients such as an eye test at an optometrist’s office. Patients

here are much less likely have a debilitating illness, and it is easy to imagine how the

metrics provided by the device could be used by a trained optometrist. For example,

saccade measurements could be quantified to assess an oculomotor disorder, instead

of relying purely on qualitative assessments. Further, controlled settings can provide

additional testing grounds to find technical failings of the hardware or software.

Additionally, the sample size for the study is relatively low for both the control and

patient population. For the patient population, it is remarkably difficult to collect

data because of the logistical requirements. The data collector had to be essentially
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on call because we were interested in collecting data from patients soon after being

admitted through the emergency department. This ultimately made it more difficult

because extensive cooperation between the neurology and emergency departments was

beyond our control for the duration of the study. Collecting more control participants

is possible, and future iterations of the device and software would benefit from a large

sample size from which normative measures are derived.

5.4.4 Utility

This was the most challenging environment thus far, which was necessary because the

purpose of the device was to quantify aspects of an actual neurological exam. As such,

the metrics generated in this study are intended for a trained health care provider for

the purpose of augmenting their diagnosis of a patient. Currently, physicians assess

the eye movements of patients purely qualitatively, which makes specificity difficult.

Pre-determining normative behaviour (from controls) as a reference point can make

it easier for a physician to categorize a potential patient as needing treatment, similar

to blood test thresholds.

5.5 Retrospection and future directions

Collecting data in the real world is hard. One of the difficulties comes from the

increased noise that is inherent to every day life. I would argue that while this noise

is inconvenient from an analysis standpoint, it is important to consider that many of

the analogs of behaviours we study in the laboratory are not representative of their

natural counterparts.

The purpose of this thesis is to encourage you to think outside the box when it

comes to designing experiments and to take a more liberal approach to predicted data

quality. Many of the assumptions we make when designing a study for data collection

or analysis are founded in reality; if we have a specific question we want to answer, we

should be particular in how we go about answering it. But what about when we step
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away from the lens of basic science and want to know how we actually apply what we

have learned? A web designer may want to gain some insights into how their users

actually use their website, and why could they not use some of the same scientific

tools and methodologies that we use in the lab?

A recent review by Snow & Culham [189] challenged the cognitive neuroscience

and psychology communities to think deeply about their use of experimental proxies

in visual studies. In this context, a proxy is a stimulus or task that is assumed to

accurately represent a counterpart in the real world. Snow & Culham argue that

while images are easy to create and manipulate in studies, they fail to capture some

of the most important aspects of objects to be classified as real world. Critically,

2D images presented on a computer screen lack actability: the ability for someone to

perform a genuine action. Someone cannot reach for and open a picture of a box of

cereal the same way you could a real physical box. Further, there is evidence that

real-object advantages exist over image analogs. Actability is a critical component of

how we perceive real objects, where real tools shown to participants elicited a stronger

motor preparation neural correlate than images [190]. Clearly, conducting research

on real-world behaviours seems to necessitate actual genuine contexts to truly study

natural behaviour. The relationship between how real an object is and its ecological

validity is shown in Figure 5.1.

I contend, and have hopefully demonstrated in this thesis, that the same argument

made against visual proxies by Snow & Culham extends more generally to experimen-

tal proxies for understanding behaviours in real world contexts. Coming into a lab

and using a keyboard to choose what cereal you like from a picture on the screen is not

the same as going to the supermarket and choosing a box off the shelf. Moving a pasta

box across repetitive trials in the laboratory is not the same as making Kraft Dinner

at home, but shares some key features. Measuring how you look and move a mouse

navigating a video game menu, while from the comfort of your own home and using

your own device, is closer to playing a real video game, but maybe not quite. But
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collecting data from vertigo patients as they present in the Emergency Department

is exactly where you want to be to collect vital data from a real world environment

where this kind of data can literally have life or death significance. Maybe it is not

surprising that this is ultimately where this work hit the current technological wall,

but the success collecting this kind of data across the variety of contexts on display

in this thesis - combined with the rapid evolution of gaze and movement tracking

technologies - means we are likely on the cusp of achieving a categorically new kind

of ecological validity.

Future work investigating real-world visuomotor behaviours will likely become more

prevalent as the underlying technologies improve. Tools such as DeepLabCut [104]

and MediaPipe [61] are freely available and allow for the recording of body movements

using consumer hardware. Recall the earlier example of the person shopping for cereal

in the supermarket. Many of the technologies required to do this kind of study are

available, but the most challenging aspect of collecting real behaviour in the wild is

the person being recorded should not be aware. Simply being aware you are being

watched is enough to alter behaviour [1, 75, 86, 136, 191]. This obviously brings

about a much needed debate on the ethics of recording others without their informed

consent. While it is beyond the scope of this thesis, I will admit that I do not have

a good answer to this problem.

167



Figure 5.1: Objects can be conceptualized as falling along a continuum of realness,
where artificial objects may lack ecological validity and fully real objects have high
ecological validity. The actability of an object vastly affects our perception. Over
time, our presentation of objects can be closer to fully real with the advent of tech-
nologies like virtual and augmented reality. However, the most ecologically valid type
of stimulus is a real bona fide object. Figure taken from Snow & Culham [189].
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ABSTRACT
Measuring where people look in real-world tasks has never been
easier but analyzing the resulting data remains laborious. One solu-
tion integrates head-mounted eye tracking with motion capture but
no best practice exists regarding what calibration data to collect.
Here, we compared four ~1 min calibration routines used to train
linear regression gaze vector models and examined how the coordi-
nate system, eye data used and location of fixation changed gaze
vector accuracy on three trial types: calibration, validation (static
fixation to task relevant locations), and task (naturally occurring
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fixations during object interaction). Impressively, predicted gaze
vectors show ~1 cm of error when looking straight ahead toward
objects during natural arms-length interaction. This result was
achieved predicting fixations in a Spherical coordinate frame, from
the best monocular data, and, surprisingly, depends little on the
calibration routine.
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1 INTRODUCTION
Eye tracking has become cheaper and easier to use. However,
video-based analysis requires time-consuming manual labour. This
analysis can be simplified by integrating eye tracking with three-
dimensional (3D) motion capture (mo-cap) to generate 3D gaze
vectors (GVs) in the mo-cap space. Recently, open source solutions
have made it easier to merge multiple data streams. No standard
method exists for collecting eye/mo-cap calibration data or using it
to generate GVs [Nyström et al. 2013]. Here, we investigate four
calibration routines to address this gap. We also explore using
monocular (only left or right eye) versus binocular (both eyes) data
and the effect the coordinate system (CS) has on accuracy when
used to predict gaze fixation. We ask two main questions: 1) which
combination of calibration, eye data, and CS type produces GVs
with the highest accuracy? and 2) how accurate are GVs that are
generated from 2D eye and 3D mo-cap data?

2 METHODS
2.1 Equipment
Eye tracking data were collected using a Pupil Labs Core USB
headset (Pupil Core v1.8;[Kassner et al. 2014]) and synchronized
with mo-cap data using Lab Streaming Layer (LSL; [SCCN 2021]).
Mo-cap data were collected using an OptiTrack mo-cap system
(two systems: 12-camera Prime 13W system, 200Hz; and 12-camera
Flex 13 system, 120Hz). Reflective markers tracked position and
orientation of the Head, Right Hand, Task Cart, Side Cart, Pasta
box (task), and Calibration Wand (calibration). Any combination of
eye and motion trackers could be used, provided they collect time
series data as 3D marker position and 2D pupil positions.

2.2 Participants
Twenty-one undergraduate and graduate University of Alberta
Department of Psychology students participated. Eight of these
participants were collected at 120 Hz and 13 were collected at 200
Hz. One 200 Hz participant was removed due to unusable data,
for a total of twenty subjects. This study was approved by the
University of Alberta Health Research Ethics Board under protocol
Pro00087329.

2.3 Procedure
Each experiment consisted of 3 sets of Calibration/Validation tri-
als (cal. set) and 2 sets of Task trials, proceeding in the order: cal.
set > Task trials > cal. set > Task trials > cal. set. Each calibra-
tion/validation set included four calibrations (one of each type) and
one validation, in a random order. Each set of task trials included
10 repetitions of the previously published Pasta Box task ([Lavoie
et al. 2018; Valevicius et al. 2018]; see Figure 1). In total, participants
performed 12 Calibration trials, 3 Validation trials and 20 Task trials.

2.3.1 Calibration Trials. Participants fixated on a mo-cap marker
(14 mm) for ~1 min per trial. The marker was placed at the tip of
a 40 cm wand which moved through the task space in one of four
calibration routines (CR; see Figure 2 for example pupil data):

Figure 1: The Pasta Box Task. (a) A real-world photo the
Pasta Box Task. (b) A labeled screenshot of GaMA analysis
software, the task reconstruction and the 72 Gaze Vectors
generated for this analysis.

(1) Experimenter Sweep (ES): The experimentermoved thewand
in slow S-shaped curves along each of the room-coordinate
axes (parallel to floor left/right, parallel to floor in/out, par-
allel to wall up/down).

(2) Self Sweep (SS): Replicating ES but with the participant hold-
ing and moving the wand.

(3) Experimenter Paint (EP): The experimenter moved the wand
to each of the task relevant locations (minus Neutral, see
below) and explored small (10-20 cm in each dimension)
volumes at these locations.

(4) Stationary Target (ST): The wand was fixed in front of the
participant (~60 cm), who maintained fixation while nodding
their head, turning it, then rotating it in a clockwise then
counterclockwise spiral.

2.3.2 Validation Trials. Participants were asked to fixate on five
stationary targets presented at task relevant locations (see Figure
1) for ~5 s. A beep cued the first fixation and a beep every 5 s cued
switches to each location: Neutral→ Side Cart→ Shelf 1→ Home
→ Shelf 1 → Shelf 2 → Home → Shelf 2 → Side Cart → Home →
Neutral.
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2.3.3 Task Trials. The Pasta Box task is shown in Figure 1. Partici-
pants began with their hand on Home and eyes fixating on Neutral.
A beep cued them to initiate a sequence of 3 movements: 1) Grasp
the Pasta Box at the Side Cart, move it to Shelf 1 then return hand
to Home; 2) Grasp the Pasta Box at Shelf 1, move it to Shelf 2 then
return the hand to Home; 3) Grasp the Pasta Box at Shelf 2, move
it to the Side Cart then return the hand to Home.

Figure 2: Sample eye tracking data from one pupil (pupil y-
coordinate vs. x-coordinate) for each of the four calibration
routines: (a) Experimenter Sweep (ES), (b) Self Sweep (SS), (c)
Experimenter Paint (EP), (d) Stationary Target (ST).

2.4 Data Processing
2.4.1 Pre-processing. Mo-cap and eye tracking data were filtered
(Butterworth low pass: mo-cap: 6 Hz; eye: 10 Hz) and cleaned (mo-
cap: gap filling, marker swaps; eye data: gap filling, outlier removal)
using automated scripts.

2.4.2 Gaze Vector Modelling. Creating a GV consists of 1) gener-
ating three eye gaze models using data from a specific Calibration
trial, then 2) using the models to predict the GV direction at each
frame in a given trial.

In step 1, calibration data is used to fit three eye gaze models.
Each model takes eye data as input and predicts a single coordinate
of the 3D gaze fixation point relative to the Head rigid body CS. Each
model was generated using the built-in MATLAB function fitlm
with the ‘quadratic’ model specification and robust fitting using the
’bisquare’ weight function. In step 2, the predicted fixation point is
transformed into the global mo-cap CS, and the GV is represented
by a line originating at the Head and extending infinitely through
the fixation point (i.e. the depth of fixation or radial distance from
the head to fixation point was not relevant in subsequent analyses).

We explored three options for model input (eye data from right
eye only, left eye only, or binocular data), as well as two options
for expressing the fixation point relative to the Head CS (Cartesian
[x,y,z] coordinates, or Spherical [r, θ , ϕ] coordinates). We antici-
pated that using the Spherical CS would increase accuracy of the

GV direction because it isolates depth of fixation to the ‘r’ model,
whereas in Cartesian, all three models are influenced by depth of
fixation.

3 RESULTS
We generated 72 possible GVs (12 CR x 3 eye data sets x 2 Head
CS) on each trial of the following types. Analysis was performed
using the “best” (lowest average distance to targets) GVs of each
CR. Statistical analysis was performed in JASP 0.14.1.0 [JASP Team
2020]. Repeated measures ANOVAs (α = 0.05) were used to analyze
the 3 trial types, which used the same participant pool but were sta-
tistically independent of one another. GVs whose average distance
from the target was more than 30 cm were removed. After removal,
Calibration n=19, Validation n=17, and Task n=18 participants.

3.1 Calibration Trials
We measured mean absolute distance between each GV and the
Wand Tip over each Calibration trial (excluding the trial a GV was
trained on).

Collapsing across all variables except Head CS, error was lower
when using a Spherical CS (Cart: 62.7 mm; Sph: 50.6 mm). When
collapsing across all variables except CR used to train the models,
ST performed the best overall (ES: 56.2 mm; SS: 55.2 mm; EP: 69.8
mm; ST: 45.4 mm). However, looking at how well data from each
CR can be predicted by other GVs, ST is hardest to predict (ES: 48.6
mm; SS: 48.8 mm; EP: 48.5 mm; ST: 80.7 mm).

3.2 Validation Trials
We measured the mean 3D distance between each GV and markers
at task relevant locations. Average 3D distances were calculated
over stable gaze periods of 1 s (out of the 5 s windows).

Average error was lowest using a Spherical CS (Cart: 42.9 mm,
Sph: 38.7 mm). Notably, error increased when participants were
looking at the Side Cart (Cart: 64.9 mm; Sph: 57.2 mm). Further,
using data from only the left eye (53.2 mm) generated lower error
than binocular (63.1 mm) or right eye (67.0 mm) at the Side Cart.

3.3 Task Trials
We measured the mean 3D distance between each GV and the
nearest face of the Neutral (4 cm cube, at trial start) and Pasta Box
(9 x 4 x 18 cm, at the start of each grasp and release) object (distance
was 0 mm if GV intersected object). Previous work with this and
other grasping tasks has shown that people look at objects they
are interacting with at these times [Land and Hayhoe 2001; Lavoie
et al. 2018; Williams et al. 2019].

Average error was sub-centimeter towards front-facing targets
when using the best monocular data and a Spherical CS (8.7 mm),
while a Cartesian CS (10.6 mm) produced ~1 cm accuracy. The
average error when gazing at the Side Cart was relatively worse
overall (Sph: 28.5 mm; Cart: 40.5 mm).

4 DISCUSSION
We generated GVs using combined eye tracking and mo-cap data.
Calibration data (~1 min of eyes continuously fixating a tracked
marker) were used to train linear models to predict 3D gaze di-
rection. We tested four different routines, three options for model
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input, and two options for model CS. The resulting GV accuracy
was assessed on Calibration trials, Validation trials, and Task trials
to produce best practice recommendations.

No one calibration routine consistently outperformed the others.
When assessed on other calibration data, GVs generated from the ST
routine performed best, but this was driven by ST data being hard
for other models to predict. Importantly, the consistently extreme
pupil positions observed in ST data (see Figure 2d) are not typical in
real-world behaviour (see Figure 2c). Instead, on the more natural
Validation and Task trials there was no main effect of calibration
routine. Thus, for natural, real-world tasks, any of the calibration
routines are likely to produce similarly accurate results, although
the ES routine produced the lowest nominal mean errors on Task
trials (< 4 mm for looks to Neutral).

One surprising result was that GVs generated using one eye’s
data were often more accurate than using both. We still recommend
collecting binocular eye data, but suggest generating GVs for each
eye individually, and determining which eye or combination is most
accurate for a given participant and task.

Using a Spherical CS produces GVs with a more accurate di-
rection than a Cartesian CS, aligning with our prediction. This
indicates that when only the direction of gaze is of interest, a Spher-
ical CS should be used to generate GVs. Future work will explore
the accuracy of the depth of the fixation point.

The accuracy of the GVs generated with this method was im-
pressive. In the best case, sub-centimeter accuracy was achieved for
functional task data using an ES calibration routine and Spherical
CS model. In all results (except predicting ST calibration routines),
error was below 10 cm, and most errors were below 5 cm. Of note,
within the 72 GVs generated for each participant, most participants
had at least one outlier GV that produced clearly inaccurate results.
Thus, we recommend collecting multiple calibration routines per
participant.
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1 SUPPLEMENTAL: MOUSE MOVEMENT STATISTICS

Below are statistics from the mouse movements omitted from the main text of the manuscript. Data here are to help
provide context to the eye and coordination measures collected.

Mouse: distance to navigate to the goal frame

This is the average distance the mouse traveled in pixels when the participant was navigating to the goal frame. In the
Local cohort, a significant main effect of GoalFrame was detected (F(1,1.306) = 15.850, p = 0.003, 𝜂2 = 0.393), where a
Narrative goal frame required the most mouse movement for users to find. The Remote cohort showed the same pattern
and the cohort comparison showed no significant main effects or interactions involving Cohort.

Mouse: distance on the goal frame

This is the average total distance the mouse traveled in pixels when the participant was navigating on the goal frame to
complete the task outlined by the prompt. In the Local cohort, a significant main effect of GoalFrame was detected
(F(1,2.623) = 6.898, p = 0.004, 𝜂2 = 0.315), where a Sound goal frame had the most mouse movement. For the cohort
comparison, a significant Condition × Cohort interaction was detected (F(1,1) = 5.274, p = 0.036, 𝜂2 = 0.004), where
Remote participants spent longer on the goal frame when given an Indirect prompt.

Mouse: distance to end trial

This is the average total distance the mouse traveled in pixels when the participant had completed the task on the
intended goal frame and went to end the current trial. In the Local cohort, no significant main effects or interactions
were detected. The Remote cohort showed the same pattern and the cohort comparison showed no significant main
effects or interactions involving Cohort.
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