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Abstract 

In recent years, rapid advances in genomic and transcriptomic sequencing technologies have 

enabled the compilation of vast libraries of protein sequences and thus an explosion in 

bioinformatics-based fields of research. Among these is proteomics – the study of global protein 

abundance within a biological system. Proteomics has risen to considerable prominence within 

the biological and health sciences due to its ability to grasp the subtle complexities of protein 

biochemistry on an impressive, system-wide scale. In conjunction with the compilation of 

protein-sequence libraries, advances in liquid chromatography and mass spectrometry have 

allowed for the reliable and rapid deconvolution, identification – and more recently, quantitation 

– of proteins within complex mixtures.  

Majorly comparative in design, modern proteomics experiments aim to aid in our understanding 

of how biological systems respond to specific conditions. Because of this, most proteomic 

quantitation is relative, typically being achieved using stable isotopic labels; proteins originating 

from two separate experimental conditions are independently labelled with heavy or light stable 

isotope tags, then mixed together in equivalent proportions. Subsequent analysis of the proteins 

present in the sample by mass spectrometry allows for the direct comparison of proteins’ 

abundances relative to each other, and inference of causality with respect to the experimental 

variable. While incredibly elegant in design, such techniques are often impractical, being 

intensive with respect to cost, time, and sample-handling.  

With applications ranging from the study of individual proteins and their biological functions to 

the complexities of disease pathogenesis, there has recently been a push toward the development 
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of robust methods for label-free comparative proteomic quantitation. As a result, several 

techniques for quantitative label-free proteomics have been developed, typically relying on one 

of two strategies for determining a protein’s abundance within a sample; namely spectral 

counting (counting the number of peptide fragments observed which match a protein’s 

theoretical fragmentation pattern) and extraction of ions’ absolute intensities (integration of the 

total abundance of ions determined to correlate with a protein).  

However, several caveats exist for each method and its implementation. Proper methods for data 

correction and normalization, the treatment of missing values between datasets, and statistical 

testing/correcting procedures all remain contentious and active areas of research. As such, there 

exists a lack of consensus on which strategies – and their execution – are best.  

Yet, due to the practicality and suitability of label-free proteomic quantitation in the study and 

characterization of nearly any biological system – including those frequented by diagnostic 

medicine – I have become a strong proponent of its use. This advocacy has led to our development 

of a robust, reliable, reproducible, and practical approach to label-free proteomic analyses. 

Through sample-specific normalization in addition to building upon previously proposed 

techniques, we provide framework for future label-free proteomic studies with application in any 

of a myriad of biological systems.  

This thesis herein explores the development and application of our mass spectrometry-based 

label-free semi-quantitative comparative proteomics technique, utilizing the sample-specific 

normalization of proteins’ absolute ion abundances in the characterization of:  
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1. The proteomic composition of murine hepatic lipid droplets; how they change in 

response to dietary stress experienced by periods of fasting or fasting followed by re-

feeding; and the implications the dynamics of these organellar proteomes may have 

in their physiological function.  

 

2. The proteomic changes observed in vivo for EL4-lymphoma tumours either untreated 

or treated with an etoposide-cyclophosphamide chemotherapeutic cocktail, and the 

implications these changes may have towards our understanding of tumour-death. 

 

3. The proteomic differences of luminal-subtype estrogen-receptor positive breast 

tumours from patients experiencing either disease-free or disease-recurrent survival; 

the identification of sub-populations of these tumours based on patients’ recurrence 

status, as defined by protein abundance; and the identification of several proteins 

potentially predictive of a patient’s disease-free survival. 
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Preface 

This thesis is an original work by David Andrew Kramer. Animal studies presented in Chapters 

2 and 3 were performed in accordance with the guidelines of the Canadian Council on Animal 

Care (CCAC), with approval from the University of Alberta Animal Welfare Committee (Animal 

User Protocol #402) and the Cross Cancer Institute Animal Ethics Committee (Protocol 

#AC10171), respectively. Human clinical tumour samples, with corresponding de-identified 

patient information as presented in Chapter 4, were obtained with sponsorship from the Alberta 

Cancer Foundation (ACF), with approval from the University of Alberta Health Research Ethics 

Board – Biomedical Panel (“Alberta Cancer Proteome Platform”, ID# Pro-00049009, 

08/26/2014). 

For Chapter 2, animal work, RT-qPCR, protein purification, and immunoblot verification was 

performed by Drs. Ariel Quiroga, Jihong Lian, and Richard Lehner. All mass spectrometry and 

subsequent data analysis was performed by myself. A version of Chapter 2 of this thesis has been 

published as: 

Kramer, D. A., Quiroga, A. D., Lian, J., Fahlman, R. P., & Lehner, R. (2018). Fasting and refeeding 

induces changes in the mouse hepatic lipid droplet proteome. Journal of Proteomics, 181, 

213–224. http://doi.org/10.1016/J.JPROT.2018.04.024 

For Chapter 3, the animal work presented was performed by Dr. Melinda Wuest, with 

immunoblot verification of endogenous caspase abundance performed by Dr. Mohamed Eldeeb. 

All sample preparation, mass spectrometry, and data analysis was performed by myself. A version 

of Chapter 3 of this thesis has been published as: 

Kramer, D. A., Eldeeb, M. A., Wuest, M., Mercer, J., & Fahlman, R. P. (2017). Proteomic 

characterization of EL4 lymphoma-derived tumours upon chemotherapy treatment reveals 

potential roles for lysosomes and caspase-6 during tumour cell death in vivo. PROTEOMICS, 

17(12), 1700060. http://doi.org/10.1002/pmic.201700060 

http://doi.org/10.1016/J.JPROT.2018.04.024
http://doi.org/10.1002/pmic.201700060
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For Chapter 4, clinical tumour samples and tissue microarrays were selected and provided by 

Drs. Judith Hugh and Sambasivarao Damaraju, respectively. Partial sample preparation was 

performed by Ramanaguru Siva Piragasam, and immunoblot validation of PIGR was performed 

by Yifei Wu. Sample preparation, mass spectrometry, data analysis, and immunohistochemistry 

was performed by myself, and was visually scored by Dr. Wei-Feng Dong. 

Supplemental tables for each chapter can be found with their respective publications, or 

collectively at: Supplemental Tables 
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Through art and science in their broadest senses it is possible to make a permanent 

contribution towards the improvement and enrichment of human life and it is these 

pursuits that we students are engaged in. 

-Frederick Sanger 
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HER2- human epidermal growth-factor receptor 2 negative 
HLM hypotonic lysis medium 
Ho null hypothesis 
HPLC high-performance liquid chromatography 
HR  hazard ratio 
HRP horseradish peroxidase 

iBAQ intensity based absolute quantification 
ICAT isotope-coded affinity tags 
ICD image current detection 
ICPL isotope-coded protein labels 
IEC ion-exchange chromatography 
IEF isoelectric focusing 
IgA immunoglobulin-A 
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IgG immunoglobulin-G 

IgM immunoglobulin-M 
Igs immunoglobulins 
IHC immunohistochemistry 
iTRAQ isobaric tags for relative and absolute quantification 
ITT ion transfer tube 
kDa kiloDalton 
KEGG Kyoto encyclopedia of genes and genomes 
kg kilogram 
Ki-67 ki-67 protein; marker of proliferation 
kNN k-nearest neighbours imputation 
KPNA2 importin subunit alpha 1 

LC liquid chromatography 
LCM laser-capture microdissection 

LC-MS/MS liquid chromatography with tandem mass spectrometry 
LD lipid droplet 
lFDR local false-discovery rate 
LiCO3 lithium carbonate 
LIT linear ion trap 
LM local minimum 
LOD limit of detection 
Log10 logarithm, base-10 
Log2 logarithm, base-2 

LTQ linear triple quadrupole 

Lys/K Lysine 
𝑚 Mass 
M parent molecule mass 
𝑚/𝓏 mass-to-charge ratio 
MA mass accuracy 
MALDI matrix-assisted laser-desorption ioniation 
MAR missing at random 
MCAR missing completely at random 
MCP multiple comparisons problem 
MF molecular function 
mg milligram 
MICE multivariate imputation with chained equations 

min minute; minimum 
MIP18 mitotic spindle-associated MMXD complex subunit MIP18 
mL millilitre 
MLE minimum least estimate 
mM millimolar 
MNAR missing not at random 
MRM multiple-reaction monitoring 
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MS mass spectrometry 
MS/MS or MS2 tandem mass spectrometry 

MSC minimum set cover 

mu mass units 
MUP/Mup major urinary protein 
MV missing value 
MW molecular weight 
MWU Mann-Whitney U-test 
N; 14N; 15N nitrogen; non-isotopic nitrogen; heavy nitrogen 
nm nanometer 
NPC normal-phase chromatography 

NSAF normalized spectral abundance factor 
NSI nanospray ionization 
NSPs number of sibling peptides 
N-terminus free-amine terminus of polypeptide chain 
OH hydroxyl group 
Ω radial frequency of VRF 
ω ion secular frequency 
ORF open reading frame 
PAGE polyacrylamide gel electrophoresis 
PAI protein abundance index 
PANTHER protein analysis through evolutionary relationships 
PAT perilipin-1, ADRP/Perilipin-2, TIP47/Perilipin-3 

PBS phosphate-buffered saline 
PBST phosphate-buffered saline – tween 20 
PCA principal component analysis 
PCR polymerase chain reaction 
PDCD6 programmed cell death protein 6 
Pemt polytopic membrane protein phosphatidylethanolamine N-methyltransferase 
pFDR positive false-discovery rate 
PGM3 phosphoacetylglucosamine mutase 
PgR+ progesterone receptor positive 
pH pondus hydrogenii 
PHYHD1 phytanoyl-CoA dioxygenase domain-containing protein 1 

pI isoelectric point 
PIA probabilistic inferrence algorithm 
PIGR polymeric immunoglobulin receptor 
π0 null-distribution 
PITC phenyl isothiocyanate 
Plin2 perilipin-2 
Plin5 perilipin-5 
PMSF phenylmethylsulfonyl fluoride 
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PPAR peroxisome proliferator-activated receptor 

ppm parts-per-million 
PRIDE proteomics identifications database 
PSM peptide-spectrum match 
PTH phenylthiohydantoin 
PTM post-translational modification 
p-value  probability value 
q charge of ion  
QqQ triple quadrupole 
Q-ToF quadrupole-time-of-flight 
qu ion trapping parameter, VRF dependent 
q-value Storey-Tibshirani literature FDR adjusted p-value 

R resolution 
R1,2 electrode radii (orbitrap) 

RF radio-frequency 
Rm characteristic radius of electric field (orbitrap) 
RNA ribonucleic acid 
𝑟0 radius of electric field 
ROC receiver operating characteristic 
RP resolving power 
RPC reverse-phase chromatography 
RT-qPCR reverse-transcription quantitative polymerase chain reaction 
SC secretory component 

SCX strong-cation exchange chromatography 

SDS sodium dodecyl sulfate 
SEC size exclusion chromatography 
Σ sum of 
SILAC stable isotope labelling of amino acids in cell-culture 
SINQ normalized spectral index quantitation 
SRM selected reaction monitoring 
ST Storey-Tibshirani 
STRING search tool for retrieval of interacting genes/proteins 
t time   
TAILS terminal-amine isotopic labeling of substrates 
TBS tris-buffered saline 
TBST tris-buffered saline – tween 20 

TCA tricarboxylic acid 
TENN tenascin-N 
TG triacylglycerol 
theta electric potential 
TIC total ion current 
TK-HSD Tukey-Kramer honest significant difference test 
TMA tissue microarray 
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TMX1 thioredoxin-related transmembrane protein 1 
TNBC triple negative breast cancer 
ToF time of flight 
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UPLC ultra-performance liquid chromatography 
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1.1. Overview of Proteomics 
Originally coined in 1994 by Marc Wilkins of Macquarie University, the term ‘proteome’ – a 

portmanteau of protein and genome – refers to the complete composition and quantity of proteins 

expressed within a biological system1. Making up the largest abundance of macromolecules 

within living organisms 2–4, virtually all biological processes within cells are carried out by, or 

with the aid of, proteins. Physical and functional associations of proteins with other biomolecules 

(such as DNA, RNA, other proteins, lipids, small molecule metabolites, or some combination 

thereof), orchestrated at specific times and locations within the cellular environment form the 

backbone of biology; whether through the enzymatic catalysis of biochemical reactions, or the 

provision of organellar and cellular architecture and transport systems, proteins provide a means 

of order in the otherwise chaotic and disordered chemical soup we have come to call life. 

With the advent of modern nucleotide sequencing techniques – DNA and RNA alike – and the 

completion of several genome sequencing projects5–7, the fields of modern genomics and 

transcriptomics have been able to garner an impressive amount of data regarding the sequences 

of protein-coding genes. This has been used to compile expansive databases of confirmed and 

putative protein sequences8–10, in turn providing comprehensive proteome maps for a multitude 

of organisms. While the substituents of a proteome can be identified by an organism’s coding 

genome, proteomes are highly dynamic in nature. The composition of a system’s proteome is not 

only dependent on the genetic makeup of the cell, but also a myriad of factors and processes 

including but not limited to spatial11–13 and temporal14 location, epigenetic regulation15, cell-cycle 

progression16,17, rate of protein translation18, protein half-life19,20, cell-type21,22, cellular 

metabolism and energy demands23,24, and the cellular/organism environment25–27. 

While such a degree of complexity and individual factor-based variability can seem staggering 

from a research perspective, the changes that occur within proteomes on a per-factor basis are 

precisely what has enabled the field of proteomics to rise to such prominence over the past several 

years. By performing comparative analyses of proteomes in response to a specific condition – 

whether it be, in a broad sense, exposure to a chemical stimulus, environmental condition, 

disease state, or simply time – a vast amount of information can be elucidated about a biological 
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system. How proteins function as a collective can be determined; cross-pathway connectivity can 

be observed, providing a means of understanding not only individual protein functionality, but 

also how protein networks interact to transform the cellular landscape to best suit the cells’ new 

environment. Information at the whole-proteome level is capable of highlighting proteins, 

pathways, and networks of importance during processes such as cellular differentiation, disease 

pathogenesis, metabolism, division, and death, providing a new global understanding of not only 

how cellular processes are carried out, but also a means to manipulate them.  

The comprehensive study of proteomics has historically been incredibly tasking. Prior to the 

1980s, proteins were identified on an individual basis after painstaking isolation through 

techniques most often involving electrophoresis, the most prominent being two-dimensional gel 

electrophoresis (2DE)28,29. Using 2DE, proteins are first separated based on their isoelectric 

properties via isoelectric focusing (IEF); using an immobilized pH gradient in a polyacrylamide 

gel and an electric current, proteins migrate to the pH at which they are electrostatically neutral. 

While quite sensitive, IEF suffers when applied to membrane proteins (low solubility), or 

proteins’ whose pIs are incredibly alkaline (i.e. pI > 11, ~ 3% of the proteome)30. In addition, 

post-translational modifications (PTMs) can alter the pI of a protein species31, altering migration 

between runs; while useful if studying a very limited range of proteins, when analyzing large 

proteomic datasets this can result in cross-contamination of ‘spots’ on the gel (PTMs can cause 

one protein to migrate the same as another, resulting in two species residing in the same position 

on the gel). Following IEF, proteins are then separated based on size via sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE)32. Like IEF, SDS-PAGE suffers similar problems 

of protein migration, but with respect to low separation of very large MW proteins; this ultimately 

led to the development of discontinuous gels to increase resolving power33.  

Following a 2DE separation, gels are visualized and isolated proteins identified by N-terminal 

sequence degradation (‘Edman degradation’), a technique developed by Pehr Edman in 195034. 

Edman degradation utilizes phenyl isothiocyanate (PITC) to selectively cleave the N-terminal AA 

of a peptide of length n, resulting in the formation of a thiazolinone derivative containing the N-

terminal AA of the peptide, and the residual peptide chain of length n-1. The thiazolinone 
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derivative is then extracted and heated under acidic conditions to produce a phenylthiohydantoin 

(PTH)-AA derivative, which can be analyzed via chromatography to determine the AAs’ identity 

(Figure 1.1). By repeating the process, the sequence of a peptide can be determined residue-by-

residue, and the resultant peptide sequence can be used to identify the protein in question. 

Although the process was automated in 196735,36, this method has several downfalls; in addition 

to being laborious and time-intensive, a relatively large amount of starting material with high 

purity is needed, and the process begins to fail for peptides exceeding 50 residues. Another 

problem with this technique occurs when studying eukaryotic proteins – most eukaryotic 

proteins’ N-terminal residues are acetylated, preventing nucleophilic attack of the N-terminal 

amine by PITC. To circumvent these problems, proteins would need to be digested prior to 

analysis, and the resultant peptides purified, increasing the amount of time needed per protein 

being identified.  
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Figure 1.1 Edman degradation. 

Under slightly basic conditions, the N-terminal amine’s lone pair acts as a nucleophile and reacts with the 

thiocyanate group of PITC, forming a phenylthiocarbamoyl derivative. Heating this product under acidic 

conditions results in the formation of a thiazolinone derivative containing the N-terminal residue of the peptide, 

and release of the remainder of peptide chain. Extraction and acidification of the thiazolinone-AA results in the 

formation of a PTH-AA conjugate which can be identified through chromatography. 

 

Over the next several decades, computerization began to revolutionize and accelerate the 

biotechnology industries, outpacing traditional separation methods and chemical sequencing 

techniques such as Edman degradation. Thus, the field started turning towards faster, more 

promising methods of molecular separation and identification, that in turn also provided higher 

sensitivities, signals, and dynamic ranges of detection – in particular, liquid chromatography and 

mass spectrometry. 
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1.2. Basic Principles of Mass Spectrometry in Proteomics 

1.2.1. The Origins of Mass Spectrometry 
Simply put, mass spectrometry is a technique that measures an ionized molecule’s mass-to-

charge ratio (𝑚 𝓏⁄ ) via an electric field. Birthed in the late nineteenth-century to study the 

properties of electricity, early mass spectrometers were relatively crude instruments consisting 

of a cathode ray tube (CRT) – a vacuum tube with a free cathode (negative electrode) opposite a 

phosphorescent screen – coupled to an electromagnetic field. In 1886, Eugen Goldstein 

discovered that filling a CRT with atmospheric gas produced rays that behaved differently from 

cathode rays (electrons)37,38; these rays travelled in the opposite direction to the cathode rays, 

and as such, were named ‘anode rays’ or ‘canal rays’. In 1898, Wilhelm Wein discovered that 

canal rays could be deflected in the opposite direction of cathode rays using electric and magnetic 

fields39; these rays were determined to have a positive charge, and a mass much higher than that 

of the electron (determined one year prior by J.J. Thomson40), but rather closer to that of 

hydrogen atoms. Utilizing Wein’s method, J.J. Thomson noticed that the positive rays followed a 

unique parabolic path when their respective canal rays were deflected through an electric field, 

and was surprised to see several different species41,42. J.J. Thomson determined that if one 

𝑚 𝓏⁄  ratio was determined, the 𝑚 𝓏⁄  ratios for the other positively-charged species he had 

observed could be calculated. Over the next two decades J.J. Thomson and Francis William Aston’s 

(Thomson’s student) work would lead to the discovery of isotopes38,42,43, and lay the groundwork 

for Arthur Jeffery Dempster’s mass spectrometer design in 191844 and Aston’s in 191945; Aston 

and Dempster’s basic theory and principles are still used to this day. 

By the mid-1980s, several scientists were trying to utilize mass spectrometry for the analysis of 

large molecules, such as polymers and proteins. This could possibly allow for the circumvention 

of chemical peptide sequencing for the identification of proteins. There was a problem however; 

mass spectrometry requires analytes to be ionized and in the gaseous state. The difficulty then, 

was being able to reliably and reproducibly ionize chemical species into the gaseous state that are 

as massive as an entire protein. Dr. John B Fenn, an American chemist who worked in the field 
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of mass spectrometry was quoted as saying, “the idea of making proteins or polymers 

“fly”…seemed as improbable as a flying elephant”46. However, two breakthroughs helped to pave 

the way for making mass spectrometry a suitable technique for studying large molecules.  

The first came in 1985, with Franz Hillenkamp and Michael Karas’ development of matrix-

assisted laser-desorption ionization (MALDI)47. Using MALDI, samples are first co-crystalized 

with a photo-ionizable chemical matrix. Irradiation of this matrix with laser-light causes 

desorption of the matrix-sample mixture and ionization of the sample species, rather than 

decomposition48,49. Hillenkamp and Karas’ method initially was only able to ionize peptides up 

to ~2.8 kDa, using 266nm laser-light and matrices of simple aromatic biomolecules such as 

tryptophan. In 1988, three years after the development of MALDI, Koichi Tanaka published a 

refined version of Hillenkamp and Karas’ method, by combining 30nm cobalt particles with 

glycerol and irradiation via a 337nm nitrogen laser50; this method enabled Tanaka to be able to 

ionize molecules as large as 34.5 kDa.  

 

Figure 1.2 Matrix-assisted laser desorption ionization (MALDI). 

Proteins co-crystallized with a photo-absorptive matrix are spotted on a metallic plate and irradiated with a 

337nm laser in an electric field under vacuum (left). This results in rapid desorption and ionization of the matrix 

and analytes, respectively (right). 

The second breakthrough was the development of electrospray ionization (ESI) by John B Fenn 

and Masamichi Yamashita51. First described in 1984, ESI makes use of analytes dissolved in an 
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ion-containing solvent; the solvated sample is nebulized through a fine-tip aperture into a high-

voltage electric field. As the aerosol drop travels through the electric field, solvent gradually 

evaporates from the drop, concentrating the charge. Eventually the electrostatic repulsion 

exceeds the surface tension of the droplet (the ‘Rayleigh limit’ – first theorized by Lord Rayleigh 

in 188252) resulting in a ‘Coulomb explosion’ and ionization of all solvated species into the 

gaseous state. By 1989 John Fenn and his colleagues were easily capable of ionizing biomolecules 

as large as 76 kDa53,54. For their work developing methods to ionize large biomolecules, Koichi 

Tanaka and John Fenn shared part of the 2002 Nobel Prize in Chemistry. 

 

Figure 1.3 Electrospray ionization (ESI). 

Analytes eluting from the liquid chromatography (LC) column are subject to electrical polarization via a potential 

applied between the nebulizer head (LC outlet) and MS inlet. Electrically charged droplets emitted from the 

nebulizer undergo rapid solvent evaporation and charge concentration, until the charges reach the Rayleigh limit. 

Droplet fission occurs when the electrostatic repulsion of surface charges exceeds that of the droplet’s surface 

tension, resulting in ionization of analytes. Adapted from 55 

Since the development of reliable methods of protein ionization, mass spectrometers have 

become instrumental in the field of proteomics. De novo sequencing56,57 – a technique which 

involves the fragmentation of peptides into their constituent AAs – has made rapid protein 

identification possible, leading to an explosion in techniques for analyzing protein structure58, 
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post-translational modifications59,60, protein-protein interactions61,62, protein quantitation63,64, 

and more recently whole-proteome quantitation65–68.  

 

1.2.2. The Mass Spectrum 
As previously mentioned, mass spectrometers measure the mass-to-charge ratio (𝑚 𝓏⁄ ) of an 

ion69. This is an important distinction from an ion’s individual mass; a molecular ion that is 

doubly charged (±2) will have an 𝑚 𝓏⁄  that is half of the same molecule that is singly charged 

(±1). As charge-state can often be defined as the loss or gain of a proton (or other ionic species), 

the mass-to-charge ratio for positive ions (gain of protons) is: 

(𝒎 𝔃⁄ ) =  
[𝐌 + 𝔃𝐇]

𝔃
 

Equation 1.1 

And for negative ions (loss of protons) is:  

(𝒎 𝔃⁄ ) =  
[𝐌 − 𝔃𝐇]

𝔃
 

Equation 1.2 

where M represents the species’ molecular mass in Daltons (Da), H represents the molecular 

mass of a proton (1 Da), and 𝓏 is the integer value of the ion’s charge-state. When analyzing a 

singular molecule represented by various 𝑚 𝓏⁄  ratios, it becomes relatively simple to determine 

the charge-state of the molecule, as well as its molecular mass. ESIProt70, a popular mass 

spectrometry tool, is designed to perform exactly this procedure, albeit with high accuracy. An 

example of this procedure, for a modified troponin-C molecule is depicted in Figure 1.4. 
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Figure 1.4 Determining mass from multiple charge states. 

Mass spectrum resulting from multiple charge states of tagged troponin-C. The peak at 1753.6493 mass units 

(mu) represents the lowest charge; increasing the 𝔃-value results in a decrease in 𝑚 𝓏⁄ . Utilization of Equation 

1.1 allows for the determination of both 𝓏 -states and 𝑚 . Setting 1753.6493= [(𝒎 + (𝟏) × 𝔃) 𝔃]⁄ , and 

1607.5953 = [(𝒎 + (𝟏) × (𝔃 + 𝟏)) (𝔃 + 𝟏)]⁄ , and continuing this process for subsequent peaks, reveals the 

𝓏1753.6493 = +11, 𝓏1607.5953 = +12 and so forth. Utilization of these 𝓏-states allows for the mass of the 

modified troponin-C to be determined to be ~19279.5105 with a standard deviation of 0.5260 Daltons. 

One of the features that distinguishes mass spectrometry from other analytical techniques is 

resolution and accuracy. Mass spectrometers have a history of possessing incredibly high 

resolving power and resolution, capable of separating a molecule’s average mass into it’s isotopic 

distribution. In fact, early mass spectrometers led to the discovery of isotopes38,42,43. Mass 

spectrometers’ resolution71–73 can be defined as: 

𝐑 = 
𝒎

𝚫𝒎𝑭𝑾𝑯𝑴
 

Equation 1.3 
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where the resolution (R) of an 𝑚 𝓏⁄  peak is the average mass (𝑚) divided by the width of the 

peak at 50% the peak’s intensity (full-width at half maximum; Δ𝑚𝐹𝑊𝐻𝑀). Resolving power72–74 

represents the instrument’s ability to distinguish between two ions (of similar intensity) 

separated by a small increment, measured at a peak height where the ‘valley’ between them 

reaches no more than 10% the maximum height of either peak. This can be calculated as: 

𝐑𝐏 =  
𝒎𝟐

(𝒎𝟐 −𝒎𝟏)
 

Equation 1.4 

where resolving power (RP) between two 𝑚 𝓏⁄  peaks is calculated as the measured mass of the 

heavier peak (𝑚2) over the difference between the heavier and lighter (𝑚1) peaks. If not using 

the ‘10% valley’ rule, the degree of overlap between the two peaks must be stated. 

The accuracy of mass 

spectrometers, known as 

‘mass accuracy’ or ‘mass 

error’, is typically 

measured in parts per 

million (ppm). Mass 

accuracy ( MA )73 is 

calculated as the 

difference in the 

experimentally 

measured ‘exact mass’ 

(𝑚𝐸) of a monoisotopic 

species (ion containing 

no heavy isotopes) from its theoretical ‘actual mass’ (𝑚𝐴), divided by the theoretical mass: 

𝐌𝐀 = 
(𝒎𝑬 −𝒎𝑨)

𝒎𝑨
× 𝟏𝟎𝟔 

Equation 1.5 

 

Figure 1.5 Mass resolution versus resolving power. 

(A) Resolution refers to the measured mass divided by the peak’s full width at 

50% max intensity (FWHM). (B) Resolving power refers to the ability to 

differentiate two partially overlapping peaks, when the valley between them is 

~10% the maximum relative intensity. 
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For mass spectrometers utilized in the field of proteomics, most have dynamic ranges for 

resolution, which is dependent on the time allotted for performing a scan. For newer 

instruments, the range 

of resolution is typically 

anywhere from 30,000 

to ≥100,00075–77, easily 

allowing for separation 

of the various isotopic 

species of a single ion 

species. Likewise, the 

accepted margin of 

error is typically 

<±10ppm. Such high 

resolving power has 

made the determination 

of mass and charge 

relatively simplistic for 

an isotopic 𝑚 𝓏⁄  

cluster; the gap between peaks within an isotopic cluster will differ by a single Dalton, and this 

difference can be used to determine the monoisotopic mass and charge state; as all the peaks will 

differ by a single mass unit, the charge state will be the reciprocal of the measured distance 

between the peaks (Figure 1.6).  

 

1.2.3. Modern Mass Spectrometry in Proteomics 
All modern mass spectrometers consist of three components – an ion source, a mass analyzer, 

and an ion detector78. While only a select few types of ion detectors are utilized, there exists a 

high diversity and modularity of ion sources and mass analyzers, resulting in a plethora of 

varying types of mass spectrometers. Within the field of proteomics however, a select few types 

 

Figure 1.6 Mass determination of an isotopic cluster. 

Using the approach outlined above, the first peak in an isotopic series is 

determined to be the monoisotopic mass. Setting this as the 𝑚 𝓏⁄ , and the second 

peak as (𝑚 + 1) 𝓏⁄ , and isolating 𝑚 allows for the determination of 𝓏, which can 

then be used to determine 𝑚. As a rule of thumb, because 𝓏 is constant for an 

isotopic cluster and mass peaks differ by 1 neutron, the gap between peaks is 1/ 𝓏. 
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of instrumentation have become predominant. These include the ion sources: MALDI, ESI, and 

nanospray ionization (NSI), and the mass analyzers: time-of-flight (ToF), quadrupole-ToF (Q-

ToF), triple-quadrupoles (QqQ), linear ion-traps, and orbitraps78. Furthermore, the type of ion 

source and mass analyzer used is dependent on what kind of an approach is being taken; top-

down versus bottom-up (“shotgun”) proteomics79,80.  

Top-down proteomics is an approach used to analyze intact proteins to reveal information 

regarding individual proteins’ structure, post-translational modifications, interacting partners, 

and functional proteoforms (all variations of the protein product from a single expressed 

gene)81,82. Using this method, proteins are purified and immediately analyzed via mass 

spectrometry. Classically this technique utilized MALDI-ToF instruments, but recent advances in 

linear ion-trap/orbitrap mass resolution has led to the implementation of ESI/NSI ionization with 

linear ion-traps/orbitraps. 

 

Figure 1.7 ‘Top-Down’ versus ‘Bottom-Up’ proteomics. 

Experimental designs for typical top-down (Left) and bottom-up (Right) proteomics approaches. For top-down, 

intact proteins are denatured and directly subject to tandem mass spectrometry (MS/MS) analysis, allowing for 

the determination of structural and PTM characteristics of a protein. For bottom up, proteins are first denatured, 

then digested into constituent peptide mixtures. These peptide mixtures are separated via LC and subject to 

MS/MS, allowing the peptides to be sequenced and quantified. 
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LC-MS/MS

Peptides Fragmented, Sequenced,
Quantitated, & PTM Info DeterminedTop-Down Proteomics

(Intact)

MS/MS

Protein Fragmented, Sequenced,
Quantitated, & PTM Info Determined
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Bottom-up proteomics (colloquially known as a ‘shotgun’ approach) is a technique where 

proteins are first proteolytically digested prior to mass spectrometric analysis83. Due to the 

complex mixture of peptides resulting from the digest, bottom-up proteomics requires better 

front-end separation of analytes; peptide mixtures are simplified through chromatography prior 

to analysis. This technique greatly increases the coverage of proteins analyzed and allows for the 

more precise quantification of expressed proteins; by integrating multiple peptides from various 

proteoforms (post-translationally modified variants) of an individual gene and mapping them to 

a single peptide map, a comprehensive view of a genes’ functionally expressed protein(s) is 

acquired83. Therefore, by sacrificing information regarding the individual proteoforms of a 

specified gene, total quantification of the gene’s protein products is achieved. As mentioned 

earlier, due to this technique requiring proteolytic digestion and subsequent peptide mixture 

simplification, ionization is almost always achieved through ESI/NSI operating in tandem with 

chromatography. Bottom-up proteomics typically utilizes ion-trapping mass analyzers such as 

linear ion-traps, orbitraps, or a combination of the two83.  

All work described in this thesis was performed using a bottom-up proteomics approach utilizing 

an ultra-performance or high-performance liquid chromatograph (UPLC or HPLC) in tandem 

with NSI into an orbitrap or linear ion-trap/orbitrap combination mass spectrometer; as such, 

only principles and theories applying to the instruments used will be discussed in detail. 

 

1.2.3.1. Proteolytic Digestion of Proteins into Peptides  

When using a bottom-up proteomics approach, the first step following protein purification is to 

perform a proteolytic digest of the sample83. This is most often performed with charged-residue 

sequence-specific proteases such as trypsin, Lys-C, Arg-C, Glu-C, Asp-N, or Lys-N; utilization of 

these proteases results in the cleavage of polypeptides either following or preceding a charged 

AA (denoted by ‘C’ for the C-terminal, or ‘N’ for the N-terminal side of the named residue, 

respectively)84. By cleaving the peptide backbone with a terminally charged residue, this 

guarantees at least a ±2 charge on the resulting peptide product (following 

acidification/alkalinisation), allowing for easier solvation and subsequent ionization. Trypsin is 
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by far the most commonly used protease for protein digestion83,84. Having a sequence specificity 

for cleavage of the peptide backbone on the C-terminal side of lysine (K) or arginine (R) (except 

when either residue is followed by a proline), this results in relatively short peptides that, when 

solubilized in an acidic solution, yields a minimum of a +2 charge per peptide (Figure 1.8). For 

a list of commonly used proteases for protein digestion in mass spectrometry, including their 

cleavage sites, refer to (Table 1.1). 

 

 

 

 

 

 

 

 

Figure 1.8 Trypsinization of a polypeptide. 

Denatured proteins are subject to tryptic digestion, being cleaved on the C-terminal side of Lys/Arg (except when 

followed by Proline). This results in the formation of short oligopeptides with at least a single positively charged 

residue. Acidification of these oligopeptides causes any free carboxyl groups to gain a proton and become neutral, 

while N-terminal amines gain a proton, becoming positively charged. As a result, all tryptic peptides possess at 

least a +2 charge. 
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RH3N- -COOK KKP R R R K

RH3N- -COOH
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Table 1.1 Commonly used proteases in proteomics. (Adapted from84) 

FAMILY PROTEASE CLEAVAGE 
SITE ADVANTAGES DISADVANTAGES 

ASPARTIC 
PROTEASE Pepsin C-term of 

Y/F/W 

• Determine disulfide bond 
sites 

• Active at low temp; allows for 
2H exchange experiments 

• Specificity is pH-
dependent 

• Peptides hard to 
interpret 

CYSTEINE 
PROTEASE ArgC C-term of R • Allows investigation of PTMs • Long peptides 

METALLO- 
PROTEASES 

AspN N-term of D 
• Cleavage site 
• Active pH-range is broad (4-

9) 

• Detergents alter 
site specificity 

• Long peptides 
LysN N-term of K • Resistant to detergents • Long peptides 

LysargiNase N-term of R/K • Mirrors trypsin cleavage • Expensive 

SERINE 
PROTEASES 

GluC C-term of D • Allows investigation of PTMs 

• Activity highly 
dependent on pH 
and buffers 

• Long peptides 
LysC C-term of K • Efficient & specific • Long peptides 

Chymotrypsin C-term of 
F/Y/L/W/M 

• Complements trypsin 
• Good for membrane proteins 

• Efficiency varies 
for different AAs 

Trypsin C-term of R/K 
• Efficient & specific 
• Inexpensive 
• Gold Standard 

• Short Peptides 
• C-term peptides 

hard to see 
 

 

 

1.2.3.2. Liquid Chromatographic Separation and Ionization of Peptide Mixtures 

The resultant peptide mixture following proteolysis is incredibly complex. To resolve this issue, 

peptide mixtures are subject to liquid chromatographic separation. Chromatography refers to the 

physical separation of a mixture of chemical species through the utilization of a mobile phase 

moving in a singular, continuous direction over a stationary phase (column)85,86. The chemical 

species being separated are placed into the mobile phase and separation is achieved through the 

species’ interaction with the column, impeding elution. As different species have different 

partitioning coefficients, the degree to which they are impeded by the stationary phase varies. 

Over time, the characteristics of the mobile phase can be changed to favour highly impeded 

species to partition back into the mobile phase and elute from the column (gradient elution); 

while not necessary, gradient elution is widely utilized as it results in ‘tightening’ of individual 

species eluting from the chromatograph87. Alternatively, with isocratic elution the characteristics 

of the mobile phase remain constant. This results in species with high partitioning coefficients 
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for the stationary phase eluting over a much longer timeframe, and ultimately being incredibly 

dilute87. Chemical species can be separated based on various properties – notably their size (size 

exclusion chromatography; SEC)88, charge state (ion-exchange/strong-cation exchange 

chromatography; IEC/SCX)89,90, hydrophilicity (normal-phase chromatography; NPC)91, or 

hydrophobicity (reverse-phase chromatography; RPC)85–87,92.  

While peptide mixtures can be separated using any of the chromatographic separation methods, 

the most common – RPC – utilizes peptides’ hydrophobicity85–87,92. In theory, following digestion 

with a protease such as trypsin (trypsinization), where the digestion proceeds to 100% 

completion, all peptides should have a minimum charge of +2 (or +4 charge where R/K is 

followed by P), rendering separation via IEC obsolete. Likewise, SEC’s low resolving power is 

insufficient for separating small peptides, and many peptides are insoluble in the organic solvent 

starting conditions required for NPC. These factors, in addition to RPC’s versatility and superb 

resolving power when dealing with peptides has resulted in its dominance for both analytical and 

preparatory techniques80,86. 

When used in tandem with mass spectrometers, the obvious choice for ionization of peptide 

analytes is through ESI80,86, and more recently NSI93,94. As described earlier, spray ionization 

utilizes analytes solvated in an ion-rich solution. When dealing with proteolyzed peptides, these 

tend to be protons, generated through a decrease of the sample solution pH. The physical 

behaviour of emerging eluent from the chromatograph’s capillary outlet (nebulizer) is governed 

by several forces, including the flow rate, the dimensions of the nebulizer opening, the surface 

tension of the droplet, and the voltage applied between the capillary outlet and the mass 

spectrometer inlet95. Voltage applied between the nebulizer head and MS inlet results in 

polarization of solvated ions. Initially, the surface tension of the liquid being emitted from the 

nebulizer (𝑝𝛾) exceeds that of the electrostatic pressure (𝑝𝐸). As voltage is increased however, 

𝑝𝐸 > 𝑝𝛾, resulting in formation of a Taylor cone, and the jettison of liquid in the form of positive-

ion containing droplets from the tip of the cone; these droplets travel towards the negative 

potential at the MS inlet, during which they experience rapid solvent evaporation. As the solvent 

evaporates, the ions are concentrated until electrostatic repulsion between ions exceeds the 
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surface tension of the droplet, resulting in the ‘Coulombic explosion’ leading to droplet fission 

and emanation of the positive ions into the gaseous state95. 

Due to the relatively gentle nature of the ionization process (‘soft ionization’), large biomolecules 

stay intact, and thus, pick up more charges from solution; this effectively extends the mass range 

which mass analyzers can work, easily facilitating the analysis of molecules in the kDa range up 

into the MDa range. The key differences between ESI and NSI arise from NSI utilizing a smaller 

aperture (~2µm for NSI vs ~300µm for ESI) 93–95, chromatographic flow rates approximately an 

order of magnitude lower than ESI, and a greatly reduced distance between the nebulizer and MS 

inlet; the initial droplet size formed from NSI are estimated to be approximately ~180nm in 

diameter, versus ESI’s being in the µm range93–95. Concomitantly, NSI has been shown to yield 

‘cleaner’ mass spectra; reduced droplet size increases ionization yields due to a decreased 

dependency on solvent evaporation, and an increased droplet readiness for fission. 

 

1.2.4. Mass Analysis of Peptide Ions  
Following ESI/NSI of peptides into the gaseous state, they are subject to mass analysis. While a 

myriad of mass analyzers exists, the bottom-up proteomics techniques have made utilization of 

a select few in recent years; ion-traps, orbitraps, or hybridized systems80,86. Within such 

instruments, ions enter through an ion transfer tube (ITT), and proceed to be filtered and focused 

through what are known as the mass spectrometer’s ‘optics’96. These optics are typically 

comprised of several electrodes with applied radio-frequency (RF) voltage, operating in series 

and serve to accomplish several things; i) focusing and directing of the ion beam through the 

internal components of the mass spectrometer; ii) remove neutral-species generated through the 

ESI/NSI process that contaminate the ion beam; iii) filtering out of ions with undesired 𝑚 𝓏⁄  

ratios; and iv) accelerate or decelerate the ions in the ion beam. The culmination of processes 

ultimately increases the signal-to-noise ratio of the resultant mass spectra. Ions that successfully 

pass through the optics are finally ‘trapped’ and scanned by the analyzer. However, the way linear 

ion traps and orbitraps perform scans for, and detect ion species greatly differs.  
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1.2.4.1. Quadrupole Linear Ion Trap Mass Analyzers 

Quadrupole ion traps – invented by Wolfgang Paul in 195397, earning him the Nobel Prize in 

Physics in 198998 – trap ions via oscillating electric fields generated through a combination of 

radio frequency (RF) and static direct current (DC) voltages. The original 3D quadrupole ion trap 

(also known as a ‘Paul’ trap) consists of two hyperbolic electrodes – charged with DC potential – 

separated by a ringed electrode with an applied RF potential (Figure 1.9). A variant of this 

original 3D Paul trap, linear ion traps adhere to the same physical principles, albeit with the use 

of three series of four electrodes (quadrupoles) running in parallel99. 

Ions entering the linear ion trap are initially slowed and ultimately deflected back by a DC 

‘capping’ voltage applied to all 4 electrodes of the terminal quadrupole; after entrance, the initial 

quadrupole’s voltage is also ‘capped’ with a static DC potential. Thus, the ions become trapped in 

the central quadrupole, as movement in the z plane becomes inhibited. To understand ion 

movement within the x and y planes, we must define the electric potential over time within a 

two-dimensional quadrupole electric field [𝜙2(𝑥 𝑦 𝑡)]
99. 
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Figure 1.9 Quadrupole ion traps. 

Configuration of (A) 3D quadrupole ion trap and (B) Linear quadrupole ion trap. Capping electrodes (static DC 

voltage) are depicted in blue, while quadrupole electrodes (RF voltage) are depicted in yellow. (C) Cross-section 

of trapping electrodes in a linear ion trap. (D) Depiction of alternating electric field induced by RF voltage, with 

a trapped ion cloud depicted in green. 

 

The 2D quadrupole potential within the x and y plane is defined, for an individual axis, as:  

𝝓𝟐(𝒙 𝒚) =
(𝒙𝟐 − 𝒚𝟐)

𝒓𝒐𝟐
 

Equation 1.6 

Where 𝑥 and 𝑦 are the Cartesian co-ordinates within the electric field (with the origin located 

at the center of the electrodes), and 𝑟𝑜 is the radius of the field produced by each electrode. 
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An alternating applied potential [Ψ(𝑡)] across the electrodes over period 𝑡, is described by the 

function: 

𝚿(𝒕) =  ±(𝑼 − 𝑽𝑹𝑭 𝐜𝐨𝐬𝛀𝒕) 

Equation 1.7 

where 𝑈  is DC voltage, 𝑉𝑅𝐹  is the RF voltage and Ω  is the radial frequency of 𝑉𝑅𝐹 .  

(Note due to the oscillating nature of the electrodes, when the potential in one plane is positive, 

the potential in the orthogonal plane is negative, hence the ±). 

Applying [Ψ(𝑡)] to the quadrupoles produces a product of quadrupole potential and applied 

potential over time, described by: 

𝚽𝟐(𝒙 𝒚 𝒕) = 𝝓𝟐(𝒙 𝒚)𝚿(𝒕) 

Equation 1.8 

Or: 

𝝓𝟐(𝒙 𝒚 𝒕) =
(𝒙𝟐 − 𝒚𝟐)

𝒓𝒐𝟐
(𝑼 − 𝑽𝑹𝑭 𝐜𝐨𝐬𝛀𝒕) 

Equation 1.9 

How this affects ion motion is dependent upon the forces this potential generates on charged 

particles. These forces can be described using the following laws of motion: 

�⃑⃑⃑� = −𝒛𝒆�⃑⃑⃑� = −𝒛𝒆𝛁𝝓𝟐(𝒙 𝒚 𝒕) 

Equation 1.10 

 

�⃑⃑⃑� = 𝒎�⃑⃑⃑� = 𝒎
𝒅�⃑⃑⃑�

𝒅𝒕
= 𝒎

𝒅𝟐(𝒙 𝒐𝒓 𝒚)

𝒅𝒕𝟐
 

Equation 1.11 

The first describes Lorentz’s law of motion for a positively charged particle in an electric field, 

where 𝓏 indicates an integer number of charges on the ion, 𝑒 represents the fundamental charge 
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of an electron, and �⃑⃑� represents the electric field. As �⃑⃑� can be described as the rate of change of 

potential, it is substituted for the divergence (flux over volume) of the potential described earlier 

[∇𝜙2(𝑥 𝑦 𝑡)] . The latter equation describes Newton’s second law of motion, where 𝑚 

represents the mass of the ion, and �⃑� is its acceleration. Equating these two laws results in: 

𝒎
𝒅𝟐(𝒙 𝐨𝐫 𝒚)

𝒅𝒕𝟐
= −𝔃𝒆𝛁𝝓𝟐(𝒙 𝒚 𝒕) 

Equation 1.12 

 

The resulting laws governing ion motion in either the x or y direction, respectively, are 

determined by: 

𝒎
𝒅𝟐𝒙 

𝒅𝒕𝟐
= −𝔃𝒆

𝟐𝒙

𝒓𝒐𝟐
(𝑼 − 𝑽𝑹𝑭 𝐜𝐨𝐬𝛀𝒕);  𝒎

𝒅𝟐𝒚 

𝒅𝒕𝟐
= 𝔃𝒆

𝟐𝒚

𝒓𝒐𝟐
(𝑼 − 𝑽𝑹𝑭 𝐜𝐨𝐬𝛀𝒕) 

Equation 1.13 

These can be rewritten as general Mathieu equations100 – which have finite solutions, and can 

be used to describe ion trajectories – when defining the following variables: 

𝒖 = 𝒙 𝐨𝐫 𝒚 

𝝃 =
𝛀𝒕

𝟐
 

𝒂𝒙 = −𝒂𝒚 =
𝟖𝒆𝑼

𝒎𝒓𝒐
𝟐𝛀𝟐

 

𝒒𝒙 = −𝒒𝒚 =
−𝟒𝒆𝑽𝑹𝑭
𝒎𝒓𝒐𝟐𝛀𝟐

 

Equation 1.14 (Mathieu variables) 

When substituting these variables into the previously defined equations, the result is: 

𝒅𝟐𝒖

𝒅𝝃𝟐
+ (𝒂𝒖 − 𝟐𝒒𝒖 𝐜𝐨𝐬 𝟐𝝃)𝒖 = 𝟎 

Equation 1.15 
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The variables 𝑎𝑢 and 𝑞𝑢 are colloquially known as “trapping” parameters and are modulated by 

the quadrupoles’ DC voltage and RF voltage, respectively. Only certain values of 𝑎𝑢  and 𝑞𝑢  

provide ion stability within the trap; other values result in the ion becoming ‘unstable’ and being 

ejected. The regions in which ion stabilities are determined as a function (𝛽𝑢) of the relationship 

between  𝑎𝑢 and 𝑞𝑢, and generally represents ion stability in the oscillating quadrupole electric 

field (an ion is stable when 0<𝛽𝑢<1)101: 

𝜷𝒖  [𝒂𝒖 − (
(𝒂𝒖 − 𝟏)𝒒𝒖

𝟐

𝟐(𝒂𝒖 − 𝟏)
𝟐 − 𝒒𝒖

𝟐) − (
(𝟓𝒂𝒖 + 𝟕)𝒒𝒖

𝟒

𝟑𝟐(𝒂𝒖 − 𝟏)
𝟑(𝒂𝒖 − 𝟒)

) − (
(𝟗𝒂𝒖

𝟐 + 𝟓𝟖𝒂𝒖 + 𝟐𝟗)𝒒𝒖
𝟔

𝟔𝟒(𝒂𝒖 − 𝟏)
𝟓(𝒂𝒖 − 𝟒)(𝒂𝒖 − 𝟗)

)]

𝟏
𝟐

 

Equation 1.16 

Ions must be stable in both the x and y dimensions to remain trapped; because of this, the 

‘trapping region’ is where 𝛽𝑥  and 𝛽𝑦  stability regions intersect; while multiple intersections 

exist, most mass linear ion traps utilize the first stability region (first intersection of  𝛽𝑥 and 𝛽𝑦) 

due to its low requirement for both DC and RF voltages (Figure 1.10). 
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Figure 1.10 Stability regions as defined by Mathieu equations. 

Stability regions in the x-plane (A), y-plane (B), and both planes (C) of a linear ion trap; green-shaded regions 

represent solutions for  𝑎𝑢 and 𝑞𝑢 where ions are stable in the x-plane and blue-shaded regions where ions are 

stable in the y-plane. For ions to remain trapped, they must be stable in both x- and y-planes. The lowest-energy 

intersection where this occurs is  0 < 𝑎𝑢 < 1, which is known as the ‘first stability region’, represented on the 

left. 

 

B

C

A
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Figure 1.11 Mass selection inside first stability region. 

Black dots represent ions of differing 𝑚 𝓏⁄  ratios, with larger dots corresponding to larger 𝑚 𝓏⁄  ratios. (A) With 

zero applied DC potential, stable ions orient themselves within the first stability zone of the ion trap. (B) By 

increasing RF voltage, only 𝑞𝑢 is modulated, and ions slide through the stability zone in the y-plane, until they 

are ejected at 𝑞𝑢 = 0.90 . (C) Modulation of 𝑎𝑢 through ramped DC voltage results in ejection of ions in the x-

plane. (D) By modulating both 𝑎𝑢 and 𝑞𝑢, ions with specific 𝑚 𝓏⁄  ratios can be selected. 

 

When performing scans of ions present in the ion trap, DC and RF voltages can be modulated, 

making trapped/stable ions unstable (Figure 1.11). This results in ions with specific 𝑚 𝓏⁄  ratios 

being ejected from the ion trap, where they contact the mass spectrometer’s detector(s).  

In linear ion traps the detectors are dynode based. Contact of a dynode by a charged particle 

results in the release of electrons from the dynode’s surface toward a second or secondary point 

on the dynode, and so on. This cascade effect is read as a current at the terminal end of the series, 
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A B

C
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and the strength of this current is directly proportional to the ejected ions’ intensity within the 

ion trap. 

 

1.2.4.2. Kingdon Trap (‘Orbitrap™’) Mass Analyzers 
Another form of mass analyzer that has come to prominence in recent years is the Thermo 

Fisher™ ‘Orbitrap™’75,76,102, a modern variant of a Kingdon trap. Originally described in 1923 by 

KH Kingdon as a method of generating and studying ion species103, Kingdon traps consist of four 

electrodes – a central spindle wire (cathode) surrounded by a cylindrical electrode (anode), and 

two endcap electrodes at either end of the cylinder to ‘imprison’ ions generated within the interior 

space. DC voltage applied between the central wire and outer cylinder electrodes produces a 

radial logarithmic potential, defined by104: 

𝚽 = 𝑨 𝐥𝐧 𝒓 + 𝑩 

Equation 1.17 

Where 𝐴 and 𝐵 are constants at a defined voltage, and 𝑟 is the radial coordinate from the central 

wire. However, the capping electrodes on either side of the cylinder (disregarded in Equation 

1.17), while serving their purpose to ‘imprison’ ions within the center of the trap, produced 

complicated and difficult to map potentials in the distal regions of the trap. Ions generated and 

stored in Kingdon’s original trap had incredibly short lives of ~1.4 milliseconds103. In 1981, R.D. 

Knight improved upon Kingdon’s design by modifying the outer electrode to be made of two 

conical electrodes placed together to have a large central radius with decreased radii at the trap’s 

terminal ends105. Applying a DC potential between the outer and inner electrodes produces a 

harmonic (symmetric) axial potential, described by: 

𝚽 = 𝑨(𝒛𝟐 −
𝒓𝟐

𝟐
) 

Equation 1.18 

Wherein 𝐴 is a constant, and 𝑧 and 𝑟 describe the cylindrical coordinates of the trapping space. 

This harmonic axial potential effectively confines ions along the center of the axial electrode –  in 
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addition to the logarithmic potential described previously, to give the combined potential known 

as a ‘quadro-logarithmic’ potential: 

𝚽 = 𝑨(𝒛𝟐 −
𝒓𝟐

𝟐
+ 𝑩 𝐥𝐧 𝒓) 

Equation 1.19 

This improved the duration of trapped ion species by a factor of ~100. However, neither Kingdon 

nor Knight’s traps were reported to produce mass spectra. In 2000, Alexander Makarov 

developed what has become known as an ‘orbitrap’102 – a variant of Knight’s modified Kingdon 

trap. 

The orbitrap consists of 3 electrodes; two outer, cup-shaped electrodes, electrically insulated from 

each other that form a ‘barrel’ around a central spindle electrode. Due to the shape of the orbitrap, 

applying a DC voltage between the outer and inner electrodes produces the quadro-logarithmic 

potential described by75,76,102,106,107: 

𝚽𝒛 𝒓 =
𝒌

𝟐
(𝒛𝟐 −

𝒓𝟐

𝟐
) +

𝒌

𝟐
 𝑹𝒎

𝟐 𝐥𝐧 (
𝒓

𝑹𝒎
) + 𝑪 

Equation 1.20 

And the shape of the electrodes described by: 

𝒛𝟏 𝟐(𝒓) = √(
𝒓𝟐

𝟐
) − (

(𝑹𝟏 𝟐)
𝟐

𝟐
) + 𝑹𝒎𝟐 𝐥𝐧 [

𝑹𝟏 𝟐
𝒓
] 

Equation 1.21 

where 𝑘 is the curvature of the electric field (the restorative force towards the center of the trap, 

analogous to a spring’s constant), indexes 1 and 2 represent the spindle electrode and outer 

electrode respectively, 𝑅1 2 denote the maximum radius of each respective electrode, 𝑅𝑚 is the 

characteristic radius of the electric field (defined as the radius from  𝑅1 at which stationary ions 

stop being attracted towards the central axis and start being repelled; 𝑅𝑚 ≳ 𝑅2√2)107, 𝐶 is a 

constant, while 𝑧 and 𝑟 are the cylindrical coordinates within the trap.  
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Figure 1.12 Kingdon-style ion traps. 

(A) The original Kingdon trap consisted of a spindle electrode passing through a cylinder, between which a DC 

voltage was applied. Cap electrodes (pink disks) were applied to either end of the cylindrical electrode to 

minimize ion loss. (B) Knight trap profile. A derivation of the Kingdon trap, but the outer electrodes (cylinder 

and caps) have been replaced with two electrically isolated cones to produce a quadro-logarithmic potential. (C) 

Modern orbitrap profile, with a central spindle electrode and two electrically isolated outer electrodes defined by 

Equation 1.20 to produce a quadro-logarithmic potential. 

Ion motion within the orbitrap depends on both orbital motion around the spindle electrode, and 

axial oscillations along the z-axis (the ions’ secular frequency).  Interestingly, the potential arising 

from the orbitrap’s shape (Equation 1.19), shows that motion in the z-axis is independent of 

motion around the central spindle. Utilizing Equation 1.12 but for the divergence of potential in 

the z direction produces the following equation: 

𝒎
𝒅𝟐(𝒛)

𝒅𝒕𝟐
= −𝒒𝒌𝒛 →  

𝒅𝟐(𝒛)

𝒅𝒕𝟐
= −(

𝒒

𝒎
)  𝒌𝒛 

Equation 1.22 

with 𝑞  here representing the molecular charge to avoid confusion (previously denoted 𝓏 ). 

Equation 1.22 takes the form of a simple harmonic motion equation. As such, the frequency of 

z-axial oscillations (𝜔) can be defined as: 

𝝎 = √(
𝒒

𝒎
)𝒌 

Equation 1.23 

This allows an ion species’ 𝑚 𝓏⁄  to be determined in an orbitrap by monitoring its axial 

oscillations in the z-direction, assuming all ions of a given species are ‘bunched’ and oscillating 
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together. Ion ‘bunching’ is achieved prior to orbitrap analysis in what is known as a ‘C-trap’; the 

C-trap is a curved quadrupole (in the shape of a C) which forces ions into very tight bunches 

prior to their injection into the orbitrap. This ensures all ions of a given species have the same 

starting conditions inside the orbitrap, and thus, oscillate together as a group. Due to an ion 

species’ 𝑚 𝓏⁄  being determined as a function of time, higher resolution (separation) of ions’ 

masses can be achieved with longer scan-times. 

Ions are detected through ‘image 

current detection’ (ICD)75,106; as a 

packet of ions approaches an end-plate 

surface, it causes surface polarization 

of electrons, which is measured as an 

induced AC current proportional to the 

number of ions within the packet: 

𝑰(𝒕) ≈ −𝒒𝑵𝝎
𝚫𝒛

𝝀(𝒓)
𝐬𝐢𝐧(𝝎𝒕) 

Equation 1.24 

Where the image current 𝐼 at time 𝑡 is 

dependent on the total charge 𝑞 of 𝑁 

ions with frequency 𝜔  displaced Δ𝑧 

from the center of the trap. 𝜆(𝑟) is the 

‘effective gap’ between the outer and inner electrodes, and varies due to the shape of the orbitrap. 

ICD monitors the currents induced by all species of ions oscillating within the orbitrap 

simultaneously; as such, fast Fourier-transforms75,108 must be made of the total current detected 

to identify individual species oscillatory frequencies (thus 𝑚 𝓏⁄  ratios) and intensities. 

 

 

Figure 1.13 Simple harmonic motion of ion packets 

within orbitrap. 

Ions present in the orbitrap oscillate with frequency 𝜔, defined 

in Equation 1.18. As each ion’s 𝜔 is different, ions separate out 

over time, allowing both the 𝑚 𝓏⁄  and number of ions to be 

determined. 
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1.2.4.3. Peptide Ion Excitation and Fragmentation 

Once a full scan of all ion species has been made, an individual ion species can be singled out, 

fragmented, and have its fragments analyzed to determine its composition. This process is 

colloquially referred to as ‘tandem mass spectrometry’80,86,99,106, MS/MS, or MS2.  

In linear ion traps, this is most-often achieved through collision-induced dissociation (CID). 

During CID, DC and RF potentials are modulated to make the trap stable for only an individual 

species of 𝑚 𝓏⁄ . Subsequently flooding the ion trap with an inert collision gas, most often helium, 

the isolated ion species is ‘excited’ via the addition of a supplemental AC potential along one set 

of axial rods. The frequency of the applied AC potential matches the ion’s secular frequency 

(𝜔𝑢 𝑛)99, defined by: 

𝝎𝒖 𝒏 = (𝒏 +
𝜷𝒖
𝟐
)𝛀; 𝟎 ≤ 𝜷𝒖 ≤ 𝟏;𝒏 = 𝟎 ±𝟏 ±𝟐 … 

Equation 1.25 

While an infinite number of frequencies exist for a given ion, the most common is the 

fundamental frequency (𝑛 = 0). Therefore, for an isolated ion species at a given value of 𝛽𝑢 and 

RF voltage operating at Ω, most ions will oscillate within the ion trap with a frequency of 
𝛽𝑢Ω

2
. A 

supplemental RF voltage applied to a single axis of rods with frequency  
𝛽𝑢Ω

2
 causes these ions to 

pick up kinetic energy and collide with the collision gas, inducing fragmentation.  

In orbitrap-based mass spectrometers, fragmentation is most-often achieved in a nitrogen-filled 

‘high-energy collisional dissociation’ (HCD) cell106. After a full scan performs an inventory of all 

the ion species entering the mass spectrometer, a filter is applied to the optics at the front-end of 

the instrument, allowing only a single species of 𝑚 𝓏⁄  through to the C-trap, from where it is 

forced with high velocity into the HCD cell, inducing rapid fragmentation. The fragments are 

then shuttled back into the C-trap where they are directed into the orbitrap for analysis. 

When performing an MS/MS series on peptide ions, fragmentation occurs at characteristic sites, 

usually corresponding to the region with the highest surface area; the peptide backbone56,57. As 

the peptide backbone consists of three types of atomic bonds – N-Cα, Cα-Co, and Co-N, these are 
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the bonds with the highest frequency of dissociation. The resulting nomenclature for the 

daughter ions (fragments) is based on the site of fragmentation, where the ionic charge is 

retained following fragmentation, and the orientation of the peptide sequence being read (i.e. N-

terminus to C-terminus or vice versa)109,110.  

 

Figure 1.14 Patterns of peptide-backbone fragmentation. 

Fragmentation of the peptide backbone produces 3 families of ions; A/X-series (green) with cleavage of Cα-Co, 

B/Y-series (blue) with cleavage of Co-N, and C/Z-series (red) with cleavage of N-Cα. Subscripts are used to 

denote the number of residues retained on the product ion. Due to the planar structure of the peptide bond, B/Y-

series ions are the most prominent. 

 

Fragmentation of a Cα-Co bond produces A and X daughter ions if the charge is retained on the 

N-terminal or C-terminal fragment, respectively. Likewise, fragmentation of the Co-N bond 

produces B and Y daughter ions, and dissociation of the N-Cα bond produces C and Z daughter 

ions. Subscripts are used to indicate the number of residues contained on the daughter ion 

towards its respective terminus of numbering origin. By far the most common type of 

fragmentation occurs at the peptide bond (Co-N) due to it’s large, rigid, planar structure. This is 

also the most favourable site of fragmentation, due to the daughter B and Y ions retaining their 

relative AA compositional mass (± a few atomic mass units); B ion masses are typically equal to 

the sum of their constituent neutral AA masses less 17 mass units (an OH group, due to cleavage 

at an amide bond and it only retaining the carbonyl portion), while the masses of the 
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corresponding Y ions are equal to the sum of their constituent neutral AA masses plus 1 mass 

unit. This discrepancy in mass on Y-ions results from internal solvation of protons along the 

peptide backbone during CID; fragmentation results in the formation of an amidogen (HN--R) 

group on the Y-ion’s N-terminus. Incredibly reactive, this amidogen group is solvated to an amino 

(H3N+-R) group. It is important to note that fragmentation of an individual peptide ion typically 

results in the formation of either a B-ion, or Y-ion; depending on which fragment retains the 

charge, the other often rapidly decomposes and will not be detected. Fragmentation resulting in 

the formation of both requires a surplus of protons to be available within the vicinity of the site 

of breakage, which is a rare occurrence in the gas phase. 

Secondary in abundance to B- and Y-series ions are A-series ions, largely due to B-series ions 

undergoing degradation following CID; loss of a B-ion’s C-terminal carbonyl (C=O) group results 

in the formation of an A-ion. As a result, A-ions are typically more abundant than their 

counterpart X-ions, which in turn are more abundant than C- and Z-series ions, which are only 

produced following incredibly high-energy collisions. Due to the relative rates of fragmentation 

along the peptide backbone, mass spectrometry based de novo peptide sequencing primarily 

utilizes B-, Y-, and A-series ions. For detailed reviews and tutorials see (www.ionsource.com) and 

refs111–113. 

 

1.2.5. Peptide Identification Following Fragmentation 
1.2.5.1. De Novo Peptide Sequencing via LC-MS/MS 
De novo peptide sequencing allows the amino acid sequence of a peptide chain to be determined 

via the parent ion’s mass, in conjunction with the observed B-, Y-, and sometimes A-series 

daughter ions. Unfortunately, peptide fragmentation via LC-MS/MS doesn’t occur sequentially as 

it does with Edman degradation allowing for the callout of a sequence per residue identified; 

peptide fragments are generated randomly and are measured simultaneously. However, by 

applying biochemical constraints of protein chemistry, it is possible to deduce the sequence of 

the parent peptide; for any given spectrum, only certain combinations of residues and/or 

http://www.ionsource.com/
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modifications can produce the mass for a given peak. Therefore, by collectively analyzing all peaks 

from a given spectrum, all of which originated from a single parent peptide (unique 𝑚 𝓏⁄ ) and 

are primarily B- and Y-series ions, it is possible to “stitch” together the peptide’s sequence. This 

is achieved by first identifying a terminal residue of the parent peptide. For peptides generated 

via proteolytic cleavage such as trypsinization, this process can be much easier, as one can simply 

search the spectrum for the corresponding R/K ion, which forms the first Y-series ion, and the 

corresponding penultimate B-ion. For singly-charged species, this can be described as111–113: 

(
m

𝓏
)
𝑃𝑒𝑛𝐵

= (M+ H)𝑃𝑎𝑟𝑒𝑛𝑡
1+ − 1 − [156𝐴𝑟𝑔 OR 12 𝐿𝑦𝑠] 

Equation 1.26 

 

(
m

𝓏
)
𝑃𝑒𝑛𝑌

= (M + H)𝑃𝑎𝑟𝑒𝑛𝑡
1+ − AA𝑁−𝑡𝑒𝑟𝑚 

Equation 1.27 

Following identification of the first B-/Y-series ion, it’s corresponding Y-/B-series (respectively) 

ion can be determined and found using the following formula111–113: 

(
m

𝓏
)
𝐵−𝑖𝑜𝑛

= (M+ H)𝑃𝑎𝑟𝑒𝑛𝑡
1+ − (

m

𝓏
)
𝑌−𝑖𝑜𝑛

+ 1 

Equation 1.28 

By identifying a B-/Y-series ion, the process is then to simply ‘walk’ along the spectrum looking 

for peaks differing from the identified ion’s mass by that of an AA residue. An example of this is 

depicted in Figure 1.15, using the peptide DAVIDK with an (M + H)𝑃𝑎𝑟𝑒𝑛𝑡
1+ = 660.3563. 
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Figure 1.15 De novo sequencing schematic for peptide DAVIDK. 

The respective theoretical B- and Y-series daughter ions’ masses (when singly charged) following fragmentation. 

B-series ions begin with the first residue at the N-terminus, and extend toward the C-terminus, while Y-series 

ions begin with the first residue at the C-terminus and extend toward the N-terminus. For both series generated, 

positive charge is retained at the site of fragmentation. 

 

While de novo sequencing is incredibly fast and powerful compared to older techniques such as 

Edman degradation, it still requires a relatively large amount of starting material that is free from 

impurities. The process of de novo sequencing is also notoriously complicated; a myriad of rules 

dictates the process for searching spectra to determine and stitch together sequences – a process 

which becomes compounded when determining large sequences. While modern computing has 

made the call-out of peptide sequences easier, the process as a whole still remains quite 

difficult114. Because of this, de novo sequencing’s application in the study of complex, whole-

proteome derived peptide mixtures has become somewhat limited in recent years.  

Following the completion of the human genome project7, an incredible amount of information 

was extracted pertaining to open reading frames (ORFs), and conversely, predicted, putative, and 
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known protein sequences. Using this information, a multitude of protein sequence databases 

were – and continue to be – constructed, updated, and curated. One such example, and possibly 

the most robust protein database resource, is the Universal Protein Resource Knowledgebase – 

also known as UniProtKB115 – the product of a consortium started in December 2003116 between 

the European Bioinformatics Institute (EMBL-EBI), the Swiss Institute of Bioinformatics (SIB), 

and the Protein Information Resource (PIR). With public-access databases such as UniprotKB 

available for reference, newer techniques for protein identification such as peptide fingerprinting 

and spectral matching have reimplemented de novo sequencing. 

 

1.2.5.2. Peptide Fingerprinting and Spectral Matching via LC-MS/MS 

Peptide fingerprinting117 and spectral matching118 utilize the same core principles as de novo 

sequencing, albeit in a much more efficient way. Following isolation and fragmentation of a 

parent peptide, the daughter ions’ masses are measured, just as in de novo sequencing. However, 

instead of requiring careful analysis of the spectrum to stitch together a sequence, these 

techniques map the observed parent ion mass and fragmentation spectra to a reference 

database117–120; utilizing sequence constraints specified by the user, such as the type of protease 

used during front-end handling and static or dynamic modifications expected on any specific 

residues119, the fragment spectra are scored against theoretical fragmentation spectra derived 

from the reference database117–120. While this might seem to confound the identification process, 

it improves the positive identification of peptides, as it avoids one of the largest caveats of de novo 

sequencing – misinterpretation of daughter ions with multiple possible compositional 

permutations. Such instances are referred to as ‘conflicting masses’, the simplest example being 

the ions of leucine and isoleucine or diglycine and asparagine; both leucine and isoleucine have 

identical atomic composition and thus identical 𝑚 𝓏⁄  values of 113.08406, while diglycine is 

identical to asparagine. As the number of residues in an observed peptide ion increases, or post-

translational modifications are present on specific residues, conflicting masses become more 

common, which in turn confound the de novo sequencing process. Therefore, peptide 
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fingerprinting and spectral matching are capable of discerning conflicting masses by matching 

the observed spectra to the only sequences possible to be observed within a specified database.  

In a traditional LC-MS/MS shotgun proteomics pipeline, the mitigation of mass spectra 

misinterpretation occurs at several stages during data analysis. The first step occurs following 

the matching of an observed peptide fragment to a theoretical peptide fragment originating from 

the reference database. These assignments are termed ‘peptide-spectrum matches’83, abbreviated 

as PSMs, with each PSM being assigned a score (Si ) based on the search algorithm’s test statistic 

(and corresponding p-value)121:  

𝑆𝑖 = −10 log10(𝑝𝑖) 

Equation 1.29 

However, with proteome databases often exceeding 50,000 protein sequences for an individual 

eukaryotic organism, many of which have conserved peptide sequences – termed ‘degenerate 

peptides’ – peptide-spectrum matching often experiences the challenge of assigning fragment 

spectra correctly to proteins within their reference database122–124. To filter out incorrect PSM 

assignments and only retain those that are correct, a false-discovery proportion (FDP) is applied 

during data processing121. In statistics, the FDP can be defined as the estimated proportion of a 

selected number of ‘significant’ observations – significance being a threshold defined by the user 

– for a given statistical test which have occurred by chance (i.e. are not significant). In proteomics, 

for any given pairing of a theoretical peptide and an observed spectrum – of all possible peptide-

spectrum pairings – the PSM is extremely likely to be incorrect. To estimate the null-distribution, 

a ‘decoy’ database is used125; a database of roughly the same size of peptide sequences as the 

reference, or ‘target’, database is randomly generated, albeit without any of the sequences 

observed in the reference database. Peptide spectra observed from the dataset are then matched 

and scored against this decoy database. Using this method, the distribution of PSMs identified in 

the decoy database are assumed to be equivalent to incorrect PSMs identified in the target 

database121. Using the decoy PSM scores as a threshold (the applied false-discovery proportion or 

FDP, colloquially referred to as the false-discovery rate or FDR), incorrect PSMs identified in the 
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target database are filtered out and minimized. For a more robust review of statistics, please refer 

to Section 1.6. 

Unfortunately, having a high-stringency for peptide or PSM assignments does not always 

translate to the protein level. To further combat the issue of incorrect protein inference, as is 

often the case when scoring and assigning degenerate peptides, several approaches exist. One of 

the earliest methods created was the “two-peptide rule”121,123,126, in which the identity of an 

inferred protein is only considered ‘real’ if at least two peptides have been assigned to it. While 

this decreases sensitivity, as many proteins are likely identified with a single unique peptide, it 

greatly increases specificity in the proteins being reported.  

Another method is the ‘minimum set cover’ or MSC approach123. MSC algorithms utilize the 

parsimony principle, or Occam’s razor, to deduce which proteins are present in a dataset given 

the presence of certain high-confidence peptides. By using a list of high-confidence peptides from 

a reference database, the algorithm generates the smallest possible list of proteins to which these 

peptides can be assigned. Though MSC provides a high degree of specificity for inferred proteins, 

it is unable to distinguish between proteins co-identified via high-confidence degenerate peptides. 

As a result, proteins identified exclusively via degenerate peptides are often reported as a family 

rather than individual proteins.  

Lastly, there exists probabilistic inference algorithms (PIAs)123,127. While similar to MSC 

algorithms, PIAs first convert PSM scores to probabilities, which are then used to determine the 

probability of a protein’s presence in the dataset. The most widely utilized of PIAs is 

PeptideProphet127,128, which formulates the current framework for which the popular proteomics 

search engine SEQUEST118 is formulated. PeptideProphet first determines a peptide’s probability 

by utilizing the highest PSM probability observed for that peptide. Following the assignment of a 

peptide’s probability, the algorithm predicts the theoretical number of sibling peptides (NSPs) 

from the parent protein, and whether these are observed. Using the highest-probability peptide 

as a starting point, the protein’s probability is gradually approximated based on the presence of 

NSPs and their respective test statistics. Degenerate peptides which map to several proteins in 

the dataset are ‘weighted’ based on the protein probabilities dictated by unique peptides. Through 
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successive iterations of this process, an expectation probability for individual proteins within the 

dataset is generated. One caveat with this process, however, lies with proteins identified 

exclusively via degenerate peptides; such proteins cannot be distinguished from each other 

probabilistically, and as a result, are treated as a single protein ‘grouping’. This can be seen in 

datasets utilizing SEQUEST, where multiple proteins identified exclusively through their shared 

degenerate peptides are assigned the same, often, low probabilities and scores. 

However, PeptideProphet and its employment in SEQUEST constitutes only a single peptide 

MS/MS search engine; a myriad of peptide MS/MS search engines have been – and continue to 

be – developed, each employing a unique statistical approach and attempting to increase peptide 

identification rates with improved sensitivity and specificity. While more than twenty alternative 

search engines to SEQUEST exist, several of the most popular (listed in order of release) include: 

Mascot129, an engine based upon the MOWSE (molecular weight search) peptide-mass 

database130, albeit incorporating probability-based scoring for the correlation of calculated and 

measured fragment masses; X!Tandem131, an open-source algorithm which matches and 

identifies observed peptides/fragments through a multistep process involving gradual 

refinement of potential candidate sequences; OMSSA (open mass spectrometry search 

algorithm)132, an open-source matching algorithm based upon the BLAST framework for 

sequence identification133; MaxQuant’s Andromeda134, an open-source PIA-based search engine 

developed by Jürgen Cox which builds upon Mascot’s probability-based scoring method; PEAKS 

DB, a search tool incorporating de novo sequencing results into database search results to both 

increase confidence and validate identifications135; Comet, an open-source variant of the 

SEQUEST search engine136; and MS-GF+ (mass spectra generating function-plus)137, a self-

described ‘universal’ mass spectrometry database search tool that utilizes unique scoring 

parameters dependent on how the spectra were generated126,138.    
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1.3. Protein Quantitation & Comparative Proteomics 
One of the most alluring features of mass spectrometry in the study of proteomics is its ability to 

implement quantitation in tandem with protein identification. This ability primarily stems from 

the mass spectrometers’ measurement of the ion current being observed for both unique and 

total peptide ions (see sections 1.3.4.1 and 1.3.4.2 for an overview of dynodes and induced ion 

currents). While absolute quantitation is achievable using ‘spike-in’ standards – often synthetic 

isotopologues of peptides of interest – of a known concentration, most proteomic quantitation is 

achieved through relative comparisons.  

One of the earliest forms of quantitative proteomics was with 2DE in tandem with mass 

spectrometric protein identification139. By running two 2DE gels identically – one experimental 

sample and one control – one could see which ‘spots’ on the gel changed in size and position. 

Differences in a protein spot’s area were used to determine the change in abundance, and the 

spot’s protein was identified via mass spectrometry. As previously mentioned, utilization of 2DE 

gels gradually lost favor to more high-throughput methods such as LC-MS/MS, but in doing so, 

scientists had to utilize a different method for comparisons of protein abundance. 

 

1.3.1. Stable Isotope Labelling 
One of the most widely implemented techniques for quantitating differential protein expression 

between proteomic datasets within an experiment is via stable isotopic labels80,140–142. Several 

derivations of this approach exist, with their difference primarily relying on the stage at which 

the labels are incorporated into the sample, and what is detected for quantification. Popular 

isotopic labelling techniques include isotope-coded affinity tags (ICAT)143, isotope-coded protein 

labels (ICPL)144, isobaric tags for relative and absolute quantification (iTRAQ)145, tandem-mass-

tags (TMT)146, N-terminal labelling147, terminal-amine isotopic labeling of substrates (TAILS)148, 

enzymatic labelling techniques149, and the stable-isotopic labelling of amino acids in cell-culture 

(SILAC)150. 
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Using these techniques, samples originating 

from different experimental conditions are 

labelled with tags of identical chemical 

structure containing either heavy (2H, 13C, or 

15N) or light (1H, 12C, or 14N) isotopes. Following 

an experiment, samples each containing their 

respective heavy or light tags are mixed 

together prior to mass spectrometric analysis. 

Due to the tags being of identical chemical 

makeup apart from heavy or light isotopes, it 

stands to reason that for any given analyte, the 

chemical reaction affixing the isotopic label 

would have proceeded in the same way, 

irrespective of the isotopes contained in the 

tag80,140–142. This reasoning likewise holds true 

(for the most part) during the ensuing liquid 

chromatographic separation, with identical 

analytes from either (heavy/light) sample co-

eluting from the column; subsequent MS 

analysis is performed on the co-eluted species, 

with both appearing on the same spectra, only 

separated by the difference in mass of the 

isotopic label. This allows for a direct 

comparison of the intensities for a given ion from two experimental conditions, providing a 

quantitative measure for how a given protein’s abundance changes (Figure 1.16). 

While incredibly powerful for relativistic quantitation, isotopic labelling techniques do possess 

some caveats141,142. Perhaps one of the biggest hindrances to the use of isotopic labels is the 

increased requirement for sample handling; the chemical addition of chemical groups to 

 

Figure 1.16 Direct comparison and 

quantitation of isotope-labelled peptides. 

Identical peptides originating from different 

experimental conditions can be directly compared 

following labelling with either heavy (e.g.13C) or light 

(e.g.12C) isotopic labels. The difference in ion 

intensities for peptides originating from different 

samples can be directly compared, allowing the user 

to quantitatively determine a protein’s change in 

abundance. 
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proteomic samples requires further purification and recovery steps, reducing the amount of 

available starting material for mass spectrometric analysis and increasing the time required to 

perform experiments. In addition, heavy isotopes, if present in great abundance, can alter the 

hydrophobicity of an analyte, altering its chromatographic properties151,152. If working with 

chemical tags, incomplete labelling reactions or peptide ion fragmentation during MS/MS can 

often result in the loss of the chemical label or reporter ions, making data interpretation 

extremely difficult. Lastly, the reagents required to perform isotopic labelling are incredibly 

expensive; the sheer cost of isotopic reagents is often enough to prevent their practical use in a 

laboratory setting.  

 

1.3.2. Label-Free Proteomics 
While stable isotope labelling remains the gold-standard for protein quantitation in mass 

spectrometry-based comparative proteomics, these techniques require a large amount of sample 

handling, are incredibly time-intensive, and expensive. Attempting to address these caveats 

which often serve as hurdles to many scientists, in addition to technological advances in both 

mass spectrometry and liquid chromatography, recently there has been a surge in ‘label-free’ 

comparative proteomics techniques153,154. Using careful front-end standardization – often 

including automated sample handling, identical amounts of starting material and protein/peptide 

concentrations, identical chromatographic gradients, and any of various methods for 

‘normalization’ of proteins’ ion intensities155–157 – label-free proteomics techniques can provide 

information regarding the compositional protein abundance of a sample or how relative protein 

abundances change with respect to an experimental stimuli/condition. At the fundamental level, 

two approaches for comparative label-free proteomics exist; these approaches use either ‘spectral 

counting’158–160, or peptide-ion chromatogram extraction to determine a protein’s absolute or 

relative abundance in the sample153,154,161,162. 
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1.3.2.1. Spectral Counting as a Measurement of Protein Abundance 

One of the easiest and earliest methods to infer a protein’s quantity from mass spectra is through 

spectral counting. Spectral counting refers to the process of ‘counting’ the number of high-

confidence mass spectra matched to the protein of interest; because the number of times a 

peptide ion is fragmented is directly proportional to the abundance of that peptide in the sample 

being analyzed, spectral counting is – in essence – the utilization of proteins’ PSMs as a measure 

of abundance158–160. However, spectral counting is affected by the same difficulties facing PSM-

assignment; ion suppression and degenerate peptides can lead to an under- or over-

representation of a protein of interest, respectively. To counter these potential pitfalls, PSMs are 

adjusted based on their proteins’ amino acid length; it stands to reason that proteins with longer 

sequences are theoretically capable of producing more peptides following tryptic digestion, 

therefore being over-represented by raw PSMs alone. Several methods for adjusting PSMs exist, 

and all follow the same general principle (Equation 1.29). These include the protein abundance 

index (PAI)163, the exponentially modified protein abundance index (emPAI)164, the normalized 

spectral abundance factor (NSAF)165,166, the absolute protein expression (APEX)167, and 

normalized spectral index quantitation (SINQ)168. Generally, 

𝐴𝑑𝑗.𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑘 =
𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑘

∑ 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑖
𝑁
𝑖=1

 

Equation 1.30 

where the adjusted measurement for protein 𝑘 is equal to the raw measurement of 𝑘 (typically 

PSMs) divided by the sum of measurements from all 𝑁 proteins observed in the dataset. 

With so many methods available, there exists a lack of consensus as to which method is best, but 

APEX, NSAF, and emPAI have gained the most popularity. At the time of writing this, it has been 

demonstrated that while APEX generally produces the most accurate quantitation profiles, its use 

requires many training datasets necessitating computing power and time160,169.  In terms of 

reproducibility of results, it has been found that NSAF > emPAI > APEX170.  
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Because of NSAF’s high reproducibility and therefore reliability, in addition to its ease of use with 

virtually any post-processed proteomic dataset, it has become our laboratory’s preferred method 

of spectral counting. The equation used to determine a protein’s NSAF is detailed below170: 

𝑁𝑆𝐴𝐹𝑘 =
(#PSMs 𝐿⁄ )𝑘

∑ (#PSMs 𝐿)⁄
𝑖

𝑁
𝑖=1

 

Equation 1.31 

where the # PSMs is the number of observed PSMs for a given protein 𝑘, 𝐿 is the length of the 

protein in terms of amino acid residues, and 𝑁 is the total number of observed proteins in the 

dataset. Following determination of a protein’s adjusted spectral counts for an individual sample 

or experimental condition, this process can then be repeated for additional samples to be 

compared to. 

One of the caveats with this method becomes apparent when setting up the mass spectrometer’s 

operating parameters. Often, mass spectrometers are operated using what is known as an 

‘exclusion list’; following the successful fragmentation of a peptide ion observed within the ion 

trap, that ion’s 𝑚 𝓏⁄  is ignored (or excluded) with respect to further fragmentation for a user-

specified amount of time. This is beneficial when wanting to identify low-abundance ions present 

in the sample, but can be detrimental when utilizing spectral counting as a form of quantification 

if the period of exclusion is excessive.  

 

1.3.2.2. Peptide-Ion Chromatogram Extraction as a Measure of Protein 
Abundance 
With respect to relative protein abundance determination achieved via between-sample 

comparisons, perhaps the most prominent of the emerging techniques utilize peptide-ion 

chromatogram extraction. This technique is analogous to the ‘area under-the-curve’ technique 

used in chromatography153,154,161,162. To understand this process more easily, it helps to think of 

the mass spectrometer in the LC-MS/MS pipeline as the detector for the LC. For the duration of 

a chromatographic run, as peptide ions elute from the LC into the mass spectrometer, the total 
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number of ions are catalogued as a ‘total ion current’ (TIC) (for more information on how ion 

currents are determined, see Sections 1.2.4.1 and 1.2.4.2). Following the successful identification 

of a peptide, its abundance is determined by integrating its area under-the-curve (for all observed 

charge states, i.e. +1, +2, +3, …) for the duration of the chromatographic run; this is known as 

the peptide/proteins’ extracted ion chromatogram (EIC). Peptides’ EICs corresponding to a 

specific protein are then combined giving an average representation of that protein’s abundance. 

However, not all peptides ionize with the same efficiency; reagents used during chromatography 

in conjunction with spray voltages and the amino acid composition of the peptide itself can all 

contribute to what is known as ‘ion suppression’95. Ion suppression is the under-representation 

or lack of detection of an ion’s presence in the mass spectra. Therefore, inclusion of such 

suppressed ions in the determination of a protein’s abundance can lead to an under-

representation of a protein’s abundance. To curtail this issue, the program SEQUEST determines 

a protein’s abundance by averaging its three most intense unique peptides’ EICs – this is known 

as the ‘Top 3’ Method171,172. A popular alternative to this method is the intensity based absolute 

quantification ‘iBAQ' method172–174, in which the total ion intensity of the identified protein is 

normalized by dividing it by all possible tryptic peptides that can originate from said protein that 

have a length between 6 and 30 residues. 

Following determination of proteins’ EICs from ions eluted from a chromatographic run(s), 

relative quantification can be achieved by generating a ratio of an individual protein’s EIC from 

two different samples; often, proteins’ EICs from biological replicates (i.e. replicates from a 

singular experimental condition) are averaged prior to the generation of the ratio. Often, this 

ratio is depicted as a fold-change, generated by taking the log2 function of the ratio to normalize 

the difference about zero, as depicted in Figure 1.17. 
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Figure 1.17 Label-free relative quantitation by ion intensities. 

(A) The total ion current (TIC), defined as the integrated area under the curve (AUC) for all ion species during a 

chromatographic run, is composed of different species of unique ions, whose individual integrated AUCs are 

defined as extracted ion chromatograms (EIC). (B) Determination of individual proteins’ EIC-to-TIC ratios 

during an experiment comparing two conditions can allow for the calculation of the relative fold-change of a 

protein’s abundance, (C). 

 

However, when averaging protein abundance between biological replicates, it is assumed that 

the parameters leading up to the replicates’ data are identical, when often this is not the case. 

Two commonly observed phenomena are drift in the chromatographic elution time for a specific 

peptide of interest or the entire chromatographic run, and a decrease in total analyte intensity. 

To address the former problem of chromatographic drift, many programs ‘normalize’ the length 

of replicates’ chromatographic runs to reduce between-sample variability175,176, but relying on 

this alone is often insufficient. To address the latter problem of reduced analyte intensities, as 
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mentioned earlier, many scientists have resorted to carefully standardized front-end procedures. 

To further normalize biological replicates, our lab has begun calculating protein abundance 

within a biological sample as a proportion of a reference protein24 known to be in (relatively) 

constant abundance, or to that sample’s representative TIC177 (the summation of all proteins’ 

EICs identified in that biological sample). This method minimizes the effect of variations in 

sample loading between biological replicates, in addition to reducing the impact of proteins 

assigned an EIC of ‘0’ in only a subset of the replicates.  

Perhaps the largest caveat with the utilization of extracted ion chromatograms is the mis-

assignment of an 𝑚 𝓏⁄  to a protein of interest. The chromatogram extraction of peptide ions 

occurs for the entire chromatographic run, not only when the peptide of interest was fragmented. 

Because of this, there is the possibility of false assignment of ion species possessing an identical 

𝑚 𝓏⁄  ratio as that of the peptide of interest, which were identified in pre-fragmentation MS scans 

at various points of the LC gradient. While possible, this phenomenon is incredibly rare due to 

modern mass spectrometer’s high sensitivities and accuracies, and as such, is often ignored.  

 

1.3.2.3. Quantification of Compositional Protein Abundance 

The label-free techniques previously mentioned describe relative between-sample protein 

abundance quantification. However, both spectral counting and extracted ion chromatogram 

techniques can be utilized to determine the relativistic proportions of various proteins comprising 

an individual sample. With respect to spectral counting, this process is relatively 

straightforward160; the derivation of the ‘adjusted measurement’ such as the NSAF is, for all 

intents and purposes, an individual sample adjusted measurement of abundance relative to all 

other observed proteins in that sample. When utilizing extracted ion chromatograms, the process 

is similar; the EIC-to-TIC ratio is the proportion of detectable ion current for a specific protein 

that comprises the total ion current of the entire sample. However, due to some proteins’ EICs 

being comprised of low-confidence peptides, degenerate peptides assigned to multiple proteins, 

or falsely-assigned ions, between EIC-to-TIC ratios and normalized spectral counting, spectral 

counting is historically more utilized, but this trend is beginning to shift. 
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While EIC-to-TIC ratios and spectral counts can be utilized for determining relative compositional 

abundance, their use is limited when wanting to determine the absolute abundance of a peptide 

within a sample. Selected reaction monitoring (SRM), multiple reaction monitoring (MRM), or 

parallel reaction monitoring (PRM) are techniques that can be utilized to quantitatively 

determine a peptide  (or multiple peptides’) abundance within a sample63,178,179. SRM, MRM, and 

PRM techniques utilize mass filters, selecting voltage parameters to stabilize only very precise 

𝑚 𝓏⁄  ratios. Once this mass filter is set, the mass spectrometer counts the number of ions it 

observes for the specified species of parent ion – in addition to either user-specified 𝑚 𝓏⁄  

daughter ion(s) (SRM/MRM) or the full MS/MS spectrum of the parent ion (PRM) – relative to a 

control ion (usually the most abundant peptide observed). However, being a targeted approach, 

to determine which 𝑚 𝓏⁄  ratio will be monitored, a regular LC-MS/MS run must first be run, and 

peptides of interest pulled from the post-processed data. This has made SRM, PRM, and MRM 

incredibly impractical for large numbers of individual proteins, resulting in them being preferred 

for validation experiments. 
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1.4. Statistical Approaches to Data Interpretation 
Modern mass spectrometry-based proteomics experiments are often capable of identifying 

several hundreds, if not thousands, of proteins within a single sample. Due the sheer number of 

observations complete with measurements, in addition to proteomic experimental designs being 

comparative (i.e. cause and effect), the application of statistical analysis techniques is necessary 

for coherent conclusions to be drawn from the data. This section will focus primarily on the 

application of statistics in post-processed data interpretation. For information regarding how 

proteomics software determines test statistics (and their corresponding p-values) for peptides 

and proteins from raw mass spectra, see Section 1.2.5. 

 

1.4.1. Determination of the Probability Value (p-value) 
Most often, proteomics experiments are performed by comparing the measured abundance of 

individual proteins identified within two or more samples (or groups of samples) making up 

different experimental conditions. The goal of such comparisons is to identify proteins whose 

abundances change with respect to the experimental condition. Regrettably, there is no test in 

existence capable of determining whether or not the measured abundance for a given protein 

between two or more conditions is truly different (true discovery) or indifferent (false discovery) 

in a completely binary way121. Because of this, scientists rely on probabilistic approaches which 

describe the likelihood that the difference observed, if any, for a given protein is significant.  

When making comparisons on populations with numerical values, one can choose between two 

families of statistical testing – parametric or nonparametric. Parametric tests are defined as tests 

which make assumptions about the underlying parameters (such as mean and variance) for a 

population’s distribution, while nonparametric tests do not. The most widely utilized 

nonparametric tests are those of the rank and order statistical families, where, rather than 

directly utilizing a population’s parameters for statistical inference, these parameters first 

undergo a transformation into rank/order. This allows inferences to be made regarding different 

populations, even when population distributions are non-normal, but at the cost of statistical 
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power. Frequently used statistical tests include those from the parametric t-test (two 

populations)180 and analysis of variance (ANOVA; two or more populations)181 families, and their 

corresponding nonparametric tests, the Mann-Whitney U-test (MWU)182 and Kruskal-Wallis H-

test (KWH), respectively183. 

Application of a given statistical test will return a test-statistic (e.g., t-statistic from a t-test, U-

statistic from a MWU-test), which is subsequently used to calculate a probability known as a p-

value. P-values are often misinterpreted as the probability that the observation in question is 

false. In fact, the p-value for a given comparison should be interpreted as the proportion of false-

discoveries that are less similar to the ‘norm of false-discoveries’ than the given comparison121. 

For example, when comparing protein X’s abundance between two conditions, a p-value of 0.05 

indicates that, relative to the difference observed for protein X, 5% of all comparisons that are 

false-discoveries are more different than the observation for protein X. Because of this, when 

dealing with large numbers of comparisons as proteomics experiments often do, large 

proportions of ‘significant’ observations are incorrect. This is known as the multiple comparisons 

problem (MCP)121,184, and while still an active area of research, several methods to circumvent it 

have been proposed. 

There is a common misconception – primarily with those new to the field of proteomics – that 

bigger protein lists represent better, or more successful, scientific experiments. However, this is 

not always the case; with mass spectrometers becoming increasingly sensitive, bigger lists are 

often burdened with quantified proteins that are most likely contaminants24,184,185. While 

certainly impressive in terms of coverage, experiments identifying and comparing larger lists of 

proteins are thusly more prone to the MCP. As a first-line defense, it is generally agreed upon to 

do two things; manually curate post-processed data to remove known contaminants prior to 

application of a statistical comparison test186, and to apply a highly discriminatory statistical test 

during comparisons185. While manual removal of contaminants is straight-forward, the selection 

of an appropriate statistical test can often be troublesome. 
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1.4.1.1. Comparison of Two Populations Using t-Tests 

For binary comparisons of samples or groups, assuming normal population distribution, the most 

appropriate and preferred statistical tests belong to those of the t-test (tests following Student’s 

t-distribution)180; in proteomics specifically, these tests are incredibly useful when comparing 

two experimental conditions due to the inability to analyze large numbers of biological samples 

in a practical way. However, there are three variants of this test, each suited to the comparison 

of different types of populations, and therefore with differing levels of discrimination as to what 

is ‘significant’; paired (Student’s t-test)187, unpaired-homoscedastic, or unpaired-heteroscedastic 

(Welch’s t-test)188. Paired t-tests assume both populations are equal, fit a normal distribution, 

and both distributions have equal variance. In assuming such equal measures between two 

sample populations, paired t-tests are best suited to cause-and-effect studies where a population 

is measured prior to, and after, application of the experimental condition. However, the 

assumptions made with paired t-tests also dismiss many variables often at play in health science 

experiments, which results in a large amount of leniency with respect to the test’s outcome. 

Conversely, unpaired t-tests dismiss several of the assumptions paired t-tests make, the most 

notable being that the populations being compared are equal. While all unpaired t-tests assume 

unequal populations, those of the homoscedastic category still assume that the variance exhibited 

by the measurements of each population are equal. Heteroscedastic tests, on the other hand, 

assume unequal populations in addition to unequal variance. Because unpaired t-tests treat each 

experimental condition as a unique population, the permitted ‘randomness’ of measurements for 

each population is much higher. This results in much larger differences being necessitated to 

produce statistically significant results.  

Even with our current breadth of knowledge pertaining to the complexities of biological systems, 

it is not possible to determine with absolute certainty whether any two biological samples – even 

if replicates of one another – are equal in terms of variance. As such, unless one has exhibited the 

utmost control over their experimental conditions, the best choice of statistical test is that which 

has the strictest parameters pertaining to what is deemed ‘significant’ – Welch’s t-test185,188,189.  
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1.4.2. Statistical Means to Increase Confidence for Significant 
Observations 
When dealing with comparative proteomic studies, the removal of contaminants from proteomic 

datasets, in addition to choosing strict and appropriate statistical tests are excellent procedures 

to curate a reliable and high-confidence list of proteins whose abundances change significantly. 

A technique borrowed from transcriptomics190,191 and routinely applied in smaller studies with 

noisy data, these procedures are combined with a user-defined ‘threshold’ for what determines 

a significant ‘fold-change’ in abundance192; often this is more than sufficient for the generation 

of a high-confidence list of proteins that change in abundance and can easily be verified with 

molecular techniques. However, with extremely large datasets often reporting hundreds of 

significant (p<0.05) changes, these techniques become insufficient, and validation via molecular 

tests of such large lists becomes impractical.  

Because of the nature of the MCP, several methods, each aiming to control a different aspect of 

statistical testing outcomes, have been proposed121. To understand these techniques and what 

they are trying to control, the possible outcomes of a statistical test must first be defined.   

When making a statistical comparison, there are two assumed possible outcomes; the null 

hypothesis (H0), which assumes for a given comparison, there is no difference between the two 

groups, and the alternative hypothesis (HA), which rejects H0. Based on these two outcomes, there 

becomes the possibility of four, as outlined in Table 1.2. 

Table 1.2 Summary of statistical test outcomes and error types. 

 Null Hypothesis (H0) 

 True False 

Decision about 

Null Hypothesis 

(H0) 

Reject 
Type I Error  

(False-Positive; α) 
True Negative 

Accept True Positive 
Type II Error 

(False-Negative; β) 
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1.4.2.1. The Bonferonni Correction 

When performing statistical tests for a series – or ‘family’ – of comparisons, the primary concern 

is with the occurrence of type I errors (false-positives; α; ‘critical’ p-value); the probability of 

occurrence for such an error in a series of comparisons is known as the ‘family-wise error rate’ 

(FWER). One of the most popular techniques, the Bonferonni correction193,194, addresses the MCP 

by controlling the FWER through adjustment of reported p-values. This is achieved by taking the 

critical, or acceptable type-I error rate, p-value (i.e. α = 0.05) and dividing it by the total number 

of hypotheses being tested (m). This procedure generates a new, smaller critical value of α/m, 

such that the null hypothesis is rejected for a comparison in the series if p≤ α/m.  

 

1.4.2.2. The False Discovery Rate 

An alternative method to the Bonferonni correction is the false-discovery rate (FDR) approach. 

Rather than adjusting the critical p-value, as in the Bonferonni method, FDRs attempt to predict, 

at specific thresholds of p-values, the proportion of the encompassed p-values that are likely part 

of the null-distribution (π0). The null-distribution can be defined as121:  

π0 =
# false discoveries

# putative discoveries
 

Equation 1.32 

Therefore, the null distribution, as described in Section 1.4.1., is the total proportion of false, or 

insignificant, discoveries within all possible putative (false and true) discoveries for a dataset. 

Intuitively, one might expect the p-values for insignificant/false discoveries to cluster in a way 

that is opposite the way significant/true discoveries cluster; the p-values for true discoveries are 

often focused in a small region near 0 in the [0,1] interval of probability. However, because of 

what a p-value represents (the proportion of π0 that is less similar than the comparison in 

question) the idea that false discovery p-values may cluster near 1 in the [0,1] interval is untrue. 

Instead, the distribution for π0 is uniform along the [0,1] interval, as depicted in Figure 1.18B. 

Therefore, for a theoretical series of statistical comparisons containing [π0] false discoveries, and 

[1- π0] true discoveries, the distribution should look like the histogram depicted in Figure 1.18C. 
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While the absolute determination of π0 is not possible without a near limitless dataset, it can be 

approximated.  

The approximated value for π0 can then be utilized for the determination of the false-discovery 

proportion (FDP):  

FDP =
(false discoveries ∩ selected discoveries)

(selected discoveries)
 ≈  

𝛼 × 𝑚 × π0
𝑘

 

Equation 1.33 

where 𝛼 is the user-defined p-value threshold, 𝑚 is the total number of putative discoveries in 

the dataset, and 𝑘 is the integer number of selected discoveries (i.e. the number of discoveries 

corresponding to 𝛼).  

Unfortunately, however, p-value histograms from multiple comparisons of biological samples are 

almost never as ‘clean’ as the histograms depicted in Figure 1.18C. When utilizing real data, it is 

incredibly difficult to distinguish the behaviour of true discoveries and false discoveries, and 

because of this, makes the determination of 𝛼 and π0 nearly impossible. As a result, the FDP is 

often estimated and referred to as the false discovery rate (FDR). 

As the FDR is an estimate of the FDP, it should possess two qualities; FDRs should be conservative 

(i.e. they should not under-estimate the number of false-discoveries in the dataset), and they 

should be asymptotically convergent (i.e. with increasing data quantity and quality, repeated 

calculation of the FDR should converge on the real value of the FDP). 
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Figure 1.18 Distribution of p-values. 

Ideal distribution of p-values for (A) true discoveries, (B) false discoveries, and (C) all (putative) discoveries. (D) 

Using the average ‘density’ of false discoveries as depicted by the red bars in B and C, the FDP can be calculated 

for a critical p-value threshold. Adapted from 121 

The determination of FDRs is a step-wise procedure. First, p-values corresponding to 

comparisons are ordered from lowest to highest. Once sorted, p-values are assigned an integer 

rank, 𝑖, such that 𝑖 ∈ [1 𝑚]. For a given p-value 𝑘 in the list, the FDP is approximated by setting 

𝛼 to 𝑝𝑘 and using the following equation:  

FDP̂𝑘 = 
𝑝𝑘 ×𝑚 × π0

𝑘
 

Equation 1.34 

An intermediate table is then utilized, and FDP̂𝑘 is stored in the 𝑘th cell. This process is repeated 

until all 𝑚 FDPs have been approximated. Next, for the 𝑘 best p-values (i.e. 1,2,3,…, 𝑘), the FDR 

is calculated as the smallest FDP̂ in the intermediate list that is found in a cell greater than, or 

equal to, the 𝑘th cell. Mathematically, this is represented as: 
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FDR({protein(1) → protein(𝑘)}) =  min
𝑖≥𝑘

(FDP̂(𝑖)) 

Equation 1.35 

Finally, one simply walks through the list of FDRs and stops when they reach the limit for what 

is an acceptable rate of false-discovery; the null hypothesis is rejected for all proteins with a 

calculated FDR up to this point.  

This procedure was originally described by Benjamini and Hochberg (BH) in 1995195, however 

the FDR was a user-defined critical value denoted as 𝑞∗, and π0 was equal to 1. Additionally, the 

mathematical definition of the FDR was dependent on the probability of the null hypothesis being 

rejected. As a result, the BH-procedure is slightly simpler; p-values are ordered and ranked as 

described above, but with the null hypothesis being rejected for all p-values up to the maximum 

𝑘, where: 

𝑝𝑘 ≤ 
𝑘

𝑚
𝑞∗ 

Equation 1.36 

Likewise, in 2001 Storey and Tibshirani (ST) mathematically redefined the FDR as the ‘positive’ 

FDR (pFDR) by removing the term describing the probability of the null hypothesis being rejected 

from the equation196. Because the probability of the null hypothesis being rejected is incredibly 

high when comparing biological samples, BH’s FDR and ST’s pFDR are remarkably similar. 

 

1.4.2.3. Adjusted p-values and q-values 

When calculating FDRs, both BH’s and ST’s procedures allow for the generation of adjusted p-

values197–199  and q-values200–202, respectively. The generation of these adjusted p-/q-values 

originates from the substitution of Equation 1.34 into Equation 1.35, giving: 

FDR({protein(1) → protein(𝑘)}) =  min
𝑖≥𝑘

(
𝑚 × π0
𝑖

× 𝑝𝑖) 

Equation 1.37 
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Due to the similarity between FDRs and pFDRs when dealing with biological datasets, these two 

terms are often colloquially used interchangeably. However, in theory, the logical arguments that 

make up the differences between the two – specifically with respect to the utilized value of π0 – 

q-values are ultimately less biased than their counterpart adjusted p-values. It is also important 

to note that FDRs, along with their adjusted p-/q-values, are properties of the raw p-value set. 

Raw p-values retain their statistical meaning if their order in the list is changed, whereas this is 

not the case for FDRs and adjusted p-/q-values; any shuffling or removal of the raw p-values 

makes their respective FDRs unmeaningful. 

 

1.4.2.4. Local-False Discovery Rate 

FDRs, adjusted p-values, and q-values are incredibly powerful and useful tools, allowing the user 

to have some level of quality control when considering the test statistics for all comparisons made 

in a dataset. However, the fact that these metrics are properties pertaining to the entire set is 

also a slight hindrance; these metrics are unable to provide control with respect to individual 

proteins within the dataset. Due to the ‘blending’ nature of true and false discoveries as previously 

mentioned, it is not possible to provide any sort of quality control for individual proteins. Yet, 

with a large enough dataset (thousands of comparisons), it is possible to define subsets of the 

entire dataset that share similar properties. By calculating the metrics described in Sections 

1.6.2.2. and 1.6.2.3. for each subset of the data, one can produce local-FDRs121,203. 

When subsets of large datasets are defined by their p-value rank, the calculation of local-FDRs 

utilizes only p-values belonging to specific intervals and their neighbours. By performing 

calculations in this way, a ‘sliding scale’ emerges, rather than clear-cut groupings, thus allowing 

for incredibly refined estimations of the proportion of false discoveries for specific p-value 

intervals. However, this technique is reserved for incredibly large datasets, where p-value 

histograms have a smooth profile. For small datasets with irregular histogram profiles, the 

‘sliding scale’ calculation of the local-FDR becomes unstable which can result in poor estimates 

of the behaviour of the data. 
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Figure 1.19 Calculation of the local-FDP (FDR). 

Classically, the FDP refers to the false-discovery proportion for all values in the range from [0,α]. With a large 

enough dataset, ‘local-FDPs’ can be approximated for small regions of the distribution (dotted borders). By 

performing these calculations for successive regions overlapping each other, incredibly precise FDPs can be 

determined for very small ranges of p-values. (Adapted from 121) 
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1.5. Post-Processing and Data Interpretation 
Until now, all previous sections have discussed how proteomics data is generated, compared, and 

curated for statistical significance. Often in comparative proteomics experiments, following 

statistical analysis, the reported lists of statistically significant changes between experimental 

conditions can consist of several hundred proteins, if not upwards of a thousand. One of the 

largest caveats with the reporting of such massive lists is to determine the biological meaning of 

the results; where does one even begin to interpret what is happening at the cellular/tissue level 

with so much reportedly changing?  

 

1.5.1. Functional and Locational Protein Annotation 
Thankfully, a plethora of online databases exist to help with the question posed above, curating 

information with respect to proteins’ genetic families, molecular functions, cellular locations, and 

biological pathways/processes. The two most prominent of these databases are Gene Ontology 

(GO)204,205, and the Kyoto Encyclopedia of Genes and Genomes (KEGG)206,207. GO and KEGG often 

work to complement each other; GO identifiers are primarily descriptors used to identify 

proteins’ molecular functions (MF), the biological processes (BP) it is involved with, and the 

cellular component (CC) it can be found in. KEGG identifiers are relational, used to annotate 

signalling pathways, diseases, and interacting partners. Because of the dynamic nature of 

proteins, most of which possess multiple functions and locations in the cell, there exists an 

incredible amount of redundancy; proteins are often given multiple GO and KEGG identifiers to 

signify this diversity. However, even with the convenience of databases annotating proteins’ 

location, function, and biological significance, the manual retrieval and cross-reference of this 

information for every protein identified to change significantly within a dataset would be 

incredibly arduous. 
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1.5.2. Inference of Biological Meaning  
A plethora of web utilities and programs have been designed to make the curation of large lists 

of ‘omics’ data more manageable. In recent years, the most prominent of these utilities and 

programs for ‘omics’ studies are the web-based DAVID208 (the database for annotation, 

visualization, and integrated discovery), PANTHER209–211 (protein analysis through evolutionary 

relationships), and STRING212 (search tool for the retrieval of interacting genes/proteins), in 

addition to the desktop-based application Cytoscape213, designed for visual representation of 

biological networks, but also allowing for the utilization of plugins for functional enrichments 

such as ClueGO214. These utilities provide graphical, tabulated, and/or pictorial representations 

of which GO and KEGG identifiers are ‘enriched’ within the user-provided dataset, allowing the 

user to infer biological meaning to the experimental outcome in a quick and efficient manner. 

The enrichment process begins with interpretation of the protein input list. Ontological and 

pathway identifiers for each protein present in the list are compiled, and the total number of each 

identifier observed is recorded. From this, a ratio of Σ(# unique identifier) to Σ(# proteins) is 

generated, giving the proportional representation of each identifier in the input list. This 

proportion is then compared to that identifier’s frequency in the species’ genome. Interpretation 

of this comparison – either through the implementation of Jaccard’s similarity coefficient, a 

binomial test, a hypergeometric probability function (i.e. Fisher’s exact test), the chi-squared test, 

or some combination of these (as implemented in gene set enrichment analysis)215–217 – a ‘fold-

enrichment’ value can be determined for individual identifiers within the dataset. Confidence 

estimates for enriched identifiers are often displayed as p-values; following the p-value 

determination for all represented GO/KEGG identifiers in a dataset, the procedure described in 

Section 1.4.2. can be utilized to determine the FDR corresponding to specific identifications 

within the identifier list.  

Additional to identifier enrichments within these datasets, some web utilities and applications 

allow for the visualization of protein-protein interactions and functional ontology associations. 

Through visualization of such networks found within the input data, protein pathways up-

/down-regulated with respect to an experimental condition can be mapped, and individual 
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proteins/processes correlating to the increase/decrease in said pathways identified, providing 

insight to components critical to the biological response associated with the experimental 

condition. Furthermore, the strength of evidence/confidence for a given protein-protein 

interaction or functional ontological association can be depicted directly on these interactome 

and functional association networks. The most common implementation of this usually takes the 

form of the thickness of the edge (line) connecting two nodes (proteins/ontologies); the thicker 

the line, the more evidence exists in the scientific community to support the validity of the 

interaction. Additionally, when visualizing ontological associations, the size of the node is 

indicative of its statistical significance, with larger nodes corresponding to increasing confidence. 

Example protein-protein interaction and functional ontology networks generated using proteins 

annotated to be involved in the human tricarboxylic acid (TCA) cycle are illustrated in Figure 

1.20A and B, respectively.  

While immensely powerful, these tools do possess a critical caveat; utilization of such tools biases 

data interpretation for what is already known and present in the database. In other words, we 

are limited to what we already know. Ontological identifiers and utilities showing pathway 

enrichment and protein-protein interactions are vital for practical analyses of large proteomic 

datasets, but the pathways and protein-protein interactions identified using only these methods 

can never be novel; such analyses may instill knowledge on a more macro-level, for example 

which pathways may be affected in cancer cells by condition X, yet they are only capable of 

identifying what has already been annotated. Nevertheless, enrichment and interaction analyses 

in large datasets have become a pillar in the formulation of novel hypotheses which can be 

experimentally tested. 
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Figure 1.20 Example visualization of protein-protein interaction and functional 

ontology networks. 

Example protein-protein interaction (A; STRING v.10.5) and functional ontology networks (B; ClueGO 

v.2.5.1 plugin for Cytoscape v.3.6.1) for proteins annotated to be involved in the human tricarboxylic acid 

(TCA) cycle. (A) Lines indicate known interactions; thicker lines indicate stronger evidence of interacting 

pairs, while thinner lines indicate interactions with less evidence. (B) Functional ontology network 

generated using GO-biological process (circles) and KEGG pathway (octagons) terms; linkages indicate 

known interaction between biological functions, while the size of the nodes indicates statistical significance.  

A

B
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1.6. Thesis Objectives 
The objectives of this thesis are oriented towards the demonstration of a relatively novel, 

conservative approach with multiple applications in the field of mass spectrometry-based 

proteomics. As previously mentioned, the technique to be demonstrated in this thesis does not 

solely rely on the comparisons of raw mass spectrometric data. In addition to imposing strict 

front-end sample handling, we implement methods of data normalization per sample prior to 

averaging and comparison to ensure the most accurate, reliable, and reproducible results. 

While incredibly useful when applied to the study of cellular and organellar proteomes in 

response to a specific stimulus or experimental condition, we believe this technique has 

unprecedented potential in the study of whole organs and tissues – in particular, cancer. By 

studying how a tissue’s proteome changes in response to a stimulus, it allows for the development 

of a more thorough understanding of disease pathogenesis, progression, and maintenance. In 

addition, how cancerous tissue responds to anti-cancer therapies such as chemotherapeutics can 

be studied; pathways activated following chemotherapeutic administration causing cancerous 

tissue to die or survive can be mapped, allowing for the development of combination treatments 

that are complementary in their mechanisms of action. Likewise, analysis of patient-derived 

tumour samples, in conjunction with clinical outcomes, can allow for the identification of 

prognostic indicators218. 

The following chapters will demonstrate this technique’s reliable application in: the small-scale 

study of organellar proteomes such as lipid droplets (Chapter 224); the analysis of whole-tumours 

from animal models, pre- and post-chemotherapeutic administration (Chapter 3177); and finally, 

how this technique can be applied to clinical tumour samples of human origin in the search for 

novel biomarkers indicative of patients’ disease prognosis (Chapter 4). 

  



~ 63 ~ 
 

 

 

 

 

 

Chapter 2 : Proteomic Analysis of Murine 
Hepatic Lipid Droplets Following Dietary 
Stress 
 

 

 

 

 

 

 

 

 

 

  



~ 64 ~ 
 

2.0. Proem 

During fasting, the liver increases lipid storage as a mean to reserve and provide energy for vital 

cellular functions. After re-feeding, hepatocytes rapidly decrease the amount of triacylglycerol 

that is stored in lipid droplets (LDs), visible as the size of hepatic LDs significantly decreases after 

re-feeding. Little is known about the changes in the liver LD proteome that occur during the 

fasting/re-feeding transition. This study aimed to investigate the hepatic LD proteome in fasted 

and re-fed conditions in mice using a comparative label-free LC-MS/MS analysis, allowing us to 

achieve relative quantitation between experimental conditions. 

 

A version of this chapter has been published as: 

Kramer, D. A., Quiroga, A. D., Lian, J., Fahlman, R. P., & Lehner, R. (2018). Fasting and refeeding 

induces changes in the mouse hepatic lipid droplet proteome. Journal of Proteomics, 181, 213–

224. http://doi.org/10.1016/J.JPROT.2018.04.024 

Supplementary data to this chapter can be found online with the published version of this 

chapter, or at the following link:  

Supplemental Tables 
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2.1. Introduction 

Lipid Droplets (LDs) are cytoplasmic organelles ubiquitous to all cells and species (for reviews 

see Refs.219,220. LDs have been proposed to play important roles in many cellular processes 

including lipid metabolism, signal transduction, protein storage and lipid trafficking221.  Hepatic 

LDs contain mainly triacylglycerol (TG), with some cholesteryl ester and retinyl ester as a neutral 

lipid core and are central to abnormal lipid accumulation during hepatic steatosis222. This core is 

surrounded by a monolayer of amphipathic lipids (phospholipids and free cholesterol) and LD-

associated proteins of the PAT (Perilipin-1, ADRP/Perilipin-2, TIP47/Perilipin-3) family (for 

reviews see 219–221,223 ). In addition, proteomic studies have shown that a variety of proteins, other 

than PAT proteins, interact with LDs (either embedded or associated), thus enabling the multiple 

functions of this organelle224–226. Moreover, based on the characteristics of the identified LD 

proteins, LDs are now known to interact with various other cellular compartments including the 

endoplasmic reticulum (ER), mitochondria, peroxisomes, endosomes, and the cytoskeleton 

(reviewed in 227,228), suggesting LDs possess highly dynamic functions within the cell. 

During fasting, the liver enters a state of physiological steatosis, increasing lipid storage in LDs 

as a mean to reserve and provide energy for vital cellular functions. The source of fatty acids for 

hepatic TG synthesis are non-esterified fatty acids derived from hydrolysis of TG stored in the 

adipose tissue, dietary fatty acids from intestinal chylomicron remnants, and fatty acids newly 

synthesized through de novo lipogenesis. Because fatty acids exert deleterious effects on cellular 

functions when in their free form (biological detergents at neutral pH), excess fatty acids are 

esterified into TG. In the liver, TG can be either stored in LDs or secreted in TG-rich apoB-

containing lipoproteins into the bloodstream. TG can also be hydrolyzed and fatty acids directed 

toward mitochondrial β-oxidation. As determined empirically by others229, after re-feeding, 

hepatocytes rapidly decrease the number and size of LDs; however, little is known about the 

physiology of this process and the changes in the proteome during the fasting/re-feeding 

transition that allow for this process to occur. 
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This study aimed to investigate the hepatic LD proteome in fasted and re-fed conditions in the 

mouse using gel-LC-MS/MS analysis. Our findings reveal unexpected changes in the LD proteome 

in fasting versus re-fed livers. 
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2.2. Experimental Procedures 

2.2.1. Animals and Feeding Conditions 

We utilized 4-month-old male C57BL/6 mice, with each individual LD sample prep comprised of 

the livers of 3 animals. Mice were fed ad libitum a chow diet (LabDiet, PICO Laboratory Rodent 

Diet 20, 23.9% protein, 5% fat, 48.7% carbohydrates). Mice were randomly split into two 

groups: fasted (24 h fast) and re-fed (24 h fast followed by 6 h re-feeding). All animal procedures 

were approved by the University of Alberta’s Animal Care and Use Committee and were in 

accordance with guidelines of the Canadian Council on Animal Care. Mice, housed three to five 

per cage, were exposed to a 12 h light/dark cycle beginning with light at 8:00 a.m. 

 

2.2.2. Lipid Droplet Fractionation 

At the end of each feeding period mice were sacrificed by cardiac puncture, livers were harvested, 

rinsed in ice-cold PBS and immediately subjected to homogenization with a motor-driven potter 

in a hypotonic lysis medium (HLM, 20 mM Tris·Cl, pH 7.4, 1 mM EDTA). All solutions included 

protease inhibitors (EDTA-free Complete protease inhibitors, Roche Diagnostics) and 

phosphatases inhibitors (PhosSTOP, Roche Diagnostics). LDs were isolated according to 

Brasaemle and Wolins,230, with some modifications231. Homogenates were spun at 500x g for 10 

min. Supernatants were then spun at 15,000x g for 10 min to remove mitochondria and to allow 

fat cake separation. Fat cakes were transferred into new tubes and washed twice at same speed 

and length of centrifugation. Fat cakes were then diluted 1/3 in 60% sucrose in order to obtain 

20% density adjusted suspensions. These were layered at the bottom of ultracentrifuge tubes 

and overlaid with double the volume HLM-5% sucrose, followed by careful overlay with same 

volume of HLM. Samples were centrifuged at 28,000 x g for 30 min and fat cakes were carefully 

recovered and analyzed. 
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2.2.3. Solubilization of Lipid Droplet–Associated Proteins for 
Western blot and LC-MS/MS Analysis. 

To solubilize LD-associated proteins for subsequent Western blot and LC-MS/MS procedures, 

fresh LD fractions prepared from fasted (n=3) and refed (n=3) mice were mixed with 10% 

sodium dodecyl sulfate (SDS) (1:1, v/v) and incubated for 1 h at 37ºC in a sonicating water bath 

with constant agitation. Then, samples were microcentrifuged 10 min at maximum speed, at 

room temperature and the infranatants containing the solubilized proteins were collected from 

beneath the floating lipid layer. Equivalent volumes of 2× SDS sample buffer were added to the 

samples, which were then boiled for 10 min prior to loading equivalent amounts of total protein 

onto a discontinuous SDS-PAGE gel. 

 

2.2.4. Sample Preparation and Mass Spectrometry 

SDS-PAGE gels were visualized with R-250 coomassie blue protein stain (SigmaAldrich).  Once 

visualized, protein bands were excised in segments, as outlined in Supplemental Figure 2.8.  

Each gel section was individually treated to in-gel tryptic digestion as previously described232.  

 

2.2.4.1. LC-MS/MS of Lipid Droplet-Associated Proteins 

Fractions containing tryptic peptides dissolved in aqueous 5% v/v ACN and 0.2% v/v formic acid 

were resolved and ionized by using nanoflow HPLC (Easy-nLC II, Thermo Scientific) coupled to 

a LTQ XL-Orbitrap hybrid mass spectrometer (Thermo Scientific). Nanoflow chromatography 

and electrospray ionization were accomplished with a PicoFrit fused silica capillary column 

(ProteoPepII, C18) with 100μm inner diameter (300Å, 5μm, New Objective). Peptide mixtures 

were resolved at 500 nL/min using 60 min linear ACN gradients from 0 to 45% v/v aqueous 

ACN in 0.2% v/v formic acid. The mass spectrometer was operated in data-dependent acquisition 

mode, recording high-accuracy and high-resolution survey Orbitrap spectra using external mass 

calibration, with a resolution of 60 000 and m/z range of 400–2000. The ten most intense 

multiply charged ions were sequentially fragmented by using collision induced dissociation, and 
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spectra of their fragments were recorded in the linear ion trap; after two fragmentations, all 

precursors selected for dissociation were dynamically excluded for 60 seconds.  Raw data was 

processed using Proteome Discoverer 1.4.1.14 (Thermo Scientific) and a reviewed, non-redundant 

Mus musculus complete proteome FASTA index (UniprotKB – retrieved October 2015) protein 

database was searched using SEQUEST (Thermo Scientific). Search parameters included a 

precursor mass tolerance of 10ppm and a fragment mass tolerance of 0.8Da.  Peptides were 

searched with static modifications as we have previously described177. The ‘Precursor Ion Area 

Detector’ node was implemented in the data processing workflow to determine relative extracted 

ion chromatograms (EICs) for each protein identified. Processed data was then filtered using a 

minimum of 2 medium-confidence (FDR<0.05) peptides per protein, the data from this analysis 

is listed in Supplemental Table 2.1. False discovery rate thresholds for peptide confidence were 

as follows; Fasted-1: Strict FDR=0.0097; Fasted-2: Strict FDR=0.0097; Fasted-3: Strict 

FDR=0.0097; Re-Fed-1: Strict FDR=0.0097; Re-Fed-2: Strict FDR=0.0097; Re-Fed-3: Strict 

FDR=0.0092. Protein lists from were then exported and compared using Microsoft Excel. 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange 

Consortium via the PRIDE233,234 partner repository with the dataset identifier PXD005977. 

 

2.2.4.2. Mass Spectrometry Data Analysis and Network Analysis 

To simplify data analysis, notable contaminants (keratins) were removed from the data set. 

Likewise, proteins with an observed EIC in ≤1 sample across all n=6 samples were removed. The 

remaining data was corrected by normalizing identified proteins’ EICs to the observed perilipin-

2 EIC in a sample-specific manner; being a coat-protein, the surface-area to volume ratio of 

perilipin-2 to LD volume should remain constant. The corrected protein abundances (EIC-corr) 

for each protein were averaged among samples within their respective experimental condition 

(fasted versus re-fed). To determine relative changes in average protein abundance between 

experimental conditions, log2(EIC-corrfasted/EIC-corrrefed) ratios were generated. To determine 

the significance of the changes observed, a two-tailed heteroscedastic t-test188 was applied to each 

protein’s EIC-corr array between experimental conditions; once grouped, proteins unique and 



~ 70 ~ 
 

significantly up-regulated (p<0.05 and/or ≥6-fold-change in abundance) in each condition were 

searched using the STRING212 10.0 web-utility and enriched for KEGG pathways and the Gene 

Ontologies (GO): Molecular Function, Biological Processes, and Cellular Components. Output lists 

were exported to Microsoft Excel and only ontologies and pathways with an FDR≤0.05 were 

utilized. Additionally, GO analyses were performed using the PANTHER v13.1209–211 database and 

Cytoscape v3.5.1213 with the ClueGO v.2.5.1 plugin214.  

While the utilization of label-free proteomic quantification is most effective when comparing the 

abundance of individual proteins between samples, as described above, the comparison of 

proteins’ absolute abundances within a sample can provide valuable information with respect to 

total protein composition. Bias exists when comparing peptides from different proteins within a 

sample due to the different ionization efficiencies of the various tryptic peptides, in conjunction 

with a large dynamic range of protein abundance; while this hinders absolute quantitative 

comparisons within a sample, it has been observed that label-free proteomic quantification 

methods do correlate with global protein abundance172. As such, in addition to our comparative 

analysis using relative ion intensities, we performed compositional analysis of LD protein 

abundance across all datasets using normalized peptide spectral matches (PSMs), relative to 

Plin2. 

 

2.2.5. Western Blotting and Immunostaining of Membranes  

Proteins were resolved by SDS-PAGE (10%) based either on the same triacylglycerol or protein 

concentrations and were transferred onto PVDF membranes. Specific primary antibodies were 

incubated with the membranes overnight after blocking the membrane with 5% w/v skimmed 

milk for 1 hour at room temperature. The following primary antibodies, with their working 

dilutions from the stock solutions obtained from the supplier in 3% w/v BSA in TBST, were used: 

acyl-CoA synthetase/ligase 1 (Acsl1) (1:1000, Cell Signaling, #4047), perilipin 2 (Plin2) (1:1000, 

Abcam #108323), perilipin 5 (Plin5) (1:2000, Progen #GP31), calnexin (Cnx) (1:1000, Enzo Life 

Sciences #SPA-865), β-actin (1:1000, Cell Signaling, #4967), carboxylesterase 1d (Ces1d, also 
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called Ces3 or TGH) that also reacts with carboxylesterase 1g (Ces1g, also called Ces1 or Es-x) 

(1:30000, generated in-house235), major urinary protein 1 (MUP1*) (1:300, Santa Cruz 

Biotechnology #SC-66976), glyercaldehyde 3-phosphate dehydrogenase (GAPDH) (1:5000, 

Abcam #ab8245), and phosphatidylethanolamine-N-methyltransferase (Pemt) (1:1000, generous 

gift from Dr. Dennis Vance236). The following secondary antibodies, diluted 1:5000 in 5% w/v 

skimmed milk in TBST, were incubated for 1 h at room temperature: HRP-labelled donkey anti-

guinea pig IgG (Fitzgerald #43R-ID039hrp) and HRP-labelled goat anti-rabbit IgG (Invitrogen 

#31460). Immunoreactive proteins were detected by enhanced chemi-luminescence (GE 

Healthcare, UK) using HRP-labelled secondary antibodies. 

 

2.2.6. Histological Analysis 

Livers collected from mice from both fasted and re-fed conditions were embedded in OCT and 

frozen for further histological analysis. Frozen liver sections were stained with 2 µg/mL BODIPY 

493/503 (Invitrogen, USA) in PBS for 1h at room temperature to visualize LDs. Images were 

collected with a laser scanning confocal microscope (Leica TCS SP5, software version Leica LAS 

AF 2.6.0, Leica, Germany).  Quantification of LD number and size was done with ImageJ software 

(NIH, USA). 

 

2.2.7. RNA Isolation and Real-Time qPCR Analysis 

Liver total RNA was isolated using Trizol reagent (Invitrogen, USA). First-strand cDNA was 

synthesized from 2μg total RNA using Superscript ΙΙΙ reverse transcriptase (Invitrogen) primed 

by Oligo (dT)12-18 (Invitrogen) and random primers (Invitrogen). Real-time qPCR was performed 

with Power SYBR® Green PCR Master Mix kit (Life Technologies, UK) using the StepOnePlus-

Real time PCR System (Applied Biosystems, Canada). Real-time qPCR primers, whose sequences 

are outlined below, were synthesized by Integrated DNA Technologies (USA). Data were analyzed 

with the StepOne software (Applied Biosystems). A standard curve was used to calculate mRNA 

abundance relative to that of a control gene, cyclophilin.   
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Primer sequences: Cyclophilin (F: 5’-TCCAAAGACAGCAGAAAACTTTCG-3’, R: 5’-

TCTTCTTGCTGGTCTTGCCATTCC-3’), Plin2 (F: 5’-CACTCCACTGTCCACCTGATT-3’, R: 5’-

TCCTGAGCACCCTGAATTTT-3’), Plin3 (F: 5’-GGAGGAACCTGTTGTGCAG-3’, R: 5’-

ACCATCCCATACGTGGAACT-3’), Plin5 (F: 5’-TGTGTGTAGTGTGACTACCTGTGC-3’, R: 5’-

GGCAAGATCATTCACTGTGG-3’), and ACSL1 (F: 5’-CCACCATCTTCCCTGTGG-3’, R: 5’-

GGAAGTGTTTGCTTGTCCAAA-3’). 
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2.3. Results 

2.3.1. Liver Morphology During Fasted and Re-Fed States 

The liver accumulates TG after 24 h fast due to the high fatty acid flux from the adipose tissue 

leading to significant increase in individual LD size and total area (Figure 2.1A-C), reflecting 

what has been reported previously229. Consequential of re-feeding the animals for 6 h after a 24 

h fast, the average area of an individual LD decreased by 66% while the total LDs area decreased 

by 27% (Figure 2.1A-C). Concurrently, the number of LDs increased by 126% after re-feeding 

(Figure 2.1C), possibly due to the increased nascent LDs generated from induced de novo 

lipogenesis. Accordingly, hepatic TG levels were 1.5-fold lower after re-feeding the animals for 6 

h compared with fasted mice (Figure 2.1D). 
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Figure 2.1 Liver LD morphology during fasting and re-feeding.  

(A) Representative images of hepatic LDs. Bar = 10 µm. (B) Distribution of hepatic LDs from fasted and re-fed 

mice. Seven images were taken from four sections of each condition (100x objective at a zoom-factor of 2), sizes 

and numbers of LDs were analyzed and pooled. Each data point represents an individual LD. (C) Average area of 

an individual LD, total area of LDs per image field, and number of LDs per image field. (D) Liver triacylglycerol 

concentration in fasted and re-fed states. *P<0.05, **P<0.01, ***P<0.001. 



~ 75 ~ 
 

2.3.2. Preparation and Purity of LDs 

Livers from fasted and re-fed 

animals were manually dissected, 

and LDs were released from the 

tissue and subsequently purified 

by sucrose density centrifugation. 

LD-associated proteins were 

delipidated, resolved by SDS-

PAGE, where gel sections were 

individually treated to in gel 

tryptic digestion and analyzed by 

LC-MS/MS as outlined in 

Supplemental Figure 2.8. The 

purity of LDs was evaluated by 

immunoblot analysis. As shown in 

Figure 2.2, LD-associated protein perilipin-2 (Plin2) was found in LD fractions from all samples. 

Calnexin (Cnx), a resident ER protein, was also present in all the studied samples. One particular 

interest is the partition pattern of ER carboxylesterases. Carboxylesterases Ces1d [also called 

triacylglycerol hydrolase, previously annotated as Ces3] and Ces1g [also called esterase-x, 

previously annotated as Ces1] are related carboxylesterases present in the lumen of the ER. 

Interestingly, Western blot analysis revealed Ces1d (lower band) visibly partitioned to LDs, while 

Ces1g (upper band) was absent (Figure 2.2). To additionally verify the identity of the lower band 

being Ces1d, LDs isolated from Ces1d knockout mice237 were included for comparison (Figure 

2.2). An ER resident polytopic membrane protein phosphatidylethanolamine N-

methyltransferase (Pemt) was essentially absent from isolated LDs (Figure 2.2). 

 

 

Figure 2.2 Analysis of protein markers in purified LDs. 

 Purified LDs from livers of four wild type mice or 2 Ces1d knockout 

mice were analyzed by Western Blotting for the indicated proteins. 

Liver homogenate from wild type mice (Liver) was used as a control. 
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2.3.3. LD-Associated Proteins in the Liver 

The lipid droplets purified from the livers of nine fasted mice and nine ref-fed mice were then 

analyzed by gel-LC-MS/MS and the data was refined as described in the Materials and Methods 

(Section 2.2). From this analysis (Supplemental Table 2.2), 810 proteins were identified in the 

LDs isolated from the fasting mice and 784 were identified in the LDs from the re-fed mice 

(Figure 2.3A). Of these, 777 were common to both datasets, 7 were unique to the re-fed LDs, and 

33 unique to the fasted LDs. In comparison, previous investigations of the liver LD proteome have 

identified a number of LD-associated proteins ranging from 1520238 to only 134239. 

To further investigate the quality of the data set, all the proteins observed were queried by GO 

analysis using the PANTHER database209–211. For this analysis, an enrichment is determined by 

comparing the ontological frequency of identified proteins to that of the entire mouse proteome. 

GO analysis of all the proteins observed in the fasted and fed states revealed an enrichment for 

proteins that have been annotated to various organelles such as the ER, mitochondria, nuclear 

envelope, and peroxisomes, while being depleted for nuclear and plasma membrane proteins 

(Figure 2.3B). While several proteins observed may reflect molecular contaminants resulting 

from purification procedure limitations, many of the enrichments observed in our data reflect 

the current perception of the dynamic nature of LDs; there is an increasing understanding of LD 

association to the various organelles within a cell228. Further GO analysis for biological functions 

of the identified proteins using Cytoscape v3.5.1213 with the ClueGO plugin214 reflects the diversity 

observed with respect to the cellular localization of the annotated proteins. As summarized in 

Supplemental Figure 2.9, in addition to the major expected networks of metabolism and 

macromolecular complex assembly, significant numbers of proteins have been annotated for a 

variety of RNA metabolic processes such as heterocycle and aromatic biosynthesis, nucleoside 

phosphate metabolism and gene expression.   

Quantitative analysis of the EIC intensities of the proteins identified in both the fasted and re-fed 

LD datasets revealed changes in proteins abundance upon re-feeding, the resulting data of which 

is summarized in the volcano plot depicted in Figure 2.3C. To facilitate the depiction of proteins 

uniquely observed in a single experimental condition on the log scale plot and provide an estimate 
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of their minimal fold-change, proteins with an average EIC=0 for an experimental condition were 

deemed to be missing not at random (MNAR) and assigned values of the global minimum 

observed within their dataset. The abundance and distribution of all identified LD-associated 

proteins are listed in Supplemental Table 2.2 and those observed to change in abundance 

following data refinement are listed in Supplemental Table 2.3. 
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Figure 2.3 Distribution of hepatic LD proteins during fasting and re-feeding.  

(A) Venn diagram showing the cross-correlation of identified hepatic LD-associated proteins in fasted (green) 

and re-fed (red) mice. Numbers enclosed in boxes represent proteins unique (not in central overlap) or 

determined to be more abundant (~≥6-fold-change), by comparison of the ion intensities of the peptides derived 

from the proteins (within central overlap), to a specific feeding condition. (B) GO analysis enrichment for cell 

localization for all proteins identified on LDs in both the fasted and re-fed datasets. (C) Volcano plot of proteins 

identified among both energetic states. The x-axis represents the fold-change in average protein abundance 

observed between fasted and re-feeding conditions as the function log2 of the corrected extracted ion 

chromatograms. The y-axis plots the statistical significance of the fold-difference observed between the states as 

the function -log10(P-Value).  
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2.3.4. Pathway Analysis of Dynamic LD-Associated Proteins 

Utilizing STRING 10.0’s functional enrichment tool, KEGG pathway analyses212 of the 130 LD 

proteins determined to be significantly more abundant in the fasted experimental condition 

revealed thirteen distinct pathways (excluding KEGG ID: 1100 – ‘Metabolic Pathways’) to be up-

regulated; these include: ER protein processing, peroxisomal proteins, propanoate metabolism, 

valine/leucine/isoleucine degradation, fatty acid metabolism, TCA cycle, carbon metabolism, 

peroxisome proliferator-activated receptor (PPAR) signaling pathway, pyruvate metabolism, 

arginine and proline metabolism, microbial metabolism in diverse environments, antigen 

processing and metabolism, and fatty acid degradation. The complete list of these pathways and 

the proteins identified within these pathways are listed in Table 2.1. A complete list of all proteins 

observed to change in abundance are in Supplemental Table 2.3. Interestingly, significantly less 

pathways were identified using this technique for the 31 proteins determined to be significantly 

more abundant during the re-fed state; only two pathways were observed (excluding KEGG ID: 

1100 – ‘Metabolic Pathways’); peroxisomal proteins and primary bile acid biosynthesis (Table 

2.1). While several of the pathways in both feeding states are populated by individual proteins, 

we believe this provides additional evidence of the diverse functions these organelles are capable 

of within the cell. 

As pathway analysis revealed an enrichment of different peroxisome-associated proteins in both 

fasted and re-fed datasets (Table 2.1), in addition to peroxisomal proteins exhibiting the highest 

fold-enrichment in the entire dataset (Figure 2.3B), we further evaluated the data for these 

protein changes. The quantified data from the replicate analysis of the 12 peroxisomal proteins 

identified by KEGG pathway analysis, in addition to the mitochondrial protein Acsl1 involved in 

fatty acid oxidation240,241, as shown in Figure 2.4, reveals the magnitude of change for each 

proteins’ observed LD-association upon fasting and re-feeding. While Acsl1 exhibited an 

approximately 30% decrease in abundance upon re-feeding, this did not meet the cut-off criteria 

used to list proteins that significantly change. This apparent dichotomy of differential 

peroxisomal protein association is suggestive of unique roles for LD-peroxisome interactions 
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during fasting or feeding. It must also be noted that while the analyses revealed an enrichment 

for peroxisomes based on these proteins’ annotations, many are not exclusively peroxisomal and 

have additional sub-cellular localizations as well. 

 

Table 2.1 KEGG pathway identifiers populated from the proteins enriched in LDs isolated 

from livers of either fasted or re-fed mice with an FDR <0.01.  

Proteins identified in each pathway are listed. 

Pathway 
ID 

Pathway Description Protein Count in Dataset FDR 
 

Enriched in the Fasted LDs 
1100 Metabolic pathways  29  9.70×10-9  

 Aass, Man2a1, Man1a, Asah1, Hsd17b2, Rpn1, Pigs, Dld, Acaca, Scp2, Acsl5, Uroc1, Slc27a5, 
Ndufv2, Dlat, Hibch, Tecr, Maoa, Acadvl, Suclg2, Aldh4a1, Oat, Abat, Prodh, Pccb, Pcx, Hmgcl, 
Gpam, Lpin1 

4141 Protein processing in endoplasmic reticulum  10  5.27×10-6 
 Pdia4, Hspa8, Sec63, Rpn1, Calr, Hspa5, Pdia3, Txndc5, Lman2, Man1a 

4146 Peroxisome  7  3.81×10-5  
 Pex6, Pex1, Pex26, Scp2, Acsl5, Hmgcl, Hacl1 

640 Propanoate metabolism  5  5.91×10-5 
 Abat, Pccb, Suclg2, Acaca, Hibch 

280 Valine, leucine and isoleucine degradation  5  4.51×10-4 
 Abat, Pccb, Hmgcl, Dld, Hibch 

1212 Fatty acid metabolism  5  4.51×10-4 
 Acaca, Acsl5, Tecr, Acadvl, Cpt2 

20 Citrate cycle (TCA cycle)  4  1.13×10-3  
 Dld, Dlat, Suclg2, Pcx 

1200 Carbon metabolism  6  1.21×10-3  
 Dld, Dlat, Hibch, Suclg2, Pccb, Pcx 

3320 PPAR signaling pathway  5  2.64×10-3  
 Scp2, Cpt2, Acsl5, Slc27a5, Apoa5 

620 Pyruvate metabolism  4  2.69×10-3  
 Dld, Acaca, Dlat, Pcx 

330 Arginine and proline metabolism  4  8.08×10-3  
 Aldh4a1, Oat, Prodh, Maoa 

1120 Microbial metabolism in diverse environments  6  9.93×10-3  
 Dld, Dlat, Suox, Suclg2, Pccb, Pcx 

4612 Antigen processing & presentation 4 1.67×10-2 
 Hspa8, Calr, Hspa5, Pdia3 

71 Fatty acid degradation 3 4.35×10-2 
 Cpt2, Acadvl, Acsl5 

Enriched in the Re-Fed LDs 
1100 Metabolic pathways 13 6.70×10-7  

 Idh2, Baat, Ndufb9, Adk, Atp6v1e1, Amacr, Dhcr24, Sgpl1, Echs1, Aox3, Ftcd, Dhrs4, Dpm1 
4146 Peroxisome 5 1.15×10-5 

 Idh2, Baat, Prdx5, Amacr, Dhrs4 
120 Primary bile acid biosynthesis 2 2.03×10-2 

 Baat, Amacr 
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Figure 2.4 Relative abundance of peroxisomal proteins. 

Relative abundance of peroxisomal proteins associated with LDs isolated from the livers of mice after fasting 

(black) or re-feeding (light grey).  Quantification is the average relative EICs, relative to Plin2, for each indicated 

protein from triplicate analysis. 

 

2.3.5. Global Protein Abundance 

A challenge arising from proteomic investigations of sub-cellular purified components is 

determining what proteins are most relevant from those that are likely contaminants that 

undoubtedly remain even after purification. To address this, at least in part, we next investigated 

the proteomic data with respect to PSMs for all proteins across all data sets to obtain estimates 

of the most abundant proteins in the LD samples and less likely to be low abundance 

contaminants. The PSMs, normalized to protein length to compensate for the increased number 

of potential tryptic peptides generated from longer proteins, were compared to estimate which 

proteins are most abundant with respect to LD composition. From the raw data, Supplemental 

Table 2.1, it is noted that Plin2 is the protein which makes up the largest fraction of the 

normalized PSMs, indicating this to be one of, if not the most abundant protein(s) in the purified 

LDs. The average normalized spectral counts across all datasets were then plotted in Figure 2.5A 
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in decreasing abundance relative to Plin2. The data reveals that only 57 proteins of the 817 

identified make up 50% of the spectral counts in the experiment, which leads to an estimate that 

these proteins make up half of the protein abundance in the samples. Correspondingly, 314 and 

633 proteins make up 90% and 99% of the spectral counts, respectively. The proteins that 

comprise 50% of the normalized spectral counts likely represent the most abundant proteins in 

the purified LDs and their identities are summarized in Figure 2.5B.   

The unexpected observation of the murine specific secreted major urinary proteins (Mups) 

populating the list of the 57 most abundant proteins, led to validation experiments of the 

association of these proteins in the hepatic LDs. Fractions from a sucrose gradient purification of 

LDs from the livers of fasted mice were resolved by SDS-PAGE and analyzed for total protein 

abundance by coomasie staining or immunoblotting for Plin2 or Mups (with an antibody specific 

for a range of Mup isoforms). As seen in Figure 2.6, while much of the observed Mup isoforms 

we observed in the high density heavy membrane associated fraction of the gradient, a significant 

amount of the Mups are also observed in the low-density fraction containing the LDs. 

With the spectral counts and ion intensities observed ranging over several orders of magnitude 

for the different proteins identified in purified LDs, we evaluated proteins that were determined 

to significantly change in abundance upon fasting and re-feeding; if only very low abundance 

proteins were observed to significantly change, it would suggest many of our observed 

differences may simply reflect statistical noise as a result of proteins being at or near the limit of 

their detection. The data representing LD-associated proteins that significantly change in 

abundance during fasting and feeding with respect to their relative ion intensities is overlaid on 

the plot in Figure 2.5A. While there is a trend for proteins with low normalized PSMs to be more 

frequently observed significantly changing in abundance between feeding states using relative 

ion intensities, a large proportion of proteins with high normalized PSMs are also observed to 

significantly change based on their relative ion intensities (Figure 2.5A). Acadvl, Cpt2, and 

Hspa5, identified to significantly change in abundance between feeding states, populate within 

the list of 57 proteins that make up 50% of the normalized spectral counts. 
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Figure 2.5 Analysis of LD-associated proteins by spectral count abundance.  

A) All proteins detected were sorted by abundance (normalized spectral counting, relative to Plin2). The number 

of proteins that make the total quantified signal, as determined by spectral counting, are indicated. Green 

horizontal bars indicate proteins with higher abundance in the hepatic LDs of fasted mice, while red bars indicate 

protein that are higher in abundance in re-fed mice. B) A graphic depiction and classification of the 57 proteins 

that make up 50% of the normalized spectral counts are shown. Green arrows indicate the proteins that are 

lower in abundance in the liver LDs of re-fed mice. 
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Figure 2.6 Immunoblot analysis of sucrose gradient fractions reveal Mup association to 

LDs. 

Fractions from a sucrose gradient for the purification of LDs were resolved by SDS-PAGE and analyzed by: 

immunoblotting for Plin2 (upper panel), total protein by coomassie staining (lower panel) and, immunoblotting 

for Mups with an antibody targeting a range of Mup isoforms. The fractions containing the heavy membranes 

(HM) and lipid droplets (LDs) are indicated. 
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Figure 2.7 Immunoblot and RT-qPCR analysis of representative LD-associated proteins 

from isolated LDs.  

Immunoblots of LD-associated proteins from (A) isolated LDs and (B) whole liver homogenates from fasted and 

re-fed mice. Samples were analyzed on the basis of equal triacylglycerol content (A) or equal protein (10 μg) 

content (B) from fasted and re-fed mice. (C) RT-qPCR analysis of representative LD-associated proteins in livers 

from fasted and re-fed mice (N=6-7). ***P<0.001 vs fasted group, the significance is based on two-tailed t-tests. 
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2.3.6. Immunoblot Validation of LD-Associated Proteins  

To confirm the LD-association of some of the identified proteins, and their changes upon feeding 

state, we assessed their abundance in purified LDs and whole liver homogenates by 

immunoblotting. To control for equal loading of isolated LDs between feeding states, sample 

loading was normalized to the LDs’ TG content. Whole liver homogenates were used to evaluate 

whether the changes observed in proteins associated with LDs is a result of changes in a protein’s 

global cellular abundance, or a change in LD-association; whereas LD loading was normalized to 

TG content, whole liver homogenates were normalized to total protein. 

Plin2 and Plin5 are well characterized LD-associated proteins that play an important role in the 

regulation of LD turnover by preventing adipose triglyceride lipase (ATGL) - catalyzed 

lipolysis242,243. Plin2/TG ratio did not significantly change in the purified LDs isolated from livers 

of fasted/refed mice (Figure 2.7A). In agreement with our mass spectrometry data for Plin5 

(Supplemental Table 2.2), LDs purified from fasting livers contained higher Plin5 abundance 

compared to those from re-fed livers, consistent with diminished lipolysis and increased TG 

storage (Figure 2.7A). Furthermore, both Plin2 and Plin5 exhibit larger increases in abundance, 

relative to total protein, in the whole liver homogenate upon fasting (Figure 2.7B) consistent 

with increased expression of Plin2 and Plin5 mRNAs during fasting (Figure 2.7C). In contrast, 

Acsl1 revealed an increase in abundance by mass spectrometry (Figure 2.4) and Western blot 

analysis (Figure 7A), but no changes were observed in the whole liver homogenates (Figure 

2.7B), indicating a change in protein localization and not protein abundance in the cell. 

Interestingly, the expression of Acsl1 mRNA was decreased during refeeding (Figure 2.7C) but 

this change was not translated into lower protein abundance suggesting a long half-life of the 

protein. 
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2.4. Discussion 

2.4.1. Fasted and Re-Fed Liver LDs 

The study presented here was designed to systematically identify the LD-associated proteome 

from the mouse liver during fasting and re-feeding. Two key issues when analyzing organelle 

proteomes are assessing the purity of the preparations, as well as how to correct datasets to 

reduce between-sample variability upon comparison. With respect to sample purity, we 

expectedly found the canonical LD-marker proteins in our LD preparations, including Plin2 and 

Plin3. Cnx, an ER-localized protein was present in all studied LD fractions (Figure 2.2B); 

although the presence of this protein on the LD surface was previously reported244, we analyzed 

the presence of another ER membrane protein Pemt in order to evaluate LD purity and possible 

ER contamination. Pemt was nearly completely absent from the isolated LD fractions (Figure 

2.2B), suggesting minimal contamination of our LD preparations with the ER. Luminal ER 

proteins (Bip, Pdi) have been previously found in LD preparations from various cells and tissues 

and a possible mechanism how such proteins could be targeted to LDs has been proposed245,246.  

Ces1d (Ces3/TGH) and Ces1g (Ces1/Es-x) are ER luminal resident lipid hydrolases containing the 

C-terminal ER-retrieval motif –HVEL247–249. Interestingly, we found by immunoblotting that 

Ces1d partitioned to the LDs, while its close family member Ces1g did not. The mechanism for 

such selectivity is unclear because both Ces1d and Ces1g were identified via LC-MS/MS on 

purified LDs from both fasted and refed conditions. Our studies showed that hepatocytes lacking 

Ces1d contain an increased number of smaller LDs compared to wild-type hepatocytes, 

suggesting that Ces1d plays a role in LD maturation237. The role of Ces1g in LD growth and 

maturation has not been evaluated, however; unlike Ces1d, lack of Ces1g leads to increased size 

and number of cytosolic LDs250, showing functional differences between these two ER-localized 

carboxylesterases. 
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2.4.2. Global Proteome Analysis of Liver LDs 

Shotgun proteomics was used to characterize the murine hepatic LD proteome of fasted and re-

fed mice. Our analysis identified a complete set of 817 proteins that are associated with purified 

with LD in both energetic states (Figure 2.3A). GO analysis for cellular localization of the entire 

data set revealed a significant enrichment for proteins that have been annotated to a variety of 

sub-cellular localizations (Figure 2.3B). The greatest enrichment observed was for peroxisomal 

proteins, in agreement with previous work demonstrating a close association between LDs and 

peroxisomes251. As both LDs and peroxisomes are key players in the lipid metabolic flux, their 

close interactions have been proposed to be key for bidirectional lipid trafficking252. As predicted, 

a depletion of nuclear and plasma membrane proteins was also observed.  The enrichment of 

peroxisomal, ER, mitochondrial, and Golgi proteins was expected as there is a growing 

appreciation of the interaction and function of LDs with these organelles227,228. At first glance, 

other observed enrichments may appear to be contaminants, such as ribosomal proteins (Figure 

2.3B) and proteins involved in RNA metabolism (Supplemental Figure 2.2); however, these 

have been previously reported to be associated to the LD proteome253,254 and have been verified 

by ultrastructural investigations254. The role of ribosomes in LDs is still unclear and remains an 

open question in LD biology255. However, early investigations with model organisms have 

suggested that LDs may also function as protein storage organelles224. Alternatively, the presence 

of highly abundant proteins in LDs may simply be an artifact of these proteins being trapped in 

LDs during their rapid formation and growth in the cell. Nonetheless, the agreement of our 

hepatic LD dataset with previous studies only strengthens these observations. 

With ongoing proteomic studies of hepatic LDs, there is an increasing number of proteins 

identified as being LD-associated238,239,256,257. A challenge with these growing lists, as there is 

when performing proteomics on any organelle, is the analysis and follow-up of the data. As mass 

spectrometers become more sensitive, the limits of detection will continue to decrease to a point 

that far exceeds the organelle’s biochemical purity. As a result, the instrument’s high sensitivity 

can detect the low abundant contaminants that are undoubtedly present in the sample. To 

address this, we evaluated the data to identify the most abundant proteins in the LD proteome 
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with respect to composition (Figure 2.5). This perspective is reminiscent of early investigations 

of the LD proteome, where samples were resolved by SDS-PAGE and individual bands were 

excised and identified by mass spectrometry258,259. The identification of the most abundant 

proteins in the organelle proteome is predicted to validate well-known proteins already 

associated with the organelle or identify major components that have been previously 

overlooked. The 57 proteins that are estimated to make up 50% of the LD proteome (Figure 

2.5B) fall within both groups. In addition to the expected proteins such as the PAT domain family 

member, Plin2, and the most abundant group of proteins involved in metabolism (such as Acsl1), 

several other protein families are observed in high abundance. These include a series of Rab 

proteins which have been well described with respect to LD trafficking227,258,260–266, in addition to 

a number of other enzymes also observed in high abundance from cell culture models such as a 

series of mitochondrial proteins267. Cytochrome P450 proteins have not historically been 

considered to be associated with LDs, nor were they significantly observed in LDs from hepatic 

cell lines259. However, they have been observed in multiple reports from liver-derived LDs and 

have been observed to increase in abundance in liver LDs during diet-induced hepatic 

steatosis238,239,256.  

The most unexpected protein family in our dataset observed in high compositional abundance 

were the murine specific Mups, a family of rodent-specific proteins with roles in the transport 

and excretion of pheromones and other lipophilic molecules268. With the complexities of the 

metabolic reactions carried out by LD-associated enzymes, it is not surprising to observe an 

abundance of these lipophilic carrier proteins; the LD-association of Mups may potentially be 

where they are loaded with their cargo prior to secretion from the liver. Our observation of Mups 

being associated to LDs is not the first; supplemental data from other proteomic investigations 

of murine liver-derived LDs have also identified these proteins238,239, but they were not discussed 

as they were not observed to change in abundance between experimental conditions. With our 

analysis, the Mups only stood out when we queried the data for the most compositionally-

abundant proteins in the liver LD proteome. Being so highly abundant, the role of Mups’ 

association with LDs warrants further investigation. 
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2.4.3. Dynamics of the LD Proteome Upon Feeding  

As the focus of our investigations was on the dynamics of the hepatic LD proteome upon fasting 

and feeding, the quantitative analysis of the data was explored in greater detail. Analysis of our 

collected datasets (Supplemental Table 2.2) revealed that 130 and 31 proteins were found to be 

more abundant in the fasted and re-fed LDs, respectively (Figure 2.3A). Of these changes, it is 

noteworthy that the catabolic proteins on LDs (Table 2.1) change between fasting and re-fed 

states, in agreement with the fact that lipid accumulation decreases after re-feeding (Figure 2.1). 

Previous LD proteomic screens with other cellular systems such as yeast269, mammalian tissue 

culture258,259 and germline cells270 reveal hundreds of proteins with moderate overlap regarding 

protein composition. Comparing the LD proteomes originating from different tissues provides 

some insight into the core essential LD proteins and those which may be tissue specific. A 

comparison of our presented liver LD proteomes with that from the testes of mice270 reveals an 

overlap of 159 proteins (~47% of the LD proteome from mice testes; Supplemental Table 2.4), 

including the PAT domain family members Plin2 and Plin3, various lipid metabolizing enzymes, 

esterases, vesicular trafficking-associated proteins of the Rab- and chaperone-families. Recent 

reports on murine liver LDs, focusing on diet and disease models239,256,257 such as hepatic 

steatosis238 reveal even higher similarities to our dataset. In the context of these previous 

investigations, our presented work clearly highlights the dynamic changes undergone by the LD 

proteome simply upon feeding. As such, our work demonstrates how conditions must be carefully 

controlled when investigating the LDs of various model systems. Additionally, it is interesting to 

note from these results how the LD proteome changes during different metabolic states to reflect 

functions other than fat storage. This provides a clearer picture of the dynamic nature of these 

organelles.  

As the proteins that where observed in both higher and lower abundance upon re-feeding 

included proteins annotated to be linked to peroxisomes (Table 2.1), these data were focused on 

with interest. Not all peroxisome proteins were observed to change in abundance, as no 

significant changes in abundance were observed for Pxmp4 and Pex5 (Supplemental Table 2.2). 

While at first the increase and decrease of peroxisomal proteins might seem contradictory, a 
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review of their functions is revealing. For example, Baat is observed to be associated in higher 

amounts with LDs upon re-feeding which is consistent with the function of this enzyme in bile 

acid synthesis271.    

To validate some of the changes to the LD proteome we observed via LC-MS/MS, several 

candidate proteins were validated by Western blot analysis of purified LDs. In addition, to ensure 

the changes observed were due to an increase/decrease in LD-association and a change in global 

cellular protein abundance, these proteins were also investigated in whole liver homogenates. 

The proteins for these investigations were Plin5 and Acsl1. In both cases, the changes observed 

by LC-MS/MS analysis were mirrored by Western blot analysis; for instance, the quantified LC-

MS/MS data for Acsl1 (Figure 2.4) reveals a similar drop in abundance upon re-feeding as is 

observed by Western blotting (Figure 2.7B). 

Here we found that during the fasting state there is enrichment in Plin5 on LDs, along with an 

even greater increase in global Plin5 abundance in the liver (Figure 2.7). Plin5 is mainly 

expressed in tissues with high levels of fatty acid oxidation, including the heart, liver, and skeletal 

muscle. It was recently demonstrated that Plin5 antagonizes lipase activities in the heart and is 

essential for maintaining LDs at detectable sizes272. In hepatocytes, Plin5 assists TG accumulation 

in LDs through a reduction of lipolysis and therefore release of fatty acids that could be substrates 

for β-oxidation242. Increased abundance of Plin5 on LDs during fasting (a catabolic state) is 

counterintuitive, given that Plin5 is inhibitory to lipolysis. The plausible explanation is that during 

fasting there is increased flux of adipose tissue-derived fatty acids to the liver with some being 

directly delivered to mitochondria for oxidation and the excess being stored in LDs. Plin5 could 

play a regulatory role of modulating lipolysis and hence prevent unregulated flux of fatty acids 

into mitochondria.  
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2.5. Conclusions 

To our knowledge, this is the first comprehensive study describing the changes in the hepatic LD 

proteome in response to the physiological demands of fasting and re-feeding. Our analysis of the 

entire LD proteome adds to the growing understanding regarding the complexities of LD 

interactions with other cellular organelles. Analysis of LDs’ compositional protein abundance has 

revealed that the major urinary proteins are highly abundant LD-associated proteins in 

hepatocytes that have been overlooked in previous studies. Additionally, our quantitative analysis 

revealed that the identified LD proteome is highly dynamic, with 161 proteins, nearly 20% of the 

observed 817 hepatic LD proteins, significantly varying in abundance during fasting and re-

feeding. Immunoblotting validation of selected proteins also revealed that the LD proteome 

changes occur independent of global cellular protein abundance; large cellular changes in protein 

abundance observed for Plin2 and Plin5 were not reflected in the LD proteome, while Acsl1 was 

increased in LDs during fasting, even though its cellular abundance remained unchanged. We 

believe that the impact of this work is crucial for understanding the general hepatic physiology 

and particularly the complexity of LD metabolism. Our findings reveal the significance of well-

controlled feeding in experimental design when investigating this cellular organelle.  
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2.6. Supplementary Figures 
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Supplemental Figure 2.9 Global GO-Biological Process analysis of fasted and refed lipid 

droplet proteomes. 

Proteins common to both Fasted and Refed datasets were analyzed with the Cytoscapes's ClueGO application and 

subject to analysis using Global network specificity, and showing only pathways/terms with a p<0.05. From the 

791 proteins uploaded, 763 had functional annotations within the database, comprising 140 GO terms under 29 

parental group terms. Legend below. 
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Label GO-Term GO-ID Term P-Value* Group P-
Value* 

 system process GO:0003008 780.0E-6 50.0E-6 

 response to stress GO:0006950 14.0E-3 570.0E-6 

 mitochondrion organization GO:0007005 360.0E-12 38.0E-12 

 small GTPase mediated signal transduction GO:0007264 4.8E-9 500.0E-12 

 regulation of catabolic process GO:0009894 7.3E-6 690.0E-9 

 response to drug GO:0042493 12.0E-12 1.3E-12 

 membrane organization GO:0061024 2.9E-6 290.0E-9 

1 cellular amide metabolic process GO:0043603 7.8E-6 680.0E-9 

2 peptide metabolic process GO:0006518 2.7E-3 680.0E-9 

1 ion transport GO:0006811 1.3E-6 8.1E-9 

2 transmembrane transport GO:0055085 1.1E-3 8.1E-9 

1 cell-cell adhesion GO:0098609 41.0E-6 
540.0E-6 

2 biological adhesion GO:0022610 11.0E-3 

1 cofactor metabolic process GO:0051186 4.7E-24  

2 coenzyme metabolic process GO:0006732 1.8E-21 1.3E-24 

3 nucleoside phosphate metabolic process GO:0006753 390.0E-15  

1 organonitrogen compound metabolic process GO:1901564 3.6E-36  

2 cellular nitrogen compound biosynthetic process GO:0044271 18.0E-3 460.0E-6 

3 organonitrogen compound biosynthetic process GO:1901566 190.0E-9  

1 generation of precursor metabolites and energy GO:0006091 99.0E-33 

77.0E-27 
2 carbohydrate metabolic process GO:0005975 300.0E-12 

3 single-organism carbohydrate metabolic process GO:0044723 98.0E-12 

4 energy derivation by oxidation of organic compounds GO:0015980 86.0E-30 

1 regulation of biological quality GO:0065008 150.0E-18 

16.0E-18 
2 chemical homeostasis GO:0048878 1.2E-3 

3 cellular homeostasis GO:0019725 210.0E-6 

4 homeostatic process GO:0042592 9.0E-9 
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Label GO-Term GO-ID Term P-Value* Group P-
Value* 

1 lipid metabolic process GO:0006629 540.0E-66 

68.0E-66 
2 cellular lipid metabolic process GO:0044255 1.8E-51 

3 lipid biosynthetic process GO:0008610 5.3E-24 

4 fatty acid metabolic process GO:0006631 54.0E-51 

1 single-organism cellular process GO:0044763 2.5E-42 

210.0E-30 
2 single-organism process GO:0044699 410.0E-39 

3 cellular process GO:0009987 330.0E-12 

4 cellular metabolic process GO:0044237 2.0E-21 

1 regulation of cellular process GO:0050794 1.2E-3 

180.0E-6 

2 regulation of biological process GO:0050789 10.0E-3 

3 single organism signaling GO:0044700 12.0E-3 

4 cell communication GO:0007154 30.0E-3 

5 signal transduction GO:0007165 3.1E-3 

1 regulation of localization GO:0032879 36.0E-6 

1.4E-6 

2 secretion GO:0046903 17.0E-3 

3 positive regulation of transport GO:0051050 8.2E-3 

4 regulation of cellular localization GO:0060341 1.6E-3 

5 regulation of protein localization GO:0032880 2.1E-3 

6 regulation of transport GO:0051049 49.0E-6 

1 cell death GO:0008219 11.0E-3 

630.0E-6 

2 programmed cell death GO:0012501 24.0E-3 

3 negative regulation of cell death GO:0060548 38.0E-3 

4 negative regulation of programmed cell death GO:0043069 16.0E-3 

5 regulation of programmed cell death GO:0043067 13.0E-3 

6 regulation of cell death GO:0010941 12.0E-3 

1 gene expression GO:0010467 470.0E-9 
250.0E-9 

2 cellular macromolecule biosynthetic process GO:0034645 8.8E-6 
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Label GO-Term GO-ID Term P-Value* Group P-
Value* 

3 macromolecule biosynthetic process GO:0009059 24.0E-6 

4 cellular macromolecule metabolic process GO:0044260 2.0E-6 

5 macromolecule metabolic process GO:0043170 2.4E-6 

6 regulation of macromolecule metabolic process GO:0060255 940.0E-6 

7 macromolecule modification GO:0043412 12.0E-3 

1 oxidation-reduction process GO:0055114 59.0E-135 

48.0E-33 

2 primary metabolic process GO:0044238 2.6E-12 

3 metabolic process GO:0008152 1.4E-30 

4 cellular metabolic process GO:0044237 2.0E-21 

5 single-organism cellular process GO:0044763 2.5E-42 

6 single-organism metabolic process GO:0044710 2.0E-129 

7 small molecule metabolic process GO:0044281 38.0E-108 

8 organic substance metabolic process GO:0071704 4.6E-18 

1 single-organism biosynthetic process GO:0044711 670.0E-42 

17.0E-18 

2 biosynthetic process GO:0009058 4.0E-3 

3 organic substance biosynthetic process GO:1901576 13.0E-3 

4 cellular nitrogen compound biosynthetic process GO:0044271 18.0E-3 

5 macromolecule biosynthetic process GO:0009059 24.0E-6 

6 small molecule biosynthetic process GO:0044283 730.0E-33 

7 lipid biosynthetic process GO:0008610 5.3E-24 

8 steroid metabolic process GO:0008202 6.7E-30 

9 lipid metabolic process GO:0006629 540.0E-66 

1 response to organic substance GO:0010033 220.0E-9 

32.0E-6 

2 response to lipid GO:0033993 12.0E-3 

3 response to chemical GO:0042221 430.0E-6 

4 response to hormone GO:0009725 3.2E-3 

5 response to nitrogen compound GO:1901698 9.5E-3 
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Label GO-Term GO-ID Term P-Value* Group P-
Value* 

6 response to organic cyclic compound GO:0014070 2.4E-6 

7 response to organonitrogen compound GO:0010243 2.2E-3 

8 response to endogenous stimulus GO:0009719 1.4E-3 

9 response to oxygen-containing compound GO:1901700 1.0E-6 

1 steroid metabolic process GO:0008202 6.7E-30 

12.0E-39 
2 alcohol metabolic process GO:0006066 14.0E-27 

3 organic hydroxy compound metabolic process GO:1901615 170.0E-27 

4 lipid biosynthetic process GO:0008610 5.3E-24 

1 coenzyme metabolic process GO:0006732 1.8E-21 

140.0E-3 

2 nucleoside phosphate metabolic process GO:0006753 390.0E-15 

3 carbohydrate derivative metabolic process GO:1901135 5.4E-9 

4 purine-containing compound metabolic process GO:0072521 160.0E-15 

5 phosphorus metabolic process GO:0006793 990.0E-9 

6 ribose phosphate metabolic process GO:0019693 25.0E-12 

7 phosphate-containing compound metabolic process GO:0006796 62.0E-6 

8 organophosphate metabolic process GO:0019637 6.3E-15 

9 nucleobase-containing small molecule metabolic process GO:0055086 6.5E-15 

10 nucleobase-containing compound metabolic process GO:0006139 24.0E-3 

1 macromolecular complex assembly GO:0065003 640.0E-12 

920.0E-9 

2 macromolecular complex subunit organization GO:0043933 7.9E-9 

3 cellular component biogenesis GO:0044085 650.0E-9 

4 cellular component assembly GO:0022607 740.0E-9 

5 cellular component organization GO:0016043 11.0E-6 

6 cellular component organization or biogenesis GO:0071840 11.0E-6 

7 organelle organization GO:0006996 3.5E-6 

8 protein complex subunit organization GO:0071822 18.0E-9 

9 protein complex assembly GO:0006461 3.6E-9 
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Label GO-Term GO-ID Term P-Value* Group P-
Value* 

10 regulation of cellular component organization GO:0051128 1.6E-3 

11 single-organism organelle organization GO:1902589 4.3E-3 

1 single-organism metabolic process GO:0044710 2.0E-129 

7.8E-117 

2 small molecule metabolic process GO:0044281 38.0E-108 

3 catabolic process GO:0009056 250.0E-45 

4 cellular catabolic process GO:0044248 790.0E-42 

5 cellular lipid catabolic process GO:0044242 6.3E-36 

6 organic acid catabolic process GO:0016054 13.0E-54 

7 small molecule catabolic process GO:0044282 15.0E-57 

8 cellular lipid metabolic process GO:0044255 1.8E-51 

9 lipid metabolic process GO:0006629 540.0E-66 

10 organic acid metabolic process GO:0006082 1.8E-96 

11 single-organism catabolic process GO:0044712 490.0E-63 

12 oxoacid metabolic process GO:0043436 450.0E-96 

13 fatty acid metabolic process GO:0006631 54.0E-51 

14 organic substance catabolic process GO:1901575 190.0E-39 

15 lipid catabolic process GO:0016042 350.0E-33 

1 macromolecule localization GO:0033036 320.0E-33 

31.0E-24 

2 protein transport GO:0015031 31.0E-24 

3 establishment of localization GO:0051234 5.8E-30 

4 localization GO:0051179 280.0E-24 

5 intracellular transport GO:0046907 360.0E-24 

6 establishment of protein localization GO:0045184 2.6E-24 

7 establishment of localization in cell GO:0051649 7.6E-18 

8 protein localization GO:0008104 130.0E-24 

9 cellular localization GO:0051641 170.0E-21 

10 vesicle-mediated transport GO:0016192 3.3E-18 
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Label GO-Term GO-ID Term P-Value* Group P-
Value* 

11 single-organism intracellular transport GO:1902582 4.8E-6 

12 single-organism transport GO:0044765 52.0E-18 

13 single-organism cellular localization GO:1902580 4.1E-9 

14 single-organism localization GO:1902578 28.0E-18 

15 cellular protein localization GO:0034613 4.8E-15 

16 nitrogen compound transport GO:0071705 1.3E-21 

17 intracellular protein transport GO:0006886 570.0E-15 

18 organic substance transport GO:0071702 86.0E-30 

1 RNA metabolic process GO:0016070 1.2E-15 

27.0E-3 

2 regulation of macromolecule biosynthetic process GO:0010556 220.0E-12 

3 cellular nitrogen compound biosynthetic process GO:0044271 18.0E-3 

4 regulation of biosynthetic process GO:0009889 140.0E-6 

5 nucleobase-containing compound biosynthetic process GO:0034654 1.0E-6 

6 cellular macromolecule biosynthetic process GO:0034645 8.8E-6 

7 nucleic acid metabolic process GO:0090304 4.7E-15 

8 
regulation of nucleobase-containing compound metabolic 

process 
GO:0019219 3.8E-9 

9 macromolecule biosynthetic process GO:0009059 24.0E-6 

10 biosynthetic process GO:0009058 4.0E-3 

11 organic substance biosynthetic process GO:1901576 13.0E-3 

12 cellular macromolecule metabolic process GO:0044260 2.0E-6 

13 macromolecule metabolic process GO:0043170 2.4E-6 

14 regulation of macromolecule metabolic process GO:0060255 940.0E-6 

15 aromatic compound biosynthetic process GO:0019438 3.9E-6 

16 heterocycle biosynthetic process GO:0018130 14.0E-6 

17 regulation of cellular biosynthetic process GO:0031326 400.0E-9 

18 regulation of gene expression GO:0010468 54.0E-9 

19 gene expression GO:0010467 470.0E-9 
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Label GO-Term GO-ID Term P-Value* Group P-
Value* 

20 nucleobase-containing compound metabolic process GO:0006139 24.0E-3 

21 regulation of nitrogen compound metabolic process GO:0051171 1.6E-6 

22 regulation of RNA metabolic process GO:0051252 60.0E-15 

23 nucleoside phosphate metabolic process GO:0006753 390.0E-15 

24 purine-containing compound metabolic process GO:0072521 160.0E-15 

25 phosphate-containing compound metabolic process GO:0006796 62.0E-6 

26 nucleobase-containing small molecule metabolic process GO:0055086 6.5E-15 

27 organonitrogen compound biosynthetic process GO:1901566 190.0E-9 

Supplemental Figure 2.9 Legend 

*Denotes Bonferroni Step-down Correction 
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3.0. Proem 
In the previous chapter, we successfully investigated how the murine hepatic-tissue derived lipid 

droplet proteome changed in response to dietary stress associated with a period of fasting, or 

fasting followed by refeeding. With an interest in oncology and desiring to extrapolate this 

technique to determine its suitability to the study of whole-tissues, we opted to perform a study 

into how the proteomes of EL4-derived lymphoma tumours – grown in vivo – changed in 

response to a chemotherapeutic insult. The murine EL4 tumour model is an established in vivo 

model for the investigation of novel cancer imaging agents and immunological treatments due to 

the rapid and significant response of the EL4 tumours to cyclophosphamide and etoposide 

combination chemotherapy. Despite the utility of this model system in cancer research little is 

known regarding the molecular details of the in vivo tumour cell death. Here we report the first 

in-depth quantitative proteomic analysis of the changes that occur in these tumours upon 

cyclophosphamide and etoposide treatment in vivo.  

 

A version of this chapter has been published as: 

Kramer, D. A., Eldeeb, M. A., Wuest, M., Mercer, J., & Fahlman, R. P. (2017). Proteomic 

characterization of EL4 lymphoma-derived tumours upon chemotherapy treatment reveals 

potential roles for lysosomes and caspase-6 during tumour cell death in vivo. Proteomics, 17(12), 

1700060. http://doi.org/10.1002/pmic.201700060 

Supplementary data to this chapter can be found online with the published version of this 

chapter, or at the following link:  

Supplemental Tables 

 

 

 

http://doi.org/10.1002/pmic.201700060
https://drive.google.com/drive/folders/1K4jkLX1xF6Z-KOJD4yWBXj0GfHynzXSx?usp=sharing
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3.1. Introduction 
Pre-clinical models are valuable tools in cancer research as they provide the foundation for the 

discovery of new treatments and novel diagnostic agents, while providing insights into 

fundamental molecular processes associated with cancer initiation, progression and response to 

therapy. A detailed understanding of specific model systems is essential to fully understand their 

strengths and limitations. The focus of this investigation is the EL4 lymphoma derived tumour 

model in C57BL/6 mice. The murine EL4 lymphoma cell line was first established in 1945, 

following treatment of C57BL/6 mice with 9:10-dimethyl-1:2-benzanthracene273 and has since 

become a widely utilized model for investigating lymphoma tumours and tumour apoptosis in 

vivo. Having originated in C57BL/6 mice, EL4 cellular suspensions can be injected into these 

animals without inducing immunological tissue rejection274–276. As a result, the EL4 lymphoma 

tumour model has been utilized for investigations on novel immunotherapy developments277,278, 

novel cancer treatment strategies279, and investigations into the molecular mechanisms of 

tumour clearance280. 

The murine EL4 tumour model has also been valuable in oncologic imaging research as tumour-

burdened mice typically experience a ≥50% decrease in tumour mass following 

cyclophosphamide-etoposide combination chemotherapy over the span of a few days281. This 

potent response to treatment has been demonstrated, at least in part, to be a result of tumour 

cell apoptosis as indicated by the presence of extracellular phosphatidylserine and caspase 3/7 

activation281–283. This rapid response to chemotherapy and the presence of classical markers for 

apoptosis has made this mouse model suitable for the investigation of novel tumour-death 

imaging reagents275,281,284,285 and novel applications for tumour imaging286,287. 

Despite the wide utilization of the murine EL4 tumour model, much remains unknown regarding 

the molecular changes that occur within the tumour cells following cyclophosphamide and 

etoposide co-treatment. The use of large scale -omic technologies in modern pharmacological 

investigations288 allows for the identification of potential novel mechanisms of drug-induced 

cancer cell death289 or resistance290 in cancer models. Using modern proteomic analysis, we have 

quantified the whole proteome changes that occur in EL4 cell derived tumours in response to 
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cyclophosphamide and etoposide treatment; these changes reflect the contextual cellular milieu 

of the tumour, such as resident macrophages291 and vasculature292, in addition to those cells 

potentially recruited to the tumour upon treatment293. In addition to providing several 

confirmatory observations for aspects previously reported in this tumour model, our proteomic 

analysis revealed many proteomic changes that may have utility as novel markers for molecular 

imaging while providing unique insights into the molecular mechanisms of in vivo tumour cell 

death. 
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3.2. Experimental Procedures 
3.2.1. Animal Work  
Animal experiments were performed according to the guidelines of the Canadian Council on 

Animal Care (CCAC) and were approved by the Cross Cancer Institute Animal Ethics Committee 

(protocol number AC10171). EL4 cells were obtained from ATCC. A suspension of 1x106 EL4 cells 

was injected subcutaneously into the left flank of wild-type female C57BL/6 mice and allowed to 

grow for 7 days. Cell death was induced in these tumours through intraperitoneal injection of 

cyclophosphamide (50mg/mL) and etoposide (12.5mg/mL) in 50% DMSO/saline, corresponding 

to doses of 100 mg/kg cyclophosphamide and 38 mg/kg etoposide, on days 7 and 8. Control mice 

were injected with a 50% DMSO/saline vehicle control of equivalent volume. The mice were 

sacrificed, and the tumours were excised on day 9 at 28 hours following the second chemotherapy 

treatment.  The excised tumour tissue was flash frozen in a glycerol suspension.  

 

3.2.2. Sample Preparation and Mass Spectrometry 
3.2.2.1. Tumour Homogenization and Protein Extraction  

Frozen tumours were thawed and washed in ice-cold PBST prior to tissue homogenization. 

Tumours were mechanically homogenized in homogenization buffer [100mM Tris-HCl; 8% 

glycerol; 4.8% SDS; 100mM β-mercaptoethanol; 1mM phenylmethylsulfonyl fluoride; 10ng/mL 

leupeptin; 1X PhosSTOPTM phosphatase inhibitor (Roche)]. A ratio of 4 mL of homogenization 

buffer to 1 g of tumour was used. Tumours were homogenized over ice using a teflon-piston 

homogenizer. Homogenates were centrifuged at 1000× g for 5 minutes at 4°C, and the resulting 

supernatants were then subjected to micro-tip sonication with a Q-Sonica sonicator (80% 

amplitude for 1 minute of total sonication using 5 second bursts). Sample were then clarified by 

centrifugation at 14,000× g for 15 minutes at 4°C. 
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3.2.2.2. Electrophoresis and In-Gel Protein Digestion  

Homogenates (20μL) were resolved by SDS-PAGE using 10% polyacrylamide gels. Protein lanes 

were visualized by Coomassie Blue staining prior to whole-lane excision. Each lane was 

subsequently cut into 15 equal bands, with each band corresponding to a region of the gel 

containing proteins of a distinct molecular weight range as described in Chapter 2. Each of the 

gel fractions was subjected to in-gel tryptic digestion as previously described294; the resulting 

peptides were extracted in three stages (i - 1% formic acid/2% acetonitrile in water; ii – 1% 

formic acid/50% acetonitrile in water; iii – 1% formic acid/25% water in acetonitrile), pooled, 

then dried and resuspended in 60μL of 0.2% formic acid in 5% acetonitrile. 

 

3.2.2.3. Mass Spectrometry & Database Search Parameters  

Digested peptides were analyzed by LC-MS/MS using a ThermoScientific Easy nLC-1000 in 

tandem with a Q-Exactive Orbitrap mass spectrometer. 5 μL of each sample was subject to a 120-

minute gradient (0% to 45% buffer B; buffer A: 0.2% formic acid; buffer B: 0.2% formic acid in 

acetonitrile) on a 2 cm Acclaim 100 PepMap Nanoviper C18 trapping column in tandem with a 

New Objective PicoChip reverse-phase analytical LC column. For data dependent analysis, the top 

15 most abundant ions were analyzed for MS/MS analysis while +1 ions were excluded from 

MS/MS analysis. Additionally, a dynamic exclusion of 10 seconds was applied to prevent 

continued re-analysis of abundant peptides. For the analysis, a resolution of 35,000 was used for 

full scans that ranged from 400 to 2000 m/z and a resolution of 17,500 was used for MS/MS 

analysis. For data analysis, raw data files corresponding to samples comprising an entire gel lane 

were grouped together and searched using Proteome Discoverer 1.4.1.14’s SEQUEST search 

algorithm using the reviewed, non-redundant Mus musculus complete proteome retrieved from 

UniprotKB on October 16, 2015. Parameters were set as follows: event detector mass precision = 

2ppm; spectrum selector minimum precursor mass = 350Da, maximum precursor mass = 

5000Da; maximum collision energy = 1000; input data digestion enzyme = trypsin (full) with 

maximum missed cleavage sites = 2; precursor mass tolerance = 10ppm with fragment mass 

tolerance =0.01Da; dynamic modifications to peptides = oxidation of methionine (+15.995Da), 
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deamidation of asparagine and glutamine (+0.984Da); static modifications to peptides = 

carbamidomethylation of cysteine (+57.021Da). During data processing, the ‘Precursor Ion Area 

Detector’ node of Proteome Discoverer 1.4.1.14’s SEQUEST workflow editor was implemented to 

determine the relative extracted ion chromatogram for each protein identified from the raw data. 

Searched results were filtered using a minimum of 2 medium confidence peptides per protein.  

The mass spectrometry proteomics data have been deposited to the ProteomeXchange 

Consortium via the PRIDE233,234 repository with the dataset identifier PXD005592. 

 

3.2.2.4. Statistics & Data Analysis 

False discovery rates for the resultant searched samples were as follows; “treated” samples’ 

actual relaxed FDRs for individual peptides were 0.0490, 0.0493, 0.0470, 0.0429, and 0.0462 

(for replicates 1-5 respectively), while the actual strict FDRs were 0.0097, 0.0099, 0.0097, 

0.0081, and 0.0089 (for replicates 1-5 respectively); “untreated” samples’ actual relaxed FDRs 

were 0.0447, 0.0467, 0.0458, 0.0439, and 0.0440 (for replicates 1-5 respectively), while the 

actual strict FDRs were 0.0092, 0.0092, 0.0093, 0.0082, and 0.0086 (for replicates 1-5 

respectively). Protein lists were exported to Microsoft Excel. Protein abundance was determined 

by looking at each protein’s extracted ion chromatogram (EIC). EICs for an entire lane were 

totalled to comprise the relative total ion current (TIC), then each protein’s EIC was divided by 

the TIC to give a ‘proportion-of-total’ value per sample. Untreated and treated proteins were 

compared, and only proteins with an observed EIC≥0 in ≥1 sample(s) were used in comparative 

data analysis. To determine proteins that changed in abundance between the two sample sets, a 

two-tailed, heteroscedastic (Welch’s) t-test188 was applied to proteins observed in both data sets. 

Sorted p-values were uploaded to the ‘q-value estimation for FDR control’ web utility 

(qvalue.princeton.edu) 200–202,295 to generate false-discovery rates (q-values). To determine fold-

changes between protein abundances, a log2 function was applied using the standardized average 

EICs for each protein. The complete set of the proteomic data collected is provided in 

Supplemental Table 3.1. 
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For functional analysis of the proteins that exhibit altered expression, the proteins of interest 

were analyzed with DAVID208 v6.7 (https://david.ncifcrf.gov/home.jsp) and enriched for KEGG 

pathway identifiers.  

 

3.2.3. Western Blot Analysis 

For validation of protein expression by Western Blot analysis, tumour lysates were resolved by 

SDS-PAGE on a 12% gel. Proteins were transferred to a nitrocellulose membrane (LI-COR) and 

the membranes were blocked with 2.5% fish skin gelatin blocking buffer (0.5% of Cold Water 

Fish Skin Gelatin (Truin Science) in 1× phosphate buffered saline - pH 7.4 with 0.1% Triton X-

100) and probed with primary and secondary antibodies and imaged with an Odyssey infrared 

imaging system using the manufacturer’s recommended procedures (LI-COR).  The rabbit anti-

β-actin antibody (I-19, sc-1616-R) was purchased from Santa Cruz Biotechnology. The rabbit anti-

caspase-3 antibody (2H334, ab17819) was purchased from Abcam and the rabbit anti-caspase-6 

antibody (#9762) was purchased from Cell Signalling Technologies. The secondary goat anti-

rabbit antibody labelled with IRDyes was purchased from LI-COR.  

 

  

https://david.ncifcrf.gov/home.jsp
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3.3. Results and Discussion 
3.3.1. Tumour Treatment and Collection 

Ten tumours were formed in 

ten C57BL/6 mice by 

injecting cultured EL4 cells. 

As summarized in Figure 3.1, 

the untreated tumours had 

an average mass of 388±123 

mg while the treated 

tumours had an average 

mass of 118±128 mg (n=5; 

p<0.01). This statistically 

significant decrease in 

tumour mass upon treatment 

with cyclophosphamide and 

etoposide mirrors previous 

reports utilizing this in vivo 

tumour model281,282,285. The 

isolated tumours were then 

homogenized and analyzed 

by Gel/LC-MS/MS analysis 

for quantitative proteomic 

analysis. 

 

3.3.2. Proteome Analysis 
Whole proteome analysis of the tumours by Gel/LC-MS/MS analysis resulted in the identification 

of a total of 5838 unique proteins, using a minimum criteria of two unique peptides per protein, 

across all ten tumours analyzed (Supplemental Table 3.1). Of these identified proteins, 5687 

 

Figure 3.1 EL4 tumour mass reduction after treatment with 

cyclophosphamide and etoposide combination therapy. 

Following injection of EL4 cells, tumours developed for 7 days, after which 

the tumour bearing mice were treated with cyclophosphamide and 

etoposide (Treated) or a DMSO/saline control (Untreated) on days 7 and 8. 

The mice were sacrificed, and tumours excised 28 hours following the 

second treatment. Untreated tumours had an average mass of 388 ± 123mg, 

while treated tumours had an average mass of 118 ± 128mg (each n=5; 

p=0.009), equating to a ~70% decrease in size. 
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were identified with quantifiable extracted ion chromatograms (EIC), for label-free 

quantification, in either the treated or control tumours. Of these 5687 proteins with EICs above 

the limit of detection, 5038 were observed in the untreated group of which 1271 proteins were 

uniquely observed. In the treated group, 4416 proteins were observed of which 649 proteins were 

uniquely observed. 

For quantitative comparisons 

of the individual samples 

using the EIC intensities, each 

dataset was first internally 

normalized for total protein 

abundance as described in 

section 2.5. To evaluate the 

result of data normalization, 

the relative EICs for several 

proteins frequently used as 

loading controls are 

compared in Figure 3.2. 

These include actin, histones 

H1.3, H1.4, H3.2, H2A-2B, 

H2A-2C, H2A-1H, GAPDH, 

and TERA. For these proteins, 

no statistically significant 

differences in abundance 

were determined. 

For label-free comparison of 

the proteomes of tumours 

from mice either treated with 

combination cyclophosphamide-etoposide or a DMSO/saline control, the EIC intensities of each 

 

Figure 3.2 Data normalization controls.  

Several housekeeping proteins were selected to ensure our EIC/TIC data 

correction technique was valid for the treated (light grey) and untreated 

tumours (dark grey). These include cytoplasmic actin (ACTB), transitional 

endoplasmic reticulum ATPase (TERA), glyceraldehyde-3-phosphate 

dehydrogenase (G3P), and the histones H1.3, H1.4, H3.2, H2A-2B, H2A-2C, 

and H2A-1H. 
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protein were compared by individual Welch’s t-tests. The complete set of statistical comparisons 

of the normalized data are listed in Supplemental Table 3.2. The resulting data, with the fold-

change of each protein’s average EIC intensities, is depicted as a volcano plot in Figure 3.3. To 

facilitate the depiction of proteins uniquely observed in a single experimental condition and 

provide an estimate of their minimal fold-change, proteins with an average EIC=0 for an 

experimental condition were assigned values of the global minimum observed within their 

dataset. The comparative analysis reveals many statistically significant changes to the proteome 

and an even distribution of the data points. Because of the multiple comparisons problem when 

comparing large proteomic data sets by t-test comparisons184, the q-values were determined as 

an estimate of the FDR for a given p-value cut off. The graphical insert of Figure 3.3 summarizes 

the number of proteins that were observed to change in abundance with p-value cut-offs of 

0.0001, 0.001, 0.01, and 0.05, with corresponding q-values, as an estimate of FDRs of 0.0164, 

0.0202, 0.0460, and 0.0921 respectively. With these cut-offs 19 proteins are determined to have 

changes at a p-value <0.0001 (17 proteins higher in the untreated tumours and 2 higher in the 

treated tumours), 77 proteins change at a p-value <0.001 (63 higher in the untreated tumours 

and 14 higher in the treated tumours), 348 proteins change at a p-value <0.01 (291 higher in the 

untreated tumours and 57 higher in the treated tumours), and 875 proteins change with a p-

value <0.05 (679 higher in the untreated tumours and 196 in the treated tumours).  
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Figure 3.3 Volcano plot of the protein changes observed between untreated and treated 

tumours.  

The -log10 of p-values generated by t-test comparisons between corrected protein abundance from each 

experimental condition was plotted against the log2 of the ratio of averaged corrected EIC for protein abundance. 

In addition, the corresponding q-values as an estimate for the FDR of the p-values are listed on the left vertical 

axis. Proteins not observed in an experimental condition were assigned the global minimal EIC for the sample to 

facilitate their representation in the plot. (Insert) The number of proteins observed to change in abundance upon 

cyclophosphamide-etoposide treatment are plotted for each p-value cut-off. For each p-value, the q-value 

estimation for the FDR is shown as the black shading as the fraction of potential false positive proteins determined 

to change in abundance at a given p-value cut off. 
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3.3.3. Functional Analysis of the Altered Proteome 
For a global analysis of the proteome changes in the EL4 derived tumours upon 

cyclophosphamide-etoposide treatment, we bioinformatically investigated the function of the 

proteins that changed in abundance. For this analysis, proteins which met the criteria of a p-

value cut-off of ≤0.01 with the corresponding q-value of ≤0.046 were investigated. The proteins 

that were either up or down regulated in the tumour upon treatment were analyzed with the 

DAVID v6.7 functional annotation tool for KEGG pathway identifiers208. For the proteins with 

decreased abundance following cyclophosphamide-etoposide treatment, higher in the untreated 

tumours, 154 of the 291 proteins populated a list of 11 pathways with a p<0.05 (Table 3.1). Not 

unexpectedly, the pathways identified are known to be active in cells undergoing active 

proliferation and include; DNA replication and repair, splicing, translation, purine and 

pyrimidine metabolism, ribosomal proteins, and protein processing in the ER. For the proteins 

upregulated in the treated tumours, 40 of the 57 proteins populated a list of 8 pathways with a 

p<0.05 and include; the lysosome, amino acid metabolism, complement and coagulation 

cascades, and a few pathways involved in the response to pathogens (Table 3.2). While the 

tumours in our investigation were not infected, the enrichment of various pathogenic response 

pathways resulted from the up regulation of the compliment C1q subcomponent proteins; CIQA, 

CIQB, and CIQC are involved in various immunological responses. Therefore, the increased 

abundance of these proteins is suggestive of an immunological response occurring within the 

tumour upon treatment. These observations are in accordance with previously reported roles for 

infiltrating macrophages and lymphocytes in EL4 tumourigenesis291, and with findings 

suggesting functions for the complement cascade and infiltrating neutrophils following radiation 

therapy in this model293,296. 
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Table 3.1 KEGG pathway identifiers enriched in the untreated tumours.  

Proteins with higher observed abundance in the Untreated dataset at p<0.01 were analyzed for KEGG 

pathway enrichment. The proteins identified in each group are listed. 

KEGG 
Identifier  Term  Proteins  P-

Value  
mmu03030  DNA replication  13  1.3E-12  

 DNLI1, DPOLA, DPOD1, MCM2, MCM3, MCM4, MCM5, 
MCM7, RFC2, RFC3, RFC4, RFC5, RFA1  

mmu03013  RNA transport  19  5.4E-09  

 F4A2, EIF1B, EIF3A, EIF3B, EIF3F, EIF3G, EI3JA, XPO5, 
NU107, NU133, PO210, NU188, NUP53, PININ, DDX20, 
RENT1, STRAP, EI2BB, EI2BD 

mmu03430  Mismatch repair  7  3.2E-06  
 DNLI1, DPOD1, RFC2, RFC3, RFC4, RFC5, RFA1 

mmu03420  Nucleotide excision repair  8  2.2E-05  
 CUL4B, DNLI1, DPOD1, RFC2, RFC3, RFC4, RFC5, 

RFA1  
mmu03040  Spliceosome  12  6.1E-05  

 HSP72, HNRPU, AQR, NH2L1, PRP8, PR38A, DDX5, 
SRSF2, SRSF3, SF3A1, SF3B3, RU17  

mmu00230  Purine metabolism  13  2.1E-04  
 5NT3B, NUDT5, DPOLA, DPOD1, RPB1, RPB2, RPAC1, 

GUAA, IMDH1, IMDH2, PUR6, PUR4, PUR2  

mmu03008  Ribosome biogenesis in 
eukaryotes  9  2.2E-04  

 NHP2, NAT10, NH2L1, NOP56, NOP58, PWP2, RCL1, 
UTP15, WDR43  

mmu00240  Pyrimidine metabolism  8  4.2E-03 
 5NT3B, PYRG1, PYRD, DPOLA, DPOD1, RPB1, RPB2, 

RPAC1  
mmu03010  Ribosome  9  8.0E-03  

 RM19, RM09, Rps14, Rps15A, Rps21, Rps26, RplA0, 
Rpl22L, Rpl4  

mmu00970  Aminoacyl-tRNA biosynthesis  6  9.7E-03  
 SYAC, SYRC, SYG, SYIC, SYSC, SYTC 

mmu04141  Protein processing in 
endoplasmic reticulum  8  4.9E-02  

 CALX, ERO1A, HS105, HS90A, HS90B, HSP72, NSF1C, 
UB2D3 
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Table 3.2 KEGG pathway identifiers enriched in the cyclophosphamide-etoposide 

treated tumours.  

Proteins with higher observed abundance in the Untreated dataset at p<0.01 were analyzed for KEGG 

pathway enrichment. The protein identified in each group are listed. 

KEGG 
Identifier Term Proteins P-Value 

mmu05150 Staphylococcus aureus 
infection 

6 4.5E-06 
 

C1QA, C1QB, C1QC, CFAB, ITAM, FCGR2 
mmu04142 Lysosome 6 3.4E-04  

NAGAB, CATB, CATD, MA2B1, PPGB, CATH 
mmu05133 Pertussis 4 6.0E-03  

C1QA, C1QB, C1QC, ITAM 
mmu04610 Complement and coagulation 

cascades 
4 6.5E-03 

 
C1QA, C1QB, C1QC, CFAB 

mmu01200 Carbon metabolism 4 2.0-E02  
CATA, IDHC, ESTD, TPIS 

mmu00380 Tryptophan metabolism 3 2.3E-02  
ALDH2, AOFB, CATA 

mmu00330 Arginine and proline 
metabolism 

3 2.5E-02 
 

ALDH2, AOFB, KCRB 
 

 
 

3.3.4. Down Regulation of Ribosomes 
The reduction in many proteins involved in normal cell growth and proliferation was expected 

in the cyclophosphamide-etoposide treated tumours, as this treatment leads to a significant drop 

in tumour mass (Figure 3.1). A reduction in ribosome abundance has been well documented to 

be associated with a variety of cellular stress responses297,298 and has been rationalized in many 

ways, including the high metabolic cost of ribosome biosynthesis299. Our initial detailed analysis 

of the proteome was thusly focused on all the constituent ribosomal proteins within the data. For 

this we examined all the large and small ribosomal subunit proteins identified in the complete 

data set. A global down regulation of ribosomes is predicted to result in the depletion of all 

ribosomal proteins. This view is a little oversimplified as a number of ribosomal proteins are 

known to have alternative ‘off-the-ribosome’ functions300, but the general trend is nonetheless 

predicted to hold true.  
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The relative EICs for all 

the observed ribosomal 

proteins, 32 small 

ribosomal subunit 

proteins and 45 large 

ribosomal subunit 

proteins, in the 

untreated and treated 

tumours reveals an 

almost uniform trend 

in the down regulation 

both the large and 

small ribosomal 

subunit proteins with 

two obvious exceptions 

(Figure 3.4). This 

trend is even observed for the ribosomal proteins that had not been initially identified to be down 

regulated using statistical cut-off criteria. The two exceptions to the trend are RPL39 and RPS29 

which have been linked to cancer development301,302 and Diamond Blackfan anemia303, 

respectively. The complete list of the ribosomal proteins quantified in the figure are listed in 

Supplemental Table 3.3. While these changes in ribosomal protein amounts were expected, they 

provide some validation for the label-free proteomic analysis to detect changes in the proteome 

of the tumours upon cyclophosphamide-etoposide treatment. 

 

3.3.5. Caspase- and Granzyme-Family Protease Expression  
As cyclophosphamide-etoposide treatment of EL4 cell derived tumours in C57BL/6 mice results 

in classical apoptotic markers, such as the surface localization of phosphatidyl serine285, it has 

been assumed apoptosis plays a major role in the efficacy of the drug treatment. We next 

 

Figure 3.4 Relative change in ribosomal protein abundance 

following cyclophosphamide-etoposide treatment.  

The general trend observed for both 40S (Left panel) and 60S (Right panel) 

ribosomal proteins was a decrease in abundance following tumour 

cyclophosphamide-etoposide combination therapy. The two exceptions that 

deviate from this trend are 40S ribosomal protein S29 (RPS29) and 60S ribosomal 

protein L39 (RPL39). 
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evaluated the data for the presence of both the caspase family proteases and granzymes. Figure 

3.5A summarizes the quantified relative EICs for both the caspases (caspase 1, 2, 3, 6, 7, 8, and 

9) and granzymes (granzyme A, B, C, D, E, F, and G) observed. Of these, the only statistically 

significant changes observed were for caspase-3 and caspase-6, where caspase-3 was down 

regulated two-fold (p=0.036) and caspase-6 was up regulated 13-fold (p=0.03) in response to 

treatment. As caspases, like many proteases, are synthesized as zymogens, the quantification of 

protein levels cannot be directly interpreted to activity. We had queried our data for signature 

peptides that may reflect the active state of the protease304, but these were not observed when 

analyzing the entire dataset nor when analyzing the region of the gel corresponding to the active 

caspases.  

To validate the changes in protein abundance quantified by mass spectrometry, lysates for two 

control tumours and two treated tumours were analyzed by Western Blot for both caspase-3 and 

-6, using actin as a loading control. As seen in Figure 3.5B, Western Blot analysis confirmed 

results we observed with mass spectrometry. In concordance with our mass spectrometry 

findings, Western Blot analysis was also unable to detect any significant accumulation of either 

active caspase-3 or -6, which is typically observed as p17/p12 for caspase-3 or p18/p10 for 

caspase-6.   
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Figure 3.5 Changes in protein abundance of caspase- and granzyme-family proteases.  

(A) Average measured protein abundance levels from the treated (light grey) and untreated (dark grey) tumours 

for apoptotic protease activating factor-1 (APAF), caspase-family proteases (CASP1/2/3/6/7/8/9), and granzyme-

family proteases (GRAA/B/C/E/F/G) were examined. (B) Western-blot analysis was performed on two randomly 

selected tumour homogenates from each experimental condition to validate the observed changes in caspase-3 

and caspase-6 abundance. The bands reflect full-length caspases. The fragments corresponding to active caspase-

3 (p17 and p12) and caspase-6 (p18 and p11) were not observed in the corresponding regions of the gel (data not 

shown). In addition, Western-blot analysis was performed for actin as a loading control. 
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Our inability to detect active caspases in the bulk treated tumour extracts is consistent with 

previous investigations where microscopy performed on treated tumours revealed only a minor 

number of cells containing active caspase-3282. The lack of accumulation of cells with active 

caspase-3 follows the understanding of apoptosis in vivo; cells undergoing active apoptosis are 

rapidly cleared by surrounding tissue305. Prior to full activation of the apoptotic program it is 

known that active caspase-3 is difficult to detect because of its metabolic instability and it being 

rapidly degraded in cells306. Taken together it is suggestive that our data reflects the global state 

of the tumour upon treatment and not specifically that of the dying tumour cells. The lack of 

detectable apoptotic markers indicates that the majority of cells have not committed to the full 

activation of apoptosis, and the proteomes may be reflecting survival mechanisms in response to 

treatment, cellular responses leading cell death, and/or the recruitment of infiltrating immune 

cells293,296. 

With a focus on known proteins involved in cell death, we also queried our proteomic dataset for 

Bcl-2 family members because of their well-known roles in apoptosis307. While proteins such as 

Bax, Bak, Bid, and Bcl-2 like protein 13 were detected in the analysis, the quantified data did not 

reveal statistically confident differences for any of them (Supplemental Table 3.2). 

 

3.3.6. Lysosomal Protein Accumulation 
Upon observing the lysosome as being the second highest ranking KEGG pathway identifier in 

the treated tumours at the p<0.01 cut-off, we chose to further investigate this family of organellar 

proteins using more lenient criteria. At p<0.05, the number of lysosomal proteins identified via 

KEGG is 19. With this relaxed criteria, additional lysosomal proteins are identified; N-

acetylglucosamine-6-sulfatase (GNS) with an abundance 30-fold higher in the treated tumours 

(p=0.021), and group XV phospholipase A2 (PAG15) with a 21-fold higher abundance in the 

treated tumours (p=0.044). In addition, several cathepsin family proteases are observed. As 

lysosomal cathepsins play an integral role in lysosomal function during autophagy and cell 

death308,309, we closely examined the relative EICs for the nine cathepsins observed in the dataset. 
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The cathepsins, on average, were approximately 3.9-fold more abundant in the tumours 

responding to cyclophosphamide-etoposide treatment (Figure 3.6). While the changes for 

several of the cathepsins was not statistically significant due to EIC variability, several exhibited 

statistically significant increases. Cathepsin D exhibited an 8.2-fold (p=0.0056) increase upon 

treatment and cathepsins A and B exhibited 5.9-fold (p=0.00039) and 4.9-fold (p=0.0064) 

increases respectively.  

 

Figure 3.6 Cathepsin-family protease expression.  

We looked at global cathepsin-family proteases observed within the treated (light grey) and untreated (dark 

grey) tumours. All cathepsin-family proteases were observed with a q-value ≤0.15, and displayed increased 

abundance in the treated dataset. On average, cathepsins had a ~3.9-fold increase in abundance in the 

chemotherapy-treated dataset compared to the untreated. The most significant increases were observed in 

cathepsin B (CATB, 4.9-fold increase, p=0.0064), cathepsin D (CATD, 8.2-fold increase, p=0.0056), and cathepsin 

A (PPGB, 5.9-fold increase, p=0.00039). 
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With the observed up regulation of cathepsins, there is the potential of interplay with caspase-

dependent apoptosis as previous reports have demonstrated the cleavage and inhibition of XIAP 

by cathepsin B310, in addition to its direct proteolytic processing of several caspases311. 

Nonetheless, our data does not reveal detectable active caspase-3 or caspase-6 despite cathepsin 

upregulation, which may be due the metabolic instability of caspase-3306 as previously 

mentioned. Alternatively, the lysosomal membranes may be sufficiently intact to prevent 

cathepsin leakage and subsequent apoptotic activation312; this idea fits with a model where the 

global upregulation of lysosomal proteins in the bulk tumour is occurring due to the increased 

phagolysosomal activity of cells clearing apoptotic bodies. Taken together, this upregulation of 

lysosomal proteins is suggestive of a potential role for lysosomes in the EL4 derived tumours in 

C57BL/6 mice in response to etoposide and cyclophosphamide treatment. In the context of the 

growing understanding of autophagy in the cell survival/cell death axis of cellular fates313,314, our 

data reveals the potential utility of this model system to investigate novel imaging applications 

focused on this biological process. 
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3.4. Conclusions 
As our understanding of the complexities of cell death increases beyond proteolytic cascade 

activation to include the interplay with cellular processes such as autophagy314 and changes to 

the complex network of protein-protein interactions315, quantitative whole-system data of model 

systems is needed to further investigate both the complexities of these processes. Furthermore, 

additional evaluation of model systems’ appropriateness in the context for which they are studied 

should be considered in the future. Here we report our findings on the proteome analysis of the 

murine EL4 tumour model in response to high concentration cyclophosphamide-etoposide 

treatment.  

For tumours comprised of various cell types, our reported robust dataset reveals a large number 

of changes at the global protein level, with varying degrees of statistical confidence that can be 

queried for any protein of interest. This is supportive of the technique’s applicability in the 

comparative analysis and characterization of other solid tissues and tumour types. The utility of 

this dataset is demonstrated with our initial analysis of the data revealing potential novel roles 

for caspase 6 and lysosomes in the response of these tumours to chemotherapeutic drug 

treatment.  
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4.0. Proem 
In the previous two chapters, we explored the applications of label-free, relativistic quantitation, 

mass spectrometry-based comparative proteomics on the proteomes of i) tissue-derived 

organelles, and ii) entire ‘bulk’ tumours. In both applications, we showcased the ability to resolve 

a high degree of temporal and/or conditional proteome changes, leading to novel insights into 

the mechanistic processes occurring in response to the specified condition.  

This application is particularly suited towards clinical studies; with an interest in cancer 

pathogenesis, specifically disease prognosis, we decided to attempt to identify proteomic 

signatures – biomarkers – unique to specific breast cancer subtypes (estrogen receptor positive 

Luminal A/B tumours). These tumours are classically difficult to distinguish from one another 

and patients have drastically different prognoses. Identification of even a handful of proteins 

capable of distinguishing these tumour types could provide clinicians with an invaluable ability 

to determine the most effective treatment regimen at the time of diagnosis. 

Supplementary data for this chapter can be found at:  

Supplemental Tables 
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The work in the following chapter was only made possible with the aid of Drs. Judith Hugh and 
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4.1. Introduction 
In Canadian women, breast cancers account for approximately 26% of new cancer diagnoses and 

13% of cancer-related deaths each year316. While breast cancer survivorship has increased over 

the past several decades with the onset of better treatment and detection strategies, there is still 

a crucial need for better indicators of patient prognosis at the time of diagnosis317,318. Breast 

cancers are currently assessed and treated based on their 'receptor status' - these being the 

presence of estrogen and/or progesterone receptors (ER+/PgR+), the HER2 receptor (HER2+), 

or the absence of all three (TN)318,319.  

ER+ breast cancers are the most common grouping, accounting for nearly 75% of all breast 

cancers, and can be further divided into Luminal A and B subtypes. Luminal A breast cancers 

account for half of all breast cancers diagnosed and have the best prognosis; these tumours have 

high expression of ER, and relatively low amounts of Ki-67 protein320,321, a marker for cellular 

proliferation. Luminal A patients typically present later in life with well-defined and localized 

tumours that tend to respond well to ER-targeting anti-hormone therapies such as tamoxifen, 

resulting in high rates of survival with low rates of disease recurrence 319–322. Conversely, Luminal 

B ER+ breast cancer patients present at a young age, often with large, poorly defined tumours 

and are node-positive; these tumours tend to be associated with lower ER abundance and a high 

abundance of Ki-67 protein, in addition to the possibility of being HER2 receptor positive. This 

makes Luminal B tumours more resistant to anti-hormone therapies, and treatment often 

requires systemic adjuvant chemotherapy 319–322. Currently, distinguishing Luminal A from 

HER2-negative Luminal B in the clinical setting is challenging317,318,320. As the first-line treatment 

for all ER+ breast cancer patients is tamoxifen (adjuvant chemotherapy is only warranted if the 

patient’s is HER2+ or node-positive), Luminal B patients tend to have higher rates of recurrence 

and lower rates of survival compared to Luminal A patients318.  

Aside from patients’ node status at the time of diagnosis, few screening tools can accurately 

predict the likelihood a tumour is either Luminal A or B. The current gold-standard, Oncotype 

DX, screens tumours by assaying 21 genes of interest but is expensive, time-intensive, and not at 

all definitive 318,323,324. Additionally, a recent review318 of clinical practices of the management of 
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early-stage breast cancers highlighted a need for better diagnostic differentiation techniques for 

Luminal-type breast cancers, specifically with respect to disease prognosis and chemotherapeutic 

effectiveness. 

With the advent of mass spectrometry-based proteomics, we are capable of identifying and 

quantitating thousands of proteins from a single tissue sample. Characterization of the proteomic 

profiles of patient-derived tumours, whose long-term outcomes are known, has been shown to 

identify biological markers (biomarkers) that correlate with patients’ disease prognosis and 

therefore outcome. 
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4.2. Experimental Procedures 
4.2.1. Tumour Selection 
Flash-frozen human breast tumours from the Alberta Cancer Research Biobank (ACRB) 

repository, with corresponding de-identified patient data were obtained with sponsorship from 

the Alberta Cancer Foundation (ACF), with approval from the University of Alberta Health 

Research Ethics Board – Biomedical Panel (“Alberta Cancer Proteome Platform”, ID# Pro-

00049009, 08/26/2014) by Dr. Judith Hugh, of the Department of Laboratory Medicine & 

Pathology at the University of Alberta. Nineteen tumours were selected based on their pre-

treatment pathological classifications of being primary invasive ER+, HER2-negative tumours, 

with patient follow-up data available to approximately 80 months. An approximately equal 

proportion of Luminal A (10) and Luminal B (9) classified tumours were included. 

 

4.2.2. Tumour Preparation for Mass Spectrometry 
The frozen tumour’s masses were measured, and subject to the homogenization protocol using 

the buffers and procedures as previously described177 in Section 3.2.2.  

 

4.2.2.1. Gel Electrophoresis and In-Gel Protein Digestion 

Tumour homogenates (20µL) were resolved using 1-dimensional SDS-PAGE in 1.5mm thick 10% 

polyacrylamide gels. Gels were visualized using colloidal Coomassie blue (G-250) stain, and 

whole lanes were excised, sectioned, and subject to in-gel trypsin digestion as described in 

Section 3.2.3. Resultant extracted peptides were dried and resuspended in 60µL 0.2% formic 

acid in 5% acetonitrile.  

 

4.2.2.2. Mass Spectrometry and Database Search Parameters 
Digested peptides were subject to LC-MS/MS analysis utilizing the protocol outlined in Section 

3.2.2., albeit shortening most LC gradients to 75 minutes, to accommodate data collection. 
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Following data collection, raw mass spectra files corresponding to samples comprising an entire 

gel lane were grouped and searched together using ProteomeDiscoverer 1.4.1.14’s SEQUEST 

search algorithm. Data was searched using a reviewed, non-redundant Homo sapiens proteome 

retrieved from UniprotKB in February 2015. The search parameters and tolerances used for 

protein identification were identical to those outlined in Section 3.2.2.3. Search results were 

filtered using a minimum of 2 medium-confidence peptides per protein. Additionally, distinct 

protein isoforms from a single gene product were merged. Protein quantitation was determined 

using the ‘Precursor Ion Area Detector’ node in SEQUEST, quantitating only the top 3 most 

abundant peptides passing the filter parameters. 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange 

Consortium via the PRIDE repository233,234 with the dataset identifier PXD009827. 

 

4.2.2.3. Statistics and Data Analysis 

Peptide FDRs for the searched samples were as follows; actual relaxed FDRs ranged from 0.032 

to 0.0451, while actual strict FDRs ranged from 0.072 to 0.093. Protein lists were exported to 

Microsoft Excel. Protein abundance was determined by adjusting each protein’s reported EIC 

relative to a correction factor calculated per sample via histone H4 abundance. This was achieved 

by finding the average reported EIC for histone H4 and determining a correction factor for each 

sample to make the measured H4 abundances equal across all samples. Based on peptide 

coverages per sample, in addition to their observed proportions, missing values (MVs) were 

determined to be missing not at random (MNAR)325,326, and the global minimum adjusted-EIC 

for the entire dataset (half of the limit of detection; LOD) was imputed325. Corrected EICs for each 

protein were then normalized using a log2 transformation156,157.  

For initial data comparison, tumours were grouped based on patients’ disease recurrence status. 

Data was refined by only including proteins identified in n=3 samples of at least one of the patient 

groupings. Following data refinement, p-values were generated by applying a two-tailed, 

heteroscedastic t-test (Welch’s t-test)188 to protein abundances observed in each grouping. Sorted 
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p-values were uploaded to the ‘q-value estimation for FDR control’ web utility 

(qvalue.princeton.edu)200–202,295 for the generation of q-values. 

Following cluster analysis (see Section 4.2.7.), data was further refined, using the same 

threshold criteria as described for two-group analysis. Additionally, differential protein 

expression was determined using a one-way analysis of variance (ANOVA), with p-values being 

controlled through q-value estimation200–202,295. Following ANOVA analysis, proteins with a 

q<0.05 were subject to a post-hoc Tukey-Kramer Honest Significant Difference (TK-HSD) test to 

determine between which pairs the differences lie327–329. TK-HSD tests were performed courtesy 

of Dr. John Maringa using MATLAB R2017b. 

 

4.2.3. Functional Analysis of Proteins 
Proteins determined to have increased abundance with respect to a tumour grouping were 

subject to functional analysis using both STRING212 v.10.5 and PANTHER209–211 v.13.1 web-

utilities. Protein lists determined to be specific to a tumour group were subject to GO-molecular 

function (GO-MF) and -biological process (GO-BP), in addition to pathway (KEGG) and protein 

class (PANTHER) analyses. Statistical overrepresentation using was determined utilizing ‘slim’ 

annotation sets with Fisher’s Exact test, reporting only identifiers with an FDR<0.05. 

 

4.2.4. Hierarchical Clustering and Principal Component Analysis of 
Tumours 
Hierarchical clustering of tumour samples was performed using the software PermutMatrix 

v1.9.4330. Treatment options were set as follows; dissimilarity was measured using Euclidean 

distance, cluster linkage was determined through ‘unweighted pair-group method using 

arithmetic averages’ (UPGMA; average-linkage method), rows’ values (individual protein’s 

abundances) were normalized as z-scores, and tree-seriation was determined using a multiple-

fragment heuristic method. Principal component analysis (PCA) was performed using Perseus331 

v1.6.0.3. on z-score normalized log2-transformed data.  
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4.2.5. Immunoblotting 
Equivalent volumes of seven whole tumour homogenates were loaded onto 10% polyacrylamide 

gels and subject to SDS-PAGE. Samples were transferred to 0.22µm nitrocellulose membranes 

(LICOR) and blocked using 3% skim milk in PBS. Blocked membranes were incubated with 

biotinylated goat anti-human PIGR (1:1000; R&D Systems #BAF2717) in 3% skim milk in PBST 

overnight at 4°C. Membranes were subsequently incubated with IRDye-680-labelled streptavidin 

(1:2000; LICOR #925-68079) in 3% skim milk in PBST for 1 hour at room temperature and 

visualized using a LICOR Odyssey Fc Imager’s 700nm channel. To determine non-specific binding 

of labelled streptavidin, a second blot was performed without the use of primary antibody. 

 

4.2.6. Immunohistochemistry, Scoring, and Survival Analysis 
Breast tumour tissue microarrays (TMAs) were obtained from Dr. Sambasivarao Damaraju, of 

the Department of Laboratory Medicine & Pathology at the University of Alberta. De-identified 

patient data corresponding to the TMAs were obtained with permission from the University of 

Alberta Health Research Ethics Board – Biomedical Panel (“Alberta Cancer Proteome Platform”, 

ID# Pro-00049009, 08/26/2014). Slides obtained had been microtome sectioned 4µm thick. 

Slides were baked at 60°C for 1 hour to remove paraffin, and subsequently rehydrated: 3 × 10-

minute incubations in 100% xylene, 4 × ~30s washes in 100% EtOH, then ~30s washes in 80% 

EtOH, 50% EtOH, and deionized water. Rehydrated samples were subject to antigen retrieval by 

incubation in 600mL boiling 0.05% citraconic anhydride (pH=7.50) for 6 minutes in a pressure-

cooker. Slides were cooled, and subsequently rinsed in TBS.  

Endogenous peroxidase activity was degraded by incubating tissue with 50µL of 3% H2O2 for 15 

minutes. Endogenous biotin was blocked by incubating each slide with 50µL of 0.001% 

unconjugated streptavidin (Sigma) in TBS for 15 minutes at 37°C with gentle agitation. Slides 

were rinsed 3 × in TBS, subsequently incubated with 50µL of 0.005% biotin (Sigma) in TBS for 

15 minutes at 37°C with gentle agitation and rinsed an additional 3 × in TBS. Tissue was blocked 

with blocking buffer (1% BSA, 0.5% FSG, 0.5% triton X-100, 0.05% sodium azide in TBS) for 30 
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minutes at room temperature with gentle agitation. Slides were incubated with 50µL of primary 

antibody (biotinylated goat anti-human PIGR, R&D Systems #BAF2717, 1:350 in blocking buffer) 

at 4°C, washed 3 × 10-minutes in TBST, and incubated with 50µL of 2µg/mL of streptavidin-

HRP conjugate (Jackson Immunoresearch #016-030-084) in azide-free blocking buffer for 30 

minutes at room temperature with gentle agitation. Slides were then rinsed 3 × 5-minutes in 

TBST. Colourization was achieved by adding 100µL of 3,3’-diaminobenzidine (DAB; DAKO 

#K3467) and allowing colour development for 6 minutes. Following colourization quenching in 

TBS, slides were incubated in 1% CuSO4 for 5 minutes, rinsed in deionized water, and 

subsequently incubated in hematoxylin stain for 15 seconds. Slides were then rinsed with water 

and incubated in saturated Li2CO3 for 3 minutes. Slides were subsequently dehydrated 

(rehydration procedure above, in reverse-order), and allowed to dry prior to addition of 

coverslips and visualization. As a negative control, the above procedure was repeated, less 

incubation with primary antibody, on extra TMA slides. 

Stained slides were scanned using an Aperio ScanScope CS slide scanner. Digital files were 

visualized and scored using Aperio ImageScope v12.3.2.8013. Scoring was achieved through 

visual assessment of diseased-tissue staining by Dr. Wei-Feng Dong (Pathology), using a 0 to 3+ 

classification system. Additionally, entire tissue staining was assessed by manually annotating 

tissue sections and determining pixel-density analysis using Aperio’s Positive Pixel Count v9 

algorithm (default settings). Following scoring, tissue sections corresponding to a single patient’s 

disease were averaged and correlated with clinical information supplied to us by Dr. Damaraju. 

Survival analysis was performed with NCSS 12 statistical software, using only patient data 

corresponding to those with ER-positive tumours who did not receive therapy prior to 

surgery/biopsy. Receiver operating characteristic (ROC) curve analysis was used to determine 

‘low’ and ‘high’ thresholds for PIGR scores; cut-off points were chosen by minimizing the distance 

to the corner at which sensitivity and specificity = 1 on the ROC curve which maximized the AUC. 

Using these thresholds, Kaplan-Meier curves were generated, assessing disease-free survival with 

clinical endpoints corresponding to 60 and 120 months post-surgery/biopsy. 
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4.2.7. mRNA Survival Analysis 
Genes corresponding to proteins of interest were investigated with the KMplotter332,333 web-

utility (kmplot.com/analysis/) for assessing gene expression microarray data and disease 

survivorship. Probe sets were limited to the JetSet334 best probe set, while only assessing 

expression in patients with ER+, HER2- breast cancers. For quality control, redundant samples 

were removed from analysis, and biased arrays excluded. 
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4.3. Results  
4.3.1. Experimental Design Rationale 
In the previous two chapters, the proteomes of whole-tissue derived organelles (lipid droplets)24 

or tumours (EL4-lymphomas)177 were analyzed for changes following exposure to an 

experimental condition. For these types of analyses, the experimental design is rather straight-

forward; a condition which is hypothesized to elicit a biological change in a specified 

organelle/cell-type/tissue is chosen, and the specified biological samples are exposed to the 

condition. Through the utilization of tightly controlled biological replicates – as is the case when 

dealing with tissue culture or animal work – an average proteomic profile per condition can be 

determined, and statistical analyses can be carried out for proteins’ abundances between 

experimental conditions335. However, when attempting to apply this experimental technique to 

clinical samples, several problems emerge, precisely because clinical samples often originate 

under vastly different conditions from vastly different individuals336,337. Thus, replicates of 

clinical origin are difficult to classify as biological replicates, as defined by the replication which 

can be achieved in a laboratory. 

 

4.3.1.1. Grouping of Patient Data 

Exercising tight control over biological replicates makes the life of a typical scientist immensely 

easier than it could be otherwise335. Between-sample variability, if samples are obtained at 

random from a population, can be widely diverse. One of the caveats of complex system analysis 

is that, to fully understand a given biological system, the variables at play within the system must 

be fully understood. The use of such biological replicates circumvents this issue; by utilizing 

samples from sources that are (or nearly are) identical, between sample variability is minimized. 

By applying this methodology to groups of samples that are subject to differing – though specific 

and highly-controlled – experimental conditions, scientists can infer causality between 

experimental conditions and observed outcomes336,337.  
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In the case of our 19 patient-derived ER+ breast cancer tumour samples, we tried to control these 

as much as possible with respect to tumour biology; Dr. Judith Hugh, a clinical pathologist at the 

University of Alberta, selected tumours based on their overall tumour grade (accounting for size, 

mitotic activity, nuclear dysmorphia, receptor status, adjuvant and neoadjuvant treatments, et 

cetera), providing us with a relatively equal proportion of pathologist-diagnosed Luminal A and 

Luminal B tumour samples.  

However, even with careful selection of tumour specimens for inclusion in the study, it has been 

shown pathological diagnoses of ER+ tumours are not always accurate318,338. In a recent study338, 

it was demonstrated that the most definitive way to determine the Luminal A vs B subtyping for 

an ER+ tumour was to subject the patient to anti-estrogen chemotherapy, and observe the 

tumour response. Tumours that were determined to be non-responsive over the course of a 4-

month treatment were declared to have Luminal B subtypes, while patients who responded 

quickly, or slowly (with eventual tumour volume reduction) have Luminal A. When comparing 

clinical outcomes to the pre-treatment clinical diagnoses, pathological classification of a tumour 

as Luminal B was shown to correlate with only ~30% of patients. In agreement with these 

general trends, of the 19 patients in our study, 10 were diagnosed as Luminal A status, and 9 as 

Luminal B. When judging ‘true’ Luminal status by disease outcome, a Luminal A classification 

was 90% predictive of disease-free survival, while Luminal B classification was ~67% predictive 

of disease-recurrence. While clearly indicative of a requirement for better classifiers, these data 

also provided us with some rationale for our experimental design; rather than rely on pre-

existing definitions of Luminal subtypes for sample grouping and comparison, tumours in our 

cohorts can be grouped based on their respective patients’ clinical outcomes as these are known.  

Comparing the proteomes of pre-treatment-defined Luminal A and Luminal B tumours, both of 

which possess patients who experienced disease-free and disease-recurrent survival, confounds 

our ability to reach meaningful biological conclusions; some differences may be a result of the 

subtyping (which may not even be correct in some cases), with others a result of the patients’ 

recurrence-status. By grouping tumours solely on the patients’ clinical outcomes, we mitigate 

some of the variability between sample populations.  
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4.3.1.2. Data Refinement and Normalization 

However, more convenient groupings do not negate the fact that these samples have high 

variability. The number of biological variables at play – including a patient’s age, weight, race, 

reproductive status, previous diagnoses, family history, presence of genetic mutation or viral 

infection, activity level, diet, et cetera – and how these can affect protein expression and 

cellular/protein architecture in a localized tumour25, makes the search for meaningful 

‘differences’ between sample groups incredibly difficult. Compounding this issue are technical 

variables such as ion suppression, the instrument’s limit of detection, and detector signal 

saturation limiting the number of identifiable ion species (for reviews see 339–341). Therefore, to 

minimize the effect such variables can have during analysis, it is necessary to both normalize the 

protein abundances being compared, and refine the dataset to remove biased comparisons156,157. 

To illustrate this point, the p-value distributions from an initial set of comparative analyses using 

unrefined data are depicted in the left panel of Figure 4.1. Regardless of the normalization 

procedure used, the p-value distributions are indicative of biased/noisy data; a relatively low 

amount of p-values is observed at the lower boundary of the [0,1) range, with the highest density 

incredibly focused within the 0.33-0.36 range. Such distributions are indicative of low statistical 

power (a high proportion of false-negatives), which can be the result of: poor sampling size (low 

n); the critical value used as an indicator of significance (α); high variability between 

measurements within and between populations (large standard deviations, i.e. noisy data); and 

a generally minimal difference between the observed means for the two populations being 

compared342. Because our study is limited with respect to sample sizes, methods to increase the 

statistical power of our study are limited to data normalization and refinement as previously 

mentioned.  

With respect to data refinement, we opted to include only proteins with an EIC>0 in at least n=3 

samples for at least a single patient grouping; this removes noisy data (i.e. proteins identified in 

the dataset with measurable abundance in only a select few samples), while increasing the 

likelihood that population means being compared will be different. The effect of this refinement 

can be observed in the right panel of Figure 4.1A. Following our method of data refinement, the 
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biased region populating the 0.33-0.36 interval is markedly reduced, allowing a truer 

representation of the dataset’s statistical properties to be observed. 

Additionally, we required a method for data normalization that was not reliant on the EIC-to-TIC 

ratio. To circumvent this issue, we opted to normalize each protein identified within an individual 

tumour’s proteome to a reference protein, with constant cellular abundance, ubiquitously 

identified in all tumours. The reference protein we selected was Histone H4, based loosely on the 

rationale behind Matthias Mann’s ‘proteomic ruler’ methodology343; for any given cell or tissue, 

the proportion of DNA to histones should be relatively constant. Conveniently, even though 

cancer is prone to aneuploidy (aberrant amounts of nuclear chromatin), ER+ breast cancers 

(especially those which are ER+/PgR+; 16/19 tumours analyzed) rarely exhibit such nuclear 

dysmorphia344–346. Additionally, while all histones are well-conserved in their sequences, histone 

H4 is remarkably so, with more than 95% of various evolutionary sequences conserved347. 

Considering this, in addition to its consistently high ion abundance (within the top 1% of all EICs 

– Supplemental Table 4.1) across all analyzed ER+ tumour samples, histone H4 makes an 

excellent reference protein for sample standardization and normalization.  
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Figure 4.1 Selection of optimal data refinement and normalization treatments for clinical 

samples. 

(A) P-value histograms corresponding to unrefined (left) and refined (n≥3 samples in ≥1 group; right) in addition 

to protein abundance correction methods. Data refinement resulted in removal of biased samples populating the 

(0.33-0.36) interval. Due to different amounts of total protein between tumours, EIC-to-TIC normalization (top) 

yielded poor results as local sample TICs were subject to variation. Protein correction to histone H4 (middle) yielded 

similar results, indicating non-normal data distribution. Log2-tranformations of H4-corrected data (bottom) 

resulted in normalization of data. (B) Correlation of parametric (Welch’s t-test) and non-parametric (Mann-

Whitney U-test) test results of H4-adjusted non-log2-transformed (top) and H4-adjusted log2-transformed 

(bottom) datasets. For normally-distributed data, the Mann-Whitney U-test performs similarly to the Welch’s t-

test, as indicated by a larger R2 value 

EI
C

-to
-T

IC
H

4 
Ad

ju
st

 &
 l

og
2-

tra
ns

fo
rm

Unrefined Refined

p-value
0 0.25 0.50 0.75 10 0.25 0.50 0.75 1

p-value

D
en

si
ty

0

2

4

6

D
en

si
ty

0

2

4

6

D
en

si
ty

0

2

4

6

D
en

si
ty

0

1

2

3

0 0.25 0.50 0.75 1 0 0.25 0.50 0.75 1

0 0.25 0.50 0.75 1

D
en

si
ty

0

0.5

1.0

1.5

D
en

si
ty

0

0.5

1.0

1.5

0 0.25 0.50 0.75 1

2.0

q-value
local FDR

π0

q-value
local FDR

π0

q-value
local FDR

π0

q-value
local FDR

π0

q-value
local FDR

π0

q-value
local FDR

π0

H
4 

Ad
ju

st
 &

 P
EI

C
:H

4 E
IC

A
R² = 0.3652

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3

-lo
g 1

0(
p-

va
lu

e)
 M

an
n-

W
hi

tn
ey

 U
-te

st

-log10(p-value) Welch’s t-test

H4-Adjusted, Untransformed Data

R² = 0.8157

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5

-lo
g 1

0(
p-

va
lu

e)
 M

an
n-

W
hi

tn
ey

 U
-te

st

-log10(p-value) Welch’s t-test

H4-Adjusted, log2-transformed Data

B



~ 140 ~ 
 

Two methods of normalization utilizing histone H4 were attempted (Figure 4.1A). These 

included normalizing individual proteins’ abundances to H4’s abundance within a sample 

(PEIC:H4EIC), or adjusting all EICs within a sample to equate H4 EICs between samples (i.e. 

H4sample1 = H4sample2 = H4sample3…). While both techniques are mathematically similar, the latter 

method allows for easier subsequent transformations if required; when using the latter method, 

the magnitude of measured ion abundances ranges by several orders of magnitude, having 

distributions which do not conform to that of Gaussian normal. As a result, -omics datasets are 

often log2 transformed prior to statistical analysis156,157. Due to low sampling (i.e. a maximum of 

12 observations per grouping) preventing us from determining the normality of untransformed 

versus log2-transformed data, normality was assessed based on the correlation of different 

statistical tests’ outcomes. The statistical tests whose outcomes were correlated were the 

parametric Welch’s t-test (an unpaired, heteroscedastic t-test)188, and the non-parametric Mann-

Whitney U-(MWU) test182; parametric tests function under assumptions made about the 

sampling populations fitting a normal distribution, while non-parametric tests do not. While 

possessing less statistical power than its parametric counterpart, the MWU test is known to 

perform similarly to Welch’s test if the data fits a normal distribution348. Figure 4.1B shows the 

correlation of p-values resulting from MWU and Welch’s tests performed on untransformed and 

log2-transformed datasets. 

 As illustrated, global adjustment of proteins’ abundances via equating histone H4 followed by 

log2-transformation proved to be the most desirable treatment. However, even with a preferred 

method of data normalization, one of the remaining issues was how to deal with MVs in the 

dataset157,349,350. As the dataset is comprised of clinical replicates, the problem of MVs becomes a 

complicated one; without experimentally-controlled replicates from which an individual’s 

expected abundance can be observed, we are unable to determine whether a MV is due to an 

absolute absence from the dataset or below the LOD (missing not at random; MNAR) versus 

being present but missing due to stochastic variation (missing completely at random; 

MCAR)157,326,351. 
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Some studies have chosen to avoid this issue by performing extreme data refinement procedures, 

often removing proteins which do not have a determinable abundance in at least 90% of the 

dataset352,353. However, if such procedures were to be performed on our dataset, we would lose a 

substantial amount of valuable information; when searching for biomarkers, it becomes desirable 

to identify proteins whose expression – or lack thereof – correlates with disease outcome. The 

removal of proteins with missing values in a sample grouping would leave only proteins whose 

expression differs between disease outcomes; while still valuable, such differences become 

incredibly hard to discern when being screened for using traditional techniques such as 

immunohistochemistry. 

 

 

Figure 4.2 Comparison of data imputation methods for missing values. 

Due to the number of MVs present within sample groups, MVs were determined to be MNAR, and various values 

were imputed for MVs to approximate the limit of detection. (A-C) P-value histograms correlating to statistical 

outcomes following MVs imputed as (A) zeroes, (B) half of the global minimum peptide abundance, or (C) half of 

the sample-specific (local) minimum peptide abundance. (D) A summary of various FDR-approximations 

resulting from different methods of data imputation. Half GM peptide imputation was chosen based on the lowest 

number of proteins with q≤0.05. 
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Due to the proportion of MVs in our dataset – an average of ~46% of values missing in disease-

free tumours and ~28% missing in disease-recurrent tumours - missing values were treated as 

MNAR. To determine how best to deal with these missing values, in addition to assigning missing 

values as zeros (as in Figure 4.1), two common methods of data imputation were compared326,351 

as illustrated in Figure 4.2; half of the adjusted global minimum peptide EIC (half of the smallest 

observed adjusted-EIC for an individual peptide in the entire dataset), or half of the adjusted local 

minimum peptide EIC (half of the smallest observed adjusted-EIC for an individual peptide in the  

corresponding sample). Figure 4.2D summarizes the outcomes of each MV imputation method. 

 

4.3.2. General ER+ Tumour Proteome Analysis 
Our proteomic analysis of 19 human-derived ER+ breast tumours identified a total of 4477 

proteins across all samples. Placement of tumours into Disease-Free (DF; n=12) and Disease-

Recurrent (DR; n=7) groups revealed 3539 and 4020 proteins observed in DF and DR tumours, 

respectively. However, following data refinement and correction of protein abundance as 

described above, the total number of identified proteins in the dataset was reduced to 2729. In 

tumours originating from disease-free survival patients, 2633 proteins were observed, of which 

32 were unique to this patient grouping. In tumours originating from patients experiencing 

disease-recurrence, 2697 proteins were observed, 96 of which were unique.  

Following data refinement and missing value imputation, application of a two-tailed Welch’s t-

test between our defined groupings with subsequent q-value calculation revealed 46 proteins to 

have a q-value at our designated significance threshold of q≤0.10. Interestingly, of these proteins 

selected, only 3 displayed an increased abundance in patients with DF survival: polymeric 

immunoglobulin receptor (PIGR), phytanoyl-CoA dioxygenase domain-containing protein 1 

(PHYHD1), and tenascin-N (TENN), while the remaining 43 displayed an increased abundance in 

patients experiencing DR. Supplemental Table 4.2 summarizes the statistical significance and 

log2-fold-changes observed for DF and DR comparisons.    



~ 143 ~ 
 

To assess the biological function of proteins identified possessing both unique and statistically 

significant expression profiles in DF and DR tumours, protein lists (DF=33 proteins; DR=139 

proteins; proteins in black boxes in Figure 4.3 insert) were subject to gene ontology enrichment 

analysis using STRING v10.5 (Supplemental Table 4.4). 

 

 

Figure 4.3 Volcano plot of disease-free versus disease-recurrent protein abundance. 

The -log10 of p-values generated from Welch’s t-test performed on protein abundances between disease-free (DF) 

and disease-recurrent (DR) tumours was plotted against the difference of the average log2 transformed DF and 

DR protein abundances. Additionally, a grey-scale threshold indicating the level of significance correlating to 

q≤0.10 is indicated. Clustering of data points is artefactual of proportions of missing values imputed in each 

sample grouping. (Insert) Venn diagram depicting total number of proteins identified among all samples and 

each grouping following data refinement. A total of 2697 proteins were identified in disease-recurrent (red) 

samples, of which 96 were uniquely observed, and an additional 43 significantly up-regulated. For disease-free 

(blue) samples, a total of 2633 proteins were identified, of which 32 were uniquely observed. Only 3 proteins 

were determined to be significantly upregulated in DF tumours, 2 of which were only observed in DF tumours. 
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Analysis of DR-abundant proteins revealed a plethora of processes to be enriched in these 

tumours – and therefore depleted in DF tumours – including those involved in protein 

biosynthesis, cell-cycle progression, and DNA mismatch repair. Analysis of DF-tumour specific 

proteins on the other hand revealed little in the way of metabolic processes. Rather, KEGG 

pathway analysis revealed an increase in proteins belonging to the extracellular matrix (ECM), 

involved in focal adhesion and ECM-receptor binding. To verify these results, protein lists were 

subject to statistical overrepresentation analysis using PANTHER209–211 v.13.1. Unfortunately, DF-

specific proteins yielded no significant enrichments using PANTHER. However, in agreement 

with our STRING findings, DR-specific proteins were found to be enriched for proteins involved  

in translational initiation and elongation, in addition to DNA mismatch repair (Figure 4.4).  

To determine whether any correlational abundances existed for the 46 proteins identified with a 

q≤0.10, in addition to the effectiveness of our sample grouping (recurrence status), hierarchical 

clustering analysis (HCA) was performed. Interestingly, rather than the two expected groupings 

of DF and DR patients, three groupings emerged (Figure 4.5). DR tumours formed a single 

cluster, while DF tumours clustered into two distinct groups; 7 DF tumours formed a unique 

seriation (hereby denoted as DF0), while the remaining 5 shared a seriation – and thereby more 

similarity – with the DR tumour cluster. Likewise, principle component analysis (PCA) on these 

46 proteins illustrated the same pattern; 66% of the variance observed within our data was 

capable of being explained by two variables. plotting samples according to these two variables 

resulted in tumour samples grouping as observed in our HCA analysis (Figure 4.5C). To 

distinguish this new cluster of DF tumours, we have applied the distinction ‘disease-free, 

recurrent-like’ (DFRL). 
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Figure 4.4 Overrepresentation analysis of DR-specific proteins.  

Proteins determined to be significantly up-regulated (q≤0.10 or unique expression; proteins within left-sided 

black box of Figure 4.3 insert) in DR tumours were subject to statistical over-representation analysis using 

PANTHER v.13.1 for identifiers for Protein Class (left), GO-Biological Process (middle), and GO-Molecular 

Function (right). Enriched proteins were primarily identified to be involved in protein biosynthesis and turnover, 

in addition to DNA damage repair. 
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Figure 4.5 Hierarchical clustering and principal component analysis of q<0.10 proteins. 

Proteins identified to have a q<0.10 following DF and DR tumour comparison were subject to hierarchical 

clustering (A and B) and principal component analysis (C). (A) HCA of the 46 q<0.10 proteins with (B) average 

cluster expression illustrating 3 clusters (DF0, DFRL, and DR). (C) PCA determined 66% of the variability could be 

explained by 2 components. Plotting samples with these components produced the same clustering result 

observed via HCA. 
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4.3.3. Identification of Biological Differences Between DF0, DFRL, and 
DR Tumour Types 
To assess the cluster-analysis defined groupings’ likenesses and dissimilarities, our original 

dataset was re-defined; tumours were grouped based on clusters as defined by HCA/PCA analysis, 

and only proteins with a measurable abundance of n≥3 samples in ≥1 group were included, 

resulting in a dataset consisting of 2631 proteins. To identify proteins whose abundance differed 

between the newly defined groups, a one-way ANOVA was performed for each protein’s 

abundance between all three sample groupings, with q-values being calculated to control the 

FWER. Using a refined significance threshold of q≤0.05 to control for type I error resulting from 

multiple ANOVA comparisons, 426 proteins were identified to have different means between any 

of the groupings. Post-hoc application of a TK-HSD test was used to determine between which 

groups the differences in protein abundance lie, as indicated via ANOVA testing.  

To garner some insight into the biological differences between these three tumour groupings, 

these 426 proteins were queried for their relative abundance within each sample. Proteins with 

a mean positive z-score-normalized abundance in each tumour group were determined to have 

increased abundance, and lists of proteins determined to be increased with respect to a tumour 

grouping were subject to functional annotation analysis using STRING212 v10.5 and 

PANTHER210,211,209 v13.1 as described above. As expected, DF0 tumours were characterized based 

on a general lack of protein abundance relative to DFRL and DR tumours, with no significant 

enrichments identified via STRING or PANTHER; only 12 proteins of the original 426 had a 

positive z-score abundance in DF0 tumours. For DFRL and DR tumours, 329 and 377 proteins were 

identified to have a positive z-score abundance, respectively, of which 280 were common. 

Functional analysis via both web-utilities illustrated a high degree of protein turnover – 

specifically translation, proteolysis, and transport/localization – in both tumour types (Figure 

4.6). Interestingly however, were the differences observed between the two groupings; DFRL 

tumours displayed >2-fold increase in carbohydrate metabolism, while DR tumours displayed a 

>3-fold increase in fatty acid metabolism in addition to a nearly 6-fold increase in oxidative 

phosphorylation (Figure 4.6A). Additionally, DFRL tumours showcased an increase in ECM-
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receptor interactions and proteins involved in viral oncogenesis, while DR tumours displayed 

enrichment for DNA replication and mismatch repair (for full lists of STRING analysis with 

proteins, see Supplemental Tables 4.5 for DFRL and 4.6 for DR).  
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Figure 4.6 Functional enrichment and comparison of DFRL and DR tumour groups. 

Proteins identified to have above average abundance in DFRL (light grey) and DR tumours (dark grey), with a 

q≤0.05 following a one-way ANOVA were subject to functional enrichment using PANTHER or STRING databases, 

with reported pathways limited to those with an FDR<0.05. (A) PANTHER statistical overrepresentation analysis 

for GO-BP identifiers (B) STRING functional annotation analysis for KEGG pathway identifiers.  
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4.3.4. Selection of Proteins Suitable as Biomarkers 
While the 426 proteins identified to be significantly different between the three tumour groups 

are informative from a biological standpoint, when considered for diagnostic, predictive, or 

prognostic purposes, it would be more desirable for this list to be truncated. Protein-based clinical 

assays are still largely histological354; testing for large numbers of proteins requires both large 

amounts of tissue and time for scoring and interpretation. Therefore, the most idyllic protein-

based assays can communicate large amounts of information regarding a patient’s disease with 

reliance on only a select few biomarkers.  

Desiring biomarkers that are both diagnostic and prognostic, our list of 426 proteins differentially 

abundant between tumour groups was significantly refined. Proteins’ significance from pairwise 

comparisons were limited to those with a TK-HSD result of p<0.05. However, because each 

pairwise comparison yielded different levels of overall statistical significance for protein 

abundance between tumour groupings, our selection was limited to proteins observed to be the 

most statistically significant and differentially abundant for each pairwise comparison, as 

determined through visual assessment of these data’s graphical representation (Figure 4.7A). 

Following selection of proteins meeting the above criteria, the list was manually curated; 

immunoglobulin kappa variable 3-20 (IGKV3-20), a sequence-variable protein responsible for 

immunoglobulins’ ability to bind various antigens (for reviews regarding antibody maturation, 

see 355,356), was removed due to its poor suitability as biomarker which could easily be screened 

for. Utilizing this strategy, a minimalist list of 20 proteins was generated, possessing high 

correlation between both measured protein abundance (R=0.804) and tumour groupings 

(R=0.785), capable of discerning DF0, DFRL, and DR tumour groupings from each other if 

measuring a few select markers’ abundances (Figure 4.7B-D). 
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Figure 4.7 Selection of primary biomarker candidates. 

(A) Volcano plots were generated for each pair-wise comparison of tumour groupings. The -log10 of the p-value 

originating from post-hoc TK-HSD tests were plotted against the log2-fold-change in protein abundance. Only 

proteins corresponding to the most statistically significant and differentially abundant per group per comparison 

were utilized. (B) HCA of refined biomarker list, with (C) average tumour grouping protein expression, and (D) 

average protein cluster grouping expression. 
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4.3.5. Correlation of Protein Abundance with mRNA Expression for 
Proteins of Interest 
While it has been shown in several instances that absolute mRNA copy-numbers do not always 

correlate with their measured proteins’ abundance in mammals357, it is nevertheless accepted 

and understood that there is a positive correlation between the general trends in these two 

biomolecules’ abundances358. Considering this, we were curious how these two parameters 

correlated with respect to patient survival for proteins in our refined biomarker list. Proteins 

whose transcript abundance positively correlated with the trends observed for proteins in our 

list would be ideal candidates for verification and follow-up studies.  

As an initial investigation into these trends, proteins from our refined list were searched using 

the KM-plotter web-utility332–334. Proteins considered for follow-up validation were refined by 

only retaining those which produced an FDR<0.05 (following optimal separation and survival 

analysis) via KM-plotter, in addition to keeping with the trend we observed via LC-MS/MS for 

disease-free survival. This resulted in elimination of 12 potential biomarkers from our dataset: 

DNAJA3, TP53I3, COPS5, SEPHS1, KPNA3, PNPT1, SLC30A7, KDSR, PTER, NADK2, SOD3, and 

MAOB (data not shown). The remaining list of well-correlated biomarker candidates’ (PGM3, 

PDCD6, TENN, KPNA2, MIP18, TMX1, PIGR, and PHYHD1) microarray plots are illustrated in 

Figure 4.8.  
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Figure 4.8 Investigation of mRNA abundance as indicators of disease prognosis. 

KM-plotter332–334 was utilized to investigate microarray data for mRNA transcripts corresponding to our proteins 

of interest. Proteins whose transcriptional abundance provided significant (FDR≤0.05) separation with respect to 

patient disease-recurrence were selected for initial follow-up and validation. This produced 8 initial candidates. 

(Bottom-right) transcript levels for candidate proteins were compared for differential abundance with respect to 

healthy tissue. 
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to the immunoglobulin superfamily, PIGR is a ~100-120 kDa (variably glycosylated)359–

361transmembrane Fc-receptor primarily expressed on the basil lamina of mucosal epithelial 

cells362,363. Responsible for the transcytosis of polymeric-immunoglobulins (poly-Igs; IgAs and 

IgMs) across epithelial surfaces362–364, PIGR – also known as the transmembrane secretory 

component (SC) – binds poly-Igs in a J-chain (linker peptide between monomeric Igs) dependent 

fashion365,366. Following binding to PIGR, poly-Igs are transcytosed across the epithelium to the 

apical membrane, where PIGR is cleaved via endoproteases. This proteolysis results in the 

extracellular release of the poly-Ig, still bound to PIGRs extracellular domain (SC-domain; ~80 

kDa). Because of this, PIGR is integral to the proper functioning of mucous membrane 

immunity362–366. 

As IHC utilizes antibodies for protein detection, we wanted to first verify the changes observed 

via mass spectrometry could be observed using antibody-based methods; often, mass 

spectrometers’ high sensitivity outperforms that of antibody-based methods367. To assess 

whether this was the case, whole tumour homogenates from seven patients were subject to 

immunoblot detection. PIGR had been detected in two of the seven samples via LC-MS/MS 

analysis. As shown in Figure 4.9, presence of PIGR as determined by LC-MS/MS analysis of 

tumour homogenates, correlated well with antibody-based detection. Interestingly however, full-

length PIGR was not detected; rather, a fragment correlating to the ~80kDa cleaved extracellular 

‘secretory component’ of PIGR was detected, suggesting an extracellular origin. 

Following confirmation that PIGR – as detected or not via LC-MS/MS – could be confirmed with 

our antibody, tissue microarrays containing breast tumours were subject to IHC analysis. The 

amount of cancerous-tissue staining was determined visually by Dr. Wei-Feng Dong (Pathology). 

Additionally, global staining for tissue, including healthy stroma, was performed using Aperio 

ImageScope’s Positive Pixel Count v9 algorithm.    
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The ability of PIGR staining via IHC to predict overall patient disease-recurrence was determined 

through the implementation of ROC curves (Figure 4.10)368,369. Interestingly, when plotting 

staining intensities as determined via visual Pathologist-assessment of strictly cancerous cells 

originating from ER+ tumours, it was found that PIGR was only slightly better at predicting 

disease-recurrence than flipping a coin, regardless of the timeframe in which recurrence was 

measured. Interestingly however, when assessing whole-tissue for staining (positive pixel count 

analysis), PIGR was found to consistently correlate (moderately) well with disease-recurrence, 

regardless of the reference timeframe. For determination of optimal cut-points for PIGR staining 

intensities of cancerous and whole tissues, we utilized the ‘minimal distance to corner 

(0%,100%)’ method370,371 on the ROC curve providing the largest reported AUC. Due to the 

structure of the ROC curve unit square, the upper-left corner (0%,100%) coincides with a perfect 

test (sensitivity and specificity = 100%). By minimizing the distance on the ROC curve to 

correlate with this point, an even balance between a test’s sensitivity and specificity is achieved. 

While maximization of Youden’s J-statistic372 (point where sensitivity + specificity is maximal) 

 

Figure 4.9 Immunoblot confirmation of PIGR abundance as predicted via MS. 

Whole tumour lysates used for our initial mass spectrometry analysis were subject to Western blotting using a 

biotinylated α-human PIGR antibody. (Top) PIGR was only detectable in lysates reported to have PIGR in the mass 

spec data. (Bottom) A negative control blot with streptavidin was performed to clarify non-specific/background 

binding of labelled streptavidin to endogenously biotinylated proteins; these bands were ignored during the 

interpretation of the blot utilizing biotinylated anti-PIGR. 
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was also considered when deciding a cut-point373, it has recently been shown that the minimal 

distance to corner (0%,100%) method, as it produces the cut-point with the least bias, and 

maximally distributes sample populations374.  

Both pathologist-scoring and positive pixel count ROCs displayed the largest AUC when 

measuring disease-recurrence within 60 months post-surgery/biopsy as shown in Figure 4.10 

(AUCPath=0.5800 ± 0.0753, CI95%=0.4135 – 0.7089; AUCPixel=0.6921 ± 0.0703, CI95%=0.5282 – 

0.8063), resulting in a cut-point of ≤0.3 for pathologist-scored cancerous tissue staining, and 

≤0.035 (35 positive pixels per 1000) for positive pixel count scored whole tissue staining. 

Subsequent survival analysis utilizing our ROC-defined cut-points displayed minimal utility in 

the ability of visually-assessed PIGR abundance in cancerous tissues, at both 60 and 120 months 

post-surgery, to determine disease-recurrence (60 months: logrank p=0.0685; HRlow:high=2.44, 

CI95%=0.71 – 8.37; 120 months: logrank p=0.1959; HRlow:high=1.69, CI95%=0.66 – 4.31). However, 

this was not the case with respect to global tissue staining for PIGR, as determined through pixel-

density analysis. At both 60 and 120 months post-surgery, the surviving fractions of defined high 

and low populations displayed significant differences in separation (60 months: logrank 

p=0.0155; HRlow:high=3.36, CI95%=1.28 – 8.81; 120 months: logrank p=0.0135; HRlow:high=2.36, 

CI95%=1.16 – 4.82). The average representative positive pixel counts for dichotomized PIGR 

abundance, as determined through ROC analysis, is depicted in Figure 4.11. 
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Figure 4.10 Dichotomization and subsequent survival analysis of PIGR abundance as 
determined via immunohistochemistry. 

PIGR was investigated as for its ability to predict disease outcome. ROC curves and corresponding survival plot 

for (A) Pathologist-derived visual scores of cancerous-tissue staining and (B) positive pixel counts for staining of 

whole tissue sections. Optimal dichotomization was for both scoring methods was determined using the shortest-

distance to the upper-left corner of the ROC curves (left) measuring disease-recurrence within 60 months post-

surgery/biopsy (green). Survival analysis post-dichotomization of PIGR abundance at both 60 and 120 months 

post-biopsy/surgery (right) illustrated little difference for exclusively cancerous tissue staining (visually scored), 

while high global PIGR abundance (positive pixel count scored) was indicative of positive patient outcomes at 

both 60 and 120 months (60 months, p=0.0155; 120 months, p=0.0135). 
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This seeming discrepancy between 

diseased-cellular versus overall tissue 

staining for PIGR – in conjunction with 

our proteomics data – can easily be 

explained when considering the origin 

of our samples; the clinical tumour 

samples utilized for this study were 

unable to be micro-dissected prior to 

homogenization and LC-MS/MS 

analysis. Taking this into consideration, 

it is likely the majority of PIGR observed 

via LC-MS/MS analysis originated from 

SC fragments contained in mammary 

ducts within the bulk tumour. As 

previously illustrated in Figure 4.9, 

PIGR was detected at ~80kDa via 

immunoblotting, adding support to this 

notion. To further investigate this idea, 

peptides’ sequences correlating to PIGR 

identification and quantification were 

queried for their point-of-origin within 

PIGR. Of 26 peptides sequenced from 

PIGR, only 1 (with a corresponding PSM 

across all 19 samples = 1) peptide 

originated from the 

transmembrane/intracellular domain, 

while the remaining 25 peptides 

corresponded to the SC domain. 

 

Figure 4.11 Representative average IHC staining 

of dichotomized positive pixel count PIGR 

abundance. 

Visual representation of average positive pixel counts 

corresponding to (A) high and (B) low groupings relative to 

tissue without staining (C). 

Av
er

ag
e 

Lo
w

(≤
0.

03
5)

 S
ta

in
in

g 
0.

01
 –

0.
03

 
Av

er
ag

e 
H

ig
h 

(>
0.

03
5)

St
ai

ni
ng

 
0.

08
 –

0.
14

 
N

eg
at

ive
 C

on
tro

l

A

B

C

250µm 250µm

250µm 250µm

250µm 250µm

250µm 250µm

250µm 250µm



~ 159 ~ 
 

4.4. Discussion 
One of the largest issues affecting the effective management of breast cancer patients is the ability 

to distinguish between the ‘Luminal’ subtypes of ER+ breast cancers317,318,320,338. To better 

characterize Luminal-type breast tumours on the proteomic scale and identify better indicators 

of disease prognosis, we performed a label-free quantitative proteomic analysis of 19 ER+/HER2- 

clinical breast cancer tumours. Using this technique, we identified a total of 4477 proteins across 

all tumours. Rather than group tumours based on their pre-treatment diagnosis of Luminal-type, 

we opted to perform comparative analysis of tumours based on their patients’ disease-recurrence 

status.  

 

4.4.1. Proteomic Characterization of Global Tumour Traits 
Interestingly, analysis of tumours in this way revealed an incredibly small proportion of proteins 

(46 at q<0.10) to correlate both positively and negatively with patient disease-recurrence. Using 

these 46 proteins, we showcased these tumours can be re-classified into three groups, each with 

a distinct proteomic fingerprint; these groups were deemed ‘disease-free’ (DF0), ‘disease-free, 

recurrent-like’ (DFRL), and ‘disease-recurrent’ (DR). It is interesting to note, ER+ breast cancers 

have been previously classified into three groups based on their response to treatment338. The 

existence of an intermediary classification of tumours in both studies is supportive of the 

existence of non-binary populations of luminal-type breast cancers. 

While performing functional analyses on a refined list of proteins determined to significantly 

(q<0.05) differ between any of the three groups, DR tumours were consistently characterized as 

having signatures indicative of metabolically and proliferatively-aggressive cellular activity; 

molecular machinery involved in protein translation, DNA replication, and mismatch repair were 

found to be in high abundance. These tumours were also found to have a significantly 

overrepresented propensity for fatty-acid metabolism and oxidative phosphorylation. This could 

suggest an increase in fatty-acid synthesis for membrane growth during proliferation and cellular 

division375–377 – an idea supported by the presence of PPARα-signalling (detailed in reviews 378–
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380) in these tumours – and/or a high cellular energetic demand – likely due to their highly 

proliferative state. One protein, of particular interest to our lab, that was observed in high 

abundance in these tumours was UBR4 – an E3-ubiquitin ligase that is an actuator of the N-end 

rule381, a pathway responsible for the proteolytic degradation of proteins with ‘destabilizing’ 

residues at their N-terminus382,383. Our lab has demonstrated that the N-end rule is responsible 

for the degradation of both anti-384,385 and pro-apoptotic385,386 protein fragments generated via 

caspase-mediated proteolysis. 

Curiously, DFRL tumours, while originating from patients without disease-recurrence, bore a high 

degree of similarity to those of the DR grouping; of the 426 proteins identified as being 

significantly differentially expressed (q<0.05) between any of the three tumour groups, 

approximately two-thirds (280) had abundances on par with those observed in DR tumours. 

Most of these shared proteins belonged to pathways related to protein synthesis and turnover – 

specifically ribosomal proteins, translation initiators and elongators, and factors involved in 

proteolysis. Additionally, proteins involved in lipogenesis such as those involved in PPARα-

signalling were observed, as well as proteins involved in apoptosis such as the Bcl-2-family 

proteins BAX and BID, the tumour necrosis factor receptor TRADD, cytochrome c (CYCS), and 

caspase-6 (CASP6) (reviewed in 387,388). Interestingly, several anti-apoptotic and pro-

inflammatory proteins were also observed such as NFκB, IκB-kinase389, protein kinase A 

(PKA)390, and cartilage oligomeric matrix protein (COMP)391.  

However, several distinctions were also observed. DFRL tumours showed an increase in 

carbohydrate metabolism rather than the fatty acid metabolism and oxidative phosphorylation 

observed in DR tumours. This could be suggestive of DFRL tumours experiencing the ‘Warburg 

effect’ – cancer cells’ propensity to inefficiently metabolize glucose via anaerobic glycolysis, even 

in the presence of an adequate oxygen supply392,393. Alternatively, DFRL tumours’ absence of 

oxidative phosphorylation relative to DR tumours could be indicative of their being in a hypoxic 

state394,395. Additionally, DFRL tumours displayed an enrichment for ECM-receptor interactions. 

Among these were several structural/anchoring proteins such as laminin subunit α-4 (LAMA4), 

integrin β-5 (ITB5), and various isoforms of collagen. Interestingly however, two molecules with 
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anti-angiogenic properties – collagen α-1 (IV)-chain (COL4A1)396 – the parent protein of arrestin 

– and thrombospondin-2 (THBS2)397, co-populated this list, further supporting the notion that 

these tumours could potentially be characterized as hypoxic.  

This enriched presence of proteins involved in opposing pathways in DFRL tumours could quite 

possibly be what differentiates these tumours as a separate group from those originating from 

DR patients. The presence of many pro-apoptotic and anti-angiogenic factors could be keeping 

an otherwise aggressive tumour phenotype under some level of constraint.  

Lastly, DF0 tumours were characterized by a general absence of proteins observed in DFRL and 

DR groups, indicating their existence in a relatively benign state. From a global perspective, the 

features unique to each tumour grouping are potentially indicative of individual tumour groups 

populating different stages along the continuum of oncogenic transformation398,399, from benign 

tumours to aggressively proliferative disease. 

 

4.4.2. Identification of Prognostic Biomarkers for Disease 
Recurrence 
In the search for potential predictive and prognostic biomarkers for disease recurrence in 

luminal-type breast cancers, we opted for a serial-refinement approach, selecting only the most 

significant and differentially expressed proteins. Through group-wise comparisons of DF vs DR 

tumours we initially identified a list of 46 high-confidence proteins which could potentially serve 

to differentiate the disease-recurrence. Following cluster analysis and the realization that we 

were in possession of 3 distinct tumour groupings rather than 2, this list of 46 grew to 426 

proteins. However, by selecting only the most significant proteins with the largest differential 

abundance in each group, we produced a list of 20 proteins that could differentiate between three 

tumour profiles for ER+/HER2- tumours.  

To further increase the confidence in our potential biomarkers, we further refined the list of 

candidates to include only proteins with transcriptional trends corresponding to those we 

observed via proteomic analysis. Of the resultant 8 proteins, 5 had high expression levels 
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positively correlated with disease-recurrence. These proteins were: the importin subunit α-1 

(KPNA2), a protein responsible for the recognition of proteins’ nuclear localization sequences and 

their subsequent translocation into the nucleus400; the mitotic spindle-associated MMXD complex 

subunit MIP18 (MIP18/FAM96B), involved in iron-sulfur (Fe/S) cluster incorporation401,402 into 

various proteins/complexes during chromosomal segregation403; thioredoxin-related 

transmembrane protein 1 (TMX1), a redox-sensitive oxidoreductase present on mitochondrial-

associated membranes recently demonstrated to possess tumour-suppressive qualities404; 

phosphoacetylglucosamine mutase (PGM3/AGM1), an isomerase responsible for converting N-

acetylglucosamine-6-phosphate into N-acetylglucosamine-1-phosphate, a compound required for 

multiple protein glycosylation processes405–407; and the pro-apoptotic programmed cell death 

protein 6 (PDCD6), a calcium-binding protein408 responsible for stabilizing protein-protein 

complexes (important during apoptosis)409, and potentially possessing anti-angiogenic 

properties410.  

Among this subset of proteins, KPNA2 and PGM3 have previously been demonstrated to correlate 

with poor cancer outcomes. KPNA2 has been correlated with poor breast cancer prognosis411,412 

due to its role in the cytoplasmic retention of enzymes responsible for actuating the DNA-damage 

response (DDR)412, while PGM3 has been demonstrated to act as an immunosuppressant405–407 

and be significantly upregulated in clinical prostate cancer in what appears to be an androgen-

dependent manner413,414. Additionally, the presence of MIP18 as a marker of disease-recurrence 

is unsurprising; known to play an important role in chromosomal segregation during mitosis403, 

its presence is supportive of disease-recurrence tumour cells undergoing cellular division. 

Interestingly, MIP18 has also been implicated in the down-regulation of E2-2 transcriptional 

regulation, resulting in an increase in several processes involved in the angiogenic response415.  

Perhaps the most interesting findings were the inclusion of TMX1 and PDCD6 in the list of 

proteins specific for poor prognosis; TMX1 has recently been implicated in the negative regulation 

of the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) pump404. This interaction results in 

cytosolic Ca2+ retention in addition to increased mitochondrial Ca2+ abundance, thereby 

increasing mitochondrial energy production through oxidative phosphorylation, while also 
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increasing the effectiveness of the mitochondria’s involvement during apoptosis. In line with 

TMX1’s functionality, PDCD6 – a cytosolic Ca2+ binding protein408 – utilizes cytosolic Ca2+ to 

enhance weak protein-protein interactions during cell death409. While these data are supportive 

of the enhanced oxidative phosphorylation observed within DR tumours, their correlation as 

indicators of poor prognosis is slightly perplexing, and warrants further investigation.  

The remaining 3 proteins possessed the opposing correlation; high expression positively 

correlated with disease-free survival. These proteins were: tenascin-N (TENN/TNW), the 

smallest416 of a family of extracellular matrix proteins implicated in cellular adhesion and 

migration417,418; phytanoyl-CoA dioxygenase domain-containing protein 1 (PHYHD1), an α-

ketoglutarate-dependent dioxygenase closely related to the lipid-metabolizing peroxisomal 

phytanoyl-CoA dioxygenase (PHYH)419; and polymeric immunogloblulin receptor (PIGR), a 

protein responsible for the transcytosis and secretion of poly-immunoglobulins (IgAs /IgMs) into 

luminal spaces, in addition to secretory component, forming a crucial component in proper 

immune function362–366.  

Curious to this list was TENN; the tenascin-family proteins are large ECM proteins primarily 

serving as ligands for integrins, and are thought to be involved in cell growth and migration417,418. 

TENN and its sibling tenascin-C (TNC) have been demonstrated to be up-regulated in breast 

cancers420,421. TENN has been demonstrated to play a positive role in angiogenesis by modulating 

endothelial cell growth422. Additionally, TENN has been suggested to have a role similar to TNC 

in metastasis421. However, TENN is known to inhibit osteoblastic proliferation423. Furthermore, 

in healthy tissues, TENN and TNXB (also observed in our dataset specific to DF tumours, but at 

slightly lower confidence – see Supplemental Table 4.2 and 4.3) are known to occupy opposing 

areas and tissues to TNC418,424, suggesting these proteins, while originating from the same protein 

family, may possess different and opposing functions. 

Interestingly, the presence of both PHYHD1 and PIGR are supportive of the role of 

immunosurveillance425 in disease-free survival. PHYHD1 has been demonstrated to be up-

regulated in T-cells following their immunological stimulation426. Our follow-up investigation of 

PIGR in cancerous tissue via IHC indicated that while PIGR expression in strictly cancerous tissue 
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was a poor indicator of disease outcome, global PIGR abundance – including its secreted form SC 

– in bulk tumour tissue correlates incredibly well with patient outcome. We believe this may be 

suggestive of the immune system’s function with aiding in tumour clearance.  
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4.5. Conclusion and Future Directions 

While our understanding of what drives oncogenic transformation has grown exponentially over 

the past several decades, the complex interactions of systems at play in bulk tumours – including 

both cellular and extracellular environments – are just beginning to be adequately understood. 

By increasing our understanding of the biological processes at play, we are better able to classify 

cancers and predict their natural course of progression, allowing for increasingly better means 

to manage patients afflicted with this terrible disease. With this also comes the responsibility to 

reassess the classification systems in implementation. 

Here we present the comprehensive analysis of 19 human estrogen receptor positive breast 

tumours using a label-free quantitative approach. Through reliance on only disease-outcome as 

an initial means of tumour classification, we ultimately separated these tumours into 3 distinct 

populations based on protein expression, suggesting and supporting previous observations of 

luminal subtypes’ behaviour when treated with anti-estrogen chemotherapies338. Additionally, 

during our initial analysis, we identified several proteins that can serve as indicators of both 

disease type and outcome. 

Moving forward, we hope to increase the power of our study through inclusion of additional 

tumours meeting the criteria of this dataset. Through increased statistical power, we believe 

distinct sub-populations of luminal-subtype breast cancers will become more clearly discernable, 

yielding both proteomic rationale for their distinctness from one another as well as potential 

correlative biomarkers of their prognosis. Additionally, the continued validation of potential 

biomarkers from this study, with potential inclusion of proteins in less-strict q-value ranges, 

could be utilized to develop a reliable, easy-to-use, protein-based screening tool for scoring and 

therefore predicting the likelihood of disease recurrence. Ultimately, we hope to enable the better 

management of breast cancer patients from the time of diagnosis. 
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Chapter 5 : Current Challenges, Emerging 
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Situated at an intersect between analytical chemistry and cellular biology, the field of proteomics 

is unique in its ability to shed light – both qualitatively427 and quantitatively239 – on the 

complexities of protein biochemistry. In recent years this field has experienced an explosion in 

popularity. This explosion can be attributed, partly, to advances in the fields of genomics and 

transcriptomics, providing comprehensive databases on variable protein sequences and 

expression428. This integration of -omics fields has been dubbed ‘proteogenomics’428,429, and is 

responsible for greater accuracy in peptide identifications, allowing for deeper proteomic 

analyses to be performed on biological tissues. Additionally, contributing to this explosion are 

technological advances in mass spectrometry and in computational performance. While 

instrument sensitivity has dramatically increased over the last decade, capable of providing 

incredible accuracy with respect to ion quantification, most quantitative proteomic studies 

continue to rely on the use of stable-isotopic labelling systems for quantification. Evidence of this 

is apparent using a key-word search of PubMed Central’s database for both ‘label-free proteomics’ 

and ‘isotope proteomics’; at the time of writing this, approximately 50% more studies utilizing 

isotopic labels have been published (~12800) compared to those utilizing label-free methods 

(~8100). While this continued preference for the use of stable-isotopes is somewhat 

understandable (as samples can be directly compared during data collection), in addition to being 

expensive and time-consuming, it is becoming increasingly unwarranted with the advent of 

modern mass spectrometers. 

My initial attraction to the field of proteomics was a direct result of both observing and studying 

real biological systems in the latter years of my undergraduate program. I had found, and 

continue to find, it perplexing that autonomous, self-replicating and -regulating characteristics, 

can become emergent properties from a seemingly chaotic mixture of organic molecules. When 

I discovered that most of these processes were mediated by proteins, I immediately gravitated 

towards proteomics due to its ability to deconvolute complex proteinaceous mixtures and explain 

– to some degree – how these emergent properties arise. Because of this, I vehemently believe 

that the development of approaches to make mass spectrometry-based proteomics more 

accessible to basic scientists would greatly enable research, and the pursuit of knowledge. 
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5.1. Practical Application of Quantitative Label-Free 
Comparative Proteomics  
The majority of this thesis is focused on utilization of our label-free proteomic technique for the 

comparison and relative quantification of proteins originating from a variety of biological 

samples. While the overall premise of this technique is by no means novel (for reviews see 

65,158,430–432), our technique utilizes a sample-specific normalization procedure for all observed 

proteins in conjunction with commonly used individual protein quantification methods24,177. It 

has been previously proposed that such a technique can become problematic with respect to pre-

fractionation of proteins present within a biological sample161. In theory, different combinations 

of proteins/peptides in each sub-fraction can behave differently during chromatographic 

separation, leading to poorly reproducible results. However, several steps can be taken to 

mitigate this sub-fraction variation. By carefully controlling sample pre-fractionation – including 

how samples are fractionated – and subsequent front-end preparation for replicate samples, in 

addition to choosing an adequate per-sample normalization procedure (such as normalization to 

a specified marker or total signal), we have repeatedly demonstrated reliable semi-quantitative 

comparisons can be made which are verifiable when tested visually through immunoblotting 

techniques24,177.  

The second chapter24 of this thesis focused on application of this technique in the characterization 

of hepatic lipid droplets. Specifically, we investigated how these organelles’ proteomes changed 

with respect to dietary stresses induced by fasting, or fasting followed by a period of refeeding. 

Our study was the first proteomic analysis of murine hepatic lipid droplets which carefully 

controlled for animals’ feeding states, which in turn demonstrated the dynamic nature of these 

organelles. Arguably, this type of comparative experiment is the most suitable for application of 

our technique; samples obtained and analyzed are purified biological samples, replicates of one 

another, and experimental groups differ by a singular variable. However, due to the accuracy of 

modern instruments, such experiments are also plagued by noise; due to samples’ origin as 

subcellular organelles, sample preparation often results in varying levels of quantifiable protein 



~ 169 ~ 
 

contamination. While such contaminants are easily recognized, they are difficult to conclusively 

prove as untrue, and as a result can reduce the statistical power of comparative tests. 

Chapters 3 and 4 served as deviations from application of our technique in a sub-cellular context. 

With interests rooted in the study of cancer, we sought to perform proteomic analysis of entire 

tissues of in vivo origin. Chapter 3177 illustrated one of the first attempts to assess the biological 

applicability and suitability of a widely and routinely utilized animal tumour model in the field of 

Experimental Oncology through its proteomic characterization pre- and post-chemotherapeutic 

administration. Interestingly, as a model widely utilized in the development of imaging agents 

specific to the activation of apoptosis during chemotherapy treatments, we discovered tumour 

death may, in fact, be due primarily to the activation of or involvement of cellular pathways such 

as autophagy or lysosome-mediated cell death. Likewise, due to the successful implementation of 

our technique with respect to both sub-cellular and whole tissue applications, as described in 

Chapters 2 and 3, we sought to extrapolate this technique to clinical breast cancer tissues in the 

search for novel prognostic biomarkers. Chapter 4 thoroughly explored this idea, with the 

successful identification and preliminary validation of PIGR in breast tissues as an indicator of 

prognosis, in addition to several other promising candidates. Additionally, we were capable of 

illustrating – through cluster analysis on proteins differentially abundant with respect to disease 

outcome – that the tumours analyzed, classically defined by their ‘luminal-subtype’ consisted of 

3 distinct populations, challenging the standards of current clinical disease classifiers. 

However, our analysis of clinical tumour samples stressed the importance of both dealing with 

missing values in datasets, and choosing an appropriate method of data normalization with 

respect to sample type and/or origin. For both our lipid droplet24 and EL4-tumour177 analyses, 

samples pertaining to each experimental condition were biological replicates of one another. 

Additionally, experimental conditions were incredibly controlled, typically corresponding to a 

singular variable. Because of this, individual protein and between-sample normalization, 

achieved via a specific reference protein or a sample’s TIC, are functional solutions. Replicates by 

nature allow for specific assumptions to be made, including that which claims protein abundance 

and distribution should be similar. Therefore, normalization of data to a reference protein or ion 
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count (TIC) within a sample is warranted. Additionally, such techniques minimize the impact of 

missing values; referencing each protein’s abundance to either a protein consistently observed 

with the highest intensity or to a sample’s TIC, returns small values. As most programs impute 

missing values as zeroes by default, these techniques reduce the variation present in values 

representing individual proteins’ abundance across several replicates. Therefore, this reduces the 

impact of the missing value during subsequent statistical analysis.  

Unfortunately, the same cannot be said for samples with an uncommon origin. While it is possible 

to rationalize and identify a suitable reference protein for data normalization, care must be taken 

in assessing the data’s distribution/goodness of fit. Often, techniques for normalization of data 

possessing non-normal (non-Gaussian) distributions are not always effective, resulting in 

difficulties when performing subsequent statistical analyses. As illustrated in Chapter 4, 

normalization of tumours’ protein abundance to that of histone H4’s was insufficient to produce 

adequate statistical power; normalized protein abundances were also required to be log-

transformed in order to make adequate statistical inferences.  
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5.2. Current Challenges in Mass Spectrometry-based 
Proteomics 

5.2.1. Missing Values 
The past several years of my studies have been devoted to the development and application of 

techniques for, what I consider to be, a crucial technology in the study of biological systems via 

proteomics. However, the field of mass spectrometry-based proteomics is by no means without 

its difficulties. As previously discussed in detail, issues regarding both data normalization and 

transformation continue to exist157,161,350. However, perhaps one of the largest issues with 

persistent community discord, affecting but not limited to proteomics, is that of the proper 

handling of data with missing values (MVs)157,349,350. 

The presence of MVs in large datasets poses a rather unique problem, as the user is never capable 

of determining with exact certainty whether the value is missing due to complete 

absence/presence below the limit of detection (missing not at random; MNAR), or presence but 

with missing-ness due to the culmination of stochastic variability/error (missing at random; MAR 

or, missing completely at random; MCAR)157,325,326,433. Additionally, leaving values missing can 

result in difficulty performing and interpreting subsequent statistical analyses. As the reasons for 

MVs vary significantly from one another, so too do the methods devised to deal with them, 

making discernment of their source crucial.  

 

5.2.1.1. Imputation of Missing Values 

Several methods for dealing with MVs have been proposed. For values determined to be MNAR, 

popular values to impute for MVs are zeroes, the local minimum (LM) value observed for a data 

range or sample, and the global minimum (GM) observed value for a data range or sample (or 

some variation of these minimum values, as depicted in Chapter 4)325,326. Unfortunately, no one 

method functions best. Imputation of zeroes and GMs enables maximal differentiation of 

proteins’ abundances, but in datasets with large proportions of MVs these techniques can 

introduce massive errors in measurements, reducing statistical power. Additionally, techniques 
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imputing strictly zeroes can completely impede calculations and statistical analyses due to 

division by zero. On the contrary, imputation of MVs with samples’ LMs tends to avoid the 

problems experienced using zeroes/GMs. However, LM imputation can introduce artificial 

differences, as LMs may differ significantly between samples, leading to skewed statistical 

outcomes and false conclusions. 

For methods dealing with MVs that are MCAR, algorithms for both simple and complex 

imputations methods exist. Simple imputation techniques refer to those which perform menial 

calculations, such as replacing a variables MVs with the mean of its observed values, or estimating 

a variable’s natural distribution, and randomly drawing the values for MVs from said 

distribution325,326. More popular however, are techniques reliant on characteristics defined by the 

non-MVs of all observed variables to determine the imputed value for MVs. Several popular 

techniques of this variety exist, including: k Nearest Neighbours (kNN) estimation434,435, 

maximum likelihood estimation (MLE)436,437, and multivariate imputation by chained equations 

(MICE)438–442. For kNN, a data array is converted to a matrix, and for a variable containing MVs, 

the k most similar variables in the matrix (determined through a user-defined distance 

measurement such as Euclidean distance) are averaged and used to derive a value for MVs434,435. 

For maximum likelihood estimation (MLE) imputation, variables in a dataset are assumed to 

conform to a function, which is approximated from available data and used to estimate the value 

of MVs436,437. Lastly, multivariate imputation by chained equations (MICE)438–442 uses a series of 

successive iterations to accurately estimate MVs. Initially, MICE utilizes a simple MV-imputation 

technique using a variable’s non-MVs; subsequent iterations utilize values (non-MV and MV 

alike) produced by the preceding round of imputation to generate a multivariate normal 

distribution, from which, MVs values are estimated. This process is then repeated a user-specified 

number of times. 

Unfortunately, real label-free proteomic datasets often contain MVs in the range of 10-50%326,443, 

usually existing as some combination of MCAR and MNAR. This makes choosing an appropriate 

method of MV imputation incredibly difficult. However, several studies have shown that 

imputation techniques’ performance is directly related to the proportion of MVs; MNAR 
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techniques are recommended for high proportions of MVs326, while MCAR techniques are 

recommended for low proportions of MVs326. Logically this makes sense, as MCAR techniques 

impute random variables from a distribution modelled from available data; if the available data 

is insufficient to estimate a distribution used for MV imputation, the results could be incredibly 

biased; imputation from an insufficient distribution could lead to introduction of either a false 

inflation of meaningful differences, or just the opposite436,440,442. However, if the available data is 

sufficient in estimating a variable’s distribution, as it is in datasets with small proportions of MVs, 

imputation is likely to have a positive impact during subsequent analyses by benefiting statistical 

power. Contrarily, MNAR techniques are typically more conservative, having little effect on the 

statistical power of datasets with small proportions of MVs, and greatly diminish the statistical 

power of datasets with large proportions of MVs325,326. Selection of imputation method therefore 

has direct implications particularly when performing analyses on samples with high variability, 

such as those of clinical origins.  

Compounding this problem is a current trend for the reporting of increasingly large ‘significant’ 

lists of proteins. With newer comparative studies reporting increasingly large numbers of 

significant differences between experimental conditions – which can be partially, but not 

completely, attributed to improvements in instrument sensitivity – discretion must be taken 

when interpreting the results. Adding to the list of data normalization/transformation, statistical 

comparison, and FDR control as sources of bias is method of MV imputation; all can greatly affect 

the outcome of comparative studies. If any of these factors are inappropriate for the dataset, it 

can lead to the inference of false or misleading conclusions. While conservative approaches 

reduce statistical power, they still allow for detection and selection of the most robust differences, 

which are often of the most interest biologically. Because of this, the data analyzed in this thesis 

has been analyzed using conservative approaches. With respect to MV imputation, in Chapters 2 

and 3, when MV imputation using MCAR methods were warranted, MVs were imputed as zeroes, 

while in Chapter 4 we imputed half of the detectable global minimum as this was demonstrated 

to be the most conservative approach following FDR correction.   
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5.2.2. Identification of Signal Source in Biological Tissue 
Another challenge facing the field of proteomics lies with the identification of a peptide/protein’s 

biological source. This can take the form of determining whether a signal is due to high 

background/noise (as discussed in Chapter 2), or determining the cellular/tissue origin of an 

identified protein from an extract or homogenate (as referred to in Chapters 3 and 4).  While 

determination of noise can be relatively easy to determine using a sample’s number of PSMs per 

protein (with lower values corresponding to proteins very rarely observed and therefore at or 

near the limit of detection), the latter has become a somewhat more difficult problem to address. 

Furthermore, as proteomic characterizations of whole tissues become more common, specifically 

in the characterization of biosignatures, reliable means of determining proteins’ cellular, 

extracellular, or subcellular origins within tissues are paramount. While the information 

presented in this thesis – specifically that in Chapters 3 and 4 – is informative of processes 

happening within the tissue(s) being analyzed, classically samples have often been either too 

small or not capable of being micro-dissected (i.e. ossification of tissue). This, in conjunction with 

the requirement of samples to be homogenized prior to protein digestion has drawn comparisons 

of samples analyzed in this way being more akin to ‘fruit smoothies’ versus their original ‘fruit 

salad’ composition. Fortunately, however, recent advances in technologies have enabled more 

accurate means of micro-dissecting tissue (via laser-capture microdissection), or have enabled 

the post-hoc correlation of protein localization in-situ following homogenate-based identification 

(via MALDI-imaging).  

 

5.2.2.1. Laser-Capture Microdissection 

Laser-capture microdissection (LCM), a technique originally pioneered in 1996444, utilizes laser-

light to microscopically subsection/dissect microtomed tissue samples, allowing for the isolation 

of specific cellular populations. In the context of determining in situ protein localization, LCM is 

particularly attractive due to its ability to preserve microscopic tissue architecture445, therefore 

providing spatial context to proteomic analyses. However, until recently, LCM has been limited 

in application due to its poor protein recovery (typically less than 1µg)13. A high degree of sample 
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handling – protein extraction, labelling, and digestion – in conjunction with previous-generation 

mass spectrometers possessing low sensitivity, restricted LCM use in proteomics. Nevertheless, 

advances in quantitative label-free techniques and instrumentation have both reduced the 

amount of starting material lost due to handling and required for detection, respectively. Recent 

reports have illustrated analyses using LCM in conjunction with label-free proteomics are capable 

of quantitatively identifying thousands of proteins from several thousand cells in a reproducible 

fashion13,446,447. 

 

5.2.2.2. MALDI-imaging 

An alternative technique that has been gaining momentum is that of MALDI-imaging. A form of 

mass spectrometry imaging (MSI) originally devised in 1997448,449, MALDI-imaging utilizes tissue 

sections that have been coated in an ionizable matrix, allowing for the ionization of biomolecules 

directly from their point of origin in tissue. Resulting MS spectra can be mapped to an image of 

the tissue being analyzed, providing an accurate portrayal of biomolecule localization in situ450. 

While other forms of MSI exist451, MALDI-imaging has recently taken precedence due to its ability 

to ionize large biomolecules (up to ~150kDa) with moderate spatial resolution (~20µm), without 

being overly destructive to tissue compared to other techniques451. Because of this, MALDI-

imaging is well-suited for a variety of in situ applications, ranging from the identification of small 

metabolites to large intact proteins. One of the current limitations however is the poor ability to 

resolve individual molecules out of the high-complexity spectra; few databases exist which 

adequately address the intact masses (complete with PTMs) of large biomolecules such as 

proteins. Because of this, MALDI-imaging is still in its infancy with primary applications in the 

mapping of cellular metabolites452,453. However, due to its inherent suitability to diagnostic fields 

such as pathology, the number and sizes of available databases for proteins identified through 

MALDI-imaging is steadily increasing454. 

Unfortunately, technological availability remains a major limitation in the use of LCM and 

MALDI-imaging. As a result, many scientists – ourselves included – have been reliant on classical 

approaches such as post-hoc IHC to determine the spatial in situ localization of proteins 
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discovered through whole-tissue homogenization. However, due to proteomics’ applicability in 

fields of medicine studying the pathological basis of disease, it is foreseeable that techniques 

capable of spatially resolving unique protein signatures in tissue, such as LCM and MALDI-

imaging, will replace classical techniques such as IHC, setting a new benchmark in the process. 
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5.3. Emerging Proteomics Techniques 

5.3.1. Targeted Approaches 
In recent years there has been a surge in the development and application of targeted (data-

dependent) proteomic techniques, based around the principles of selected63 reaction monitoring 

(SRM), in which a peptide of interest’s 𝑚 𝓏⁄  (precursor ion) is targeted for fragmentation, using 

a specified 𝑚 𝓏⁄  daughter ion as a reporter for the precursor (SRM). The parent-daughter 𝑚 𝓏⁄  

pair(s) is referred to as a ‘transition’, with transitions allowing for the selective quantitation of 

parent ions within a sample. Workflows which monitor the generation of multiple transitions are 

referred to as multiple-reaction monitoring (MRM)178. Additionally, through the implementation 

of orbitraps’ superior scan times, mass accuracy, and resolution, this technique has recently been 

extrapolated to monitor the all daughter ions formed following their parent’s fragmentation – a 

process which has been termed ‘parallel reaction monitoring’ (PRM)179prm. SRM, PRM, and MRM 

allow for the relative quantification of a peptide in a label-free manner (comparing relative 

abundances), while introduction of an isotopically-labelled peptide identical to that being 

targeted allows for absolute quantification. Due to this, it has been postulated that classical means 

of visual protein detection and validation, such as immunoblotting, be replaced by SRM, PRM, 

and MRM techniques455. 

 

5.3.2. Untargeted Approaches 
In addition to SRM, MRM, and PRM, a recent technique building on their strengths albeit in a 

data-independent manner has been developed, termed SWATH-MS68,456. Named due to data 

acquisition resembling swaths, SWATH-MS sequentially cycles through small, incremental 

precursor isolation windows (i.e. 25Da increments within a defined full-MS range of 400-

1200 𝑚 𝓏⁄ ) in a repeating manner. All precursor ions residing within an isolation window, and 

present during that window’s acquisition scan are fragmented, cataloguing all daughter ions 

generated. In this way, SWATH-MS serves as a global means of performing SRM/MRM. Following 

data acquisition, SWATH-MS data is correlated with proteomic spectral libraries containing a 
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priori information regarding peptides’ precursor and fragment ion masses along with any 

additional and informative information such as LC elution time456,457. In this way, it is becoming 

increasingly possible to perform highly accurate, per-sample quantitation of proteins present in 

complex mixtures. 

Lastly, an incredibly recent label-free proteomics technique, similar in principle to SWATH-MS 

but specific to Orbitrap mass analyzers, dubbed ‘BoxCar’ acquisition has been described67; BoxCar 

acquisition utilizes narrow, interspaced, boxcar-function 𝑚 𝓏⁄  acquisition windows to 

sequentially catalogue an entire 𝑚 𝓏⁄  range over a series of scans. By limiting the number of ions 

entering the mass analyzer to those ions existing in specific 𝑚 𝓏⁄  ranges, the analyzer can resolve 

and quantify more of the peptides present, thusly increasing the depth of the sampled proteome 

(up to 10000 proteins)67 in a highly reproducible and time-efficient manner.  

With techniques such as SWATH-MS and BoxCar continually increasing the quantifiable depth of 

proteomic studies, an increasing amount of care must also be taken by their user(s) during such 

studies’ data analysis. As previously mentioned – and demonstrated in Chapter 2 – an increase 

in proteomic depth comes with an increase in noise and/or contaminants; as techniques continue 

to advance the number of proteins quantifiably identified within samples, the ability to 

distinguish between those which are biologically relevant and those which are not is imperative. 
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5.4. Concluding Remarks  
Over the past several years, my research has focused on the development of robust, reliable, and 

reproducible techniques for performing bottom-up label-free quantitative proteomics via mass 

spectrometry. This thesis has explored several aspects of my research, from methods pertaining 

to reliable data correction and normalization, to suitable applications of this method in the 

characterization of various biological systems such as: characterization of organellar proteomes; 

the chemotherapeutic response of lymphoma tumours; and the identification of prognostic 

classifiers of disease outcome in ER+ breast cancers. While newer techniques and technologies 

continually advance the depth at which proteomic studies can be performed, their dependence 

on state-of-the art instrumentation can be limiting. Therefore, in addition to all-else, the 

techniques described in this thesis are practical, encouraging their further application in 

biological research.  

Certainly, as mass spectrometric techniques for the study of proteomics – and biological systems 

in general – become further engrained into the practice of medical and biological research, 

bountiful gains will be observed. Finally, perhaps the most exciting applications of such label-free 

techniques lie with their direct application in diagnostic medicine, increasing diagnostic accuracy 

and our ability to understand and manage complex disease processes. With diagnostic fields 

trending towards making the implementation of label-free proteomic analyses a reality, the 

future for all aspects of medicine is looking undeniably promising. 
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