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Nomenclature

The frequently used symbols in this report are included in  the follow ing list. The vectors 

are w ritten in  lower case bold and matrices in  upper case bold. The individual elements o f 

a matrix are written in  lower case o f the same symbol as used for the matrix.

Main Notation

(0 Time derivative

(•)< i th element o f vector, i th column o f matrix

o; i th row o f matrix

(•)« i j th element o f matrix
Sub-matrix made o f rows and columns indexed by sets i  and j

(■yj M atrix w ith i th row and j th column deleted

ll'llp p-norm o f vector, matrix or transfer matrix
( • f Transpose

(•)* Complex conjugate transpose
(•)-* Complex conjugate transpose o f the inverse

(•M O Hadamard or element-wise product

(0  >- (0 Partial ordering, A  >- 0 implies A  is positive definite
Re(-) Real part
Im (-) Imaginary part
det(-) Determinant
tr( .) Trace
diag(-) M atrix formed by direct matrix sum o f the elements (blocks)
E[-] Expectation operator
(')• Factorial, n! =  n ”= i *
(0 U (0 Union o f sets
onto Intersection o f sets

M inim al state space realization o f transfer matrix

j Imaginary number, ^ /—T
rrii x  rrij Dimension o f the i th diagonal block o f the partitioned system
ny Number o f outputs o f a transfer matrix
Hu Number o f inputs o f a transfer matrix
nz Number o f zeros o f a transfer matrix
Tip Number o f poles o f a transfer matrix
V Pole o f the transfer matrix
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z Zero o f the transfer matrix
s Laplace variable
q- 1 Back shift operator

h Achievable H 2 optimal input performance
loo Achievable H <*, optimal input performance
In n-dimensional vector o f ones
U Manipulated variables, inputs
y Controlled variables, outputs
w Disturbance variables, Exogenous inputs
Up Input pole direction associated w ith pole p
U 2 Input zero direction associated w ith zero z

yP Output pole direction associated w ith pole p
y 2 Output zero direction associated w ith zero z
A State m atrix in  the linear state-space realization
B Input matrix in  the linear state-space realization
C Output matrix in  the linear state-space realization
D M atrix w ith the direct effect o f u on y  in  the linear state-space 

realization, Scaling matrix, Interactor matrix
P Diagonal state matrix w ith poles as diagonal elements in  the 

state-space realization
F State feedback gain
L Observer gain
T State transformation matrix
I Identity matrix
X Solution o f state feedback algebraic Riccati equation
Y Solution o f observer algebraic Riccati equation
C(a) Compensator
G(s) Transfer matrix connecting controlled and manipulated variables
Gmj(s) Input minimum phase part o f G(,s)
G m0(s) Output minimum phase part o f G (s)
G si(s) Input stable part o f G (s)
G S0(s) Output stable part o f G (s)
G  w(s) Transfer matrix connecting controlled and disturbance variables
U ( G (s)) Unstable part o f G (s)
K (s ) Controller
Bzi(s) Blaschke product obtained by input factorization o f RHP zeros
Bzo(s) Blaschke product obtained by output factorization o f RHP zeros
Bpi{s) Blaschke product obtained by input factorization o f RHP poles
Bpo(s) Blaschke product obtained by output factorization o f RHP poles
S(s) Sensitivity function
T (s) Complementary sensitivity function
T zw{s) Closed loop transfer m atrix from z to w
W u(s) Frequency dependent weight for input performance
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TZHoo Subspace o f rational stable transfer matrices w ith real coefficients
xn m  x n dimensional space o f real numbers 

Cmxn m  x n  dimensional space o f complex numbers 
N (a, (.)) Number o f clockwise encirclements o f (a, 0) by image o f Nyquist 

D  contour under (.)

Greek Symbols

T) Performance Index
K Euclidian condition number o f matrix
M Structured singular value
M Upper bound on structured singular value obtained by scaling
P Spectral radius
A Eigenvalue
A Minim um  eigenvalue
G Singular value
G Maximum singular value
G M inim um  singular value
<?H Hankel singular value (see Definition 2.4)
Oh Maximum Hankel singular value (see Definition 2.4)

°H Minim um  Hankel singular value (see Definition 2.4)
Id frequency
A i j Relative gain between y t and u,
A Relative gain array
IAs]»j Block relative gain between y , and Uj
9 Time delay for a SISO transfer matrix
© Time delay for a M IM O  transfer matrix
A Uncertainty, perturbation matrix
r Performance Relative Gain Array

Abbreviations

i f f i f  and only i f
w rt w ith respect to
ARE Algebraic Riccati equation
BRG Block relative gain
CCD Control configuration design
CSD Control structure design
FIR Finite impulse response
GBDD Generalized block diagonal dominance
LTI Linear time invariant
LHP Left ha lf o f complex plane
LHS Left hand side
M IM O M u lti input M u lti output
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M V Minim um  variance
PID Proportional integral derivative
PRGA Performance relative gain array
QBDD Quasi block diagonal dominance
RHP Right ha lf o f complex plane
RHS Right hand side
RGA Relative gain array
SISO Single input single output

Norms

Induced 2-norm: For am  x n  matrix, A ,

||A ||2 =  sup ||A u ||2 =  d (A )
11u 112 == 1

H i  norm: For a stable and strictly proper transfer matrix G (s),

I|G(S)I12 =  t r (G ( ^ ) * G C M ) ^

Hrxj norm: For a stable transfer matrix G(.s),

||G(s)||oo =  sup ct(G (s)) =  sup d (G (jw ))
R e (s )> 0  w €R

Coo norm: Sim ilar to Hoo norm, except that G (s) can be unstable.

Hankel norm: For a stable transfer matrix G (s),

||G (s)||h  =  a jj(G (s ))
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Chapter 1 

Introduction

1.1 The Case for Decentralized Control

For a multivariate system, it  is mathematically attractive to use a centralized controller to 

meet the desired objectives o f stabilization and performance requirements. In  practice, a set 

o f smaller dimensional controllers, which make their decisions locally, is frequently used. 

A  control strategy that uses a set o f non-interacting controllers is called a decentralized 

control strategy. Formally defining [102],

Decentralized controller is a control system consisting o f non-interacting feedback 

controllers, which interconnect a set o f output measurements/commands with a subset o f  

manipulated inputs. These subsets should not be used by any other controller.

In  general, a centralized controller provides better performance and constraint handling 

as compared to the decentralized controllers. On the other hand, in  addition to their inherent 

sim plicity, a decentralized control system exhibit several advantages over a fu lly  centralized 

design. In  the ideal case, these advantages include [18,102]:

1. The individual controller subsystems can be brought in and out o f service providing 

fle x ib ility  o f operation in presence o f changing control objectives.

2. Due to the localized effect o f the individual controllers, the system can be made fault 

tolerant w ith ease, particularly in  the case o f a sensor or actuator failure.

3. The individual controllers are easier to tune online in  presence o f changing process 
conditions.

4. Simpler models can be used to design and tune the controllers reducing the modelling 

requirements.

1
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Sec. 1.2 Motivation and Scope 2

u
X X 

X X

Bl ock 1 X X X

X X X

Block 2

x
Block M

Figure 1.1: Block-wise system partitioning

5. The online computational effort is less than their multivariable counterparts and 

implementation is simpler.

For a given system, a ll o f the mentioned advantages may not be realized simultaneously 

or may only be realized at the cost o f degraded performance. Nevertheless, decentralized 

control seems to be the almost exclusive choice for control o f large-scale systems.

For power systems, decentralized control is necessitated due to physical distances 

between different stations and the enormous cost o f establishing a communication network. 

In  process systems, the use o f decentralized controllers is motivated by the d ifficu lty  

(and im possibility) o f obtaining reliable dynamic models and ease o f tuning and design. 

Decentralized control is sometimes im p lic it in non-conventional systems such as the 

administrative system o f a country, where the provincial governments look after the welfare 

o f citizens under the supervision o f federal government. Decentralized control is also the 

preferred choice by nature, e.g. the secretion o f different enzymes and hormones in the 

human body is controlled by different sections o f the brain.

1.2 Motivation and Scope

Before a decentralized control scheme can be implemented, suitable pairings between the 

controlled and the manipulated variables need to be determined. In  other words, the system 

needs to be partitioned into a number o f blocks (see Figure 1.1). In  some cases such as 

a platoon o f vehicles, the partitioning can be obvious. In the general case, there exist 

competing alternatives for partitioning and the choice depends on the design requirements.

Consider the example o f an industrial boiler furnace [94], where the objective is to 

control the temperatures (y ) by manipulating the gas flow  rates (u ) in  the four boilers.
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Sec. 1.2 Motivation and Scope 3

yi y2 y3 y4
i j

- M r -

Y
>

"iM r"
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’- M t r -

Y
-M V -

Y
U1 U2 U3 U4

Figure 1.2: Industrial boiler furnace

For this system, the y i,  y 2 are prim arily affected by U i, u 2 and y 3, y 4 by u 3, u 4. When the 

system is partitioned as ( (y j -  y 2, U] — u2), (y3 -  y 4, u3 -  u 4)), a block decentralized 
controller can be designed easily to closely match the closed loop performance o f the 

centralized controller [83], I f  the objective is to instead obtain acceptable closed loop 

performance w ith minimum controller complexity, a fu lly  decentralized controller w ith 

((y i, u i) , (y2, u 2), (y3, u 3), (y4, u4)) partitioning suffices.
The problem o f pairing controlled and manipulated variables, or system partitioning is 

known as control configuration design (CCD) problem. This thesis aims at developing tools 

for solving the CCD problem. A t this point, it is fa ir to question the necessity o f seeking 

a systematic solution to the CCD problem. A fter all, decentralized controllers, designed 

based on heuristics and process knowledge, have been successfully used in  large-scale 

process industries for decades.

Due to the increased competitiveness and tighter environmental regulations, the levels 

o f mass, energy and information integration among process units have increased drastically 

over the years. The controllers designed optim ally for every unit do not always work w ell 

together. Luyben et al. [79] report that process control lore contains tales o f m u lti-m illion  

dollar plants, that never operated. Thus, the work in  this thesis is prim arily motivated by 

the increased complexity o f the systems.

The second reason is pure intellectual curiosity and the drive to make things better. 

The heuristics used for partitioning process systems and subsequently designing control 

systems are a result o f the invaluable experience acquired by the process engineers over the 

years through tria l and error. A  sound mathematical theory for solving the CCD problem 

can provide valuable insight into the advantages and possibly unknown disadvantages o f 
these heuristics closing the gap between theory and practice [36]. Simultaneously, these 

insights can be used for meeting the desired objectives closely w ith  reduced controller 

complexity [86],
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Sec. 1.3 Thesis Overview 4

The CCD problem itse lf is a sub-problem o f the more general control structure design 

(CSD) problem. In the CSD problem, the tasks o f identifying controlled and manipulated 

variables from measurements, determining pairings between them and selecting the 

controller type are dealt w ith simultaneously or sequentially [102, 107].

Throughout this thesis, we assume that the sets o f controlled and manipulated variables 

have already been identified. For process systems, the set o f manipulated variables 

is easily selected as the valve inputs that can be varied independently, but the choice 

o f controlled variables is not always obvious. Recently, Skogestad [99] proposed the 

promising method o f self-optim izing control for selection o f controlled variables based 

on economics. Govatsmark [46] has demonstrated the usefulness o f this approach through 

industrial-scale case studies. A  review o f some other methods available for the selection o f 

the sets o f controlled and manipulated variables is available in [107].

Some other assumptions and conventions used in  this thesis are in  order. It is assumed 

that the system can be described by a fin ite dim ensional linear time invariant (LTI) model, 

which is available. Considering the d ifficu lty  associated w ith procuring a reliable dynamic 

model, parts o f this thesis focus on using simple models such as steady state gain model, as 

far as possible. W ith slight abuse o f notation, the follow ing terms are used interchangeably: 

system and FDLTI model, controlled variables and outputs and, manipulated variables and 

inputs. A  block diagonal matrix is generally perceived as a m atrix w ith  the block sub­

matrices being square. In  this thesis, the same term is used, when the individual blocks are 

possibly non-square. When the inverse o f a matrix or a system is used, it  is assumed that it 

exists. For sim plicity, the same symbol is used for inverse o f square and le ft or right inverse 

o f non-square matrices and systems. To emphasize the structure o f the controller, the 

decentralized controller is referred to as the fu lly  decentralized controller for the diagonal 

controller and block decentralized controller otherwise.

1.3 Thesis Overview

During the past two decades, the CCD or the pairing problem has drawn a lo t o f attention 

from researchers, particularly in the area o f process control. An overview o f the available 

methods can be found in [102] and a more detailed review in [106]. W ith the variety 

o f methods available, this thesis aims at addressing some o f the relevant issues that have 
received little  attention. Whereas some o f the results are extensions and generalizations o f 

the available results, some new concepts are also introduced. This thesis can be broadly 

divided into three parts:
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Sec. 1.3 Thesis Overview 5

1. System stabilization using multivariate or decentralized controller (Chapters 2 and 3)

2. Pairing selection for the stabilized system (Chapters 4 and 5)

3. Performance monitoring o f decentralized controllers (Chapter 6)

An overview o f the individual chapters o f the thesis follows.

System stabilization Most ( if  not a ll) pairing selection tools are developed under the 

assumption that the underlying system is stable. In  Chapter 2, we characterize the 

achievable input performance o f linear systems possibly having time delay operating under 

feedback control. Based on these results, a simple iterative method is presented for 

selection o f a subset o f controlled and manipulated variables for pre-stabilizing the system 

using a multivariate controller.

In  Chapter 3, we propose a methodology for synthesizing the stabilizing decentralized 

controller using independent designs. The methodology involves a paradigm shift, as the 

decentralized controller is designed based on a block diagonal approximation o f the system 

instead o f the block diagonal elements. A  numerical solution for finding the optimal block 

diagonal approximation through minim ization o f scaled distance between the system 

and the approximation is presented.

Pairing selection Contrary to the SISO pairings, block pairings are s till selected based 

on heuristics [19, 29], For systematic selection o f block pairings, we study a promising 
method, i.e. block relative gain (BRG) [83] in  Chapter 4. The connections between 

BRG and issues like closed loop stability, controllability, block diagonal dominance and 

interactions are explored and simple pairing rules are proposed. As an offshoot, we develop 

a number o f algebraic properties o f BRG.

In Chapter 5, we show that the recently proposed necessary and sufficient conditions [52] 

for assessing integrity o f a system, can be equivalently expressed in  terms o f w ell known 

notions o f BRG and N iedrilinski’s index [49, 87]. These results im ply that establishing the 

existence o f a diagonal controller w ith integral action such that the system has integrity is 

NP-hard [41].

Performance monitoring The responsibilities o f a control engineer extend w ell beyond 
ensuring good performance at design stage. Sustained benefits can result from  monitoring 

the control system performance and proper maintenance when performance degrades. 

In Chapter 6, we point out the insufficiency o f the available m inimum variance (M V)
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Sec. 1.3 Thesis Overview 6

benchmark [69] for performance monitoring o f decentralized controllers. We present an 

approximate solution to the decentralized M V  benchmark problem, where the upper bound 

on the output variance is minimized. Though a sim ilar numerical search based method has 

recently been available [114], the suboptimal solution presented here is explicit and is also 

extended for performance monitoring o f m ulti-loop PID controllers.

For the readers convenience, an overview o f the relevant concepts from  the linear 

systems, control and optim ization theory is presented in  every chapter. Advanced readers 

can skip these portions o f the thesis w ithout loss o f continuity.
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Chapter 2 

Input Performance Limitations of 
Feedback Control

For selecting controlled and manipulated variables to stabilize the system, we 

characterize the achievable input performance for linear time invariant (LTI) systems w ith 

and w ithout time delay. Achievable input performance depends prim arily on the jo in t 

controllability and observability o f unstable poles in  both H 2 and optimal control 

frameworks. A  simple method is presented for the extended stability problem, where 

unstable as w ell as stable poles close to the imaginary axis o f complex plane are moved 

to a ha lf complex plane. We draw a number o f insights that are useful for selection o f 

variables for stabilizing layer, as w ell as process design and formulation o f the optimal 

controller design problem. 1

2.1 Introduction

For complex unstable systems, often the requirements o f stabilization and performance 

satisfaction are separated, i.e. a subset o f controlled and manipulated variables is in itia lly  

used for stabilization and then another controller is designed for the stabilized system 

to satisfy the performance requirements. The question remains: W hich controlled and 

manipulated variables should be used for stabilization? These variables can be conveniently 

selected such that the input or control effort required for stabilization is m inim ized as [58]:

'This work was performed while the author was visiting Professor Sigurd Skogestad, Norwegian Institute 
of Science and Technology, Trondheim, Norway during March-May 2003.

Parts o f this chapter were presented at the annual meeting of American Institute o f Chemical Engineers, 
San Francisco, CA, 2003 and the American Control Conference, Boston, MA, 2004 [74].

7
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Sec. 2.1 Introduction 8

(i) the likelihood o f input saturation is reduced;

(ii)  the disturbing effect o f the stabilizing control layer on the stabilized system is 

minimized; and

( iii)  generally output performance is not very important for stabilizing control.

Stabilizing
Controller

Performance
Satisfaction

Stabilized
System

Unstable
System

Figure 2.1: Separation o f controller design objectives

In  Figure 2.1, let the set o f controlled variables, y  and manipulated variables, u  be 

partitioned as, y  =  [y i y 2 ] and u =  [m  112]. The variables for the stabilizing layer (y i, u i)  
are selected such that the closed loop system is stable and the norm o f the transfer m atrix 

from  disturbances d  to Ui is minimized. For this purpose, we characterize the achievable 

input performance o f LTI systems under feedback control in  this chapter. Then, the 

variables o f the stabilizing layer can be selected by simply comparing the input requirement 

for stabilization using different subsets o f variables. It is pointed out, however, that fo r any 

meaningful comparison, it  is necessary to scale the variables o f system prior to analysis. 

The possible choices for scaling factors include: maximum allowable ranges [102] or 

variance and the economic penalty associated w ith variation o f individual variables.

In  the 7f2 control framework, the problem o f control effort m inim ization is the dual o f 
the w ell studied minimum variance or cheap control problem [69, 92], It is known that the 

output performance o f the system is lim ited by its unstable zeros and time delay. Sim ilarly, 

the unstable poles and time delays pose lim itations on the achievable input performance. 

In  the context o f stable systems, some authors [64, 80,102] have considered characterizing 

the achievable input performance for disturbance rejection under the assumption o f perfect 

control. The focus o f this chapter is on stabilization and note that the m inim al control effort 

required for stabilizing stable system is triv ia lly  zero.

The broad area o f fundamental performance lim itations has drawn a lo t o f interest in  the 

past two decades. An overview o f the available results and some recent developments in
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Sec. 2.1 Introduction 9

this area can be found in [27, 97, 102] and the references w ithin. Though the focus has 

largely been on obtaining bounds on sensitivity and complementary sensitivity functions, 

which prim arily address output performance issues [22], some researchers have considered 

characterizing achievable input performance directly or indirectly.

Glover [43] studied the robust stability o f systems in the presence o f additive 

unstructured uncertainty. W ith this description o f uncertainty, maxim izing robust stability 

is equivalent to m inim izing the 'H ^  norm o f transfer matrix from disturbances to inputs. 

Clearly, these results are relevant to the problem in the present context, but the disturbance 

model and frequency dependent weight are assumed to be minimum phase stable. Havre 

and Skogestad [57] relaxed this assumption o f minimum phase stable disturbance model 

and frequency dependent weight and derived expressions for the lower bound on achievable 

input performance. Using a novel approach o f pole vectors, the same authors [58] 

have provided exact expressions for rational systems w ith single unstable pole driven by 

measurement noise. Chen et. al. [26] have studied the optimal regulation problem w ith 

input usage penalized for rational unstable systems driven by input disturbances in  the 

7f2 optimal control framework. These results can be related to the present problem by 

appropriate choice o f weights.

In this chapter, we characterize the m inim al input requirement for stabilization in  both o f 

H 2 and Hoo optimal control frameworks. The system is considered to be driven by output 

disturbances, where the disturbance model can share unstable poles w ith the system. This 

representation poses no lim itations and the case o f input disturbances is easily handled by 

setting the disturbance model same as the system. We further generalize these results to 

systems w ith input-output time delay. In  addition to selection o f variables fo r stabilization, 

the results presented here are also useful in  process design considering achievable control 

performance and optimal controller synthesis problem formulation.

For a specified set o f controlled and manipulated variables, the control effort required 

for stabilization can be easily calculated using available numerical techniques for optimal 

controller design. In  addition to the computational expense involved, a lim itation o f such 

a numerical approach is that it  does not provide any information regarding the factors 

lim iting  the input performance. These insights are useful for making appropriate design 

modifications, when the system cannot be stabilized by constraining the inputs o f the 

system w ith in  their maximal allowable ranges. In  some special cases, these insights can 
also provide simple analytic methods for selection o f variables for stabilizing layer [58],

The organization o f the remaining discussion in  this chapter is as follows: key results 

from  linear systems theory including optimal control are reviewed in § 2.2; the problem o f

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 2.2 Preliminaries 10

designing the optimal controller that minimizes input usage for stabilization is formulated 

and sim plified in  § 2.3; the achievable input performance for univariate and multivariate 

systems is characterized in § 2.4 and § 2.5, respectively; in § 2.6, we present a simple 

method for the extended stability problem, where unstable as w ell as stable poles close to 

the imaginary axis are moved to a ha lf complex plane; we present some insights and an 

iterative algorithm to reduce the computational complexity involved in  selecting controlled 

and manipulated variables for stabilizing control in § 2.7; and § 2.8 concludes this chapter.

2.2 Preliminaries

In  this section, we collect some general results from linear systems theory. These results 

form the basis for further development in  this chapter.

2.2.1 Poles and Zeros

The notions o f poles and zeros for univariate systems are generally w ell understood. For 

multivariate systems, the poles and zeros are characterized by their locations as w ell as 

directions. As a consequence, contrary to univariate systems, a multivariate system can 

have poles and zeros at the same location w ith no cancellation i f  the associated directions 

are different. The knowledge o f pole and zero directions provides a simple method for 

factorization o f systems into an all-pass factor and a minimum phase or stable part, as 

discussed later. We briefly review the concepts o f poles and zeros o f multivariate systems, 

where the discussion is adapted from [56,102],

For a univariate system, zt is a zero o f g(s) i f  g(zi) =  0. This definition o f zeros can be 

generalized to multivariate systems by noting that at s =  the rank o f g(s) reduces from 

1 to 0.

Definition 2.1 Zi € C, % =  1,2 • • • nz are called the zeros o f G (s) i f  the rank o f G («,) 
is less than the normal rank o f G (s). The normal rank o f G (s) is G (s) evaluated at a ll 

S i  { Z i }  [81].

Based on the above definition, it  follows that Zi are the zeros o f G (s) i f f  there exists 

non-zero u Zi, y Zi such that

G (z i)u Zi =  0 and G (s)u2i ^  0 Vs 

and y*ZiG (zi) =  0 and y*tG (s) ^  0 Vs ^  ^
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where u 2i, y z, are usually normalized to have unit length. The u 2; and y Zi are called the 

input and output zero directions respectively corresponding to the zero Zi. The zeros o f 

the multivariate system are sometimes called transmission zeros, but are simply referred as 

zeros in  this thesis. Let the quadruplet (A , B , C , D ) be a m inimal state space realization o f 

G(s) represented as G(.s) (A , B , C, D ). The zeros and the associated zero directions

o f G (s) are easily determined by solving the follow ing generalized eigenvalue problems:

A  — Z il B  
C D U z = °; [

A  — z j.  B  
C D 0

Definition 2.2 Pi G C, i  =  1,2 • • • np are called poles o f G (s) i f  one or more elements o f 

G (s) fails to be analytic (becomes infin ite) in  the complex plane [8].

W ith a slight abuse o f terminology, the poles o f G (s) can be alternatively defined as the 

zeros o f G -1 (s). Then it follows that p{ are the poles o f G (s) i f f  there exists non-zero 

Up,., y TK such that

=  0 and u *.G _1(s) +  0 Vs +  p{

and G -1 (p i)yPj =  0 and G ~l (s)yPt ±  0 Vs pt

where u Pi, y Pi are usually normalized to have unit length. The uPt and y Pi are called the 

input and output pole directions respectively corresponding to the pole p*. For a system 

w ith distinct poles, let G (s) •*-> (P , B , C , D ), where P  is a diagonal matrix. Then it can 

be shown that

u£ =  b ;/||B ;||2; yPi =  C i/\\Ci h

where B  • and C* denote the i th row and i th column o f B  and C respectively. When the 

system has repeated poles, the expressions for calculating input and output pole directions 

are more complex and are available in  [56].

2.2.2 All Pass Factorization of RHP Poles and Zeros

Definition 2.3 A  square transfer m atrix G (s) is called all-pass (also called square 

paraconjugate unitary rational matrix) i f  G (jto )G *(—ju j) =  I  for a ll u E l .

A  linear system w ith RHP poles and zeros can be factored into an all-pass factor and 

a minimum phase or stable part. Such a factorization is useful for manipulation and 

sim plification o f expressions arising later in this chapter. The two popular approaches
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for all-pass factorization o f linear systems are inner-outer factorization and the use o f 

Blaschke products. For univariate systems, both these approaches produce identical results. 

For multivariate systems, use o f Blaschke products provides analytical expressions and is 

preferred over inner-outer factorization in  which solution o f algebraic Riccati equations 

(AREs) is required. The idea o f using Blaschke products for factorization o f RHP poles and 

zeros was introduced by W all etal. [ I l l ]  and was used for characterization o f achievable 

performance by Chen [21,22] and Havre [57]. A  collection o f some o f the useful properties 

o f Blaschke products is available in  [56].

Let Zi € C, i  =  1 ■ • • nz be the non-minimum phase or RHP zeros o f G (s). Then G (s) 

can be factored as follows:

G(s) =  G S 1(s) =  i - ^ £ l l u 2lu ;i (2.1)
o I Z \

where u 2l is the input zero direction o f z\. W ith this factorization, z\ is not a zero o f G 1(s). 

By repeated application o f (2.1) on G *(s), i  =  1 • • • nz — 1, G (s) can be factored into a 

minimum-phase part and an a ll pass filte r as,

G (») =  G m (» )B *(») (2'2>
» = 1  v S +  Zi /

In  (2.2), G mj(s ) is minimum phase w ith the RHP zeros o f G m(s) m irrored across the 

imaginary axis and Bz,(s) is an a ll pass filter. Note that except the direction associated w ith 

the zero factored first, uZi differs from u Zj, as it is calculated based on G ^-1  ̂(s). The RHP 

zeros can be alternatively factored at system’s output as follows:

G (s) =  Bzo(s)G mo(s) Bzo(s )=  (2-3)
V S ~r 1i = n z x  7

When G (s) has RHP poles at pi e C, i  =  1 • • ■ np, these poles can also be factored into 
a stable part and an a ll pass filte r on the input and output side as follows:

i

G M  -  G «(» )B ^‘ W  <2-4>
i = n p '  7

G (s) =  B~g(s)G30(s) S -> (S) =  f j ( l - H S £ ( a i y By A  (2.5)
i = 1 \  S P i  /

2.2.3 Optimal Control

In this chapter, we use a state-space approach for characterization o f achievable input 

performance. For this purpose, we briefly review the pioneering results on Hz and Hoo
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c|  d21 0

w

y u

K

Figure 2.2: Generalized plant for optimal controller design

optimal control due to Doyle etal. [34], Further details can be found in many recently 

published textbooks dealing w ith optimal control (e.g. [47, 117]). In  later sections, we 

show how these general results sim plify when input performance is maximized.

W ith reference to Figure 2.2, let z and w  denote the exogenous outputs and inputs 

and, y  and u be the measured and manipulated variables respectively. The model o f the 

generalized plant from w  to z has the follow ing form:

Assumption 2.1 System (2.6) is assumed to be in the standard form  [34]:

(a) (A , B ,l.) is stabilizable and (A , C z) is detectable.

(b) (A ,B ) is stabilizable and (A , C ) is detectable.

(c) DJ2D i2 =  I  and D ^ D 21 =  I.

(d) D |2C z =  0 and D 21B„; =  0.

In addition, the assumptions that D u  =  0 and D 22 =  0 are im p lic it in  the realization o f 

the generalized plant (2.6). The assumption that D 22 =  0 can be easily satisfied by a linear 

fractional transformation on the controller K (s ) [117, pp. 261]. D u  =  0 is necessary 

for well-posedness o f the the 7 f2 optimal control problem. In  general, this assumption 

can be relaxed for the Hoo optimal control problem, but this complicates the formulae 

substantially. Some additional details on the physical interpretation o f Assumption 2.1 and 

transforming the problem to satisfy them can be found in [102, p. 363].

x  =  A x  +  B TOw  +  B u  

y  =  C x +  D 2iw  

z =  C zx  +  D i 2u (2.6)
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I t  follows from Assumption 2.1(a)-(b) that there exist X 2, Y 2 >: 0, which solve the 

follow ing algebraic Riccati equations (AREs),

a * x 2 +  x 2a  -  X 2B B *X 2 +  =  0

a y 2 +  y 2a* -  y 2c * c y 2 +  b wb ;  =  o

Let T zw be the closed loop transfer m atrix from w  to z. The unique controller 

m inim izing ||T ?u,(s)||2 is given as [34]:

A  +  B F 2 +  L 2C - l 2
[ F 2 0-K-Opt ('S')

where F 2 =  — B *X 2, L 2 =  —Y 2C* and the optimal cost is [117],

i f  =  in f IIT^O O II! =  tr (B ^ X 2B „,) +  tr (F 2Y 2F *) 
K(s)

(2.7)

(2.8)

For the m inim ization o f ^ ^ ( s ) ^ ,  let X,*,, Y m  0 solve the follow ing algebraic 

Riccati equations,

A *X 00 +  X 00A - X 00(7 -2B U)B ; - B B * ) X 00 +  C :C , =  0 (2.9)

a y 00 +  y 00a * - y 00(7- 2c : c z - c * c ) y 00 + b U)b ;  = o (2.10)

where 7 >  0. The existence o f Xqo, Yqo >z 0 that solve the AREs (2.9)- (2.10)

is guaranteed, i f  Assumption 2.1 holds and p (X ooY^) <  72. A  suboptimal controller
achieving ^ ^ ( s ) ^  <  7 is [34]:

Ksub (s)
A  +  7 B ^ B ^ X qo +  B F qo +  Z qoL qoC

(2.11)

where F M =  -B ^ X ^ ,

cost is given as
YooC* and =  ( I -  7 2p (X 00Y 00)) L The optimal

(2.12)

2.2.4 Hankel Singular Values and Balanced Realization

loo h)f IIT ^O O IU  — p 2(X 00Y 00)
K (s)

It is shown later in  this chapter that the achievable input performance o f a system prim arily 

depends on the Hankel singular values o f the image o f the unstable part o f the system. The 
concept o f Hankel singular values is introduced next.
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Definition 2.4 For a rational stable system G (s) (A , B , C, D ), let X H, Y u  0 solve

the follow ing Lyapunov equations,

Then, the Hankel singular values o f G (s), aHl(G (s)) are given as (t ^ ( G ( . s ) )  =

Note that the Hankel singular values are independent o f the D  m atrix o f the state space 

realization o f the system. This follows as the D  matrix represents the direct effect o f 

inputs on outputs, but the Hankel singular values measure the effect o f past inputs on future 

outputs [42],

The matrices X H and Y H are called the controllability and observability gramians o f 

the system. I f  a ll the poles o f the system are controllable X #  >- 0. In  this sense, the larger 

the eigenvalues o f X // are, the more controllable are the modes o f the system. Sim ilar 

conclusions can be drawn for the observability o f modes based on the eigenvalues o f Y # . 

As om (G (s)) =  X\,2{X h Y h ), the Hankel singular values are often referred to as the 

measure o f the jo in t controllability and observability o f the modes o f the system.

It is w ell known that the state space realization o f a system is not unique. Let T  be 

a non-singular state transformation matrix. Then, i f  (A , B , C , D ) is one realization o f 

the system G (s), so is (T _1A T , T _1B , C T , D ). One particular realization that is o f 

immediate interest to us is the balanced realization, as introduced next.

Definition 2.5 For a rational stable system G (s), the state-space realization G (s) <-> 

(A , B , C ,D ) is called a balanced realization, i f  X //. Y H y  0 that solve the Lyapunov 

equations (2 .13)-(2.14) are diagonal and equal [42, 117].

As it turns out that for the balanced realization, the controllability and observability 

gramians are equal to d ia g (o iji(G (s ))), i.e., the matrix containing the Hankel singular 

values as its diagonal elements. Any rational stable system admits a balanced realization 

and an algorithm for the construction o f balanced realization is available in  [117]. The 

balanced realization is frequently used in  obtaining approximate low order models for a 
system w ith a large number o f states [42],

For later development in  this chapter, we derive the balanced state-space realization o f 

the Blaschke product For notational sim plicity, we consider that the number o f

unstable poles, np <  2, which can be easily extended to systems w ith  np >  2 by induction.

A X jj +  X #  A * +  B B * =  0 

A *Y h  +  Y h A  +  C *C  =  o

(2.13)

(2.14)

A!/2(X tfY H) [42,117].
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A  sim ilar method has been used by Chen [22] earlier for finding the balanced realization o f
Bzi(s).

Let B~g(s) =  B~^B~^(s). Using (2.4), the balanced realization o f B~L(s) is given as

Bp'{s)  (A i, B,, Cj, Dj), where

A i =  pi B, =  - v /2Re(pi ) y*. Q  =  ^/2Re(pt) yPi D* =  I (2.15)

Using (2.15), the balanced realization o f B ^ (s )  is given as B~0'(s ) (A, B, C, D),
where

A 2 B 2C i p2 2v/Re(p1 )Re(p2) y*2y Pl
0 Ai °  px

B 2 D i -V '2 R e (p 2) y ; 2

b i J _ — v /2 R e(pi) y*Pl .

C =  [ C 2 D 2C! ] =  [ y/2Re(p2) yP2 y/VRBfa) ypi ]

D  =  D 2 D ! =  I  (2.16)

2.3 Problem Formulation and Simplification

In this section, we formulate an optimal controller design problem that minimizes input 

usage for stabilization. It is shown how the general results on optimal control can be 

sim plified when only input performance is considered. This sim plification in turn enable 

us to explic itly characterize the achievable input performance.
Consider the system shown in Figure 2.3, where a ll exogenous inputs, e.g. load change, 

measurement noise, set point change, have been collected in the block G „(s ). The closed 

loop transfer matrix from disturbances to inputs is given as,

T UU)(s) =  W „K (s ) (I +  G K (s ) ) - 1  G u,(s) (2.17)

The objective is to characterize the m inim al input usage required for stabilization 

expressed in  terms o f the norm o f T uu;(s) as:

k  =  ||W uK (s ) ( I +  G K (s ) ) - 1 G w(s)||t * =  2, oo (2.18)

Assumption 2.2 We make the follow ing assumptions:

(a) G (s) is strictly proper.
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W

W w

Figure 2.3: Closed loop system for characterization o f achievable input performance

(b) W „(s ) is le ft invertible and ( if  unstable) has the same unstable poles as G (s) w ith 

the associated input pole directions.

(c) Gu,(s) is right-invertible and ( if  unstable) has the same unstable poles as G (s) w ith 

the associated output pole directions.

Assumption 2.2(a) is made for notational sim plicity and the extension to the general case 

is simple (see [117, p.261] for details). The le ft and right invertib ility o fW M(s) and G  w(s) 

respectively ensures that the optimal controller design problem is nonsingular.

To illustrate the necessity o f W „(s ) and G w(.s) having the same unstable poles as G(.s) 

w ith the associated input and output pole directions respectively, consider that W „(s ) =  I 
and G „,(s) has a single unstable pole pw such that G~1(pw)yPw — 0. Let { p ^  e Cnp be 

the unstable poles o f G (s) such that G~1(pi )yPi =  0. For internal stability, the unstable 

poles o f G (s) and G K (s) are the same and

K - 'G - W *  =  0

(I +  K _1G _1(pj)) yPi =  yPi

GK(pj) (I +  G K(pj))-1 yPi =  yPi

K (P f) (I +  G K (p j) ) - 1  yPi =  G - \ Pi)yPi= 0  (2.19)

It follows from (2.19) that the locations o f RHP zeros and output zero directions o f

K (s ) (I +  G K (s ) ) " 1 are the same as the locations o f the RHP poles and input pole

directions o f G (s). Defining the sensitivity function as S(s) =  (I +  G (s )K (s ) ) _ 1  and 

using results on Blaschke products (2.2) and (2.5),

K S G li,(s) =  [K S (s)]m i^ i [K S (s)]^p 01 [GUJ(s)] [G „,(s ) ] S0 

=  IK S is ^ B p o iG W B ^ iG ^ s ) ]  [G ffi(S)]so

I f  the controller is designed to stabilize K S (s), the stability o f T uu,(s) depends on the 

stability o f Bpo [G (.s)] B~g [G ^ (,s)]. Since the Blaschke products can be calculated fo r any
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permutation o f poles and zeros, f3po[G (s)]f3“01 [G,JJ(.s)] is stable i f f  pw =  pi and y PlJI =  y Pi 

for some i. Sim ilar conclusions can be drawn when G w (s) has more than one unstable pole 

or when W u(.s) is also unstable.

W ith Assumption 2.2, Let W „(s ) and G w(s) be factorized as

W „(s ) =

G „(s ) =  [G w(S)]am^ M G . ( S) ] ^ [ G w(S)]

where [W „(s )]gm and [G u,(s)]sm are the stable minimum-phase parts o f W „(s ) and G ^fs ) 

respectively. Define

GW = [G„W1™G(S)[W„W]^ (2.20)
KW “  [W„W]™K(«)[G„(.)]m

where G (s) is an ny x nu dimensional transfer matrix. It follows from (2.17) that

h  =  \\B £  [W u(s)] Bzo [W u(s)] K ( s ) ( I  +  G K (s ))-1-

B ^ [ G w(s)}Bz i[Gw(s)]\\i i  =  2,oo (2 .2 1 )

By sim plifying (2.21),

/ ,  =  H K ^ a  +  G ^ K C s ))-1!!, i  =  2 , oo (2 .2 2 )

We point out that in  (2.22), B~J [W u(,s)] and B~1[Gw(s)} can be factored out w ithout 

jeopardizing the internal stability, only when Assumptions 2.2(b)-(c) are satisfied. Now,

||TUU)(s)||j, i  =  2,oo is minimized by designing an optimal controller for G (s), where

the follow ing are equivalent: (a) K (s ) stabilizes G(.s), and (b) K (s ) stabilizes G(,s). In 

the remaining discussion, we treat G (s) as the system without loss o f generality. These 

manipulations further allows us to represent the generalized plant as

x  =  A x  +  B u

y  =  C x +  w

z =  u (2.23)

where G (s) (A , B , C ). Notice that we have transformed a controller design problem 

where the closed loop system is driven by disturbances filtered through an arbitrary 

disturbance model to an equivalent problem, in  which the closed loop system is driven 

by measurement noise only. The latter problem is much simpler to solve, as demonstrated 

later in  this section.
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w w w

w , W , W ,

Figure 2.4: S im plifying transformations on the closed loop system

For the system (2.23), let X 2, Y 2 and Xoo, Yoo be the solutions o f corresponding AREs 

for the TL2 and the optimal control (see § 2.2.3). By comparing (2.23) w ith  (2.6), 

we notice that for the system (2.23), the corresponding AREs for the H 2 and Hoo optimal 

controller design are the same. It follows that X 2 =  X ^  =  X  and Y 2 =  Y ^  =  Y . This 

observation in  turn implies that F 2 =  Foo =  F  and L 2 =  Loo =  L .

Let T  be a state transformation matrix such that T _ 1  A T  =  d iag(P s, P ), where P s and 

P  contain a ll the stable and unstable modes respectively. Rearranging and partitioning the 

states o f the transformed system

T  1A T x  +  T  ‘ B u- i i

C T x  +  w =  [ C s C ] x  +  w

p . 0 B s
0 p x + B u

(2.24)

Let X  =  T  ]X T  and Y  =  T  1Y T  solve the corresponding AREs for the transformed 

system (2.24). Then, to be non-negative definite, X  and Y  must assume the form

X  =

(2.25)

(2.26)

'  0 0  '

Y  =
0 0

0 X 0 Y

where X , Y  e CnpXnp >~ 0 and it suffices to solve

X P  +  P *X  — X B B *X  =  0 

Y P * +  P Y  — Y C *C Y  =  0

Let G (s) =  G i(s ) +  G 2 (s) such that G i(s ) =  U (G (s)) and G 2 (s) £ where

U (G (s)) is the unstable part o f G (s). The trip let (P , B , C ) can be seen as the realization o f 

G i(s ) and (2.25)-(2.26) as the corresponding AREs for G i(s ). Then the achievable input 
performance depends only on the unstable part o f the system. This is further illustrated by 

defining K (s ) =  K i(s ) ( I  — G 2 K i(s ))~ x. W ith this parametrization o f K (s ),

K (s )( I -  G K (s ))-  =  K i(s ) ( I -  G 2 K x(s))-
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Thus K (s ) exactly cancels the stable part o f the system. The different transformations used

in this section and their equivalence are shown in Figure 2.4.

For the transformed system (2.24), the state feedback and the output injection matrices 

are given as,

By substituting for X , Y , F  and L  in  (2.8) and (2.12), the expressions for achievable input 

performance can be sim plified as,

The equations (2.25) and (2.26) form  the cornerstone for much o f the remaining 

development in  this chapter. In general, for 'H0O optimal control, the resulting AREs are 

dependent on 7  and thus need to be solved iteratively. In contrast, the expressions (2.25)- 

(2.26) are independent o f 7  and can be solved directly. Further note that when (2.25) 

and (2.26) are pre- and post-multiplied by X - 1  and Y _1, the resulting expressions are 

sim ilar to Lyapunov equations. When all the unstable poles o f the system are distinct, a 

closed form solution o f (2.25)-(2.26) can be derived, which is expressed in  terms o f the 

unstable poles and the matrices B  and C only.

For a system w ith distinct unstable poles, we can select the state transformation m atrix 

T  such that P  is diagonal and is given as P  =  d iag(p i, • • ■ , pUp), Re(p,) >  0. Let the 

Hermitian m atrix M  e C" '1 x np be defined as

Lemma 2.1 For a system w ith distinct poles, let X , Y  ^  0 solve the AREs (2.25)-(2.26) 

and M  be given by (2.31). Then

F  =  F T  =  [ 0 F  ] =  [ 0 —B *X  ]

L  =  T * L = [ 0  L ] ' = [ 0  -Y C *  ] '

(2.27)

(2.28)

I \  =  tr(F Y F *) — tr(L *X L ) 

loo =  pH *  Y )

(2.29)

(2.30)

M  = 1  / (P i+ P j) (2.31)

X - 1 =  d iag(B j) M  d iag(B ,)* (2.32)

Y " 1 =  ^ d ia g (C '.) *  M  diag(C '-) (2.33)
j ~  1

Proof: Pre- and post-m ultiplying (2.25) by X  1 gives

P X 1 +  X ^ P *  =  B B * (2.34)
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Then [63], X  1 =  M  o (B B *), where o is the Hadamard or element-wise product. 

Noting that B B * =  Y T ih  B *B *>

Tl-u 

i—1

and (2.32) follows. Equation (2.33) follows from a dual argument. ■

2.4 SISO systems

In this section, we quantify achievable input performance o f SISO systems w ith  and w ithout 

time delay. It is assumed that a ll the unstable poles o f the system are distinct. W ith this 

assumption, the expressions for the achievable input performance can be expressed in terms 

o f the unstable poles and the matrices B  and C only. The general case is considered in the 

next section.

2.4.1 Rational Systems

We derive the expressions for achievable input performance for rational SISO systems next. 

The usefulness o f these expressions is demonstrated using a process design example. These 

results also form the basis for derivation o f sim ilar expressions for SISO systems w ith  time 

delay.

Lemma 2.2 For M  defined by (2.31), let p, ^  p j for a ll i. j  =  1 ■ • • np. Then M "1 is given 

as

/ „ .  . \  / n „  . \

[M -1]
(Pi +  Pi)(Pj +  Pj) 

P *+ P j
T T  iP* +Pk)

x t \ i P i - P l )
\k &

T T  (Pj +P*k) 

t \  (Pi ~  Pk)

Lemma 2.2 is easily verified by evaluating M M  1 or M  JM . Note for SISO systems,

b =  [6 a], b  -  [cj\.

Proposition 2.1 For a rational SISO system g(s) w ith distinct poles, let U(g(s))

(P , b, c) such that P  =  diag(pi • • -Pnv), R e fe ) >  0. Then

Tr ia i2i14*1 M \ f o i f ]
L bi° i . Wi<z \

T2 -  12 ~

1^  -  |A“  (diag(6 *c^) M  diag(6 i ci ) M )|

(2.35)

(2.36)

where M  is defined by (2.31) and q, is the sum o f i th column o f M  1 or q =  1^ M  1
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Proof: (1) For (2.35), substituting for X  and Y  in (2.29) using Lemma 2.1,

I \  =  fY f*  =  b *X Y X b

=  l^ pM - 1  (d iag(b)diag(c ) ) - 1  M _1 (d iag(b*)diag(c* ) ) _ 1  M _ 1  l „ p (2.37)

Based on Lemma 2.2,

^  =  i =  l - ~ n P (2.38)

k î

and M " 1 =  d iag(q*)M diag(q). By substituting for M _ 1  and (2.37) can be

sim plified as,

i f  ~  q  (d iag(b)diag(c ) ) - 1  d iag(q*) M  diag(q) (d iag(b*)diag(c* ) ) _ 1  q*

The equation (2.35) can be now obtained by sim plifying the above expression using the 

identity q,q* =  |q*|2.
(2) For (2.36),

ôo =  P (X Y ) =  |A- 1 (Y _1X _1)|

By substituting for X - 1  and Y _ 1  using Lemma 2.1

i t  =  |A- 1 (diag(c*) M d ia g (c ) diag(b) M d ia g (b )*)|

=  | A- 1  (d iag(b)* diag(c*) M  diag(c) d iag(b) M ) |

=  |A_ 1 (diag(6 *c-) M d iag (^C j) M )|

■
In  the realization, U(g(s)) (P ,b ,c ), when g(s) has only real unstable poles only,

b* =  b  and c* =  c. In this case, (2.36), can be further sim plified as,

I t  =  A- 1  ( (diag(6 jC ,)M )2) 

loo =  |A_ 1 (diag(6 i ci )M )|

Remark 2.1 The expression for q  in  (2.38) appears to suggest that in  general, / 2 —► oo as 

Pi —> pj for some i , j ,  which is clearly not true. Since =  [g(s)(s — Pi)]8=Pi, hc i —> oo, 

as pi —> p j, which negates the effect o f q. But when the system has an RHP zero close 

to RHP poles, biCi fails to increase monotonically and stabilization can be d ifficu lt. For 

example, consider g(s) =  As e —» 0, the RHP poles approach the zero. Due

to near cancellation o f the unstable pole by the zero, / 2, ôo oo as e —► 0 .
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Example 2.1 In order to demonstrate the u tility  o f Proposition 2.1 for process design 

purposes, consider a rational SISO system w ith two distinct unstable poles p i , p2 € M and 

a RHP zero 2 . The location o f z can be influenced by process or operating point changes. 

The objective is to choose z in  the range 0 <  z <  m ax(p i,p2) such that input usage for 

stabilization is m inimal. A  pure numerical approach requires solving the follow ing nested 

optim ization problem:

m in in f ||/c(s)(l +  ^A:(s))_1||j % =  2 , 0 0
z k(a)

Using Proposition 2.1, the optimal value o f z can be characterized explicitly. As z —> p,, 
the jo in t controllability and observability o f pt reduces monotonically increasing the input 

requirement. Notice that

Pi -P 2  P 2 -  Pi

Using (2.35) and (2.39),

2 8 (p i +  P2 ) 3 [p?(P2 -  z f  +  p U p i  -  z f  +  PiP2 (3z2 -  P1P2 )]
I ,

2 (Pi -  z )2 +  (P2 -  z )2

4 piP 2 (Pi + P 2)
00 z(px +  P2 ) -  [p?(2p2 -  z)2 +  p l{2p i -  z)2 +  2pxp2(3z2 -  2p!p2 ) ] 0 -5 

The optimal value o f z in  the range 0 <  z <  max(p1 ,p2) can be obtained by evaluating 

the stationary points o f (2.35) and (2.36),

P1P2 (s (p i +  P2 ) ±  \/5 P i +  5p i +  6 p ip 2)

ZH2'opt 2 (p? + p 2 +  3pip2)
_ 4pip2 (p i+ p 2)

^Woo,sub 2 . 2 1 fi
Pi +P2 +  ®PlP2

2.4.2 Time Delay Systems

Many systems arising in  practice contain time delay. These irrational systems cannot 

be handled directly in  the optimal control framework discussed in  § 2.2.3. A  common 

approach for optimal control for such systems is to design the controller based on a rational 

approximation (e.g. Pade approximation) o f the time delay system. In this thesis, we 

use this approach and the achievable performance is characterized by letting the order o f 
approximation approach in fin ity  in  the lim it.

To extend Proposition 2.1 to systems w ith a fin ite time delay, let g(s) be expressed as,

g(s) =  g(s)e~9s (2.39)
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where g is the delay-free part o f the system. I f  gw{s) also contains delay, the delay can be 

factored as an all-pass factor and thus g(s) remains causal (c f (2 .2 0 )).

Lemma 2.3 Consider H (s) <-> (P ,B , C ) such that P  =  diag(px • • -pnf]  

Pi f  pj. Let H i(s ) € TZHoq w ith no zeros at p,:. Then

n p

W (H i(s )H (s )) =  ^  — :H 1 (pi )C iB ;
i= i

P roof: Using dyadic expansion o f H (s),
n p

h (s) =  E t ^ c <b :

Re(pi) >  0 ,

(2.40)

i= 1

Let ZY (H i(s)H (s)) (P , B , C ). Since H i(s ) does not cancel RHP poles o f H (s ), 

P  =  P . Now, C jB^ =  [H i(s )H (s )(s  — Pi ) ]3=Pi and (2.40) follows. ■

Note that the applicability o f Lemma 2.3 is not lim ited to the case where a ll modes o f 

H (s) are unstable, since W (H i(s)H (s)) =  H (H i(a )W (H (s))).

Proposition 2.2 Let the SISO system expressed by (2.39) have distinct unstable poles 

and U(g(s)) <-> (P ,b ,c ) such that P  =  diag(pi • • -p%,), Re(pi) >  0 and T  =  

diag(e°Pl • • • e°Pn>‘ ). Then

F  -2 —
|q*
bih

r M r * h i
b* c*

i =  1  ■ ■•n„

Ilo =  |A -1 (r-*d ia g (6 * c : ) M r - 1diag(6 ici )M )| 

where M  is defined by (2.31) and q  =  M -1 .

(2.41)

(2.42)

Proof: Let f(8 s ,n )  be the nth order rational approximation o f e~9s (e.g. Pade

approximation). For any n, i f  a RHP zero o f f(8s , n) cancels a RHP pole o f G (s), the 

system is not stabilizable due to presence o f hidden unstable modes. However, as n —> oo, 

the magnitude o f RHP zeros o f f(9 s ,r i)  approaches infin ity. Thus, for an FDLTI system 

w ith poles at fin ite locations, such cancellation o f RHP pole o f G (s) by an RHP zero o f 

f(8s, n) does not occur for a ll n >  N  for sufficiently large N.

(1 )For (2.41),using(2.40), biCi &  b iC if(0 p i,n ) ,n >  N  and

=

|q<
biCif(Opi,n).

Tip Tip | j 2

M |q*
bi% f(0Pi,n).

m i j f  1(0 p i,n )f 1(&Pj,n)- 1 /

~fi j = i bjCj
(2.43)
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As lim „^oo f(0pu s) =  e~6s. Then, lim „_ 0 0 / - 1 (6*pi ,n ) =  edpi and

lim ^o o  f ~ 1(0pi, n ) f~ l (8p j,n) =  e6pie8pj. Noting that except the bilinear term 

f ~ 1(0 p i,n ) f~ 1(6p j,n), a ll other terms in  (2.43) are independent o f n, we conclude that 

lim n__»oc J |(n ) exists and is given by (2.41).

(2) For (2.42), using sim ilar arguments as before and follow ing the proof o f 

Proposition 2.1,

llo {n )  =  A_1 (d iag (/(0p t,n ))~ * diag(6 *c*) M  d iag(/(0p i ,n ) ) “ 1 diag(ftjci )M )

The eigenvalues are roots o f a polynomial equation, whose coefficients are functions 

o f f ~ 1(8pi,n). As n —» oo, these coefficients and thus the roots converge. Hence, 

lim ^o o  7 ^(n ) exists and is given by (2.42). ■

Sim ilar to (2.39), for a system w ith  real unstable poles only, (2.42) can be sim plified to

Ilo  =  | A- 1  ( r _1d ia g (6 jC j)M ) |

By differentiating (2.41) w ith respect to 8,

2  n p n p . ,2 . ,2

d0 j r i  h a  bjCj

>  m in p^ I2

Thus, d/ 2  /(18 >  0 for a ll 8. Sim ilar conclusions can be drawn by differentiating I x  w ith 

respect to 8. This shows that for SISO systems, the input usage cannot be decreased by 

introducing additional lag in the system. Surprisingly, for M IM O  systems, such an intuitive 

conclusion does not hold, as is shown later.

Corollary 2.1 Under the same conditions as Proposition 2.2, let gp{s) (P, r - 1b, c) or 

( P ^ c r - 1). Then I 2(g(s)) =  I 2{gP{s)) a n d /^ ( s ) )  =  /^ ( ^ ( s ) ) .

It follows from corollary 2.1 that / 2 and 1^  for a time delay system depend on its 

unstable projection, which is rational.

Corollary 2.2 For a SISO system w ith a single real unstable pole p,

(2.44)
trc 2 \bc\
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Corollary 2.2 can be shown to be true by considering (2.41) and noting that in  this 

case b , c are scalars and M  =  l/2 p . For delay-free systems, Havre and Skogestad [58] 

earlier obtained expressions sim ilar to (2.44). Propositions 2.1 and 2.2 can be seen as the 

generalizations o f the results o f avre and Skogestad [58] to SISO systems w ith  m ultiple 

unstable poles and time delay.

Remark 2.2 The time-delay enters (2.41)-(2.42) assuming the form  e0Pi and thus does 
not pose any serious lim itations on input performance for systems w ith  slow instabilities 

and vice versa. It follows from Corollary 2.1 that time delay essentially reduces the 

controllability (or observability) o f poles and the faster the instability, the weaker the 

controllability (or observability) o f the pole is, as compared to the delay-free system.

2.5 MIMO systems

In this section, we generalize the results o f the previous section to M IM O  systems. It is 

shown that the achievable input performance prim arily depends on the jo in t controllability 

and observability o f unstable poles o f the system. These results can be directly used for 

selection o f the subset o f controlled and manipulated variables fo r stabilization.

2.5.1 Rational Systems

Sim ilar to SISO systems, the achievable input performance is first characterized for rational 

systems. These results are extended to M IM O  systems w ith time delay later in  this section. 

To obtain expressions for / 2 and 1^  for M IM O  systems, we relate X  and Y  solving the 

AREs (2.9)-(2.10) to the Hankel singular values o f U(G(s))*. When G (s) has distinct 

unstable poles, the next lemma also provides an alternate expression for the Hankel singular 

values o f« (G (s ))* , which can also be o f independent interest.

Lemma 2.4 Let G (s) be a rational system and X ,Y  ^  0 solve the corresponding 
AREs (2.25)-(2.26). Then,

4 (W (G (s )) ’ ) = A,(X_1Y _1) i  =  l , . . . n p (2.45)

Further, i f  G (s) has distinct unstable poles, let U{G(s))  <-> (P ,B , C), such that P  =  

diag(pi • ••£ „„), Re(pi) >  0. Then crHl(U(G(s))*) is given as,

aHi(U(G(s))*) =  A f [((B B *) o M ) ((C*C) o M ) ] (2.46)

where U(-) denotes the unstable part and M  is defined by (2.31).
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Proof: Pre- and post-m ultiplying (2.34) by T i and T * respectively, where T j is a state 

transformation matrix,

T 1P X -1T i -(- T iX _1P *T i =  T iB B *T i

^ P X ^  +  X r 1? * =  B B * (2.47)

where P  =  T x P T ^1, B  =  T ^B  and X  =  T ^ *X T ^ 1. Sim ilarly, by setting C =  C T 7 1 

and Y  =  T iY T J ,

P *Y _1 +  Y _1P  =  C *C  (2.48)

Now Y _1 and X -1 are the controllability and observability gramians o f the stable system 
U{G{s))* (—P *, C *, B *) and (2.47)-(2.48) are the corresponding Lyapunov equations.

I f  T i is chosen such that (—P*, C *,B *) is a balanced realization, then X -1 =  Y _1 =

diag(crK i(W (G (s))*)) [117] and

o2m (U(G(s)Y) =  X f X - ' Y - 1) =  Aj(T^*X_1Y -1T i) =  A ^ X ^ Y " 1)

When G (s) has distinct unstable poles, the alternate expression fo r the Hankel singular 

values o f U(G(s))*  can be obtained by substituting for X -1 and Y -1 in  (2.45) using 

Lemma 2.1. ■

Proposition 2.3 For the rational M IM O  system G (s) having np unstable poles, let 

(—P *, C *, B *) be the balanced realization o f U(G(s))*. Then

=  A  2|Re(P„;);....
t t  o2hM G ( s)Y )  

loo =  a jj\U (G (s )y )  (2.50)

Proof: (1) For (2.49), based on the expression for 7 | (2.29),

I I  =  tr(B *X Y X B ) =  tr(B *X Y X B ) -  tr(B B *X Y X )

Define E #  =  diag(af f i(W (G (s))*)). Since (—P *,C *,B *) is the balanced realization 

o fW (G (s))*, using Lemma 2.4 and setting X  =  Y  =  E #1,

i f  =  t r  [(—P E // — E tfP *)E ^-3]
f p ip ., i p *  |

=  tr ( -P E ) )2) +  t r ( - E ^ 2P *) =  £  ■ 1 M + al
t r  ct%m g (s)y )
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where |P if +  P-J =  2 |R e(P „)|.

(2) For (2.50), based on the expression for I ^  (2.30) and Lemma 2.4

lo o  =  A -^ (X - 1Y - 1) =  £ - 1 (W (G(S) r )

■
The expressions (2.49)-(2.50) show that I 2 and /<*, mainly depend on aHi(U (G (s))*), 

which is a measure o f jo in t controllability and observability o f the unstable poles.

Glover [43] studied the robust stability o f systems in the presence o f additive 

unstructured uncertainty. W ith the additive description o f uncertainty, maxim izing robust 

stability is equivalent to m inim izing the H ^  norm o f transfer matrix from disturbances 

to inputs. Thus, the results o f Glover [43] are also applicable to the present case o f 

m inim ization o f input energy required for stabilization. The expression fo r 1^  as derived 

here is as an alternative proof o f the sim ilar result o f Glover [43], but is generalized to the 

case where W u(s) and G u,(.s) can be minimum phase and share common unstable poles 

w ith  the system.

Remark 2.3 In  general, H 2 and Hoc norms o f a transfer matrix can be arbitrarily apart. 

Proposition 2.3 shows that when input norm is minimized, I 2/loo is always bounded as

a , , )

where P  is the state matrix o f the balanced realization o f U (G (s )) .  The closeness o f I 2 

and loo follows from the fact that the related AREs (2.25)-(2.26) for the H 2 and Hoo cases 

are the same. The ratio k h  =  ^  h (U {G { s))*) /  g_H{U {G (s))* )  is the condition number o f 

W (G (s))* expressed in terms o f Hankel singular values and can be interpreted sim ilar to 

the Euclidian condition number. A  system that has a large Euclidian condition number 

has strong directionality and may be d ifficu lt to control [102, p. 87]. S im ilarly, kh  can be 

large due to small a } I (U (G (s))*)  indicating that the input requirement fo r stabilization is 

large. When Kh — 1, the upper and lower bounds on / | / in (2.51) are the same w ith 

4 /1 1  =  2 £ ^ i  |Re(P«)|.

In  this chapter, we assumed that the disturbances enter the closed loop system through 

output channels. Proposition 2.3 can easily be applied to cases, where disturbances enters 

through input channels by setting G™(s) =  G (s) (see Figure 2.5). For minimum phase 
systems affected by input disturbances, the expressions for achievable input performance 

are much simplified, as earlier shown by Chen et al. [26]. The results o f Chen et al. [26] 

are shown to be a special case o f Proposition 2.3 by the next Corollary.
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z  w

Figure 2.5: Disturbances entering through input channels

Corollary 2.3 W ith reference to Figure 2.5, let G(.s) be minimum phase, right invertible 

and has np unstable poles. Then,

Up

722 =  2 ^ R e fe ) ;  /oo =  l  (2.52)
i= l

Proof: Let G (s) =  G sB~^(s) such that G s(s) is stable. W ith G w(s) — G (s) and using 

(2.17),

||Tuw(s)|| = ||(I + KGaB^1(s))- 1KGsfi ,̂1(s))||
= ||(I + K/3po1(s))-1K(s)||

where K (s ) =  K G s(s). Let (P ,B , C, D ) be the balanced realization o f B~*{s). Since 

B -*(s ) is all-pass and stable, aHt(B~*(s)) =  1 [42], Then, using Proposition 2 .3 ,1^  =  1 

and / f  =  Y a= i 2|R e(P ,j)|. The expression for I 2 follows by noting that P„; =  (cf.

(2.16)). ■ 

The achievable input performance for multivariate systems depends on pole locations as 

well as pole directions. To illustrate this, we consider two extreme cases: (1) a ll the pole 

directions are orthogonal and (2 ) are co-linear w ith each other.

Corollary 2.4 Let G i (s) and G 2 (s) be rational systems w ith distinct unstable poles, where 

U (G fs ) )  (P ,B i,C i) ,  U (G 2(s)) <-* (P ,B 2 ,C 2) such that P  =  diag(pv • • -p „p), 

Re(pi) >  0 . Let ||[B i]i| | 2 =  ||[B 2 ]j||2, ||[C i] * | |2 =  ||[C 2 ] i | | 2 fo ra lU  =  1- - -r^a n d

y ^ (G i( s))ypj(G i( s)) =  1 and u^i(Gi(s))uPj(G 1(s)) = 1 Mi , j  

and y^(G2(«))yPj(G2(s)) =  0  and u^(G 2(s))upj(G2(s)) =  0 Mi f  j

T h e n ,  / o o ( G i ( s ) )  >  7 o o ( G 2 ( s ) ) .

Proof: Define the diagonal matrices D j =  d ia g (||[B i]j||2) =  d iag(||[B2]*||2) and D o  =  

d ia g (||[C i]i||2) =  d iag(||[C 2 ]j||2). Based on the alternate expression for Hankel singular
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values (2.46) and M  (2.31),

oh {U (G 2{s))*) =  As [((D /[u £ j(G 2 (s ))u jy (G 2 (s ))]y D j) o M )

((D 0 [y ^ (G 2 (s))yp j(G 2 (a))]<jD 0 ) o M )]

Since u ^ (G 2 (s))uPJ'(G 2 (s)) =  0 for a ll i  ±  j ,

aH(U (G 2(s))*) =  A * [(D ? o M )(D £ o M )]

=  As [D /d ia g (l/(p i + p * ))D /D 0 d ia g (l/(p j +  p *))D 0 ]

=  a (D /d ia g (l/(p i +  p *))B 0 ) =  m in fD 7 1D 5 1]«(pi +  p * ) - 1
I

Sim ilarly, it  can be shown that, q_H(JA(Gi(s))*) =  g_ (D /M D o ). Using Proposition 2.3, 

W G :)  =  a (D 7 1 M _ 1D q 1) and using Lemma 2.2,

/oo(G i) >  m ax[D 7 1M _ 1D 5 1]jj
i

>  m ax[D71D 7 1 ] (p* +  Pi) f [

>  max [D 71D o 1]i i (p* + Pi) =  /oo(G2)I

where the first inequality holds since the maximum singular value o f a m atrix is always 

greater than or equal to the individual elements o f the matrix. ■

In Corollary 2.4, the lengths o f the pole vectors are assumed equal to highlight the effect 

o f angles between the pole directions. In  general, the optimal orientation o f pole directions 

for input performance depends on the unstable pole locations and the Euclidian length 

o f pole vectors. Intuitively, the input requirement for stabilization is m inim ized i f  pole 

directions are oriented such that the fastest instability is affected most and so on.

Example 2.2 Consider the follow ing system,

'  1 0 cos(P) sin (/3)
0 2 sin(P) cos (j3)
1 0 0 0

0 1 0 0

For this system, u*^uPt2 =  sin(2/3). The variation o f I 00 w ith /3 is shown in Figure 2.6. 

The input requirement is maximum, when the pole directions are co-linear ( fi =  0°) and 

and is approximately 4 times larger than the case, where the pole directions are orthogonal 

(P =  45°). An explanation o f this observation is as follows: When the pole directions are
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40
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Figure 2.6: Effect o f pole directions on I x

co-linear, the B  matrix o f the state space realization o f G (s) is singular. The inputs affect 

the poles only after being filtered through the singular B  matrix. Though the input itse lf 

can vary in  a ll directions, when filtered through B , it  is effective only in  a few directions 

increasing the input usage for stabilization.

2.5.2 Time Delay Systems

For extending Proposition 2.2 to M IM O  systems, we use a sim ilar method as used for 

univariate systems, i.e. by using a rational approximation o f the time delay system and 

then letting the order o f approximation approach infin ity. We consider systems that can be 

expressed as

G O ) =  G O ) o © 0 ); © 0 ) =  [e ~ ^ s] (2.53)

where G is the delay-free part o f the system. A  system such as G(,s) in (2.53) w ith  delay 

associated w ith individual elements o f the transfer matrix, which cannot be separated at 

inputs or outputs, is sometimes referred to as a m ultiple delay system in the literature. It is 

pointed out that (2.53) does not represent the most general case and in  practice is satisfied 

only when the W „(s ) and G w(s) are diagonal. The remaining discussion in this section is 

lim ited to the cases where ny >  nu and sim ilar expressions for ny <  nu can be obtained 

w ith m inor modifications.

Lemma 2.5 Consider H (s ) <->• (P , B , C ) such that P  =  diag(pi • • • pUp), Re(pj) >  0. Let 

H i(s ) € IZHoo w ith no zeros at Then

W (H i(s) o  H (s)) =  (Pi) o  (Q B i) (2.54)
, - 1  s Pi
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The proof o f Lemma 2.5 is sim ilar to the proof o f Lemma 2.3 and is omitted. We make 

the follow ing additional assumption:

Assum ption 2.3 Let U (G (s)) <-> (P , B ,C ). Then the matrix (Q B ^) o ® (p i) has fu ll 

column rank for a ll i  — 1  • • ■ np.

Proposition 2.4 Consider that the M IM O  system expressed by (2.53) has distinct poles 

and the system satisfies Assumption 2.3. Let U (G ) <-► (P , B , C ) such that P  =

diag(pi • • -pnp), R e fa ) >  0. I f  Gp <-> (A p, B p, Cp), where

Proof: Let 0 (s ) be approximated by an n th order rational function as before. As n —► oo, 

using Lemma 2.5 and the same arguments as used in  the proof o f Proposition 2.2,

Due to Assumption 2.3, ^ © ( p * )  o (C *B ') (P il„u, I „ „ ,  ®(Pi) o (C jB -)). Then the

It is interesting to note that when © (s) is unstructured (delays cannot be separated at 

inputs or outputs), stabilization o f the irrational system w ith np unstable poles is equivalent 

to stabilizing a rational system w ith np x  nu unstable poles. For systems not satisfying 

Assumption 2.3, the trip le t (A p, B p, Cp) is not necessarily a m inim al realization. This 

assumption can be relaxed for generalization purposes, but this makes the expressions 

d ifficu lt and complex. A  practical case, where Assumption 2.3 is always violated, occurs 

when the delays are associated w ith the sensors or actuators o f the system. Systems w ith 

delay associated w ith sensors are handled next and the expressions for systems w ith  delay 

associated w ith actuators can be obtained analogously.

Corollary 2.5 Let G (s) =  diag(e BiS)G (s) and(Y(G (s)) <-> (P ,B ,C ) such that P  =

diag(pi • • ■ Pnp), R e fe ) >  0, pt f  p.} . Let G p(s) ^  (P , B , Cp), where

C p =  [ diag(e~fliPl)C i • • • diag(e_eiP"p )C „;, ]

Then, I 2(G(s)) =  I 2(Gp(s)) and /oo(G (s)) =  /oo(Gp(a)).

Ap — diag(pil„u ■ • 'PnpInu)'i Bp — [Inu • • -Inu] 
Cp =  [(C x B i) o © ^ ) . . .  (0 ^ ) 0  0 ^ ) '

Then, I 2(G ) =  h {G p), G ) =  !« ,(Gp).

n p

(2.55)

result follows by considering the aggregation o f these subsystems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 2.5 MIMO systems 33

The proof o f Corollary 2.5 follows by considering (2.55) and noting that (Q B -) o 

®(Pi) =  diag(e- 0 iPi)Q B ^. It was shown earlier that for SISO systems, / 2, 1^  are non­

increasing functions o f 0, but this does not hold for M IM O  systems.

Example 2.3 Consider the system G (s) =  G (s) o 0 (s ), where

g -c *2 s g - a i s

Figure 2.7: Variation o f I ^  w ith a x and a2

The variation o f I ^  w ith a X)a2 is shown in Figure 2.7, which leads to the counter 

intuitive conclusion that the input requirement for stabilization for M IM O  systems can 

decrease when the delay in some o f the elements o f the system increases. When a x /  a 2, 

by virtue o f Proposition 2.4, the unstable projection o f the irrational system has 4 unstable 

poles (2 poles each at 0.2 and 0.5). However, when a x =  a 2 =  a, G (s) can be 

expressed as G(.s) =  G (s)e“ s. Then, using Corollary 2.5, the unstable projection o f the 

irrational system has only 2 unstable poles. W ith slight abuse o f terminology, the case o f 

olx — ol2 =  oi can be interpreted as the system having 4 unstable poles and 2 unstable zeros 
at 0.2 and 0.5. Thus, when a x ^  0 % these RHP zeros differ from  their nominal values o f 

0.2 and 0.5 and effectively reduce the jo in t controllability and observability o f the unstable 

poles. Keeping a x (or a 2) constant and increasing a 2 (or a x), these RHP zeros recede away 

from the unstable poles reducing the input requirement for stabilization.

0 . 2 0 2 3
0 0.5 1 4
3 2 0 0

5 3 0 0
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Corollary 2.6 Consider a M IM O  system G (s) that is expressed by (2.53) and satisfies 

Assumption 2.3. I f  G (s) has a single real unstable pole p,

(2.56)

where U (G (s)) (p, B , C ).

Proof: Define G p(s) {p lnu, l nu. (C B*) o  0 (p )). Now, sim ilar to the proof o f 

Proposition 2.4, it can be shown that J2 (G (s)) =  72 (G p(s)), / ^ ( G (s)) =  I 00(G p(s)). 

Since G p(s) has a single pole repeated nu times, M  =  ( l/2 p ) [ l„ „  • • • l nJ . Using (2.46),

Now, (2.56) is obtained by substituting (2.57) in the expressions for I 2 and I ^  (2.49)-(2.50). 

■
For a system that is delay free and has a single unstable pole, M  =  1/2p, B B * =  HBIH 

and C *C  =  ||C |||. Then, using the alternate expression for Hankel singular values (2.46),

This expression (2.58) was earlier obtained by Havre and Skogestad [58]. 

Propositions 2.3 and 2.4 can be seen as the generalization o f the results o f Havre and 

Skogestad [58] to systems w ith m ultiple unstable poles and time delay.

The optimal controller that minimizes input requirement for stabilization cancels the stable 

poles o f system (see § 2.3) and only unstable poles are moved. Though these stable poles 

do not appear in  the closed loop transfer matrix from the disturbances to the inputs, they 

are s till present in other closed loop transfer matrices, e.g. disturbances to outputs. When 

the system has ligh tly  dampened stable poles, the variability o f the output may be large. 

Further, when the linear model is obtained through linearization o f an nonlinear system, 

the large variation o f the ligh tly  dampened modes can excite some nonlinearities. It is 
beneficial to stabilize the unstable as w ell as stable poles o f the system that are close to 

the imaginary axis by moving them further into the le ft ha lf o f the complex plane. In  the 

literature, this problem is known as the a —stability problem, where a ll the modes o f the

om (G p(s)*) =  (l/2 p )A ! / 2  [((O B ') o © (*>))*((C B ') o 0 (p))] 

=  ( l/2 p ) * [(C B ')o 0 (p ) ] (2.57)

(2.58)

2.6 Extended Stability
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closed loop system lie  in  a ha lf plane satisfying Re(s) <  - a  for the given positive scalar 

a  (see [28] and reference w ithin for details). In this section, we present a simple algorithm 

for the a —stability problem w ith m inim ization o f input usage.

For notational sim plicity, we assume that G w(s) =  W u(s) =  I. The algorithm is based 

on the follow ing observation:

Observation 2.1 Let [T««,(s)]w2j0pt and [T „w(s)]Woo su() represent the closed loop system 

from  the disturbances to the inputs w ith the H-i and H «, optimal controllers implemented 

respectively. Then,

(1) The poles o f [T uu;(s) ] W2 opt are given as the unstable poles o f G (s) m irrored across 

the imaginary axis w ith m u ltip lic ity 2 .

(2) A  subset o f poles o f [T uu,(s )]^oo sub are given as the unstable poles o f G (s) m irrored 

across the imaginary axis.

Proof '. (1) When only input performance is considered, the optimal controller cancels the 

stable part o f the system (see § 2.3). Thus, we can consider the system as having only 

unstable poles w ithout loss o f generality. Let G (s) <-► (P ,B , C ), where Re(ARP)) >  0. 

Using the expression for optimal controller (2.7),

[TUw(S)]n2,opt ~
P

LC
B F

P  +  B F  +  LC
0

- L _
‘ P  +  B F  

0
B F  

A +  LC
0

- L
0 F 0 F F 0

where the second equality is obtained by using a state transformation m atrix T  o f the form,

Pre-m ultiplying the ARE (2.25) by X  1 and rearranging, P +  B F  =  —X  1P *X . Then, 

A*(P +  B F ) =  A ,(—P *), i  =  1 • • • np. S im ilarly post-m ultiplying the ARE (2.26) by Y _1, 

A j(P  +  L C ) =  A j(—P *), i  =  I  ■■■ np. The result follows by noting that the eigenvalues o f 

—P* are at the mirrored locations o f the eigenvalues o f P.

(2) The proof is sim ilar to the case o f [T uw(s ) ]-K2 and is omitted. ■

The fact that the controller m inim izing input energy mirrors the unstable poles was 

earlier established by Kwakemaak and Sivan [76] for the LQG and by Glover [43] for 
the Hoo optimal controller design problem. Kwakemaak and Sivan [76] justified this as 

a balance between the gain and decay rate o f the inputs. Note that in  the case o f Hoo 

optimal control, the remaining poles o f [T uu,(s)]Woo<aub are given as A(P +  Z ^ L C ), where
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as 7 ~ 2 —> p (X Y )-1 , Zoo approaches singularity (cf. (2.11)). Thus, characterization o f a ll 

the poles o f [T uli,(s)]Woc sub is d ifficu lt, but it  does not have any effect on the algorithm for 

a —stability, as presented next.

A lgorithm  2,1 Consider that G  (s) is the generalized system (2.23). The a —stability for 

this system can be achieved by follow ing steps:

(a) Translate the imaginary axis by the transformation s =  s +  a /2 .

(b) Design an optimal controller for G (s), that m inimizes the input requirement for 

stabilization.

(c) Use the inverse transformation s =  s — a /2  on T ult,(s) to get a closed loop system 

that is a —stable.

s =  s — a / 2
Optimal 

Controller Design s =  s — a /2

§=4°
§ =  0 

4 4

•  A •  A

(a) (b) (c)

Open loop stable pole •  Open loop unstable pole A  Open loop stable pole (unaffected)

Figure 2.8: Simple method for a —stability

When the imaginary axis o f the s— plane is translated to s +  a /2 , the stable poles o f 

the system that satisfy Re(s) <  —a /2  also appear in  the RHP o f the s-plane. The optim al 

controller that maximizes input performance reflects the poles in  RHP o f s-plane across 

the imaginary axis (see Observation 2.1) across the imaginary axis. Then, by inverse 

transformation to the s—plane, the poles o f the closed loop system satisfy Re(s) <  —a. 

Using Proposition 2.3, the closed loop system satisfy

2|Re(P«)|
\\Tuw{ s - a / 2 ) \ \ l  =

t i  ° h M G ( s -  a /2 ))*)

I T ^ s - a / 2 ) |U  =  a-H\U { G { s - a /2 ) ) * )
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where (P ,B , C ) is the balanced realization o f G (s —a / 2 ). Sim ilar relations can be derived 

for a system w ith time delay using Proposition 2.4; however, expressing ||T uu,(s) || directly 

in  terms o f ||G (s)|| and a  is d ifficu lt. This class o f norms are called shifted norms and 

have been discussed by Boyd and Barratt [9, Ch. 5], Nevertheless, A lgorithm  2.1 provides 

a simplistic way o f attaining a —stability using available numerical tools for 7 f2 and Hoo 

optimal controller design.

2.7 Selection of Variables for Stabilizing Layer

The results presented earlier in  this chapter are useful for selecting a subset o f controlled 

and manipulated variables for stabilizing the system w ith minimum input usage. Clearly, 
the optimal set o f variables can be selected by comparing the achievable input performance 

for different alternatives. A  lim itation o f this approach is that it  suffers from  the curse 

o f dimensionality, as the number o f alternatives show an exponential growth w ith  system 

dimensions. In this section, we present an iterative algorithm for finding a suboptimal 

solution in fin ite time.

Further, selection o f variables for the stabilizing layer through m inim izing input usage is 

beneficial, but generally there are also other criteria. For example, the effect o f disturbances 

on the remaining control problem (see Figure 2.1) can be amplified due to closure o f the 

stabilizing or inner loop making the task o f performance satisfaction d ifficu lt. We show 

that this issue can also be addressed in  the framework o f input usage minim ization.

2.7.1 Choice of Norm

For a rational system w ith a single unstable pole driven by pure measurement noise, the 

optimal subset o f the controlled and manipulated variables is independent o f the choice 

o f norm [58]. In  the general case, however, the choice o f norm can influence the optimal 

combination o f variables. For example, consider the follow ing system,

=  (s _  ! ) * „  _  2) [ (°-7s -  L 2 > -< 2 -2s +  2-4> ]

where the objective is to choose one o f the inputs requiring minimum usage for 

stabilization. Use o f H 2 and H ^  norms suggests the selection o f t /,2 and Ui respectively. 

The appropriate norm can be chosen based on the information available regarding the 

disturbance characteristics, e.g. when the disturbances can be considered to be white noise, 

use o f H 2 norm is appropriate. On the other hand, when only bounds on the disturbances 

are available, H ^  norm should be used [115].
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We note that the L \  norm closely addresses the physical constraints o f the system 

and [117]

l |K (s)S (s)H o c  <  | |K ( s ) S ( s ) | |£ 1

Thus, use o f H ^  norm may be preferred over ? f2 norm. I f  for some combination o f 

variables, ||K (s)S (s) ||oo >  (5, where (3 depends on physical constraints on the manipulated 

variables, system stabilization w ithout actuator saturation using a linear feedback controller 

is not possible.

2.7.2 Reducing Computational Complexity

Consider a rational system w ith a single unstable pole, where the closed loop system is 

driven by measurement noise. For such systems, I ^  and / 2 depend on ||B || and ||C|| (cf.

(2.58)) and the follow ing conclusions can be drawn:

•  The optimal set o f rny controlled and mu manipulated variables can be found by 

selecting variables w ith  largest entries in  the B  and C  matrices.

•  The optimal set o f my controlled and rnu manipulated variables is always a subset o f 

the optimal set o f (my +  1 ) controlled and (rnu +  1 ) manipulated variables.

W ith this monotonic relationship, the optimal set o f variables for stabilization can be 

selected through (ny +  nu) comparisons for a ny x nu dimensional system. Unfortunately, 

this attractive result does not hold for systems w ith m ultiple unstable poles. Specifically, 

consider that the set o f controlled and manipulated variables be partitioned into subsets o f 

equal dimensions as, y  =  [y i y 2 y 3] and u  =  [u i u 2 u 3]. Among these subsets, let the 

input requirement be minimized by choosing y i,  U i. In  general, there is no guarantee that 

the achievable input performance for the subset [y i, y 2], [u i u 2] is better than the subset 

[y2> Ys], [u2 u 3]. This point is further illustrated using the follow ing system:

g ( s ) = ( » - o . 5 )1( s - i - 7 ) 1 ( ~ 1'7s +  0'75> ( “ s +  11) - o  acs +  o .i)  ]

For this system, u3 is the optimal choice for m u =  1 and ux, u2 is the optimal choice for 

mu — 2, when either o f 7f2 or H ^  norms are minimized. Due to the lack o f a monotonic 

relationship, Cm", x comparisons are required for optim ally selecting rnv controlled 
and m u variables for a ny x n u dimensional system. Solving the variable selection problem 

through comparison o f a ll alternatives is computationally intractable, as the number o f 

alternatives grow exponentially w ith the system dimensions. To this end, Havre [56] has
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suggested using the follow ing step-wise approach to obtain a suboptimal solution in  fin ite 

time, where the unstable poles are stabilized one at a time:

A lgorithm  2.2 For rational systems w ith  W u(s) =  G „(s ) =  I,

(a) Scale the system variables and obtain a state space realization o f the scaled system, 

where U(G(s))  <-> (P , B , C ) such that P  =  diag(pi • ■ -pnp), Re(pj) >  0.

(b) To stabilize the first real or pair o f complex unstable pole (preferably the fastest 

unstable pole), choose the controlled and manipulated variables w ith largest entries 

in  the corresponding rows and columns o f the B  and C matrices respectively. Design 

a controller to stabilize the chosen unstable pole and close the loop.

(c) Sim ilar to the previous steps, obtain a state space realization for the remaining 

control problem and stabilize the second unstable pole. Repeat the procedure until 

a ll unstable poles are stabilized.

This simple method avoids the problem o f computational complexity, as in  the worst 

case, maximum o f Y^=o(nii +  nu ~  2 i)  comparisons are required; however, it  suffers from 

the follow ing lim itations:

•  A lgorithm  2.2 yields a decentralized controller designed sequentially and thus the 

input usage for stabilization is large as compared to a fu ll block multivariate 

controller.

•  In  the worst case, this method requires that nr +  nc controlled and manipulated 

variables be used for a system w ith nr real and nc pairs o f complex unstable poles.

•  The algorithm does not handle time delay systems or the case where W u(s) ^  I or 

GU)(s) + 1.

We next present an iterative method that does not suffer from the lim itations o f 

A lgorithm  2.2. The central idea is to choose one controlled or manipulated variable 

at a time. The algorithm provides a reasonable suboptimal solution fo r the variable 

selection problem in fin ite time, where the computational time increases linearly w ith 

system dimensions and quadratically w ith the number o f variables to be selected. The 
case o f system stabilization using decentralized controller is handled in  the next chapter.

A lgorithm  2.3 Prior to variable selection, scale the system variables.
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(a) Select the optimal set consisting o f 1 controlled and 1 manipulated variable that 

minimizes input requirement for stabilization by enumerating a ll possible ny x  nu 

alternatives.

(b) Keeping the set o f chosen manipulated variables the same, select an additional 

controlled variable that minimizes input requirement for stabilization.

(c) Keeping the set o f chosen controlled variables the same, select an additional 
manipulated variable that minimizes input requirement for stabilization.

(d) Repeat steps (b) and (c) until m y controlled and mu manipulated variables are 

selected. I f  m y ^  mu, skip step (b) or (c) once the required number o f variables 

are selected.

A lgorithm  2.3 can be easily used to handle time delay systems and the cases where 

W u(s) 7  ̂ I  or Gw(s) /  I. Note that when W „(s) and G w(s) are not diagonal, the 

algorithm requires inversion o f different sub-matrices o f W u(s) and G w(s) during every 

iteration. For selecting the set o f rny controlled and m u manipulated variables fo r a 

ny x  nu dimensional system, the Algorithm  2.3 requires nynu +  Y ^ i= imy+1 (nv ~  *) +  

YTj= imu+1(nu ~  j )  number o f comparisons. This expression can be sim plified as,

nvnu +  (ny -  0.5m y)(m y -  1 ) +  (nu -  0.5m u)(m u -  1 )

Essentially, starting from the optimal set o f 1 controlled and 1 manipulated variable, 

at every step, A lgorithm  2.3 adds one locally optimal controlled or manipulated variable. 
A  sim ilar algorithm can be constructed that starts w ith a ll variables and eliminates one 

controlled or manipulated variable at every step. This alternative algorithm is particularly 

useful, when m y >  ny/2  and m u > nu/ 2 .

Example 2.4 We consider the base case o f the Tennessee Eastman benchmark 

problem [33]. A  linearized model o f this process is obtained by numerical differentiation 

o f the nonlinear model. The model is scaled prior to variable selection using the approach 

o f Havre [56, Ch.6 ]. Based on the recommendation o f Havre [56, Ch.6 ], we use only a 

subset o f controlled variables and avoid using feed streams for stabilization. The resulting 

system has 11 controlled and 8  manipulated variables and unstable poles at 3.07 ±  J5.08,
0.02 ±  j0 .16, 0.007 and 0.

In  Table 2.1, we show the results obtained by applying Algorithm  2.3 for H 00 norm 

minim ization, which are compared against the optimal solution obtained by enumeration.
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Exact Solution Suboptimal Solution

my m u CV M V Too CV M V Too

1 1 2/22 0 . 1 1 2/22 UlO 0 . 1 1

1 2 2/21 Ug,UU 0.077 2/22 Uw, Uu 0.1047

2 1 Vl2, 2/21 UlO 0.0235 2/1 2 , 2/22 UlO 0.084

2 2 yn , 2/21 uio,un 0 . 0 2 2 2 2/1 2 , 2/22 UlO, ^11 0.0783

3 3 2/8 , 2/1 2 , 2/21 Us, UlO, Uu 0 . 0 2 1 2 2/1 2 , 2/2 1 , 2/22 Us, UlO, Uu 0.0213

Table 2.1: Comparison o f the results obtained using A lgorithm  2.3 w ith the optimal 
solution fo r stabilization o f Tennessee Eastman process using H a0 optimal controller

my m u CV M V Tf

1 1 2/21 UlO 0.0068

1 2 2/21 Ul0,Uu 0.0059

2 1 2/1 2 ,2/21 UlO 0.0063

2 2 2/1 1 ,2/21 Ul0,Uu 0.0055

3 3 2/1 1 ,2/1 2 ,2/21 ^5,^1 0 ,^ 1 1 0.0050

Table 2.2: Alternatives for stabilizing Tennessee Eastman process using H i  optimal 
controller. Due to monotonicity, A lgorithm  2.3 provides the optimal solution.

The suboptimal solution is reasonably close to the optimal solution, but is obtained 

using a fraction o f the computational requirement for enumeration. For example, when 

r r i y  =  mu =  3, a total o f 9240 comparisons are required for enumeration, where as 

A lgorithm  2.3 requires only 120 comparisons.

For Hoo norm m inim ization, the lack o f the monotonic relationship should be noticed in 

Table 2.1. In  particular, for m y =  1, m u =  2, choice o f u&, uu  is optimal, but this set does 

not contain u10, which is optimal for rny =  l . rn u =  1. On the contrary, when H i  norm 

is m inim ized, A lgorithm  2.3 provides the same solution as obtained by enumeration. This 

happens as the optimal solution for H i  norm m inim ization shows monotonicity, but this is 

not true in  general. The different alternatives for stabilization o f the Tennessee Eastman 

process using an H i  optimal controller are shown in Table 2.2.

In  general, m y, m u are not specified beforehand and are decided upon by trading them o ff 

against the achievable input performance. For this case study, the achievable H ^  optimal
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input performance using a ll controlled and manipulated variables is 0.0194. Then, based 

on the optimal solution obtained by enumeration, use o f 2  controlled and 1  manipulated 

variables is sufficient. In  comparison, a disadvantage o f A lgorithm  2.3 is that is suggests 

use o f 3 controlled and 3 manipulated variables and finding an improved algorithm remains 

an open area o f research.

2.7.3 Other Criteria

In  the previous section, the selection o f variables for the stabilizing layer through 

m inim izing input usage was demonstrated. Though beneficial, this approach can be 

insufficient for practical controller design problems as generally there are also other criteria. 

One such important criterion is the amplification o f effect o f disturbances on the remaining 

control problem (see Figure 2.1) due to closure o f the stabilizing loop, which can make the 

task o f performance satisfaction d ifficu lt. We show that this issue can also be addressed in 

the framework o f input usage minim ization.

Consider the set o f controlled and manipulated variables be conformably partitioned as

y i(s ) =  G n (s )u i(s ) +  G i2 (s)u 2 (s) +  G k,i(s)w (s) 

y 2 (s) =  G 2 i(s )u i(s ) +  G 2 2 (s ) ll2 (s) +  G u,2 (s)w (s)

where the subset y 2 , u 2  is used for stabilization. When the stabilizing loop is closed, the 

effect o f the disturbance on the controlled variables o f open loop system is given as [56],

yi(a) =  (G „i(s ) -  G 12K (s )( I +  G 2 2 K (S) ) - 1 G tt,2 (s)) w (s) 

=  G ^ a )  ( I  -  G ~ [G 1 2K (s )( I +  G 2 2 K (s ) ) - 1 G U)2(S)) w (a)

Then, the stabilizing layer amplifies the effect o f disturbances on the remaining control 

problem, i f

||I -  G “ i(s )G 1 2K (s )( I +  G 22K (s ) ) -1G w2(s)\\00 >  1

During the selection o f controlled and manipulated variables, it is beneficial to take this 

effect o f disturbance amplification into account. The stabilizing controller can be designed 
such that the input usage for stabilization is traded o ff against the disturbance am plification 

effect. For this purpose, we note that

||I -  G “ l(s )G 1 2K (s )( I +  G 2 2 K (S) ) - 1 G u,2 (s)||oo 

<  1 +  ||G -J (s )G 1 2K (s )( I +  G 22K (s ) ) -1G w,(s)\\00

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 2.8 Chapter Summary 43

Thus, it  suffices to minimize cr(GU)11 (s )G i2 K (s )( I +  G 2 2 K (s ) ) - 1 G „,2 0 )) at the 

desired frequencies. In  general, we can minimize ||W t„(s )G  U)J(s )G i2 K (s )( I +  

G 2 2 K (s ))_1 G w2 (s)||00, where W u;(s) is a frequency dependent weight. This requirement 

combined w ith  m inim ization o f input usage for stabilization results in  a multi-objective 

optim ization problem and a popular approach is to instead solve the follow ing optim ization 

problem

This problem is the same as the general input usage minim ization problem considered 

earlier in  this chapter, except the special choice o f frequency dependent weights. Thus, the 

controlled and manipulated variables can be selected as discussed in  the previous section 

w ith m inor modification. For 2 f2 norm m inim ization, sim ilar expression as (2.59) can be 
used.

2.8 Chapter Summary

In this chapter, we used a state space framework to obtain analytic expressions for 

achievable input performance for SISO and M IM O  systems w ith and w ithout time delay. 

Regarding the factors affecting achievable input performance, the follow ing general 

conclusions are drawn:

1. The input performance prim arily depends on the jo in t contro llab ility and 

observability o f unstable poles.

2. In  the H<x>-control framework, there are no lim itations on achievable input 

performance for minimum phase systems, when the closed loop system is driven by 

input disturbances. In the W2-control framework, the achievable input performance 

fo r this class o f systems is lim ited only by the location and number o f unstable poles.

3. Time delay poses no serious lim itation on the achievable input performance for a 

system w ith slow instabilities and vice versa.

4. The input performance o f a M IM O  system, where the delays cannot be separated at 
the inputs or outputs, can be much worse as compared to a system w ith delays that 

can be factored at the inputs or outputs.

K (s )( I +  G 2 2 K (s ))_ 1 G l„2 (s) (2.59)
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5. In contrast to SISO systems, the input requirement for stabilization may decrease 

for M IM O  systems w ith an increase in  time delay in  some elements o f the transfer 

m atrix relating controlled and manipulated variables.

Based on the observation that the optimal controller mirrors the unstable poles across 

the imaginary axis, a simple method is proposed to handle the a —stability problem. In 

the context o f process control, this method is useful for controller design using available 

numerical tools for systems w ith a subset o f poles on or near the imaginary axis frequently 

arising due to holdup o f u tilities and raw materials.

It  is demonstrated that except for systems w ith a single unstable pole, the optimal subset 

o f controlled and manipulated variables that minimizes input requirement fo r stabilization 

depends on the choice o f norm. In the general case, the choice o f norm depends on the 

available information regarding disturbance characteristics, but use o f Hoc norm can be 

preferred to address the actuator saturation issue. We also presented some insights to reduce 

the computational complexity o f the variable selection problem and handle criteria other 

than input performance maximization in  a unified framework.

2.9 Further Reading on Performance Limitations

The area o f fundamental lim itations o f feedback control can be dated back to Bode [ 8 ], 

In  his seminal work, Bode showed that for stable systems w ith more than one pole-zero 

excess, the integral o f logarithmic magnitude o f the sensitivity function over a ll frequencies 

is always zero. W ith a fin ite bandwidth lim itation, this result implies the unavoidable trade- 

offbetween different performance objectives. Bode’s result has been extended to open loop 

unstable systems by Freudenberg and Looze [38]. The same authors have also developed 

a Poisson-type integral to quantify the lim itations imposed by the unstable zeros on the 

sensitivity integral. The classical Bode sensitivity and Poisson-type integrals have been 

extended to multivariate systems by Chen [21]. The importance o f the Bode sensitivity 

integral for some real-life controller design problems is discussed by Stein [104].

Note that the Bode sensitivity or Poisson integrals always hold, irrespective o f the 

optimal controller design criteria. A  sim ilar set o f constraints, known as analyticity 

or interpolation constraints, were introduced by Zames [115]. The interpolation 

constraints show that for a system w ith unstable poles and zeros, peaks in  sensitivity and 
complementary sensitivity functions are inevitable [102, 115]. Havre and Skogestad [57] 

have used these interpolation constraints to quantify lim itations imposed by RHP poles and 

zeros on the lower bounds on several important closed loop transfer matrices. Chen [22]
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has presented improved achievable bounds on the sensitivity and complementary sensitivity 

functions through the use o f these constraints combined w ith Nevanlinna-Pick interpolation 

theory [6 ].

Over the years, a number o f results have been obtained for a related class o f problems, 

where the achievable performance is quantified assuming a particular performance 

criterion. One o f the most studied problems is the singular or cheap control problem. 

For discrete time systems, Peng and Kinnaert [89] have provided an explicit solution and 

the achievable performance is characterized by Qiu and Davison [92]. Recently, Yuz and 

Goodwin [114] presented an approximate solution to the decentralized minimum variance 

control, which is also studied later in  this thesis. The presented lis t o f references on 

performance lim itations is far from complete. The reader is encouraged to refer to the 
books [9, 97, 102] and the recently published special issue on performance lim itations by 

IEEE Transactions on Automatic Control [27].
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Chapter 3 

//-Interaction Measure for Unstable 
Systems

The requirement that the block diagonal part o f the system should have the same 

unstable poles as the system lim its the practical applicability o f conventional //-interaction 

measure (/z-IM ) [49] to stable systems. This lim itation can be overcome by designing the 

decentralized controller based on a block diagonal approximation that is different from 

the block diagonal elements, but has the same number o f unstable poles as the system. By 

expressing the //-IM  in terms o f the transfer matrix between the disturbances and inputs, we 

show that the block diagonal approximation can be sub-optimally selected by m inim izing 

the scaled distance between the system and the approximation. We present a numerical 

method for choosing the block diagonal approximation and a simple method for designing 

the decentralized controller based on the approximation. 1

3.1 Introduction

The last chapter presented results on system stabilization using m inim al control action. In 

this chapter, we consider the system stabilization using a decentralized controller. Over the 

years, three different approaches have evolved for decentralized controller design:

a) Simultaneous design using parametric search methods: The decentralized controller 

is chosen to have a fixed structure (e.g. PID controller) w ith  unknown parameters.

'A  part o f this work was performed while the author was visiting Professor Sigurd Skogestad, Norwegian 
Institute o f Science and Technology, Trondheim, Norway during March-May 2003.

The central idea of this chapter was presented at the American Control Conference, Boston, MA, 2004 [74].

46
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The optimal value o f these parameters is found by m inim izing the appropriate norm 

o f the closed loop system using direct or indirect search based methods. Though 

useful, this approach results in  optim ization problems that are not usually convex 

and can be highly complicated even for simple systems [7].

b) Sequential design: The controllers are designed sequentially using a lexicographical 

ordering o f the individual controllers. The lowest level controller is designed firs t and 

the loop is closed. The next controller is designed based on the partially closed loop 

system. The resulting performance strongly depends on the ordering o f the loops and 

often a tria l and error approach is required to obtain acceptable performance [67,84],

c) Independent design: The individual controllers are designed independently o f each 

other based on a block diagonal approximation that is usually taken as the block 

diagonal elements o f the system. Then, the decentralized controller design problem 

reduces to design o f a number o f small dimensional fu ll multivariable controllers. 

When the interactions are small, such a controller also stabilizes the closed loop 

system w ith m inimal loss o f performance in comparison to the design basis [6 6 , 1 0 1 ]. 

This approach always results in  suboptimal performance because the tuning o f other 

controllers is neglected.

In this work, we focus on the independent design approach. Although sub-optimal, 

the controller design is much simpler as compared to other techniques. Furthermore, this 

approach easily handles the cases in which only the bounds on (possibly time-varying) 

off-diagonal elements o f the system are available [98],
Grosdidier and M orari [49] proposed the use o f p interaction measure (//-IM ) to assess 

the feasibility o f system stabilization through independent designs o f individual loops. 

This approach yields sufficient conditions to ensure that the decentralized controller that 

stabilizes the block diagonal part o f the system also stabilizes the system itself. The 

problem o f decentralized controller synthesis through independent designs has also been 

studied by Limbeer [78] and Ohta etal. [8 8 ], who used the concepts o f generalized 

block diagonal dominance and quasi block diagonal dominance respectively. The use o f 

p —IM  is less conservative than these approaches because the controller structure is taken 

into account. A  connection between these methods based on dominance and p —IM  is 

established in  the next chapter.

The conventional /j-IM  requires that the system and its block diagonal part have the same 

right ha lf plane (RHP) poles. Grosdidier and M orari [49] pointed out that this condition is 

not satisfied by most o f the systems encountered in  practice, lim iting  the applicability o f
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/i-IM  to open loop stable systems. Samyudia et al. [96] have criticized the //-IM  fo r this 

lim itation and have instead proposed a method based on v-gap metric [110]. In  this chapter, 

we present a modified //-IM  that easily handles unstable systems. The decentralized 

controller is designed based on a block diagonal approximation that is different from  the 

block diagonal elements, but has the same number o f unstable poles as the system.

Clearly, the number o f block diagonal systems w ith the required number o f unstable 

poles is infin ite and the success o f the modified //-IM  approach strongly depends on the 

choice o f an appropriate approximation. We express the //-IM  in  terms o f the closed 

loop transfer matrix between disturbances and system input (or controller output). This 

alternate representation shows that the block diagonal approximation can be reasonably 

selected by m inim izing the scaled £<*> distance between the system and the approximation. 

The problem o f finding a structured approximation o f a fu ll multivariate system has 

earlier been considered by L i and Zhou [77], but no numerical methods for solving the 

approximation problem are provided. In  this chapter, we present a numerical approach, 

where the approximation problem is first solved at a set o f chosen frequencies followed by 

a parametric identification method.

Sim ilar to the conventional //-IM  method, the stabilizing decentralized controller can 

be synthesized using a loop shaping approach based on the block diagonal approximation. 

An advantage o f alternate representation o f //-IM  used here is that controller design can 

be much sim plified using the results o f last chapter. Although the focus o f this chapter 

is on finding stabilizing decentralized controllers, we show that the stabilizing controller 

inherently m inimizes an upper bound on the input requirement fo r stabilization. The results 

presented here can also be extended to handle (robust) performance issues directly using 

the results o f Skogestad and M orari [101].
The organization o f this chapter is as follows: some useful results from  robust control 

theory and optim ization are presented in  § 3.2; the available results o f //-IM  are reviewed 

and its lim itation is pointed out in  § 3.3; the alternate representation o f //-IM  is presented 

and upper bounds on closed loop performance are derived in § 3.4; in  § 3.5 we consider the 

problem o f selecting the optimal block diagonal approximation; the sim plified controller 

design is presented in  § 3.6; in § 3.7, a numerical example is presented to demonstrate the 

u tility  o f proposed approach followed by chapter summary in  § 3.8.
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3.2 Preliminaries

In  this section, we review the useful concepts o f structured singular value, model order 

reduction and optim ization using linear matrix inequalities. These results are used 

extensively during the remaining development in  this chapter.

3.2.1 Structured Singular Value

Most o f the problems encountered in robust control theory can be reduced to guaranteeing 

that for some characteristic transfer m atrix M (s ), I — M (jw ) A ( ju )  remains nonsingular 

for a ll u) for a ll allowable values o f A ( ju )  G Cqxp. A  practical and mathematically 

convenient way o f representing the set o f allowable A (s) is as a norm bounded set, 

e.g., a ( A ( ju ) )  <  1 for a ll ui. W ith this representation, the smallest norm o f the 

destabilizing perturbation A(ju>) is given as l /a (M (jLo )) .  Then, it follows that det(I — 
~M(juj)A(jLo)) =£ 0 for a ll allowable perturbations, i f f  ||M(.s) Hoc <  1 .

In  the above discussion, allowable perturbations include a ll matrices A ( ju )  w ith 

a (A ( jo j) )  <  1 for all u). In practice, many problems arise, where A (s) has a structure,

i.e. some entries o f A (s) are identically zero. Then, the condition ||lV[(s)||oo <  1 is 

only sufficient (and highly restrictive) for ensuring that det(I — M .(ju j)A ( ju j))  ^  0 for 
all allowable perturbations. This motivates the use o f the structured singular value, which 

explicitly accounts fo r the structure o f the perturbations.

Definition 3.1 Let the set A  G Cpxq be defined as

A  =  (d ia g (A j) : A , G CPiXq\ a ( A ) <  1}

The structured singular value o f A  G Cf/Xp is given as [35],

M A )  =  ------:---- -------    =----------
min{<7 (A ) : A  G A , det(I — A A ) =  0} 

unless no A  G A  makes (I — A  A ) singular, in  which case /xa (A ) =  0.

The /xa (A ) represents 2—norm o f the smallest structured perturbation that makes 

I — A A  singular, where the subscript A  is used to explicitly denote the structure. Braatz 

et al. [14,15] and Fu [39] have shown that in the general case, the determination o f the exact 

value or an approximate bound on /x is not computationally tractable; however this is not a 

serious lim itation as a tight upper bound on /x for complex structured perturbations can be 

readily computed [35]. For notational sim plicity, consider the perturbation set consisting
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o f square matrices and let V  be set o f matrices that commute w ith a ll elements o f A  or 

D A  =  A D  for a ll A  G A , D  e V. Then,

Ma (A ) <  ^ in f^ D A D -1 ) (3.1)

In this thesis, we denote the upper bound given by (3.1) as /2a (-)- The upper bound given 

by (3.1) is tight for complex perturbations and the equality holds, i f  the number o f blocks 

in  A  is less than 4. When A  has 4 or more blocks w ith no block being a repeated scalar, 

the ratio o f /xa(-) and /2a (-) for the worst known example is 0.85 and is close to 1 fo r most 

cases [117]. A  collection o f many useful properties o f the structured singular value can 

be found in  [102, 117]. One particularly useful property o f the structured singular value, 

which is used later in this chapter is:

Ma (  °  o )  =  V ^ (A M B )  (3.2)

where A  =  d ia g (A i, A 2) and A i,  A 2 are fu ll complex matrices [100].

3.2.2 Optimal Hankel Norm Approximation

For practical controller design and system identification, use o f low order controllers or 

models is preferred because o f online implementation issues. Imposing an order constraint 

directly on the controller design or identification algorithms usually makes the problem 

non-convex and d ifficu lt to solve. To avoid this d ifficulty, we can firs t solve the unrestricted 

problem (w rt the controller or model order) and then reduce the order o f the solution using 

efficient techniques. In  this subsection, we discuss such an order reduction technique, i.e., 

Hankel norm approximation approach.

Let G(.s) be a stable, square and rational transfer matrix having order n. The objective 
is to find a reduced order stable transfer matrix G k(s) having order k such that

G k(s) =  arg m in ||G (a) -  G k(s)\\H
G  k (s)

where ||.||/j denotes the Hankel norm. This problem has been studied by many researchers 

and a complete solution is given by Glover [42], who showed that

, m in ||G (s) — G fc(s)||#  =  . m in ||G (s) -  G k(s) -  F (s )||0 0 (3.3)
G (̂s)£UHoo G k ( s ) , F * ( - s ) e K H o o

=  aH,k+1{G(s)) (3.4)

where o h m i(-) denotes the (k +  l ) th Hankel singular value. A  complete characterization 

o f a ll solutions that achieve the lowest approximation error (3.4) is available in  the
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original paper by Glover [42] and many standard optimal control textbooks. Note that 

the requirement that G (s) be square is not restrictive and is easily satisfied by padding 

extra zero columns or rows on the non-square G (s). When the order o f the approximation 

k is zero, G k(s) is a constant matrix and thus (3.3) is equivalent to finding an anti-stable 

approximation o f a stable system. In this case, the Hankel norm approximation problem is 

alternatively known as the Nehari extension problem [37].

For the block diagonal approximation problem discussed later in  the chapter, we require 

that G (s) w ith np unstable poles be approximated by G k{s) w ith k  unstable poles such that 

||G (s) -  G ft(s)||oo is minimized. Next, we show that this problem can also be solved as a 

Hankel norm approximation problem.

Let G (s) =  G i(s ) +  G 2 (s) such that G [( -s ) ,G 2 (s) e IZHoo■ W ithout loss o f 
generality, we can parameterize G k(s) as G fc(s) =  G {(s) +  G 2 (s), which provides

l|G (s) -  G *(S)|U  =  HGiOO -  G f ^ lU  =  IIG K -s ) -  (G fW n io o  

The optimal value for (G *(s))* G 'R-HOQ is found by solving (cf. (3.3)), 

m in | |G I( - S) - ( G f ( s ) ) * - F ( S ) | | 00
( G ' f ( s ) ) * , p * ( - s ) e  n-Hoo

Then, the optimal value o f G k(s) is given as G k(s) =  G k(s) +  F * (—s) +  G 2 (s). Since 

F *(—s) and G 2 (s) are stable, G k(s) is the C00 optimal reduced order approximation o f 

G (s) w ith k unstable poles.

3.2.3 Linear Matrix Inequalities

Many control theoretic problems require solving an optim ization problem that does not 

admit an analytic solution. Solving these problems numerically strongly depends on 

whether the optim ization problem is convex and i f  not, how closely it  can be approximated 

by an equivalent convex problem. Linear matrix inequalities (LM Is) represent a class o f 

such convex constraints and are represented as follows,

n

F (x ) =  F 0 +  ^  X jF j >- 0 (3.5)
i = l

where x  G M" represents the decision variable and F* G Rnx"  are symmetric matrices. In  

(3.5), >- is the partial ordering symbol and F (x ) >- 0 implies that F (x ) is positive definite. 
The past decade has seen a rapid growth in the use o f LM Is for solving control problems 

because many non-linear optim ization problems can be represented as LM Is that are affine 

in  the decision variables.
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In  this chapter, we use LM Is as the primary computational tool for solving relevant 

optim ization problems. To fu lly  appreciate the importance o f LM Is, consider the problem 

o f calculating p,&.(.). Due to the presence o f the inverse term in (3.1), the optim ization 

problem is d ifficu lt to solve in its present form; however, it  can be transformed into an 

equivalent convex optim ization problem. There exists D  € T> such that //a  (A ) <  7  i f f

(D A D - 1 )* (D A D -1 ) -« 7 2I  for some D  € V

4$ A *D *D A  -< 7 2 D *D  for some D  £ T>

&> A *P A  -< 7 2P  for some P  =  D *D , P j- 0 , P e D  (3.6)

For a given 7 , (3.6) is affine in the decision variable P . Thus the m inim al value o f 7  

can be found using a bisection search method and /2a (A ) =  in f 7  such that (3.6) holds. 

The class o f problems having a form sim ilar to (3.6) are known as generalized eigenvalue 

problems. A  collection o f many other control problems that can be reduced to the L M I 

form  is available in  [ 1 0 ].

Naturally, not every optim ization problem can be reduced to LM Is. A  more general class 

o f m atrix inequality problems is that which involves the product o f two decision variables. 

These inequalities are known as bilinear m atrix inequalities (BM Is) and have the follow ing 

general form,
n  n  n  n

F (x , y ) =  F 0 +  Y  x iF i +  Y y JG i +  Y  Y >“ 0  (3-7)
i = 1 j = 1  i = 1 j = l

where F*, G J} H y  >~ 0 for a ll i. j  and y  e Rn. These BM Is are much more d ifficu lt to 

solve than LM Is and are known to be computationally intractable [108]. When one o f the 

decision variables in  (3.7) is fixed, the relation becomes an LM I. Then, the B M I (3.7) can 

be sub-optimally solved by iteratively by fix ing one o f the x  and y  at a time. This sim plistic 

often provides satisfactory solution to the BM I. A  survey o f other techniques for solving 
BM Is can be found in [108] and its references.

3.3 //-Interaction Measure

In this section, we briefly review the available results on //-IM  [49], point to its lim itation 

and suggest a modification to overcome the same. Throughout this chapter, we assume 

that the system does not contain any decentralized fixed modes [112]. The absence o f 
decentralized fixed modes is both necessary and sufficient for existence o f a decentralized 

stabilizing controller but only necessary, when individual loops o f the decentralized 

controller are designed independently o f each other.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 3.3 //-Interaction Measure 53

Figure 3.1: Closed loop system

W ith reference to Figure 3.1, let the system G (s) be partitioned as G (s) — Gbd(s) +  

G /(s ) such that

•  Gf,d(s) contains the block-diagonal elements o f G (s) and

•  Gbd(s) and G (s) have the same number o f RHP poles.

Define the transfer matrices E (s) and T&d(s) as,

Tftd(s) =  G(,dK{,d(s) ( I +  GbdK-bd(s)) 1 (3.8)

E(s) =  ( G ( s ) - G bd(s ) )G ^ (s )  (3.9)

where K M(s) is the block diagonal controller. T*,d(s) can be interpreted as the

complementary sensitivity function i f  G /(,s) were zero, and E (s) as the m ultiplicative 

uncertainty in  G m (.s). Let K h (s) be designed such that T M(s) is stable. The central 

question remains: Does K(,rf(.s) also stabilize G (s)? This issue has been addressed by 

Grosdidier and M orari [49], who proposed the use o f //-IM  for this purpose.

Lemma 3.1 Assume that G (s) and G ^(s ) have same number o f RHP poles and T m (s)

is stable. Then T(.s) =  G K y (s ) ( I  +  G K y (s ) ) ” 1 is stable i f f  the follow ing conditions

hold [49]

det(I +  E T 6d(s)) ^  0 (3.10)

IV(0,det(I +  E T M(s))) =  0 (3.11)

where N ( a , .) denotes the winding number [ 1 10] or the number o f clockwise encirclements 

o f the point (a, 0) by the image o f Nyquist D  contour under (.).

Proof: The return difference transfer function for T (s ) can be written as,

( I +  G K H (s)) =  ( I +  G fcdK ftd(s) +  G / K 6d(s))

=  ( I  +  G / K M(s )(I +  G MK 6rf(s ) )-1) ( I  +  G bdK bd(s))

=  ( I +  ETftd(s)) ( I +  GbdK&d(s)) (3.12)
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Since for rational systems g fs ) ,  g2(s), N(ot, g ^ i s ) )  =  N (a ,g i(s ) )  +  N (a ,g 2(s)) (see 

e.g. [ 1 1 0 ]), using the alternate expression for the return difference transfer function (3 .1 2 ),

N ( 0 , d e t(I +  G K m(s))) =  N  (0 , d e t(I +  E T M(s)))

+  N(0, det(I 4- GbdKftd(s))) (3.13)

Since G (s) has np unstable poles, it  follows from the multivariate Nyquist stability 

criterion [102] that T (s ) is stable if f

d e t(I +  G (s )K bd(s)) f  0  

N(0, d e t(I +  G (s)Kbd(s))) =  ~n p

Further, since T m (s) is stable by assumption,

det(I +  G bd(s )K bd(s)) f  0 

N(0, det(I +  GM(s)K6d(s))) =  - n p

The necessity and sufficiency o f (3.10)-(3.11) follows using above expressions and 

(3.13). ■

Lemma 3.1 was orig inally proven by Grosdidier and M orari [49], except the requirement 

that (3.10) must hold. This is a m inor technical requirement to ensure that the image o f 

det(I +  T wE(.s)) does not pass through the origin o f the complex plane. Lemma 3.1 forms 

the basis for a more important result, as presented next.

Theorem 3.1 Let G(s) and Gbd(s) have same number o f unstable poles. I f  K hd(s) 
stabilizes Gm(s), then Km(.s) also stabilizes G(s), i f

a  (T b d ( ju ) )  <  (E 0 ’w)) V u e K  (3.14)

where A  has the same block structure as G bd(s) and T M(.s), E (s) are defined by (3.8) and 

(3.9) respectively.

Proof: The sufficiency o f (3.14) for closed loop stability is proven by contradiction. Let 

N {0, det(I +  E Tm (s))) > 0 and let the image o f det(I +  E T bd(,s)) intersect the negative 

real axis o f complex plane at the frequency ui0. Then there exists a /?, \fi\ <  1 such that

det(I +  f 3 E T bd(ju>0) )  =  0 

Sim ilarly, let there exists a frequency loi such that

det(I +  ETftd(jtJi)) =  0
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Combining these two conditions, we notice that T (s) is unstable i f f  there exists a 

(3, \[3\ <  1 such that d e t(I +  f3ETbd(juj)) — 0 for some u  6  1 . It follows from 

the definition o f the structured singular value that the norm o f smallest perturbation that 

destabilizes E ( ju )  is given as a~l ((3Tbd(juj)). When (3.14) holds, a (3, \(3\ <  1 such that 

d e t(I +  f3ETbd(juj)) =  0 for some u  € M does not exist and the closed loop system is 

stable. ■

Theorem 3.1 was proven by Grosdider and M orari [49] under the requirement that the 

unstable poles o f G (s) and Gm(s) be identical. It is clear from Lemma 3.1 and the proof o f 

Theorem 3.1 that the number o f unstable poles o f G (s) and G bd(s) being equal suffices. In  

either case, design o f Km (s) solely based on G bd(s) is equivalent to designing individual 

loops independently. The equation (3.14) is known as the /i-IM. This powerful result allows 

the designer to impose restrictions on individual controllers, but s till be designed solely 

based on G bd(s) such that closed loop stability is ensured.

As pointed by Grosdidier and M orari [49] that in  practice, G(.s) and G bd(s) as defined 

above have same number o f RHP poles only for open loop stable systems lim iting  the 

applicability o f //-IM . It is noted that this lim itation only arises as G&d(s) is chosen as the 

block diagonal elements o f G (s) and is easily overcome by relaxing this requirement. The 

decentralized controller can be designed based on G bd(s) that is different from  the block 

diagonal elements but has the same number o f RHP poles as G (s). This point is further 

illustrated using the follow ing simple system:

G(s)
(a +  0.5) 0.5
(9s -  3) (s +  1)( s - l ) ( s - 2 )

Since a ll the minors o f order 1 have (s — l)(s  — 2) as denominator and

det(G (s ))=  ( i+ ° - 5)(s +  1 )- ° - 5 (9s- 3) _  * 2 - 3 s  +  2 _  1

(3.15)

(s — l ) 2(s — 2)2 (s — l)2(s — 2)2 (s — l)(s  — 2)

the system (3.15) has two unstable poles at 1 and 2 [81]. Let G ^fs) be chosen as the 

diagonal elements o f G(s). In  this case,

dptfC1 =  (s +  °-5)(s +  1)det(G M( )) ^  ^  _  2 ^ 2

Due to absence o f pole-zero cancellation, Gm(s) has poles at the same locations as 

G(s), but repeated twice and the assumption o f //—IM  are violated. Consider that G bd(s) 
is chosen as,

Gbd(s)
0  ^ y / a ( s )
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where a 1; a 2 >  0 and f i (s ) ,  M s )  are arbitrary stable transfer matrices. W ith this choice, 

the assumption that G bd(s) and G (s) have same unstable poles is easily satisfied. Note that 

for an arbitrary choice o f Q i, a 2 >  0, the diagonal blocks o f G/(,s) are not necessarily zero. 

A  sim ilar approach can be used for partitioning any arbitrary system.

Remark 3.1 The approach for choosing Gu,  as illustrated above, s till holds when some 

o f the RHP poles o f the system do not appear in  any o f its block diagonal elements. It is 

pointed out however that in this case, it may be very d ifficu lt to design a block diagonal 

controller Km  to satisfy the / /—IM  condition, as the corresponding diagonal blocks w ill 

have large element-wise uncertainties associated w ith them (up to 1 0 0 %, i f  the diagonal 

block is 0 ).

Though the generalization used in  choosing G m (s) extends the practical applicability o f 

/ /—IM  to unstable systems, the generalization introduces an additional degree o f freedom. 

Clearly, whether the //—IM  condition (3.14) is satisfied depends on the choice o f G bd(s), 
which is dealt w ith in  subsequent sections.

3.4 Alternate Representation of //-IM

For a given G ^ s ) ,  a 1°°P shaping approach can be used to find K M(.s) for closed loop 

stability. In  the present case, Gbd(s) can als° be treated as a free parameter w ith  the 

requirement o f having the same number o f unstable poles as G(,s).

The task o f jo in tly  finding the pair (G M(s), K M(s)) such that the closed loop system 

is stable, is very d ifficu lt. We note in  (3.14), both d-(Tbd(jui)) and //a (E (ju /)) depend 

on G bd(ju), but E (jfw ) is independent o f the controller. Then, a convenient (and not 

optimal) approach is to find Gbd(s) such that //a (E (ju /)) is m inim ized and then design 

the decentralized controlled based on it to satisfy the //-IM  condition; however, E (s) in  

not an affine function o f G&d(s). We next show that this d ifficu lty  can be overcome by 

representing //-IM  alternately in  terms o f transfer matrix between the disturbances and the 

inputs.

Proposition 3.1 Let G (s) be partitioned as G (s) =  Gbd(s) +  G /(s ) such that G bd(s) and 

G(.s) have the same number o f RHP poles. Define Sbd(s) =  (I +  G MK hoi(s ))_1. Then 

Kb<i(s) stabilizing G Ms)  also stabilizes G (s) i f

a ( K bdSbd( ju ) )  <  //^ (G /O 'w )) V u /eM  (3.16)

where A  has the same structure as Gbd(s).
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Proof: Note that

d e t(I +  E T  bd(s)) =  d e t(I +  G /(s )K MS6d(s))

Now the sufficiency o f (3.16) is shown by using Lemma 3.1 and follow ing the proof o f 

Theorem 3.1. ■

Since the RHS o f (3.16) is affine in  G m (s-), it  can be sub-optimally selected by 

m inim izing This approach is suboptimal as the LHS o f (3.16) also depends

on G bd(s). For a particular choice o f Gm(s) that optim ally minimizes f iA (G j( ju j j ) ,  there 

may not exist any controller satisfying (3.16). This issue is further discussed later in  this 

chapter.

Remark 3.2 Since both o f (3.14) and (3.16) are sufficient but not necessary conditions 

for closed loop stability, some stabilizing controller may fa il to satisfy (3.14) and (3.16) 

simultaneously. Note that d e t(I+ E (s )T bd(s)) =  d e t(I+ E (s )W - 1 (s)W (s)Tbd(s)). Then, 

a sufficient condition for closed loop stability is that &(W Tbd{ju ))  <  ju^1 (E W ~ 1 (ju ;)) 

for a ll uj £ M [49]. From the discussion in  § 2.3, it  follows that we can select W (s ) 

to have the unstable poles and pole directions as Gm(s). Clearly, the allowable class o f 

W (s ) includes G u(s) itself. Then (3.16) can be seen as a special case o f the generalized 
inequality (3.14). Sim ilarly, (3.14) can be shown to be a special case o f the generalized 

inequality (3.16) using sim ilar arguments.

The modified n ~ IM  condition (3.16) is derived by treating K bdSbar(s) as uncertainty in 

G /(s ). A  slightly weaker version o f (3.16) can be derived by instead considering the robust 

stabilization o f G ^(s ) and using the results o f Glover [43], which are useful fo r analyzing 

robust stability in  presence o f unstructured perturbations. In the present context, such an 

exercise is redundant but can provide insight into the conservatism or more precisely lack 

o f conservatism o f /j,—IM .

Since G ^ s )  and G (s) have the same RHP poles, K ^ s j stabilizing G m (.s) also 

stabilizes G (s) i f  [43]

d ( K bdSbd{ ju ) )  <  a-_ 1 (G /(ja ;)) Vw (3.17)

Since stability is scaling invariant, the closed loop system is stable i f

d-(DL(a ;)K 6dS6d(jw )D ^ 1 (w)) <  a (D L(w )G / (jw )D ^ 1 (w)) \/u) (3.18)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 3.4 Alternate Representation of /z-IM 58

where D l (u;) and D a (w) are frequency dependent scaling matrices. Let D £(w), D fi(w ) 

be restricted to the set

V L =  {d iag(d j • I roi), di G M}

V R =  {d iag(d j • I mj) ,d j G K } (3.19)

where the dimensions o f individual blocks o f G bd(s) is rnt x rrij. Since 
D L(u )K ;)dSM(jw )D ^ 1 (uj) =  KbdSbd(jio), the conservatism o f (3.18) is reduced by 

choosing D l(u /), D r ( u )  to maximize the RHS o f (3.18) at every frequency. Then the 

sufficient condition for the stability o f closed loop system is

d { K bdSbd(ju)) <  sup d (D /,(w )G /(ju ;)D )j1 (a;)) < M aHG/O ’zu)) Vtu (3.20)
DL(u)£VL
Dr(u)£T>r

Theoretically, (3.20) is slightly more conservative than (3.16). However, from 

computational point o f view, they are equivalent as, in  practice, only the upper and lower 

bounds on /z are computable.

Figure 3.2: Physical interpretation o f reducing conservatism through fi

Remark 3.3 Most o f the available interaction measures other than /z—IM , e.g. [78, 8 8 ], 

provide a condition that is equivalent to (3.17). Since a (G i( ju i) )  >  p ,^ (G I (juj)) >  

HA(G i( ju j))  for a ll oz, (3.17) is more conservative than (3.20) and (3.16). We can also 

interpret this result on physical grounds as follows: An uncertainty set d -(G /(jo ;)) <  e(w) 

defines an open ball in  the complex plane, denoted as Be. In  this case, the controller 

needs to stabilize a ll systems that lie  w ith in Bf to guarantee that G (s) is also stabilized. 

When Be is optim ally scaled at every frequency, the dimensions o f this perturbation set 

are shrunk in a ll directions, except the direction connecting the nominal model G bd(juj)
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and G ( ju ) .  The optimal scaling reduces the number o f additional systems that need to be 

stabilized to guarantee that G(.s) is also stabilized and hence the reduction in  conservatism 

(see Figure 3.2).

Remark 3.4 Compared to the necessary and sufficient conditions provided by Lemma 3.1, 

the conditions provided by Theorem 3.1 and Proposition 3.1 are sufficient only. To illustrate 

this point, consider a controller K m(s) that violates (3.14) or (3.16), but the closed loop 

system is stable. Then, there exists some other controller K w (s) such that d ( K bd(jto)(I +  

G bdKbd{ju))~ l ) =  ct(K mSm(ju ;)) for some w € R and K M(s )(I +  G MK M(s ) ) - 1  is 

unstable. We can also interpret (3.16) as a sufficient condition for robust stabilization o f 

Gbd(s). S im ilar as before, consider that a controller violates (3.16), but the closed loop 

system is stable. Then, there exists G /(s ) such that fi^ (G /( ju ;))  =  /2a ( G j(ju> )) for some 

u e R  and the closed loop system is unstable when G /(s ) is replaced by G /(s ). Thus, 

the conservativeness o f //-IM  arises as the apparent uncertainty set is much larger than the 

true uncertainty set, which consists o f a single element, i.e. G /(s ). The strength o f //-IM  

is that when (3.14) or (3.16) hold, any decentralized controller that stabilizes G m(s) also 

stabilizes G (s).

Proposition 3.1 provides a sufficient condition to assess whether K bd. designed for 

G m , can stabilize the closed loop system; however, it provides no information regarding 

the closed loop performance. Grosdidier and M orari [49] pointed out, satisfying //-IM  

condition guarantees closed loop stability, but the performance can be arb itrarily poor. In 

the next proposition, we show that when the //-IM  condition (3.16) is satisfied, an upper 

bound on closed loop input performance is always minimized.

Proposition 3.2 Assume that G (s) and G bci(s) have the same number o f RHP poles and 

(3.20) holds. Then,

H ^ { K bdS (ju ))  <  _ ■ 1— _ , ( . Vw (3.21)
a 1 { K bdSbd( j lo)) -  //a (G f j u j ) )

where A has the same structure as G y.

Proof: Using G (s) =  G bd{s) +  G /(s ),

(l +  G K bd{s ) )K ^ (s )  =  K ^ ( s )  +  G bd(s) +  G I (s)

=  ( I +  G mK m(S))Km 1 (s) +  G /(s ) (3.22)
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Let D l (u ) E V l and Dr(cu) e V R, where T>l and V R are defined by (3.19). Then, 

using (3.22) and singular value inequalities [63, 102],

a (D L(cu)S-1K 6d1 (ju ;)D ^ (u ;)) >  g_ ( D lM S ^ K ^ O ^ D ^ M )

-  a (D L(u;)G / (ju ;)D ^ 1 (u;))

Consider that D x,(o ;),D R(u;) are chosen to maximize a  (D i (o ;)G /(ju ;)D ^ 1 (u;)). Since 

D L(u;)SM1K fe- ;( ju ;)D ^ 1 (u;) =  S ^ K  £ ( j u ),

a (D i (w )S -1K ^ 1 0 'w )D ^ 1 (u;)) >  a  (S ^ K ^ ( j'w ) )  -  £ a (G /0 ‘w )) (3.23)

W ith this choice, ^ (K m S ^ 'w ))  >  a  (D i (o;)S_1K ^ 1 (ju ;)D ^ 1 (u;)) and

/iA (K MS(j'w)) > a(S^K^(juj))  - / i A(G/(jw))

/ iA (K MS 0w )) <  __i (Kj^SfofO’w)) — /2a (G /(ju;))

■
Generally, the nominal performance o f the closed loop system is measured in  terms o f 

d-(K&dS(ju;)) instead o f ̂ a (K m S (ju ;)). The corollary below shows that the information 

regarding a(Kbd,S(juj)) can be readily extracted from (3.21).

C oro lla ry 3.1 Let a ll the conditions o f Proposition 3.2 hold and D/,(cu) € T>L, D R(<u) E 

V r be chosen to maximize a (D R(o ;)G /(ju ;)D ^ 1 (a;)) Then

d (K MS (ju ,)) <  - _ x  fTC q (r a  G M (3'24)[K-bdSbdiju)) — / x a ( G  i { jo j ) )  

where A has same structure as G ^  and k denotes the Euclidean condition number.

Proof: Using (3.23),

CT(DL(w ))d (D ^ 1 (w ))a (S -1K ^ 1 (ju ;)) >  o ( S ^ K ^ ( j u j ) )  - /2a(G jC /u /)) Vu; (3.25)

Since d ^ D ^ w ))  =  d ^ D ^ u ;))  by construction, d (D i (u;))cr(D ^1 (a;)) =  k(Dl (uj)). 
W ith this observation, (3.24) can be obtained by rearranging (3.25) as the proof o f 
Proposition 3.2. ■

Comparing (3.25) w ith (3.20), we notice that when the decentralized controller stabilizes 

the closed loop system, an upper bound on the closed loop input performance is always 

minimized. The bound on the closed loop performance (3.25) is very loose in  general. 

When the performance requirements are specified in  terms o f a frequency dependent 

weight, it  can be very d ifficu lt to satisfy these requirements by m inim izing the upper bound. 

Nevertheless, maximization o f o~1 ( K m Sm(jcu)) -  /2  a  (G i ( j u ) )  is beneficial to maximize 

the robustness o f the closed loop system for unmodelled dynamics that can be represented 

as an additive uncertainty [43].
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3.5 Block Diagonal Approximation

In  this section, we consider the problem o f finding an optimal block diagonal approximation 

Gm(.s) for the given system G (s) such that n & (G ( ju )  — Gf>d(ju;)) is minim ized. Since 

only / 2 a ( - )  is computable in  practice, the block diagonal G m ( s )  can be chosen by solving,

m in a ( B L( u ) ) ( G ( ju j ) - G bd(jLu))Dn\L j))  (3.26)
G  bd( ju)

s.t. D i(u) E T>i, Dr(o>) G T>r

where T>i and V r are given by (3.19) and the number o f unstable poles o f Gm (s) and G (s) 

is same.

Intuitively, a suboptimal solution to the optim ization problem (3.26) can be obtained 

by simply reducing the order o f the block diagonal elements o f G (s). In fact, for 
systems decomposed into 2  blocks, the solution obtained by order reduction o f the diagonal 

elements is optimal. This result is proven next by showing that the diagonal blocks 

optim ally approximate a complex matrix partitioned into 2  blocks, which may also be o f 

independent interest.

Proposition 3.3 Consider a complex m atrix A  € CpXQ be partitioned as,

A  =
A n  A 12 

A 21 A 22

Then, A m  =  d ia g (A n , A 2 2 ) minimizes /j,a (A  -  A m ), where A m  and A  have the same 

structure as d ia g (A u , A 2 2 ) and

m in //A (A  -  A bd) =  V ^ (A 1 2 )o-(A 2 i)  (3.27)
Md,

Proof: Using the identity for structured singular value (3.2), it  follows that /!a (A  — 

d ia g (A n , A 22)) =  i/c r (A i2 )d (A 2 i) . Then, it  suffices to show that fo r a ll A bd, the 

minimum achievable value o f /x a ( A  — Am) is given by (3.27).

Let A m  =  d iag (A n  +  B i, A 22 +  B 2). Since A  has two complex blocks,

/ iA (A  -  A m ) =  in f ff(D L(A  -  A ^ D ^ 1)
,L)ReDR

=  in f o 
di,d2€lR

B i £ A
f A 2i B 2

L12

Let U  be a unitary matrix that permutes the off-diagonal blocks o f D L(A  — A(,rf)D i? 1 to 

diagonal blocks and vice versa. W ithout loss o f generality, we can choose d\ =  1 [117].
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Since the largest singular value o f a matrix is larger than or equal to largest singular value 

o f the sub-matrices o f the matrix [63],

a (D L(A  -  Am)D^) =  <7(Dl (A -  AmJD^U)
>  max(b-(d21Ai2),o-(c?2A2i)) Vd2 € R

>  max ( 1 ^ 2 1 1 ^ ( A i2 ), |d2 |o-(A 2 i) )  V d i,d 2 GM

> V/a(A i2)a'(A2i)

The result follows by noting that the RHS o f the above expression is independent o f the 

scaling matrices. ■

Note that Proposition 3.3 says nothing about the uniqueness o f the optimal solution. For 

(A  — Abd) partitioned and permuted as done in  the proof o f Proposition 3.3 [117, p. 218],

M a ( A  -  Abd) <  m ax(cr(A i2), <t ( A 2 i ) )  +  v /(r(B 1 )cr(B2)

I f  B i =  0 and <t ( A 12)  =  ct( A 2 i ) ,  the upper bound on /j a ( A  — A hd) is the same as the 

lower bound. This shows that there exists an infinite number o f B 2 and thus block diagonal 

matrices which achieve the lower bound.

60
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I d ia g

(a) Unrestricted case

0.1 0.15

"I d ia g  'Is u b  

I d ia g

(b) Diagonally dominant matrices

Figure 3.3: Relative difference between approximation errors using diagonal elements 
(idiag) and locally optimal solution (7 sub) for 3 x 3 complex matrices

Unfortunately, Proposition 3.3 does not hold for matrices partitioned into more than 2 

blocks. For such cases, we may s till hope that the diagonal blocks w ill be nearly optimal 

for the approximation problem. To verify the extent o f sub-optimality o f using diagonal 

blocks as a nearly optimal solution for the approximation problem, 1000 3 x 3 complex 

matrices are generated randomly. The real and imaginary parts o f the individual elements
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o f the matrices lie  between ±100. For comparison purposes, the locally optimal solution 

is calculated using the method discussed in  the next subsection. Figure 3.3(a) shows that 

the relative difference between the approximation errors using diagonal elements and the 

(locally) optimal solution can be as high as 0.25. When the class o f random matrices is 

lim ited to the diagonally dominant matrices, surprisingly the same upper bound s till holds 

(see Figure 3.3(b)). Thus, we conclude that the solution obtained by simply reducing the 

order o f the diagonal blocks is restrictive and present an algorithm that provides a locally 

optimal solution for the optim ization problem (3.26).

A lgorithm  3.1 For a given system G (s) w ith np unstable poles, a locally optimal solution 

to the block diagonal approximation problem is obtained by the follow ing steps:

1. Solve the optim ization problem (3.26) at a set o f chosen frequencies to yie ld G ^ .

2. Solve a parametric optim ization problem to find G&d(s) that has at least np unstable 

poles and minimizes the worst case error between G bd(ju) and G bdtJiv..

3. I f  G bd(s) has more than np unstable poles, the order o f G bd{s) is reduced to np 

through optimal Hankel norm approximation to get Gm(s).

The role o f these steps becomes clear by noting,

M a ( G (Ju ) — G bd ( j to ) )  <  n & ( G ( ju > )  — G bdju)

+  <r(Gbd,jw — Gbd(ju )) +  &(Gbd(jw) — G bd{ju)) (3.28)

It  follows from (3.28) that every step in  the proposed method minimizes the contribution 

o f one o f terms on RHS o f (3.28) to the total approximation error. The order reduction 

through Hankel norm approximation was discussed in § 3.2.2 and is not repeated. The 

other steps o f the proposed method are discussed next.

3.5.1 Frequency Wise Approximation

The firs t step o f the proposed method for finding the optimal block diagonal approximation 

consists o f m inim izing (3.26) at a set o f chosen frequencies. The (possibly non-uniform ly 

spaced) set o f frequencies can be selected based on a(G(ju>)), i.e., a larger number o f 
frequencies can be chosen around the peaks o f a(G(ju j)) .  In the remaining discussion, the 

frequency argument o f the scaling matrices is dropped for notational convenience. Using
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sim ilar arguments as used in  calculating fj,(.) (3.6),

a (D L(G(ju>) -  G bdJw)D “ 1) <  7  (3.29)

^ D ^ ( G ( ja ; ) - G HjL,)*D l,D i (G ( jW) - G 6dJw)D ) J1 ^  72I  (3.30)

O  (G(ju j) -  G bdJu)*-pL(G(ju j) -  G bdJul) 1  7 2 P r (3.31)

where P L =  D ^ D L e  T>l, P r  =  D #D #  e V r  and P l,  P/? >- 0. Note that unlike (3.6), 

(3.31) is not affine in  the decision variables; however, a locally optimal solution can be 

found using an iterative approach. Using the Schur complement lemma [10], (3.30) can be 

equivalently expressed as,

- 7I  D ^ ( G ( jo ; ) - G K jJ * D I
D l (G (jco) -  G M^ ) D ^  - 7I <  0 (3.32)

Note that for fixed D t , D # , (3.32) is an L M I in  G m j u - N o w ,  a locally optim al solution 

for the frequency wise approximation problem can be found by using the follow ing iterative 

algorithm for the set o f chosen frequencies:

A lgorithm  3.2 Select a set o f frequencies i =  1 • • • nu and evaluate G (jW j). Choose 

convergence tolerance e and in itia l D ° € V L, Y>°R € V R (e.g. D ° =  =  I), where

T>l , T>r are given by (3.19). Set i =  1.

1. Solve the convex optim ization problem (3.32) for G ^y^  by setting D L =  1 and

=  D ^"1. Let the locally optimal approximation error be 7[.

2. Solve (3.31) for P ^, P lR using a bisection search method by fix ing  G bd,ju as G ^ ^ ,. 

Let the locally optimal approximation error be 7 .̂ Set D } =  (P ) ) 0 5, =  (P # ) 0 '5

and i  =  i  +  1.

3. Repeat steps 1 and 2 until | 7 ] _ 1  — <  e.

Unlike a general B M I problem, the sequence o f solutions obtained using A lgorithm  3.2 

is guaranteed to converge. Let 7 ], 7 2 , 7 i+1 be a sequence o f the approximation errors. For 

convergence, we only need to show that 7 ] >  7 2  >  7 i+1. Since the individual optim ization 

problems to be solved in  steps 1 and 2 o f A lgorithm  3.2 are convex, these steps are jo in tly  

convex i f  there always exists P lL, P*R such that 7 \ =  7-3 and G ^ ^  such that 7 2  =  7[+1.

Since (3.29) (3.32),

H  =  a C D ^ iG U u j)  -  G L ^ X D if1) - 1)
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W ith G Mtj W =  G lbdjuJ, P*L =  =  I  is a feasible solution for (3.31). As (3.31) is

convex, the solution P*L =  P %R =  I  can be seen as the worst case solution, which achieves 

7 2  =  7 x- Now, note that

(D i(G (.M  -  GJJJJ fD * , ) - 1) =  D iG 0 ^ ) ( D M - ' -  G « „ .

As G \d is a feasible solution for (3.32), which achieves 7 j+ 1  =  7 3 , the convergence to 

local optima is proven.

An equally important issue is that o f quality o f the solution obtained using A lgorithm  3.2. 

Since the approximation problem has m ultiple local minima and the converged solution 

depends on the in itia l value, A lgorithm  3.2 can converge to a minima that is worse 

than using the diagonal blocks. This d ifficu lty is overcome by replacing G ( ju )  by 

G ( ju )  — d iag(G u(jui)) in  A lgorithm  3.2 and using G ^ -w +  diag(G ,,(ju>)) as the locally 

optimal solution, where G ^ ^  is the solution obtained using the modified algorithm.

Using the same arguments as used for convergence o f the sequence o f solutions obtained 

using A lgorithm  3.2, it  follows that the modified algorithm always obtains a solution that is 

at least as good as using the diagonal blocks. Note that replacing G ( ju )  — diag(G,d(juj)) 

can bias the algorithm to converge to a local minima close to diagonal blocks. We 

use a simple approach, where the problem is solved twice using G (jco) and (G (ju>) — 

d ia g (G jj(jw ))) and select the better solution. It is possible to obtain an improved solution 

using the available branch and bound methods [108], but this approach is not pursued here 

w ith the view o f keeping computational requirement low and is a potential area for future 

research.

3.5.2 Parametric £ x: Optimal Identification

In this section, we discuss finding a rational transfer function that explains the frequency 

response data obtained using Algorithm  3.2. The objective is to find the rational transfer 

matrix G m (s) that best approximates the irrational function and has at least as many 

unstable poles as G(.s). It would be ideal to directly find G m (s) that has the same number 

o f unstable poles as G (s), but the optim ization problem becomes very involved when the 

number o f unstable poles is fixed. In  any case, G «(s) can be obtained as the optimal 

Hankel norm approximation o f G m («) as discussed in  § 3.2.2.

Traditionally, the model identification problem consists o f m inim izing the least square 

error or the 7f2 norm o f G bdj^ — G bd{j^i)- In the present case, however, it  is more 

appropriate to instead minimize the worst case error or the norm o f G ^ j^  — Gbdti^ i)  

(cf. (3.28)). In  a related context, Helm icki et al. [60] formulated the problem o f identifying
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Hoo optimal model from frequency response data for discrete time systems. The same 

authors have extended their approach to continuous time systems in [61] through a bilinear 

transformation. The two-step approach o f Helm icki et al. [60] consists o f fittin g  the 

frequency response data w ith fin ite impulse response (FIR) models followed by Hankel 

norm approximation, which is sim ilar to the last two steps o f the method proposed here. 

Over the past few years, a number o f different approaches have appeared in  the literature 

and the current state o f the art o f Woo optimal identification can be found in [24],

In  this chapter, we parameterize the class o f models using transfer functions as compared 

to the FIR  models used by Helm icki et al. [61]. An advantage o f using the transfer function 

parametrization is that low order models can be identified directly in  the continuous 

time domain, the disadvantage being that unlike the FIR parametrization, no worst case 

error bounds are available. Nevertheless, practical experience (particularly in 7 f2 norm 

m inim ization case) suggests that transfer function parametrization works very well. For 

sim plicity, G bd(s) is identified element by element, where [G&d(s)]y is parameterized as:

r ~ . . .  a(s) amsm +  am- is m _ 1  H a is  +  a0 ^
G bd s) y =  —T = ------------------ —j - ------  — - r — ; m < n

b(s) bnsn +  bn- i s n H h s  +  bo

In  the remaining discussion, we drop the requirement that G m (s) has at least as 

many poles as G m (s), as it  is easily satisfied by choosing the order o f the denominator 

polynomials sufficiently large. Then, the parameters a0 ■ ■ ■ am,b0 ■ ■ • 6 „ , are obtained by 

solving,

-  [Gbd,juk]ij k =  1 • • • nw (3.33)
0{JOJk)

Note that the objective function in  (3.33) is nonlinear, but can be equivalently represented

as \b(juJk)\~l \a(jiOk) — b(jLOk)[Gbd,juk}ij\- Now, we can instead minim ize

mm
&Q' ’ 'Ctm >£*0 ''

I b(j(dii)[GbdJuik\ij\

y /Re(a(ju;fc) -  b(jujk)[Gbd )2 +  Im(a(ju;fc) -  b ( ju k)[Gbd,juk] i j )2

which is easily represented as an LMI problem as follows:

min +  7 !

subject to —7 i <  Re (a { ju k) -  b ( ju k)[Gbd,juk]ij) <  7 i

<  Im (a(jujk) -  b(juk)[GM,jujk}ij) <  7a k  =  l - - - f l u  (3.34)

As u>k —> 0 0 , the magnitude of the polynomials a ( j u j k ), b ( j iO k )  becomes unbounded. 
Thus, the formulation (3.34) inherently emphasizes minimization of 7 1 ,7 2  at high
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frequencies. The follow ing iterative approach can be used, which does not suffers from 

this lim itation:

where b ^ ^ f ju jk )  denotes the identified b polynomial from  the previous iteration. In  (3.35), 
the additional constraint bn =  1  is imposed for numerical stability and in  general, fix ing 

any one o f the unknown parameters suffices. In  the 7 f2 optimal identification literature,

method respectively [90]. The sequence o f solutions obtained by solving optim ization 

problem (3.35) is not guaranteed to converge, but reasonable solution can be obtained using 

a few iterations.

3.6 Controller Design

W ith the availability o f G bd(s) using A lgorithm  3.1, the controller design fo r the modified 

ju-IM  is sim ilar to the conventional /x-IM  method. A  loop shaping approach can be 

used to find the stabilizing decentralized controller; however, finding a controller using 

this method to satisfy (3.16) can be d ifficu lt. In this section, we show that w ith  the 

alternate representation o f the /i-IM  conditions in  terms o f K ^ S ^ s ) ,  finding K m ( s ) to 

satisfy (3.16) reduces to solving a weighted Hoo controller design problem for G bd(s).

Proposition 3.4 Consider that G (s) and G bd(s) have np unstable poles. Let the minimum 

phase and stable transfer m atrix w(s) be chosen such that |w (jw )| =  f i~ ^ (G i( ju ) )

for a ll oj. There exists a block diagonal controller Km (s) such that a ( K bdSbd(j<^j) <  

/U ^(G i( ju)))  for a ll u) E K  if f

subject to  —T?Ib(% 1}(M ) I  <  Re -  &(%'wfc)[GMj-hJ <j) <  Til

- 7 ^ (,_1)(M ) I  < Im (a(i)(joJk) -  b ^ U ^ i G b d j ^ i j )  < t I l&(*_ 1 ) I

mm
(i) _(0 t(0

b n  =  1 (3.35)

methods sim ilar to (3.34) and (3.35) are known as Levi’s and Sanathanan and Koemer’s

oHl (U(w  1 G 6d(s))*) <  1 (3.36)

where U(.) denotes the unstable part.

Proof: (Sufficiency) Let us define, K bd(s) =  w(s)Kbd(s) and G bd(s) =  w _ 1 (s)Kbrf(s). 
Then, using Proposition 2.3, there exists a K 6d(.s) such that,

Km(s)
in f ||w K 6dS6d(s)|| OO

K m ( s )

£h(W (u ; 1 G m(s))’ )
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I f  (3.36) holds, there exists a K M(s) such that

HwK m Sm M H oo <  1 (3.37)

«=> a (w K bdSbd( ju ) )  <  1  Vw 

&  aiKbdSbdijio)) < |wO'uOl” 1 Vw 
a (K bdSbd(juj)) <  M a (g  i { ju ) )  Vw

where the last inequality holds as \w (ju)\ =  /j>A (G I (ju))) for a ll lo.

(Necessity) We show the necessity o f (3.36) by contradiction. Consider that (3.36) does 

not hold, but there exists a K bd(s) such that d ( K bdSbd(ju>)) <  f i~^(G j( ju j))  Vw. By 

reversing the series o f inequalities used for sufficiency, Km (s) must satisfy (3.37). The 

a j j1 (U (tu_1 G 6d(s))*) denotes the least achievable value for \\w(s)KbdSbd(s) ||oo for a ll LT I 

controllers. Then, ||tt>Kf,dS;,d(s)||oo being less than 1, despite g_Jl1(U(w~l G bd(s))*) being 

equal to or greater than 1 is a contradiction and the necessity o f (3.36) follows. ■

In  Proposition 3.4, we assumed that w(s) is stable and minimum phase. In  general, w(s) 

can have RHP zeros and RHP poles at same the location as G bd(s). A llow ing w(s) to 

be unstable or non-minimum phase provides no advantage, as follow ing the discussion in 

§ 2.3, we can simply replace w(s) by its minimum and stable part in  (3.36). On relaxing this 

assumption, however, w(s) that achieves \w(ju>)\ =  (G j ( ju ) )  becomes non-unique, 

where the different instances o f w(s) are related by a unitary transformation.

Proposition 3.4 effectively reduces the task o f finding a block decentralized controller 

to satisfy /x-IM  condition (3.16) to finding the minimum phase and stable w(s) such 

that |w (jo ;)| =  M a (G i ( j u ) )  and (3.36) holds. When (3.36) is satisfied, the standard 
Hoo optimal control design techniques can be used to find the stabilizing decentralized 

controller.

Rem ark 3.5 In practice, it  can be d ifficu lt to find w(s) that satisfies \w(joj)\ =  

M a (G  i ( ju i ) )  for a ll u  E M. This d ifficu lty can be overcome by recognizing that any 

w(s) that lower bounds g ^ {G j{ ju j ) )  at a ll frequencies, i f  (3.36) holds,

a ( K bdSbd(ju j)) <  H jw ) ! - 1  => a ( K bdSbd(juj)) <  v ± ( G i ( j t o ) )

Thus, for a given Gbd(s) the existence o f a decentralized stabilized controller can be 
established by ve rify ing  (3.36) w ith  w(s) that lower bounds //^ (G i(ju>)).
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Figure 3.4: Efficiency o f proposed method for optimal block diagonal approximation

3.7 Numerical Example

In this section, we demonstrate the efficiency o f A lgorithm  3.1 for obtaining optimal block 

diagonal approximation and the controller design method discussed in  the previous sections 

using a simple example.

Consider the follow ing system:

1 0 0 0 1 Pi Pi
0 2 0 0 Pi 1 Pi
0 0 3 0 Pi Pi 1

0 0 0 - 4 1 0.4 0.4
1 f t f t 1 0 0 0

f t 1 f t 0 . 6 0 0 0

. f t f t 1 0 . 6 0 0 0

A  set o f equally spaced frequencies in  the range 0 —10 is chosen and the locally optimal 

diagonal approximation is obtained using the follow ing steps:

•  A lgorithm  3.2 is used for frequency-wise minim ization. The algorithm achieves 3 

decimal digits o f accuracy as compared to the locally optimal solution in  2  iterations.

•  We fit i th or lower order models for the frequency data using the form ulation (3.35) 
w ith  2  iterations.

•  The identified model has 5 unstable poles, which is reduced to a model w ith  3 

unstable poles using the Hankel norm approximation method discussed in  § 3.2.2.
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a.
S
<

Figure 3.5: Validation o f modified /i-IM  for stabilizing decentralized controller designed 
using independent designs

The G ^ f(s ), as obtained follow ing these steps, is given as:

( —0.002s2+2.22s+3.421 -0.01045s2+2.04s+5.98 -0.01575s2+1.842s+4.98 A
s V s2+2.92s—3.96 ’ s2+2.53s-9.69 ’ s2+1.77s-8.99 )

For comparison purposes, we also calculate the sub-optimal solution G^“ 9 (,s) by 

reducing the order o f diagonal elements o f G. In  this case, 5 Hankel singular values o f 

the stable part o f G^j°s(s) are negligible, which are removed to get a reduced order model 

given as:

diag ( 2.075s+3.272 1.33s+3.896
s2+2.96s—4.16’ s2+2.06s—7.762 ’

—0.006s2+1.255s+ 3.533 
s2+1.422s—10.31

To show the advantage o f A lgorithm  3.1 over using diagonal elements, j su b

M a(G (ju>) — Gfc[b(joj)) and /ydiag — /xa (G (ju>) — G fc“ s(jw )) are compared in  Figure 3.4. 

The relative difference between Y iag and Y ub is 0.23 at the zero frequency, which 
monotonically reduces to 0.13 for u  =  10. This significant reduction in  the approximation 

error is useful for finding the stabilizing controller easily. Figure 3.4 also shows that the 

j sub closely matches the approximation error obtained using frequency wise m inim ization. 

Thus, (at least fo r this example), the conservativeness in  using the two-step approach for 

identifying a model, w ith same number o f unstable poles as the system, is m inimal.

Next, we consider the controller design part. For the locally optimal diagonal 
approximation, the follow ing weight approximates (G /(jw )) closely,

0.107s2 +  2.12s +  10.54
w  (s)

s2 +  2.06s +  7.762
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Using this w(s), g_H{U(w~l G ŝ b(s))*) =  1.06 >  1 and standard optimal 

controller design technique is used to find a decentralized stabilizing controller. The 

plots o f {G [( ju j))  and &([GM(ju>)\u), i  =  1 ,2,3 are shown in Figure 3.5, where 

Ma (G [( jo j))  >  a ([G bd(ju)]u), as expected. On the other hand, for the suboptimal 

solution obtained using the diagonal elements, a#(W (w- 1 (s )G ^as(s))*) =  0.524 <  1. 

Then, the conservativeness o f using the diagonal elements to find a suboptimal solution is 

emphasized.

3.8 Chapter Summary

In this chapter, we extended the practical applicability o f //,-IM  to unstable systems. 

The decentralized controller is designed based on a block diagonal approximation that is 

different from the block diagonal elements, but has same number o f unstable poles as the 

system. By expressing the /i-IM  in terms o f transfer m atrix from  disturbances to inputs, it 

is shown that:

•  The block diagonal approximation can be (sub-optimally) chosen by m inim izing the 

scaled C distance between the system and the approximation.

•  The task o f designing the controller based on the block diagonal approximation can 

be reduced to solving a weighted Hoc optimal controller design problem.

•  The decentralized stabilizing controller inherently minimizes an upper bound on the 

input requirement for stabilization, but the bound is very loose.

We have shown that when the system is partitioned into 2 blocks, the optimal block 

diagonal approximation can be obtained by order reduction o f diagonal blocks. For 

the general case, a step-wise numerical approach is presented fo r finding the locally 

optimal solution to the block diagonal approximation problem. The proposed approach 

involves solving the approximation problem at a set o f frequencies followed by optimal 

identification.

One promising approach for identifying low order continuous models from  frequency 

response data is to use the Nevanlinna-Pick interpolation theory [6 ]. The interpolation 

theory parameterizes a ll rational stable functions that can pass through the given set o f 
(adjusted) complex valued data. This method has been used by Chen et al. [25] for Hoo 

optimal identification and can easily be extended to the case. The present difficulties 

in  using this approach are (i) the order o f the model is the same as the number o f data
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points; and more importantly, ( ii) due to an over-emphasis on the given set o f frequencies, 

the interpolating function shows inter-sample oscillations.

The primary lim itation o f choosing the block diagonal approximation by m inim izing the 

scaled C ^  distance is that the properties o f the approximant are not taken into account. As 

shown in this chapter, whether the stabilizing controller can be easily found depends on 

the minimum Hankel singular value o f the approximation. A  better approach is to use a 

m ulti-objective optim ization framework, where the distance between the system and 

the approximation is minimized and simultaneously the minimum Hankel singular o f the 

approximation is maximized. This non-trivial problem is a topic for future work.
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Chapter 4 

Block Relative Gain: Properties and 
Pairing Rules

Block relative gain (BRG) is a useful method for finding suitable pairings for block decen­

tralized control. In  this chapter, we present some new algebraic properties o f BRG and 

establish its relation w ith closed loop stability, controllability, block diagonal dominance 

and interactions. We show that the common conjecture that a system is weakly interacting, 

i f  BRG is close to the Identity matrix, is not true. Based on these insights, simple rules for 

pairing o f variables are proposed. We also extend the known method fo r calculating RGA 

fo r interacting systems to BRG . 1

4.1 Introduction

Decentralized controllers are w idely used in  the process industries due to their sim plicity. 

The performance o f a fu lly  decentralized controller can be poor in  presence o f severe 

process interactions. In  such situations, the use o f fu ll multivariable controller is an 

attractive alternative. On the other hand, decentralized controllers are easier to design, 

tune and can be made fault-tolerant more easily as compared to fu ll multivariable 

controllers [18]. An alternative to either fu lly  decentralized or a fu ll multivariable controller 

is the use o f block decentralized controller, which has a structure in  between the two 

extremes. Block decentralized controllers balance the high performance given by fu ll 
multivariable controllers and the easier implementation and maintenance associated w ith

1 This work has been published in Industrial Engineering & Chemistry Research [72] and a shorter version 
in the proceedings of ADCHEM 2003, Hong Kong, RR. China [73].

73
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fu lly  decentralized controllers. The use o f block decentralized controllers can be further 

justified by the fact that in  most industrial processes, the interactions are lim ited in  scope 

and do not include the fu ll scope o f the plant. Thus, these processes are most suitably 

controlled in  a block-wise fashion. Since the number o f such blocks and block decentralized 

alternatives increases rapidly w ith system size, controller design fo r every alternative is 

impractical at design stage. Thus, effective tools are required to get an estimate o f closed 

loop properties without designing the actual controller. In  this chapter, we present results 

concerning such a tool, i.e., B lock relative gain (BRG) [83].

The BRG generalizes the concept o f the relative gain array (RGA) [17] to block pairings. 

It is a powerful technique for input-output controllability analysis and screening alternatives 

quickly for block decentralized control at the design stage. The development o f the BRG is 

based on the assumption o f perfect control2. Arkun [3] has argued that rigorous closed loop 

stability and performance analysis is not possible under this assumption and has suggested 

the use o f the dynamic block relative gain. The BRG has also been extended to handle 

non-square [93] and non-linear [82] cases. However, the applicability o f these extensions 

o f the BRG is lim ited due to their dependence upon controller tuning and their extensive 

computational requirements. These approaches are not considered here and the discussion 

is lim ited to square, linear time invariant (LTI) and stable systems, unless otherwise stated.

During the past few decades, the RGA has been studied extensively [51, 65, 71, 113] 

and its properties are w ell understood, but the BRG has largely been overlooked. Some 

researchers [20, 85] have found relations between the BRG and Euclidian condition 

number. It is shown that generally, a system is d ifficu lt to control, i f  the maximum 

singular value o f BRG is large. Chen et al. [23] have further considered the role o f 

the BRG in robustness analysis. Despite these studies, contrary to the RGA, BRG has 

not gained widespread popularity and block pairings are selected prim arily based on 

heuristics [19, 29]. The use o f heuristics can be attributed to lack o f a study showing that 

sim ilar to the RGA, information regarding closed loop properties can be obtained using 
BRG. This motivates the present work.

In  this chapter, we present some novel algebraic properties o f BRG. We establish the 

connection between BRG and closed loop properties like stability, controllability, block 

diagonal dominance and interactions. Manousiouthakis etal. [83] have claimed that a 

system is weakly interacting, i f  BRG is close to the Identity m atrix and have proposed 
a pairing algorithm based on this statement. We show that this claim  is incorrect. Further, a 

system can have large interactions despite BRG being exactly the Identity matrix. It should

2Perfect control is achieved, when the output, y(t) is equal to the reference, r(t) V£ >  0 [102],
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be emphasized, however, that i f  the singular values o f BRG are very different from  unity, 

the closed loop system has large interactions. Based on these insights, simple rules for 

variable pairing are proposed. Simultaneously, we present a note on calculation o f BRG, 

when the system contains integrating elements.

Grosdidier etal. [51] pointed out that modelling uncertainties and changing operating 

conditions make it very d ifficu lt to develop reliable dynamic models for chemical processes 

and often, only steady state gain information is available. W ith this motivation, we focus 

on extracting useful feedback properties from gain information, though most o f the results 

presented are directly generalizable to higher frequencies.

The organization o f this chapter is as follows. In  §4.2, we revisit the development o f 

BRG and cite the lim itations o f existing pairing rules; in  §4.3, we present some algebraic 

properties o f BRG; the main results o f this chapter are contained in  §4.4, where it is shown 

that BRG can be used to assess some desired closed loop properties; in  §4.5, alternate 

pairing rules are proposed and illustrative examples are presented; in  §4.6, we consider the 

case, when the system matrix contains integrating elements and §4.7 concludes this chapter.

4.2 Preliminaries

In  this section, we introduce the concepts o f relative gain and BRG. We present the BRG 

based pairing rules due to Manousiouthakis [83] and point to their lim itations.

As before, the transfer function matrix relating outputs and inputs o f the system is 

represented as G (s) in  this chapter. The steady state gain matrix is represented as G (0) 
or simply G  € M” xn. The objective is to decompose the original system into a set o f M  

non-overlapping square subsystems such that, G „ 6  i =  1, 2  • ■ ■ M ,  JT  m, =  n.

G y € represents the i j th block o f G  or the block gain between y , and u ,. The

pair ( y u , )  denotes the variables related by G y(s).

D efin ition 4.1 Relative gain [17] for variable pairing (y,:. U j) is defined as the ratio o f two 

gains representing first the process gain in  an isolated loop and second, the apparent process 

gain in  the same loop when a ll other control loops are closed,

=  9ij [G(0) *] „

A (G ) =  [Ay] =  G (0) o G (0)~t

where o is the Hadamard product and G (0)~T is transpose o f the inverse o f G (0). A (G ) 

is called RGA. Manousiouthakis et al. [83] extended the concept o f the RGA to BRG for 

synthesizing block decentralized controllers.
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Definition 4.2 Block relative gain [83] for variable pairing (y i, U i) is defined as the ratio 
o f the open loop block gain and apparent block gain in  the same loop when a ll other control 

loops are closed,

[A s (s )]n  =  G n (s )[G  1 (s)]n  (4.1)

where G n (s ) is the m i x  m i transfer function matrix, m x <  n, relating the firs t m i inputs 

and outputs o f G  and [G _ 1 (s)]n  is the corresponding block o f G - 1 (s).

Precisely, (4.1) represents the expression for left-BRG. Sim ilarly, right-BRG can be 

calculated as [G- 1(s)]n G n (s). Since the le ft and right-BRG share common properties, 

consideration o f right-BRG is omitted from this discussion.

4.2.1 BRG Revisited

Let the LTI system, y(s)  =  G (s)u (s) +  d(s) be conformably partitioned such that G n (.s) 

is an m i x m i transfer function matrix,

y i(s )  =  G n (s)u i(s )  +  G i2 (s)u2 (s) +  d (s)

y 2 (s) =  G 2 i(s )u i(s ) +  G 2 2 (s)u 2 (s) +  d(s) (4.2)

When (y2, u 2) is perfectly controlled and d(s) ss 0, at steady state, (y i,  U i) are related

through the Schur complement o f G 22  in  G  [102],

Yi =  G nUi; G n  =  G n  — G i2G j21G 2i (4.3)

In  (4.3), it  is assumed that the subsystem G 22 is nonsingular, though it is not necessary

for existence o f the BRG, as is shown later. For partitioned matrices [62], [G  ‘ In  — G j/ .  

Now, the steady state block relative gain between (y i, U i) can be defined as,

[A b I ^ G u IG -1]!! (4.4)

Sim ilarly, G  can also be partitioned into M  diagonal and conformal off-diagonal blocks, 
such that Gu e i  =  1,2 • • • AT. Then,

[As]jt =  Gjj[G 1]ii (4.5)

Manousiouthakis etal. [83] have suggested choosing the pairings such that the 

eigenvalues o f a ll the corresponding BRGs are close to 1. This pairing rule is based on the 

conjecture that a system is weakly interacting, i f  the BRG is close to the Identity matrix, and 

is sim ilar to the pairing rules for RGA prevalent then. Now, it is w ell known that pairing on 

RGA elements close to 1 can lead to pairings w ith significant interactions. Since relative 

gains are a special case o f BRG, the u tility  o f this rule is also lim ited for choosing block 

pairings.
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4.3 Algebraic Properties

In  this section, we present some new properties o f the BRG and alternative proof o f 

a previously known property. Some o f the properties are used to establish some more 

important properties o f BRG in later sections, while others are o f purely algebraic interest.

Property 4.1 The individual elements o f [Ab]h € /?y can be alternatively

computed as the weighted sum o f RGA elements as,

mi

f a  =  E  ?  v  c4-6)
k=i 9jk

Proof: From (4.4),

Pv ~  det(G ) '

where G jk is system G w ith j th row and kth column deleted. Yu and Luyben [113] have 

shown that,
( ~ l ) J+fcdet(Gjfc) Ajfc

det(G) gJk 1

Now, (4.6) can be obtained by substituting (4.8) into (4.7). ■

A  special case o f (4.6) is seen for diagonal elements o f [A s ]n ,

mi
Pii =  ^  "j \ k  

k = 1

This property can be helpful in  reducing computational load, when the BRG is to be 

calculated for different decompositions o f large systems.
It  is known that the row and column sum o f the RGA is equal to 1 [17]. In  order to 

extend this property to BRG, we define X  as the ensemble o f the m i-dimensional ordered 

index sets chosen from the first n natural numbers. For example, fo r n =  3 and m i =  2, 

X  has the follow ing elements: (1,2), (1,3) and (2,3). Given a m atrix A , every p,q  € I ,  

define a submatrix, denoted as A pq, made up o f rows and columns o f A  indexed by p and 

q respectively.

Property 4.2 Let p, q c  X. Then yp c y , u , c u  and [A B(Gp9)]n  is the BRG between 
yp and u ,. Then,

V p C l
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Proof: Since [A ^ G ^ n  =  G pq[G l]qp, for any p , q c T, summation over a ll q c  1  

yields

E  [A*(GP9)]ii = E  Gn lG ~ %  =  E  G# lG ~ %
q d  q C X  k = l

By construction, the cardinality o f the set (J q for a ll q € X  is (m i • n\) /  (m i! • (n — m i)!), 

where the set (J q contains the first n natural numbers repeated (m i • n \) /(n  • m i! • (n —m i)!)

times. Now the result follows by noting that,
s

E  Gpfc[G l ]kp — --------: -----’------rr • Imi

A  sim ilar result can be obtained by summing right-BRG over a ll p  C T  and for any 

9  C l  An interesting property o f BRG is seen for the case when m j =  m 2 =  • • • rriM =  m. 

Then m  is an exact divisor o f n. Let $  be defined as

ft =  {qi C J  I Qi p ) qj — 0, I J  qj =  {1, 2  • • • n } }  =
i

Then the follow ing relation holds,

E  [A b(G pJ ]  =  l m 'ip  c l
QiCl

Essentially q^s partition the input set into smaller sets o f equal dimension. For m =  1, 

this result reduces to the known result for RGA.

Property 4.3 Let the gain matrix, G  be scaled as G s = S iG S 2. S i =  d ia g (s ii) and 

S2 =  diag(.s2,;), i  — 1  • • -n, are output and input scaling matrices respectively and are 

real. I f  S i and S2 are partitioned such that S i =  diag(Sn, S i2), S2 =  diag(S2 i. S22) and 

Sn,S2i e R miXTOl,then [83 ],

[A b Iu  =  Sn [A s ]n  S^ 1 (4.9)

Proof: Using (4.6) and noting that Ay is independent o f scaling [17],

A, =  =  =  s M j ±  (4.10)
j.= i  ( s i j 9 j k s2k) fc=1 (s i j 9 j k ) &ij

Recognizing that S^ ,1 = d ia g { l/s u ,  I/S 12 • • • 1/-Sim}, the equivalence o f (4.9) and (4.10) 
can be shown. ■

Based on (4.9) and (4.10), the follow ing observations are made:
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(i) Pfj is independent o f input scaling, but dependent on output scaling.

( ii)  [A b \ u  is independent o f scaling o f [AB]J3, for a ll i, j  =  1,2 • • • M ,  j  f  i.

( iii)  I f  a ll outputs are scaled by the same scalar, then /??■ = f y .  This can be shown by 

setting sn =  S12 =  • • • =  SiTO in (4.10).

(iv) The diagonal elements o f BRG, , (i =  j ) ,  are independent o f scaling.

In the development o f the BRG, it  was assumed that G „: is non-singular. The next 

property shows that the existence o f [A #]^ does not depend on the fu lfillm ent o f this 

assumption.

Property 4.4 I f  G  is non-singular and G „ is singular, then [AB\u exists and is singular.

Proof: Since G  is non-singular by assumption, G - 1  and thus [G -1 ],* exists. Thus, [A B]u 

exists, but is rank deficient due to rank deficiency o f Gu (cf. (4.5)). ■

Example 4.1 Consider the gain matrix G  decomposed into 2 x 2  and l x l  blocks,

Clearly, the first 2 x 2  block o f G is singular. For ((y i-fe w  1-^ 2 ), (ys ,u f)  pairings, [A s ]n  

exists, but is singular.

P roperty 4.5 For some specified partitioning o f the system,

(i) G being block triangular implies that the corresponding [As]** = I mi for a ll i  =  
1 • • • M .

( ii)  [Afijij = Imi for a ll*  =  1 • • • M  does not im ply that G is block triangular.

Proof -, (i) For block triangular matrices, [G-1]  ̂ =  [Gj,]_1. Then, using (4.5), [A B]u =

G ^ ] - 1 =  W
(ii)  When only SISO pairings are used, the BRGs are the same as the diagonal elements 

o f RGA and the converse is proved triv ia lly. To show that it  is true fo r any arbitrary 

partitioning, it  would suffice to construct an example showing that [A #]^ can be the Identity 

matrix for a ll i  even when G is not block triangular. Let the system be partitioned in 

accordance to (4.2). Using (4.3) and (4.4),

[A s ]n  =  [I — G i2 G 221 G 2 iG 111] 1
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I f  one o f the pairs, {G i2, G 221 G 2 iG 111} and {G 1 2G 221, G 2 iG 111} lie  in  nu ll space o f each 

other, [A b]h  is the Identity matrix. In  either case, G j2 is singular. Sim ilarly, i f  one o f 

the pairs, {G 2i , G i/G ^ G ^ 1}  nnd {G ^ G n 1 , G i2 G 22} lie in nu ll space o f each other, 

[A b ] 22 is the Identity matrix. Then, G 2i is singular. Clearly, it  is not required that one 

or both o f G 12 and G 2i be zero matrices or G  be block triangular for [A s ]n  =  I mi and 

[A b ] 22  =  I m2. Sim ilar arguments can be used to reach this conclusion, when the system is 
to be partitioned into any arbitrary number o f blocks. ■

Example 4.2 Consider the system

/ 0 .2 2 2.5 1.1 \
1.5 0.4 2.5 1 .1

1.3 - 1 .6 0.5 1

\ -1 .3 1 .6 2 0 .1 /

For a 2 x 2 and 2 x 2  decomposition o f G , [A b ]ii and [A b ] 22 are equal to the Identity 

matrix, despite the system not being block triangular. Note that in  this example, both the 

off-diagonal blocks are singular.

I f  G  is block triangular, then the system is one-way interacting. In  this case, the 

stability o f the individual loops implies the stability o f the overall system. Property 4.5 

shows that this cannot be inferred directly from BRG. In the context o f SISO pairings, 

this property relates to the diagonal elements o f RGA only. Some researchers, e.g. Hovd 

and Skogestad [65] (also see [102, Theorem 10.3]), have claimed that RGA being the 

Identity matrix implies that the system is triangular or can be permuted to the triangular 

form. By means o f a counterexample, Johnson and Shapiro [71] have shown that for 

G  € Mnxn,n  >  4, this is not true. Whereas the example in [71] is purely mathematical, 

Braatz et al. [12] found that the RGA can be arbitrary close to the Identity m atrix fo r real 

industrial processes, which are neither triangular or can be permuted to the triangular form.

Property 4.6 I f  the rows and columns o f the gain matrix, G  are permuted such that, G p 

= P iG P 2, where P i and P 2 are permutation matrices, and further, i f  P i and P 2 can be

0

P 22

(4.11)

P n
0

P l  =

then BRG for the permuted system is,

IAjbI i I

0

P 22

P 21
0

P 11 [ A s ] n  P i" /
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Proof: See [83], ■

It should be noted that [A ^ ]n  and [A s ]n  are equivalent from a variable pairing point 

o f view, as either o f these represent the block gain between the same set o f inputs and 

outputs. Then, we may naturally seek the the total number o f distinct block decentralized 

alternatives for a given system. This issue is addressed next by using the concept o f 

partition functions, but before that a formal definition o f partition function is necessary.

Definition 4.3 A  partition o f a positive integer n is a finite non-increasing sequence o f 

positive integers qi, q2 , • • • qr , such that f f f i= \ch =  n - The partition function p(n) is the 

number o f possible partitions o f n [2 ].

Essentially, p(n) represents the number o f ways o f w riting n  as sum o f smaller integers, 

where the order o f the addends is not considered significant. In  the present context, p(n) 
represents the number o f ways o f block partitioning the given system.

Property 4.7 The number o f distinct block decentralized alternatives, N(n)  for a square 
system is given by,

where aj is the number o f occurrences o f j  in  the sequence {m i, m 2 • • • m ui}-

Proof: For any given decomposition, the total number o f ways, in  which n outputs and n 
inputs can be permuted is n! x n! =  (n!)2. Considering that permutation w ith in  a block 

gives rise to equivalent BRGs, the total number o f distinct permutations decreases to,

Let there exist i , j  such that rrii = nij, i , j  <  M . Then, the cases where the same set 

o f outputs and inputs are assigned to i th or j th block are the same. Let, aj represent the 

number o f occurrences o f j  in the sequence {m i, m 2 • • • m M}. Thus, the total number o f 

distinct alternatives is given as,

Now, p(n) represents the total number o f such possible decompositions (including the 

fu lly  centralized case). Thus, an expression for N (n ) is realized by summing (4.13) over

(4.12)

mi!m2! • • •mM!

(4.13)

p(n).
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‘M mM 'MM 'M2 * 'MM

1M

Figure 4.1: Closed loop system w ith integral action controller

Note that the above expression for N  (n) also includes the fu lly  centralized case. For the 

fu lly  decentralized case, rrij =  1  for a ll j ,  a\ =  n and aj =  0 for a ll j  >  1. Therefore the 

number o f alternatives is simply n\ (c f  (4.13)). Development o f an analytical expression 

for N (n )  explic itly in  terms o f n is beyond the scope o f this thesis. N (n )  for some typical 

values o f n is presented in  Table 4.1. By evaluating N (n ) for different values o f n, n  <  40, 

the follow ing empirical relation can be obtained,

N (n )  «  n ! 1 '52 (4.14)

n P(n) n\ N (n )
3 3 6 16
4 5 24 131
5 7 1 2 0 1496
6 1 1 720 22482
8 2 2 40320 9934563

1 0 42 3628800 9.0852xl09
15 176 1.3077xl012 2.5273 x lO 18

Table 4.1: N (n )  for some typical values o f n

In  many practical situations, the maximum number o f blocks or the maximum dimension 

o f individual blocks is constrained. Such cases can be handled using the concept o f 

restricted partitions. Andrews [2] provides a detailed discussion o f partition theory.

4.4 Closed Loop Properties

Throughout this section, we assume that the controller has integral action to give 

asymptotically zero tracking error. Then, the controller (s), can be expressed as
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(fci • I mj/s )C jj(s ), ki >  0 (see Figure 4.1). It is further assumed that H (s ) =  G (s)C (s) 

is stable and proper. The primary objective is to relate BRG w ith some desired closed loop 

properties including the follow ing,

Definition 4.4 The system G(.s) is called to possess integrity [18, 30], i f  there exists a 

controller K (s ) w ith integral action such that K (s ) stabilizes G(,s) for a ll K (s ) € /C/(s), 
where

/C/(s) =  (K (a ) =  eK | e e (0, 1}}

Definition 4.5 The system G(.s) is called block decentralized integral controllable (block- 

D IC), i f  there exists a controller K (s ) w ith integral action such that K (s ) stabilizes G(.s) 

for a ll K (s ) G K.D{s), where

K d { s )  =  {K  = diag(e,Imi)K  | e* G [0, 1], i  =  1,2, • • • , M }

A  system that possess integrity remains stable w ith integral action in  every output 

channel, when any combination o f loops is taken out o f service. I t  is assumed that a 

controller that fails is immediately taken out o f service, i.e. the corresponding entries in  the 

block diagonal controller matrix are replaced by zero. The gain o f the individual loops o f 
a block-DIC system can be reduced independently o f each other (or taken out o f service) 

w ithout introducing instability in  the system. Note that Block-DIC is the block version o f 

decentralized integral controllability (DIC) [18], known for fu lly  decentralized controllers.

4.4.1 Stability

In  this section, we consider the stability o f the closed loop system operating under nominal 

conditions, w ith one or more loops open and in  the presence o f actuator failure. For fu lly  

decentralized control, it  is w ell known that a system does not possess integrity, i f  one or 

more associated relative gains are negative. Grosdidier and M orari [50] have extended this 

result to block pairings.

Lemma 4.1 Let H (s) =  GC(.s) be a rational proper system. W ith reference to Figure 4 .1, 
assume that k i =  k2 • • • =  =  k. Then, H (s) is closed loop stable only i f

de t(H (0 )) >  0 [51].

Theorem 4.1 Let H (s)G C (s) be a proper system. I f  de t([A s (0)],,) <  0, for some i, 

i  =  1 ,2 • • • M ,  then at least one o f the follow ing is true [50],

1. The closed loop system is unstable.
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2. The closed loop system is unstable as i th loop is removed.

3. The i th loop considered in isolation w ith other loops is unstable.

Proof: Using (4.5) and Schur complement lemma, d e t([A s (0 )]jj) can be expanded as,

l w r A  , det(G «(0))det(G «(0)) d e t(G „(0 )Q i (0 ))d e t(G -(0 )C -(0 ) ) , /1 ,
d e t(lA f l (0)j«) = ---------det(G (0 ))--------------------  de t(G (0 )C (0 ))----- (4’15)

where G M(0) is the system G (0) w ith a ll the rows and columns corresponding to the i th 

loop deleted. The second equality follows since det(C (0)) =  de t(C j,(0 ))d e t(C M(0)). 

de t([A j3 (0 )]jj) <  0 implies that at least one o f the terms in (4.15) is negative. Then, the 

conclusions can be drawn using Lemma 4.1. ■

I f  the individual loops are stable, then the stability o f the closed loop system and the 

reduced system w ith one o f the M  loops removed is assessed using Theorem 4.1. It is 

generalized to the case when any combination o f loops are open by the follow ing corollary.

C oro lla ry 4.1 Let p  be a subset o f integers chosen from the first M  integers. Then, Gpp(O) 

is a submatrix consisting o f blocks o f G(0) indexed by p  and y p G y . For a rational proper 

system H (s ), i f  det([AB(Gpp(0))jn) < 0, then at least one o f the follow ing is unstable:

1 . the closed loop system or

2 . the reduced system w ith the loops indexed by p  removed (yp le ft uncontrolled) or

3 . the reduced system w ith only the loops indexed by p  closed (only y p controlled).

Though useful, when used alone, Theorem 4.1 can be inadequate in  some cases. 

Consider the individual loops to be stable, but the closed loop system and the reduced 

system w ith i th loop removed to be unstable. In  this case, d e t([A B(0)]«) >  0 despite 

the system not having integrity. This d ifficu lty  can be overcome by using Theorem 4.1 in  

conjunction w ith  generalized Niederlinski index (NI).

Theorem 4.2 Let H (s)G C (s) be rational and proper. Assume that the individual loops 

are stable and have vanishing tracking error. Then the closed loop system is stable only 

if, [49]

NI de^ ( y .)—  >  0 ; det(G*j(0)) f  0 Vi =  1 ,2  • • • M  (4.16) 
i \ i = i  det(Gji(0))
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It follows from earlier discussion that a system has integrity only i f  d e t([A s (0 )]ij) >  0 

for a lH  =  1,2 ■ ■ ■ M  and N I >  0. Sim ilar to loop failure sensitivity, an equally important 

issue is that o f actuator failure sensitivity. A  system is called j th actuator failure sensitive 

(j-A F S ), i f  the nominal system is stable but becomes unstable i f  the j th actuator and j th 

sensor are removed [51]. Then using Lemma 4.1, a system is j —AFS i f  det(G J’J'C J’J') <  0. 

Note that for SISO pairings, actuator failure sensitivity and loop failure sensitivity are 

equivalent. For block pairings, BRG can be used to assess the actuator failure sensitivity o f 

the system. We assume that the variables o f the system are reordered such that 1 <  j  <  m \ 

or the j th actuator lies in  the firs t block o f the partitioned system. Then, [G ]j (0)]JJ is the 

loop gain w ith j th sensor and j th actuator removed.

C oro lla ry 4.2 Let the rational proper system H (s) and its individual loops be nom inally 

stable. Assume that de t([A B(G (0 ))]u ) >  0. Then, i f  de t([A B(G JJ(0 )) ]n ) <  0  or 

N I(G-” (0)) <  0, at least one o f the follow ing is j —AFS: (i) the closed loop system or

(ii) the loop itself.

Proof: Sim ilar to (4.15), de t([A s(G JJ(0 ))]ii)  can be expanded as,

t r « tn m  i de tC [G „(0 )]« [C 1 1 (0 )]« )det(G '1 I (0)C '1 1 (0)) 
de t([A e (G JJ(0 ))]i1)  ------------------de t(G « (0 )C « (0 ))------------------

Since the nominal system and its individual loops are stable and d e t([A B(G (0 ))]n ) >  0, 

the reduced system w ith  first loop removed is stable, i.e. de t(G /1 1 (0 )C 1 1 (0)) >  0. 

Sim ilarly,

N I( G * (0)) = ____________ d e t(G *(0 ))C *(0 ))---------------------
det([G1i(0 F [C u (0)F)nj^det(G«(0))C«(0))

Since the individual loops are stable, d e t(G „(0 ))C jj(0 )) >  0. Now, the conclusions 

can be drawn using Lemma 4.1. ■

Rem ark 4.1 Chiu and Arkun [30] have shown that the system has integrity only i f  both 

BRG and N I, calculated for every possible combination o f loops, are positive. For the 

same purposes, Haggblom [59] has also discussed a method based on the concept o f Partial 

Relative Gains. Since the possible number o f combinations o f loops increases rapidly w ith 
system size, use o f these methods (and Corollary 4.1) can be computationally expensive for 

systems beyond moderate dimensions. This issue is further discussed in  the next chapter.
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Rem ark 4.2 The sim ilarity between Theorem 4.1 and IM C -filter stability criteria is 

noteworthy. Garcia and M orari [40] have shown that a sufficient condition fo r stability 

o f a model inverse-based controller w ith  a diagonal first order exponential filte r is given by,

Re{Aj(G(0)G(0)-1)} > 0; j  =  l , 2 - - - n  (4.17)

where G(s) is the nominal model o f the system G. Since, Gjj(0) =  [As (0)]^1Gii(0), 
[As(O)]^1 can be seen as m ultiplicative uncertainty in the i th loop arising due to 

closure o f a ll other loops. Based on (4.17), the i th loop can be stabilized i f  

Re{Aj(Gjj(0)Gjj(0)-1)} = Re{Aj([AB(0)],j)} > 0. Thus, a necessary (but not 

sufficient) condition for individual loop stability is det([AB(0)]jj) > 0, which is sim ilar 

to Theorem 4.1. However, interpretation o f BRG as m ultiplicative uncertainty is justified 

only i f  the effect o f hidden feedback loops is small, which is not generally true.

4.4 .2  In p u t O u tp u t C o n tro lla b ility

It is w ell known that right ha lf plane (RHP) zeros close to the origin pose a lim itation on

the achievable output performance o f the closed loop system. It is also possible that Gjj(s),
considered in  isolation, contains RHP zeros. The zeros o f Gjj(s) can lim it the achievable 

output performance, when the individual loops are designed independently. Skogestad 

and Hovd [65] have shown that the frequency dependent RGA can be used to detect the 

presence o f RHP zeros (Theorem 1 in  their paper). The applicability o f their result is 

lim ited to the individual elements and (n — 1) x (n — 1) dimensional subsystems o f G(s). 
The next proposition complements their result for subsystems having different dimensions.

Proposition 4.1 Consider a stable transfer function matrix G(s) and its partition in  

accordance to (4.2). Then [A s (s )]n  would be an m \ x m i transfer function matrix. I f  

there exists m u  2 <  m t <  n -  2, such that de t([A B(jo o )]n ) is nonzero, fin ite  and has a 

different sign from de t([A B(0 ) ]n ) , then at least one o f the follow ing is true,

(a) The subsystem G n  has a RHP zero.

(b) The subsystem G 22 has a RHP zero.

Proof : For a given partitioning o f the system, 2 <  m i < n — 2, consider that 

linifl-yoo de t([A B(s )]n ) is nonzero and finite. I f  the signs o f de t([A B(0 )]n ) and lim s_ j00  

de t([A B(s )]n ) are different, then there exists a frequency uj0, lo0 >  0, such that
de t([A B(ju ;0 ) ] ii)  =  0.
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The equality, de t([A s (s )]n ) =  0, is satisfied, i f f  one or both o f d e t(G n (ju ;0)) and 

de t(G j'11 (jo ;0)) are zero. Now, det(Gn(j'u>0)) being zero implies the presence o f a RHP 
zero in G n (s ) at that frequency.

I f  det(G ^11 (ju ;0)) =  0, then G ^ s )  contains an RHP zero and G n (s ) contains an RHP 

pole at that frequency. Due to stability assumptions, an RHP pole in G n (s) at s =  j u 0 can 

arise only due to an RHP zero in  G 2 2 (s) at s =  j u 0. u

This result is equally valid, i f  m i =  1 or n — 1. Then, G n (s ) or G 2 2 (s) are single 

elements o f G (s). In this case, i f  the condition imposed by Proposition 4.1 is satisfied, one 

or both o f G n  (s) and G 22  (s) w ill contain RHP zero. The BRG is input scaling independent 

(see Property 4.3). Thus, i f  an input channel o f G (s) contains an RHP zero, the signs 

o f d e t([A s (jo o )]n ) and d e t([A s (0 )]n ) w ill remain unchanged. The change o f sign o f 

de t([A s (s )]n ) is only a sufficient, but not a necessary condition for the presence o f RHP 

zeros in  the subsystems o f G (s).

C oro lla ry 4.3 Consider that G 2 2 (s) contains a RHP zero. I f  a ll loops but (y i(s ), U i(s )) 

are closed, then the open loop subsystem (y i(s ), Ui(.s)) or G n (s) contains a RHP pole.

I f  a RHP pole appears in  the (y i (s ), U i (s)) loop due to closure o f a ll other loops, any small 

disturbance in that open loop can destabilize the system. In practice, however, the gain o f 

the loop would remain fin ite due to presence o f physical constraints.

Proposition 4.1 excludes the case in which any o f the subsystems contain a zero at origin, 

(s =  0). Should a subsystem contain a zero at the origin, it would be extremely d ifficu lt 

to control the system. The relation between zeros at origin and the steady state BRG is 

established in  the next corollary.

C oro lla ry 4.4 I f  there exists m i, (m i =  1, • • • , n — 1}, such that d e t ( [ A s ( 0 ) ] n )  =  0, then 

one or both o f the subsystems, G u (s ) and G 2 2 (s) contain a zero or a zero at the origin.

Either o f these conditions is highly undesirable because it makes the system 

uncontrollable. The system may also contain zeros close to the origin in  the open LHP. 

The presence o f such poorly damped zeros also affect the system’s controllability. In  such 

cases, the gain o f the individual loops increases considerably w ith closure o f a ll other loops.

The gain o f a multivariate system depends on the input direction. Let the gain o f 

(y i(s ), U i(s )) be ||G n (0 )v ||2, ||v | | 2 = 1. Sim ilarly, let the apparent gain o f this loop, 

when a ll other loops are closed be ||G n (0 )w ||2, ||w | | 2 = 1.
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Proposition 4.2 The worst case gain mismatch between G n  (0) and G n  (0) is bounded as 
follows,

< ^ ( 0 ) ] , , )  <  m g . J,2 (4.18)
||w||2 =  l  11 11 '  > l|Z

1  ^  l|G n (0 )w | | 2

i p * )  £ < 4 ' 1 9 >

Proof: For (4.18),

|G ii(0 )v | | 2 _  £ t(G ii(0 )) _  _( r ^
iST*! n r  rnwii =  n(r rtm  =  * ( G u (0) M G n (°))|v 2- i  G n ( 0 ) w  2 £ ( G i i (0)J

W  9 =  1

>  < K I A b ( 0 ) ] n )

For (4.19),

|G h (0 )w | | 2 a (G n (0 ))
iP!aXi IIP  mwil =  ^ 7 p ” 7nY f =  ^ ( G n ( ° ) ) cr(G i i  (°)) >  Ct([Ab (0)]h )
||w||22=i IIG 1H°)V I|2 £ (G h (0))

1>
£ ([A b (0)] n)

Proposition 4.2 suggests that i f  at least one o f the follow ing conditions, c t( [A b (0 ) ]u ) S> 1 

and£ ([A e (0 )]n ) 1 , is satisfied, then the gain o f y i (s )—Ui (s) loop changes considerably

due to closure o f a ll other loops. I f  d ([A s (0)]n ) «  1 and £ ( [ A b ( 0 ) ] u ) ~  1, the change 

in gain may s till be large, as (4.18) and (4.19) are lower bounds on the worst case gain 

mismatch w ith  one o f the loops open. This affirms our earlier assertion that i f  the BRG is 

far from  the Identity matrix, the system has large interactions, but the converse is not true. 

This is further discussed in  §4.4.4.

4.4.3 Block Diagonal Dominance

When the system is block diagonal or triangular, the individual controllers can be tuned 

independently o f each other (Property 4.5); however, most real systems do not lie  in  this 

class. Independent tuning o f individual controllers to give stable closed loop response is 

s till possible, i f  the effect o f u* on y 4 is large compared to the effect o f U j, ( i f  j ) .  The 
concept o f block diagonal dominance can be used to assess this property o f the partitioned 
system.
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Definition 4.6 A  matrix Z is generalized row block diagonal dominant for a given 

partitioning i f  there exists x  € MM, x  >  0 such that [78],

M

II Z ii1 i r 1 x * > J 2  II Zy II xj! * =  1.2, • • • , M
j= l, j^ i

Generalized column block dominance is defined sim ilarly. I f  x  can be chosen as 1 then 

Z is called row (column) block dominant. I f  Z is generalized block diagonal dominant 

(GBDD), there exists a scaling matrix o f the form  X  =  d iag(:r;Imi), i  =  1,2 ■ • ■ M  such 

that X Z X - 1  is block diagonal dominant [78].

Limbeer [78] has shown that i f  ( I „  +  G K (s j) is GBDD fo r a ll s, then the stability 

o f individual loops implies the stability o f the closed loop system. When the controller 

contains integral action, I „  +  ( l/s )H (s ) «  ( l/s )U (s )  at low frequencies [65]. A t these 

frequencies, the diagonal dominance o f ( In +  ( l/s )H (s ))  can be assessed from  diagonal 

dominance o f H (s). In  addition, i f  a system is GBDD at steady state, it  is also block-DIC, 

as shown next. Here, p is an ordered subset o f integers chosen w ith in  the set {1 ,2 , • • • M }  

and J  is the ensemble o f a ll possible p ’s. Then, Gpp(O) is a submatrix consisting o f blocks 

o f G (0) indexed by p.

Lemma 4.2 Let H (s) be a proper system and the matrix D  e W ixn be defined as 

D  =  d ia g (d jlmi), di >  0. Then, G (s) is block-DIC, if f  there exists a block diagonal 

matrix C(O) such that

R e {^j([D H (0 )]pp )} > 0 V j ,  Vp € X

Proof : Campo and M orari [18] have shown that a sim ilar condition is necessary and 

sufficient for a system to be DIC. This lemma can be shown to be true follow ing their 

proof. ■

Proposition 4.3 Let H (s ) be a proper stable system. I f  H (0) is block diagonally dominant, 

then G (s) is block-DIC.

Proof '. W ith reference to Figure 4.1, let G jj(s )K ,,(s ) =  (fa/s ■ I mi)H j*(s). The i th loop 

w ill be stable i f f  any o f the characteristic loci o f (fci /s)H ^i (s) does not encircle the point 

(—l /k i ,0 ) ,  as s traverses the Nyquist D-contour. Since H,:i(s) is stable by assumption, 
such an encirclement can occur only due to the pole at the origin. Grosdidier et al. [51] 

have shown that as fa —► 0 , the j th characteristic loci does not cross the negative real axis 

ifR e {A j(H jj(0 ))} > 0 ; j  =  1,2
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For a block diagonal dominant system, the total number o f encirclements are same as the 

sum o f encirclements by individual loops [78]. Then , R e {A j(H (0 ))} > 0 ; j  =  1,2 • • • n, 
i f

R e {A j(H jj(0 )} > 0 ; V j =  1,2 • • • rrn, V i =  1, 2  • • • M  (4.20)

Note that H w,(0) is block diagonal dominant due to block diagonal dominance o f H (0 ) 

for a ll p e l .  Then Re{A) ([D H (0 )]pp)}  >  0 for a ll p e T  and the system is block-DIC, 

i f  (4.20) is satisfied. For a block diagonal dominant system, (4.20) can always be satisfied 

by choosing C jj(0 ) — G ^ ’ (0), where the invertib ility  o f G ^ ’ (0) is guaranteed by block 

diagonal dominance. ■

In  order to ve rily  the generalized block diagonal dominance o f H jj(0 ), knowledge o f the 

compensator matrix C ,,(0) is required, which can be lim iting  for practical purposes. We 

show that whether H ,*(0) is GBDD, can be assessed using BRG, which is independent o f 

the compensator matrix. Though the follow ing results are valid for any m atrix norms, we 

use the induced 2 -norm due to their frequent use in the process control literature.

Lemma 4.3 Let Z be GBDD. Then [78],

Proposition 4.4 The system H (s) is GBDD only i f

ct([A b (0)]«) > 0 .5  V i =  1,2 • ■ • A f (4.21)

Proof: This proposition is proved using the follow ing logical identity: I f  A  =*• B, then not 

B  => not A. I f  H (0 ) is a block diagonal dominant matrix

M

—(H ii(0 )) >  £  <r(H ij(0))

Then, using Lemma 4.3,

M

J J l2(Hi((0))3([H-1(0)]l4) > £  [H-^O)] )̂
j= l , j&

M

d (H jj (0 )  [ H - 1 (0 )] . . )  >  £  a ( H j j ( 0 )  [ H - 1 (0)] „)
j=hj¥*

M

5-(G«(0) [G-'tO)],,.) >  E  ^ G s to q o - 'to ) ]  ) (4.22)
j= l j&
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Consider that m ultiplication o f G ( 0 )  w ith G  1(0),

M

5 ^ ( 0 )  [ G - ^ O ) ] . .  =  Imi 
i = i

M

ff(G«(0) [G - ‘ (0)]i() +  £  ^(G «(0) [G “ ‘ (0)]^) >  1
j=hj¥*

Then, using the definition o f BRG (4.5) and (4.22), H ( 0 )  is block diagonal dominant 

only i f  a ( [ A s (0)]ii) > 0 . 5  Vi =  1 ,2 • • ■ M .  Since BRG is independent o f scaling o f the 

form  X  =  d ia g (x ,Imt) (see property 4.3), (4.22) is necessary fo r the system to be GBDD. 

■
Ohta et al. [8 8 ] have pointed out that in  many cases, GBDD can be a very conservative 

test for block diagonal dominance and have instead suggested the use o f quasi-block 

diagonal dominance (QBDD). They have shown that i f  ( I„  +  G K ( s ) )  is QBDD for a ll 

s, then the stability o f individual loops implies the stability o f the closed loop system. In 

the follow ing discussion, QBDD is defined form ally and it is shown that the condition 

d-([A s(0)],j) >  0.5 for a ll*  — 1,2 • • • M  is necessary for a system to be QBDD.

D efin ition 4.7 A  matrix Z is quasi-block diagonal dominant fo r a given partitioning i f  

there exists x  G MM such that,

M

x* >  ^ 2  || Z jjZ ^ 1 || Xj-; i  =  1,2, • • • , M ; Zu f  0
j= i, j&

C oro lla ry 4.5 The system H ( s )  is QBDD only i f  d,([A B(0)]i i ) >  0.5 for a lii =  1,2 • • • M .

Proof: A t low frequencies, ( I „  +  ( l/s )H (s ))  «  ( l/s )H (s ). Then, H y ^ H ^ O )  =  

G y (0 )G ^ 1 (0). When the compensator matrix is chosen as Cu =  G -^O ), i  =  1,2 • • • M ,  

GBDD and QBDD are equivalent (by definition). Then, using Proposition 4.4, H (0 ) is 

QBDD only i f  <f([As (0)],i) >  0.5, for a lii =  1,2 • • • M . m

Let E (s) =  (H (s )H 6d(s ) - 1 -  I „ )  =  (G (s)G bd(s ) -1 -  I„ ) ,  where H M(s) and G M(a) 

are matrices containing the block diagonal elements o f H (s) and G (s) respectively (see 

Figure 4.2). Ohta etal. [8 8 ] have shown that i f  the H (s) is QBDD, there exists a norm 

such that || X E (s )X _ 1  ||<  1, where X  is the scaling matrix, defined as before. Let X  be 
the set defined as

-T =  ( X  G R nxn  | X<i =  diag(a;i • I m J }  i  =  l , 2 - - - M
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Then, w ith the choice o f induced 2—norm, the follow ing relation holds,

M a ( E ( s ) )  <  in f a (X E (s )X -1 ) a{A ) <  1

where /aA (.) is the structured singular value. The structure o f A  can be chosen to be 

the same as that o f Gbd(s), since every X  e X  commutes w ith  A , i.e. X A  =  A X . 

Then (w ith the choice o f induced 2—norm), the system H (s) is QBDD or GBDD only i f  

A*a(E(0)) <  1. Note that this condition is also sufficient for block diagonal dominance o f 

the system at steady state.

In  a related context, Grosdidier and M orari [49] defined /rA (E (s)) as the /x-IM  to assess 

the closeness o f G (s) and Gm(s). They have shown that i f  /xA (E (0)) >  1 , a block 

diagonal controller w ith integral action cannot be designed for the given system. For fu lly  

decentralized control, Braatz [11] has shown that a system is DIC, i f  / iA (E (0)) <  1. This 

result can be easily extended to the block decentralized controllers. Whereas a pairing 

alternative that satisfies the /i interaction condition is guaranteed to have some attractive 

properties, the computational load for the calculation o f /j, is large [15, 39], Noting that for 

a ll X  e X , X „;[A b (0)]44X ^ 1 =  [A s (0)]n (see Property 4.3), the follow ing useful result is 

obtained:

C oro lla ry 4.6 For a proper system G (s), /zA (E (s)) <  1 only i f  <t([Ab(0)]m) >  0.5 for a ll 

i  =  1 , 2 - - - M.

For fu lly  decentralized control, the necessary condition <x([A.B(0)]jj) >  0.5  reduces to 

\ u >  0.5 for a lii =  1,2 • • • M . Grosdidier and Morari [49] have shown this result to be true 

for 2 x 2 systems and Corollary 4.6 can be seen as generalization o f this result to systems 

w ith  higher dimensions and block decentralized controllers. Corollary 4.6 can be used for 

pre-screening the alternatives for pairings, reducing the computational load significantly.

4.4.4 Closed Loop Interactions

In  Figure 4.2, i f  G (s) =  G m (.s), the system is triv ia lly  non-interacting. In  this section, such 

a system is referred to as an ideal system. When the controller contains integral action, at 

low frequencies, the sensitivity functions o f the actual and the ideal systems are related 

as [ 1 0 2 ],

s(s) «  s M(s)r(s)
S (s) =  ( I „  +  G (s )K (s ) ) - 1  

S bd(s) =  ( I „  +  G M(s)K (a ) ) " 1
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Figure 4.2: Decomposition o f system into block diagonal and ofF-block diagonal elements

where T (s) =  G ^(.s)G “ 1 (s) is the Performance Relative Gain Array (PRGA) [65]. T (s) 

can be interpreted as a filte r that amplifies and rotates the exogenous signals. This action 

prevents the actual system from behaving as the ideal system. Let T (s) be expressed 
through its singular value decomposition as, T(.s) =  U (.s)£(.s)V T(.s). Then,

r(s)vj(s) = <7 i(s)U j(s), Vi = 1,2•• ■ n

where crfs) is the i th singular value and Uj(s) and V j(s) are the corresponding le ft and 

right singular vectors, calculated at a particular frequency. Grosdidier [48] has argued that 

the exogenous signals oriented in  the direction o f singular vectors associated w ith  a (r(s ) )  

most adversely affect the closed loop performance. Then, for m inim ization o f worst case 
performance loss, we may require that < r(r(s)) be minimum in the desired frequency range. 

Sim ilarly, a necessary condition for interactions to be minimum is that cr,;(T (s)) «  1, for 

a ll*  =  1,2, • • • n  in  the desired frequency range. I f  this happens, then at every frequency, 

r ( s )  is close to a unitary matrix; however,

m ax{a-([As (s )]ji)} <  n ( I\s ) )  * =  1,2, • • • M  (4.23)i

Therefore, i f  a ([A s (0 )]jj) »  1, for a lH  =  1,2, • • • M , then a (r(0 )) »  1. When [Ab(0)]m 

=  I ,  then 0 j([A s (O )]ij) =  1, for a ll i  =  1,2, =  1,2, Then, (4.23)

suggests that <x(r(0)) can s till be large, despite the BRG being precisely the Identity matrix. 
Based on these observations and Proposition 4.2, we conclude that the system has large 

interactions, i f  fr([A s (0 )]jj) >  1 and cr([A,e(0)],i) <C 1 or in  other words, BRG is very 

different from Identity, but the converse is not true. Thus, use o f the PRGA is necessary for
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drawing any conclusions regarding closed loop interactions. In  some cases, this measure 

can be conservative, as it does not take the directional information o f Sbd into account.

Remark 4.3 The requirement that <7j(r(s)) «  1 fo r low interactions is equivalent to 

m inim ization o f Y i  k t( r ( s ) )  — 1|. In  most o f cases, it  is seen that Y i  |cri( r ( s ) )  — 1| ~  
<x(r(s)). Let the norm o f exogenous signals be bounded from above by 1. Then for the 

feedback to be effective, we require that a(S(s)) < 1  in  the desired frequency range, 

which is lower bounded by £(Sbd(s))a(r(s)) at low frequencies. Then, d(S(s)) <  1  only 

i f  £(Sbd(s))b'(r(s)) < 1 or fr(I + Ghd(s)K(s)) > <r(r(s)). This inequality can be easily 

satisfied by choosing a controller w ith low gain i f  <x(r(s)) is small. Large controller gains 

may present operational difficulties in  presence o f input constraints.

4.5 Alternate Pairing Rules

In  earlier sections, it  was shown that useful in formation regarding many closed loop 

properties can be extracted using the BRG. In this section, we summarize those results 

in the form  o f pairing rules.

Pairing Rule 1 Avoid pairing on variables, w ith de t([A jB(0)]l l ) <  0 for some i  or N I <  0, 

otherwise the system does not have integrity (See Theorems 4.1,4.2 and Corollary 4.4).

Pairing Rule 2 Prefer pairing on variables for which /xA (E (0)) <  1. Alternatives 

satisfying this condition are decoupled at low frequencies and a block decentralized 

controller w ith integral action can be designed easily (See §4.4.3). The associated 

computational load can be reduced by pre-screening alternatives such that d-([AB(0 ))]j, 

>  0.5 fo r a ll i  (See Proposition 4.4 and Corollary 4.6).

Pairing Rule 3 Prefer pairing on variables for which J (0) =  Y i  krO ^O )) -  1| is small. 

I f  J (0) is small, then the system is weakly interacting and vice versa, at least at steady state 

(See §4.4.4).

These rules are based on gain information only and may suggest in ferior pairings 

for systems containing large time delays. In  such cases, i f  a reliable dynamic model 

is available, then ensuring that J(s) =  Y i  k iC ^ s )) -  1| is small up to the crossover 
frequency is helpful. In  addition,

Pairing Rule 4 Avoid pairing on variables w ith different signs o f de t([A s (0 )]jj) and 

d e t([A s (jo o )]jj). I f  the signs are different, then the i th loop or the remaining subsystem 

contains an RHP zero (See Proposition 4.1).
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Remark 4.4 Since BRG and PRGA are output scaling dependent, so are their singular 

values. Therefore, prior to pairing selection, specification o f a suitable scaling o f the system 

m atrix is necessary to avoid ambiguity. Some possible approaches are to normalize the 

system matrix such that 11r/*112 <  1 or \iji\ <  1 .

Remark 4.5 These pairing rules equally hold for fu lly  decentralized control structures. 

For many problems, |crj(r(0)) — 1| is small, i f  the diagonal elements o f RGA elements 

are close to 1. Thus, B risto l’s rule o f pairing on RGA elements close to 1 is im p lic it here, 

but, in general, it  is neither necessary nor sufficient for the system to be weakly interacting.

Remark 4.6 Often, Yhi K:(T(0)) — 1| approaches zero monotonically as the controller 

structure approaches the fu lly  centralized case, h i such cases, a balance should be made 

between the closed loop performance and the controller complexity. I f  a more complex 

controller structure shows no significant performance improvement, then the simpler 

structure (closer to the fu lly  decentralized case) should be preferred.

4.5.1 Numerical Examples

Example 4.3 Consider the 4 x 4 ALSTOM gasifier system [32]. The gasifier is described 

by three linearized state space models o f 25th order at 100%, 50% and 0% load conditions. 

Prior to pairing selection, the system is scaled. The scaling procedure and the scaled gain 

matrices are given in the Appendix 4.A.
Various alternatives are screened at different load conditions. The analysis suggests that 

((1 — 2 — 4,1 — 3 — 4), (3 — 2))3 is the only alternative, which satisfies Rules 1 and 2 at a ll 

load conditions. Since ^a (E (0 )) <  1 for this alternative, the blocks are decoupled at low 

frequencies and a controller w ith integral action can be designed easily.

This system has also been analyzed by Chin and Munro [29] at 100% load conditions, 

where they have suggested the use o f ( (1 -3 -4 ,2 -3 —4), (2—1)). This alternative satisfies 

Rules 1 and 2 at 100% load conditions, but the relative gain o f the pairing (2 — 1) is negative 

at 0% load conditions. This shows that this alternative w ill lose integrity under varying 

operating conditions. Though Chin and Munro [29] have scaled the system differently, it  

has no effect on the conclusions, since de t([A s ]i i ) is independent o f scaling.

Example 4.4 In most o f the case studies, we have found steady state analysis to be 

sufficient, but in  some cases it may suggest inferior pairings, as shown here. A la tiq i and

3((1 — 2 — 4,1 — 3 — 4), (3 — 2)) represents ((yi - y 2-  Vi, « i -  «3 -  uf ,  (t/3, «2)) variable pairing.
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( ( 1-2-4,1-2-4),(3-3))

( ( 1-3-4,1-3-4),(2-2))

CO

Figure 4.3: |^ ( r ( j'c j) )  — 1| fo r Column/Stripper D istilla tion  system

Luyben [1] considered the follow ing column/stripper d istilla tion system,

G (s)

( 4.09e~~1,33
(33s+ l)(8 .3s+ l)

—6.36e~ -0.25e-
(31 .6s+ l)(20s+ l) (21s+ l)

—0.49e~°3 
(2 2 s + l)2

V

—4.17e_5s e s s e -1-02* —0.05e-6s 1.53e_3,8s
(45s+ l) (44.6<s+l) (34.5S+1)2 (48s+ l)

1.73e_18s 5.11e_12s 4.61e-1,01s —5.49e-1,Ss
(1 3 s+ l)2 (13 .3s+ l)2 (18.5s+l) (15s+ l)

—11.2e-2 '6s 14(10s+ l)e-°-°2s 0 .1 e -°05s 4.49e~0,6s
(43s+ l)(6 .5s+ l)

u.ie ----- ----
(31 .6s+ l)(5s+ l) (4 8 s+ l)(6 .3 s+ l) /

The alternatives are screened using the suggested pairing rules and a ll the alternatives 

satisfying Rules 1 and 2 are summarized in  Table 4.2. Based on steady state analysis, it 

m ight seem that ((1 — 2 — 4,1 — 2 — 4), (3 — 3)) is the best structure, but its performance 

deteriorates considerably at higher frequencies. Figure 4.3 shows |<r,(r(s)) — 11 as 

a function o f frequency fo r different structures. A t moderate frequencies, ((1 — 3 — 
4,1 — 3 — 4), (2 -  2)) gives improved performance as compared to other alternatives 

and thus its use is recommended. It  should be noted that no viable alternative exists fo r 

2 x 2/2 x  2 decomposition o f the system. B lock decentralized structures close to the fu lly  

centralized case need not always be better than simpler structures as previously pointed out 

by Manousiouthakis et al. [83].

4.6 Note on Integrating Systems

The RGA, as orig inally defined by B risto l [17], is applicable to only open loop stable 

processes. Arkun and Downs [4] have shown that it  is s till possible to use the RGA, when
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Pairing_______m in . 0 ( ^ ( 0 ) ] ^ ) )  /xA (E (0)) ]T . k»(r (0)) ~  1

(1-4,1-4),(2,2),(3,3) 1.19 0.96 16.59
(1-2-4,1-2-4),(3-3) 1.19 0.53 5.65
(1-3-4,1-3-4),(2-2) 0.92 0.94 11.52

Table 4.2: Alternatives for decentralized control o f Column/Stripper D istilla tion  system

the system contains integrating elements in one or more input or output channels. In  such 

cases, the RGA is calculated by replacing the elements containing the integrators by their 

derivatives. Here, we investigate the applicability o f this approach fo r the BRG.

Case I :  Consider the case, when one or more input channels (columns o f G(.s)) contain 

integrator. Then, the system matrix can be partitioned into non-integrating (G N I(s)) and 

integrating (G /(s )) blocks as,

G ( s ) = [ G m (s) ±G i (s) ]  =  [ G n i (s) G ^ s ) ]
0

i l (4.24)

I f  the second block in  (4.24) is treated as a scaling matrix, then [A g(0)]*j = [A b (0 )]m 

(Property 4.3(i)). In  this case, it  would be possible to select block pairings such that the 

individual blocks contain both integrating and non-integrating elements.

Case I I :  Now, consider the case, when one or more output channels (rows o f G (s)) 

contain integrators. Partitioning the system matrix as before,

G ( s )

101__ ' I  O ' G jv/ ( s )

[ *G ,(a ) J . 0 * 1 . Gj i s )
(4.25)

Here, any meaningful results can be obtained only i f  a ll the outputs containing 

integrators are paired together (Property 4 .3 (iii)) or i f  paired separately, only SISO pairing 

is used for them (Property 4.3(ii)). No block pairing should contain both non-integrating 

and integrating elements.

4.7 Chapter Summary

In  this chapter, we revisited the established concept o f block relative gain (BRG). The main 

contributions o f this chapter include

(i) Extension o f algebraic properties known for RGA to BRG.

(ii)  Connection between the BRG and measures o f block diagonal dominance, in 

particular Grosdidier’s / i interaction measure [49] (see §4.4.3).
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( iii)  Correction and restatement o f the common conjecture that a system is weakly 

interacting, i f  BRG is close to Identity (see §4.4.4).

Most o f the results presented are based on steady state gain information only and are 

useful for controllability analysis and pairing selection. It is also shown that in  some cases, 

steady state analysis may suggest inferior pairings. However, practical considerations 

ju s tify  its use, as in  many cases, the only reliable information available at design stage 

is the steady state gain. Block decentralized controllers allow the designer to exploit a 

broader class o f control structures that are not restricted to the two extremes o f complete 

decentralization and complete centralization [83], The pairing rules proposed in this paper 

w ill be helpful in  bridging the gap between theory and practice o f selection o f block 

pairings.

4.A Scaled Gain Matrices for ALSTOM Gasifier System

The system is scaled such that ||j/j|| <  1 at a ll load conditions. The scaling matrix 

X  is chosen such that X u  =  max{||[Gioo%(0)]*||2, ||[ G 5 0 % ( 0 ) ] i | | 2 ,  | | [ G o % ( 0 ) ] * | | 2 } ,  where 
[ G i o o % ( 0 ) ] j  is the i th row o f the gain matrix at 100% load conditions. Then, X  =  

diag(8.58 x 105 , 5.21 x 104 , 1.55 x 104, 164.64) and the scaled gain matrices are obtained 

as G s(0) =  X _ 1 G (0).

Gioo%(0) —

0.0385 -0.0427
-0.1115 -0.0297
0.0327
0.0088

0.8630
0.1284

0.0444
0.0770
0.0477

- 0.1101

-0.0474
-0.0142
0.5019

-0.2834

G^o%(0 )

0.0975
-0.2096
0.0506
0.0359

-0.0381
-0.0500
0.6923
0.1804

0.0269
0.1563
0.0295

-0.1641

-0.1130
- 0.0211
0.4200

-0.3967

G $ * ( 0 )  =

0.7938
-0.7641
0.0958
0.3119

0.1451
-0.1810
0.3855
0.3666

-0.4361
0.6161

-0.0301
-0.4841

-0.3983
-0.0606
0.2536

-0 .7307
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Chapter 5 

Integrity of Systems under 
Decentralized Integral Control

A  multivariate system has integrity i f  the block decentralized controller w ith  integral action 

maintains closed loop stability in  presence o f possible controller failures. In  this chapter, 

we show that the recently proposed necessary and sufficient conditions [52] fo r the system 

to possess integrity can be equivalently expressed in  terms o f well-known notions o f block 

relative gain (BRG) [83] and Niederlinski index (N I) [87]. These results im ply that the con­

ditions based on BRG and N I, traditionally believed to be only necessary, are actually both 

necessary and sufficient. It is also shown that in  general, establishing the existence o f a fu lly  

decentralized controller w ith integral action such that the system has integrity is NP-hard.

5.1 Introduction

This chapter deals w ith reliable stabilization o f stable linear systems using a decentralized 

controller w ith integral action in  every channel. A  system is said to possess integrity, i f  

the closed loop stability is maintained w ith integral action in every output channel, when 

any combination o f the individual controllers fails (see Definition 4.4). It is assumed that 

a controller that fails is immediately taken out o f service, i.e. the corresponding entries 

in  the block diagonal controller matrix are replaced by zero. Some researchers have 

considered the problem o f checking whether the closed loop system is reliably stable fo r a 
given controller (see [13] for a review). The focus o f this work is on deriving controller- 

independent conditions which can establish the existence or non-existence o f a controller 

such that the system possess integrity.

99
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W ith its practical implications, the problem o f integrity against possible controller 

failures has been studied w idely by researchers, particularly in  the area o f process control. 

For fu lly  decentralized control, a well-known result that relates reliable stability w ith 

relative gain array (RGA) [17] is provided by Grosdidier et. al. [51]. It is shown that a 

system has integrity only i f  a ll the corresponding relative gains o f the steady state gain 

matrix are positive. Sim ilar to fu lly  decentralized control, a system w ith  specified block 

pairings has integrity only i f  the determinant o f a ll the corresponding block relative gains 

(BRG) [83] o f the steady state gain matrix are positive [50]. Grosdidier and M orari [49] 

generalized the concept o f Niedrelinski index (N I) to block pairings to derive sim ilar 

necessary conditions. Chiu and Arkun [30] have further suggested that the necessary 

conditions based on BRG and N I be evaluated for a ll principal block sub-matrices o f 

the system. These necessary conditions based on BRG and N I are useful for elim inating 

alternatives for input-output pairings, as discussed in  the previous chapter. It is not apparent 

whether the system w ith the pairings chosen based on these necessary conditions, w ill have 

integrity.

Recently, Giindes and Kabuli [52] presented necessary and sufficient conditions for 

assessing integrity o f the system partitioned into 4 or less blocks. In  this chapter, we 

show when the individual blocks are square, these conditions can be alternatively expressed 
in terms o f BRG and N I. In  general, these conditions do not guarantee that the block 

decentralized controller w ill have no unstable poles other than the origin, as is assumed 

in the derivation o f necessary conditions based on N I and BRG. When the controllers are 

allowed to have any number o f unstable poles, the alternative representation implies that the 

conditions based on BRG and N I, traditionally believed to be only necessary, are actually 

both necessary and sufficient. Since the expressions presented by Giindes and Kabuli [52] 

become increasingly complex w ith the number o f blocks, an additional advantage o f the 

alternative representation is that the extension to the general case, where the system is 

partitioned into any number o f blocks, is relatively simple.

For fo lly  decentralized control, we also show that the necessary and sufficient conditions 

due to Giindes and Kabuli [52] are satisfied i f f  a matrix, which depends on the system’s 

steady state gain, is a P-m atrix. This observation suggests that establishing the existence 

o f a fo lly  decentralized controller w ith integral action such that the system has integrity is 

NP-hard unless P = NP [41].
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5.2 Necessary and Sufficient Conditions

In  this section, we present the necessary and sufficient conditions due to Giindes and 

Kabuli [52] such that the G (s) possess integrity. The discussion is lim ited to the case, 

where G(,s) is partitioned into M  non-overlapping square subsystems such that G jj(0 ) <E 

i  =  1,2, ••• , M , J 2 im i =  n - The block diagonal controller w ith  integral 

action K (s ) is expressed as ( l/s )C (s ), where C(.s) =  diag(C „;(s)) and C ,,(s) has 

same dimensions as G jj(s ) (see Figure 4.1). For notational convenience, G (0) is simply 

represented as G.

To present the necessary and sufficient conditions for integrity o f G (s), we need the 

follow ing additional notation. For j  =  2, • • • , M , i  =  1, • • • , j  — 1, define

X y  =  G jj -  G jiG ^ G i j  (5.1)

When M  >  3, for k =  1, • • • , M  — 2, £, m  =  k +  1, • • • , M , £ ^  m,

Y klm =  G (m -  G tmG~kl G km (5.2)

and for v — 3 • • • M , q =  1, • • • , v — 2, r  =  q +  1, • • • , v — 1,

K ,  =  Xq, -  (5.3)

When M  =  4, define

W  =  Z 24 — (Y ] 3 -  Y ] 2 X [ 21 Y 2 3 ) (Zgg) ^ 1 (Y 34 -  Y ^ X r^ Y ^ )  (5.4)

Theorem 5.1 Let G jj be nonsingular for a ll i  — 1, • • • , M . There exists a block diagonal

controller w ith  integral action such that G (s) has integrity, i f  [52]

d e t(X jj G -1) >  0 (5.5)

for a ll j  =  2, • • • , M , i  =  1, • ■ • , j  — 1 and when M  >  3

d e t(Z ^ G -1) >  0  (5.6)

for a ll v =  3, • • • , M , q =  1, • • • , v — 2, r  =  q +  1, • • • , v — 1 and when M  =  4

d e t(W G j41) >  0 (5.7)

Further, i f  any M  — 1 controllers are strictly proper, or when G jj or G jj, j  =  2, • • • , M , i  =

1 , • • • , j  — 1  are strictly proper or when any o f these transfer matrices have real blocking

zeros [109], (5.5)-(5.7) are also necessary.
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The proof o f Theorem 5.1 is quite long and requires elements from  the coprime 

factorization theory [109], As the proof provides no additional insight, the interested reader 

is referred to [52] for the proof o f Theorem 5.1. Some remarks that are relevant to the the 

scope o f this thesis are in  order.

•  The requirement that G« be nonsingular for a ll*  =  1, • • • , M  is necessary for 

existence o f a controller w ith integral action such that the individual loops are stable. 

Consider that G „ be singular for some i  =  1, ■ • • , M .  Then, the loop transfer 

function G ,*K i =  ( l/s )G jjC j contains a hidden mode. Thus, the stabilization o f 

the i th loop is not possible and G (s) does not have integrity.

•  Whereas the off-diagonal blocks o f G (s) are not strictly proper or have real blocking 

zeros in  general, the controllers can always be designed to be strictly proper. When 

a ll controllers are strictly proper, (5.5)-(5.7) are both necessary and sufficient for 

existence o f a block diagonal controller w ith integral action such that G (s) has 

integrity. We recall that a sim ilar assumption is made during the derivation the 

necessary conditions based on BRG and N I (see Theorems 4.1 - 4.2).

•  When the sufficient conditions (5.5)-(5.7) are satisfied, existence o f a controller w ith 

integral action is guaranteed such the system has integrity. This controller, however, 

may have additional unstable poles other than at the origin o f the complex plane. The 

existence o f pure integral action controllers is guaranteed, when the more restrictive 

conditions: X y G ^ -1 y  0 , Z ^ G “J >- 0  and W G j/ y  0 , hold for a ll indices defined 

earlier.

•  For frilly  decentralized control, X y G ^ -1 y  0, Z ^ G ^ 1 >- 0 and W G ^ 1 y  0 is 

equivalent to (5.5)-(5.7). In this case, when (5.5)-(5.7) hold, existence o f a pure 

integral action controller is guaranteed such that G(.s) has integrity.

Giindes and Kabuli [52] have also presented a controller design method such that G (s) 

has integrity, when the sufficient conditions X y G “ x >- 0 , ZJ^G^ 1 y  0  and W G 44  >- 0  

hold fo r a ll indices defined earlier. Generally, the positive-definiteness is defined only for 

symmetric matrices. By X y G “ x y  0, we im ply that the symmetric part o f X y G ^ 1, i.e. 

X y G “ 1 +  (X y G "1)* is positive-definite.
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5.3 Simplified Representation

In  this section, we show that the conditions in  Theorem 5.1 can be equivalently represented 

in terms o f BRG and N I. For this purpose, we require evaluation o f BRG and N I on the 

principal block sub-matrices o f G . We define f  as the ordered subset o f firs t M  integers 

consisting o f at least 2 elements and as the ensemble o f all such ip. For example, when

M  =  2 , =  { ( 1 , 2 ) }  and M  =  3, *  =  { ( 1 , 2 ), ( 1 ,3 ), (2 ,3), (1 ,2 ,3 )}.

Lemma 5,1 Let G ,, be nonsingular for a lii =  1, ■ • ■ , M.  Then,

d p tfX  G _ 1 1 =  d e t(G {j.j};{y>)
d e t(X y Gj j  ) det(G jj)d e t(G jj) ( )

de t(Z ”,G w ) • d e t(X grG rr ) det(G w)d e t(G „)d e t(G w ) (5'9)

de t(W G 4-41 ) -d e t(Z i3 G 3-31 ) .d e t(X 1 2 G 2-21) =  , (5.10)
ll«=i det(Gjj)

where j  =  2, • • • , M,  i  =  1, • • • , j  — 1 and v =  3, • • • , M , q =  1, • • • , v — 2 , r  

9 + 1 , • • •  , v - l .

P roof: Since G jj is nonsingular for a ll i  =  1, • • • ,M ,  using (5.1), 

det(Xjj GT1) =  d e t ( I - G JjG^1Gjj G 71)

-  ^
- “(S: SH? i
_ d e t(G {jj};{ j j} )

det(Gjj)det(Gjj)
where the second equality follows using Schur complement Lemma. The proofs o f (5.9)- 

(5.10) require repeated use o f Schur complement Lemma and are omitted for the sake o f 

brevity. ■

Proposition 5.1 Let Gu be nonsingular for a ll*  =  1, • • • , M .  Then, the follow ing are 

equivalent:

1-1(1) d e t(X jjG 7 .) >  0 V j =  2 , • • • , M , i =  1, • • • , j  -  1

det(Z j;9 G “!J1) > 0  W  =  3, • • • , M , q =  1 , • • • ,v  — 2 , r  =  q +  1, • • ■ ,v  — 1

de t(W G 441) >  0

(2) N I ( G ^ ) > 0  (5.11)

(3) de t([A B(G w )]fcfc) > 0  Vi/> e k =  1 , • • • , \ip\ (5.12)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 5.3 Simplified Representation 104

where | • | denotes the cardinality o f the set 4>.

Proof: We show that (1) <=> (2) and (2) <=> (3), which implies (1) <=> (2) <=> (3).

((1) ^  (2)) Using (5.8), d e t(X # G j/) >  0 if f

(det(Gjj)det(Gjj))

for a ll j  =  2, ••• ,M , i  =  1, - ■ ■ , j  — 1. When M  >  3, the ordered set { r , q }  is a 

subset o f {*, j } .  Then, d e t(X 9r G ~1) >  0 for a ll v =  3, • • • , M , q  =  1, • • • , v -  2, r  =  

q +  1 , • • • , v -  1. Using (5.9), de t(Z ”gG “ 1) >  0, i f f

(det(Gw)det(G rr)det(Gt,t,))

for a ll v =  3, • • • , M , q  =  1, • • • , v — 2, r  =  q +  1, • ■ ■ , v — 1. S im ilarly, when M  =  4, 

d e t(W G i41) >  0, if f

det(G)

( n t i  det(Gjj))

The necessity and sufficiency o f (5.11) follows by combining a ll these arguments and 

noting that'T  =  { i , j }  U {?, r, v}.

((2) O ’ (3)), Using (5.8),

N I(G bJ},K?}) =  det(Gii jd ^ (G j j)  =  det([A s (G ^ M * j} ) ]« )

Then, N I(G {iJ }){iJ }) >  0, i f f  de t([A B(G {u };{4 j})]r i) >  0 for a ll i , j  <  M . i  f  j .  When, 

M  >  3, using (5.9),

iVTf'r1 f — d e t(G {i;j ;fcy{i,j,fc})
1 det(G ii)det(GJJ)det(G fcfc)

_ ____ de t(G {jij ifc}i{jij ifc})____ de t(G {jij } )̂ jj.)
det(G fcfc)det(G{i)j},{y})det(G ii)det(Gjj)

aet([AB(yji{ij,k},{i,j,k})\kk)

Since N I(G { i j u i j } )  >  0 for a ll i , j  <  M , i  ±  j ,  N I ( G { iJ ife } i{ i j- fe})  > 0, i f f  
d e t ( [ A B ( G { i j , fc},{ i j , fc} ) ] n )  > 0 for a ll i , j ,  k <  M , i  f  j  =£ k. When, M  =  4, using (5.10) 
and sim ilar arguments as above,

M(G)  = T e t a A n ^ ] ^  V * ’ j '  k ~  M ’ i  +  j  +  M  =  {1’ ' ‘ ' ’ j ’ k }

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 5.3 Simplified Representation 105

Since N I(G { ij- fc}) >  0, N I(G ) >  0 if f  de t([A s (G )]« ) >  0 for a ll i, j , k  <  M , i  ^  

j  =£ k, £ =  {1, ■ • ■ , M } / { i ,  j ,  k\ .  Now, the necessity and sufficiency o f (5.12) follows by 

combining a ll these arguments. ■

To check whether (5.11) or (5.12) hold, one needs to calculate N I or BRG fo r a ll principal 

sub-matrices o f G  that can be formed by combining elements o f the diagonal blocks and the 

corresponding off-diagonal blocks. A  sim ilar method was earlier considered by Chiu and 

Arkun [30], where (5.11) and (5.12) were shown to be necessary under the assumptions 

that G (s)C (s) is strictly proper and C(.s) is stable.

Proposition 5.1 implies that (5.5)-(5.7) are satisfied if f  (5.11) or (5.12) hold. Then, 

sim ilar to Theorem 5.1, (5.11) and (5.12) are both necessary and sufficient, when C (s) 

is restricted to be strictly proper. As pointed out earlier, satisfying (5.5)-(5.7) is equivalent 

to satisfying X ^ G ^ 1 y  0 , Z ^ G ^ 1 y  0  and W G j/ >- 0  for fu lly  decentralized control. 

Thus, the existence o f a stable C (s) is guaranteed such that G (s) has integrity fo r fu lly  

decentralized control, but in  general, there may not exist a stable C (s) such that G (s) 

has integrity, even when (5.11) or (5.12) hold. It is worth pointing out the requirement 

that C (s) be stable is restrictive, as noted by Campo and M orari [18], but is practically 

relevant. Derivation o f necessary and sufficient conditions for G(.s) to possess integrity 

such that that C (s) is stable remains an issue for future work.

As M  increases, the expressions presented by Giindes and Kabuli [52] become 

increasingly complex (cf. (5.5)-(5.7)). On the other hand, the extension to the general case 

is simple (by induction), when the conditions are expressed in  terms o f BRG or N I. In  this 

chapter, we have only dealt w ith the case, where G ,, are square. The results o f Giindes and 

Kabuli [52] also hold when the individual blocks are possibly non-square w ith every loop 

having more inputs than outputs for integral action. In  this case, the conditions remain the 

same, except (5.1)-(5.4) need to be modified to accommodate the right inverses o f different 

non-square sub-matrices o f G . Sim ilar to the proofs o f Lemma 5.1 and Proposition 5.1, it 

can be shown that (5.5)-(5.7) holds for non-square blocks, i f f

d e t ( [G G ^ )  > 0  (5.13)

where G y  =  diag(G,,;) and f  denotes some right inverse. Note that G G jd can be treated 

as the generalized N eidrilinski index, where the individual blocks are non-square [49].

To verify whether (5.11) holds, N I needs to be evaluated exactly 2M — (M  +  1) times, 
whereas verification o f (5.12) requires that BRG be evaluated many more times. This 

ambiguity is explained by noting that evaluation o f BRG for a ll principal block sub­
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matrices o f G  is not necessary. For example, when M  =  3,

det([As(G)]jj)det([As(G{jjfc}j{,i/c})]ij) A^ nk ^  ,
— [X a(—  ----------------- =  det([A f l (G W }l{w })]„)

Thus, i f  a ll the terms on the LHS o f the above expression are positive, 

de t([A B(G {i j } ){ j)j} ) ] ii)  is always positive. The task o f finding the set o f 2M -  (M  +  1) 

non-redundant BRGs requires some book-keeping. In  this sense, the use o f (5.11) is 

advantageous over the use o f (5.12).

5.4 Computational Complexity

In this section, we present some results on computational complexity for establishing the 

existence o f a block diagonal controller such that G (s) has integrity. It is shown that this 

problem is NP-hard, unless P = NP [41]. We introduce the useful notion o f P-matrices, 

which form  the basis o f the proof for NP-hardness.

Definition 5.1 A  matrix A  e R” x"  is called a P-m atrix, i f  a ll the principal minors o f A  

are positive [63].

Lemma 5.2 Let G u  be a non-singular matrix consisting o f the diagonal elements o f G. 

Then, (5.5)-(5.7) are satisfied for a ll the indices defined in Theorem 5.1, i f f  G G ^ 1 is a 

P-m atrix.

Proof: It follows from Proposition 5.1 that (5.5)-(5.7) are satisfied for a ll the indices defined 

in Theorem 5.1 i f f  (5.11) holds. Note that N I(G ^ )  =  d e t([G G ^1] ^ )  for a ll e 'P and 

[G G ^1],, =  1 for a lH  =  1, • • • , M . Then, N I(G ^ )  >  0 for a ll € 'F, i f f  G G ^ 1 is 

P-m atrix. ■

Proposition 5.2 Let G «  be a non-singular m atrix consisting o f the diagonal elements o f 

G. I f  the controller K (s ) is restricted to be strictly proper, the problem o f establishing the 

existence o f a diagonal controller such that G (s) has integrity is NP-hard, unless P = NP.

Proof: When the controller K (s ) is restricted to be strictly proper and M  <  4, satisfying 

(5.5)-(5.7) for a ll the indices defined in  Theorem 5.1 is necessary and sufficient for the 

problem o f establishing the existence o f a diagonal controller such that G (s) has integrity. 
Sim ilar conditions can be derived using Proposition 5.1 and induction, when M  is arbitrary. 

Lemma 5.2 shows that these conditions hold i f f  G G ^ 1 is P -m atrix or d e t([G G f̂ 1],/,,/,)
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for a ll tp € 3'. Note that the transformation o f (5.5)-(5.7) to detQ G G ^1] ^ )  for a ll 

ip € requires only elementary operations and can be completed in  polynomial time. 
The result follows by noting that verifying whether a given matrix is 'P-m atrix is co-NP- 

complete [31]. ■

As pointed out earlier, for fu lly  decentralized control, satisfying (5.5)-(5.7) guarantees 

the existence o f a pure integral action controller such that G (s) has integrity. In  this 

case, the problem o f establishing the existence o f a diagonal controller such that G (s) 

has integrity remains NP-hard, when the controllers are further restricted to have poles at 

origin only. Sim ilar conclusions can also be drawn using (5.13) for the case, when the 

individual blocks o f G  are non-square, but have a single output only.

The NP-hardness o f the integrity problem suggests that as M  increases, there exists 

systems, whose integrity cannot be verified in  polynomial time. For particular instances o f 

the problem, it  may s till be possible to establish the existence o f the diagonal controller such 

that G (s) has integrity in  polynomial time. The time complexity o f an algorithm evaluating 

a ll the principal minors o f the given real matrix is approximately 0 (n 32” ). Tsatsomeros 

and L i [105] have presented a recursive algorithm that reduces the time complexity to 

0 (2 ” ). Recently, Rump [95] has proposed an algorithm, whose time complexity is not 

necessarily exponential, but can be exponential in  the worst case. Rump [95] has applied 

this algorithm to a test set o f parameterized matrices, whose membership in  the class o f 

P-matrices is known beforehand for the given value o f the parameter. It  is shown that the 

algorithm can successfully verify whether these matrices having dimensions up to 1 0 0  x 1 0 0  

are P-matrices in  polynomial time.

When the controller is block decentralized, one only needs to check the positiveness 

o f m inors o f the sub-matrices o f G G ^ 1 that can be formed by combining elements 

o f different blocks and the corresponding off-block diagonal elements. In  this case, i f  

d e t([G G jd1] ^ )  >  0 for a ll ^  G 4', we call G G ^ 1 a block P-m atrix in  the sp irit o f P - 

matrices. It is conjectured that under the same conditions as Proposition 5.2, establishing 

the existence o f the block diagonal controller such that G (s) has integrity is also NP-hard. 

The algorithm o f Tsatsomeros and L i [105] is based on Schur complement lemma and is 

easily extended for verifying block P-matrices. It  is not clear at present, i f  it  is possible to 

use the algorithm o f Rump [95] for block matrices. We next present a sufficient condition 

for verifying whether G G ^ 1 is a P - or block P-m atrix.

Proposition 5.3 Let G u  =  d iag(G jj), where Gu 6  i  =  1, • • • , M  and Gm is
non-singular. Define E  =  (G  — G ^ G ^ 1. Then, G G ^ 1 is block P-m atrix w rt the structure
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o f G bd, i f  d e t(I +  0.5E) f  0 and

M a((I +  0.5E)_ 1E) <  2 (5.14)

where A  =  {diag(5j • I mJ , <5* G C, |<5j| <  1, i  =  1, • • • , M }.

Proof: Note that G G ^ 1 =  I+ E . Define, A i =  {d iag (e j-Imi), e* =  {0 ,1 }, i =  1, • ■ • ,M } .  

Then, G G ^ 1 is a block P -m atrix iff,

d e t(I +  E A i)  >  0 V A X G A x (5.15)

Further, defining A 2 =  {diag(e,: • I mi), e* G C, |e»| <  l , i  =  1, • • ■ ,M }  and noting that

A i C A 2, (5.15) holds if,

d e t(I +  E A 2) >  0 V A 2 G A 2

The determinant is a continuous function over convex sets. Thus, i f  d e t(I +  E A 2) 

changes sign over the set A 2, there exists some A 2 G A 2 such that d e t(I +  E A 2) =  0. 

Since, A x C A 2, (5.15) holds if,

d e t(I +  E A 2) f  0 V A 2 g  A 2

O  Ma2 (E ) <  1 (5.16)

The inequality (5.16) is conservative as I, —I  G A 2. To reduce conservativeness [11, 

13], fo r every A  G A , A 2 G A 2 , define A 2 =  0.5(1 +  A ). Then,

d e t(I +  E A 2) =  d e t(I +  0.5E +  0 .5E A )

=  d e t(I +  0 .5E )det(I +  0.5(1 +  0.5E)“ 1E A )

When (5.14) holds, d e t(I +  0.5(1 +  0.5E)- 1E A ) does not change sign over the set A  and 

G G y 1 is block P -m atrix w rt the structure o f G y . ■

The sub-matrices o f positive-definite are also positive-definite [62]. Thus, when 

G G ^ 1 ^  0 , G G bJ  is P  and thus block P-m atrix. Proposition 5.3 is less conservative than 

this sufficient condition, as the controller structure is taken into account. Proposition 5.3 is 

s till conservative, as A x is a strict subset o f A . A  practical approach is to check i f  (5.14) 
holds and i f  not, use the algorithm o f Tsatsomeros and L i [105] for block decentralized 

control or Rump [95] for fu lly  decentralized control.
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5.5 Chapter Summary

In  this chapter, we presented the necessary and sufficient conditions due to Giindes and 

Kabuli [52] for establishing the existence o f a decentralized controller such that the system 

partitioned into 4 or less blocks has integrity. It is shown that these conditions can be 

alternately represented in  terms o f block relative gain (BRG) and N iedrilinski index (N I). 

The follow ing results are shown using the alternate representation:

•  The conditions due to Giindes and Kabuli [52] can be easily generalized to the case, 

when the system is partitioned into arbitrary number o f blocks.

•  When the controller is allowed to have unstable poles other than at the origin, the 

conditions based on BRG and N I, traditionally believed to be only necessary, are 

in  fact both necessary and sufficient. For fo lly  decentralized control, the additional 

assumption o f the controller having unstable poles other than at origin is not required.

•  The problem o f establishing the existence o f the diagonal controller such that the 

system has integrity is equivalent to verifying whether a given real m atrix is a P - 

matrix, which is co-NP-complete.

Though the integrity problem for fo lly  decentralized control is shown to be NP-hard, 

it may be possible to solve particular instances o f this problem using the algorithm o f 

Rump [95]. It is conjectured that the integrity problem for block decentralized control 

is also NP-hard. A  (conservative) sufficient condition is proposed for establishing the 

existence o f the block diagonal controller such that the system has integrity. Future work 

w ill focus on extending the algorithm o f Rump [95] to the block 'P-m atrix case and 

determination o f necessary and sufficient conditions for integrity, when the controller is 

restricted to have poles only at the origin.
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Chapter 6 

Decentralized Minimum Variance 
Benchmark

This chapter deals w ith performance assessment o f decentralized controllers using 

the minimum variance (M V) benchmark. The available M V  benchmarks do not take 

the structure o f the controller into account and can give overly optim istic estimates o f 

achievable performance, when applied to systems under decentralized control. We propose 

an approximate solution to this problem obtained by explicitly solving simple linear matrix 

equations. As a special case o f this general result, we also present an upper bound on the 

achievable performance for systems under m ulti-loop PID control. These results are useful 

for assessing the feasibility o f significant performance improvement by re-tuning o f the 

decentralized controller and input-output pairing selection 1.

6.1 Introduction

In the control literature, it  is common to represent a non-linear, time-varying process by a 

LTI model and design a controller based on this. In the presence o f changing operating 

conditions and disturbance dynamics, the closed loop performance o f the controller 

designed based on this approximation may deteriorate over time. Sustained benefits can 

be reaped by monitoring the performance and taking appropriate corrective actions, in  the 

case o f large deviations from the designed performance.
Poor controller tuning is one o f the primary reasons for performance deterioration o f

'A  preliminary version of this chapter was presented at 53rd conference of Canadian Society of Chemical 
Engineers, Hamilton, ON, 2003
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industrial controllers. It is important to assess the feasibility o f significant performance 

improvement, before the task o f controller tuning is undertaken. This purpose is w ell served 

by the minimum variance (M V) benchmark, where the controller objective is defined in 

terms o f output variance. The M V  benchmark represents the theoretical lower bound on 

the achievable output variance. The output variance can be reduced by controller tuning, 

when the actual variance differs significantly from the M V  benchmark; otherwise, different 

approaches should be considered e.g. the use o f feedforward controller or additional 

manipulated variables.

The idea o f M V  control was introduced by Astrom [5]. It was shown that the time series 

representation o f the closed loop expression from the disturbances to the outputs can be 

partitioned into controller invariant and controller dependent parts. The M V  control law is 

found by setting the controller dependent part to zero and the variance contribution o f the 

controller invariant part represents the lower bound on the achievable performance (defined 

in terms o f variability o f outputs).

Harris [53] showed that w ith a p rio ri knowledge o f time delay, M V  benchmark can 

be estim ated using routine closed loop operating data and established it as a tool for 

performance monitoring o f SISO systems. This approach is further extended to M IM O  

systems by Harris et al. [54] and Huang et al. [70], Qin [91] and Harris et al. [55] provide 

comprehensive reviews o f M V  based and other performance assessment tools.

Though useful, the available M V  benchmark shows lim itations, when applied to systems 

using (block) decentralized or m ulti-loop control. The conventional approaches towards 

performance assessment o f such controllers include:

•  Loop by loop analysis

•  Use o f the M V  benchmark for fu ll multivariate controllers

The M V  benchmark fails to take the process interactions into account, when applied 

in  a loop-wise fashion; whereas, the fu ll multivariable benchmark assumes more degrees 

o f freedom for performance improvement than are available in  the actual controller. In 

either case, the bound on the achievable output variance is loose and can be overly 

optim istic. In  many cases, it  may lead the practicing engineer to search fo r the non-existent 

decentralized controller to match the performance o f the M V  benchmark. The gap between 

the benchmark and achievable performance further increases when the decentralized 
controller is restricted to be o f reduced complexity, e.g. proportional integral derivative 

(PID) controller [75]. Thus, a decentralized M V  benchmark is required, which takes 
the controller structure into account. These arguments are further illustrated using the
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follow ing example adapted from Huang and Shah [69]:

Example 6.1 Consider y (t) =  G(q~1)u (t)  +  G w(g- 1 )a (t), where q~l is the backshift 

operator, a (t) is Gaussian noise w ith unit variance and

q 2 2  q~2

C4

1 I

l - O A q - 1

q~2

1-0.5 q - 1 

q~2
G w = 1—0.9? - 1  

1

1-0.3? - 1

2

1 O h-i 1

1 —0 .2 ? - 1  J L  1-0.4? - 1 l-0 .5 ? -i J

The objective is to assess the performance o f a m ulti-loop controller o f the form  k l,  

k =  0.17. Under closed loop control, i? [tr (y ( t)y ( t)T] =  23.65, where E[.] is the 

expectation operator. The M V  benchmark for fu ll multivariate controller is 14.5, but no 

A; or a dynamic compensator could be found that matches this benchmark closely. As 

shown later, the given controller structure inherently lim its the achievable performance and 

the controller 0.171 is nearly optimal for the given controller structure.

An explicit solution to the decentralized M V  control problem has great theoretical 

and practical value, but is equally d ifficu lt to realize. The primary d ifficu lty  lies 

in  enforcing the decentralized structure on the controller, as this yields a non-convex 

optim ization problem [103]. Yuz and Goodwin [114] have suggested a two-step approach 

for determining an upper bound on the achievable output variance using a decentralized 
controller:

•  A  decentralized controller is designed based on only the diagonal elements o f the 

system.

•  The controller is redesigned to compensate for the ignored off-diagonal elements 

using an approximation o f the sensitivity function.

Though the in itia l design based on the diagonal elements accommodates the controller 

structure, the controller redesign step requires some care and numerical search. Further, 

the u tility  o f the method in its present form  is lim ited to step disturbances only.

In this paper, we take a fundamentally different approach to derive an approximate 

solution for the decentralized M V  control problem. The controller structure is posed as a 

constraint on the optim ization problem and a suboptimal solution is obtained by exp lic itly  

solving the linear matrix equations defining the stationary point. As a special case, we 
present an upper bound on the achievable output variance for systems under m ulti-loop PID 
control. The results presented here do not require controller redesign [114] or numerical 

search [75]; however the sim plicity o f the result comes at the cost o f sub-optimality. These 

results are useful for various purposes:
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1. Performance assessment o f existing decentralized or m ulti-loop controllers.

2. Selection o f input-output pairings based on achievable decentralized performance.

3. Providing a good in itia l guess for non-convex parameter search methods.

6.2 Interactor Matrices

Before proceeding w ith the main development, we present the useful concept o f interactor 

matrices introduced in  [69].

Definition 6.1 For every n i x n 2 proper, rational polynomial transfer m atrix G(<7-1 ), 

there is a unique, non-singular, n i x  n i lower triangular polynomial m atrix D (g ), such that 

\D(q)\ =  qr and [45]

lim  B (q)G (q~1) =  lim  G (g-1 ) =  G (0) (6.1)
g-1- ^  q-1—>0

where G (0) is a fu ll rank constant m atrix [69]. The matrix D (q) is called the interactor 

matrix.

For univariate systems, the M V  benchmark prim arily depends on the time delay 

associated w ith G (g-1 ) [5]. This time delay can also be interpreted as the non-invertible 

part o f the transfer matrix, as its inverse is non-causal. Sim ilarly, the multivariate system 

G (g_1) can be factored as G (g-1 ) =  D - 1 (g- 1 )G (g_1) such that G (g-1 ) and D _ 1 (g_1) 

contain the invertible and non-invertible parts o f G (g_1) respectively. The interactor m atrix 

generalizes the time delay for univariate systems to the multivariate case [69] and can be 

written as,

D  (q) =  D  0(q)qd +  D x (q)qd~1 +  ■■■ D  d- X(q)q

where d denotes the order o f the interactor matrix.

When D (g) assumes the form  D (g) =  qdI ,  D (g) is called a simple interactor matrix. 

Sim ilarly, an interactor matrix w ith the form  D (q) =  diag(gd l, • • • , qdn) is called a 

diagonal interactor matrix. D (g) w ith no special structure is called a general interactor 

matrix.

The lower triangular form  is only one o f the possible realizations o f the interactor 
matrices. In  general, the interactor matrix can also be upper triangular or a fu ll matrix. 

One realization o f the interactor matrix that is o f immediate interest to us, is when D (g ) is 

unitary.
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D efin ition 6.2 For a rational proper, transfer matrix G (q~v) having fu ll rank, let the D (g) 

satisfying (6.1) also satisfies D T(g~1 )D (g) =  I. Then, D (g) is called a unitary interactor 

matrix [89],

The unitary interactor matrix is non-unique, but two unitary interactor matrices are 

related by transformation through a unitary m atrix [69]. The unitary interactor m atrix is 

useful fo r deriving the M V  control law, when every output are given equal importance. 

Huang and Shah [6 8 ] have introduced the concept o f weighted unitary matrices to handle 

the cases, where individual outputs have different importance in the control objective.

6.3 Problem Formulation

a(t)

y(t)u(t)

Figure 6 .1: Separation o f interactor matrix

Consider the system shown in Figure 6.1, where K (q -1 ) =  d iag(K ,j(q i_1)), i  =  

l , - - -  , M . The objective is to find a controller such that the variance o f y (t) or 

E [tr (y ( t )y ( t )T] is m inimized. We make the follow ing sim plifying assumptions:

1. G(</_1) and G w(q~1) are stable, causal transfer matrices, contain no zeros outside 

the unit circle and are square having dimensions n  x n.

2 . a (f) is a random noise sequence w ith unit variance and y (t)  is stationary up to its 
second moment.

The assumption that G(q~1) and G U)(g_1) are square is made for notational sim plicity 

and can easily be relaxed for generalization purposes. When G ,„ contains zeros outside
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the unit circle, these zeros can be factored through an a ll pass factor factorization w ithout 

affecting the noise spectrum [69]. Further, there is no loss o f generality in  assuming that 

the system is affected by noise having unit variance. When E [a (t)aT (t)] I ,  the noise 

model can always be scaled to satisfy this assumption.

Next, we formulate the optim ization problem that can be solved to obtain the solution to 

the decentralized M V  control problem. In the remaining discussion, the arguments q~l  and 

t  are dropped for ease o f representation. Let the system shown in Figure 6.1 be expressed 

as

y  =  D _1G u +  G ma 

or D iy  =  q~dG u +  G^a (6 .2 )

where D i =  q~dD , G,i =  D iG w and d is the order or number o f non-zero impulse 

response matrices o f D . Using Diophantine’s identity, G^ =  F  +  q~dR  and u  =  —K y  for 

regulatory control,

D iy  =  -q ~ dG  K y  +  (F  +  q~d R )a  (6.3)

Using (6.2), a =  G ^ D x y  — q~dG u). W ith simple algebraic manipulations, (6.3) can 

be sim plified as,

D iy  =  F a  +  q -d(R G " 1 -  F G “ 1 G K )y  (6.4)

Since E [tr (y ( t )y ( t )T)] =  £ '[tr (D iy ( t)y ( t) r D f )] [69, Lemma 4.3.1] and F  is controller 

invariant, the second term in (6.4) can be set to zero to obtain the fu ll multivariable M V  

control law. When the controller has structural constraints, this may not be possible since 

K  has fewer degrees o f freedom than the fu ll multivariable controller.

Let A  =  R G “ \  B  =  F G ^ G  and L  =  A  — B K . Then using (6.4),

y  =  (D x -  q - ^ F a

=  ( I -  ^ D f L ^ D f F a

When the spectral radius o f D f  L(eJW) is less than 1 for a ll u  =  [0 , 27t] or the closed

loop system is stable, the series expansion o f ( I — q~dD fL ) - 1  is convergent. Thus,

y = Dt pa <6.5)

Since E [a (t)aT(t +  r ) ] =  0 for a ll r  ^  0 and D i is a unitary transfer matrix,

E [ tr (y y T)] =  ||D fF ||l +  ||D fL D fF ||| +  • • •

=  ||F ||| +  ||L D ^F ||i H  (6 .6 )
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The higher order terms on the RHS o f (6 .6 ) are non-linear in  K . An approximate solution 

to the decentralized M V  control problem is obtained by ignoring these terms and finding 

the stationary point o f ||L D fF | |2  w rt block diagonal K . The resulting equations using this 

approach require an iterative procedure to be solved and in  order to avoid this d ifficu lty, we 

use the follow ing result:

Lemma 6.1 Let X , Y  be stable transfer matrices. Then,

W ith this sim plification, the decentralized controller that provides an overestimate o f the 

achievable output variance is obtained by solving the follow ing optim ization problem

where l nn is a m atrix o f ones and o is the Hadamard product. J is a m atrix representing 

the controller structure and is defined as

iIXY111 <  ||X ||1||Y || 2
co

Proof:

J -  f  tr (X Y (e - juJ)Y *X*(e j “ )du 
Jo

•j p2ir n

ts
-i p 2 ir  71

<  sup 5 2 (Y (e- i “ ) ) -  /
o;e [0  27r] 0

< IIXIIIIIYHSo

Using (6 .6 ) and Lemma 6 .1,

F[tr(yyr) ]< | |F | |  + M | |F | |L  + --- (6.7)

s.t. ( l nn - J ) o K  =  0 (6.8)

(6.9)
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6.4 Decentralized MV Benchmark

In  this section, an explicit solution to the optim ization problem (6 .8 ) is provided. For these 

purposes, we present the follow ing result, which involves finding the stationary point o f a 

scalar w rt a structured matrix. This result can also be o f independent interest.

Lemma 6.2 Let Y  =  X TM X  -  N TX . Then,

<9[tr(Y)] =  +  M r^  x  _  N  ( 6  1Q)
C/.X.

Proof: Let Zj be the j th column o f the Identity matrix. Using the chain rule

f d X Tl iirv  ,  ^ tTx <9X \
t r ( s ^ _MX + (x
t r  (z jzJM X ) +  t r  ((X TM  -  N T) ^ T) 

t r  (z fM X z j) +  t r  ( z j (X TM  -  N T)^ )

(MX)i). + (XTM -N T).- 
(MX),,. + (MrX),, -  N„

Note that (6 .10) is a compact representation o f the last expression. ■

Proposition 6.1 Let Y  =  X TM X  — N TX , where X  is a block diagonal matrix. Then, the 

stationary point o f tr (Y )  w rt X  is found by solving

J o [(M  +  M t ) ]X  =  J o N  (6.11)

where J is defined sim ilar to (6.9).

Proof: Let X  =  d ia g (X n , • • • , X m m ) -  Then,

M

tr (Y )  =  J ^ trC X p V la X a ) -  tr(N « )
i —1

Using lemma 6.2, the stationary point o f tr (Y )  w rt Xu  is found by solving

=  ( M j j  +  M  j )  Xu -  Nu =  0  

The result follows by considering the last expression for a ll i  together. ■

A M Y )]
dx ij
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6.4.1 S im p le  In te ra c to r  M a tr ix

I f  the system has a simple interactor matrix, i.e. D  =  q d • I ,  then A  =  R G  

B  =  F G ~ XG , where G w =  F  +  q~dR . Using Parseval’s equality,

- l
W ’

mil ^ t r ( L f L i ) (6.12)

where L

j= 0

A thA  — B K  as before and L , is the i  impulse response m atrix o f L  defined as

i  i —j

L* =  A* — 2̂ ̂  BjK/c
j = 0 k = 0

(6.13)

Then, the decentralized M V  control law is obtained by finding the stationary point o f 

j|L ||| w rt K fe, k =  1 ,2 ... oo subject to the structural constraint on the controller. For 

numerical reasons, however, it  is necessary to approximate A , B  and K  by fin ite  impulse 

response models having order N . Using Lemma 6.1, the stationary point is found by 

solving,

B K t

'N - k

L  b ; l i + k

i = 0

0 (6.14)

To sim plify notation in  the further treatment, we define the follow ing linear operator,

D efin ition  6.3 Let X , Y  be defined such that d im (X ) =  d im (Y y) for a ll i , j .  Then, the 

block-wise Kronecker-Hadamardproduct is defined as,

X  0 Y
X  o Y u  X 0 Y 12 

X o Y 21 X  o Y 22

A  rearrangement o f (6.14) gives,

[J 0  {B th B h )} K c =  J 0  (B th A c ) (6.15)

where A c  and K c  contain the impulse response matrices o f A  and K  respectively, and 

B h  is a lower block triangular Hankel matrix. The A c , K c  and B #  are defined as

B H

1 
1

K f  K 2 • w ■ 
■

E-iO

I 
I A f  A q ■ ■ 

■ H

'  Bo 0 0 . . .  0

Bx Bo 0 . . .  0

B jv B at- i • • • B 0

(6.16)
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When [J 0 ) ] is invertible, the suboptimal decentralized M V  controller is given

as,

K c =  [J 0 (B ^ B h ) ] - 1  [J 0 (B £ A c )] (6.17)

Remark 6.1 Since J  always has fu ll rank, rank deficiency o f B ^ B #  makes 

[J 0 (B jjB //) ]  singular. This happens when some o f B /s  are singular. For a system w ith  

simple interactor matrix, B  =  F G ^ G  has no infin ite zeros and thus B* is nonsingular for 

a ll i.

The earlier developments in  this section are summarized by the follow ing result:

Proposition 6.2 Consider the system (6.2) w ith a simple interactor matrix. Define A  =  

R G ~ \ B  =  F G ^ G . Then, a suboptimal solution to finding a decentralized controller 

that minimizes JE'[tr(yyr )] is given by (6.17).

Let Ymvd be the output o f the closed loop system under the optimal decentralized M V  

control law. Then, a decentralized performance index is defined as

E [tr(y m„dy ^ (j)]
“  E [tr(y y r )] (<U8)

The fu ll multivariable performance index rjmv is defined sim ilarly, where qmv <  qmvd- 

Ideally, 0 <  rjmvd <  1, but when evaluated based on the suboptimal decentralized controller 

given by (6.17), qmvd may exceed 1. In  any case, a value o f qmvd close to zero always 

indicates poor performance.

In  certain special cases, the decentralized controller given by (6.17) is optimal. For 

example, when J =  l nn, (6.17) reduces to the optimal fu ll multivariable M V  control law. 

Sim ilarly, when N  — I  or the system is affected by white noise, K c  =  0, which is optimal.

Remark 6.2 When F  commutes w ith K , use o f Lemma 6 .1 to sim plify (6 .6 ) to (6.7) is not 

required. In this case, better estimates o f qmvd are obtained by redefining A  =  R G ^ F , 

B  =  F G ^ G F  and using Proposition 6.2 as before.

Example 6.2 We revisit example 6.1. The variation o f qmv and qmvd w ith k is shown in 

Figure 6.2. For k =  0.17, qmvd ~  0.82, which is large compared to qmv &  0.6. This 
justifies our earlier remark that the decentralized structure puts an inherent lim itation on 

the achievable performance for this system and no significant performance improvement is 

possible by controller re-tuning.
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Figure 6.2: Comparison o f rjmv (o) and r]mvd (+) for Example 6.2. The controller structure 
lim its the achievable output performance.

Proposition 6.2 can also be used for input-output pairing selection. For this system, the 

upper bound on achievable output performance for pairing on the diagonal and off-diagonal 

elements is 18.99 and 16.02 respectively. Based on this criterion, the latter alternative may 

be preferred.

6.4.2 General Interactor Matrix

When the system has a general interactor matrix, B  is non-invertible due to presence o f 

infin ite zeros (see Remark 6.1) and some modifications are required. Let D b be the unitary 

interaction matrix o f B  and B  =  D ^B . Then

The suboptimal decentralized controller is obtained by follow ing the same steps as 

before:

D b R G “ \  B  =  D s F G ^ G , where D b is the unitary interactor m atrix o f F G ^ G . Then, 

a suboptimal solution to finding a decentralized controller that minimizes £ l[tr (y y T)] is 

given by (6.19).

I|L||| = IIA-D^BKH!
=  ||D b A - B K | | !  =  IIA  — B K |||

(6.19)

where A c , B #  are defined sim ilar to (6.16).

Proposition 6.3 Consider the system (6.2) w ith a general interactor matrix. Define A  =
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>
E

Figure 6.3: Comparison o f rjmv (o) and r)mvd (+) for Example 6.3. The controller structure 
poses no serious lim itations.

In  the previous example, controller structure posed significant lim itations on the 

achievable performance. This is not always the case, as shown below:

Example 6.3 Consider the follow ing system adapted from  Huang and Shah [69],

q 1 t f i2 < r2 l —0.6
1-0 .4? -1 1—0.lg -1

G™ =
1—0.5<7-1 1—0.5g-1

0.3q-1 q~2 0.5 1
L 1—0.lg -1 t--* 1 p 00 -Q

1 L 1—0.5^—1 1—0.5g_1 J

where the variable K u  controls the extent o f interaction among the variables. The objective 

is to compare the performance o f the follow ing controller for different values o f K 12.
0.5—0 S q - 1 r>

1 /    1—0.5q— 1
^  —  r , 0 .2 5 -0 .2  q - 1

U ( l - 0 . 5 g - 1) ( l+ 0 . 5 q - 1)

The rjmvd,rimv for various K i2 are shown in Figure 6.3. For each value o f A j2, there 

exists a decentralized controller that closely matches the performance o f the optimal fu ll 

multivariable controller. Hence, the controller structure poses no serious lim itation on 

the achievable performance for this system. This further illustrates that large interactions 

do not necessarily lim it the performance o f decentralized controllers compared to the fu ll 

multivariable controllers.

6.5 Achievable PID Performance

The suboptimal decentralized controller is expressed in  terms o f its impulse response 

matrices. By restricting the order o f the controller or setting =  0 fo r a ll k >  p,
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controllers w ith  reduced complexity can be obtained. In  this section, this approach is used 

to find an overestimate on achievable output variance using m ulti-loop PID controllers, 

which are expressed as,

k ™  =  x E c ‘« -‘ =  x c
2 = 0

where A  =  1 -  q "1. By considering 1 /A  as a part o f G  and m inim izing ||L | | 2 w rt C, 

an overestimate o f the achievable PID performance can be derived. Then Propositions 6.2 

and 6.3 can be used by lim iting  the column dimensions o f A c , B h  to 3n. To ensure that 

the assumption o f stability o f G  is satisfied, the integrator can be moved just inside the 

unit circle w ithout alfecting the result significantly. In  general, controllers w ith  reduced 

complexity having order p can be obtained by lim iting  the column dimensions o f A c , B h  

to pn.

Example 6.4 Consider the follow ing system taken from Ko and Edgar [75],

q- 6  1  -  0 .2 q~l
V ~  1 -  0.8q~lU  +  (1 -  0.3g-1) ( l +  0.4g-1) ( l -  0A ? -1)®

Clearly the results presented earlier also hold for SISO systems. Based on these results, 

the achievable output variances under M V  and PI control are 1.11 showing that the control 

structure poses no lim itations. However, when the disturbance model contains an additional 

integrator, the achievable output variances under M V  and PI control are 11.95 and 17.86 

respectively. The achievable performances d iffer by more than 50% revealing the effect 

o f controller structure on achievable performance. Note that for both these cases, the 

achievable PI performance is close to the results obtained by Ko and Edgar [75], who 

used numerical search.

6.6 Limitations

The results presented in this paper require that the system’s model be fu lly  known. This can 

be very demanding for online performance monitoring o f industrial systems, especially in 

presence o f changing operating conditions. The requirement o f knowledge o f the system’s 

model can be partially relaxed by estimating G w using regular operating data, as suggested 

by Ko and Edgar [75]. Example 6.3 shows that the controller structure does not always 
lim it the achievable performance. The identification o f G should only be undertaken i f

large differences are seen between the actual output variance and M V  benchmark for fu ll

multivariable controllers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sec. 6.7 Chapter Summary 123

The suboptimal controller is expressed in  terms o f its impulse response matrices, whose 

determination is computationally inexpensive. Starting from a low value, the controller 

order can be gradually increased until convergence, but convergence can be extremely 

slow in some cases. This d ifficu lty is overcome by recognizing that [J  0 ( B jB # ) ]  is 

a sparse Toeplitz matrix and using available computationally efficient methods (e.g., Brent 

et al. [16]) for its inversion.

The decentralized M V  control law is based on an approximation o f the closed loop 

expression and thus stability is not guaranteed. A  possible approach to overcome this 

lim itation is to reduce the gain o f the decentralized controller until stability is achieved, 

however, such an approach increases the sub-optimality o f the results.

6.7 Chapter Summary

For performance assessment purposes, ignoring the controller structure can lead to 

incorrect conclusions regarding significant performance improvement through controller 

tuning. In  this chapter, we presented an approximate solution to the decentralized minimum 

variance control problem, which provides an overestimate o f the achievable output variance 

w ithout numerical search. The proposed method can easily handle the case o f m ulti-loop 

PID controllers. The primary lim itation o f the proposed method is that complete knowledge 

o f the system’s model is required and some recommendations are provided to partially 

overcome this lim itation.
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Chapter 7 

Conclusions and Future Work

7.1 Thesis Conclusions

In  this thesis, we developed tools for handling different aspects o f the control configuration 

design (CCD) problem. The major contributions are listed below:

•  The achievable input performance is characterized fo r FDLTI systems possibly 

having time delay in  the Hz and H ^  optimal control frameworks.

•  A  method for finding a stabilizing decentralized controller through independent 

designs is presented. This method extends the practical applicability o f the [i- 

interaction measure to unstable systems.

•  The problem o f finding an optimal block diagonal approximation o f a multivariate 

system is introduced and a numerical solution is proposed.

•  Many new algebraic properties o f block relative gain (BRG) are developed. The 

connection between BRG and important closed loop properties is explored and some 

common conjectures are corrected.

•  The problem o f establishing existence o f diagonal controller such that the system has 

integrity against controller failure is shown to be NP-hard.

•  A  suboptimal, yet explicit solution to the decentralized minimum variance 

benchmark problem is proposed.

In  many cases, the CCD problem can be reasonably solved using the tools presented 

in this thesis alone or w ith  possible m inor extensions. For example, reliable decentralized 

controller can be designed for open loop stable systems using the results o f Chapters 4- 5.

124
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In  the context o f the CCD problem, the results on Decentralized M V  benchmark are useful 

for screening o f pairing alternatives w ith achievable output performance as a criterion.

We have not handled the important issue o f model uncertainty explicitly. Note that 

m inim ization o f input energy required for stabilization provides the m axim ally robust 

controller for norm bounded additive uncertainty [43]. The results o f Chapter 3 can also 

be easily extended for handling robust stability and performance issues using the approach 

available in  [101]. It must be acknowledged; however, that solving the CCD or control 

structure design problem for general time-varying non-linear systems remains an open 

challenge and this thesis can be seen as a positive step in  that direction.

7.2 Directions for Future Work

We pointed out some potential directions for generalizing and improving upon the results 

presented in this thesis in  the summaries o f the individual chapters. Some other relevant 

issues are discussed below w ith the hope that solving these problems w ill move us closer 

towards finding a general solution for the CSD problem.

•  The characterization o f achievable performance has received increasing interest from  

researchers, but the effect o f controller structure on the achievable performance 

remains unclear. The results o f Zames and Bensoussan [116] can be seen as a good 

starting point in  this direction.

•  It is like ly  that the optimal solution to the block diagonal approximation problem is 

not unique. An analytical solution is necessary to characterize a ll possible solutions. 

To this end, it  is useful to approach the H optimal block diagonal approximation 

problem for stable systems using the results o f Glover et al. [44],

•  In  some cases, it  may not be possible to find a stabilizing decentralized controller 

through independent designs. This d ifficu lty  can be partially overcome by extending 

the ideas presented in  Chapter 3 for sequential design o f decentralized controller for 

unstable systems.

•  The requirement that a model be available hinders the online implementation o f the 

decentralized minimum variance benchmark. It would be extremely useful, i f  exact 

or approximate methods can be derived, where this stringent requirement can be 

relaxed.
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•  There are no practical tools available (other than numerical simulation) for d irectly 

handling the non-linear behavior o f the process systems. An indirect approach 

is to approximate the system as a nominal model w ith an associated uncertainty 

description [ 1 1 ], but the involved computational complexity is lim iting.
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