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[1] Using a new two-dimensional nonlinear finite element model, we investigate the
interaction of dispersive shear Alfvén wave (SAW) field line resonances (FLRs) and ion
acoustic waves in Earth’s magnetosphere. We solve the full set of nonlinear reduced MHD
equations self-consistently in arbitrary geometries. Initially, a Cartesian box model is used
to demonstrate the reliability of our numerical solution in determining the linear and
nonlinear evolution of FLRs. Then the full reduced MHD equations with the effects of
electron inertia, ion Larmor radius correction, and electron thermal pressure are solved in
dipolar and stretched magnetic topologies. We show that time-dependent dispersion

and density steepening lead to localization of a highly structured FLR within an
ionospheric (equatorial) density cavity (bump). When nonlinear effects are accounted for,
we find that FLRs preferentially form in regions of low wave dispersion. Field line
stretching and ponderomotive density redistribution lead to a significant reduction in FLR
eigenfrequencies, bringing them into the range of observations. Nonlinear effects also
cause a rapid acceleration of the timescale over which small perpendicular spatial scales
appear. In our model, it is shown that density perturbations can be comparable to the
equilibrium background density.  INDEX TERMS: 2740 Magnetospheric Physics: Magnetospheric
configuration and dynamics; 2704 Magnetospheric Physics: Auroral phenomena (2407); 2752 Magnetospheric
Physics: MHD waves and instabilities; 2736 Magnetospheric Physics: Magnetosphere/ionosphere interactions;
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1. Introduction

[2] Field line resonances (FLRs) are standing shear Alfvén
waves (SAWs) that form on closed geomagnetic field lines in
Earth’s magnetosphere. A class of FLRs is commonly ob-
served with frequencies in the range of 1-4 mHz in
the nightside magnetosphere and auroral ionosphere [e.g.,
Ruohoniemi et al., 1991; Samson et al., 1991, 1992]. These
FLRs are narrow in the direction perpendicular to the mag-
netic field, typically on the order of a few tens of kilometers
in the auroral ionosphere and up to an R, or so when mapped
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to the equatorial plane (EP). For a highly conducting iono-
sphere, FLRs have approximate electric and velocity field
nodes at the ionosphere and antinodes in the equatorial
plane. The perpendicular electric and azimuthal magnetic
fields suffer a 180° latitudinal phase shift that is useful in
identifying FLRs in observations. Field-aligned currents in
FLRs can be on the order of tens of pA/m?* above the auroral
ionosphere [e.g., Walker et al., 1992], whereas azimuthal
velocities can be on the order of 1 km/s in the auroral
ionosphere but may be as large as 100—200 km/s in the
equatorial plane [Walker et al., 1992; Samson et al., 1992].
[3] FLRs are attributed to the coupling of monochromatic
compressional waves to SAWs on closed magnetic field
lines, at positions satisfying w*/v; = kﬁ, where w is the
frequency of the compressional wave driver, v, is the local
Alfvén speed and k| is the wave number along the magnetic
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field [Southwood, 1974; Chen and Hasegawa, 1974].
Possible sources of monochromatic compressional waves
include MHD surface waves and/or magnetohydrodynamic
(MHD) cavity or waveguide modes that support global
MHD compressional waves [Hasegawa, 1976; Samson
and Rankin, 1994]. On localized resonant magnetic sur-
faces, compressional waves convert part of their energy to
guided SAWs that form standing waves between the polar
ionospheres [Cummings et al., 1969; Cheng et al., 1993;
Leonovich and Mazur, 1997]. Provided ionospheric con-
ductivities are high (a few mho), FLRs will grow and
narrow [Rankin et al., 1993] due to phase mixing between
the driver and excited FLR wave fields. Large-amplitude
FLRs and/or FLRs excited in cold plasma can also exert
ponderomotive forces (PFs) that drive density depressions
in the ambient plasma [Boehm et al., 1990; Rankin et al.,
1995, 1999], and in particular, density cavities across a
variety of scales are a common feature of auroral zone
potential structures [e.g., Persoon et al., 1988; Lundin et al.,
1994; Stasiewicz et al., 1997].

[4] If FLRs narrow to a point where the radial scale size
is of the order of the ion gyroradius or less, kinetic effects
become important. When FLRs narrow to a width of several
electron inertia lengths (several kilometers near the iono-
sphere), parallel electric fields may develop and sharp
density gradients may result in mode conversion of SAWs
to electron inertia waves [e.g., Goertz, 1984; Wei et al.,
1994]. Since nonlinear effects, including the ponderomotive
force and harmonic generation, stabilize FLR growth
through frequency “detuning” and Alfvén velocity profile
modification, mode conversion can ultimately cause satura-
tion in the growth [Rankin et al., 1995] of FLRs. Near the
ionosphere, FLR field-aligned currents are large, and it has
been speculated that the associated parallel electric fields
may accelerate electrons to several hundred eV, resulting in
the spatial modulation of auroral arcs [Hasegawa, 1976].
Among these processes, nonlinearity and dispersion are
important, leading to soliton formation in the thermal
dispersion regime of FLRs and parametric decay instability
in the inertial regime. Therefore the relative importance of
different nonlinear and dispersive processes results in rich
behavior in the nonlinear dynamics of SAWs [Frycz et al.,
1998].

[s] Observations and theory [e.g., Wei et al., 1994,
Samson et al., 1996; Streltsov and Lotko, 1997; Trondsen
et al., 1997; Rankin et al., 1999] suggest that ULF, shear
Alfvén field line resonances can produce temporally mod-
ulated auroral arcs with frequencies in the range of a few
mHz. Using a box model, Streltsov and Lotko [1995]
presented a three-dimensional (3-D) linearized MHD calcu-
lation of dispersive FLRs including electron inertia and
finite pressure. This was the first systematic study on
consequences of the transition from negative to positive
Alfvén wave dispersion that occurs at intermediate altitudes
of 4—-6 R,. Based on the reduced MHD equations derived
by Kadomtsev and Pogutse [1974], Strauss [1976], and
Hasegawa and Wakatani [1983], Frycz et al. [1998] sug-
gested a model describing the nonlinear interaction of
dispersive shear Alfvén FLRs and ion acoustic waves
(IAWs). Using a similar (box) model, Frycz et al. [1998]
solved a relatively simple set of envelope (slowly varying
amplitude) equations and discussed the contributions of
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electron inertia and thermal pressure to the linear and
nonlinear dynamics of FLRs. To investigate the evolution
of dispersive FLRs in a dipole magnetic field, Rankin et al.
[1999] extended the work of Frycz et al. [1998] and
examined the interactions of SAWs and IAWs for a specific
magnetic shell L = 8 under the envelope approximation.
They demonstrated that the combination of the PF and
dispersive effects can explain a number of observational
features associated with the dynamic structure of discrete
auroral arcs. In other two-dimensional FLR modeling,
Streltsov and Lotko [1999] investigated the effect of plasma
anomalous resistivity and reproduced features of FLR data
simultaneously measured by the NASA FAST satellite and
instruments of the Canadian CANOPUS array of all-sky
imagers and magnetometers. Recently, nonlocal conductiv-
ity models that include electron kinetic effects have been
suggested for low-frequency SAWSs [Tikhonchuk and
Rankin, 2002; Lysak and Song, 2003]. These models predict
enhanced parallel electric wave fields that may be necessary
to explain the observed range of auroral electron precipita-
tion energies.

[6] Existing FLR models often cannot be applied to
realistic magnetospheric parameters because they are limited
by assumptions of weak nonlinearity and separation of the
Alfvénic, dispersive, and sonic time scales (the assumption
used in envelope models). To overcome this difficulty, we
have developed a new simulation code which solves the full
set of reduced MHD equations for dispersive FLRs. Our
nonperturbative treatment allows us to investigate the
complete dynamics of growth and saturation of wave fields
and density perturbations under realistic magnetospheric
conditions. Nonlinear and dispersive effects have been
incorporated into the finite element code first developed by
Marchand and Simard [1997] and the effects of electron
inertia and thermal dispersion in a dipolar and stretched
magnetic field are presented.

2. Reduced MHD Equations

[7]1 The derivation of the reduced MHD equations
describing the interaction of SAWs and IAWs is based on
the following assumptions [Frycz et al., 1998]: (1) pertur-
bations are characterized by a perpendicular scale length
(L)) that is much smaller than the parallel scale length
(Ly), ie., Li/Lj < 1; (2) the characteristic time for the
evolution of the wave is much longer than the ion gyro
period, 1/w.t < 1, where w,; is the ion gyrofrequency; (3)
The ion gyroradius p; is small compared with the charac-
teristic perpendicular scale: (p/L |)* < 1; and (4) the plasma
remains quasi-neutral. Following Frycz et al. [1998]and
making use of these assumptions, we have rederived the
following set of reduced MHD equations for low frequency
plasma
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where A is the parallel component of the vector potential,
¢ is the scalar electric potential, p is the plasma density, B
is the unperturbed magnetic field, e is the elementary
charge, P is the plasma pressure, P, is the electron pressure,
n, is the electron number density, b is the unit vector along
the magnetic field, V)| is the ion fluid velocity along the
magnetic field, and 8B is the compressional perturbation of
the magnetic field. Shear Alfvén waves coupling to density,
pressure, and finite ion gyroradius effects are accounted for
in equation (1), while equation (2) accounts for electron
inertia and electron thermal pressure effects. Equations (3)
and (4) describe ion acoustic waves. According to Ampere’s
law, 8By is associated with the plasma pressure

I d
V8B = —g—‘;vw - %b x 2 V10. (5)

It should be noted that our work differs from that of Frycz et
al. [1998], Rankin et al. [1999], and Streltsov and Lotko
[1999] in that: (1) we treat the full set of reduced MHD
equations, as opposed to linearized/envelope equations;
(2) we directly solve the full Ohm’s law along the magnetic
field line (equation (2)), as opposed to its simplified form;
(3) equation (2) uses VP, to calculate the parallel
component of the polarization electric field as a conse-
quence of gradients in electron pressure; and (4) we do not
assume an isothermal electron response but instead use an
adiabatic condition. From equations (2) and (3) it follows
that for a nonuniform density profile such as the one
assumed in some of our calculations, the isothermal
assumption would introduce an initial electric field and an
initial acceleration of the plasma in the direction parallel to
the magnetic field. Thus for consistency we assume that all
species respond adiabatically to perturbations. In our
calculation, the ratio of specific heats is y = 5/3.

3. Numerical Approach

[8] A two-dimensional finite element code TOPO, devel-
oped by Marchand [Marchand and Simard, 1997; Marchand
and Shoucri, 2001], is used to solve equations (1)—(5).
TOPO was originally used to solve the equations governing
transport of plasma and neutral particles in a tokamak. We
chose this approach to model magnetospheric physics
because of the ease with which complex magnetic topologies
can be investigated. In particular, the use of unstructured
grids considerably simplifies mesh generation in relation to
stretched magnetic topologies. In TOPO, equations are cast
in the general form

1510/ _
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Figure 1. [Illustration of unstructured, triangular meshes
for (a) a dipolar topology and (b) a stretched topology.

where the indices & and / run from 1 to N for a system of N
coupled partial differential equations. In equation (6), U, is
the unknown, Z;;, Ay, B, Ci, and Dy are coefficients, and
Sy represents a source term for equation k. Any dependence
of the coefficients on the unknowns U, is treated as known
(from the previous time step), and all unknowns U, are
otherwise solved fully implicitly. The unknown appearing
in the convection term (the term with A;) may, however, be
treated fully implicitly or semi-implicitly. TOPO allows for
a solution by time-splitting the governing equations into a
number of groups of equations, each one containing fewer
than the total number N of equations. This option is very
convenient when solving large systems of equations
because it avoids problems associated with the inversion
of large sparse matrices. Another advantage of TOPO is that
it can solve multi-time-dependent partial differential
equations with second-order spatial derivatives. It is there-
fore capable of incorporating nonlinear and dispersive
effects.

[¢] In our simulations, a finite element discretization is
made between magnetic shells starting at L = 5 and ending
at L = 10 in the dipolar case and L = 6.5—14 in the stretched
field case. We use a triangular and unstructured mesh.
Figure 1 gives schematic illustrations of an orthogonal mesh
for a dipolar topology and a nonorthogonal mesh for a
stretched field topology. In our calculations, depending on
the spatial scale of dispersive effects being considered,
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much more refined meshes with nonuniform resolution are
used. Spurious perpendicular diffusive transport is avoided
by aligning the mesh with the magnetic flux surfaces
[Marchand and Simard, 1997].

4. FLRs in Box Model MHD

[10] First, we consider a box model magnetosphere with
straight magnetic field lines. The main reason for consid-
ering this simple magnetic field geometry is that it is an
example studied by numerous authors [e.g., Southwood
and Kivelson, 1986; Rankin et al., 1993; Streltsov and
Lotko, 1995; Frycz et al, 1998; Bhattacharjee et al.,
1999]. This case therefore provides a convenient test of
our physical model and numerical solution technique. In
the box model, x corresponds to the radial coordinate, z is
along the field line, and y is in the azimuthal direction.
The model parameters are intended to correspond approx-
imately to magnetospheric conditions at the equator: B =
B.= Bo(l/r)3 , Where By = 30834 nT and the plasma density
po = 3.345 x 107> kg/m>. The SAW is driven with an
external monochromatic perturbation of the electric poten-
tial ¢. This driving term for ¢ in equation (1) is centered on
the shell L = 7 at the equator with a Gaussian shape, O = Q,
sin(whexp(—((x — x0)* + z2)/A?). Here, xo = 7 R, A = 0.5
Re, Op =2 x 10*Vs.

4.1. Linear Box Model FLRs

[11] We first solve the linearized Cartesian form of the
equations given in section 2. First, let us recall that the
relative importance of different SAW dispersive processes
can be estimated from the dispersion parameter [Rankin et
al., 1999]

6=3p7/4 = No(1 —vi/vi), ()
where v, and v, are the electron thermal and Alfvén speeds,
respectively. Note that & > 0 when thermal effects dominate,
while 6 < 0 when inertial effects dominate. The different
signs of & correspond to different signs of the perpendicular
group velocities (inertial waves propagate Earthward while
thermal waves propagate anti-Earthward). Beating between
the driver and excited waves on adjacent field lines leads to
phase mixing and narrowing of the FLR to the inertial or
ion-gyro scale. In the linear approximation, dispersive
SAWs propagate energy out of the resonant layer at the
perpendicular group velocity, leading to linear saturation of
the wave field. The linear saturation time and the thickness
of the resonant layer at saturation can be estimated from
[Rankin and Tikhonchuk, 1998; Frycz et al., 1998]

V3l (8],

ty ~ (Lsaw/2) (lf/|6\) (8)
where [, denotes the characteristic gradient scale length of
the radial variation of the SAW eigenfrequency (determined
by the ambient plasma conditions), and ¢, is the SAW
period. For the simulation parameters described above,
linear saturation occurs at about 30 SAW periods and is well
approximated by the simple expressions defined above.
[12] Figure 2 shows the structure of an excited dispersive
FLR at two instants of time, computed using different values
of the dispersion parameter. Specifically, § = —3.47 x 10>
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Figure 2. Linear evolution of £, for an electron inertia
FLR (dashed lines) and a dispersive thermal FLR (solid lines)
at z = 8 R, for (a) t = 30 and (b) ¢ = 80 in a Box model.

Figure 2c shows the linear evolution of a weak dispersive
FLR.

R.? (dashed lines) corresponds to excitation of electron
inertia dominated FLRs while § = +3.47 x 107> R.? (solid
lines) corresponds to excitation of thermally dominated
FLRs. The FLR driver is centered on L = 7 at z = 8 R, and
results are shown at times corresponding to ¢ =30 (Figure 2a)
and ¢ = 80 (Figure 2b) SAW periods, respectively. As shown
by the dashed lines of Figures 2a and 2b, electron inertia
leads to Airy-like solutions with fields propagating Earth-
ward, while in the thermal regime (solid lines), finite ion
gyroradius and electron thermal pressure dominate, produc-
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Figure 3. Dynamic evolution of electric field component
perpendicular to the magnetic field £, at the EP in a Box
model: (a) linear case and (b) nonlinear case.

ing anti-Earthward propagating waves. Note that the location
of the resonance layer remains unchanged in the linear
evolution of dispersive FLRs. Figure 2c¢ shows the FLR
linear evolution in the case of very weak dispersion & =
+3.0 x 107° RZ, at ¢ = 30 and 80 periods, respectively. In
this case, dispersion is not important in structuring FLRs
and in propagating energy away from the resonance layer.
Small dispersion mainly acts to stop further narrowing of the
resonance layer. Nevertheless, the regime of small dispersion
is very important and will be revisited below when we study
the nonlinear evolution of FLRs.

4.2. Nonlinear Box Model FLRs

[13] Several new and interesting features are observed in
the nonlinear evolution of FLRs. In order to illustrate these
effects, the full set of nonlinear equations (1)—(4) is solved
again in the box model. To see the effect of nonlinearity, in
Figure 3 we compare the linear evolution (Figure 3a) with
the nonlinear evolution (Figure 3b) of the weak dispersive
electron thermal FLR that was studied above and illustrated
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in Figure 2c. Note that in this case, = +3.47 x 107° RS2,
corresponding to a warm plasma where thermal pressure
and gyroradius effects dominate.

[14] Figures 4a—4b and 4c—4d show the spatial distribu-
tion of the SAW field-aligned current and perpendicular
electric field at z = 8 R, and for times # = 30 and ¢ =
80 periods, respectively. Figures 4d—4e gives the relative
density dp/pg along the field line at x = 7 R.. The dynamic
evolution and structure are dramatically different from that
observed in the linear case. In the linear case, Figures 2
and 3a, the resonance stays at the driven location and
presents itself as a single standing wave structure. However,
in the nonlinear case, Figure 3b, the density changes created
by the ponderomotive force move the resonance position
significantly Earthward, and a much broader and more
complicated resonance structure is observed. As shown by
the solid lines in Figures 4a and 4c at ¢ = 30 periods, anti-
Earthward propagating dispersive waves are observed due
to the dominance of thermal effects. Later in time, for
example at 80 periods, nonlinearity has strongly modified
FLR dynamics. A double-peaked ionospheric (equatorial)
density cavity (bump) emerges, which acts to trap dispersive
Alfvén waves in the inertial (thermal) regime. The forma-
tion of ionospheric (equatorial) density cavities (bumps) is
an important feature of the nonlinear stage of FLR evolution
that will be investigated below in more detail. Figure 4 also
demonstrates the effect of the PF in expelling plasma from
the ionospheric ends of the field line where density cavities
are formed. The expelled plasma moves toward z = 0 (the
equator) where it accumulates. In Figure 4e, the depth of the
density cavities achieves a magnitude of approximately
15% at t = 30 periods, while the density accumulation
reaches 90% at the EP at ¢ = 80 periods (Figure 4d).

[15] The dynamic structure in Figure 3b is quantitatively
different from previous work, where either the linearized
approach or slowly varying envelope approximation is used
[Frycz et al., 1998; Rankin et al., 1999; Streltsov and Lotko,
1999]. In particular, Frycz et al. [1998] have shown that
nonlinearity (ponderomotive) and electron thermal disper-
sion can lead to soliton formation in the coupled ion-shear
wave evolution of the resonance. This effect is defined by a
characteristic parameter that is dependent on the product of
the ion-acoustic frequency (assuming a dominant fundamen-
tal mode) and a characteristic nonlinear timescale. However,
this behavior requires a wide separation of the periods of
SAWs and IAWs. In the examples discussed here, this
separation of timescales breaks down, and nonlinear effects
result in a highly structured and rapidly temporally modulated
SAW that becomes trapped inside nonlinear density pertur-
bations. A more detailed discussion is given in section 5.

[16] In the box model the parallel wave current and
perpendicular eletric field are always too small to explain
observations above the auroral ionosphere [e.g., Walker et
al., 1992]. A more realistic magnetic topology is discussed
in sections 5.

5. Nonlinear Evolution of Dispersive FLRs in
Dipolar and Stretched Magnetic Fields

[17] In this section, we apply TOPO in a more realistic
geomagnetic topology, namely, that of dipolar and stretched
magnetic fields. The dispersion parameter 6 no longer has
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Figure 4. Nonlinear evolution of a dispersive thermal FLR in a Box model: Jj at z = 8 R, for (a) £ =30
and (b) ¢ = 80 periods; £, at the equator for (c) = 30 and (d) ¢ = 80 periods; Dashed lines are their
corresponding relative densities dp/po. Figures 3e and 3f are the 6p/p, along the shell L =7 at £ = 30 and
80 periods, respectively. / corresponds to the distance in Earth radius from the bottom (ionosphere)

boundary.

the simple form introduced in the box model. It must now
be calculated as a convolution of thermal and inertial
contributions along the field line [Rankin et al., 1999].
The wave properties still have the same dependence on
the sign of 9, with positive (negative) values indicating the
dominance of thermal (inertial) effects on the chosen field
line. To proceed, we consider a two-species plasma with a
constant density of hydrogen, n;; = 1 cm >, and an oxygen
component with a density no = 10> cm ™ at the ionospheric
ends which decreases exponentially with altitude over a
scale length ip = 600 km: ng(s) = ny + no exp [—(Smax —
Is|)/ho], where s is the coordinate along the magnetic field
line, with s = 0 at the equator. Unperturbed quantities are
identified with the subscript zero. Along a given magnetic
field line, the initial background electron and ion temper-
atures are chosen to satisfy the equilibrium condition of
constant pressure from By - V(noT.0.0) = 0, using 7o/ =
100 eV and Tjy! =200 eV at the equator. The time-dependent

plasma response is adiabatic with a constant ratio 7;/7, along
the field line.

5.1. Dipolar FLRs

[18] Using the ambient plasma conditions described
above, the first case considered corresponds to a small
negative value of & (as computed in the envelope approx-
imation) [Rankin et al., 1999]: § = —5.04 x 10~° R.2. For
the assumed simulation parameters, the SAW period for the
driven L shell 7 is approximately 1.1 min. To excite a SAW,
we impose the same external monochromatic perturbation
of the scalar potential ¢ as in our Box model. In this case,
the frequency of the external driver is determined by the
length of the resonant field line from one ionosphere to
another and by the equilibrium Alfvén velocity profile along
the field line. The external driver in the right-hand side of
equation (1) causes the wave to grow and propagate to the
ionosphere. Since the frequency w of the driver matches the
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Figure 5. Dynamic evolution of electric field component
perpendicular to the magnetic field £, at the EP in a dipolar
model: (a) linear case and (b) nonlinear case.

frequency of the fundamental SAW mode along the field
line at L = 7, standing SAWs are formed due to reflection
from the perfectly conducting ionospheres.

[19] The imposed driver causes the SAW to narrow and
grow linearly in time. This initial phase of FLR evolution
corresponds to linear phase mixing and can be explained as
follows: Each field line has its own eigenfrequency which,
except for the resonant field line, does not coincide exactly
with that of the driver. As the wave amplitude grows, the
phase difference between the oscillations on nearby field
lines increases. This, in turn, produces a modulation of the
field structure in the direction perpendicular to the magnetic
field, with a scale length that decreases with time. The
corresponding wave vector k&, increases linearly with time,
enhancing the wave dispersion that ultimately causes wave
propagation in the perpendicular direction. The direction of
the propagation depends on the sign of the dispersion
coefficient, as discussed earlier. The various stages of
this process are illustrated in Figure 5a, which shows a
representative evolution of FLRs in the equatorial plane in
the linear approximation. We note that the equilibrium
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parameters used in this simulation yield a very small value
for the dispersion coefficient. As a consequence, there is
very little perpendicular propagation of the SAW in the
linear case.

[20] As noted in the box model, the linear approximation
with small dispersion leads to a static standing wave struc-
ture in which dispersive effects are too small to make
significant contributions to wave energy propagation. On
the other hand, the full nonlinear solutions predict a signif-
icant Earthward displacement of the resonance position and
a much broader and more intricate wave structure. In
particular, the time-dependent nonlinear spatial structuring
illustrated in Figure 5b results in part from an acceleration of
the timescale for dispersion. To understand this, we refer to
equation (8) and note that the timescale for dispersive effects
and the corresponding spatial scale is determined by the
Alfvén velocity gradient /.. This gradient is significantly
steepened by density fluctuations on the resonant field line,
and it is the triggering of small-scale dispersive waves by
this effect and their nonlinear interaction with ion acoustic
waves that leads to the complicated spatiotemporal structure
evident in Figure 5b. Note that the amplitude of the perpen-
dicular electric field is much larger than in the box model.

[21] Figure 6 shows the temporal evolution and radial
dependence of the perpendicular electric field and parallel
current at the EP Figures 6a—6b and an altitude of 1.2 R,
(Figures 6¢—6f) for £ = 23 and 46 SAW periods, respective-
ly. The dotted lines in Figure 6 correspond to the relative
density perturbation at the corresponding magnetospheric
location. At an altitude of 1.2 R, the density fluctuations
remain relatively small (under 8%), and the perturbed fields
have properties similar to those obtained in the linear
approximation up to 23 periods (Figures 6a, 6¢, and 6¢),
although the spatial scale is significantly compressed in the
perpendicular direction. At later times (Figures 6b, 6d,
and 6f), the density perturbation increases (above 10%),
and the nonlinear spatiotemporal structuring of the wave
fields becomes apparent. This aspect of the dynamics of
coupled SAWs and IAWs may conveniently be referred to as
nonlinear phase mixing, as discussed by Lu et al. [2003].
There is a density accumulation at the EP, Figures 6a—6b,
and a density depletion near the ionosphere, Figures 6¢—6f,
both of which act to trap the FLR wave fields. The maximum
density accumulation, Figure 6a with 6p/py = 1.7, and density
depletion, Figures 6d and 6f with dp/py = —0.16, are not
on the driven L = 7 magnetic shell but are closer to the Earth
(on the shell L ~ 6.5-6.7). The resonance position also
moves Earthward, from L = 7 to L = 6.7 at t = 23 SAW
periods, due to dispersion and nonlinearity. Across the
resonance, £, and j both have a 180° phase shift, and their
maximum amplitudes are of the order of 100 mV/m and
30 pA/m?, respectively, which is in the range of observations
of FLRs.

[22] As discussed above, one significant characteristic of
Figure 6 is that the FLR is trapped inside density perturba-
tions driven by SAW ponderomotive forces. There are two
turning points on either side of the resonance, which can be
more clearly seen from Figures 6d and 6f. The nonlinear
steepening of the perpendicular profile of the Alfvén veloc-
ity by the ponderomotive force changes the frequency of
SAW oscillations, and this nonlinear frequency shift
increases in proportion to the magnitude of density pertur-
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Figure 6. Radial dependence of perpendicular electric field £, and parallel current j at the equator and
an altitude 1.2 R, for # = 23 and 46 periods, respectively. The dotted line is the relative density
perturbation. / corresponds to the distance in R, from the inner boundary.

bations. Correspondingly, k£, increases with time much
faster than it would due to linear phase mixing alone. Profile
steepening (generation of [AWSs) results in nonlinear phase
mixing that terminates at a level where dispersive effects
come into play. At this stage, dispersive and ion acoustic
waves appear and propagate away from the resonant field
line, the former being reflected from the turning points as
discussed above. The temporal aspects of the interplay
between density perturbations (IAWSs) and dispersive effects
has been examined in more detail by Lu et al. [2003]. The
competition between the dipsersive and nonlinear effects is
particularly important in the regions where the wave ampli-
tude is high and the dispersion is small. The dispersive
effects also modify the eigenfrequency of the FLR, and a
corresponding linear mechanism leading to the decoupling
of SAWs from the driver was discussed by Streltsov [1999].

[23] The time-dependent nonlinear substructuring of wave
fields in our model offers one possible explanation for
certain features of long-period auroral arcs [e.g., Samson et
al., 1991; Samson et al., 1996], which are typically highly
localized in latitude. This characteristic feature is common to
all our results, which exhibit complicated wave dynamical
processes within latitudinally narrow density perturbations.
This is illustrated in Figures 7a and 7b, which shows the two-

dimensional spatial distribution of the relative density per-
turbation, &p/pg, at two representative times during the
evolution of FLRs. We note again that FLR wave fields
expel plasma from the ionospheric ends of the field line,
forming the observed density cavity, negative 6p/pg in white
in Figures 7a and 7b. The expelled plasma moves from high
latitudes toward the equator (along field lines) where it
accumulates, positive dp/pg is in black in Figures 7a and 7b.
It can be seen that the width of the density structure narrows
with time and its depth (accumulation) increases.

[24] The net effect of density fluctuations on a given field
line is that it causes the SAW eigenfrequency to decrease.
Eventually, SAWs excited on a given field line decouple
from the driver, leading to instantaneous and local nonlinear
wave saturation (nonlinear phase mixing). Figure 7c shows
the profile of the maximum (in the perpendicular direction)
Op/po along the magnetic field line for shell L = 6.7 at ¢ =
23 SAW periods. For the shell L = 6.7, the maximum
accumulation occurs at the equator with 6p/pg = 0.5, and the
minimum density is not located at the ionospheric bound-
aries but in the altitude range 2—4 R., with its maximum
depletion dp/pg = —0.21 at 3 R, altitude, at z = 23 SAW
periods. Unlike Rankin et al. [1999], in which the density
accumulates at a rate that is much slower than the depletion
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rate, here the density accumulates at a rate that is faster than
the depletion, since the accumulation region extends over a
much narrower region (see Figures 7a and 7b). The iono-
spheric density cavity may result in an enhancement of
auroral electric fields [Streltsov et al., 1998; Tikhonchuk and
Rankin, 2000; Song and Lysak, 2001].

[25] It is worth noting that the large density perturbations
observed in our simulations clearly indicate the necessity to
go beyond the use of linear and/or envelope approaches to
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the study of FLRs. We note also that the notion of an auroral
plasma cavity has been introduced by Benson and Calvert
[1979] and Calvert [1981], on the basis of ISIS-1 and
Hawkeye data. Mid-altitude in situ measurements within
auroral plasma cavities have also been made by DE-1
[Persoon et al., 1981]. At these altitudes, the cavities are
characterized by very low plasma density, and the minimum
density frequently reaches values below 0.3 per cm® in the
altitude range 2—4.6 R.. Freja also observed density
decreases by more than two orders of magnitude (from
1000 to 10 particles per ¢m®) at about 1700 km altitude
[Lundin et al., 1994]. The FLR model discussed here
successfully explains the formation of density cavities and
may point to a common process (ponderomotive forces) for
density cavity formation that is consistent with many
observations. The PF mechanism is also consistent with
outflowing ions that have been observed in association with
auroral potential structures.

5.2. FLRs in Stretched Magnetic Field Lines

[26] The reported FLR frequency at the midnight sector is
1-4 mHz at auroral latitudes [e.g., Samson et al., 1991].
Generally, FLR frequencies calculated for the dipolar mag-
netosphere are one order of magnitude larger than those
observed. Especially during weakly active magnetospheric
conditions, field lines are more stretched in the midnight
region, and stretching of Earth’s magnetic field offers a
possible explanation for anomalously low frequency SAWs.
Rankin et al. [2000] and Lui and Cheng [2001] calculated
the linear evolution of FLRs in stretched magnetic field
lines and obtained frequencies that are consistent with
observations. However, they limited their analysis to the
linear case, without inclusion of dispersive effects.

[27] In order to illustrate the effect of nonlinear and
dispersive effects in the dynamic evolution of FLRs in a
stretched magnetic field topology, we consider a typical
stretched case with the same background conditions as in
the dipolar case discussed above. We assume that the
magnetosphere is axially symmetric and that magnetic field
lines in the meridional z, x plane are approximated by the
T96 model [Tsyganenko, 1996] for a solar wind pressure of
1.0 nPa, with Dst = —10 nT, B, = 0, and B. = —1 nT.
Correspondingly, the intercept of the dipolar shell L = 6.5 is
stretched to 9 R, at the EP. The calculated FLR eigenmode
frequency for this stretched L-shell is 4.0 mHz, which is in
agreement with the upper range of observed values. This set
of parameters provides an illustrative example of the types
of geometry that can be simulated with our code and as an
example of the effect of stretching on FLRs.

[28] Figure 8 shows the time-dependent nonlinear spatial
structuring of the dispersive FLR in the equatorial plane.
Compared with the dipolar case of Figure 5b, one obvious
feature of Figure 8 is the anti-Earthward propagating waves
at earlier times, implying that much stronger dispersive
effects are observed. The background parameters correspond
to a relatively large and positive value of 6 = 6.0 x 10=5 R?
on the initially resonant field line. In this case, thermal
effects dominate, resulting in anti-Earthward propagating
waves. Note that in the EP, £, is significantly smaller than in
the dipolar case. In a stretched topology, nonlinearity again
causes the resonance to move Earthward until it reaches a
location where the time-dependent dispersion becomes very
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Figure 8. Dynamic evolution of electric field component
perpendicular to the magnetic field £, at the EP in a the
sampled stretched model for a nonlinear FLR.

small. At this stage, the FLR undergoes similar dynamics to
the dipolar cases discussed above, which also correspond to
small dispersion. For example, in Figure 8, the FLR is
eventually trapped around 7.7 R., where the background
dispersive parameter 6 = —1.0 x 107> RZ. Figure 9 shows
the radial dependence of the background dispersive param-
eter & (computed using the envelope model), indicating that
it changes sign in the vicinity of the region where the FLR
becomes localized within a narrow region.

[29] As in the dipolar case, the trapped SAWs that emerge
in a stretched topology are confined to latitudinally narrow
density perturbations. Figure 10 shows the 2-D spatial
density perturbation, dp/p, at three different times. Initially,
Figure 10a, the dynamics is similar to the dipolar case.
However, because of the relatively large dispersion, density
structures propagate anti-Earthward of the resonance,
Figure 10b. These structures trap FLR wave energy within
them, but they are eventually removed by nonresonant phase
mixing, Figure 10c. This can also be seen in Figure 8, where
the wave structure propagating anti-Earthward of 9 R,
eventually dissipates. Figure 11 shows the radial dependence
of £, and J) at the EP and an altitude 1.2 R, for 23, 46, and
80 periods, respectively. At =23 and 46 periods, the waves
propagate anti-Earthward. When the time-dependent disper-
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Figure 9. Radial dependence of dispersive parameter § in
the sampled stretched case.
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sion becomes very small, the perpendicular density profile
and the FLR wave fields more efficiently steepen, resulting
in nonlinear phase mixing and the localization and compli-
cated structure of the FLR that was discussed in the dipolar
case. Finally, the SAW is trapped inside nonlinear density
perturbations; for example at 1 = 80 periods of Figure 11.
This result is important because it offers a potential expla-
nation as to why FLRs with certain frequencies map to
specific latitudes. It is also confirmed from Figures 11 and 6
that the stretched geometry results in a larger current and a
smaller perpendicular electric field.

6. Summary and Discussion

[30] A new finite element code, TOPO, is used to
investigate the nonlinear interaction of dispersive field line
resonances and ion acoustic waves (IAWs). Initially, a
Cartesian box model is considered to demonstrate the
reliability of our numerical solution in describing linear
FLR evolution. Then the effects of electron inertia, ion
Larmor radius correction, and electron thermal pressure are
investigated in the nonlinear evolution of FLRs in dipolar

zZR)

z (R,)

x(R)

Figure 10. Meridional distribution of density perturbation
Op/po in sampled, stretched magnetic field lines defined by
the T96 model. The chosen solar wind condition corre-
sponds to the dipolar shell L = 6.5 stretched to 9 R, at the
equator. The L = 6.5 field line eigenfrequency is consistent
with observations.
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and stretched magnetic fields. A detailed discussion of the
characteristics of density fluctuations, field-aligned currents,
and magnetic and electric fields has been presented.

[31] Our work differs from Frycz et al. [1998] and Rankin
et al. [1999] mainly in that we treat the full nonlinear self-
consistent set of reduced MHD equations, as opposed to the
linearized envelope model. We show that for realistic
magnetospheric conditions, the envelope model breaks
down and new nonlinear behavior results. Time-dependent
dispersion and density steepening lead to a rapid accelera-
tion of the timescale for phase mixing to small spatial scales
and a strong interaction between wave dispersion and
nonlinearity results. Consequently, shear Alfvén waves
become trapped between turning points inside latitudinally
localized nonlinear density perturbations. This results in
spatiotemporal nonlinear structuring of FLRs that is asso-
ciated with an overlap of timescales for dispersion and
nonlinearity. In particular, ponderomotive forces change
the dispersive scale, accelerating the appearance of disper-
sive waves which strongly interact with IAWs.

[32] Similar nonlinear dynamics results in stretched
topologies, and in particular, field line stretching and ponder-
omotive density redistribution lead to a significant reduction
in FLR eigenfrequencies, bringing them into the range of

observations. In stretched topologies, stronger dispersive
effects are present initially, but nonlinearity and electron
inertia act to move the FLR to a location where dispersion is
small. Finally, shear Alfvén wave becomes trapped inside
nonlinear density perturbations at latitudinal field line loca-
tions where the ambient wave dispersion changes sign. This
important conclusion offers a potential explanation as to
why FLRs with certain frequencies map to specific latitudes.
Our model predicts density perturbations that can be com-
parable to the equilibrium background density. Our results
are also consistent, in a qualitative sense, with observational
features of discrete auroral arcs and provide an important
insight into the dynamics of SAWs and auroral activity.

[33] It should be mentioned that this calculation is limited
to low-3 plasma. If the ion temperature is high enough, i.c.,
(kip:* > 1, the 3/4 ion Larmour gyroradius correction in
equation (1) will be invalid and the Pade’s approximation
should be used [Johnson and Cheng, 1997; Streltsov et al.,
1998]. High temperature will increase the wave dispersion
and so may cause different perpendicular dynamics of
FLRs. For high-3 plasma, fast mode has to be considered.

[34] In future work, we will present a more detailed
discussion of the dynamics of FLRs in stretched magnetic
field lines. In particular, we will more fully assess the role
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played by different drivers for FLRs, as in this study we
have only considered a monochromatic driver. Finally, we
note that although the TAWs excited in our model are
driven, the effect of Landau damping of these waves needs
to be more fully assessed.
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