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Abstract 

Enterprise web systems have come of age over the last decade with most of the day 

to day activities automated to a possible extent. Current state web systems being 

distributed and running on multiple environments constantly encounter problems 

that are highly transient in nature and having very less information to help resolving 

the issue. Eventually, with a plethora of possible causes to consider, large amounts 

of time are spent by maintenance teams in checking out every single possibility. 

In this thesis we have designed and implemented a prototypical diagnostic frame

work that aims to solve the two fold problem of effectively zeroing in on the section 

of the system producing the errors and minimizing the time taken to resolve the di

agnosed fault. 

The framework concentrates on traces corresponding to user requests and feeds 

related information into a decision table structure that identifies the problem causes. 

We also include evaluation results that illustrate the effectiveness of the framework. 
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Chapter 1 

Introduction 

In an increasingly internet dominated era, web-based systems that evolved over a 

period of time have become highly powerful and complex in nature. Such systems, 

built from enterprise components, range from conventional e-commerce systems 

deployed by Amazon, e-bay, and so on, to complex online banking systems com

prising of highly secure application components and rich domain-specific business 

logic. Development platforms have so far been successful in keeping up to pace 

with the increasing business complexity of organizations, offering cutting-edge 

technology upon which such component-based systems are built. With this increas

ing dependance on web-based systems to run their businesses, it is of paramount 

importance to corporations to quickly eliminate problems arising in these systems 

and maintain high performance levels. 

1.1 Motivation 

Electronic commerce is fast developing into a major income provider to many or

ganizations and is only expected to grow with high volumes of transactions being 

done online throughout 2010 [6]. Unfortunately though, the increasing complexity 

of web-based systems has made it even more difficult for people involved in the 

maintenance sector to keep them running and meet user expectations of a highly re

liable and efficient online experience. The exploding growth of web-based systems 
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has actually opened up a whole new set of problem scenarios typically not encoun

tered in simple client-server environments or other non-distributed systems. These 

problems are spread across the entire environment on which the production system 

is deployed, and often remain unnoticed until the affected part of the system fails. 

Finding root causes for infrastructure-related problems and performance issues 

is more difficult in distributed systems as compared to non-distributed ones. These 

systems give rise to a variety of dynamic errors such as deadlock contention among 

multi-threaded operations, unexpected usage of resources by parallel processes, un

expected change in system settings and configuration issues, memory leak problems 

and so on. A problem caused by a diminishing system resource in one host of a 

large, distributed system may go unnoticed until it becomes critical and violates the 

service level agreement. The high volume of traffic flowing through these systems 

may lead to a ripple effect of failures causing a degradation of overall system per

formance. Such problems, if noticed earlier, could prevent systems from degrading 

and help minimize the downtime of that system. 

Another important fact that has to be considered is the IT budget allocated ev

ery fiscal year by corporations to develop new systems as per changing business 

needs, and to maintain their current production systems within the service level 

agreements. Unfortunately, most of the IT budget is allotted to the latter rather than 

the former. A recent study [7] of software maintenance costs in typical, large appli

cation systems states that the support cycle of such systems typically spans between 

67% to 80% of the overall life-cycle cost. An important issue the report stresses is 

that only half of the overall maintenance budget is spent on enhancing the applica

tion's capabilities to cater to the increasing needs of its users. The remaining half 

consists of refinements to the application to adapt it to the changing environment on 
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which it is deployed and code maintenance to keep the system running smoothly. It 

thus becomes important to reduce the maintenance costs of these systems and better 

utilize the budget for enhancements and system improvements. 

It is hence necessary to simplify and automate as much as possible the task of 

proactive problem detection and accurate root cause analysis of problems in enter

prise systems. Current diagnostic systems built for distributed enterprise-level in

frastructure deal mostly with performance-related problems in the individual com

ponents present within the application. There are few systems that provide enough 

clues to identify the root causes of such problems or try to correlate symptom data 

across domains to effectively identify dependency issues. In other words, current 

diagnostic systems are highly capable of identifying failing or erratically behaving 

components but fail to recognize the true cause of those failures, which is more 

important from an analyst's point of view to help debug problems quickly. 

One good place to look at potential causes for system problems is the scenario 

trace data, which contains comprehensive information about the system and indi

vidual components in the context of user activities happening through the system. 

The definition of scenario here is the set of actions or events that take place in a 

user session spanning one or more use cases defined to perform an activity. Usually 

problems such as excessive memory consumption, high CPU consumption, thread 

contention, etc., result in the user scenario terminating prematurely (as a result of 

a particular component failing to execute) or deviating erratically from the normal 

execution path to perform unwanted or incomplete actions. While diagnostic sys

tems can identify the dying components in these scenarios, they rarely succeed in 

diagnosing the exact cause for the failure. This phenomenon is evident in errors 

that have common components involved in multiple scenarios and the effect of one 
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failing scenario impacts other scenarios in ways potentially unnoticed until enough 

damage has been done. 

1.2 Objectives 

The focus of this thesis is to identify subtle errors happening in scenarios that termi

nate prematurely or deviate from the normal path of execution. Such errors, though 

difficult to track in a system, often are indicators of massive failures to occur, and it 

is important for diagnostic systems to understand these errors and lead the system 

maintenance team to look into the right areas of concern. On the other hand, each 

identified fault usually comes along with a large set of potential causes. Eliminat

ing the irrelevant causes and quickly concentrating on the most important ones is 

critical for a successful diagnosis. 

The thesis outlines in detail a diagnostic framework built on the principles of 

hypothesis testing and the process of elimination. The underlying idea of the frame

work is to identify abnormally behaving scenarios in distributed component-based 

systems caused by failures and point to the possible causes with enough reasoning 

to reduce the mean-time-to-resolution of the failures detected. 

Our approach aims at not only identifying errors present in scenario traces of 

the system but also to correlate the scenario data over a significant period of time 

to help identify probable root causes of such errors. The main idea is to subject 

the trace information corresponding to a problem condition through a number of 

comprehensive checks, pertaining to possible causes for that particular symptom, 

and detail the reasons of failure and areas of concern. Eventually, the diagnostic 

framework outlined in the thesis helps to minimize the amount of detail the system 

analyst has to look at to debug a potential problem and directly points him to those 
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areas that need immediate attention. As such, the maintenance team will be able 

to reduce downtime and avoid violating the agreed service levels. We have tried to 

support our claims of the framework by evaluating it on a typical web-based sys

tem subjected to a set of dynamically injected problem conditions. These randomly 

generated errors lead to the components in the system to behave erratically (either 

failing to execute or perform unwanted operations). We then use our framework to 

identify these erratically behaving components in the context of scenario traces and 

locate the possible causes. The results outline that the framework is highly promis

ing to reveal failures in web-based systems and effectively points out the problem 

causes. We also compare our framework against other diagnostic techniques and 

outline the advantages our technique has over the others. 

The remainder of the thesis is organized as follows. Chapter 2 describes the 

background and the state of the art in diagnosis as it relates to web-based systems, 

outlining the need for scenario trace analysis. Chapter 3 presents the research hy

pothesis and defines the overall framework for the cause determination of a typical 

set of problems manifested in web-based systems. Chapter 4 describes the results 

of an evaluation that determines the capability of the diagnostic framework to effec

tively identify failure causes by utilizing scenario trace data. A concluding discus

sion of the hypothesis, results, contributions, and future work is provided in Chapter 

5. 

1.3 Contributions 

The contributions in this thesis focus on identifying performance-related problems 

in web-based enterprise applications and help to automate the process of locating 

the most probable cause(s). We outline the contributions below: 

• We undertook a comprehensive study on symptoms (or effects) and related 
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causes and successfully came up with a summary of effect-cause relationships 

with respect to performance-based problems. Each effect with related causes 

are then modeled in a decision table structure that forms an integral part of 

the analytic portion of the framework. 

• We developed a unique integer-sequence representation of scenario traces and 

devised a custom data structure to effectively organize these traces and re

lated information. This was done to improve the efficiency of retrieving data 

present in the log files. 

• We devised a decision-table-based rule execution technique that performs a 

step-by-step check across the recorded log information from scenario traces. 

The effect-cause decision table is used to identify probable causes corre

sponding to the effects. 

• We performed an evaluation to validate the effectiveness of our framework 

on a case study system, which had to be customized and configured to mimic 

a distributed setup. 

• We programmatically generated live web traffic to flow through the case 

study system by means of batch scripts developed using an open-source load-

generator mechanism. 

• We developed a dashboard style visualization tool that hooks into the diag

nostic framework to display the related problem diagnosis information in an 

easy-to-understand manner. The visualization option also contains function

ality for the user to perform advanced analysis on the processed log files 

across different time periods thus aiding in identifying failure patterns over 

different time windows 
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• Finally, we also critically analyzed the effectiveness and qualitative advan

tages of our framework by comparing with an open source diagnostic tool. 



Chapter 2 

Background 

"When there is a perceived problem with an application or supported service, a 

diagnostician must have the tools and information at his/her disposal to pinpoint the 

problem with reasonable certainty, in hopes of avoiding the problem in future" [8]. 

This chapter starts by introducing the concept of diagnosis in general terms and 

later delves deeply into the common diagnostic practices carried out in the context 

of web-based systems. The first half of the chapter discusses the functioning of 

state-of-the-art diagnostic mechanisms typically used in large-scale web systems. 

The second half of the chapter then briefly discusses the different types of problems 

occurring in web-based systems. At the end, the chapter considers a comprehensive 

set of diagnostic mechanisms based on trace analysis, which laid the foundation for 

our diagnostic framework. Finally, we end with a concise summary of the entire 

chapter. 

2.1 Definition of Diagnostics 

The word "diagnosis" originates in ancient Greek culture and is described by the 

words "dia" which means "by", and "gnosis" which means "knowledge". The per

son normally conducting the process of diagnosis is known as a "diagnostician". 

Diagnosis usually signifies a broad category of analysis-based testing. Typi-
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cally, it would be one of these tests or a combination that would help a diagnostician 

in deciding the cause of a disease or defect. 

The same meaning resonates across the software engineering domain as well. 

The process of identifying a problem condition based on symptoms related to the 

respective system's behavior is termed as software system diagnosis. Initially, soft

ware system diagnosis was more related to troubleshooting defects in hardware. 

The most prominent troubleshooting procedures were modeled as flowcharts with 

the technician having to traverse a set of options that eventually led to the diagno

sis of the problem on hand. The following sections elaborate on the evolution of 

diagnosis in software engineering with a special focus on current diagnostic mech

anisms as applied to web-based systems. 

2.2 Diagnostics in practice 

Problem diagnosis is a well defined and commonly used term in the medical com

munity. But of late, the application software industry has been giving an unprece

dented response to the process of collecting system data, analyzing problem symp

toms, and devising corrective measures to prevent the problem from recurring or, in 

other words, the process of diagnosing failures. 

Although support for diagnosis were not meant to be a design consideration of 

application software, organizations have slowly started realizing the importance and 

need for a robust technology that can alert system personnel of impending dangers 

to the system and help take corrective action before a major catastrophe happens. 

Some industry surveys [9] too confirm the need for an efficient diagnostic mecha

nism to support their application software. This need is critical for several reasons. 

• Among companies with $1B or more in revenues, nearly 85% experienced 
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incidents of performance degradation. 

• 40% of the unplanned downtime was due to application failures. 

• The cost of down time of mission-critical applications averaged over $ 100,000 

per hour. 

• IT groups spent 24% of their time in resolving application slow-downs. 

• 80% of unplanned downtime could have been mitigated by application devel

opment and operations working together. 

Clearly, IT personnel spend much of their time and valuable resources in react

ing to application software problems. But what remains to be seen is the efficiency 

of the installed diagnostic mechanism to effectively help them understand system 

behavior and provide timely resolution of encountered problems. 

2.2.1 Enterprise Web Components - A Primer 

Since the framework presented in the thesis focuses on component execution flow in 

scenario traces as they happen in a web-based system, it is important to understand 

the basics of the enterprise-level web components and their features. The following 

section outlines the individual components in an enterprise system and their role in 

executing the user scenarios. 

The Java 2 Enterprise Edition (J2EE) [10] defines a standard for developing 

multi-tier enterprise applications. It provides an architectural framework in three 

tiers upon which developers can build their enterprise systems. Figure 2.1 shows 

the three tiers of the J2EE framework. Most scenario trace logging-mechanisms 

concentrate on recording data about a specific set of components (discussed in the 

following subsections). Most of the problems discussed in the thesis actually re-
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Figure 2.1: The execution path of a typical scenario in a multi-server web environ
ment 

volve around these components and it would suffice to record data around them as 

execution passes through the components in the scenarios. 

Web Tier 

The J2EE web tier provides a runtime environment (or container) for web compo

nents. J2EE web components are either servlets or pages created using the Java 

Servlet Pages (JSPs) technology [11]. Java Server Pages are a combination of 

HTML constructs and servlet tags that render dynamic content executed by the 

servlet container in the middleware and display it to the user based on the HTML 

constructs defined in the JSP page. Servlets on the other hand are the base entities 

of the enterprise framework that dynamically process requests and the correspond

ing responses. This combination of JSP and servlets are then seamlessly accessed 

by the user over normal HTTP just like any other webpage. 
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Business Tier 

Enterprise Java Beans (EJBs) [12] are the business tier components and are used to 

handle business logic. The domain knowledge in areas such as banking, finance, 

retail and so on are embedded within these business tier components. EJBs are usu

ally executed in a separate EJB container distinct from the servlet containers and 

often interact with the underlying databases in the Enterprise Information System 

(EIS) tier in order to process requests. EJBs can be easily accessed either through 

the web tier components or through stand-alone Java-based applications. Modern 

day frameworks have enhanced the functionality of EJBs by adding attributes such 

as messaging, security, transactionality and persistence. 

The above-mentioned set of functionality is readily made available to applica

tions when requested via an XML deployment descriptor. This XML deployment 

descriptor contains metadata that associates both structural and behavioral informa

tion to a particular component. There must be an association of every Business Tier 

component with a respective XML descriptor or, in other words, EJBs are moni

tored and controlled through the XML descriptors. 

EIS Tier 

EIS provides the information infrastructure critical to the business processes of an 

enterprise. Examples of EISs include relational databases, enterprise resource plan

ning systems, mainframe scenario processing systems and legacy database systems. 

The J2EE Connector architecture [13] defines a standard architecture for connect

ing the J2EE platform to heterogeneous EIS systems. For example, a Java Database 

Connectivity (JDBC) connector is a J2EE Connector Architecture compliant con

nector that facilitates integration of databases with J2EE application servers. It 

is highly important that the developers adhere to the specifications of the JDBC 
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API [14]. Application developers should communicate with the vendors databases 

using the JDBC API. The main advantage of JDBC is that it allows for portability 

and avoids vendor lock-in. As all databases must adhere to the same specification, 

application developers can replace the one they are using with another one without 

having to rewrite their application. 

With emerging technologies in enterprise-applications infrastructure, different 

frameworks such as Springs, Struts, Portals etc., have evolved over time to pro

vide rich and meaningful context to the business domain that they are designed for. 

However, it is only the high-level design that has changed and not the underlying 

components that form the application itself. Hence, nagging component related 

problems still remain at large and need to be addressed. 

2.2.2 Functioning fundamentals of diagnostic tools 

Web-based systems always need to be monitored to record performance levels and 

also ensure these levels are maintained at a suitable level of functioning. To do so, 

different types of monitoring and diagnostic mechanisms are put in place to effec

tively observe the different parts of the system. Since web-based systems usually 

consist of distributed components, the monitoring mechanism needs to correlate 

performance data across the entire network and effectively process it to identify 

bottlenecks within the system. The most generic way of collecting information re

lated to the health of the application is to instrument the right parts of the system 

housing the application and have agent programs collect the necessary data without 

impeding the normal performance of the system as a whole. 

Most of the diagnostic tools these days rely on agent technology that relay col

lected observations to a centralized processing server, which then efficiently corre-
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Figure 2.2: Architecture of a typical diagnostic tool [2] 

lates the information and prepares it to be analyzed either online or off-line. Fig

ure 2.2 is an architectural view of a typical diagnostic tool. 

The format or type of data usually collected by the agent collectors depends 

on the type of instrumentation used by the diagnostic tool and often varies from 

one product to another. Figure 2.3 and Figure 2.4 show two different types of log 

formats used for recording system information by their respective tools. Though 

the objective is to record component related information it is quite evident from the 

formats that each diagnostic tool understands its own proprietary log format and 

processes it accordingly. 

An interesting fact to be noted here is the research undertaken by global corpo

rations to standardize the log formats instead of the proprietary formats collected 

by each of the vendor-specific diagnostic tools. IBM, for instance, has developed 

the Common Base Event (CBE) format [15] to help organizations that deploy en

terprise systems to avoid vendor lock-in. Efforts are very much in the direction 

of forming an open standard format and a simple API to help generate CBE logs, 

which can then be fed into the diagnostic tools for processing. Figure 2.5 illustrates 
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VERSION;1.2 
MACHINE;locale1ient.raleigh.itom.com;9.27.133.2 27 
Client_Request;2004-07-29T03:41:08.733 000-04:00; 
2 104668451; Client; lookupCustornerRequest; wrapped;2way; 
<methodEntry threadldRef="2104668451" 

time = "1091104868.783rr methodldRef ="5" 
classIdRef="2" objIdRef="23" 
t i c k e t = " 2 5 " sequenceCounte r=" l " 
s t a c k D e p t h = " l " / > ; 2 

<?xml v e r s i o n = " 1 . 0 " encoding="UTF-8"?> 

Figure 2.3: Log format-IBM Data Collector. This log represents the data corre
sponding to a single component recorded as part of a purchase order use case in a 
supply chain management application 

a typical CBE log corresponding to a single component in a web-based system. 

Most diagnostic tools work with statistics generated out of the log files that are 

processed. The data is aggregated in certain time intervals and corresponding min

imum, maximum, and average values are calculated. Some important sets of data 

collected and processed are, for example, system data (e.g., CPU consumption, 

memory consumption, I/O rate), application server statistics (e.g., data source- and 

thread pool-utilization) and JVM-statistics (e.g., heap utilization, GC, thread count) 

which are the important statistics necessary to identify potential performance bottle

necks. To name a few, DynaTrace Diagnostics [16] and CA/Wily Introscope [2] are 

the most prominent ones among the state-of-the-art commercial diagnostic tools. 

The diagnostic tools often come with rich visualization dashboards summariz

ing the collected metrics and displaying them to the user. This aids in effective 

understanding of system information and helps debug potential problems at a much 

quicker pace. Figure 2.6 shows the statistical snapshot obtained from Wily Intro-

scope running on an example system. The signal lights in the far end corners of the 

page indicate the overall health of each section of the system. An application-level 
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<appendername="glassbox" class="org.apache log4j.RollingFileAppender":> 
•''param name~"File" value—"glassbox.log"/>• 
<param name=" Append" value="true"/> 
<param name="MaxBackupIndex" value="5"/> 
<parara name="MaxFileSize" value="10MB"/> 
<layout class="org.apache.log4j.PattemLayout"> 

<param name="ConversionPattem" value="%d{DATE} %-6r [%t] %-5p %c %x - %m %n"/> 
</layout> 

• ./appender;j 

Figure 2.4: Log format-log4j. This log information is from a servlet in an enterprise 
application. 

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?> 
<CommonBaseEvent creat ionTime= "2008-04-23T2 1 -.03 :11.78Z" 

globalInstanceId="CBED27BEBECAA891A3382AF7FD0156611DD" 
msg="Variable changed to: 1" version="1.0.1"> 
<sourceCcomponentId component3"Application" 

componentIdType="Application" location="142.104.68.52" 
locat ionType="Hostname" 
subComponent="int com.rigi.daytrading.actions.DoTestAct ion.count" 
componentType="Application"/> 

oituation categoryWame= "Reportsituation"> 
oituationType x3i:type="Report5ituation" reportCategory= "TRACE"/> 

</situation> 
</CommonBaseEvent> 

Figure 2.5: Log format-CBE. This event log corresponds to a servlet executed in a 
stock trading application. 

trend graph shows the performance statistics of the application over time intervals. 

The bottom half of the page shows the resource utilization levels of the environment 

running the application. Figure 2.7, on the other hand, shows some of the detailed 

statistics collected by Wily Introscope. This page allows the user to drill down into 

specific components (i.e, Java Server Pages, Servlets, JDBC connections, EJBs, 

etc.,) and visualize their performance trends over a time period. 

Although diagnostic tools originally were designed to perform statistical anal

ysis of key performance indicators collected from the application and the environ

ment on which the application is hosted, more functionality is being added to their 

repertoire. The ability to discern component call traces and collect pertinent data 
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in the context of the sequence of calls happening is the most notable enhancement 

in modern day diagnostic tools. BMC Appsight [17], Wily introscope [2], Dynta-

Trace Diagnostics [16] are some of the commercial products that come embedded 

with the ability to record trace related information in their latest releases. 

2.3 Types of failures in web applications 

Enterprise web systems are plagued by various performance-related problems. Ta

ble 2.1 (for middleware level failures) and Table 2.2 (network and database-level 

failures) enumerate a number of symptoms related to performance-based problems 

and their probable causes. 

As is evident from Table 2.1 and Table 2.2, the symptom of a performance issue 

does not explicitly reveal the cause of the problem. Often what is thought of as a 

cause is really a symptom and one may need to investigate further to find the root 
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Symptoms 
High response time for specific transactions or most transactions 

Erratic transaction response time 

Application failures or time outs 

High CPU utilization 

High memory utilization or too frequent garbage collection 

Sample Causes 
Excessive resource consumption by transaction 
Too much synchronization wait time 
Too much time to get inside the connection or server pool 
Improper settings such as pool size 
Excessive delay for external web-services 
Undersized system 
Excessive garbage collection 
High resource utilization 
Erratic response of external web services 
Programming errors Improper error condition handling 
Data specific problems 
Memory exhaustion 
Memory leaks 
Socket exhaustion 
File handler exhaustion 
Poor/Inefficient algorithms 
Poor design choices consuming significant time in underlying layers 
Poor implementation redundant work 
Undersized system 
Improper transaction routing 
Memory leaks 
Objects persist for unnecessarily long time 
Pool size too large 
Undersized system 
Lots of short lived objects 

Table 2.1: Types of Faults in Web Applications-Application Tier [1] 

Symptoms 
High network utilization between servers 

High 10 Rate 

Too high synchronization delays 

Excessive resource consumption by transaction 

Long pool queue or utilization 

Sample Causes 

Too many remoting calls 
Too much data transfer per call 

Too many SQL calls Improper database or query design 
Poor/Inefficient algorithms 
Insufficient cache 

Pool size too large for configuration leading to thrashing 

Poor algorithm design - Not enough parallelism 
Excessive execution time for sub-transactions 
Locks being held for too long 

Poor algorithms 

Poor design choices consuming significant time in underlying layers 
Poor implementation 

Too many remote calls 
Too much data transfer for remote calls 
Objects held for too long 
Poor SQL query and/or database design 
Too much resource consumption by transactions 
Large transaction execution time 
Database queries 
Incorrectly sized pool 

Table 2.2: Types of Faults in Web Applications-Network and Data Tier [1] 
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cause. To find the root cause, it is important to identify the individual scenarios ex

periencing the performance problems and their execution path in the environment in 

which they are running. Without such information, performing problem diagnosis 

is the same as shooting in the dark, and it is easy to jump to the wrong conclusions. 

Nevertheless, some of the causes outlined can be rejected outright on the grounds 

of good design, strict adherence to requirements specifications, and thorough QA 

work. For example, causes such as improper design choices, underperforming algo

rithms and implementation issues might be ruled out. This leaves only those causes 

that occur while the system is in operation. Still there is very little time at this point 

to effectively diagnose the causes with respect to the symptoms. Thus, we need 

to deploy effective diagnostic mechanisms that can capture errors and help prevent 

system components from failing. 

2.4 Limitations in single-component analysis 

The previous sections gave an overview of the functioning of monitoring and diag

nosis mechanisms available for enterprise applications. A major need is to move 

ahead to comprehend the problems occurring in such applications from a scenario 

point of view. Although there have been powerful diagnostic tools built to diagnose 

and repair performance-based issues in large distributed systems, many have con

centrated on the problems occurring in the individual component and fail to track 

the error to the context in which it occurs, i.e., the scenarios that contained the ex

ecution of the error-prone components. The commercial products that record the 

scenario traces and related information too are primitive at this stage, hindered by 

the overhead cost to the infrastructure while collecting the traces, and having the 

ability to only judge errors that exactly match to those that have previously been 

modeled into the diagnostic tools. 
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Often, the failing component has different sets of reasons for failure for different 

scenarios or user requests and unless the failure tracking models are comprehensive 

in matching every symptom to its related cause, many performance-related prob

lems go unnoticed. Furthermore, it is interesting to note that the cause for such 

failures even change temporally based on the period for which the data was ana

lyzed. It is thus necessary that a comprehensive analyzer does not just focus only 

on the component in which the error occurred but also help visualize the root cause 

across a chain of component executions. 

On the other hand, while problem determination systems can effectively iden

tify massive failures, subtle errors happening in the system may go unnoticed. A 

detailed analysis of information collected around the subtle errors generated by the 

components and the environment while executing individual scenarios will give the 

necessary diagnostic information for the system personnel to help avoid upcoming 

problems early. It is a challenge for the next generation diagnostic mechanisms to 

help identify subtle, intermittent and hard to reproduce failures early and effectively 

prevent their recurrence in the future. 

As can be seen, capability to analyze the collected monitoring information over 

a period of time and effectively diagnose the cause of a problem has been a difficult 

research challenge in the recent years, especially with the non-deterministic nature 

of the errors happening in a distributed system and the disconnected nature of the 

monitoring information itself. Organizing this monitoring data in the form of traces 

provides a meaningful context to diagnostic analysis and is capable of identifying 

undiscovered problem areas. 
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2.5 Approaches to detect problems using trace anal
ysis 

The need for diagnosing problems in the context of traces led to a number of tech

niques being developed in the past. Each of the techniques concentrated on different 

sets of problems and collected traces relevant to the problem condition. This section 

covers various techniques used for trace collection and analysis, and the motivation 

that led to the design of our proposed framework. The work of Dickinson et al. [18], 

Yuan et al. [19], Pinpoint [20, 21], and Magpie [22] are most similar to our work. 

These approaches collect run-time information and use data mining techniques to 

simplify debugging of complex software. A major distinction to start with is to 

understand the instrumentation techniques used by these approaches. In particular, 

they use a static instrumentation to collect system data, thus impairing the flexi

bility of the system personnel to attach and detach instrumentation mechanisms at 

run-time. This flexibility of dynamically instrumenting applications is useful, con

sidering the overhead an instrumentation mechanism can contribute to a production 

system (possibly up to 12% utilization of system resources, which otherwise could 

have been used for the production environment). Our goal is to utilize a dynamic 

instrumentation technique that alleviates any such problems that come with static 

instrumentation and give the user the ability to attach and detach the mechanism at 

run-time 

One of the stages of the Software Development Life Cycle (SDLC) where the 

process of debugging errors using execution traces occurs is in the beta testing 

stage. In beta testing, the analysts examine execution reports coming from the users 

to determine the causes of failures. The work by Dickinson et al. is based on the 

paradigm of call profiles wherein programs are instrumented accordingly to collect 

relevant call profiles. These call profiles are subjected to a distance metric-based 
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clustering to group like profiles together. Depending on the nature of one or more 

of the profiles in each of the clusters, executions are either termed to be failed or 

correct. As is the case with any other unsupervised method of learning, this method

ology produces a large number of false positives by reporting unusual but normal 

behaviors as anomalies. Secondly, the onus is on the analyst to manually iden

tify the cause of the problem every time. Our proposed framework moves away 

from the clustering technique to group like traces together and follows a much def

inite grouping technique based on an integer-sequence matching. Moreover, our 

approach classifies unusual but normal behaviors as probable failures and does not 

raise an alarm for every such anomaly thus capable of reducing the number of false 

positives. 

A similar methodology but inclined more towards classification and learning 

techniques was adopted by Yuan et al. Their technique was based on analyzing sys

tem call traces emanating from an application that very specifically encountered re

producible failures and applying a supervised classification algorithm to label them 

accordingly. The correlation of the traces was then based on the labels that each of 

these traces had. This label also acted as the root cause of the problem. Interestingly 

though, Yuan et.al. concentrated only on system level call traces, which proved to 

be insufficient in identifying performance-based problems and their causes in ap

plications. In general, if the cause of a problem is in a function that does not make 

system calls, finding its location from system call traces may not be possible. Ap

parently, the methodology of utilizing system call traces is to identify and debug 

operating system level errors and does not focus on high-level component-based 

failures. 

Another approach that focussed on performance-related problems was devised 
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by Cohen et al. [23] in which they correlate aggregate metrics such as CPU con

sumption, memory utilization and so on. The major drawback in this case too is 

that Cohen et.al's technique relies on the labeling of previously recorded traces into 

normal and anomalous. In addition, a significant limitation is the inability of the 

technique to identify unknown errors that have not previously been identified. Since 

Cohen et.al's technique too relies on classification algorithms and prior knowledge 

of identified errors, it makes it much more vulnerable in identifying new errors that 

happen. Our framework can capture any such new errors provided they can be iden

tified by the effect-cause relationship defined by our framework. 

Magpie, one of the first working prototypes of its kind, builds workload models 

in e-commerce request-based environments. It works by collecting event traces of 

every activity performed as part of a request, ranging from a context switch to an 

I/O operation and so on. Each of these events are then labeled using character bits. 

Labeled sequence-mappings are then clustered together based on the Levhenstein 

string-edit distance metric [24]. In the end, strings that do not belong to any suffi

ciently large cluster are considered anomalous requests. Finally, to identify the root 

cause (the event that is responsible for the anomaly), Magpie builds a probabilistic 

state machine that accepts the collection of request strings. Magpie processes each 

anomalous request string with the machine and identifies all transitions with suf

ficiently low probability. Events that correspond to such transitions are marked as 

the root causes of the anomaly. In using the Levhenstein string-edit distance, there 

is a possibility of grouping a normal and an abnormal scenario together as they may 

correspond to the same edit-distance. In such cases what may be perceived to be 

anomalous might in fact be normal behavior and thus ending up being a false pos

itive. To remove this indeterminacy in grouping of like traces together, we employ 

a conservative trace pattern matching technique that does not out-rightly classify 
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abnormal traces into errors, but mark them as probables. 

Pinpoint works more towards a client-server environment and looks at each of 

the components touched as part of a client request. This approach follows the mid

dleware instrumentation approach and follows each request to the end. It looks for 

faults with known symptoms (e.g., network timeouts) using an auxiliary fault detec

tor. It is also able to detect statistically significant deviations from the norm using 

probabilistic context-free grammars (PCFG). Pinpoint uses two independent tech

niques, clustering and decision trees, to look for correlations between the presence 

of a component in a request and the failure of the request. 

Their PCFG-based approach may not be effective on raw function-level traces 

due to the variability. To locate the root cause of a problem from classified traces, 

Pinpoint's decision trees or clustering of coverage data can be quite useful. When 

applied to function-level coverage data, both techniques detect only a narrow class 

of problems. If a problem is not manifested by a difference in function coverage 

across traces, it will not be detected. Pinpoint also fails to identify errors occur

ring in tightly coupled components and completely misses multi-threaded requests, 

which are quite typical these days on an e-commerce application. Furthermore, they 

fail to attribute component failures to bad inputs that may occur in user requests. 

While Pinpoint is limited towards source-code related errors and the performance 

degradation arising out of them, our framework would capture performance-related 

errors regardless of the source it comes from, either be the source-code or the envi

ronment. 

Interestingly, both Magpie and Pinpoint make heavy use of data mining princi

ples of clustering and classification and hence require an iterative learning process 
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or sensitive parameter tuning to improve their diagnostic capability. 

2.6 Summary 

In this chapter we provided a concise yet descriptive explanation of diagnosis and 

looked at the capabilities of diagnosis techniques. 

The introduction outlined the history of the term diagnosis and its relevance to 

current practices. A study was cited, reflecting the need for effective diagnostics 

technology in web applications. Since the proposed framework was designed for 

enterpriser applications, a brief overview of the different types of components in 

enterprize applications was provided. 

This chapter also gave a general overview of diagnostic capabilities and tools 

and outlined the typical architecture that these tools have, the log formats used by 

them and the analytics employed by these tools to effectively weed out candidate 

causes of problems. The chapter also looked at the different types of performance 

and resource related problems that frequently occur in web applications and the 

possible causes related to each symptom. Since each symptom has more than one 

cause associated with it there is the need for a framework that helps the analyst to 

discard causes for a given set of symptoms and quickly focus on the direct ones to 

resolve problems effectively. 

Due to the limitations in diagnosis of individual components, a need for ana

lyzing scenario flows in a typical web application rather than only individual com

ponents in the web applications was discussed. Related work was summarized on 

trace-based diagnostic frameworks specifically built for analyzing performance and 

resource-based problems in web applications. We concluded by emphasizing the 
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need for a framework that looks at subtle and hidden errors from scenarios of mas

sively distributed enterprise web applications. 
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Chapter 3 

Approach 

This chapter starts by emphasizing the need for recording scenario traces and re

lated component information to identify errors undetected by normal monitoring 

mechanisms. The main focus is to provide a detailed overview of the hypothesis 

based framework designed to identify performance and resource-related problems 

occurring in web applications. The framework is illustrated through a proof of con

cept scenario that focuses on a typical performance-related problem. Visualization 

features forming a part of the diagnosis process are also outlined. The chapter then 

concludes by summarizing the base model of the diagnostic framework and the 

fundamentals upon which further enhancements of fault models can be built. 

3.1 Scenario trace analysis - Motivation 

As discussed in Chapter 2, enterprise applications are moving away from large 

monolithic systems and simple client/server configurations to highly interconnected, 

multi-tier, distributed architectures designed to run on a heterogeneous collection 

of servers. In such environments, each of the different servers and components 

that comprise the system generally produce a large amount of monitoring data. 

Although this information can be vital in analyzing the health of the components 

individually, it remains a major challenge to stitch this information together to get 

a conclusive understanding of the overall system behavior. 
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Debugging performance and resource-related problems in this situation is prob

lematic because the analysts would have to correlate the entire monitoring informa

tion over an enormous infrastructure built out of individual components. It makes 

the scenario even more difficult in the cases where subtle, intermittent errors hap

pen, that may or may not trigger alerts in individual component-monitoring mech

anisms and thus fail to provide relevant information to help track the cause of the 

problem. Analyzing such errors in the context of the scenarios that were affected 

could give a better hint to the cause. Usually, the failing component functions nor

mally in the other scenarios but fails due to unexpected reasons in very few ones. 

Also, replicating such errors is difficult because they are not deterministic in na

ture. Typically, the system personnel are left pondering over the reason for failing 

user requests, while waiting for these errors to reoccur, to pinpoint the cause of the 

problem. 

It is known that the overhead incurred by the monitoring and diagnostic mech

anisms affects the performance of the web systems being managed. Current tools 

only monitor critical information required for the healthy behavior of the production 

system and often do not capture additional information to help diagnose occasion

ally failing user requests, so as to keep the resource overhead within the stipulated 

levels. When comprehensive information about a trace is needed, monitoring mech

anisms record information only for a very short period of time to reduce the incurred 

performance and resource overhead. 

Recently, system personnel and infrastructure management teams have realized 

the importance of debugging issues at the scenario level versus raising alarms for 
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individual component degradations alone. Moreover, it is much easier for the sys

tem analyst to debug the issues from a user's perspective by looking at the cohesive 

connection of component calls rather than trying to identify what caused an indi

vidual component to fail. Correlating monitoring data over a set of such scenario 

traces could help in better locating the causes of a problem. 

Currently, there is a need for a diagnostic mechanism that can collect the re

quired information, in the context of scenario traces, with low overhead while at 

the same time also collect enough information to anticipate upcoming degradations 

and to help safeguard the system from them. 

3.2 Fault Model 

For our framework, we now define a fault model that is representative of most of 

the performance-based problems and related ones occurring in a typical web appli

cation. The model focusses on a class of problems ranging from excessive resource 

consumption to components having programmatic errors. For each problem, we 

characterize the trace corresponding to the error and the information required to 

initially analyze the problem. The following subsections provide a very high-level 

overview of the different classes of problems effectively diagnosed by our frame

work. 

Host setup and configuration problems 

Application servers that are mis-configured or sustain performance issues over time 

usually have execution prematurely ending or terminating, or have parts of the pro

gram spending too much of time in execution when requests pass through them. 

The same parts of program may have executed normally on other hosts in the dis

tributed environment, but either fail or consume more time (other resource issues 
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can also occur) while running through specific host(s). What makes such problems 

susceptible to be missed by the current diagnostic mechanisms is that the hosts' 

configurations are constantly changing and what was running perfectly for a pe

riod in time no longer runs due to a very small update in the configuration settings. 

Furthermore, such configuration changes usually affect only a small set of compo

nents in this environment while most of the components usually have a problem 

free execution history on the same host environment. 

Database problems 

Whenever a database failure occurs such as a RAID disk failing, the I/O rate tends 

to exceed the normal processing rate as the bulk of the operations are carried out 

by the remaining disks. As a result, the components that contain database calls 

and query processing have slower execution times than the average. The problem 

in this case is not with the components or the application servers but the database 

response. This has to be correctly identified in cases where the response is too slow 

and the execution of the calling component times out. 

Deadlock and starvation problems 

If a small number of processes deadlock, they stop generating trace records, mak

ing their traces different from processes that still function normally. Similarly, if 

a process consumes large amounts of CPU time, the other processes waiting for 

resources start starving thus causing the user request to be terminated prematurely 

or ending up spending large amounts of time in different sections of the application 

code. Such processes can either happen at the application level or at the database 

level and it is necessary to pinpoint the cause to the proper section of the web ap

plication. Race conditions or starvation problems in application servers are typical 

examples of this category of problems. 
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Point-of-time errors 

System settings and resource utilization levels (memory utilization, CPU utiliza

tion, I/O rate etc.,) may lead to transient problems, affecting the normal execution 

of components. Such problems may be hard to identify as they are in-deterministic 

in nature and usually do not have a pattern. 

Although these errors may happen for a very short period of time and fade away 

depending on the capability of the host environment to adapt itself, they can become 

a potential threat to the resources, if left unnoticed. It is important to identify such 

issues early to reduce downtime later. 

3.3 Scenario trace data collection 

Scenario trace data collection or run time path tracing has long been a concept of 

interest for monitoring system performance but systems people have not been able 

to harness the full potential due to various hindrances. The first and foremost step 

involved in collecting scenario trace data information is to instrument the underly

ing application strategically so as to collect enough information without hampering 

the system performance. Much research has gone into the various points of instru

mentation in enterprise-level systems and each of the techniques were found to have 

their own set of advantages and disadvantages. Figure 3.1 shows an overview of the 

different points of instrumentation possible in an application. 

Based on the context of recording component calls and the order in which they 

are executed, source code instrumentation is an effective technique for collecting 

scenario trace data. This instrumentation technique acts on the underlying applica

tion at a much coarser level of granularity as opposed to the other types of instru

mentation that deal with byte-code. 
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Figure 3.1: Instrumetation techniques hooking into different sections of the sys
tem. A comprehensive set of code modificaiton points that can be used to inject 
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Source code instrumentation of the application also cuts down on most of the 

overhead involved in byte code instrumentation by ignoring unwanted system level 

details such as memory registers and cache buffers etc. Byte code instrumentation 

is better suited for on-the-fly attaching and detaching of instrumentation probes, 

but in the context of recording information for a scenario that spans across multiple 

system hierarchies, it is easier to have the instrumentation probes to be static and 

placed well before the application is deployed. But again, the user is hampered in 

this type of static instrumentation technique to have a prior knowledge of the appli

cation source code, which is not possible in most of the cases. This limitation is in 

addition to the resource overhead generated by static instrumentation. 

It is ideal if the instrumentation comes with the ability to instrument source code 

and also dynamically insert probes at the required points, thus achieving a mini-
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mal user intervention at the source code level and enough flexibility to turn-on and 

turn-off the instrumentation. COMPAS [25] is one such instrumentation framework 

that performs pseudo-source code transformation to install probes without hook

ing directly into the application middleware but using the components' deployment 

descriptor. These deployment descriptors contain the meta-data (information re

garding the structure and behavior of the component) needed to derive the internal 

structure of the components. The probe in COMPAS acts as a proxy element and 

has a one-to-one relationship with each of the application's component and uses 

the meta-data information to weave a proxy layer on top of it, which then tracks 

the component call in the context of an execution trace. COMPAS thus achieves 

the objective of source code instrumentation without requiring a prior knowledge 

of the application source code. COMPAS is highly customizable and with its abil

ity to instrument all the three tiers of the web application, recording scenario trace 

information is made easy. 

3.3.1 Considerations for scenario trace data collection 

Today's enterprise applications are generally required to handle high loads of traffic 

generated by concurrent users. Runtime path tracing in such systems involves trac

ing each of the user requests as they pass through the different tiers that make up the 

entire application. Sequences of such requests for a user session form a scenario. 

For example, in an online banking system, a user performs a set of activities that 

consist of logging in, viewing the account information, transferring money between 

accounts, executing an online payment and finally terminating the session by log

ging off. To effectively analyze information gathered around these set of activities 

that form a scenario, it is necessary to preserve a unique identifier across the chain 

of component calls in the scenario and maintain the order in which the components 

were called. Ideally, an instrumentation mechanism needs to meet the following 
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requirements to be able to perform effective runtime path tracing: 

• (Reql) The mechanism must be able to identify between different user re

quests entering the system at the thread level and generate a unique scenario-

id for each such request. 

• (Req2) The mechanism is required to tag the scenario-id with request-specific 

information (RSI) so that component calls and related information can be 

mapped to the corresponding scenario-id. 

Another important aspect of this scenario-id generation is about defining the 

lifetime of the scenario-id. Since each scenario consists of the set of actions per

formed between the first request issued by the user (logging into the system) and 

last request (eventually logging off), a unique session-id is generated every time 

a user logs in and is discarded once the user logs-off. In certain circumstances, 

where the user terminates the session by either closing the application window or 

not performing any action for a particular period of time, the user has to authen

ticate himself again before resuming the next session, thus issuing a request for a 

new scenario-id to be created. Achieving the segregation of scenarios can be par

ticularly challenging when a system is distributed across a network. 

The RSI (Req2) refers to the component related details with respect to the par

ticular request. The kind of component data that needs to be recorded is outlined in 

Section 3.3.2. 

Thus far, there have been tools that have the above requirements met in a manner 

that involves instrumenting either the software application itself or the underlying 

middleware and collecting the necessary information. Because the J2EE specifi

cation does not explicitly address the requirements for runtime path tracing, mid-
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dleware approaches for J2EE have involved using non-standard, non-portable and 

vendor-specific mechanisms. The biggest issue with using non-standard mecha

nisms is that developers get locked into using a particular middleware instrumenta

tion and lose the flexibility of being able to quickly change this mechanism should 

the need arise. Another drawback happens to be the inability of these instrumenta

tion mechanisms to work seamlessly across multiple execution environments such 

as J2EE and .NET. 

This calls for non-intrusive, multi-platform instrumentation that works across 

a distributed architecture consisting of middleware and back-end systems, regard

less of the vendors. So far, instrumentation mechanisms have been successful in 

evolving to support application servers from multiple vendors that run on either 

Java Virtual Machines or .NET VMs but fail to work for cross-integration between 

the two. Commercial diagnostic tools that come bundled with their own instrumen

tation mechanisms usually have different versions for application servers running 

on different platforms. Open source instrumenting mechanisms, on the other hand, 

such as COMPAS, do have conceptual techniques to integrate between different 

platforms, but still have not been successful in producing a working version. 

3.3.2 Trace data collection format 

The first step involved in any diagnostic framework is to collect enough data. The 

most important issue though in fulfilling this objective is to not overrun limited re

sources of the system being instrumented. 

To record data with respect to scenario traces, the ideal part of the system that 

can be instrumented is the middleware. As shown in Figure 2.1, most of the appli

cation logic is concentrated in the Business Tier and all scenarios flow through the 

36 



Business Tier for processing. Any end-to-end scenario can be tracked from a single 

point, the Business Tier of the deployed application. So the instrumentation mech

anism is always better placed in the middleware housing the business logic of the 

application. Apparently, due to the limitations of the instrumentation mechanisms, 

as outlined in Section 3.3.1, deployed web applications still need to be running on 

a single type of virtual machine across the entire stack of application servers, to be 

able to track the end-to-end information from scenario traces. 

The runtime path tracing approach discussed in Section 3.3.1 requires user re

quest tagging (Reql). One way of achieving this is by inserting a unique value into 

the local thread object when a new user request enters the system. Modern day 

application frameworks usually look after the process of generating unique user re

quests at the middleware level. Conversely, if user requests are restricted to entering 

the system in the Web Tier, then the HTTP server (a component of the web server) 

can be instrumented such that each new request for an HTTP connection can be 

tagged. In this case, a new request for an HTTP connection would represent a new 

user request. 

On each invocation of a component corresponding to a user request, following 

information is logged: 

• Unique scenario-id 

• Thread id 

• Sequence number for components called 

• Call depth (for finer granularity recording) 

• Component details (Name and context) 
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• Execution environment details 

• Performance data 

Component calls are then grouped together based on the scenario-id, which cor

responds to a single scenario. A set of component calls ordered in the sequence in 

which they were executed and tagged to the same scenario-id forms the scenario 

trace, which is then ready to be processed. Table 3.1 shows a typical scenario trace 

comprising of a set of activities performed by a user over a single session of log

in. Table 3.1 also contains the scenario-id preserved across the entire scenario trace. 

In addition to the above mentioned purpose, further analysis can be applied 

to scenario trace information for a number of additional purposes. For example, 

by analyzing the runtime paths, developers can easily construct UML diagrams 

that can help to deduce the overall system structure. Component relationships can 

be identified, which helps developers gain a better understanding of their system. 

For instance, understanding inter-component relationships enables developers to 

anticipate potential conflicts and debug problems as well as allowing developers to 

reason about their system design (which in turn can have a major impact on system 

performance). 

3.4 Diagnostics Framework : Design Overview 

The framework was designed to tackle the problem of eliminating the necessity 

of manually checking every possible cause associated with the detected problem 

and minimize the overall time taken to resolve the problem. Apart from locating 

the section of the system that is a potential cause, the framework supports its hy

pothesis with a set of related diagnostic information that would help the analyst to 

better understand the situation. To diagnose any detected problem, the framework 
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Scenario Id 

UUID-1084477462-965986-1930759028 
UUID-1084477462-965986-1930759028 
UUID-1084477462-965986-1930759028 
UUID-1084477462-965986-1930759028 
UUID-1084477462-965986-1930759028 
UUID-1084477462-965986-1930759028 
UUID-1084477462-965986-1930759028 
UUID-1084477462-965986-1930759028 
UUID-1084477462-965986-1930759028 
UUID-1084477462-965986-1930759028 
UUID-1084477462-965986-1930759028 
UUID-1084477462-965986-1930759028 

UUID- (084477462-965986-1930759028 
UUID-1084477462-965986-1930759028 

UU1D-1084477462-965986-1930759028 
UUID-1084477462-965986-1930759028 

UUID-1084477462-965986-1930759028 
UUID-1084477462-965986-1930759028 
UUID-1084477462-965986-1930759028 
UUID-1084477462-965986-1930759028 
UUID-1084477462-965986-1930759028 

UUID-1084477462-965986-1930759028 
UUID-1084477462-965986-1930759028 
UUID-1084477462-965986-1930759028 
UUID-1084477462-965986-1930759028 
UUID-1084477462-965986-1930759028 

Component Type and Name 

JSP—template-jsp—jspservice—faiWmainservice;SPUTINOW 

JSP—template-jsp—jspservice/banlc/accountListenerService;SPUTINOW 

EJB—Session—TxControI]erBean—getTxsOfAccoimt;SPUTINOW 
JTA—Transactionlmpl—Commit;SPUTINOW 

EJB-Session-AccountControllerBean-getDetails;SPUTlNOW 
JTA—Transactionlmpl—Commit;SPUTINOW 
JSP—template-jsp—jspservice;SPUTINOW 

EJB—Session—TxContro11erBean—getTxsOfAccount—/bank/accoantHistService;SPUTINOW 
JTA-TransactionImpl-Commit;SPUTINOW 

EJB—Session—AccountControHerBean—getDetails;SPUTINOW 
JTA—Transactionlmpl—Commit;SPUnNOW 
JSP—template-jsp—jspservice;SPUTINOW 

JSP—template-jsp—jspService—/bank/mainservice;SPUTINOW 
JSP—template-jsp—jspService—/bank/atmservi ee;SPUTINOW 

EJB—Session—AccountControllerBEan—getDetails;SPUTINOW 

JTA—TRansactionlmpl—Commit;SPUTINOW 

EJB-TransaclionControllerBEan-withdraw;SPUTTNOW 
JTA-TRansactionImpl-Commit;SPUTINOW 

EJB—Session—AccountControllerBEan—getDetails;SPUTINOW 
JTA-TRansactionImpl-Commit;SPUTINOW 

JSP—template-jsp—jspService—/bank/atmAckservice;SPUTINOW 

JSP-template-jsp-jspservice;SPUTINOW 
EJB-Session-TxControllerBean-transferFunds;SPUTINOW 

JTA-TransactionImpl-commit;SPUTINOW 
JSP-template-jsp-jspservice;SPUTINOW 
JSP-template-jsp-jspservice;SPUTINOW 

User requests 

Account History checking 

Funds Withdraw] 

Transfer Funds 

Table 3.1: Illustration of a typical scenario trace consisting of unique scenario-id 
and including multiple user requests 

39 



Trace Collodion 

Data Cleaning i 

V 
Data Processing 

Diagnostic Report 

Decision Table 

Figure 3.2: High level design overview of the diagnostic framework 

follows a three-step process. First, we collect component-level traces using an in

strumentation technology available for J2EE architecture based on the principles of 

low overhead instrumentation discussed in Section 3.1.1. The COMPAS technol

ogy with enough customizations writes out component calls of each scenario to log 

files in the format described in Section 3.3.2. 

The second step is to extract relevant information from the collected log data 

and categorize them based on premature termination or difference in behavior as 

compared to perceived normal traces. In this step, we look at two kinds of cases, 

those that have terminated component execution and those cases that significantly 

deviate from a normal pattern and may pose potential threats to the system. 

In the third step, the framework uses trace information collected over time to 

identify possible faults and tries to provide relevant data to the analyst to help de

bug the issue. Also in this step, we feed the information collected from the faulty 

scenarios and similar traces to a primary and secondary decision table and try to 
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output highly probable causes corresponding to the problem encountered in addi

tion to eliminating inapplicable ones. Figure 3.2 outlines the diagnostic framework, 

which expands the three steps described above into individual processing stages. 

Furthermore, these techniques both look at performance issues and program

matic errors in components of the web system and efficiently correlate information 

from both aspects to help identify the causes. What eventually remains is the dis

tilled set of causes related to the problem at hand with the other causes eliminated 

by the decision logic. 

3.4.1 Data Preprocessing 

The data collected from the scenario traces using the COMPAS framework is in a 

raw format. Appendix A illustrates the raw data collected for one executed compo

nent of a scenario trace. Parsing the raw data and extracting relevant information 

as needed by the diagnostic framework forms the data preprocessing step. Since 

the COMPAS framework can be customized to record a lot of information about a 

component, our framework focusses on only the subset of information as recorded 

in the sample log data given in Appendix A. This limits the overhead involved in 

gathering run-time information about the components of the web application. The 

following subsection outlines the format of the preprocessed data that contains the 

relevant information needed by the framework. 

Extracting relevant information from raw traces 

Each component call that is recorded as part of a scenario, represented by its unique 

scenario-id and thread-id, is logged to a central location in the middleware deploy

ing the web application. The individual log files need to be normalized to a single 

time zone for effective processing. Synchronizing log data across multiple systems 

and various sources requires processing the time stamps and writing out the log in-
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formation collected in a cohesive time order to a central location. This capability of 

COMPAS helps us to correctly navigate the centralized log data and also facilitates 

speedy processing. 

The instrumentation mechanism logs trace data information to a predefined lo

cation which is then collected and preprocessed to obtain the necessary information. 

The preprocessed log files then contain data in the format as shown below. Since 

the unique session-id generated by COMPAS is a complex sequence of integers, 

we simplify the session-id in the preprocessing stage to a unique integer random 

number. 

{scenario_id; 

thread__id; 

component_name; 

host_name; 

execution_time; 

database_calls; 

query_execution_time} 

3.4.2 Trace mapping and segregation 

Once the traces have been preprocessed and data organized in the required for

mat, the next important step is to identify patterns within the traces and segregates 

normal looking traces and faulty ones accordingly. To achieve this objective, we 

outline the following assumptions. 

Assumption 1: A scenario that terminates prematurely i.e., whose execution 

does not have a corresponding component exit to the respective component entry, 

is deemed to be a definite faulty scenario. 
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Assumption 2: A scenario that does not have a prematurely terminating com

ponent in its trace but has a pattern that is similar to the definite faulty scenario 

trace and has a low occurrence rate, is deemed to be a probable faulty scenario. In 

order to judge similarity, a subsequence in the probable faulty string should exactly 

match the definite faulty scenario. 

But before applying the assumptions to separate traces into normal and faulty 

ones, we propose a mapping process that represents the component calls in a sce

nario trace as an integer sequence. This representation simplifies the task of pro

cessing a large log file containing thousands of scenario traces and their related 

information. While each of the techniques described in Section 2.5 employ classi

fication, clustering, or string-edit distance to group like traces together, our frame

work makes use of a less process intensive integer mapping to group traces together. 

To order the scenario traces, each component is mapped to a unique integer 

index. So, each time a component call is recorded, the preprocessor checks a 

hashtable for an existing index for the component or assigns a new one if no index 

exists. Table 3.2 and Table 3.3 represent a typical use case consequently mapped to 

a sequence of indexes. 

The integer sequences are then subjected to a segregation process in which the 

definite faulty scenarios and probable faulty scenarios are separated from each other 

based on the formulated assumptions. This marks the completion of the first phase 

of the diagnostic framework. 

Trace data in the preprocessed log files needs to be associated with the com-
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Scenario Id 

105421439 

105421439 

105421439 

105421439 

105421439 

105421439 

105421439 

105421439 

105421439 

105421439 

Component 

validateServicePac-entry 

validateRequest-entry 

validateRequest-exit 

checkCompatibilityReq uest-entry 

checkCompatibilityRequest-exit 

getWarrantylnfoRequest-entry 

getWarrantylnfoRequest-exit 

checkHardwareWarrantyWithinPeriodRequest-entry 

checkHardwareWarrantyWithinPeriodRequest-exit 

validateServicePac-exit 

Host 

mithrandir 

mithrandir 

mithrandir 

mithrandir 

mithrandir 

gimligloin 

lauds 

gimligloin 

gimligloin 

gimligloin 

Execution Time 

0.027s 

0.023s 

0.025s 

0.005s 

0.0365s 

0.0258s 

0.0125s 

0.0003s 

0.0258s 

0.0254s 

Component Index 

1 
3 
3 
7 
7 
13 
13 
5 
5 
1 

T a b l e 3 . 2 : A s u c c e s s f u l l y e x e c u t e d s c e n a r i o t r a c e d e p i c t i n g a se t o f n o r m a l u s e r 

r e q u e s t s 

Scenario Id 

105421439 

105421439 

105421439 

105421439 

105421439 

105421439 

Component 

validateServicePac-entry 

validateRequest-entry 

validateRequest-exit 

checkCompatibilityRequest-entry 

checkCompatibilityRequest-exit 

getWarrantylnfoRequest-entry 

Host 
mithrandir 

mithrandir 

mithrandir 

mithrandir 

mithrandir 

gimligloin 

Execution Time 

0.027s 

0.023s 

0.025s 

0.005s 

0.0365s 

0.0258s 

Character Mapping 

1 
3 
3 
7 
7 
13 

Table 3.3: Scenario trace depicting premature termination 
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Trace 

1-1-2-2-3-3-4-4-

5-5-4-4-I-I-

Associated Files 

1-1-2-2-3-3-4-4-

5-5-4-4-1-1-

ml.txt 

1-1-2-2-3-3-4-4-

5-5-4-4-1-1-

m2.txt 

1-1-2-2-3-3-4-4-

5-5-4-4-1-1-

m3.txt 

1-1-2-2-3-3-4-4-

S-5-4-4-1-1-

m4.txt 

1-1-2-2-3-3-4-4-

5-5-4-4-1-1-

m5.txt 

Format 

ml_host;ml_exec_time;ml query time 

m2_host-;m2_execjtime;m2_query_time 

m3_host;m3_exec_time;m3_quety_time 

m4_host;m4_exec_time;m4_que/y_time 

m5_kost;tn5_exec_time;mS_queiy_time 

Figure 3.3: Example data structure for the framework 

ponent integer sequences. For this, we organize the integer sequences with their 

associated data in a file based data structure for efficient and quick retrieval of in

formation corresponding to individual components. Figure 3.3 outlines a typical 

data structure that contains trace data information for a single scenario trace. This 

tree-based structure helps in extracting the required pieces of information related to 

a single component in question whose data is normally spread over the voluminous 

log file. The rationale is to speed up the processing of the analytical portion of the 

diagnostic framework. 
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3.4.3 Identifying faulty components in definite faulty scenarios 

Once certain traces have been identified as definitely faulty (scenario traces having 

premature termination), the next step is to identify the component which caused 

the scenario to terminate prematurely. One place to start looking at the cause for 

the failure is the last component in the chain of component calls that experienced 

premature termination and then work up the chain to help identify the cause. For 

example, a scenario trace represented as 1-3-3-7-7-13- indicates that the component 

(1) and (13) did not have a matching exit. To start, the most eligible candidate to 

be scrutinized would be the last component in the call chain that failed out-rightly 

and caused the scenario trace to terminate, i.e., (13). This would then be followed 

by the next candidate in the chain of component calls that did not have a matching 

exit i.e, (1) in this example. The framework would also list out normally executed 

components such as (3) and (7) as candidates in the faulty scenario trace if these 

components have been tagged as eligible candidates in other scenario traces (such 

as one with (3) prematurely terminating). The framework considers the candidates 

in the above order to identify the cause along the chain of component calls rather 

than traverse backwards from the initially terminated component and analyze each 

of the components executed along the call path. In some scenario traces the root 

cause may not be in any of the candidate components identified by the framework. 

In such cases, the framework can be adjusted to analyze remaining components in 

the trace once the initial candidates have been analyzed. 

Hence in the example mentioned in Table 3.3, the first candidate component that 

would be analyzed is (13). Every piece of detail corresponding to the component 

(13) is then fed to a set of decision tables for processing to identify the causes and 

determine the most probable ones. In this case, the files corresponding to the faulty 

scenario that contain data for component (13) as well as other files that had data 
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corresponding to component (13) being successfully executed form the inputs to 

the decision making module. The same process is followed for (1) and any other 

components possibly having failures in other scenario traces. 

3.5 Decision Making Process 

The next stage involves the decision making process in which information about 

the faulty scenarios is then compared against properly terminating scenarios to de

termine the reason behind the failure of the component. The goal here is to point 

out the possible cause of the failure while eliminating most other causes through 

historical data analysis. 

The decision making process tries to relate symptom information extracted from 

the scenario traces and runs them through a set of checks. This correlation is done 

across data such as the host machines on which the components ran, the average 

execution time, the existence of database calls and the query execution times. This 

is the minimal information required to diagnose the problems outlined in the fault 

model. 

The problems encountered in a typical distributed web application are related to 

a huge number of possible causes and each has a rich set of interleaved symptoms 

attached to it. This makes it very difficult for the analyst to identify correctly where 

the problem is and what caused the problem. Still, in most commercial diagnostic 

tools, anaysis is real time and thus scenario trace data ia avoided due to relatively 

costly processing. Even diagnostic tools that do analyze scenario traces do not cor

relate symptom information over a period of time and identify those parts of the 

system which caused the scenario to fail. 
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To help the analyst to reveal the root cause of problems, our framework is de

signed to identify the causes using scenario traces over a substantial period of time 

and zero-in on the exact cause. The discovered causes are somewhat sensitive, 

however, to the time period considered. For now, we allow the operator to run cor

relations over different time periods of collected traces to help localize the cause. 

Typical diagnostic checks have been converted into a decision table model con

sisting of conditions, actions and rules (shown in Figure 3.4). The decision table 

shows the possible symptoms that reflect each of the problems described in the 

fault model and outlines the effects. The predicates that define the conjunction and 

disjunction of conditions are defined in the Rules column. For example, while con

sidering the fifth column in Figure 3.4, the conjunction of four conditions such as 

the candidate component (C(x)) in the faulty scenario having run on the same host, 

C(x) having run successfully in other scenario traces, C(x) having run on the same 

host as both the faulty and normal scenarios and C(x) taking more than average 

execution time, fires up an effect that says that the component might have failed 

in the faulty scenario traces due to resource utilization issues in the Application 

Tier. The other conditions do not hold true in this case and can hence be eliminated 

from second-level checks. These effects then form the basis for executing the set 

of checks in the secondary decision table. The modeling of the effect-cause rela

tionship for each of the effects in the primary decision table is taken care of by a 

secondary decision table, detailed in Section 3.5.1. 

For each faulty scenario that needs to be analyzed, a series of such checks are 

performed by the primary decision table and the corresponding effects are then 

presented to the secondary effect-cause decision tables that run a set of second-

level checks that output the probable cause in the form of a diagnostic report for 
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Application Tier Failures 

Conditions 

C(x) has run on the same host 

C(x) has same input paramters for all failing requests 

C(x) has run successfully in other scenarios 

C(x) has run on the same host as both the faulty scenario and the normal scenario 

C(x) has taken more than the average execution time 

Data Tier Failures 
C(x) contains database calls 

Query was sucessfully executed 

Query execution times in C(x) is greater than average 

Rules 

Y 

N 

N 

N 

N 

N 

N 

N 

Y 

Y 

N 

N 

N 

N 

N 

N 

Y 

N 

Y 

N 

N 

N 

N 

N 

Y 

N 

Y 

Y 

N 

N 

N 

N 

Y 

N 

Y 

Y 

Y 

N 

N 

N 

Y 

N 

Y 

Y 

Y 

Y 

N 

N 

Y 

N 

Y 

Y 

Y 

Y 

Y 

N 

Y 

N 

Y 

Y 

Y 

Y 

Y 

Y 

Effects 

C(x) has a problem running on H(x) 

Problem in H(x) while executing C(x) 

Rresource utilization issues in Application Tier casued problem in C(x) 

D atab as e c onne ction problems 

Resource utilization issues in Data Tier casued problem in C(x) 

X 

X 

X 

X 

X X 

X 

X X 

Figure 3.4: Decision table designed as per the Fault Model. C(x): Candidate component in the faulty scenario. H(x):Host on which C(x) 
was executed for the faulty scenario 



the system personnel. In the primary decision table, the checks are divided into 

Application Tier checks and Data Tier checks. The system personnel is given the 

flexibility to choose the type of checks to apply. 

The rationale for choosing decision tables is that they are one of the most power

ful and highly efficient rule based models and are often preferred for very complex 

or extensive sets of conditions. 

The framework currently handles all problem situations discussed in Section 

3.2, and is extensible to new types of problems. The rule checker in the framework 

is modeled to effectively iron-out these errors but is not rigid in its implementation 

to look out only for such types. As was discussed earlier the rule checker can be 

extended to include other significant set of errors depending on the system being 

monitored. An important analysis here would be to mention that an extended rule 

checker wouldn't hamper the performance of the framework significantly as the 

data structure that logically organizes the trace data is so designed to extract only 

the data needed for the current rule being processed and doesn't have to look into 

the log file every time a rule is checked, whereas the other techniques discussed 

in Section 2.5 involving classification and learning tend to become slower with 

the induction of additional fault finders. Apparently, this facilitates the process of 

converting the framework into a much more dynamic mechanism and help detect 

errors at run-time. 

3.5.1 Effect-cause relationship 

Narrowing down to a set of effects in the primary decision table modularizes and 

simplifies the process of identifying the causes. We represent the effect-cause rela

tionship as a secondary decision table, since a single effect can have multiple causes 
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associated to it. While the preliminary table identifies the most probable effects(s), 

the secondary decision table performs a set of checks to identify the most probable 

cause(s) pertaining to that effect. 

Based on the conjunction of predicates in the effects category, corresponding 

checks in the causes category are executed. The combination of conjunctions and 

disjunctions (rules) in the effects category reflects the effects identified by the pri

mary decision table. 

While cause-based checks are mostly based on the details collected at a particu

lar point in time when a scenario trace fails, checks involving the CPU consumption, 

memory consumption and I/O rate are based on a comparison against average val

ues determined from the normally executed scenario traces. The average values are 

calculated for each of the components from the normal traces and anything in ex

cess of a stipulated threshold is marked as a failure. As was mentioned previously, 

these thresholds are usually based on statistical measurements learned over time 

and differ from one diagnostic tool to another. The thresholds are set at a global 

98 percentile in our framework, based on values collected over the time span of the 

log. For example, the thresholds for CPU consumption, memory consumption and 

I/O rate could be 15%, 7% and 12% over the respective averages. 

An illustrative example depicting a typical resource related problem is outlined 

in Section 3.5.2. This section walks through the primary and the secondary deci

sion tables to identify the effects corresponding to the problem condition and the 

outcome in the form of most probable causes. 
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Effects 

C(x) has a problem running on H(x) 

Problem in H(x) while executing C(x) 

Resource utilization issues in Application Tier casuedproblem in C(x) 

Database connection problems 

Rresource utilization issues in Data Tier casued problem in C(x) 

Rules 

Causes 

C(x) fails for the same input parameter 

Change in H(x) configuration settings 

High CPU utilization 

High memory consumption 

High I/O rate - Application and Database 

Improper pool utilization- Application Server Thread Manager 

Application thread contention 

JDBC coiuiectivity/bnproperpool utilization - Database Thread Manager 

Database deadlocks 

Y 

N 

N 

N 

N 

X 

X 

Y 

Y 

N 

N 

N 

X 

X 

X 

X 

X 

X 

X 

N 

Y 

N 

N 

N 

X 

X 

X 

X 

X 

N 

N 

Y 

N 

K 

X 

X 

X 

X 

X 

N 

N 

N 

Y 

N 

X 

N 

N 

N 

N 

Y 

X 

X 

X 

Figure 3.5: Effect-cause decision table 



3.5.2 Illustration 

This section illustrates the working of the framework through a sample scenario to 

better understand the diagnosis process. This explanation of the diagnostic frame

work and its decision making process is from the collected traces of a scenario with 

only one use case. The scenario considered is a simple purchase order use case 

where a request is placed to purchase a resource, followed by order confirmation 

and delivery stages. Many intermediate processes such as checking for resource 

availability, warranty information, etc., are captured as component calls. 

Table 3.2 shows a typical scenario trace that corresponds to the use case out

lined above. The log files that collected the scenario traces are processed to extract 

information such as the scenario-id, component name, host name, execution time, 

etc. The diagnostic system also counts the number of instances of each scenario as 

an additional statistic. 

Table 3.3 shows the same scenario but with a premature termination at the 

servlet getWarrantylnfoRequest or component (13). On feeding the scenario traces 

and related information as shown in Table 3.2 and Table 3.3 to the diagnostic frame

work the problem area was narrowed down to the host lauds. The following para

graph details the functioning of the primary and secondary decision tables to iden

tify the exact cause. 

Based on the checking process outlined in Section 3.5, the data collected for the 

faulty trace 1-3-3-7-7-13 was analyzed. A conventional diagnostic tool would pull 

up an alert for the failing component in question i.e, (13) and identify the problem 

to be that of a worker thread not being allotted. In addition it would also come up 

with possible causes of server settings, heavy resource consumption by the trans-
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actions, excess synchronization time for the current threads, slow database queries, 

incorrectly sized pool for the application server as well as the database. As can 

be seen, there are many different causes for a single type of problem condition or 

symptom. The proposed framework tries to eliminate most of the irrelevant ones 

and narrows it down to the most probable cause(s). 

To start with, an analysis is done within the same set of collected traces to see if 

the method (13) had run on the same host i.e, lauds. In this case, (13) had run on the 

same host in all the collected traces. The next check sees if (13) had successfully 

run in a normal scenario trace where the faulty trace is a subsequence. 

Since the component (13) had successfully run in a normal scenario, a third 

check sees if the hosts that ran (13) successfully in the normal trace match the host 

that ran (13) in the faulty scenario. This determines if (13) had problems running 

just on the host lauds. 

The next check sees if (13) had taken more than the average execution time in 

the faulty scenario as compared to the normal scenario. In this case, (13) had taken 

more than average execution time. To check if the excessive execution time was due 

to Java or database calls, the next check verifies database calls. Since there were no 

database calls in the component, the decision table drills deeper into the possible 

causes for processing delays of a Java component, which is taken care of by the 

secondary decision table. These checks include heavy CPU consumption by other 

components, I/O delays, and finally thread allocation and contention issues. Based 

on the analyzed information from components running at the same time, the CPU 

consumption and I/O delays are ruled out, while failing thread allocation remains 

as a possible cause. Thus, diagnosis proposes the problem cause to be a thread al-
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location issue, and prompts the human operator to look into the thread manager of 

the application server for more details. Effectively, we rule out a number of options 

automatically in terms of effects (primary decision table) and causes (secondary 

decision table) and zero-in on the problem area successfully. Contrarily, other di

agnostic tools analyzing just the details of the failing component usually output an 

exhaustive set of problem causes and leave it to the human operator to check each 

one out. By correlating trace information over time, we are successful in eliminat

ing a majority of the proposed causes and leave out only the most probable ones. 

The same process applies to the entire set of problems outlined in the fault model. 

On a general note, the framework is successful in answering a few interesting 

questions such as: 

• Whether component x failed on a host while having successfully run in other 

hosts? 

• Is the component failure due to bad design or environment settings? 

• Are definite failure scenarios the only failure cases in the system? 

• Do two similar faulty scenarios failing at the same component share the same 

symptom? 

These are typical questions whose answers very much help in ruling out irrele

vant causes and pinpointing the problem area quickly. 

3.6 Visualization 

One of the most important feature of a diagnostic tool is the user interface to help 

the user understand the state of the system being monitored. Our aim in developing 

a visualization feature for the implemented framework was to make it usable and 
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Application Diagnostics using Scenario Traces 
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Figure 3.6: Summarized Analysis 

allow enough flexibility to explore the results. 

The first design decision while developing the user interface was to make it 

web-based. This minimizes the need to install it on every user machine. It main

tains a central repository from which data can be accessed from anywhere on the 

network. 

The dashboards and other analytical features are laid out on two separate web 

pages. The first page, as shown in Figure 3.6, contains a summary of the statistics 

gathered from the data-set selected by the user. This dashboard page consists of 

three important statistics arranged in a drill down fashion. The first pane on the 

page indicates the overall health of the system with a green or red symbol under the 
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Diagnostics Summary - Component Level 
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Figure 3.7: Investigator View - Detailed component statistics 

labels-Application Tier and Data Tier. Green indicates that the number of Appli

cation Tier errors are well within the threshold levels while red indicates that this 

threshold is breached. We have assumed an error threshold of 15% of the number of 

scenarios passing though the system. For example, if the number of application tier 

errors detected are more than 15% of the number of scenarios that passed through 

the system, the health indicator under the Application Tier label would turn red. 

The second pane summarizes the number of individual errors identified across 

each of the error types modeled in the framework. The third pane further drills 

down into the individual error categories and displays the number of errors detected 

over time. This dashboard helps the analyst in understanding the trends in errors 

within the system and identifying the times when the possibility of errors is higher. 

The second page, also dubbed as the Investigator page, allows the analyst to 

explore the data across time and study the behavior of the traces. This page as illus

trated in Figure 3.7 and Figure 3.8 has a tree view of the entire set of components 
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instrumented by the framework, and each component can be individually selected 

to view the corresponding details. While summarized statistics of the component 

selected is displayed at the top of the page, the bottom half is used to choose the 

time for which the decision table logic is to be applied on the data-set. 

By varying the time interval and looking at the results, we would be able to 

better judge the cause of the problem. For example, a failing database connection 

problem perceived in one time-interval could be a server configuration problem that 

had not been noticed until checking for earlier time periods. Allowing the user to 

process data over different time periods might help in catching these errors. Fig

ure 3.9 shows the rule checking process on the selected scenario trace and narrows 

it down to the section of the system perceived to be having a problem with respect 

to the trace. This page displays the results of the rules applied to the trace data and 

any interesting statistics derived. 

3.7 Summary 

This chapter was structured to detail the diagnostic framework that forms the core 

of the thesis. The first half of the chapter concentrated on the issues for setting up 

the instrumentation to record relevant data, and the structure and format of the log 

data to be used by the framework. The second half details the diagnostic framework 

itself with the various stages of processing, such as the data cleaning, data process

ing, and feeding the processed data to the primary and secondary decision tables 

to perform relevant checks. An illustrative example that walks through the primary 

and secondary decision tables follows the discussion on the framework design. Fi

nally, we end the chapter with the visualization options that lets analysts reveal the 

nature of the problems and the corrective actions suggested by the framework 
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Chapter 4 

Evaluation 

This chapter focuses on the evaluation of the proposed framework. A case study 

web application is chosen for the evaluation. The objective was to select an appli

cation that was built upon J2EE, consisting of all the web components discussed 

in Section 2.2.1. The ideal open-source application available for this purpose was 

the Duke's Bank application [4]. Apart from the flexibility the system provides in 

customizing its components, this application has been widely used as the bench

mark application in research involving enterprise web systems, thus adding to the 

applicability of the tests conducted on this system. The evaluation process starts 

by laying out a comprehensive test bed consisting of automated load generators 

and fault injection mechanisms, the details of which are explained in Section 4.2. 

Section 4.3 briefly summarizes the overall results obtained in the evaluation pro

cess and the inferences gathered around the collected data. The chapter concludes 

by comparing the framework with an open-source diagnostic tool and analyzes the 

advantages and improvements the framework has over that tool. 

4.1 Experimental system setup and configuration 

The evaluation of the diagnostic framework was performed on an open-source, dis

tributed, web-banking application called the Duke's Bank application. The system 

handles most of the use cases for a normal online banking system. The set of high-
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level use cases that we used for evaluation purposes are outlined in Appendix B. 

4.1.1 Design Details : Duke's Bank Application 

The Duke's Bank application consists of two different types of clients, one a stand

alone client that is used for managing accounts and customers, and another that is 

web-based and enables the user to perform online activities. The users access the 

information maintained in a database through enterprise beans. The objective of 

the Duke's bank application was mainly to illustrate the functioning of the various 

components present in the Web Tier, Business Tier, and the EIS Tier. Figure 4.1 

demonstrates the high level architectural composition of the Duke's Bank applica

tion. 

As in every J2EE application, the entire Business Tier logic is encapsulated 

within the enterprise beans. For a deeper understanding of the EJB functionality, 

Figure 4.2 describes the interaction between the session beans and the entity beans 

and how the web client interacts with the underlying database tables through the 

session beans. 

Within each of the beans, the functional logic is coded into methods that cor

respond to different actions such as withdrawal, transfer, and viewing account bal

ances. 

Session Beans 

The Duke's Bank Application has three session beans: AccountControllerEJB, Cus

tomer ControllerEJB, and TxControllerEJB. These beans form the core of the busi

ness logic implemented in the application. They also serve to abstract the underly

ing server-side logic and database accesses from the user. 
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Figure 4.1: Indicates the various components present in the Duke's Bank Appli
cation and the arrows indicate the interaction and the flow of logic through the 
components when scenarios occur [4] 
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Figure 4.2: Session and Entity bean setup in the application layer [4] 

Entity Beans 

Each business entity represented in our simple bank, the Duke's Bank application 

has a matching entity bean: 

• AccountEJB 

• CustomerEJB 

• TxEJB 

These entity beans form the means to access the database tables outlined in 

Figure 4.3. Based on the table to be queried the entity bean has an instance variable 

that performs the necessary database operations. In other words, these entity beans 

contain the SQL statements necessary to work on the data present in the underlying 

tables. For example, the create() method of the CustomerEJB entity bean calls the 

SQL INSERT command. 
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Figure 4.3: Database Entity Relationship Diagram [4] 

Database Setup 

Figure 4.3 shows relationships between the database tables. The customer and ac

count tables have a many-to-many relationship: A customer may have several bank 

accounts, and each account may be owned by more than one customer. This many-

to-many relationship is implemented by the cross-reference table named customer-

account-xref. The Account and Tx tables have a one-to-many relationship. 

Web Client 

Most of the interactions in the Duke's Bank application happen through the web 

client. To look at a simple use case, when a user tries to access his account his

tory through the web client, the application initially calls the login.jsp page for the 

user to first authenticate him on the system and then transfers to the accountHist.jsp 

page, once the EJB AccountHistoryBean retrieves the account history of the previ

ous transaction made by the user over a period of time. Figure 4.4 shows a sample 

screen-shot of the accountHist.jsp after a user logs in and tries to view his account 
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Figure 4.4: Login Page : login.jsp 

history. 

4.1.2 Environment settings 

The setup of the case study mimics a distributed environment consisting of three 

systems running different configurations of Windows and Linux. Table 4.1 details 

the exact configurations of these boxes on which the application middleware and 

database servers were set. 

The application code was customized to suit the environment and deployed on 
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System Name 

SIMONETTE 

SPUTINOW 

STETTLER 

OS Version 

X86-based PC running Microsoft Windows 2000 Professional 5.0.2195 

X86-based PC running Microsoft Windows XP Professional 5.1.2600 

1686 running Linux 2.6.9-55.0.6.ELsmp Scientific Linux SL release 4.5 (Beryllium) 

Browser Version 

IE 6 

IE 7 

Firefox 1.5 

IP 
129.128.23.65 

129.128.23.127 
129.128.23.63 

RAM 
1023 MB 
1023 MB 

1023 MB 

Table 4.1: Evaluation environment configuration details 

JBoss 4.3.08 GA release instances running on the three systems concurrently. The 

changes required for the application code and configuration parameters detailed in 

the deployment descriptors were effected using NetBeans IDE 5.0. 

4.2 Error Injection in Trace Data 

Much emphasis was given to the types of errors that could manifest themselves in a 

web application, as detailed in Section 3.2. It is highly important that the evaluation 

too includes a comprehensive set of error conditions outlined in the fault model to 

effectively analyze the usefulness of the diagnostic framework. 

In this regard we have considered a fault injection mechanism for our case study 

that consists of a set of faults to be injected at the application and data tier levels. 

The web traffic is taken care of by a load generator that generates the necessary 

load through the web application to exactly mimic normal traffic happening across 

a real time system. A typical log data file collected over a day's traffic through the 

system would essentially contain thousands of scenarios logged in it in addition to 

a sporadic injection of errors in many of these scenarios. The effect of these errors 

in the system is then studied with the help of the proposed diagnostic framework. 

4.2.1 Types of Injected Faults 

The generated faults not only affect the deployed application and the way the user 

experiences it, but also have a significant deteriorating effect on the infrastructure 

or the underlying system. The following is the detailed list of injected errors. 
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1. Memory Consumption - This type of error is injected by controlling the 

amount of memory allocated to the JVM of the JBoss application servers run

ning on each of the host machines. Occasionally, one or all of the JVMs are 

made to consume maximum memory for a given scenario and the resulting 

errors are recorded in the log file. 

2. CPU Consumption - This type of error concentrates on the processing cycles 

for each of the hosts. Occasionally, a heavy process is added and the effects 

on the application running at that time is recorded. 

3. Thread Contention - Spurious threads are created while processing some 

of the scenarios thus trying to impact the functioning of the other threads 

processed in parallel. 

4. Disk space consumption - Although this type of error can effectively be 

identified by current state monitoring mechanisms, the behavior of scenarios 

when such conditions happen is interesting to know for our framework. This 

type of error is injected by intentionally blocking out the disk space available. 

5. I/O Consumption - This type of error is injected in the database server by 

intentionally making a database partition fail thus increasing the I/O rate in 

the remaining database disks. 

6. Database connection consumption - This type of error is injected by reduc

ing the number of connections returned back to the pool. Usually when the 

pool size is reduced the load generator floods the application server with a 

large set of requests, more than the database pool can handle. 

7. Database/Application Server deadlocks - Deadlocks are situations in which 

one contending request holds onto a resource required by another equally 

contending request, while the later holds a resource required by the former. 
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Both the requests cannot progress further until one of them releases the re

sources they hold. This property is applicable to both application servers and 

databases. Table-lock kind of deadlocks, where locks are granted for a fixed 

period of time to allocate enough time for simultaneous requests to take ac

tion with not being able to write to the tables are in addition to thread-related 

deadlocks in databases, while in application servers it is more at the thread 

level. 

While many of the above mentioned errors such as thread pooling, database 

table lock etc. are embedded in the banking application source code, other types of 

faults are injected based on the underlying principles of a fault injecting mechanism 

called JAFL [26]. 

4.2.2 Load Generator 

Generating ample load as necessary forms an important part of the evaluation. 

While there are many prominent shareware and freeware load generators such as 

Apache JMeter [27], Doctor [28] , Grinder [29] and so on, we settled for a simple 

yet powerful record and playback load generator called Sahi. 

Sahi [5] is a rich JavaScript-based load generating mechanism that works us

ing proxy technology. Sahi needs to be configured as a proxy server and the web 

browser needs to access Sahi as a proxy. This allows the Sahi tool to work on the 

components in the application without having to understand the source code of the 

underlying application. Sahi acts as a wrapper on the application source code. 

The list of use cases outlined in Appendix B were recorded as Sahi scripts and 

used for generating the necessary load. Another useful feature with Sahi is the abil

ity to run the scripts within batch files. Using this feature we randomly generated 
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Figure 4.5: Snapshot of Sahi automation tool [5] 

tens of thousands of use case based requests to be fed to the application. Figure 4.6 

shows a sample of the script file corresponding to one use case. The script peforms 

the automatic playback of a user logging in, navigating to his account-details page, 

viewing the transactions history sorted based on the description and then logging 

off. Each of the batch script contains millions of lines of such code spanning mul

tiple use cases. 

Usually Sahi is run on all three host machines simultaneously to maximize the 

traffic flowing through the distributed setup. Sufficient delays are also embedded 

between each requests to mimic the normal flow of user requests and are altered to 

flood the system occasionally based on the type of faults injected. Figure 4.5 is the 

snapshot of the Sahi dialog box that executes the recorded scripts 
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_setValue (_textbox ("j_usernaine") , "200") ; 
_3etValue(_pas3Word("j_pa33¥ord"), " j2ee" ) ; 
_click(_sutmiit ("Submit") ) ; 
_cl ick(_l ink("Account L i s t " ) ) ; 
_c l i ck(_ l ink("Check ing") ) ; 
_setSelected(_select("sortOption"), "Description"); 
_click(_submit("Update")); 
_click(_link("Logoff")); 
click( link("Logon")); 

r 

Figure 4.6: Use Case - View Account Details (Sahi script) 

4.3 Problem Diagnostics Testing Results 

With the infrastructure in place, the next set of steps are to ran random samples of 

load on the application setup and inject faults on a periodic basis. We conducted 

multiple experiments for typical work-day traffic flowing through the system. Three 

separate load generator scripts were produced with varying load effects and run on 

each of the systems. These batch scripts were written in a way so as to mimic a dis

tributed setup in the sense that the user requests coming out of each of these scripts 

were targeted not only for the application servers running on the parent machine 

but also on the other two machines on the network. The traffic was made to flow 

randomly across the three machines to maintain a sufficient balance in load with 

occasional bursts of excessive load when faults were injected. 

On an average, the framework was able to recall 95% of the errors injected 

into the application. The detailed results are outlined in Table 4.2 and summarized 

in Figure 4.7. The framework is more successful in identifying application server 

problems whereas it has a less recall for the database errors. We also include the 

probables in the recall percentages as our framework was capable of marking those 

scenarios as probable faulty ones. 
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Figure 4.7: Recall rate of errors detected by the framework for 5 tries) 

The remaining 5% of the errors are normal scenarios as perceived by the frame

work (i.e., the framework does not recognize the deviation in pattern for these sce

narios). The precision percentage of the framework in correctly attributing the exact 

cause to the injected problem averages at 93%. On analyzing the reason for missing 

out on the exact cause of a detected problem, we noticed that on an average around 

3% of the missed errors were due to wrongly identified cause (identified from the 

secondary decision table), but with the correct effect (identified from the primary 

decision table). 

In calculating the thresholds for the CPU consumption, memory consumption 

and I/O rate we use the logic of setting up the values based on the global 98 per

centile band as described in Section 3.5.1. For the evaluation system, these values 

were set at exactly the same ones as the examples mentioned in Section 3.5.1. 

We also measured the time taken to perform the analysis over collected log 

data. We used a Windows machine running a 2.4 GHz Pentium 4 processor and 

1GB RAM to record the performance of our modules. We took an average over 

5 runs on the same log file containing 4036 scenarios. The overall time taken to 

71 

suits 

BJ 
t i 

isL 

a Errors Injected 

m Errors Delected 

nDetlnites 

a Probables 



Scenarios 

4481 

5905 

4036 

41 
5945 

Errors Injected 

448 
472 
323 
431 
535 

Errors Detected 

430 
453 
307 
418 
514 

Definites 

394 
430 
261 
362 
495 

Probables 

36 
23 
46 
56 
19 

Recall Percentage (Definites+Probables) 

95.98 

95.97 

95.04 

96.98 

96.07 

Precision 

402 
421 
286 
388 
481 

Precision percentage 

93.48 

92.71 

93,15 

92.82 

93.57 

Table 4.2: Comprehensive Results - Data Table 

process the raw log file and perform the analysis was 1055.45 seconds. We also 

measured the average performance of the individual modules used for processing 

the raw data, and the analysis. We found that the data processing module took about 

795.65 seconds on an average, while the analysis module just took 259.8 seconds 

on the average. It is clear that the data processing module consumes a major portion 

of the time taken. This time can be further reduced by bypassing the preprocessing 

stage, where the raw trace is parsed to extract the necessary information, if the 

instrumenting mechanism can directly record data in the preprocessed form. 

4.3.1 Individually Injected Errors 

We also conducted several tests to identify the effectiveness of the framework over 

each of the individual types of errors. Multiple runs were done on the system, upon 

the same infrastructure as used for the previous evaluation, but with only one kind 

of injected error in each run. Table 4.3 and Table.4.4 outline the precision and recall 

of the framework with respect to injected application tier and data tier errors. 

The framework is effective in identifying the application tier errors with an av

erage recall of 97% while the recall rate gets reduced to around 93% when data tier 

errors are injected individually in the system. The precision percentage on the other 

hand does not change from the average value of 93% for each of the tiers. 
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Error Types 

Scenarios 

Errors Injected 

Errors Detected 

Recall 

Precision 

Memory Consumption 

14526 

1308 

1257 

96.1 

94.27 

CPU Consumption 

13716 

1233 

1194 

96.83 

93.89 

Thread Contention 

14448 

1590 

1521 

95.66 

94.57 

Disk space Consumption 

12897 

1548 

1500 

96.89 

94.12 

Deadlock 

15108 

1209 

1167 

96.52 

93.68 

Table 4.3: Summary of Results-Individually injected Application Tier errors 

Error Types 

Scenarios 

Errors Injected 
Errors Detected 

Recall 
Precision 

I/O Consumption 

13614 

1089 

1017 

93.38 

92.77 

Database Table Lock 

14637 

1170 

1082 

92.47 

93.31 

Database Pooling 

13110 

1179 

1109 

94.06 

92.9 

Deadlock 

14142 

1698 

1570 

92.46 

92.45 

Table 4.4: Summary of Results-Individually injected Data Tier errors 

4.4 Comparisons with an open source diagnostic tool 

This section compares our results with that of an open source diagnostic framework-

Glassbox [30]. Glassbox is an intuitive diagnostic tool that is popular in industry. 

One user friendly feature of Glassbox is its capability to monitor the application 

without having to understand the source code. The agent mechanism works on As

pect Oriented Technology. 

Glassbox uses the conventional architecture followed by other diagnostic tools 

of having agents on each of the machines spread across the distributed environment 

and transmitting monitoring information to a centralized knowledge-base and di

agnosing mechanism, which produces the error conditions and additional statistics 

about the application being monitored. Another advantage of Glassbox is its capa

bility to diagnose errors at run-time. 

Figure 4.8 shows the typical diagnostic report of Glassbox. This single report 
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Figure 4.8: List of components by Glassbox 

acts as a one stop shop to keep track of the health of the system being monitored. 

We found Glassbox to be the most suitable candidate to compare our results 

with because it is similar in diagnosing failures as that of our framework. This fact 

helps to bring out the difference between two similar-looking approaches and their 

advantages and disadvantages in diagnosing a similar set of failures. The following 

list presents the types of faults diagnosed by Glassbox. 

• Slow database query 

• Database connection failure 

• Broken database query 

• Failing Java 

• Slow Java 

• Bottleneck or thread contention 
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• Slow or Failing web service 

• Inefficient Java code 

• Slow or Failing remote procedure call 

• Faulty HTTP 

• Java Mail Issues 

• Broken FTP 

In the evaluation study, we plugged in the Glassbox diagnostic mechanism into 

the same web application setup and recorded the component faults diagnosed by 

Glassbox. Table 4.5 outlines the number of faults detected by each mechanisms 

and the types of faults respectively. 

The results show that Glassbox always picks up more faults than detected by 

our framework, with a huge difference in CPU consumption and I/O consumption 

categories of errors. As far as precision is concerned, Glassbox is marginally lower 

than our precision rates in errors related to CPU consumption and I/O consump

tion. Glassbox usually identifies components as faulty if running above a perfor

mance threshold of 5% above the historic runs so far. But usually, the user requests 

traversing through these supposed faulty components would have succeeded with

out any problems. The lower number detected by our framework is because it picks 

up only those components that led to a scenario failing prematurely (definites) or 

those deviating away from normal pattern (probables). This significantly reduces 

the number of errors to be looked into while Glassbox produces more false pos

itives. Setting performance thresholds, as in Glassbox, can be a challenging task 

with the ever changing face of system behavior. Hence diagnostic systems like 

Wily Introscope [2] and DynaTrace [16] usually come with a statistical threshold 
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Application Tier 
Errors Injected 
Errors Detected 

Glassbox Detected 
Glassbox Precision 

Data Tier 

Errors Injected 
Errors Detected 

Glassbox Detected 
Glassbox Precision 

Memory Consumption 
36 
34 

N/A 
N/A 

I/O Consumption 

49 
47 
89 

90.89 

CPU Consumption 
27 
26 
86 

92.44 

Database table lock 

22 
22 

N/A 
N/A 

Thread Contention 
45 
43 
45 

97.77 

Database Pooling 

36 
34 
36 

97.22 

Disk space consumption 
31 
30 

N/A 
N/A 

Database deadlock 

90 
86 

N/A 
N/A 

Total 
139 
133 

Total 

197 
189 

Table 4.5: Comparative results between Glassbox and the proposed framework 

learning mechanism that varies the threshold levels depending on the changing be

havior of the system. 

The most distinguishable fact between our framework and Glassbox is that our 

framework works on the perspective of components performing normally or failing 

in the course of individual scenarios whereas Glassbox looks at every component as 

an individual entity without considering any specific user request or scenario. When 

any error condition appears on one of the components, Glassbox fails to identify the 

exact cause unless the fault lies directly in the component itself. Usually however, 

Glassbox emits additional information related to the error that occurred in a single 

component such as the request URL corresponding to the component being exe

cuted. Figure 4.9 shows the typical additional information provided by Glassbox 

for a component failing due to a database connection issue. 

In a few cases this URL might contain the session-id or related request-specific 

id but most of the times it becomes impossible to make out from the URL informa

tion the request that the component belongs to. This is a very important piece of 

information that our framework records as the same component is called multiple 

number of times on multiple servers and by multiple user requests and may prove to 

be a daunting task to identify the system that emitted the error and in what context. 
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I l l Input URLs for this Operation 

This table provides a list of the input URLs and parameters for the last l problem executions of this operation. This is additional :';.; 
information about your existing issue, it is not an additional problem. 

t h t t p : / / p e t s t o r e , glassbox. com/ jpetstore/3bop/vi§wCategory. do?categoiryIdiRE-PT.I!LEEafailDEConnTl 

Figure 4.9: Component failure-Additional information and parameters involved 

This would have been a simple puzzle to solve if the system happened to be a 

single server system and not running on distributed servers. In such a case, a ses

sion id would suffice in identifying the user request and narrowing down the faulty 

component and the cause. Identifying a faulty component is not a difficult task if 

a fault occurs every-time user requests access the component in question. Usually, 

such errors are transient and we need to collect as much information as possible 

about the context of a request. Meanwhile, reconciling the context back to the spe

cific user request using the session-ids recorded by Glassbox is a tedious manual 

process. 

On the other hand, Glassbox provides useful run time statistics about the failing 

components, such as average execution times and classification of processes into 

slow or normal based on previous execution times. Our framework borrows on this 

idea of collecting the average response times and other run-time statistics of the 

components, to help pinpoint a problem. Glassbox error messages clearly state the 

reason and can also effectively determine the causes in simple cases such as JDBC 

connection failure, corrupted helper/dispatcher methods, slow or failing Java, etc. 

A call tree displays the class level and method level information that contains the 

error, which is helpful. 

Glassbox also has a comprehensive knowledge base of error conditions and 

possible causes of failures to consult before constructing the error report. This 
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Common Solutions 

Sk For Database Connection Failures 

1. Correct your operation's connection URL,.the Application Server is trying to connect to the wrong IP, Port or Database Name. 

2. Increase the sise of the DE Connection pool on your application server. 

3. Bounce your DE associated with your operation, it is not up or frozen 

4. Make your application server close the DB connections when a query completes (note: careful doing this if you have a connection pool). 

5. Configure your DB to allow more connections. 

6. Fix the network, the App Server cannot ping the database server machine. 

Figure 4.10: Common solutions for database connectivity problems by Glassbox 

knowledge base is constantly updated for new errors and derives knowledge from 

frequently identified errors over time. Consequently, Glassbox can output a set of 

possible causes that corresponds to a fault, but lacks the ability to prioritize the pos

sibilities based on the run-time statistics it collects about to the failing component. 

Figure 4.10 is a typical set of problem causes outlined in the form of common so

lutions for database connection problems identified by Glassbox. 

This feature may open a large set of possibilities to consider, many of which are 

not relevant to the situation. It would be time consuming for the analyst to check 

every possible cause. Experience may help reduce the number of possibilities to 

check, but relies on much human effort. If only a highly probable and relevant sub

set of possibilities could be presented to the analyst, the problem could be resolved 

more quickly. Our diagnostic framework works on these principles of automating 

the checks with respect to the problem causes and reducing the number of options 

presented to the analyst. We address a major drawback of Glassbox and move one 

step further in completely automating the diagnosis process of enterprise level web 

systems. 

4.5 Summary 

This chapter evaluated the capabilities of the proposed framework and discussed 

significant improvements over existing techniques. The main focus of the chapter 
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was to asses the accuracy of the framework in detecting errors. The evaluation 

study setup with load generator and fault injection was outlined. The evaluation 

discussed the results, as well as the advantages and limitations of the framework. 

Finally, the chapter compared the results with that of an open source diagnostic tool 

called Glassbox. 
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Chapter 5 

Conclusion and Future Work 

Changing business trends have fueled the growth of web-based enterprise systems. 

With the increasing complexity of web frameworks, the complexity in managing 

such systems has increased. With systems composed of distributed entities, a small 

configuration change in one section of the system may ripple across multiple layers 

and manifest itself as a major fault in a different section altogether. Trying to iden

tify the root cause of the detected problem is still a challenging and daunting task 

and corresponds to what can metaphorically be stated as "searching for a needle in 

a haystack". 

Application and infrastructure management still remains a key issue in the en

terprise systems arena with a major portion of the maintenance and support bud

get being spent on it. Although there has been a significant increase in the level 

of proactive problem determination and elimination, these mechanisms are still 

weaker than the judgement provided by the experienced systems analyst or oper

ator. Much diagnostic knowledge still remains in the brain of the human operator, 

with error detecting tools only complementing the operator's actions. 

Looking into the future, error detectors and diagnostic tools should become 

much more intelligent than they are and help to automatically discover the root 
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cause of a problem quickly. 

Our research had the goal of assisting and automating the problem diagnosis 

and root cause determination process. In this direction, we designed and developed 

a diagnostic framework that uses a powerful and intuitive rule processing technique 

known as decision tables. 

The literature survey in this thesis compared a wide variety of problem detec

tion tools and other supporting mechanisms, outlining the main issues and limita

tions. Many features of our framework were inspired from the functionality present 

in these tools. The literature survey also briefly explored the different kinds of 

errors that can possibly manifest themselves in web-based systems. Performance-

related and infrastructure-based problems, which happen to be highly transient in 

nature, are particularly challenging. The next-generation diagnostic tools need to 

tackle these problems effectively, which formed the focus of our framework. We 

described the problems of interest in the fault model and directed the decision logic 

accordingly. We have also made the diagnostic framework as flexible as possible 

to be easily expanded to detect more kinds of errors. Another advantage is that the 

framework is domain independent. 

To demonstrate the feasibility of our framework we deployed a web-based sys

tem and tried to mimic a realistic distributed infrastructure. For evaluation purposes, 

we tested our framework against a random set of failures injected in the deployed 

web-based system, and analyzed the effectiveness of the framework in detecting 

the errors and revealing the causes. We compared the results with a highly regarded 

open-source diagnostic mechanism called Glassbox. The results we obtained from 

our evaluation study were promising with regards to the accuracy of the framework 
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in revealing the causes quickly. 

Future Work 

The diagnostic framework was built to handle a defined set of errors in the fault 

model, considered reflective of the common and most disruptive faults usually oc

curring in a web-based system. We still would like to extend the framework to 

capture and diagnose errors that are not confined to just the Application Tier and 

the Data Tier. Errors occurring in the Presentation layer and those from infrastruc

ture components such as load balancers and caches are also important. Since the 

root cause may lie somewhere before in the flow of component calls, even before 

the request reaches the Application Tier, the capability to identify such errors is 

definitely a future research direction. 

The evaluation of the framework does have some limitations. It was difficult 

to address non-injected errors that would creep into any system accepting high vol

umes of traffic. Although our framework identified a number of such errors, without 

enough supporting evidence to validate the claims, it was not possible to document 

the findings. An area of future work would be to extend the framework to support 

web applications in real-time with all the supporting mechanisms in place. 

The visualization options provided by the framework are not as comprehensive 

as other commercial diagnostic applications. It will be useful to add more analyti

cal features such as temporal trend analyzers for every component and other useful 

statistical dashboards. 

Finally, most of the diagnostic tools in the market are not able to perform online 

processing of traces due to the large volume of data that comes bundled with each of 

82 



these traces. Even a very few that collect trace related information are not capable 

of performing analysis in real-time. This impairs the ability to reason about error 

conditions as and when a problem is perceived. Since our framework uses only a 

subset of information usually collected by trace analyzers, our aim is to add online 

processing to further reduce the wait time in resolving an error. 

83 



Bibliography 

[1] S. Pertet and P. Narasimhan. Causes of Failure in Web Applications, 
accessed december. h t t p : / / w w w . p d l . c s . c m u . e d u / f t p / s t r a y / 
CMU-PDL- 0 5 - 1 0 9 . pdf, Accessed August 2008. 

[2] Wily Introscope. h t t p : / / w w w . w i l y t e c h . c o m / s o l u t i o n s / 
p r o d u c t s / I n t r o s c o p e . h tml , Accessed August 2008. 

[3] G. Waddington, N. Roy, and C. Schmidt. Dynamic Analysis and Profiling 
of Multi-threaded Systems, h t t p : / /www.cs . w u s t l . e d u / ~ s c h m i d t / 
PDF/DSISChapterWaddington .pdf, Accessed August 2008. 

[4] Duke's Bank Application. h t t p : / / d o c s . j b o s s . o r g / j b o s s a s / 
g e t t i n g \ _ s t a r t e d / v 4 / h t m l / d u k e s b a n k . h t m l , Accessed August 
2008. 

[5] Sahi Load Generator, h t t p : / / s a h i . c o . i n / w / , Accessed June 2008. 

[6] L. Earl. An Overview of Organisational and Technological Change in the 
Private Sector, 1998-2000. Ottawa: Statistics Canada Catalogue, 2002. 

[7] J. Koskinen. Software Maintenance Costs, h t t p : / / u s e r s . j y u . f i / 
- k o s k i n e n / s m c o s t s .htm, Accessed August 2008. 

[8] Wikipedia. Diagnostics in Medicine, h t t p : / / e n . w i k i p e d i a . o r g / 
w i k i / D i a g n o s i s , Accessed August 2008. 

[9] High Availability Q&A: Failures, Standards and Metrics. h t t p : 
/ / w w w . g a r t n e r . c o m / w e b l e t t e r / i b m g l o b a l / e d i t i o n 2 / 
a r t i c l e 5 / a r t i c l e 5 . h tml , Accessed May 2008. 

[10] I. Singh. Designing Enterprise Applications with the J2EE Platform. 
Addison-Wesley Professional, 2002. 

[11] J. Hunter and W. Crawford. Java Servlet Programming. O'Reilly Media, Inc., 
2001. 

[12] R. Monson-Haefel. Enterprise JavaBeans. O'Reilly Media, Inc. 

[13] R. Sharma, B. Stearns, and T. Ng. J2EE Connector Architecture and Enter
prise Application Integration. Addison-Wesley Professional, 2001. 

[14] G. Hamilton, R. Cattell, and M. Fisher. JDBC Database Access with Java: 
A Tutorial and Annotated Reference. Addison-Wesley Longman Publishing 
Co., Inc. Boston, MA, USA, 1997. 

84 

http://www.pdl.cs.cmu.edu/ftp/stray/
http://www.wilytech.com/solutions/
http://www.cs
http://docs.jboss.org/jbossas/
http://users.jyu.fi/
http://en.wikipedia.org/
http://www.gartner.com/webletter/ibmglobal/edition2/


[15] D. Bridgewater. Standardize messages with the Common Base Event model. 
IBM DeveloperWorks, 2004. 

[16] DynaTrace Software. h t t p : / / w w w . d y n a t r a c e . c o m / e n / P r o d u c t . 
aspx, Accessed August 2008. 

[17] BMC Appsight. h t t p : / / w w w . b m c . c o m / p r o d u c t s / p r o d d o c v i e w , 
Accessed July 2008. 

[18] W. Dickinson, D. Leon, and A. Podgurski. Finding failures by cluster analysis 
of execution profiles. Proceedings of the 23rd International Conference on 
Software Engineering, pages 339-348, 2001. 

[19] C. Yuan, N. Lao, J.R. Wen, J. Li, Z. Zhang, Y.M. Wang, and W.Y. Ma. Au
tomated known problem diagnosis with event traces. Proceedings of the 2006 
EuroSys conference, pages 375-388, 2006. 

[20] E. Fratkin E. Fox A. Brewer E. Chen, M. Y. Kiciman. Pinpoint: problem 
determination in large, dynamic Internet services. Dependable Systems and 
Networks, 2002. Proceedings. International Conference on, pages 595-604, 
2002. 

[21] M. Chen, A.X. Zheng, J. Lloyd, M.I. Jordan, and E. Brewer. Failure diagnosis 
using decision trees. Autonomic Computing, 2004. Proceedings. International 
Conference on, pages 36-43, 2004. 

[22] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan. Magpie: real-time mod
elling and performance-aware systems. 9th Workshop on Hot Topics in Oper
ating Systems, Lihue, Hawaii, May, 2003. 

[23] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J.S. Chase. Correlating in
strumentation data to system states: a building block for automated diagnosis 
and control. Proceedings of the 6th conference on Symposium on Operating 
Systems Design & Implementation-Volume 6, pages 16-16, 2004. 

[24] M. Gilleland. Levenshtein distance, in three flavors, h t t p : / / w w w . 
m e r r i a m p a r k . c o m / l d . h t m , Accessed June 2008. 

[25] A. Mos. A Framework for Adaptive Monitoring and Performance Manage
ment of Component-Based Enterprise Applications. PhD thesis, Dublin City 
University, Ireland, 2004. 

[26] E. Courses and T. Surveys. Comparing Error Detection Techniques for Web 
Applications: An Experimental Study. Seventh IEEE International Sympo
sium on Network Computing and Applications, 2008. NCA'08., pages 144-
151,2008. 

[27] K. Hansen. Load Testing your Applications with Apache JMeter, accessed 
december. h t t p : / / j a v a b o u t i q u e . i n t e r n e t . c o m / t u t o r i a l s / 
JMeter , Accessed August 2008. 

[28] S. Han, K.G. Shin, and H.A. Rosenberg. DOCTOR: An IntegrateQ SQftware 
Fault InjeCTiOn EnviFJonment for Distributed Real-time Systems, accessed 
may 2008. 

[29] Grinder, h t t p : / / g r i n d e r , s o u r c e f o r g e . n e t / , Accessed May 2008. 

[30] Glassbox. h t t p : / / w w w . g l a s s b o x . c o m , Accessed August 2008. 

85 

http://www.dynatrace.com/en/Product
http://www.bmc.com/products/proddocview
http://www
http://merriampark.com/ld.htm
http://www
http://glassbox.com


Appendix A 

Raw Trace Log Format 

<?xml version="l.0" encoding="UTF-8" standalone="yes"?> 

<TransactionTracerSession User="admin" 

agentIdRef="UUID-l0 84477462-965986-1930759028-1763333143" 

threadIdRef="8348 96968" 

EndDate="2008-02-28Tl8:01:32.843-07:00" 

StartDate="2 008-02-28Tl8:01:02.24 9-07:00" 

Version="0.1" Duration="30594"> 

<TransactionTrace 

StartDate="2008-02-28Tl8:01:02.24 9-07:00" 

Duration="30594" AgentName="WebLogic 

Agent" Host="sputinow" Process="JBoss" 

Domain="SuperDomain" 

EndDate="2008-02-28T18:01:32.843-07:00"> 

<CalledComponent 

ComponentName="jdbc%pointbase%//localhost%9082/demo" 

MetricPath="Backends| 

jdbc%pointbase%//localhost%90 82/demo" 

ComponentType="Backends" 
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RelativeTimestamp="0" 

Duration="30594"> 

<CalledComponents> 

<CalledComponent ComponentName= 

"INSERT INTO ACCOUNTHIST 

(ID, TYPE, HANDLE, RECORD) VALUES (?, ?, . . . ) " 

MetricPath="JDBC|SQL|Prepared|Update| 

INSERT INTO ACCOUNTHIST 

(ID, TYPE, HANDLE, RECORD) VALUES (?, ?, . . . ) " 

ComponentType="JDBC" 

RelativeTimestamp="0" 

Duration="30594"> 

<Parameters> 

<Parameter Value="Sockets|Client Ilocalhost|Port 9082 

Name="Socket write"/> 

<Parameter Value="INSERT INTO ACCOUNTHIST 

(ID, TYPE, HANDLE, RECORD) VALUES (?, ?, . . . ) " 

Name="Prepared SQL"/> 

</Parameters> 

</CalledComponent> 

</CalledComponents> 

<Parameters> 

<Parameter Value="Pooled 

Threads" Name="Thread Group Name"/> 

<Parameter Value="executeUpdate" 

Name="Method"/> 

<Parameter Value="Normal" 

Name="Trace Type"/> 

<Parameter Value="[ACTIVE] 
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ExecuteThread: '1' 

for queue: 'JBoss.kernel.Default 

(self-tuning)'" Name="Thread Name"/> 

</Parameters> 

</CalledComponent> 

</TransactionTrace> 
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Appendix B 

Use Cases 

The load generator scripts used the following list of use cases to generate web traffic 

on the Duke's Bank application setup (Tables follow on the next three pages). 

89 



Categories 

Account List 

Use Case description 

View account balances 

Detailed account balances 
(Account Type and order) 

Detailed account balances 

(Multiple Views) 

Detailed account balances 
(Change in Time Period) 

Detailed account balances 

(Forced logoff) 

Detailed account balances 

(Time out) 

Actions 

Log in using the login.jsp page with user id and password 

Click on the Account List link 

View balances 

Log off 

Log in using the login.jsp page with user id and password 
Click on the Account List link 
Choose an account type and click on it 
Choose the "View" type and "Sort By" type 
Click Update 
View detailed balances 
Log off 

Log in using the login.jsp page with user id and password 
Click on the Account List link 

Choose an account type and right click and open in a new tab 
Click on the Account List link on the existing page 
View account balances in both accounts 
Log off 

Log in using the login.jsp page with user id and password 
Click on the Account List link 
Choose an account type and click on it 
Choose the "View" type and "Sort By" type 
Select the year, since and from dates 
View account balances for specified period 
Log off 

Log in using the login.jsp page with user id and password 
Click on the Account List link 
Choose an account type and click on it 
Choose the "View" type and "Sort By" type 
Select the year, since and from dates 
View account balances for specified period 
Close the window without logging off 

Log in using the login.jsp page with user id and password 
Click on the Account List link 
Choose an account type and click on it 
Choose the "View" type and "Sort By" type 
Select the year, since and from dates 
View account balances for specified period 
User becomes inactive after reaching the account balances page 

Table B.l: Use Cases-Account List 
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Categories 

Transfer Funds 

Use Case description 

Simple Transfer 

Transfer amount in excess of balance 

Transfer between same accounts 

Multiple Transfers 

(Normal) 

Multiple Transfers 

(Overlapping accounts) 

Actions 

Log in using the login.jsp page with user id and password 

Click on the Transfer Funds link 

View the list of accounts and account balances 

Select two different accounts and transfer $100 from one to the other 

View the curent balances for each of the accounts on the confirmation 

Logoff 

Log in using the login.jsp page with user id and password 

Click on the Transfer Funds link 

View the list of accounts and account balances 

Submit $200 in excess of balance to another account 

View the insufficent balance message display page 

Logoff 

Log in using the login.jsp page with user id and password 

Click on the Transfer Funds link 

View the list of accounts and account balances 

Select the same accounts and transfer $100 from one to the other 

View the error message 

Logoff 

Log in using the login.jsp page with user id and password 

Click on the Transfer Funds link 

View the list of accounts and account balances 

Open two windows for multiple transfers 

Transfer simultaneosly funds between different accounts 

View balance information for each transfer 

Logoff 

Log in using the login.jsp page with user id and password 

Click on the Transfer Funds link 

View the list of accounts and account balances 

Open two windows for multiple transfers 

Transfer funds with atleast two overlapping accounts 

View balance information for each transfer 

Log off 

page 

Table B.2: Use Cases-Transfer Funds 
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Categories 

ATM 

Use Case description 

Amount Withdrawl/Deposit 

Multiple withdrawls/deposits 

Insufficent balances 

Actions 

* Log in using the login.jsp page with user id and password 
* Click on the ATM link 
* Select the account to withdraw from or deposit to 
* Enter the amount and aubmit 
* View the account balances 
* Log off 

* Log in using the login.jsp page with user id and password 
* Click on the ATM link 
* Select two different accounts to perform the withdrawl and deposit 
* View the balances 
* Log off 

* Log in using the login.jsp page with user id and password 
* Click on the ATM link 
* Select the account to withdraw from or deposit to 
* Enter the amount and aubmit 
* View the error message page 
* Log off 

actions 

Table B.3: Use Cases-ATM 
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