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ABSTRACT. A metapopulation model for alien species invasion of a lake network is coupled 

with an economic model of prevention. The model restates a stochastic problem in deterministic 

terms.  It provides a macroscopic description of the lake network with prevention methods 

controlling both the outflow of invaders at infected lakes and the inflow of invaders at uninfected 

lakes. Results indicate that optimal control implements no more than one of these methods at any 

moment in time. Typical optimal control measures change over time as the lake ecosystem 

becomes successively more invaded. Early control of outflow from infected lakes is replaced by 

later control of inflow to remaining uninfected lakes. Closed-loop control trajectories are 

analytically characterized in the phase-plane for a limiting case, while in general a simple and 

stable numerical algorithm is developed for solving the optimal control problem.  
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1.  INTRODUCTION 

Successful invaders can change the balance of natural ecosystems, lead to the extinction of native 

species, and cause damage to natural resources and economic activity. This problem of 

nonindigenous species is not purely biological; its description requires both biological and 

economic factors, and their feedbacks (Crocker and Tschirhart, 1992; Settle et al., 2001). In lake 

ecosystems the economic changes induced by invaders are diverse and include pipeline fouling, 

fishery degradation, water quality impacts, and loss of recreation potential (e.g. O’Neill, 1997). 

When an invader is introduced into a lake or a river, its establishment depends on the state of 

the existing ecosystem. If it has successfully established and starts to grow considerably, it may 

change the ecosystem itself, which creates both short and long-term biological and economic 

consequences. After the species has established, it may start to spread to other lakes, via human-

related and natural dispersal mechanisms. 

While it may be impractical to consider all of the factors mentioned in a single model — such 

a model would be very complex, a number of different models can be used, each one capturing 

components of the complex phenomenon. Each model can focus on a particular scale: 

macroscopic (description of average characteristics of a large region, Shigesada and Kawasaki, 

1997; Clark, 1990), middle-scale (e.g. transport of invaders between lakes, Buchan and Padilla, 

1999), or small-scale (processes in a single lake or a part of it, analysis of a single population etc., 

Turchin, 2003). Lower-level models may be necessary to estimate parameters of the larger-scale 

models and, in turn, the latter can be used to estimate basic trends, which are to be needed on 

smaller scales. 

In this paper the optimal management of a lake system subject to nonindigenous species 

invasion is analyzed at the macroscopic level. We simplify a complex stochastic process into a 

model that takes into account important effects on average, or proportionally. This allows the 
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restatement of a stochastic problem in deterministic terms. The method permits the incorporation 

of intersecting biology and economics at a large scale, and investigates their joint influence on 

decision-making and optimal invasion management. 

The analysis provides several contributions. First we demonstrate, both analytically and 

numerically, how optimal prevention policy depends upon several key factors, including the 

mean economic damage per lake, the efficiency of prevention, the planning horizon, initial 

magnitude of the invasion, and the discount rate. Given our choice of functional form, we find 

that at each moment it is optimal to implement at most only one type of prevention: control only 

at infected lakes, only at uninfected lakes, or at neither. There may be a moment of control 

switching, which depends on the efficiency and per unit cost of each control.  

Second, we perform a comprehensive phase-plane analysis on the dynamical system. We are 

able to analytically characterize control trajectories in the phase-plane and closed-loop optimal 

control polices for a limiting case where the discount rate is zero. For the general case, we 

present a simple and stable numerical algorithm for the control problem. Unlike usual methods in 

optimal control, where the equation governing the stock dynamics has to be integrated forward, 

and that for the shadow price backward, on the phase plane there is only a single equation, 

simplifying the integration considerably. While we are not able to analytically characterize the 

complete general case, we find several comparison propositions that provide considerable insight 

into the dynamics of the system.  

There is a large literature on the successful application of macroscopic models of fishery 

management as laid out in Clark (1990). In spite of the simplicity of such macroscopic models, 

they provide many explanations and insights into the organization of fisheries. Similar attempts 

have been made in resource extraction, agriculture, national parks management and similar fields 

(van Kooten & Bulte, 2000). Olsen and Roy (2002) use a spaceless, stochastic dynamic 
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optimization model to characterize situations where the eradication of an invasive species is 

optimal and not optimal, given natural growth and spread are subject to exogenous environmental 

risk. Their results highlight the importance of the speed of growth/spread of the invasion, 

dependent in turn on the exogenous risk. Herein the speed of the spread is not taken as 

exogenous, rather it is endogenous to the policy maker. Brown, Lych and Zilberman (2002) 

abstract from all dynamic issues and employ a spatial, static approach to investigate transmission 

and source control of insect-transmitted plant diseases. Allowing for removal of diseased source 

plants and/or barriers restricting insect transmission of the disease, the results demonstrate that 

while (complete) source control and transmission barriers improve welfare over only barriers, 

when non-market values over source areas are included the less effective transmission barriers 

solely may be optimal. 

This paper extends the literature by viewing noninvaded space as a nonrenewable resource, 

and investigates its optimal management. This allows us to find analogies between our approach 

and other models, e.g. optimal control of epidemics or optimal use of an antibiotic 

(Laxminarayan, 2001). Nonetheless, the models are different, as are the main conclusions. The 

most important difference arises from the highly nonlinear structure of the control terms in the 

state dynamics. 

The paper is organized as follows. In Section 2 the main assumptions underlying a 

macroscopic model of optimal invasion prevention are described. In Section 3 the model is 

developed, followed by a preliminary analysis, which enables the characterization of a number of 

important conclusions. Section 4 presents a phase-plane analysis. Numerical simulations are 

employed to illustrate several propositions in Section 5, followed by a brief conclusion.  
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2.  MACROSCOPIC MODEL OF INVASION AND PREVENTION 

2.1 Biological background 

Suppose there is an alien species introduced into one or several lakes. It has established and starts 

to spread to other lakes in a region. A primary vector of human influenced spread is the 

transportation of boating and fishing equipment from lake to lake (see e.g. Johnson et al. (2001) 

for an analysis of zebra mussel dispersal). Consider a resource manager who allocates scarce 

resources to maximize social welfare subject to the damages of invasion, costs of preventing 

further spread, and the spread of the invader. The primary means of preventing further spread is a 

disinfecting process at some point in the transportation mechanism, for example washing 

equipment on its way from one lake to another (Buchan and Padilla, 1999). In this setting, we call 

invaded lakes “donor” since they are the source of traveling invader propagules, and the 

noninvaded lakes we call “recipient”. 

The total number of lakes N is assumed to be large enough, such that (i) we can characterize 

the invasion process by a single variable, the proportion of invaded lakes p (the number of 

invaded lakes NI divided by the total number of lakes, p=NI/N), and (ii) change of p with time 

may be reasonably approximated by a continuous and differentiable function. In this case it is 

possible to derive a quadratic growth model for p(t) that is both biologically reasonable and 

mathematically convenient 

     tptAp
dt

dp
 1 . (1) 

The derivation follows from the assumption that the transport of boating and fishing equipment is 

independent of the invasion process and this transportation mechanism is also assumed to 

connect all lakes under consideration. The mean potential number of invader propagules that can 

be transported from a donor lake to a recipient one, characterizes traffic in the transportation 
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mechanism. In the absence of any prevention effort, we assume the average number of 

propagules that can be transported from any donor lake to any given recipient lake per unit time 

(defined as the intensity of propagule transport) be constant and denoted by A1. For a small 

period of time t the mean total number of propagules transported from each of the NI invaded 

lakes to any other given lake is then K=NIA1t. Likewise the total number introduced into NR 

lakes is NINRA1t. If the probability a propagule survives following introduction is given by A2, 

the number of surviving propagules is NINRA1A2t. As NR=N–NI, the increase in the number of 

invaded lakes during t is,  

 NI=A1A2tNI(N–NI).  

Dividing through by N and taking into account that NI/N=p, NI=Np, and NI=Np we come to  

 p=A1A2Ntp(1–p). 

Assuming p(t) differentiable and t small, we can replace this by differential equation (1) with 

A=A1A2N. This model of invasion without prevention can be interpreted as Levins 

metapopulation model (Levins, 1969) without extinction or simply as logistic growth equation 

(Clark, 1990) in the proportion of invaded lakes over time. 

2.2  Economic and control assumptions 

Let the resource manager believe the benefits of preventing the spread of the invasion be such 

that costly investments in prevention are justified. Assume it is possible to estimate the cost of 

damage to ecosystems due to the invasion. Let the cost of damage per unit time be proportional to 

the total number of invaded lakes, and let g be the (constant) monetized damage cost per single 

lake per unit time. Total damage costs per unit time are then C1(t)=gNI(t).   

 The resource manager employs prevention, which adds to the costs of invasion per unit 

time. For example, to wash boats it is necessary to create checkpoints and supply materials, both 
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of which are costly. While not necessary, for brevity let the disinfection process (prevention) be 

general enough such that it may be performed at every lake, donor or recipient. (In the context of 

epidemics, this is similar to the treatments of those infected with a disease and as well as those 

not infected). Let prevention efforts at donor lakes be x(t) with (constant) unit cost wx, and 

prevention efforts at recipient lakes be s(t) with a unit cost ws. The total cost of prevention per 

unit time is then 

 C2(t)=wxx(t)NI(t)+wss(t)(N–NI(t)). (2) 

Combining damage and prevention costs delivers the total cost per unit time,  

 TC(t)=C1(t)+C2(t)=gNI(t)+wxx(t)NI(t)+ wss(t)(N–NI(t)). 

To mesh the manager’s behavior with the macroscopic biological model and maintain a focus on 

important effects in terms of proportion of lakes invaded, we compute the average cost of 

invasion per lake per unit time, 

 C(t)=gp(t)+wxx(t)p(t)+wss(t)(1–p(t)). (3) 

Average costs are comprised of average cost of damages due to the invasion (first term), average 

cost of prevention at donor lakes (second term), and the average cost of prevention at recipient 

lakes (third term).  

Prevention on a donor lake x(t) reduces the average number of propagules transported to any 

recipient lake from A1 to A1a(x(t)), 0<a1. Here a(x(t)) is the probability of a propagule escaping 

treatment, and 1–a(x(t)) can be interpreted as the proportion treated at donor lakes. Similarly s(t) 

and b(s(t)), 0<b1 are prevention effort and probability of escaping treatment at any recipient 

lake.  

To complete the specification of the problem it is necessary to define an explicit relationship 

between the proportions treated (1–a(x(t)) and 1–b(s(t))) and the treatment efforts (x(t) and s(t)). 



 

 7 

In deriving this relationship we assume that the effects of two successive treatments are 

independent, and that treatments with efforts x1 and x2 are equivalent to a single treatment with 

the efforts x1+x2. Then for the probabilities of two independent events we have a(x1+x2)= a(x1) 

a(x2). We further assume that a small effort x2=x<<1 treats a proportionate fraction of 

propagules 1–a(x)k1x, where k1 is the control efficacy. Upon substitution into the previous 

rule we have a(x+x)=a(x)a(x)a(x)–k1a(x)x, or a=–k1a(x)x as x approaches zero. 

Similarly b=–k2b(s)s as s approaches zero. This leads to simple exponential forms that 

incorporate diminishing effectiveness of prevention,  

          tsktxk
etsbetxa 21 ,


  (4) 

where k1 and k2 characterize heterogeneous efficiencies in boat processing. Under these 

assumptions, the spread of the infection is described by the equation (1) with A=A1A2N replaced 

by A=A1aA2bN and a and b as given in equation (4),  

 
        tptpAe

dt

dp tsktxk



121  (5) 

with the initial proportion of infected lakes p(0)=p0. 

 

3.  OPTIMAL CONTROL OF INVASION 

To characterize optimal management, the problem facing the resource manager is to choose 

prevention efforts x(t)0 and s(t)0 so as to minimize the discounted stream of costs J during a 

given time horizon T,  

       


T
rt dttCetstxJ

0
, , 
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where r is the discount rate (e.g. Clark, 1990) and C(t) the average cost of invasion. If x and s are 

chosen such that the total cost of invasion J is minimal, an optimal control task is obtained. 

Optimal trajectories for x and s are denoted x
*
(t), s

*
(t). 

Pontryagin’s maximum principle is used to solve the task facing the manager (Pontryagin 

et al., 1964). Optimal rules for x(t) and s(t), given an initial proportion of lakes invaded, can be 

found from the maximum principle as applied to the current value Hamiltonian, 

                       ,11 21 tptpAettptswtptxwtgpH
tsktxk

sx 
  (6) 

where μ(t) is the current value shadow price of the proportion of lakes invaded. p and  satisfy 

differential equations 

     ,0,,,121 TtsxpFppAe
dt

dp skxk


  (7) 

       .,,,2121 sxpGswxwgpAer
p

H
r

dt

d
sx

skxk 








  (8) 

 p(0)=p0,     (T)=0. 

Given the underlying assumption of only piecewise continuous, bounded controls, this implies 

that p(t) and (t) are continuous and piecewise continuously differentiable as solutions of ODEs 

(7) and (8) with piecewise continuous right hand sides.   

 The necessary condition for optimality of control is maximum value of H at each moment 

of time, that is for optimal x=x
*
 and s=s

*
  

   ,0,0or,0121

1 







 

x

H
xppAekpw

x

H skxk

x   (9) 

     ,0,0or,011 21

2 







 

s

H
sppAekpw

s

H skxk

x   (10) 

where time notation is suppressed for brevity. The first condition in each of (9) and (10) 
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corresponds to an “internal maximum” for x and s respectively, whereas the second conditions 

corresponds to “boundary maximum”. Note that generically the conditions H/x=0 and H/s=0 

cannot be satisfied together because then simultaneously  

   ,,1 2121

21 pAekwpAekw
skxk

s

skxk

x


    (11) 

or   sx wpkpwk  112 . This can hold only for single p value  

 
21

1

kwkw

kw
pp

xs

s
S


 . (12) 

Therefore not more than one type of control is nonzero. In what follows it is necessary to know 

the sign of .  

Proposition 1. The shadow price (t) for t<T is always negative provided the invasion is costly 

(i.e. g>0). 

A proof is given in the Appendix. 

 To determine what p ranges correspond to what type of control consider (12) and the 

necessary conditions. Let p<pS, then from the expressions for H/x and H/s it follows that 

assumption s0 and H/s=0 implies H/x>0 and x0, which gives a contradiction. On the other 

hand, assumption x0, H/x=0, implies H/s<0 and s=0, which is consistent. Similarly we can 

check the case p>pS. This allows us to conclude that 

a) for p<pS only control at invaded lakes x may be nonzero; 

b) for p>pS only control at uninvaded lakes s may be nonzero; 

c) the value p=pS corresponds to switching between the two types of control. The conditions (9), 

(10) give only the value of aggregate control =k1x+k2s at this point, but not x and s separately. 

Therefore one of x or s can be chosen at our convenience. For example we can choose s=0, then 

one of the controls is zero for p=pS as well.    
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 Therefore, at any moment only one control variable can be nonzero. This allows the 

sufficient conditions for a maximum of H to be checked as if it were a function of only one 

variable, that is just check the signs of the second derivatives 
2
H/x

2
 and 

2
H/s

2
. This is 

because the maximum of H is always reached at the boundary of the admissible control set. Thus 

the standard procedure for internal maximum of a 2D function, involving the Hessian matrix, is 

not applicable.  

For the sufficient conditions it is straightforward to show that, since <0,  

 
    ,01212

1

22 


ppAekxH
skxk   

    ,01212

2

22 


ppAeksH
skxk  

and therefore the conditions H/x=0 or H/s=0 imply that there is a point of maximum of H 

with respect to x or s. 

 In sum, we have the following types optimal solution: 

I. Donor control, x
*
>0, s

*
=0, the optimality conditions Hx=0, Hs<0, mean that p<pS and  

 
 








 


xw

pAk

k
x

1
ln

1 1

1

* 
; (13) 

II. Recipient control, x
*
=0, s

*
>0, the optimality conditions Hx<0, Hs=0 mean that p>pS and  

 






 


sw

pAk

k
s

2

2

* ln
1

; (14) 

III. No control, x
*
=0, s

*
=0, the optimality conditions Hx<0, Hs<0 give k1A(1–p)>–wx and 

k2Ap>–ws.  

Combing these solutions gives  

  
  












Apk

w

pAk

w
p sx

SW

21

,
1

max . (15)  

The curve =SW(p) corresponds to another switching condition: from positive control to no 
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control.  

As we have expressed x
*
, s

*
 through p and , we can rewrite (7), (8) as an autonomous 

system of ordinary differentiable equation (ODE)  

 

      

      ,,pG
~

,ps,,px,,pG
dt

d

,,pF
~

,ps,,px,pF
dt

dp

**

**










 (16) 

and hence we can apply the technique of phase plane analysis to study it. The curves =SW(p), 

0<p<1, and p=pS, SW(p) split the phase plane into three domains, according to the three types 

of control. When the trajectories of (16) cross these lines, switching of the control takes place 

(Fig. 1). 

 This approach allows us to deduce the behavior of the optimal “aggregate control” 

*
(t)=k1x

*
+k2s

*
 (remembering that only a single control or none will be nonzero, apart from the 

switching moments) which is important for construction of solutions.  

Lemma 1. The optimal “aggregate control”, *
(t)=k1x

*
+k2s

*,
 is a continuous function of time on 

[0,T], and it is piecewise differentiable on this interval. 

A proof is given in the Appendix. 

Corollary 1. The flow of (16) is C
1
 within each of the regions I, II, III, and is C

0
 for p>0, <0. 

Corollary 2. At the point t=t1 of control switching from x>0 to s>0 (p=pS) 

   tsktxk
tttt 21
11

limlim  
 . At switching points where the aggregate control turns to zero, the 

value of x
*
=0 or s

*
=0 must be optimal, that is one of the relations (11) must hold with *

=0. This 

allows us to relate values of p and  at the switching points as (1–p)=–wx/(k1A) or p=–

ws/(k2A).  

Further simplifications are related with replacing the boundary value problem for p and  
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by an initial problem for  only. The idea is to use p as an independent variable. Since 0<p<1, 

dp/dt>0 in equation (7), so p(t) is a strictly increasing one-to-one function on [p0,pe], where the 

final proportion of lakes invaded is 

 pe=p(T).  

Therefore p(t) has an inverse t(p). Substituting it into x(t), s(t), and (t) we obtain the following: 

Lemma 2. The controls x, s, and the shadow price  can be expressed as functions of p: x(p), 

s(p), and (p), defined on the interval [p0,pe], pe=p(T).  

 This lemma allows us to solve only one equation instead of two in (16),  

 
 
 



,
~

,
~

pF

pG

dp

d
 . (17) 

We can solve this numerically, or sometimes analytically, for any pe such that 0<p0<pe<1. 

The procedure is quite simple — find the equation’s solution within each of the phase plane 

domains. Since in domains I and II initial conditions are not given, the solution contains an 

arbitrary constant. For domain III the initial condition is (pe)=0, which then provides a solution 

III(p). The process is continued until the switching line =SW(p) is intersected at some p=pZ. 

Suppose this happens at the boundary between domains III and II, that is pZ>pS. Then, since  is 

continuous, we have the initial condition for the domain II, II(pZ)=SW(pZ), and due to continuity 

of the aggregate control, s(pZ)=0. Hence we have the solution inside domain II with s(p) and 

II(p). Again continue the process till the next switching line p=pS, and obtain the initial condition 

for the domain I, k1x(pS)=k2s(pS) and I(pS)=II(pS). Then we can construct the solution in the 

domain I and continue it down to p=p0. If pe is small enough, the solution does not enter the 

domain II (p0<pZpS), then the recipient lake control is never used, and solution remains within 

domains I and III. Finally, it may appear that pe is so small, that pZp0, and then the solution 
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always remains within domain III, and hence it is optimal for there to be a complete absence of 

any control. These situations are illustrated in Fig. 1, panels b and c. 

However, it is not known which pe corresponds to the given T. In the Appendix we show that 

there is one-to-one dependence between T and pe, and the functions pe(T) and T(pe) are 

monotonous and increasing, as in Fig. 1d. Some examples calculated numerically are shown in 

Fig. 4. This allows us to set up an iterative numerical procedure for solving a problem with the 

given time horizon T=T0:  

a) Set some pe value,  

b) For the given pe solve (17), and find (p); 

c) Solve 
  ppFdp

dt

,
~

1
 , then t(p0)=T(pe).  

d) If within given accuracy T(pe)T0, then stop, otherwise update pe and return to step b. 

This numerical algorithm proved quite simple and in most cases more efficient than the method 

of gradient projection (Rosen, 1960), often used to solve optimal control tasks.  

 

4. PROPERTIES OF THE OPTIMAL SOLUTION 

First, note that in domains I and II it is more convenient to express  through x or s and p, 

and to obtain the equation for dx/dp or ds/dp respectively, which is simpler than (17). The 

resulting equations for all three domains are (see Appendix for more details),  

 Domain   I: 
 p

e

A

r
p

w

gk
pxk

dp

d
xk

x 






















1
1

1

1
1 ,        

 
,

11

1

pAk

ew
xk

x


  (18) 

 Domain  II:  
p

e

A

r
p

w

gk
spk

dp

d
sk

s

2

11 2
2 























 ,     ,

2

2

Apk

ew
sk

s  (19) 
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 Domain III:   
A

r
p

A

g
pp

dp

d









1 . (20) 

In the case r=0 the equations (18)–(20) can be solved analytically.  The solution satisfying 

(pe)=0 for the domain III is  

  
 

  ,0,,max,
1

0 



 rpppp

pp

pp

A

g
p eZ

e   

which allows us to obtain the expression for pZ as the intersection point with SW(p) (15),  

 













x

e

s

se
Z

wgk

gpk

wgk

wgpk
p

1

1

2

2 ,max . (21) 

For domains I and II the analytical solution is obtained as described above, and has the following 

form (r=0) 

 Domain II:  
 

),,ifonly(

,
1

1

0

2
2

ZZS

ZS
Z

s

pppp

ppp
p

pp

w

gk
psk

















 (22) 

 Domain  I:  
   

).,ifonly(

,min,1

00

0
1

1

SZ

ZS
e

x

pppp

pppp
p

pp

w

gk
pxk







 (23) 

The trajectory remains within domain III. It is always optimal for zero control provided 

 













x

e

s

se

wgk

gpk

wgk

wgpk
p

1

1

2

2
0 ,max .  

Examples of analytical solutions are shown in Fig. 2. 

For r>0 the equations (18)–(20) cannot be solved analytically and we can only make a 

number of comparison results. For berevity, only the main points of the comparison results are 

discussed, although complete statements and proofs are in the Appendix. It is natural to use 

analytical solution (21)–(23) as a reference point for the case r>0, with other parameters ideally 
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held constant. However, here we come to a problem. If the discount rate is changed to a nonzero 

value, this typically changes optimal values of controls, and hence changes the terminal p value. 

Therefore, if we need to compare two solutions with the same time horizon T, they have different 

pe and vice versa. Given these issues, a summary of the comparison results finds: 

 If we consider two solutions with r=0 and r>0 and the same p0 and pe, then for the 

solution with r>0 controls are less and time horizon is shorter (Proposition 2, Corollary 3, 

4). 

 If we consider two solutions with r=0 and r>0 and the same p0 and T, then the solution for 

r>0 has greater pe (Corollary 5). 

 From the above two statements it is then possible to use the analytical solutions as upper 

bound estimates for the control values (Corollary 6). 

 Consequently, if in the non-discounted case it is optimal for there to be no control, the 

same is true for any r>0 and the same pe (Corollary 7). 

 There is one-to-one correspondence between pe, p0<pe<1, and time horizons T. That is, for 

any such pe there exists T for which p(T)=pe. There then exists a function T(pe), which is 

continuous and strictly increasing (Proposition 3). 

The last result is important for the validity of both analytical and numerical techniques. 

 

5. NUMERICAL RESULTS 

5.1. Parameters dependence 

Various parameter combinations and resulting trajectories are shown in Figure 3. Note that all 

our equations and solutions depend only on the following four combinations of parameters: 

A

r

A

g

w

Ak

w

Ak

sx

,,, 21 , and only p0 and pe remain independent. If the parameters are changed in such 
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a way that these four combinations remain the same, the control pattern does not change. If the 

solution curve is known for one case, it is not necessary to solve all equations again, only to 

rescale the existing curve. This property allows an essential reduction in numerical work: setting 

e.g. A=wx=ws=1, we can vary only ki, g, and r (although this means we may use parameter values 

which at first glance seem unreasonable). For example, r=3 never arise in practice (2000% 

annual), but for r/A this may be a reasonable value if, say, r=0.03 and A=0.01. The latter value 

means that the processes develop on a time scale of hundred years.   

 Unfortunately solutions x(t), s(t), (t) and the relation between pe and T cannot be found 

analytically even for r=0, except in the case of zero control. Numerically these dependencies can 

be obtained easily, and it appears that some trajectories may correspond to a very long time 

horizon. In Fig. 4 the relationship between pe and T is shown for several parameter combinations 

and scaled to log10AT(pe). This figure illustrates the statement of Corollary 6 in Appendix that 

implies the greater r, the smaller T for given pe. 

When control is very efficient (large ki) or if there are large losses g, and the discount rate 

is 0 or very small, it becomes optimal to maintain high levels of control. This makes the invasion 

spread very slowly, and hence the values of p close to 1 can be reached only after a very long 

period of time (T large). Because of this drastic dependence of time horizon on the final invasion 

level, we consider influence of parameters on control policy for fixed pe and for fixed T. 

 

5.2 Control regimes for fixed pe. 

The dependence of analytical solution on ki and g can be seen from the formulas: the greater are 

their values, the more intensive is the control. This remains true in case r>0 (Fig. 6).  

 Discounting brings three new qualitative features: 
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1. x remains a decreasing function of p, but its growth as p0 becomes limited (Fig. 6), in 

contrast with undiscounted case where x~1/p (Fig. 3). 

2. s(p) may be growing for some p interval, in nondiscounted case it is always decreasing (Figs. 5 

and 6). 

3. If r/A is big enough (~3), then x- and s-control can be separated by an interval of no control 

(Fig. 5).  

 

5.3 Control regimes for fixed time horizon T 

Returning to the original problem formulation (from the phase plane analysis) introduces the 

parametric influence of T. In this case the influence on the optimal control pattern from 

perturbations in other parameters depends on the given T. Fig. 7 shows examples of such 

controls. 

In contrast with the phase plane, it is clear to see that essential dependence of control on ki 

is observed only in a relatively small range of k values (the same is true for g). Outside of this 

range the control saturates; either there is practically no control, or there is full control.  

 Fig. 8 illustrates this effect from the dependence of control time TC (that is the total time 

when x or s is nonzero) on k=k1=k2 for various g values. For the nondiscounted problem this 

dependence is rather steep, and the width of the transitional interval is proportional to g. 

Although discounting makes this interval wider, it remains proportional to g. Overall, these 

numerical results demonstrate that in many cases the problem of optimal control of invasion can 

be approximately reduced to a constant level of intensity.  
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6.  CONCLUSIONS 

The simple macroscopic model of invasion control developed herein demonstrates a number of 

important implications for resource management. From analytical and numerical viewpoints 

optimal prevention policy was shown to be sensitive to several key factors, including the mean 

economic damage per lake, the efficiency of prevention, the planning horizon, initial magnitude 

of the invasion, and the discount rate.   

While the analytic results are dependent on the choice of functional form, we believe they 

provide substantial insight into the invasion process at the macroscopic level. Given the choice of 

functional form, at each moment it is optimal to implement only one type of prevention (donor or 

recipient) or none at all. There may be a moment of control switching, which depends on the 

efficiency and per unit cost of each control.  

Through a comprehensive phase-plane analysis on the dynamical system closed-loop 

optimal control polices were derived for the limiting case of a zero discount rate. For the general 

case a simple and stable numerical algorithm was presented for the control problem. In the phase-

plane the complexity of usual methods was substantially reduced. With a single equation in the 

phase plane the usual method requiring the equation governing the dynamics of the stock to be 

integrated forward, and that for the shadow price backward, was considerably simplified. While a 

full analytical characterization of the system proved impossible, several comparison propositions 

were developed and provide considerable insight into the dynamics of the system.   

There is one more important consequence arising from the models considered. If 

managers are confined to only considering the control of an invader spreading from lake to lake it 

is possible to only delay the total invasion, not completely prevent it. There are natural 

mechanisms of invasion spread for which there are no controls. Through the treatment of boats it 

may be possible to provide extra time for designing other control measures enabling the existing 



 

 19 

lake ecosystems either to destroy invaders or to integrate them without allowing catastrophic 

abundance.  
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APPENDIX 

 This appendix contains proofs for results in the main body of the paper. 

Proposition 1. The shadow price (t) for t<T is always negative provided the invasion losses 

g>0. 

Proof. According to the boundary conditions, (T)=0, which implies / 0xH x w p      and 

/ (1 ) 0sH s w p       at t=T. In this case, the maximum of H is reached at x=s=0, and at the 

last moment zero control is optimal. Therefore d/dt(T)=g>0, hence near T for t<T (t)<0. To 

attain nonnegative values the continuous function (t) must cross the t axis at least once, and at 

the point of crossing d/dt0. At this point (tC)=0. Hence / 0H x    and / 0H s    at t=tC, 

and therefore x(tC)=s(tC)=0. This implies that d/dt(tC)=g>0, which gives a contradiction proving 

the proposition.  

Lemma 1. The optimal “aggregate control”, *
(t)=k1x

*
+k2s

*,
 is a continuous function of time on 

[0,T], and it is piecewise differentiable on this interval. 

Proof. If (t)>0, one of the optimality conditions (11) or (8a) must be satisfied. Let p<pS, then 

s
*
=0, and hence (11) is satisfied for x

*
 and s

*
, and  

*

1 1 / ce k A p w   . Since both p(t) and 

(t) are continuous, so is *
(t). Similarly, in case *

(t)>0 and p>pS we obtain continuity from 

(8a). For p=pS continuity follows from both conditions. In case *
(t)=0 the statement of the 

theorem is trivial. It remains to show that the control cannot stop abruptly, that is *
(t) cannot 

jump from a positive value down to zero. Consider the continuous function F(t)=k1|(t)|A(1–

p(t))/w2. Our approach is to assume that for t<tSW *
(t)>f0>0, and for t>tSW *

(t)=0, and then to 

proceed by showing a contradiction. Without loss of generality, let (11) be satisfied for t<tSW. 

Then 
*

0( ) 1
f

F t e e   . For t>tSW optimal s
*
=x

*
=0, which implies / 0H x    and therefore 
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F(t)<1. Hence F(t) has discontinuity at t=tSW having jumped from 
 0f

e  to a value less than one, 

without taking any intermediate values, for example, it has not passed through 









2

0f

e . This 

contradiction implies that *
(t) must approach zero continuously in time. Hence it is a continuous 

function on the whole interval [0,T]. The continuity of *
(t) means that equation (7) implies p(t) 

is continuously differentiable everywhere except switching points, and equation (8) implies (t) 

has the same property. Therefore (t)=log(F(t)) is also differentiable everywhere except the 

switching points.  

 

Deriving (18), (19), (20). 

Domain I, x0, s=0. The relation (11) allows us to express x through  and p,  

 
 

 pAk

w
e

w

pAk

k
x xxk

x 








 




1
,

1
ln

1

1

1

1

1




, 

and to rewrite (7), (8) as a closed system of differential equations, which do not contain unknown 

controls: 

 
 
 

 







 









x

xx

x

w

pAk

k

w
g

pk

pw
r

dt

d

k

pw

dt

dp

1
ln

1

21

,

1

11

1







 

and 

 
 
 

 
















 







x

xx

x w

pAk

k

w
g

pk

pw
r

pw

k

dp

d 1
ln

1

21 1

11

1 



.    

However it is complicated for the analysis. It is possible to derive a more convenient form for the 

subsequent analysis by using x through  and p:  
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 pAk

ew
xk

x




11

1

 . 

Then after simplifications we come to the system 

 

 

  















xk
w

gk
pAer

dt

dx
k

ppAe
dt

dp

x

xk

xk

1
1

1 11

,1

1

1

 

and the equation for x(p)  

 
  p

xk
w

gk

pAp

re

dp

dx
k x

xk 1
1

1

1

1

1






 . 

After multiplying it by p and combining terms together we obtain (18).  

Domain II, x=0, s0. In a similar fashion we can express  through s and p,  

 
Apk

ew
sk

s

2

2

 . 

Following the same steps as in domain I, we obtain  

 
  p

sk
w

gk

pAp

re

dp

ds
k s

sk









1

1

1

2
2

2

2

, 

After multiplying by 1–p and combining terms, it can be written in the form (19). 

Domain III, x=0, s=0. In this case the control terms vanish, and we can use (7), (8) 

directly,   

  pAp
dt

dp
 1 , 

    gpAr
dt

d
 21


. 

Then (17) takes the form  
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     pAp

g

pp

p

pAp

r

dp

d




















11

21

1



. 

After multiplying by p(1–p) and combining terms it can be written as (20). 

 

Comparison results for r>0 

Proposition 2 (comparison). Let x(p), be the solution to (18) for r>0 on [p1,p2], and ( )x p  the 

solutions for r=0 such that    22
~ pxpx  . Then    pxpx ~  on [p1,p2]. Similar propositions 

can be proved for s(p), and for (p): if s(p), (p),    pps ~,~  the solutions to (19) and (20), and 

       2222
~,~ pppsps   , then        pppsps   ~,~  on [p1,p2] respectively.  

Proof. We can consider only x(p); the other two cases can be proved similarly. We have  

 
 p

e

A

r
p

w

gk
pxk

dp

d
xk

x 


























1
1

1

1
1 ,     01~ 1

1 


















 p

w

gk
xpk

dp

d

x

. 

Subtracting the second from the first we have 

   
 

0
1

~
1

1 



p

e

A

r
xxpk

dp

d
xk

. 

Since p>0,           0~~
22211  pxpxpkpxpxpk , or    pxpx ~ . If    22

~ pxpx  , then 

   pxpx ~ .  

Corollary 3. Let us denote by      ppspx ,,  and      ppspx ~,~,~  to be the solution to the 

optimal control problem for the same initial and final infection levels p0 and pe , and r>0 and r=0 

respectively. Then,            pppspspxpx   ~,~,~ , and for values of p where,   0~ px or 

  0~ ps , or   0~ p  the corresponding inequality is strict, that is    pxpx ~ ,    psps ~ , 

or    pp  ~ . 

Proof. It is convenient to analyze the situation backwards, from pe to p0. As     0~  ee pp  , 
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according to Proposition 2, for p<pe    pp  ~  where they satisfy (20) i.e. before they 

intersect the switching curve SW(p) (15). Since    pp  ~ ,  p~  intersects the switching 

curve first. This implies for the switching points ZZ pp ~ . On the interval  ZZ pp ~,     pp  ~  

because they are separated by the switching curve. For simplicity assume that pZ>pS, then s(pZ)=0 

while   0~ Zps . If Proposition 2 is applied again on the interval [pS,pZ] then    psps ~ . 

Manipulating the optimality condition so that sks e
Apk

w
2

2

 then    pp  ~ . Finally for p=pS 

   SS pxpx ~ , and hence    pxpx ~  p<pS. Applying 
 

xkx e
pAk

w
1

11 
  allows    pp  ~  

to be obtained. Situations ZSZ ppp ~  and ZZS ppp  ~  can be analyzed similarly. If for the 

non-discounted problem the optimal choice is no control, then solutions coincide.  

Corollary 4. Let the conditions of Corollary 3 be satisfied. Then time horizon for the discounted 

problem is shorter than that for the non-discounted problem, T T . 

Proof. We can write  

  
   

1 2

0 0

( ) ( )
1

/ 1

e e

k x p k s p
p p

e
p p

e
T T p dp dp

dp dt Ap p



  
  . (24) 

Since    pxpx ~  for p0p<min(pS,pZ), and the integrand is always positive, we obtain the 

statement of the Corollary.  

Corollary 5. If discounted and non-discounted problems have the same time horizon T and the 

initial infection level p0, the discounted problem has greater final level of infection, ee pp ~ .  

Proof. For the non-discounted problem x(p), s(p), and pZ are increasing functions of pe, and 

hence T  is an increasing functions of pe as well. To make time horizons in both problems equal it 

is necessary to decrease T
~

, and consequently decrease the final level of infection. This proves 
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the statement.  

For very long time horizons T the final level of infection is very close to 1, so it is 

reasonable to consider what happens in the limit pe1. Then for the case of r=0 analytical 

solutions give  

     1
1

,1,1 1
1

2
2 


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


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p

w

gk
pxk

w

gk
pskp

xs

Z .   

Since both x and s increase with pe, it is possible to obtain bounds for controls: 

Corollary 6. The values of the control variables under optimal control for any r satisfy 

     






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It follows that the recipient lakes control is used only in case k2gws. From (19), when p=pZ, s 

turns to zero and cannot be growing, so ds/dp0. This means that the necessary condition for the 

recipient lakes control is 

 
















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A

r
w

Ap

r
wgk

w

gk

Ap

r
s

Z

s

sZ

11or01 2
2 . 

Corollary 7 (sufficient condition for optimality of no control). If in case r=0 (no discounting) it 

is optimal for a complete absence of control, then for r>0 and the same final level of infection pe 

it is also optimal for there to be an absence of control.  

Proof. Consider the backward motion along the trajectory from pe to p0 for both problems. 

Control then turns on when the trajectory crosses the switching curve. According to Corollary 5, 

   pp  ~  for p<pe, therefore  p~  must cross the switching curve first. If it has not crossed it 

till p0 (when no control is optimal), the same is true for (p) as well. This means that for r>0 the 

absence of control is optimal.  

Proposition 3. For every 0<p0 <1 and finite positive T0 there exists pe>p0, such that T(pe)=T0.  
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Proof. For any p0<pe<1 there exists unique bounded solutions of the optimal control problem for 

(p), x(p), s(p), and therefore it is possible to define function T(pe) (24). As the solution of the 

ODE continuously depends on initial data this function is continuous, and monotonically 

increases everywhere that it exists. The latter follows from topological considerations. Consider 

two solutions (p) and (p), pe1<pe2. Since they are trajectories on the plane, they cannot cross, 

and hence (p)>(p) for p0<p<pe1. From the optimality conditions it follows that for the same p 

values x1x2, s1s2, and according to (24) T1=T(pe1)<T2=T(pe2).  

To demonstrate that the domain of T(pe) is p0pe<1 and its range is T>0, explicit bounds 

are determined from below and from above. From Corollary 6 it follows that 
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Consider two equations  

         000,1,1 pvuvvAe
dt
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Comparing with (7), we obtain that 
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Therefore the domain of T(pe) is p0pe<1, and it takes any positive values as pe1. Then it has an 
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inverse on [0,), and hence for any finite T0>0 there exists a corresponding p0<pe0<1, such that 

T(pe0)=T0, and there exists the corresponding optimal control solution.  
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FIGURES 

 

a) 
c) 

b) 
d) 

Figure 1.  a) Schematically shown are the three regions on the p, plane, example trajectory (p), 

switching points marked by open circles, and characteristic p values — p0, pS, pZ, pe; b), c) three 

different control patterns for three different pe or T (short T1 has no control; T2 a period of x-control 

followed by no control; long T3 x-control followed by a switch to s-control followed by a switch to no 

control); d) schematic relation between T and pe,  pe1 as T. In Sect. 6 it is proved that pe(T) and 

T(pe) are monotonically increasing functions.  
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a) c) 

b) d) 

Figure 2. Analytical solutions on the -p plane, (p)=k1x(p)+k2s(p). Note that since one of x and s is 

always zero, the aggregate control shows only the behavior of the other nonzero control variable. Part 

of the trajectory corresponding to x-control is shown by solid line, the s-control part by dashed line. 

The trajectories correspond to 10 pe values between 0.2 and 0.999, p0=0.05.  
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a) c) 

b) d) 

Figure 3. Plots of (p) and switching on the p, plane. The trajectories correspond to the values of pe from 

0.1 to 0.9. Control turns on/off when the trajectory crosses the switching curve SW(p) (15) — dashed line. 

Switching between x- and s-control occurs when the trajectory crosses the value p=pS. Circles mark 

switching points. p0=0.05. a) trajectories did not reach the switching curve, optimal is no control, no 

switching. b,c) the trajectories have one or two switching points; d) the trajectory for pe=0.9 has three 

switching points. This is a rare control pattern which arises only for large values of r/A: there is x-control for 

small p values, then an interval of no control, then an interval of s-control, then no control again.   
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a) b) 

Figure 4. The examples of dependency of log10AT on pe for r/A=0, 0.01, 0.10, 1. a) Optimal is 

absence of control, all curves coincide, and can be obtained analytically; b) the greater is r/A, the 

smaller is T, and the lower is the corresponding curve.   
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a) c) 

b) d) 

Figure 5. Influence of discounting on behavior of trajectories of the phase plane, compare with Figure 3. 

a,b) Parameters are those of Figure 3a, but with added discounting of r=0.03 and 0.1; c) An example of 

separation of x- and s-control at big r/A; d) Same parameters as in Figure 3c, but with discounting r=0.03. 
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a) c) 

b) d) 

Figure 6. Dependence of control on k1=k2, g, and r.Shown is the function (p)=k1x(p)+k2s(p), part of the 

trajectory corresponding to x-control is shown by solid line, the s-control part by dashed line. The 

trajectories correspond to g=0.1, 0.5, 1.0, 2.0, 5.0, 10.0, the value of g is shown near each trajectory. If a 

trajectory for some g value is missing, then the absence of control is optimal. Initial invasion level is 

p0=0.05.   

 

 



 

 35 

a) b) 

Figure 7. Dependence of control pattern in time on k1=k2=k, and r for T=50. Shown is the function 

(p)=k1x(p)+k2s(p), part of the trajectory corresponding to x-control is shown by solid line, the s-control 

part by dashed line. The trajectories correspond to k=0.1, 0.5, 1.0, 2.0, 5.0, 10.0, g=1. Initial invasion level 

is p0=0.05 (a) and 0.35 (b).   

 

 

a) c) 

b) d) 

Figure 8. Dependence of control time (when x+s0) on k1=k2=k, for g=0.2, 0.5, 1.0, 2.0, 5.0., values of r, 

T, and p0 are shown in the panels.   

 


