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ABSTRACT

This dissertation introduces a new flow analysis technique based on the Fourier-Averaged Navier-

Stokes (FANS) equations. It details their application to educing the effect of fluid forces on flow

physics. The derivation and interpretation of the method is described, and details of how to

calculate key terms are presented. The method is then applied to several case studies to illustrate

its applicability, interpretability, and limitations across flows of different complexities. Three of

these case studies are used to evaluate the characteristics of FANS and verify that the method is

interpretable. Specifically, conclusions are made from FANS and these conclusions are compared

to known physics and the findings of other methods. These cases consist of 2D laminar vortex

shedding over a square cylinder, axisymmetric swirling jet flow, and irregular asymmetric vortex

shedding over a pair of square cylinders. FANS is shown to be simple to calculate and easy

to interpret for analysing fluid flows with increasing complexity, including cases with broadband

spectrum. The final case study looks at 3D flow over normally-oriented, thin flat plates. This case

illustrates the practicality of FANS in exploring unknown physics in a fully 3D, nonperiodic flow.

Three flat plates with varying end conditions are compared to investigate the effect of end plates on

the fluctuating and mean flow. FANS shows the effect of friction from the end plates on dampening

transverse velocity fluctuations. It also shows how interaction between the rollers with the boundary

layer induces coherent spanwise flow at the shedding frequency. Overall, the proposed method is

shown to be applicable in investigating the physics of flows with cyclic characteristics, including

those with nonperiodic behaviour.
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Chapter 1

INTRODUCTION

A new flow analysis technique based on Fourier decomposition of the Navier-Stokes equations is

presented in this dissertation. The equations are used as a momentum balance at each timescale.

This work details the derivation of the equations and interprets the resulting terms. Analysis based

on this momentum balance is applied to several case studies to establish their applicability and

interpretation. The strength of the new technique for providing insights into new flow dynamics is

then examined through a complex wake problem with that is not well understood.

1.1 Overview

Despite the complex nature of turbulent phenomena, incompressible Newtonian fluids behave

in a way that satisfies the governing equations of fluid mechanics, the Navier-Stokes equations

(Drazin and Riley, 2006). These equations describe the momentum transport within fluids, and

when coupled with the conservation of mass, can be used to simulate fluid flow (Ferziger et al.,

2019). However, the Navier-Stokes equations are nonlinear, with no exact solution in most practical

problems (Drazin and Riley, 2006). Moreover, turbulence is a multi-scale phenomenon (Durbin

and Pettersson, 2011), which has led to several efforts to simplify the description of turbulent flow

and find more intuitive understandings of the mechanisms that govern it.
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One avenue to arriving at simpler descriptions of fluid flow lies in manipulating the governing

equations. Simple averaging of the flow over multiple realizations of a flow leads to the Reynolds-

Averaged Navier-Stokes (RANS) equations. These equations describe fluid flow in terms of the

mean and covariance of the velocity and pressure fields over time. This simplifies the description by

only considering these statistical quantities at the expense of time-dependent information (Durbin

and Pettersson, 2011). However, other operations have been applied to the Navier-Stokes equations

besides averaging to gain insight into flow dynamics. For instance, linearization of the governing

equations has been widely applied to investigate other characteristics of fluid flow (Seydel, 2010).

These linearizations can then be used to find transitions in the flow, such as steady to unsteady

(Schmid and Henningson, 2001) in Linear Stability Analysis, or from two-dimensional to three-

dimensional flow in Floquet analysis (Barkley and Henderson, 1996; Gioria et al., 2009). Generally

speaking, the governing equations are highly malleable and they can be repurposed for specialized

analysis, with the proper operations.

The complexity of turbulent flow has also led to methods that simplify the description of a flow

without any consideration of the governing equations (Foias et al., 2001). These methods, such

as Proper Orthogonal Decomposition, Dynamic Mode Decomposition, and their variants (Lumley,

1970; Chen et al., 2012; Noack et al., 2016; Sieber et al., 2016; Towne et al., 2018), arise from

nonlinear dynamics treatments of fluid flow. Commonly, a decomposition method will produce a

series of modes and dynamics that represent the spatial and temporal characteristics of the flow,

respectively. These simplified descriptions are highly useful when an equation-free representations

of a flow is desirable, such as in control systems (Kutz et al., 2016). Decomposition methods have

been widely and successfully used to investigate flow physics. Applications have included Ahmed

body models (He et al., 2021), jets (Schmid et al., 2011; Towne et al., 2018), flat plate wakes

(Agrey, 2021), wind turbines (Araya et al., 2017; Schmidt and Colonius, 2020), and fluid-structure

interaction (Khalid et al., 2020).

Simplified representations of the flow provided by decomposition methods can suffer in terms

of interpretability (Towne et al., 2018; Sieber et al., 2016). Important characteristics of the flow can
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also be lost in the simplification process (Rowley and Dawson, 2017). Likewise, the modes provided

by a model reduction can be related to each other through their dynamics (Noack et al., 2016),

but this does not provide key spatial information. Occasionally, modes are reincorporated into the

governing equations through a Galerkin projection of the equations onto the modes (Noack et al.,

2003, 2016; Kutz et al., 2016). Reincorporating them produces a dynamical system that allows for

future predictions of the flow behaviour using momentum conservation and the interactions between

modes. However, this entails a volume integration that removes all spatial information about the

system. Spatial information about inter-mode interactions is only provided by a small number

of highly specialized methods, such as higher order spectral methods (Qing, 2004), or Bispectral

Mode Decomposition (Schmidt, 2020). However, these methods do not consider the momentum

or energy transport that governs fluid flow. As a result, these methods do not have a mechanism to

relate nonlinear interactions to other processes that are important, such as diffusion and pressure.

Consequently, there is room to use the governing equations alongside a modal decomposition to

provide useful spatial information about the momentum transport processes that drive the flow.

The concept of decomposing force or energy fluctuations into manageable components have

appeared previously in literature. Two are (1) decomposition of fluctuations into mean, coherent,

and incoherent components, and (2) phase averaging. These two methods are closely related,

as the phase-averaging is sometimes used to extract coherence (Balachandar et al., 1997; Braun

et al., 2020). Phase averaged or coherent-incoherent representations have been used in determining

the effect of different mechanisms on forces (Najjar and Balachandar, 1998), Reynolds stresses

(Balachandar et al., 1997), and turbulent kinetic energy (Braun et al., 2020). However, there are

limitations to these techniques. For instance, basic phase averaging is sensitive to modulation in the

phase between cycles. For signals with natural variation in phase, additional techniques must be

applied to ensure consistency (Ostermann et al., 2015; Bauer et al., 2022), making the application

and interpretation of the method more complex.

In this dissertation, modal representation of the Navier-Stokes equations is proposed to analyze

flow data. Fourier decomposition is used for the modes as this process is simple and interpretable.
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This decomposition of the Navier-Stokes equations, referred to here as the Fourier-Averaged Navier-

Stokes (FANS) equations, is used to simplify the description of the forces that transport momentum

within a fluid flow. This simplification is achieved by representing the flow as a collection of modes,

while also leveraging information from the governing equations.

Fourier decomposition is a simple method that is widely used in literature, both by itself and as

a part of other methods (Noack et al., 2003; Rowley et al., 2009; Chen et al., 2012; Sieber et al.,

2016; Towne et al., 2018; Schmidt, 2020). However, it requires a cyclic behaviour in the flow. For

the purposes of this thesis, cyclic and periodic flows are defined as follows:

Cyclic flow: a flow with distinct patterns that recur over time. The recurrences can occur regularly

or irregularly.

Periodic flows: a subset of cyclic flows that recur exactly over regular intervals. That is, a periodic

flow has a finite period T and satisfies the property q(t + T ) = q(t) for all quantities

(e.g. pressure and velocity). The frequency spectrum of a periodic flow will consist of a

fundamental frequency and harmonics.

Nonperiodic flows: cyclic flows without an identifiable period over which they recur. Nonperiodic

flows have broadband frequency spectrum.

Cyclic and periodic behaviours are common in fluid flows. Examples of these flows appear in

jets (Schmid et al., 2011; Herrada et al., 2009; Schmidt and Colonius, 2020), bluff body wakes

(Mantic-Lugo et al., 2015; Hemmati et al., 2016a; Jang et al., 2021; Braun et al., 2020), cavities

(Meliga, 2017). Periodic behaviour may be enforced through gusts (Afgan et al., 2013), fluttering

or oscillating foils (Garrick, 1936; Verma et al., 2022), or rotating machinery (Hall et al., 2002;

Beneddine, 2017; Araya et al., 2017).

The newly proposed technique is evaluated in terms of its application, interpretation, and

limitations in this dissertation. This is accomplished through several case studies. Cases include

periodic and nonperiodic 2D wakes of bluff bodies, multi-frequency jet flow, and 3D wakes. The
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technique is also evaluated in terms of its ability to educe new physics in a study of 3D wake

dynamics behind thin flat plates with different end conditions.

1.2 Motivations and Objectives

The governing equations of fluid dynamics are highly accurate, but they are impractical to use in

many cases due to their complexity (Foias et al., 2001; Durbin and Pettersson, 2011; Kutz et al.,

2016; Ferziger et al., 2019). Ways around this complexity have been sought out for decades. As

a result, the equations can be simplified to fit specialized purposes (Durbin and Pettersson, 2011;

Girimaji, 2005; Seydel, 2010), or ignored entirely (Kutz et al., 2016). However, equation-free

methods, which do not consider the governing equations, can lack crucial spatial information about

the interactions that govern the flow (Schmidt, 2020). A few methods that exist to find these

interactions do not have ways to compare them to the other governing processes (Qing, 2004;

Schmidt, 2020). As a result, this work proposes incorporating Fourier decomposition of the flow in

time into the Navier-Stokes equations. This technique provides a new method to simplify fluid flow

analysis. This representation will provide useful, interpretable information that can be connected

to the flow physics. This dissertation will introduce and derive the method, and then test it against

several case studies to show its interpretability. This method is widely applicable in fluid mechanics

due to the prevalence of cyclic characteristics in many flows (Hall et al., 2002; Schmid et al., 2011;

Ma et al., 2017; Mantic-Lugo et al., 2015; Hemmati et al., 2016a).

The main objective of this dissertation is to develop, apply, and evaluate a new flow analysis

technique that is easy to implement and interpret. The specific objectives of this work are to:

1. Detail the derivation and implementation of momentum analysis using Fourier decomposition

applied to the Navier-Stokes equations.

2. Verify that the equations are indeed applicable to analysis of flows by cross-comparing

interpretation of the momentum terms to established physics.

5



3. Assess the limitations of the method by applying it to multiple cases of increasing complexity.

This will consist of 2D and 3D flows, including both periodic and nonperiodic cases.

4. Assess the ability of the method to educe meaningful, new physics in a typical use case -

namely, a nonperiodic, fully 3D wake.

1.3 Novelty

The primary novelty of this research is the direct application of FANS equations to analyse flow data.

This form of analysis allows for studying the transport processes that govern velocity fluctuations

in flows with recurring characteristics. The strength and interpretability of FANS in exploring

new flow physics is also investigated, by characterizing the effect of end conditions on 3D wake

dynamics behind thin flat plates.

1.4 Structure of the thesis

In this dissertation, Chapter 2 discusses the background of turbulence, decompositions of the Navier-

Stokes equations, and decomposition methods, with a focus on the Discrete Fourier Transform and

its applications to other order reduction and simulation methods.

Chapter 3 derives the Fourier-Averaged Navier Stokes equations in discrete and continuous form

and details the interpretation and naming of each term in the equations. The setup and interpretation

of terms in these equations serves as the starting point to using these equations to analysing unsteady

flows. Some details of the application of these terms to experimental or simulation data will also

be elaborated.

Chapter 4 introduces the case studies that will be used to explore the application and inter-

pretation of FANS results. The computational method and descriptions of the basic physics that

will be relevant to further chapters will be elaborated here. The setup of four case studies are
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explained here. The first three involve known physics, while the final case is a more complex 3D

wake problem.

Three case studies will be presented in chapter 5 to validate the usage of FANS against estab-

lished physics. The first case study consists of analysis of 2 dimensional, periodic flow around a

square cylinder. This flow results in a simple Karman vortex street with regular shedding. The flow

can be reduced to the mean flow and a pair of Fourier modes. The simplicity and periodicity of the

flow makes it an ideal candidate for the FANS analysis. The second case study involves a swirling,

axisymmetric jet impinging on a wall. This flow remains periodic, but has a highly modulated time

signature, and a larger number of relevant Fourier modes. Finally, a non-periodic (irregular vortex

shedding) case of flow over two cylinders arranged side by side is investigated. The addition of

a non-periodic case is used to establish the applicability of the method to a case with broadband

Fourier spectrum.

Chapter 6 builds upon the understanding of FANS interpretation in studying the effect of

end-conditions on the wakes of normal flat plates, which are complex, 3D and underexplored.

FANS terms are compared between cases to establish the ability of FANS-based analysis to explore

unknown physics that result in complex flow dynamics.

Chapter 7 contains the concluding arguments on the derivation and application of the FANS

equations for analysing flow data. Some discussions are also included on possible future directions

to enhance the applicability of the FANS equations.
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Chapter 2

BACKGROUND

2.1 Turbulence and the Navier-Stokes equations

Fluid flow is governed by the Navier-Stokes equations, which describe the conservation of momen-

tum in a fluid from a continuum mechanics perspective (Drazin and Riley, 2006). These equations

were developed in the 19th century by Claude-Louis Navier and George Gabriel Stokes, and relate

the evolution of the velocity or momentum field to the pressure, shear, and body forces of a flow

(Bistafa, 2018). At their most complex, they represent the forces that govern fluid motion in terms

of the changes in density, pressure, body forces, and velocity in a fluid (Batchelor, 1999):

⇢
@u

@t
+ ⇢u · ru = ⇢F � rp + r ·

✓
⇢⌫

✓
ru + (ru)T � 2

3
r · u

◆◆
, (2.1)

where ⇢ is the fluid density, u is the velocity field, F are the body forces, p is the pressure, and ⌫ is the

kinematic viscosity. These equations are unclosed, as the density, velocity, and pressure represent

five unknowns in three equations. Equations for the conservation of mass, energy, and an "equation

of state" that relates the pressure, density, and temperature are used to close the system (Schlichting

et al., 2000). The full equations are only necessary for applications with large temperature gradients

or gases traveling at high speeds (roughly 30% of the speed of sound). For many applications, a

simplified form of these equations, referred to as the incompressible Navier-Stokes equations may
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be used instead:
@u

@t
+ u · ru = �1

⇢
rp + ⌫r2u, (2.2)

where the equations are closed with the conservation of mass, known as the continuity equation:

r · u = 0. (2.3)

The Navier-Stokes equations (Equation 2.2) are second-order, nonlinear partial differential equa-

tions. As a result, their behaviour is complicated and does not admit many analytical solutions.

However, there are general qualitative characteristics to assist in analyzing these equations. The

first is that the equations are independent of scale and their behaviour only depends on the Reynolds

number Re = U1h/⌫, where U1 and h are some appropriate velocity and length scale, respectively

(Aris, 1989). When Re is below a certain threshold, which varies from case to case, the flow is

"steady" (u and p are unchanging in time) and "laminar", which means that the streamlines of the

flow stay organized and parallel to one another. Flow in 2D or axisymmetric geometries will also re-

main 2D or axisymmetric (Schlichting et al., 2000). As Re increases, the convective term becomes

more important, which induces unsteadiness. Further increasing Re leads to breaking of symme-

tries and laminarity, which leads to the flow transitioning to turbulence (Durbin and Pettersson,

2011). Turbulence is a qualitative description and its exact definition varies from amongst scientists.

Generally agreed-upon characteristics of turbulent flow include three-dimensionality, chaotic flow,

variations in time and space, and prevalence of several time- and length scales (Lumley, 1970;

Durbin and Pettersson, 2011; Holmes et al., 2012). Turbulent flows exhibit greater mixing and

higher gradients than laminar flows, which has significant consequences for heat transfer, mixing,

and forces (Durbin and Pettersson, 2011).

Simply describing a flow as turbulent is not helpful. More specifically, there is a desire for

a more complete understanding of the structure and consequences of turbulent flows. Significant

progress has been made on this problem since 1932, when Horace Lamb reportedly stated: "I

am an old man now, and when I die and go to Heaven there are two matters on which I hope for
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enlightenment. One is quantum electrodynamics, and the other is the turbulent motion of fluids.

And about the former I am really rather optimistic." (Goldstein, 1969). One piece of progress is the

understanding that even turbulent flows contain "coherent structures" (CS), which are spatially and

temporally coherent vortical patterns that may be identified using a number of criteria (Jeong and

Hussain, 1995). Another is the utilization and practicality of statistical and spectral representations

of turbulence (Lumley, 1970; Foias et al., 2001; Durbin and Pettersson, 2011). The success of

decomposition methods in simplifying turbulent dynamics has also been established (Foias et al.,

2001; Rowley and Dawson, 2017). A brief overview of the latter two topics will be presented in

the following sections.

2.2 Reynolds Averaged Navier Stokes Equations

The Navier-Stokes equations (Equation 2.2) have been repeatedly shown to be accurate for in-

compressible Newtonian fluids, even when highly turbulent (Drazin and Riley, 2006; Durbin and

Pettersson, 2011). However, the full, time-dependent equations are not practical for most analysis

(Foias et al., 2001). Thus, mathematically manipulated versions of these equations are used instead.

Perhaps the most famous version of the momentum equations in turbulence are the Reynolds Aver-

aged Navier-Stokes (RANS) equations. These equations arise from decomposing the instantaneous

flow field (u) into mean (U) and time-varying (u0) components (Durbin and Pettersson, 2011; Foias

et al., 2001):

u = U(x) + u0(x, t). (2.4)

This decomposition can be inserted into Equation 2.2, which is then averaged to obtain:

U · rU = �rP + ⌫r2U � u0 · ru0. (2.5)

The final term (u0 · ru0) is known as the "Reynolds stresses", which creates a closure problem. The

Reynolds stresses arise from convection of the fluctuating part of a turbulent flow, and tend to have
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a diffusive effect on the mean field (Durbin and Pettersson, 2011). This means that the Reynolds

stresses must be modeled, which has spawned several strategies (e.g. Durbin and Pettersson, 2011;

Jakirlić and Maduta, 2015; Duraisamy et al., 2019; Krumbein et al., 2020). The Reynolds stresses

lead to the concept of "turbulent kinetic energy" (k = u0 · u0), which enables modeling of turbulent

effects (Durbin and Pettersson, 2011). A transport equation for k can also be derived based on

Reynolds transport theorem. The balance of terms in this transport equation is known as the

turbulent kinetic energy budget, which can be used to study the origins and effects of fluctuating

components of turbulent flow (Durbin and Pettersson, 2011; Hemmati et al., 2018; Agrey, 2021).

Manipulations of the Navier-Stokes equations for modeling purposes and flow analyses are not

limited to the basic RANS equations. Allowing the statistics of a turbulent flow to evolve over time

leads to the Unsteady-RANS (URANS) equations (Durbin and Pettersson, 2011). For simulations,

URANS is simple to implement from normal RANS formulations, as it only requires the addition of

a time-derivative term. URANS has been shown to better replicate experimental results than steady

RANS (e.g. Girimaji, 2005; Iaccarino et al., 2003; Jakirlić and Maduta, 2015). More advanced

methods have also been proposed, which attempt to bridge between direct numerical simulation

(DNS) of the Navier-Stokes equations, Large Eddy Simulation (LES) and RANS/URANS models.

These methods involve further manipulations to the Navier-Stokes equations or turbulent transport

equations (Jakirlić and Maduta, 2015; Menter and Egorov, 2010; Girimaji, 2005).

2.3 Decomposition methods

Just as the motivation of the RANS method is to simplify usage of the Navier-Stokes equations

by applying an averaging process, there is a similar motivation to simplify the representation of

a turbulent flow when its behaviour has already been measured. The belief that descriptions of

turbulent flows can be substantially simplified without losing critical spatial or temporal information

is also supported by theoretical treatment (Foias et al., 2001). As a result, there have been many

methods proposed over the past decades to investigate the underlying characteristics of turbulent
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flows (e.g., as detailed in Picard and Delville, 2000; Noack et al., 2003; Qing, 2004; Chen et al.,

2012; Sieber et al., 2016; Schmidt, 2020). These methods have succeeded in representing the flow

dynamics associated with complex systems. However, it remains that the interpretation of these

processes in the physical domain is often difficult and non-intuitive.

There are several approaches to analyse these systems through dimensionality reduction. Two

well-established methods are Proper Orthogonal Decomposition (POD, Lumley, 1970) and Dy-

namic Mode Decomposition (DMD, Chen et al., 2012), which are linear decompositions of the

flow dynamics. The two methods decompose a set of snapshots of a velocity field into a series of

spatially-varying modes �i with time-varying coefficients ai, which are called the dynamics:

u(x, t) =
X

i

ai(t)�i(x). (2.6)

The methods use different strategies to calculate the modes and dynamics. In POD, Singular Value

Decomposition (SVD) is performed on N snapshots of flow data un:

Q = U⌃VH . (2.7)

Where Q = [u0 u1 ...uN�1] is an 3m by N matrix whose columns are made up of the flow snapshots

(m being the number of sample points). The columns of U, which is a 3m by N matrix, are the

spatial modes, V is an N by N matrix of time-varying information, and ⌃ is an N by N diagonal

matrix that determines the magnitudes of the dynamics. SVD optimizes the modes in terms of

energy content, so the large-scale dynamics are captured compactly. For instance, Wang et al.

(2022) used POD on the streamwise component of a boundary layer to investigate the properties

of wall-attached eddies, arguing that the resulting modes were a strong statistical representation

of the eddies. He et al. (2021) used POD to compare the processes of wake asymmetry and

switching on two Ahmed bodies, using the modes to aid analysis of the two mechanisms. While

interactions between modes can be identified, e.g. through phase portraits of the temporal dynamics

or establishing a dynamical system that relates them (Noack et al., 2003), the physical interpretation
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of these interactions remains challenging. Likewise, one limitation of POD is that isolating the

highest-energy modes does not always capture important dynamics. Low-energy modes can be

highly important to the evolution of a flow as noted by Rowley and Dawson (2017).

In Dynamic Mode Decomposition snapshots of the flow variables are used to identify a sparser

set of dynamics (Schmid et al., 2011). DMD "fits" an approximate linear system that describes the

transitions between a series of flow snapshots. That is, given N snapshots of data un, DMD finds

a matrix A that satisfies

un+1 = Aun (2.8)

for all n. Eigenvalue decomposition is then performed on the matrix A in order to find the modes

and dynamics. There is a rich mathematical background to DMD through its connection to the

Koopman operator, as described for instance in Chen et al. (2012). There are several variant

methods derived by changing the optimization target or adding a mode ranking process, e.g. in

the Optimized DMD of Chen et al. (2012) or Recursive DMD of Noack et al. (2016). An early

example on the topic is the jet study of Schmid et al. (2011), where it was shown that DMD could

successfully isolate the large-scale structures, frequencies, and forcing response of jet flows from

PIV and Schlieren snapshots. Gómez et al. (2014) used DMD on a turbulent pipe flow, where

they successfully linked DMD results about the energy and frequency content of turbulence to

predictions from resolvent analysis. This investigation showed how DMD results could connect to

the fundamental fluid dynamics equations. However, this connection required an external method

in the form of resolvent analysis. The study of Jang et al. (2021) on oscillatory flow over a surface-

mounted circular cylinder showed that DMD was able to accurately model the bed shear stress

with relatively few modes, but required a large number of modes to represent the flow around the

cylinder body. This highlights the potential difficulties and limitations regarding sparsity in DMD

representations.

POD and DMD are widely and successfully employed, but gaps remain in their applicability

and interpretability. POD loses dynamical information due to averaging, and returns modes that

are only coherent in space. It can also result in modes that contain contributions from several
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timescales, reducing interpretability. Meanwhile, DMD does not have an energy optimization

procedure, and will restrict modes to single frequencies, which may not be desirable in flows

with broadband frequency content. Two distinct methods have been introduced that address these

shortcomings, both referred to as Spectral Proper Orthogonal Decomposition (SPOD). The first

corresponds originally to a formulation of POD used by Lumley and named by Picard and Delville

(2000), which was then formalized by Towne et al. (2018). The second is a method based on POD,

which was introduced by Sieber et al. (2016) and expanded upon by Sieber (2021). It includes a

filtering strategy that can be adjusted to replicate results from POD or a discrete Fourier Transform

(DFT), depending on the selected filter. These methods will be elaborated upon as part of a more

complete discussion of Fourier decomposition for turbulent flows in the following section.

2.3.1 Temporal Fourier Decomposition

There is a large body of research and application of Fourier decomposition for characterizing the

behaviour of time-dependent flows. Fourier decomposition is applied through a Discrete Fourier

Transform (DFT) on discretely sampled data. The output of the DFT can be used to analyse the

frequency content of force signatures or flow fields, for instance to detect the timescales associated

with particular structures. This way, it is also viewed as a basic order reduction method, like POD

or DMD (Noack et al., 2003; Sieber et al., 2016). In fact, Fourier decomposition and DMD are

identical in some circumstances (Rowley et al., 2009; Chen et al., 2012; Towne et al., 2018). The

DFT is known to be limited as it is only applicable to statistically stationary data and it does not

attempt to construct modes that are energetically optimal or coherent. However, the simplicity of

understanding the results of a DFT has led to its utilization in more advanced methods. Lumley

(1970) originally formulated a version of POD applied to ensembles of Fourier modes that was

then named Spectral Proper Orthogonal Decomposition (SPOD) by Picard and Delville (2000).

The method is formulated as follows: Obtain a set of M DFTs of flow data over several windows

of length N (ûi

k
, where i 2 M is the ensemble number and k 2 N is the mode number). Then,
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collect all M estimates of a particular mode into a matrix and perform SVD:

[û0
k

û1
k

... ûN�1
k

] = U⌃VH . (2.9)

Performing this operation on every set of Fourier modes creates a frequency-domain description of

the flow in terms of M · N SPOD modes. The structures identified by this method are claimed by

Towne et al. (2018) to evolve coherently in space and time, unlike those identified by basic POD

or DMD. The modes found by this method correspond to individual frequencies due to the Fourier

decomposition and are optimized in terms of energy due to the SVD.

The other formulation of SPOD, introduced by Sieber et al. (2016), uses a filter on the temporal

correlation matrix of flow snapshots (the correlation matrix is often used to calculate the POD). The

filter is implemented through a convolution of the correlation matrix coefficients with a windowing

function of custom width (Sieber, 2021). The method recovers the Fourier modes and Power

Spectral Density of the flow in the limit of filtering over the whole window. It was shown that

SPOD was able to obtain "much better separation of individual fluid dynamic phenomena into

single modes" (Sieber et al., 2016) compared to either POD or Fourier modes.

While these data analysis methods (i.e. POD, DMD, and both SPODs) are useful for educing

structures or dynamics of particular flows, they conspicuously do not include a direct connection

to the involved physical processes. This would be useful when avoiding the complexity of the

full Navier-Stokes equations. For instance, a common application is a Galerkin projection of the

governing equations onto the spatial modes. This approach is useful when short-term predictions

of the flow dynamics are desirable (Noack et al., 2003). However, this does not provide spatial

information for characterizing regions where nonlinear interactions are important (Schmidt, 2020).

Other nonlinear analysis methods include higher-order spectral methods (Qing, 2004), which

introduce the idea of the "bispectrum". The bispectrum is used to characterize relationships

between Fourier modes of a nonlinear system, specifically by measuring the degree of correlation

between triads of frequency or wavenumber components. This makes it natural for analysing
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systems with quadratic nonlinearity, such as incompressible flows described by the Navier-Stokes

equations. These triadic interactions between structures at different wavenumbers have been

successfully applied, for example to the turbulent kinetic energy cascade (Durbin and Pettersson,

2011). However, interactions between modes of different frequencies has been less extensively

studied. Recently, the Bispectral Modal Decomposition was proposed by Schmidt (2020), which is

a promising method to analyse triadic interactions through a specialized decomposition technique

that maximizes the bicorrelation between frequency or wavenumber components of a flow. The

quantity of interest for BMD is a vector of complex expansion coefficients (ak,l = aj

k,l
) for each

triad (k, l, k + l) that maximizes the quantity

a1 = arg max
kak,lk=1

��aH

k,l
Q̂H

k�lWQ̂k+lak,l

��, (2.10)

such that

�1 = aH

1 Q̂H

k�lWQ̂k+la1. (2.11)

The quantity �1 can be interpreted as representing a maximized bicorrelation for a particular triad.

W is a weight matrix that is used to approximate spatial integration. Q̂k�l = [q̂0
k
�q̂0

l
...q̂n

k
�q̂n

l
]1, and

Q̂k+l = [q̂0
k+l

...q̂n

k+l
] are matrices formed from the Fourier modes (q̂i

k
) of sequences of snapshots

that have been split into n blocks. The coefficients a1 are then used to construct modes that

represent the driving interaction and result of a triadic interaction. It relies on coincidence of local

components of Fourier modes. However, this method cannot directly relate the magnitude of the

nonlinear interactions to the physical transportation processes that govern the flow.

The concept of temporal Fourier decomposition have also been applied to simulation methods.

Spatial Fourier modes are often used in, for example, three-dimensional simulation with a homo-

geneous direction (Najjar, 1994; Durbin and Pettersson, 2011) or to investigate transitions to three

dimensionality (e.g. Gioria et al., 2009; Barkley and Henderson, 1996). Temporal decomposition,

however, is less common. Simulation methods exploiting periodicity have been independently

1q̂k � q̂l is the elementwise product of two vectors
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introduced by three groups in the last three decades. Initially, Carte et al. (1995) introduced the

Spectral Time Discretization as a method to quickly simulate flows with distinct periodicity. This

method involves the assembly of a fully coupled system of equations to solve for the velocity and

pressure Fourier modes of a flow. Independently, Hall et al. (2002) developed a similar method

for turbomachinery applications called the Harmonic Balance Technique, which built upon earlier

research on calculating harmonics based on a known mean flow. The Harmonic Balance is typically

applied to cases where the periodicity is applied externally, for instance in turbomachinery. The

method includes compressibility effects and turbulence modeling by applying the spatial discretiza-

tions in the time domain, and then returning to the frequency domain to solve the resulting systems

of equations. Development of new solvers based on the Spectral Time Discretization and Harmonic

Balance Technique have continued in recent years. For example, Beneddine (2017) proposed a

matrix-free, implicit treatment of the decomposed equations to address some stability issues with

the Spectral time method. Another example is the Fourier-Galerkin method of Sierra-Ausin et al.

(2022), which is an extension of the Harmonic Balance technique. The method compares favourably

with the Spectral Time Discretization in terms of computational resources, and is able to detect the

fundamental frequency of a flow during simulation.

More recently, another temporal Fourier decomposition-based method was introduced as an ex-

tension of linear stability analysis. Named the Self Consistent Method by Mantic-Lugo et al. (2015),

it involves repeated application of both linear stability analysis and the decomposed momentum

equations that result from applying a Fourier decomposition to the Navier-Stokes equations. The

method is shown to be able to detect the growth rate and saturation amplitude of periodic wakes

(Mantic-Lugo et al., 2015; Meliga, 2017) and it can be used for flow sensitivity (Meliga et al.,

2016).
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2.4 Background of case studies

The case studies of this dissertation involve a jet flow as well as bluff body wakes of square cylinders

and flat plates. A brief background on these cases is presented here.

Bluff bodies are an important class of fluid flow due to their engineering application. These

bodies are characterized by their separated flow and large drag (Roshko, 1993). Examples of

these bodies are found in motor vehicles (Ahmed et al., 1984), buildings (Wang et al., 2012),

energy harvesting systems (Liu and Oztekin, 2018), and solar panels (Fogaing et al., 2019). Even

aerodynamic structures like wind turbines can act like bluff bodies in some circumstances (Eriksen

and Krogstad, 2017; Araya et al., 2017), which has an impact on their performance.

A common feature of bluff body wakes is vortex shedding (Roshko, 1993), which is an unsteady

phenomenon induced by instability of the free shear layers. Two widely studied examples include

shedding from circular and square cylinders. These cases are used as a simple representative model

for all bluff bodies (Williamson, 1996; Roshko, 1993; Balachandar et al., 1997; Bai and Alam,

2018). Flow over these bodies is characterized by a steady separated flow under Re = 50. Above

this point they transition to periodic unsteady 2D vortex shedding, which also results in changes

in the mean wake, such as shortening of the recirculation region (Williamson, 1996; Bai and

Alam, 2018). The flow undergoes transitions to three-dimensionality around Re = 140 � 194 for

circular cylinders (Williamson, 1996) and Re = 150�200 for squares. There is a wide range for this

transition as it is highly sensitive to experimental conditions. The transition to three-dimensionality

is also swiftly followed by breakdown of the periodicity and onset of turbulence. The difference

in geometry significantly alters mean and fluctuating properties of the wake. The most significant

change lies in the sharp edges at the leading and trailing edge of the square cylinder, which defines

the separation points of the flow. Meanwhile, the separation point of a square cylinder is unfixed

(Bai and Alam, 2018), which results in altered physics.

Multiple adjacent bluff bodies are also important to characterize due to the interaction between

the wakes. For instance, when two cylinders are arranged side-by-side, the resulting combined

wake changes based on the size of the gap (Ma et al., 2017). For small gaps - less than half of
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the cylinder diameter - little fluid is able to penetrate between the two cylinders and the overall

effect is that of a single object. For large gaps, there is little interaction between the cylinders and

their wakes are independent. However, this behaviour does not uniformly change between the two

extremes. For some gap sizes, the flow through the gap forms a jet that interacts strongly with the

shedding behind the cylinders. This leads to an overall asymmetry in the flow and a phenomenon

known as flip-flopping (Carini et al., 2014; Burattini and Agrawal, 2013; Ma et al., 2017). The

flip-flopping process involves random changes in the jet direction over time, which affects the drag

and lift forces on each cylinder.

Another important concept in bluff body turbulence research is the idea of "nominal two-

dimensionality". Nominally two-dimensional bodies have a span that is much larger than their

length or chord. The hypothesis behind nominally 2D flow is that with an appropriately designed

experimental setup, extraneous three-dimensionality due to end effects could be eliminated (Roshko,

1993). This is important for reconciling theoretical, numerical, and experimental results on bluff

body wakes (Lisoski, 1993). However, the intrinsic three-dimensionality of the flows are important

(Williamson, 1996; Najjar, 1994; Hemmati et al., 2018). That is, spanwise variations of the bluff

body wake arise naturally and have a significant effect on the flow. Additionally, extrinsic three-

dimensionality are a major factor in the wake development and evolution, even for long bodies

(Williamson, 1996).

Thin flat plates represent a particularly interesting case of bluff bodies due to the lack of an

afterbody (Williamson, 1996; Balachandar et al., 1997). They are "sharp-edged", so flow separates

at corners on the body (Sychev et al., 1998), and it is unable to reattach due to the thinness of the

plate (Hemmati, 2016). This destabilizes the free shear layers behind the plate, and changes the

mean flow characteristics with respect to other bodies. Like all bluff bodies, the flow is intrinsically

three-dimensional except at very low Reynolds number (Re < 250) (Najjar, 1994). Consequently,

the deceptively simple geometry and setup results in complicated physics. The wake of a flat

plate features Karman-like vortex shedding (Braun et al., 2020), with the primary vorticity in the

spanwise direction consisting of rollers. There are also spanwise structures known as ribs that
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wrap around the rollers (Hemmati et al., 2018). However, the shedding is not regular and there is

low-frequency modulation (Najjar and Balachandar, 1998; Wu et al., 2005). This modulation is

related to changes in shedding regimes (Hemmati et al., 2016a). The regimes can be characterized

by low (L), medium (M), and high (H) drag due to vortex shedding. The low regime involves a

suppressed of vortex shedding process with a decrease in drag coefficient, loss of coherence in

wake structures, and an elongated recirculation region. Meanwhile, the high regime has vigorous

shedding and an increased drag coefficient with a shortened recirculation region, as well as coherent

and long lasting ribs and rollers. The moderate regime falls between the low and high regimes in all

characteristics (Hemmati et al., 2016a). Intrinsic and extrinsic three-dimensionality is also highly

important for flat plates (Lisoski, 1993; Najjar and Vanka, 1995a; Braun et al., 2020). Achieving

two-dimensionality can depend on the presence of walls, free surfaces, and end plates of different

angles (Lisoski, 1993). Recently, Braun et al. (2020) showed that long (aspect ratio = 38) flat

plates can exhibit a very different wake based on end conditions. In their study, an open-ended

plate featured lower streamline curvature, entrainment of vorticity toward the plate, correlation of

pressure and velocity signals over time, and turbulent kinetic energy dissipation compare to a plate

with angled end plates. However, the spanwise variation of the flow was not characterized.

A swirling jet case is also considered in this thesis. Jets are widely studied due to their real-world

applications, such as in heat transfer, deposition, and cleaning. A simple case of a jet occurs when

a stream of fluid at one velocity enters a domain moving at a different velocity, such as air exiting

a duct into the atmosphere (Abramovich, 1963). The result is a free-shear layer that surrounds a

region of potential flow in the core of the jet. The shear layers grow as they entrain the surrounding

fluid, and the jet eventually becomes self-similar (Phares et al., 2000; Durbin and Pettersson, 2011).

Swirl (flow in the angular direction) is an important characteristic for jets of fluid in cylindrical

domains (Herrada et al., 2009). Induced swirl changes the mechanical characteristics of the jet

due to centripetal forces. Particularly, swirl in jets can induce sections of reverse flow in the axial

direction called vortex breakdown (Liang and Maxworthy, 2005). These recirculation regions

significantly alter the structure of the jet. They can also enforce axisymmetry, which is useful for
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modeling (Herrada et al., 2009; Rojas et al., 2008). In simulations, the jet swirl is enforced through

assumed boundary conditions at the jet exit (Buntine and Saffman, 1995; Herrada et al., 2003;

Shuja et al., 2003; Herrada et al., 2009)
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Chapter 3

DERIVATION OF FANS

This chapter provides a detailed derivation of the FANS equations for both continuous and discrete

data. It also outlines the basic steps of calculating the terms in order to analyse flow data using

FANS.

3.1 Continuous domain

The derivation begins by considering the incompressible Navier-Stokes equations of a Newtonian

fluid:
@u

@t
+ u · ru = �rp +

1

Re
r2u, (3.1)

where u is the instantaneous velocity vector field and p is the pressure field. These quantities are

non-dimensionalized with length scale h and velocity scale U1, such that the Reynolds number is

Re = U1h/⌫, where ⌫ is the kinematic viscosity. The flow is incompressible, so the continuity

equation has the form:

r · u = 0. (3.2)
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For the purposes of this method, the velocity and pressure fields are assumed to be representable

as a Fourier series in time with period 1/f :

u =
1X

k=�1

ûke
j2⇡kft (3.3)

and

p =
1X

k=�1

p̂ke
j2⇡kft. (3.4)

The coefficients in the infinite series (û and p̂) are complex-valued spatial functions that will

henceforth be referred to as the velocity and pressure modes, respectively. The time-dependent part

of the Fourier series is referred to as the dynamics. Substituting the Fourier series representation

of the flow fields within the Navier-Stokes equations returns the following:

@

@t

X

k

ûke
j2⇡kft +

X

k

ûke
j2⇡kft · r

X

k

ûke
j2⇡kft = �r

X

k

p̂ke
j2⇡kft +

1

Re
r2

X

k

ûke
j2⇡kft.

(3.5)

This representation allows us to isolate momentum equations for the individual modes (ûk, p̂k)

using the well-known orthogonality property of the dynamics under the inner product hu, vi =

f
´ 1/f

0 uv dt :

f

ˆ 1/f

0

ej2⇡fktej2⇡flt dt =

8
>><

>>:

1, k = �l

0, otherwise
, k, l 2 Z. (3.6)

This is useful if both sides of Equation 3.5 are multiplied with the test function fe�j2⇡lft and

integrate over the interval T = [0, 1/f ]:

f

ˆ
T

e�j2⇡lft

0

BB@
@

@t

X
ûke

j2⇡kft

| {z }
Unsteady term

+
X

ûke
j2⇡kft · r

X
ûke

j2⇡kft

| {z }
convection term

1

CCA dt
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= f

ˆ
T

e�j2⇡lft

0

B@�r
X

p̂ke
j2⇡kft

| {z }
pressure term

+
1

Re
r2

X
ûke

j2⇡kft

| {z }
diffusion term

1

CA dt. (3.7)

The application of this integral will be considered term by term.

3.1.1 Pressure and Diffusion terms

The right hand side of equation 3.7 can be manipulated by commuting the integral and spatial

derivative operators with the summations:
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ˆ
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e�j2⇡lft

✓
�r

X
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k

f

ˆ
T
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Re

X

k

f

ˆ
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= �
X

k

✓
f

ˆ
T

e�j2⇡lftej2⇡kft dt

◆ ✓
rp̂k +

1

Re
r2ûk

◆
.

The integral in the final line is notably the inner product in Equation 3.6. Thus, it is only nonzero

when l = k. As a result, the summation terms have a value of rp̂l + 1/Rer2ûl for l = �k and 0

otherwise. Thus, the right hand side of Equation 3.7 becomes:

f

ˆ
T

e�j2⇡lft

✓
�r

X
p̂ke

j2⇡kft +
1

Re
r2

X
ûke

j2⇡kft

◆
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1

f

✓
rp̂l +

1

Re
r2ûl

◆
. (3.8)

3.1.2 Unsteady term

The unsteady term of Equation 3.7 can be written as:

f

ˆ
T

e�j2⇡lft
@

@t

X
ûke

j2⇡kft dt = f

ˆ
T

ej2⇡lft
X

ûk

@
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�
ej2⇡kft

�
+
@

@t
(ûk) ej2⇡kft dt.
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The @

@t
(ûk) term vanishes since the Fourier modes are functions of space only. Thus, the inner

product can be written:

= f

ˆ
T

e�j2⇡lft
X

ûk (j2⇡kf) ej2⇡kft dt.

This once again isolates ûl due to the inner product property (Equation 3.6). As a result:

f

ˆ
T

e�j2⇡lft
@

@t

X
ûke

j2⇡kft dt = j2⇡lf ûl (3.9)

3.1.3 Convection term

The nonlinearity of the convection term makes its treatment more complicated. With the inner

product from Equation 3.7, the convection term is

f

ˆ
T

e�j2⇡lft
X

k

ûke
j2⇡kft · r

X

i

ûie
j2⇡ift dt (3.10)

= f

ˆ
T

X

k

X

i

e�j2⇡lftej2⇡iftej2⇡kft (ûk · rûi) dt (3.11)

=
X

k

X

i

f

ˆ
T

e�j2⇡lftej2⇡(i+k)ft dt (ûk · rûi) . (3.12)

Here, the integral is nonzero only when l = i+k (Equation 3.6). This reduces the double summation
P

k

P
i
to a single summation

P
i
with the change of index k = l � i. As a result,

ˆ
T

e�j2⇡lft
X

k

ûke
j2⇡kft · r

X

i

ûie
j2⇡ift dt =

X

i

ûl�i · rûi. (3.13)

Isolating the terms involving mode l and the mean flow in this summation connects the FANS

equations to the linearized Navier-Stokes equations. This isolates the effect of inter-frequency
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coupling on the mechanics. Thus,

X

i

ûl�i · rûi = ûl · rU + U · rûl +
X

i 6=0,l

ûl�i · rûi, (3.14)

where U is the mean velocity. The three terms can be interpreted as follows: ûl · rU and U · rûl

represent the effect of convective transport by mode l on the mean field and vice versa. These

are the terms that arise from a linearization of the Navier-Stokes equations, for instance in linear

stability analysis (Kirchgassner, 1975). Meanwhile, the final term
⇣P

i 6=0,l
ûl�i · rûi

⌘
represents

the effect on mode l of coupling between other modes. This can be viewed as a forcing term on the

momentum equation for mode l. The forcing of the equation for mode l due to modes l and i � l

is part of the inspiration of higher-order spectral methods that look at triadic interactions, such as

the Bispectral Mode Decomposition (Schmidt, 2020). These interactions will be referred to as the

Fourier stresses as an analogy to the Reynolds stresses. This term can be written as

�̃[ul] =
X

i 6=0,l

ûl�i · rûi. (3.15)

Using the results of Equations 3.8, 3.9, 3.14 and 3.15, the momentum equation corresponding to

mode ûl is:

j2⇡lf ûl + ûl · rU + U · rûl + �̃[ûl] = �rpl +
1

Re
r2ûl. (3.16)

3.1.4 Continuity

Each velocity mode is divergence-free. Using the Fourier series representation in the continuity

equation, it becomes:

r · u = r ·
X

k

ûke
j2⇡kft = 0. (3.17)
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To isolate an equation for mode ûl, an inner product of this equation is applied with the test function

e�j2⇡lft. This yields:

ˆ
T

e�j2⇡lftr ·
X

k

ûke
j2⇡kft dt =

ˆ
T

r ·
X

k

�
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j2⇡kfte�j2⇡lft
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dt

= r ·
X

k

ˆ
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ûke
j2⇡(k�l)ft dt = r ·

X

k

ˆ
T

ej2⇡(k�l)ft dtûk. (3.18)

Once again the integral disappears except for l = k (Equation 3.6):

ˆ
T

e�j2⇡lftr ·
X

k

ûke
j2⇡kft dt = r · ûl. (3.19)

Likewise, the integral of the right hand side of the continuity equation reduces to zero:

ˆ
T

e�j2⇡lft(0) dt = 0. (3.20)

Combining the two results of the inner product, we have:

r · ûl = 0. (3.21)

This can be interpreted as a set of continuity equations that the velocity modes each satisfy

independently.

3.2 Discrete Domain

The above results are only appropriate for continuous data, which is unrealistic for most flow

analysis. In reality, discretely-sampled simulation or experimental data are collected for analysis.

As a result, the continuous Equation 3.1 is approximated using discrete analogs:

�un

�t
+ C[un,un] = �G[pn] +

1

Re
L[un] (3.22)

27



where un, pn are the nth discrete snapshot of the velocity and pressure fields, C[·, ·] is a discrete

convection operator, G[·] is a discrete gradient, and L[·] is a discrete Laplacian. For the purposes of

this derivation, the particular choices of G and L are assumed to be linear. Assuming that the data

consists of N evenly-spaced snapshots of the pressure and velocity fields, we will apply a Discrete

Fourier Transform (DFT) to these fields:

ûk =
NX

n

uie
j2⇡kn/N (3.23)

The discrete equations can be then cast into the frequency domain using the expansion coeffi-

cients ej2⇡kn/N . Defining fn = n/N , the discrete equations can be decomposed as:

j2⇡fkûk + C[U, ûk] + C[ûk,U] = �G[p̂k] +
1

Re
L[ûk] �

X

l 6=0,k

C[ûl, ûk�l] (3.24)

The closure term (Fourier stresses) will be represented as:

X

l 6=0,k

C[ûl, ûk�l] = �[ûk] (3.25)

The discrete formulation has direct correspondence to the terms of the continuous formulation.

These equations will be referenced in place of the continuous equations for the remainder of the

thesis.

3.3 Application

The application and utility of the final momentum equations may not initially be clear. As a result,

this chapter discusses the physical interpretation of the terms and discuss options for calculating

them. Particularly, this is to distinguish this method from previous works involving similar equations

such as the Time Spectral, Harmonic Balance, and Self-Consistent Methods discussed in Chapter

2. The above methods use the decomposed momentum equations for simulation of periodic flows.
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Table 3.1: Names of FANS terms.

Terms Continuous form Discrete form
Unsteady j2⇡kf ûk j2⇡fkûk

Convection by mean U · rûk C[U, ûk]
Convection of mean ûk · rU C[ûk,U]
Pressure rp̂k G[p̂k]
Diffusion 1

Re
r2ûk

1
Re

L[ûk]
Fourier stresses �̃[ûk] �[ûk]

In contrast, the idea here is to leverage the equations to extract additional information from flow

field data obtained from any source, including unsteady simulations and experiment.

3.3.1 Interpretation of terms

Similar to the terms in the turbulent kinetic energy budget from RANS (Durbin and Pettersson,

2011), the FANS equations can be seen as a momentum budget for different Fourier modes. As

such, it is natural to name and interpret each term separately. The names, as well as discrete and

continuous forms of each term are shown in Table 3.1. The specific interpretation of each of these

terms are outlined below:

Unsteady term The unsteady term (UT) is a scaled version of the corresponding velocity mode

with a 90� phase shift. By interpreting this term as the difference of the other five, spatial

distributions of each Fourier mode can be understood as the result of the contributions of the

diffusive, pressure, and convective fluxes.

Mean flow convection terms The mean flow convection term represents the effects of transport

by and on the mean flow by the mode ûk. These terms are similar to the convection terms

that arise when the Navier-Stokes equations are linearized about the mean flow.

Fourier stresses The remaining parts of the convection term, which arise due to the coupling

between modes, are called Fourier stresses. They are named as such to make an analogy to

Reynolds stresses, which appear in the RANS equations.
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Figure 3.1: Options for calculating FANS terms

Diffusion term The diffusive fluxes at a particular timescale only affect the mode corresponding

to that timescale.

Pressure term The influence of pressure fluctuations at a given frequency are isolated to the

corresponding pressure modes. Pressure can be treated as an independent variable, or as

another operation on the velocity field, since it can be entirely determined by the velocity

field and boundary conditions in incompressible flows (Foias et al., 2001). However, the

latter interpretation is less intuitive and more difficult to calculate. The pressure term requires

further decomposition into mean-flow convection, Fourier stress, and boundary contributions.

Thus, for the purposes of this thesis, the pressure will be treated as an additional applied

force.

3.3.2 Calculation of terms

Two methods can be utilized to calculate the FANS terms from flow field data. A visualization

of these processes can be seen in Figure 3.1. The first option is to calculate the Navier-Stokes

terms on the original snapshots and then apply the Discrete Fourier Transform (DFT) on each set

of terms. The other option is to apply the DFT to the snapshots and then calculate the FANS

terms from the modes. For the unsteady, diffusion, pressure, and mean-flow convection terms,

these two methods are equivalent. However, the first method allows the Fourier stresses to be
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calculated quickly by calculating the derivatives in the time domain, whereas the second method

requires calculating a sum of N convection terms in the frequency domain for each of the N modes.

The first method is widely used in this thesis. Code for implementing this process is presented in

Appendix A for OpenFOAM and Python. Meanwhile, the second method is occasionally used when

the contribution of particular frequencies to the Fourier stresses is desired. Code for calculating

this effect in Python is presented in Section A.8

When the FANS equations are calculated from simulation data, it is recommended to use the

same spatial discretization methods as the solver of the governing equations, when possible. For

instance, if central differencing scheme was employed to calculate the convection term, then central

differencing scheme should be utilized to calculate the mean flow convection and Fourier stress

terms. Keeping the discretization method consistent prevents additional numerical errors. This

strategy was taken in all case studies investigated as a part of this thesis.

The derivation of FANS that results in Equation 3.24 implies a single, long-time box window

including all available data. As a result, the standard rules apply with regards to sampling frequency

and window size. The analysis window must be sufficiently large to allow for good frequency

resolution. Furthermore, utilizing the DFT in this case indicates that FANS is highly useful in cases

with cyclic behaviour, either through regularly or irregularly recurring structures or processes.

31



Chapter 4

NUMERICAL METHODS FOR CASE

STUDIES

Application of the FANS equations and the interpretation of this analysis is evaluated with several

case studies. The first three case studies are used to compare the FANS terms to well-established

physics in literature. These cases replicate simulations used in previous investigations. These

cases are: laminar vortex shedding over a two dimensional square cylinder (Bai and Alam, 2018),

impingement of a swirling axisymmetric jet onto a flat plate (Herrada et al., 2009), and the

nonperiodic wake of a pair of two dimensional cylinders arranged side-by-side (Ma et al., 2017).

The next series of cases are of 3D flow over a normal flat plate at Reynolds number of 250.

Several cases will be set up to analyse the effect of different end conditions on the wake and

periodicity of this flow. End effects on the wake of normal flat plates are not yet fully understood

(Braun et al., 2020). FANS is implemented to evaluate its utility in educing new physics in this

complex wake as was discussed in Section 2.4. Simultaneously, understanding the end effects on

the wake physics is valuable to the bluff body community. The computational details of each of

these cases will be elaborated upon separately.
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Figure 4.1: Domain setup for square cylinder at Re = 100.

4.1 Square cylinder

The first case study looks at the laminar flow over a square cylinder at Reynolds number of 100. This

is a simple, two dimensional, and periodic flow, which constitutes a simple known problem in fluid

mechanics. The simulation is set up in order to mimic the results of Bai and Alam (2018) for their

two dimensional cylinder cases. The simulations are completed using the finite volume toolbox

OpenFOAM (v2012). The computational domain and boundary conditions are shown in Figure

4.1. The domain extends 5h upstream of the cylinder, 20h downstream, and 8h in both transverse

directions. Velocity boundary conditions consist of a uniform inlet condition of U1 = 1, no slip at

the cylinder, and zero gradient at the sides and outlet boundaries. The pressure boundary conditions

are zero gradient everywhere except at the outlet, where the pressure is set to a uniform value of

p = 0. The OpenFOAM tool blockMesh was used to generate the mesh. 100 uniformly spaced

cells are placed along each side of the cylinder, giving a minimum mesh spacing of �x/h = 0.01.

The mesh spacing is smoothly inflated at a rate of 1.02 in each direction away from the cylinder.

The total number of cells in the mesh is 1.4 · 105, which is shown in Figure 4.2, including a detailed

view of the mesh around the cylinder. Second order central differencing scheme is used for all

spatial discretizations. The Crank-Nicholson method with a blending factor of 0.95 is used for

temporal discretization with a time step of �tU1/h = 0.01 in order to hold the Courant number

below 1. Pressure-velocity coupling was handled using the Pressure-implicit with Splitting of
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Figure 4.2: Visualization of mesh around square cylinder. Inset: Detail view of mesh at upper left
corner of cylinder.

Operators (PISO) method. Two pressure correctors were used at each time step. The solution

of the linear systems consisted of a Generalized Geometric-Algebraic Multi-grid (GAMG) solver

with Gauss-Seidel smoothing for the pressure and velocity. The results are validated against the

simulation of Bai and Alam (2018) at the same Reynolds number, which it replicates satisfactorily.

The wake at this Reynolds number consists of a single, periodic Karman vortex street that is

shed from the leeward side of the cylinder. The vortices grow due to diffusion and diverge from the

wake centreline as they move downstream. The interaction of these vortices in the near wake and

the corresponding momentum fluxes will be analysed using the FANS formulation and analysis.

4.2 Swirling Jet

The next case involves a swirling jet impinging on a flat plate, which is incrementally more complex

than the wake of a square cylinder. This case, based on Herrada et al. (2009), is selected because

of its highly modulated but periodic time signature. The jet is axisymmetric, and has contributions

from all three velocity components due to the swirl. OpenFOAM is used for this simulation.
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Figure 4.3: Domain setup for swirling jet at a Reynolds number of 204. The jet swirl parameter is
S = 0.3 and the vortex core diameter is � = 0.25.

Figure 4.4: Mesh of the swirling jet case. Upper section of the domain is cut off; cells inflate
uniformly towards the outlet.
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The basic domain is shown in Figure 4.3. The domain consists of a jet with uniform axial velocity

flowing from an inlet diameter d and Reynolds number (Re = Ud/⌫) of 204. A Burgers vortex

is imposed on the jet to represent the swirl. The vortex is characterized by two nondimensional

parameters, the swirl parameter S and a vortex core radius �. This jet is implemented as a velocity

boundary condition with a zero-gradient pressure condition. Outside the inlet, the left wall is

assigned the no-slip condition. The jet impinges upon a no-slip wall (plate) placed 10d from

the inlet. The axisymmetric domain has a total radius of 30d following Herrada et al. (2009)

to ensure domain size independence, and the farfield is implemented as a zero-gradient velocity

condition with uniform p = 0. The mesh is created using the blockMesh and extrudeMesh

tools in OpenFOAM. A wedge domain with a swept angle of 1� is used for the axisymmetric

flow simulation using Cartesian coordinates. 220 cells are placed along the axial direction with

additional refinement at the inlet and wall boundaries. Cell spacing in axial direction inflates at a

uniform rate of 1.01 away from the boundaries. The inlet is meshed with 60 uniformly spaced cells

in the radial direction, and the remainder of the wall is meshed with 322 cells in the radial direction

that inflate uniformly at a rate of 1.01. The total number of cells is 7.96 · 104. A view of the lower

section of the mesh is shown in Figure 4.4. Second order central differencing scheme is used for

spatial discretization of the governing equations. A second-order backward scheme is used for time

discretization with a uniform time step of �tU/d = 0.002, which ensures that the Courant number

remains around 0.8. The PISO algorithm with two pressure correctors is used for pressure-velocity

coupling. The linear systems for pressure and velocity are solved using GAMG and Preconditioned

Bi-conjugate Gradient (PBiCG) solvers, respectively. A Diagonal-based Incomplete Lower-Upper

(DILU) preconditioner is used for the velocity system.

The swirl parameter S and core radius � are 0.3 and 0.25, respectively. This results in a

complicated but periodic jet discussed in Herrada et al. (2009). The simulation was validated in

terms of the minimum value of the axial velocity U over time, which was reported by Herrada

et al. (2009) (Figure 4.5). The present simulation closely tracks their time history. The error in

the period is 1%, and the mean squared error is 2% of the minimum velocity range. Herrada et al.
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Figure 4.5: Time history of minimum streamwise velocity in the domain for verification against
Herrada et al. (2009). Solid line: present study. Dashed line: Herrada et al. (2009).

(2009) noted that the jet is characterized by a large recirculating region along the central axis, called

a “vortex breakdown (VB) bubble", as well as several axisymmetric vortex bubbles that originate

and decay close to the wall over multiple intervals each cycle. The circulation convects outward

due to radial flow from the jet impingement. The periodic origin and decay of transient vortex

bubbles results in a highly modulated time signature. Consequently, the spectrum of the flow is

composed of large energy concentrations at several distinct frequencies with a base frequency of

f ⇤ = fd/U ⇡ 0.011.

4.3 Side by Side cylinders

The next case study to illustrate the application and strength of FANs involves the wake of two

side-by-side cylinders. This case is selected as a further increase in complexity over the first two

cases. The additional complexity comes from irregularity in the vortex shedding. Instead, there

are several dominant frequencies in a broadband spectrum. This complicated time signature arises

from two shedding processes - shedding from the individual cylinders and a Karman wake that

develops several cylinder lengths downstream. At any particular moment, the wake is asymmetric
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Figure 4.6: Domain setup of side-by-side cylinders with a gap ratio of 0.6 at a Reynolds number of
90. Figure not to scale.

and the shedding is stronger from one of the two cylinders. However, this asymmetry switches over

time in a process known as “flip-flopping" (Burattini and Agrawal, 2013; Carini et al., 2014). The

shedding and flip-flopping processes repeat irregularly over time (Ma et al., 2017).

The simulation is set up with a domain represented in Figure 4.6. The Reynolds number based

on the cylinder diameter is Re = U1D/⌫ = 90. The gap between the cylinders is g = 0.6D. This

results in an irregular, nonperiodic wake that was described by Ma et al. (2017). The mesh setup

and domain are constructed to mimic the simulations of Ma et al. (2017), which assume the flow

to be 2D. The domain extends 10D ahead, 40D behind, and 15D above and below the cylinder

centrepoints to ensure domain independence. The boundary conditions consist of no-slip walls at

the cylinders and slip conditions at the sides. The inlet has uniform velocity U1 = 1 and zero

pressure gradient. The outlet has a uniform outlet pressure of 0 and zero velocity gradient.

There are 25 cells arranged uniformly around each side of the cylinders. The mesh spacing

is finer normal to the cylinders to adequately resolve the boundary layers, with the smallest mesh

spacing as 0.01D. The mesh expansion rate is maintained below 1.02 in the domain. 55 cells are

placed in the gap with a hyperbolic mesh law, with a minimum spacing of 0.01D. There were a
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Figure 4.7: Mesh for dual cylinder case. Left: View of mesh around cylinders and in wake, Right:
detail view of mesh in between cylinders.

Table 4.1: Mean drag and lift coefficients for pair of side-by-side cylinders at Re = 90, g/D = 0.6,
compared to Ma et al. (2017).

Property Ma et al. (2017) Lower cylinder Upper cylinder
Cd 1.93 1.90 1.88
Cl 0.71 -0.71 0.69

total of 515 cells in the streamwise and 474 cells in the transverse direction, for a total of 2.4 · 105

cells. The mesh is shown in Figure 4.7.

Simulations were completed in OpenFOAM using the PIMPLE (combined PISO-SIMPLE)

algorithm for pressure-velocity coupling. Two outer (nonlinear) iterations each with three pressure

corrections were used. The time step was 0.002�tU/D to maintain the Courant number under 0.4.

Second order central differencing scheme was used for spatial discretization and a second-order

backward solver was used for the temporal discretization of the governing equation. GAMG was

used as the solver for the pressure system and PBiCG with a DILU preconditioner was used for

the velocity system. The time histories of drag and lift coefficients closely match with the results

of Ma et al. (2017). Mean properties of each are shown in Table 4.1. The simulation was run for

an interval over 2500D/U to ensure that there was sufficient data for FANS and BMD analysis,

corresponding to roughly 400 shedding cycles and over 25 flip-flop processes.
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Figure 4.8: General geometry and boundary conditions of flat plate cases. Not to scale.

4.4 Flat plate

The final set of cases considered in this thesis consist of three-dimensional flow over a flat plate

at a Reynolds number of 250. The purpose of this study is to consider the effect of the plate end

condition on the mean and fluctuating characteristics. As a result, several cases will be considered,

keeping fixed Reynolds number, with altered length and boundary conditions at the ends (spanwise

edges). Normal flat plates exhibit complicated physics due to their intrinsically 3D wake (Najjar,

1994; Hemmati et al., 2018). The wake is also highly sensitive to extrinsic 3D effects due to the

spanwise end conditions (Lisoski, 1993; Hemmati et al., 2016b; Braun et al., 2020). In experiments,

extrinsic effects are usually eliminated through the use of long plates (Lisoski, 1993; Williamson,

1996; Braun et al., 2020), while simulations employ periodic boundary conditions (Najjar, 1994;

Balachandar et al., 1997; Hemmati et al., 2018; Singh and Narasimhamurthy, 2022). However,

Braun et al. (2020) recently reported a pair of flat plate wakes that were highly affected by spanwise

end conditions despite a large aspect ratio. When angled end plates were used, it was shown to

strongly affect the fluctuating and mean characteristics of the wake, even at the midspan. As a result,

this work will also consider a simulation study of differing end-plate conditions on the fluctuating

characteristics of the flow using the decomposed momentum equations.

A general domain for these cases is shown in Figure 4.8. The control volume consists of a plate

that runs along the entire length of the z (spanwise) direction. The plate is oriented normal to the
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Boundary Velocity condition Pressure condition
Inlet Uniform (U1, 0, 0) Zero gradient
Outlet Zero gradient Uniform p = 0
Sides Zero gradient Zero gradient
Ends Case-specific

Table 4.2: Common boundary conditions for flat plate cases.

Figure 4.9: Mesh of flat plate case. Left: View of whole domain in x � y plane. Inset: Detail view
of mesh around plate in x � y plane. Right: Uniform spanwise meshing for Case 1 and 2 seen in
z � y plane.

freestream. There is a distance of 5h ahead of the plate and 20h behind it. The domain extends

8h above and below the plate to reduce blockage effects. These dimensions are commonly used in

similar simulation studies (e.g. Najjar and Vanka, 1995b; Afgan et al., 2013; Hemmati et al., 2018).

The spanwise width of the domain is varied case-by-case, as will be described later. The common

boundary conditions are detailed in Table 4.2. The minimum mesh spacing at the plate is 0.02h

and the expansion rate is held under 1.03 in all directions. A reduced expansion rate of 1.01 at the

plate assists in resolving the recirculation region. Details of the mesh are visualized in Figure 4.9.
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Table 4.3: Flat plate cases considered in current study.

Width End condition Name Cells in spanwise direction Total cells
Case 1 2⇡h Periodic Base 96 5.6 · 106

Case 2 2⇡h Slip Slip 96 5.6 · 106

Case 3 2⇡h No-slip No-slip 140 8.2 · 106

Case 4 4⇡h No-slip Double 234 13.1 · 106

OpenFOAM was used to complete the simulations. In all cases, the time step was 0.003h/U1

which ensured that the Courant number remains less than 0.4. Second-order backward differencing

scheme was used for temporal and central differencing scheme used for spatial discretization of the

governing equations. The PISO method was used for pressure-velocity coupling. GAMG was used

for the pressure solver and PBICG preconditioned with the DILU method was used for the velocity

solver.

The spanwise width and end boundary conditions are varied in order to analyse their effect on

the flow. The cases are selected to compare a number of these conditions. Differences in the cases

are detailed in Table 4.3. The base case is Case 1, which has a width of 2⇡h and periodic end

conditions. This is a common setup for "nominally 2D" plate simulation studies (Najjar and Vanka,

1995b; Narasimhamurthy and Andersson, 2009; Afgan et al., 2013; Hemmati et al., 2018; Singh

and Narasimhamurthy, 2022). Widths around 6h are selected based on the initial studies of Najjar

(1994), who indicated that it is several times larger than the primary spanwise structures. This

has been confirmed at Re = 250 by domain independence studies by Singh and Narasimhamurthy

(2018, 2021). 96 uniformly spaced cells were used to cover the spanwise direction.

Case 2 consists of the same geometry and mesh as Case 1, but with the end conditions changed

to slip walls. There is no need to modify the mesh for this case as no boundary layer develops at

the wall. However, the slip condition differs from the periodic boundary as it does not allow flow

or spanwise variation through the wall.

Since Case 2 does not include a boundary layer, a no-slip condition is also investigated in Case

3. The mesh in the spanwise direction is modified to adequately resolve the boundary layer, as

shown in Figure 4.10. A minimum cell size at the wall of 0.02h is used to ensure y+ < 0.5 almost
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Figure 4.10: Mesh on one half of the plate in z � y plane for no slip case (Case 3). The same
spanwise mesh laws are applied throughout the domain.

(a) (b)

Figure 4.11: Mean velocity profiles at x = 0, y = 1 for minimum wall spacings of �z = 0.02
(solid lines) and �z = 0.01 (dashed lines). (a) Streamwise velocity, (b) transverse velocity (dark
grey) and spanwise velocity(light grey).

everywhere1. This minimum size was confirmed to be adequate by a test case where the boundary

cell size was reduced to 0.01h, which only minimally affected the results as shown in Figure 4.11.

The maximum cell spacing in the spanwise direction is the same as in Cases 1 and 2 (2⇡/96h). The

spanwise geometry is effectively a channel with height H = 2⇡h, and the corresponding Reynolds

number based on height of ReH = 1571. This is above the transition Reynolds number for spot

1There are limited regions near the plate where y+ > 1 due to deflection of the flow toward the wall.
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Table 4.4: Comparison of properties of plate with periodic end conditions (Case 1) at Re = 250
with Singh and Narasimhamurthy (2022).

Source Cd St Lw

Present 2.29 1.65 2.06h
Singh and Narasimhamurthy (2022) 2.22 1.64 2.04h

Figure 4.12: Mean streamwise velocity along plate centreline of flat plate with periodic end
conditions compared to Singh and Narasimhamurthy (2022). Solid line: present, Dashed line:
Singh and Narasimhamurthy (2022).

turbulence in a channel, but below the linear stability threshold (Carlson et al., 1982). However,

turbulent spots are not expected to appear as the domain is shorter than the development length,

which is roughly 120H at this Reynolds number (Sadri, 1999)2. As a result, the boundary layer is

assumed laminar.

Case 1 is used as a validation case against the results of Singh and Narasimhamurthy (2022).

The mean drag coefficient (Cd), Strouhal number (St) and recirculation length (Lw) are shown in

Table 4.4. Additionally, the mean streamwise velocity is compared between the two cases in Figure

4.12. All measured properties closely match the published results of Singh and Narasimhamurthy

(2022).

2Figure 10.11, based on most conservative criteria (vii) - incremental pressure loss at 95% of final value.
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Chapter 5

CASE STUDIES

In this chapter, three of the four case studies that were established in Chapter 4 are presented. The

purpose of these case studies is to establish the use of FANS on flow data, and to compare its

conclusions to known physics. In this way, the purpose of these cases is to validate the method, in

line with the second and third objectives detailed in Section 1.2. Section 5.1 is on the analysis of

the wake of a square cylinder. This is followed by Section 5.2 on a swirling jet, and the chapter

closes with analysis of the wake of two cylinders arranged side-by-side in Section 5.3

5.1 Square cylinder

We begin with the simple case of flow over a 2D square cylinder at Reynolds number of 100. The

numerical details of this simulation are described in Section 4.1. The flow is periodic, exhibiting

a dominant frequency and harmonics. This makes this a natural starting point for illustrating

FANS-based analysis.

The wake behind the cylinder is characterized as a classic periodic (Karman) vortex shedding

process, described by Williamson (1996). These vortices grow due to diffusion and diverge from

the centreline as they are convected downstream. This shedding results in a velocity spectrum

characterized by distinct peaks that diminish rapidly in magnitude as the mode number increases,

as seen in figure 5.1. As a result, only the mean and modes at the fundamental frequency and
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Figure 5.1: Velocity spectrum in the wake of a square cylinder at a Re = 100. The fundamental
frequency is f ⇤ = 0.15.

second harmonic are considered. These modes have a maximum magnitude of 1.3U1, 0.3U1, and

0.07U1, respectively. Here, FANS is used to explore the momentum transportation associated with

the vortex street as well as the interactions between newly-formed vortices immediately behind the

cylinder.

Figure 5.2 shows the real values of FANS terms at the fundamental frequency (f ⇤ = fh/U1 =

0.15) for the streamwise velocity, û1. The data are represented as a fraction of the maximum of the

UT in the domain at the same frequency and direction, T 1
max

:

T k

max
= max

~x

(|j2⇡fkûk(~x)|). (5.1)

For example, the value displayed in figure 5.2(a) is j2⇡f ⇤kû1/T 1
max

. By applying this same

normalization to each flux at a given frequency, the relative contribution of each term can be

compared. Figure 5.2(a) shows UT (j2⇡f ⇤û1) of the fundamental frequency in the streamwise

direction. Contours of the UT are associated with the large-scale fluctuations of the vortices.

Figure 5.2(b) shows the mean flow convection term C[U, û1] + C[û1, U ]. Figure 5.2(c) shows the

pressure term and figure 5.2(d) shows the Fourier stresses. The viscous dissipation is of negligible
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Figure 5.2: Streamwise momentum terms for mode 1 (at the fundamental frequency) in the wake
of a square cylinder at Re = 100: (a) UT (b) mean-flow convection (c) pressure gradient and (d)
Fourier stress terms.

magnitude and it is not shown here for brevity. Downstream of the cylinder (past x = 8h), the only

force with significant magnitude is the mean-flow convection. This represents the region where

fully-formed vortices are convected downstream. In FANS terms, the mean-flow convection is

nearly balanced by the UT.

Immediately behind the cylinder, there are pressure gradients of large magnitude, which are

related to the vortex formation. This is contrary to the downstream wake region. This way of

comparing the magnitude of momentum terms identifies the critical forces by region. The pressure

gradient in this region is in-phase with the UT and out-of-phase with the mean-flow convection.

From this phase relationship, the pressure gradient reduces the overall fluctuation magnitude of the

velocity field caused by movement of the vortices.
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Figure 5.3: Real part of streamwise (a) unsteady (b) mean-flow convection (c) pressure gradient
and (d) Fourier stress terms for the second harmonic of vortex shedding over a square cylinder at
Re = 100.

The low magnitude of the Fourier stress term indicates that the inter-frequency interactions do

not have a significant effect on the mode at the fundamental frequency. This is consistent with the

findings of other methods, such as linear stability or the Self Consistent Method (Meliga et al.,

2016). These stresses are generated by interaction of modes û1 and û2 in the form û�1 · rû2. The

significantly reduced magnitude of the harmonic (mode 2) with respect to mode 1 results in the low

magnitude of these stresses. A representation of mode 2 is shown in figure 5.3(a) in the form of

the UT. The magnitude of the harmonic is elevated at the centreline and in two branches diverging

from the centreline, which correspond to the edges of each vortex track.

The other momentum components in the streamwise direction for the second harmonic are also

shown in figure 5.3(b), (c), and (d). The relationships between different momentum fluxes are the
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Figure 5.4: Constituent terms of the Fourier stresses (�[û2]) in the streamwise direction at the
second harmonic for a square cylinder at Re = 100. (a) first term (b) second term. Only the real
parts of the stresses are shown.

same as they are in the fundamental frequency. Away from the axis and farther downstream in the

wake, the unsteady and convection terms are nearly balanced. Behind the cylinder, the pressure

term is significant and in-phase with the velocity fluctuations.

The Fourier stresses play a more critical role in affecting the balance at the harmonic compared

to the fundamental frequency modes. The convective interactions represented by this term are sig-

nificant to the momentum transport at this frequency. This momentum flux is strong and symmetric

about the wake centreline, and dissipates rapidly moving downstream. To better understand this

momentum flux, the constituent terms of the Fourier stresses are analysed. These terms arise from

the expansion of �[û2]:

�[û2] = ... + û�1@xû
3 + v̂�1@yû

3 + û1@xû
1 + v̂1@yû

1 + û3@xû
�1 + v̂3@yû

�1 + ... (5.2)

For this flow, terms other than û1@xû1 and v̂1@yû1 are negligible. This is similar to the results of

Mantic-Lugo et al. (2015) using self-consistent analysis of a cylinder wake. Due to their influence

on the momentum flux of velocity mode 2, these terms can be interpreted as the driving force of

triadic interactions between the fundamental frequency, itself, and the second harmonic. The real

parts of these terms are depicted in figure 5.4. The values are normalized to the maximum Fourier

stress in the domain (�[û2]). The first term (û1@xû1) roughly follows the track of the vortex street.
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Figure 5.5: BMD mode bispectrum of square cylinder at Re = 100.

This flux is strongest near the vortex formation region, and then dissipates as the vortices separate

and lose strength downstream. Hence, this term is a result of convective momentum transport

between streamwise velocity fluctuations within an individual vortex. Peaking at roughly 40% of

the magnitude of �[û2], this component makes a significant contribution to the momentum flux,

especially in the vortex formation region. However, the other term (v̂1@yû1) in figure 5.4(b) has

a more significant effect. This term attains 100% of the maximum Fourier stress in the vortex

formation region. Thus, this is the primary term of the Fourier stresses at the second harmonic

of the streamwise velocity. The presence of this momentum transport at the vortex formation

region indicates that the second harmonic is a product of interactions between pairs of counter-

rotating vortices formed off of the top and bottom surfaces of the cylinder. Interactions between

these vortices will occur every half-cycle, hence the appearance of this process in the momentum

equation at the second harmonic. This shows how interactions at the fundamental frequency result

in increased energy content of the second mode.

FANS analysis can directly deduce interactions between timescales, as discussed above. These

interactions can also be deduced using BMD, however this method can be more cumbersome. For

this flow, the BMD modes and bispectrum have been calculated for two regions of the BMD search

space described by Schmidt (2020). Two regions are considered as there are symmetries in the

50



0.0 2.5 5.0 7.5 10.0

x/h

�2

0

2

y/
h

�1,1 � û2
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Figure 5.6: BMD interaction map of triad {f1, f1, f2} in the streamwise direction for a square
cylinder at Re = 100.

results due to the periodicity and real-valued flow field data fed into the Fourier decomposition.

Results for these regions, consisting of sums and differences of two base frequencies (f1 and f2)

are presented in figure 5.5. The BMD mode bispectrum shows the value of �1 for each triad,

representing the maximized bicorrelation between each triplet of modes. This spectrum shows

the cascade starting from mode 1 at the shedding frequency of f ⇤ = 0.15, which continues

through higher modes at the harmonics of this frequency. This is seen in the local maxima of

the bispectrum at (f ⇤
1 = 0.15, f ⇤

2 = 0.15) which is correlated to f ⇤
3 = 0.3. This interaction, and

ensuing interactions between the fundamental frequency and the harmonics, results in the series of

peaks in the mode bispectrum that attenuate with increasing frequencies f ⇤
1 and f ⇤

2 . This is similar

to the results of Schmidt (2020) for the case of a circular cylinder. This cascade is represented in

FANS by the Fourier stress terms in figures 5.2(d) and 5.3(d).

Components of the bispectral mode (�1+1) and interaction map ( 1,1) that correspond to the

triad (f1 = 0.15, f2 = 0.15, f3 = 0.30) are shown in figure 5.6 for the streamwise direction.

The interaction maps clearly show the interactions between the fundamental frequency and second

harmonic that occur in the Karman wake behind the cylinder. This interaction of the triad is similar

to the streamwise Fourier stresses on the second harmonic, shown in figure 5.4(a). For the square

cylinder case, the local interactions detected by BMD are also captured by FANS. An added benefit
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of FANS analysis is that those interactions can be related to other momentum transport terms and

the time dependence of the flow, as seen in figures 5.2 and 5.3. This case study supports that FANS

is a simpler method that produces insights into flow features and their interactions for for periodic

wakes characterised by a single fundamental frequency and its harmonics.

5.2 Swirling Jet

The second flow considered is an axisymmetric swirling jet impinging on a flat plate. This jet

flow is selected due to its complicated periodic time signature and the effect of the third velocity

component, which arises due to the swirl. The simulation setup and validation are described in

Section 4.2.

Herrada et al. (2009) characterized the jet by a large recirculating region along the central axis,

called a “vortex breakdown (VB) bubble". There are also several axisymmetric vortex bubbles

that originate and decay close to the wall over multiple intervals in each cycle. Herrada et al.

(2009) noted the significant outward convection of the circulation due to radial flow from the jet

impingement.

The transient vortex bubbles result in a time signature that is composed of large energy con-

centrations at several discrete frequencies with a base frequency of f ⇤ = fd/U ⇡ 0.011. The

energy contained in each mode is shown in figure 5.7. The modes decay exponentially in energy

content with increasing frequency. The right bound of the plot represents the Nyquist frequency at

f ⇤ = 0.100. Modes beyond this frequency are of extremely low magnitude and are thus they are

ignored.

Figure 5.8 shows the values of the UTs in FANS at the fundamental frequency. These correspond

to the highest energy peak shown in figure 5.7. Significant axial velocity fluctuations are seen

throughout the domain. Radial fluctuations are likewise present throughout but become stronger

in magnitude downstream due to the presence of vortex bubbles close to the wall. Finally, the

azimuthal fluctuations start strongly near the inlet and diminish toward the wall. This gradual
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Figure 5.7: Energy contained in each Fourier mode of the swirling jet. Off-harmonic peaks seen
between 0.05 < f ⇤ < 0.1 are due to aliasing but have negligible energy content.

diminishment of fluctuations is due to the outward convection of the swirl noted by Herrada et al.

(2009).

Figures 5.9(a) and (b) show the radial mean-flow convection and pressure gradient in the near-

inlet region, respectively. These momentum fluxes are of considerably larger magnitude than the

UT, peaking at over 45 times the maximum magnitude of the UT. The significant radial force

fluctuations are due to the deflection of incoming flow against the VB bubble as indicated in figure

5.9. The interaction of the incoming jet with the VB bubble results in a large opposing pressure

gradient. The relative magnitude of the forces combined with the phase of the UT (which can be

compared through the sign of the value) shows that the pressure gradients dominate the convection

in this region and drive the radial fluctuations. These radial fluctuations are important as they

are related to the vortex bubbles that dominate the fluctuating flow. Thus, FANS can be used to

elucidate the effect of large counteracting forces and compare them to the time dependent term,

which represents the fluctuations at that particular timescale.

Herrada et al. (2009) found that this jet flow is highly sensitive to changes in viscosity. The

significant viscous contribution to the momentum transfer close to the inlet in figure 5.10 implies

a similar sensitivity. The phase and high magnitude of the azimuthal shear suggests that there is
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Figure 5.8: Real value of FANS UTs of the swirling jet at the fundamental frequency in each
coordinate direction: (a) axial, (b) radial, (c) azimuthal. Grey dashed line indicates U = 0 which
is extent of VB bubble along the axis.

a dampening effect on the corresponding azimuthal fluctuations. This high shear stress shows the

significant effect of the viscosity that results in high sensitivity of the flow physics to changes in

the Reynolds number. In this way, FANS provides a platform to gain insight into the stability of

the flow configuration.

The intermittent nature of the near-wall vortex bubbles observed in this flow results in a

complicated time signature, where the vortex structures are observed across several frequencies.
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Figure 5.9: Real value of FANS terms in the radial direction near the inlet of the swirling jet at the
fundamental frequency: (a) Mean-flow convection, (b) pressure gradient. Grey line shows extent
of VB bubble as in figure 5.8.
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Figure 5.10: Real value of FANS viscous diffusion term of the swirling jet in the azimuthal direction
at the fundamental frequency.
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This suggests significant coupling between frequency components. To more thoroughly analyse this

inter-frequency coupling of the jet flow and its relationship to the flow physics, Fourier stresses are

analysed in more detail. Specifically, Fourier stresses represent the interactions that are generated

by motion of the intermittent vortex bubbles.
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Figure 5.11: Fourier stress magnitude in the radial direction of the swirling jet for (a) Mode 2, (b)
Mode 3, (c) Mode 4.

The radial Fourier stress magnitude for modes 2-4 are shown in figure 5.11. The radial terms are

selected since they are characteristic of the vortex bubbles but not the swirling inlet flow. Notably,

the vast majority of interactions occur outside of the recirculation region, which sits along the
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Figure 5.12: Mode bispectrum of the swirling jet flow.

symmetry axis at y/h = 0. This follows with the radial movement of the velocity fluctuations

as seen in figure 5.9, which is due to interaction of the jet with the recirculation region and the

wall. The Fourier stresses have significant magnitude at each mode. This is consistent with the

expectation from a cascade of frequency content resulting in a large number of modes. Regions of

elevated Fourier stresses are localized well downstream of the inlet and outside of the recirculation

region. This matches the expected location of enhanced interaction due to fluctuations induced

by the vortex bubbles. Thus, FANS analysis of the convective coupling coincides with physical

intuition about the interactions and time signature of the flow.

To further corroborate the influence of the vortex bubble on the inter-harmonic coupling,

we explore the flow dynamics using BMD. Results of the bicorrelation coefficients �1 for the

bispectrum analysis of the jet are shown in figure 5.12. As this flow is periodic, the BMD mode

57



bispectrum shows a cascade of harmonics, starting with triads involving the fundamental frequency

f ⇤ = fh/U ⇡ 0.011. This agrees with the observations of interactions between several modes as

seen in figure 5.11.
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Figure 5.13: Interaction maps in the radial direction of the swirling jet flow for triads (a)  1,1, (b)
 2,1 (c)  2,2.

Figure 5.13 shows the BMD-calculated interaction maps for selected triads corresponding to

(f ⇤
1 = f ⇤, f ⇤

2 = f ⇤, f ⇤
3 = 2f ⇤), (f ⇤

1 = 2f ⇤, f ⇤
2 = f ⇤, f ⇤

3 = 3f ⇤), and (f ⇤
1 = 2f ⇤, f ⇤

2 = 2f ⇤, f ⇤
3 =

4f ⇤). Figures 5.13(a-c) represent the radial component of the interaction map for each triad. Similar

to FANS, the interactions are found to remain outside of the recirculation region. This is due to

the outward forcing of the flow as discussed above. This finding about the interactions supports

the conclusions brought by Fourier stresses. The BMD-calculated interaction maps also show the
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localization of interactions downstream (x/h > 5) and outside of the recirculation region (figure

5.13). This suggests a similar relationship to the vortex bubbles to what was previously observed

with radial Fourier stresses. The intermittent motion of the vortex bubbles results in significant

interaction between modes, which then appears as enhanced triadic interactions or Fourier stresses

detected by BMD and FANS, respectively.

5.3 Side-by-side cylinders

The final case considered is that of two side-by-side cylinders of diameter D at Reynolds number

of (Re = U1D/⌫) 90. The cylinders are separated by a gap of 0.6D. These settings and the

corresponding mesh requirements were taken from Ma et al. (2017), against which the results are

verified, as described in Section 4.3. This flow configuration results in an asymmetric, irregularly

oscillating wake characterized by multiple shedding processes and their interaction. There is

vortex shedding behind each of the two cylinders, which then merges into a single Karman street far

downstream. There is also a “flip-flopping" process where the wake asymmetry changes orientation

(Ma et al., 2017). The flip-flop occurs randomly at a frequency much lower than that of the shedding

(see Burattini and Agrawal, 2013; Carini et al., 2014). As a result, there are multiple dominant

frequencies. Depending on the location in the wake, the flow may be dominated by the low-

frequency flip-flopping in between the cylinders, the high-frequency shedding process behind each

of the cylinders, or the moderate-frequency shedding process in the wake far from the cylinders due

to wake merging. This case is selected to investigate the momentum transport processes detailed

by FANS in a nonperiodic case with multiple characteristic frequencies.

The spectrum of the flow energy fluctuations and the estimated power spectral density (Sxx)

of the drag and lift coefficients on the lower of the two cylinders are shown in figures 5.14(a) and

(b) respectively. These broadband spectra show that the flow is irregular and not characterized by

discrete frequency content. Within figure 5.14(a), there is a broadband spectrum centred about

f ⇤ = 0.7, whereas the drag and lift spectrum shows dominant frequencies that are centred around
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Figure 5.14: (a) Spectrum of flow energy fluctuations (b) power spectral density of drag and lift
coefficients on the lower cylinder.

0.01 and 1.2. The lowest frequency (f ⇤ = fD/U1 ⇡ 0.01) corresponds to the flip-flopping

process, which occurs on irregular intervals at about this frequency. The moderate frequency

shown in the energy spectrum corresponds to the moderate frequency shedding in the merged

wake. The highest dominant frequencies in the lift and drag spectra (0.9 < f ⇤ < 1.5) correspond

to vortex shedding on the cylinder body. The flip-flopping and two vortex production processes

will be analyzed using the FANS framework.

Figure 5.15 shows the UT f ⇤ = 0.0105. This frequency corresponds to the flip-flopping

process. Each of the lobes stemming from the gap represents a state of the flow, where the flow
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Figure 5.15: Real value of UT at flip-flopping frequency.

through the gap moves toward either the upper or lower cylinder at a given time. Ma et al. (2017)

discusses the importance of the gap flow in this regime. Figures 5.16(a-c) show the momentum

fluxes in the streamwise direction at the flip-flopping frequency, where the mean-flow convection

(figure 5.16a), Fourier stresses (figure 5.16b) and pressure gradient (figure 5.16c) are significant.

The diffusion does not contribute significantly to the transport process. These momentum fluxes

show the importance of the gap flow to the flip-flopping effect. Large velocity gradients on the

leeward side of the gap result in the large convective flux seen in figure 5.16(a) that sustains the

switching process. These large velocity gradients are due to the combination of significant gap flow

and tight spacing between the cylinders. This combination was highlighted by Ma et al. (2017) as

important to the instability that leads to the irregular flow, which is reflected here.

There are also significant Fourier stresses at this frequency, immediately behind the cylinders.

These stresses represent interactions of different frequencies within the bands of shedding and

Karman street frequencies. Since the bandwidth of the energy and force coefficient spectra is larger

than the flip-flopping frequency, interactions between modes that lie within these bands result in

Fourier stresses at this frequency.

Figures 5.17 and 5.18 shows the significant momentum fluxes at f ⇤ = 0.148. This frequency

corresponds to vortex shedding from the individual cylinders, which appears in the force spectra

in figure 5.14(b). Evidence of shedding near the cylinders can be seen in the UT and pressure
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Figure 5.16: Real value of FANS terms in the streamwise direction corresponding to flip-flopping
frequencies: (a) Mean-flow convection, (b) Fourier stresses, (c) pressure gradient.

gradient in figures 5.17(a) and 5.18(a), repectively. This aligns with our expectations due to the

force fluctuations at this frequency. This mode persists into the far wake, where the Karman vortex

street is dominant (figure 5.17(a). This persistence shows that this mode has an effect on the

Karman vortex street. This effect is not immediately apparent from the energy spectrum in figure

5.14(a) due to dominance of the lower frequency shedding at f ⇤ ⇡ 0.73 on the overall velocity

fluctuations in the wake.

The Fourier stresses in figure 5.18(b) extend throughout the domain and have similar magnitude

to the UT. The localization of wake phenomena, such as flip-flopping and the Karman street,
62



0 5 10 15

x/h

�5

0

5

y/
h

fm = 0.1486

j2⇡fmûm

-1

-0.5

0

0.5

1

(a)

0 5 10 15

x/h

�5

0

5

y/
h

fm = 0.1486
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Figure 5.17: Real values of streamwise momentum fluxes at f ⇤
m

= 0.148: (a) UT, (b) mean-flow
convection.

suggest that the Fourier stresses at this frequency are due to a broad range of interactions. FANS

provides a method to detect the primary mechanisms that contribute to these stresses in the form

of individual terms in the Fourier stress term. Select terms are shown in figures 5.19. Modes

are subscripted with their frequency due to the broadband spectrum of this flow. For instance,

û0.075 is the streamwise direction of the velocity Fourier mode at f ⇤
m

= 0.075. The Fourier stress

terms corresponding to the contribution of the main Karman shedding frequency in the far wake is

represented in figure 5.19(a). The momentum flux due to this term shows increased magnitude in

the region of x/h > 10. The increased stress magnitude in this region is related to the formation

of the Karman street and the interaction between resultant vortices. Thus, it may be said that the

primary driver of Fourier stresses in the far wake is the existence of Karman vortices in this region.
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Figure 5.18: Real values of streamwise momentum fluxes at f ⇤
m

= 0.148: (a) pressure, (b) Fourier
stresses.

Figure 5.19(b) shows the momentum flux in the same Fourier stress term due to a triad,

(f ⇤
1 = 0.010, f ⇤

2 = 0.138, f ⇤
3 = 0.148). The low frequency of 0.010 corresponds to the flip-flopping

process. The higher frequency 0.138 is within the frequency band of lift and drag fluctuations. This

triad represents one of several similar interactions between these processes (other relevant triads

are not shown here for brevity). Magnitude of the convective flux shown in figure 5.19(b) shows

that the interaction between these modes is a significant source of momentum for the fluctuations

at f ⇤ ⇡ 0.148 immediately behind the cylinders. This suggests that the gap flow and flip-flopping

process modulates the vortex shedding. This is supportive of the findings of Ma et al. (2017), who

also reported this modulation of the shedding behind the cylinders.
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Figure 5.19: Real values of components of Fourier stresses at f ⇤ = 0.148 in the streamwise
direction (a) (f ⇤

1 = 0.074, f ⇤
2 = 0.075) (b) (f ⇤

1 = 0.011, f ⇤
2 = 0.138).

We once again utilize BMD to explore the flow dynamics. The spectrum of �1 is shown

in figure 5.20. There are local maxima in the bispectrum involving frequencies at f ⇤ ⇡ 0.73.

The diagonal and vertical bands of elevated correlation around these maxima may be due to

spectral leakage (Schmidt, 2020). Locations of the maxima correspond to triads around (f ⇤
1 ⇡

0.73, f ⇤
2 ⇡ 0.73, f ⇤

3 ⇡ 0.147) and (f ⇤
1 ⇡ 0.147, f ⇤

2 ⇡ �0.73, f ⇤
3 ⇡ 0.73). These triads involve

the same frequencies, indicating that they are mirrored and capture the same interactions. The

lack of strongly bicorrelated triads involving low frequencies (f ⇤ ⇡ 0.01) is surprising given the

significant modulation of the wake due to these frequencies reported by Ma et al. (2017), which

were corroborated by the Fourier stresses in figure 5.19(b).
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Figure 5.20: BMD mode bispectrum for the dual cylinder case. Spectrum is blanked below 10�5

to highlight strongly interacting triads.

Interaction maps corresponding to the triad (f ⇤
1 ⇡ 0.73, f ⇤

2 ⇡ 0.73, f ⇤
3 ⇡ 0.147) are shown in

figure 5.21. These correspond to the same wake processes discussed above using FANS. The exact

listed frequency is slightly different from the FANS analysis due to the change in resolution, where

BMD has lost some frequency resolution due to utilization of multiple windows. The interaction

maps show significant triadic interaction beyond x/D ⇡ 10. This corresponds to the merger region,

where the wakes of the individual cylinders combine and turn into a single Karman street. The

driving frequency of f ⇤
1 = 0.73 is characteristic of the vortex street. This frequency is outside of

the range of important force spectra seen in figure 5.14. The resultant frequency of f ⇤
3 = 0.147 is

characteristic of the cylinder-shedding, which continues to have an influence downstream, as was

deduced from the FANS analysis. The maps show interaction between these modes in the vortex

street far from the cylinders. This interaction is consistent with the behaviour of the Fourier stresses

in figure 5.19(a).

Through these case studies, analysing these FANS terms has been shown to be a strong method

with easy application and interpretability for providing insights into flow physics. The method

directly addresses nonlinear interactions due to convection and relates them to the magnitude of other

forces. FANS also includes phase information that can indicate when forces may be counteracting.

These properties ease the physical interpretation of flow physics by isolating individual timescales,
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Figure 5.21: Bispectral interaction maps corresponding to far-wake frequencies, represented by the
triad (f ⇤

1 = 0.073, f ⇤
2 = 0.073, f ⇤

3 = 0.147): (a) streamwise (b) transverse components.

and directly relating mode shapes to the governing equations. The method has been shown to be

applicable to both periodic and nonperiodic flows. Since the FANS equations are a viable method

to identify and describe the behaviour of flows, the method can be applied to more complicated

cases to identify new physics.
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Chapter 6

THE WAKE OF THIN FLAT PLATES

The final case study in this dissertation involves the effect of end conditions on the three-dimensional

wake of long, thin flat plates. This problem is investigated at Re = 250 using FANS. End effects on

flat plates are a useful final case study because they have highly modulated and three-dimensional

wakes (Hemmati et al., 2016a). The implications of end conditions on the wake dynamics are also

not yet fully understood (Braun et al., 2020). Thus, the case evaluates the ability of FANS to reveal

new physics in a compplex flow. A detailed background on the wake of normal flat plates have

been presented in Section 2.4. Mainly, it is not well determined how the end conditions (end plates

in experimental setups, spanwise boundary conditions in simulations) impact the force variations

on the body, as well as the three-dimensional characteristics of the wake structures behind thin flat

plates (Lisoski, 1993; Braun et al., 2020). Flow over three plates with a height of h and width of

2⇡h are simulated to investigate the effect of end conditions:

Case 1 has periodic end conditions to establish the dynamics of a plate with an infinite span. The

three-dimensional variations of this wake are entirely due to the intrinsically-3D nature of the

flow at this Reynolds number. The periodic end condition is the most common in flat-plate

simulations for this reason (Najjar, 1994; Hemmati et al., 2018; Singh and Narasimhamurthy,

2018).
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Table 6.1: Mean properties of flat plates at Re = 250 with different end conditions.

Cd C 0
l

St Lw hw

Case 1 (Periodic) 2.29 0.051 0.165 2.1h 0.72h
Case 2 (Slip) 2.30 0.048 0.166 2.0h 0.73h
Case 3 (No slip) 2.23 0.021 0.167 2.6h 0.80h

Case 2 has slip end conditions. This case mimics the effect of end plates without a boundary layer.

This case addresses the impact of constraining the spanwise flow along the plate.

Case 3 has no-slip end conditions. This case is implemented to investigate the resulting boundary

layer, and the effects of that boundary layer on the wake development and interaction.

The setup and validation of these cases have been shown in Section 4.4.

6.1 Wake observations

Time histories of the force coefficients are shown in Figure 6.1. Cases 1-3 shows evidence of

irregular vortex shedding with a low-frequency modulation (Figures 6.1a, 6.1c, 6.1e). Case 3,

with no-slip end condition, shows dampening of the overall force fluctuations in both drag and

lift compared to Case 1 and Case 2. The maximum drag and lift magnitude for this case is also

significantly reduced. Rare spikes of Cd > 3 are present in Case 1 and 2 that are not seen in

Case 3. The shedding Strouhal number is not significantly different between the cases (Table 6.1).

Qualitatively, there is also little change in the shedding structures between cases, shown in terms of

�2 in Figure 6.2. All three cases are characterized by shedding of spanwise rollers, punctuated by

pairs of ribs spaced roughly evenly along the cylinder length. However, Case 3 also has a horseshoe

vortex at each wall (Figure 6.2c). This is consistent with boundary layer roll-up in front of an

obstacle (Simpson, 2001). The ribs also diffuse more rapidly for Case 3 than Case 1 or Case 2,

although the reason for this diffusion is not immediately clear.

Greater differences between the cases are identified in the mean flow characteristics. Table 6.1

shows the recirculation length (Lw) and the wake bubble half-height (hw) for each case, measured
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(c) (d)

(e) (f)

Figure 6.1: Time histories of force coefficients for flat plates at Re = 250 with different end
conditions: (a),(d) Case 1 (periodic), (b),(e) Case 2 (slip), (c),(f) Case 3 (no slip). Upper row: Drag
coefficients. Lower row: Lift coefficients.
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(a)

(b)

(c)

Figure 6.2: Isosurfaces of �2 = 1 for flat plates with different end conditions at Re = 250. (a) Case
1 (periodic), (b) Case 2 (slip), (c) Case 3 (no slip). Snapshots are taken during periods of elevated
shedding intensity for comparability.
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at the mid-span. There is little difference between Case 1 and Case 2, which have little difference

in Lw and hw. However, the recirculation bubble is larger for Case 3 compared to the other two,

i.e. 10% wider and 30% longer than the other two cases. The recirculation regions for each case

are shown in Figure 6.3 in terms of mean streamlines at the mid-span. The recirculation regions

are qualitatively similar at the midspan, but differ in length and height. The recirculation bubble

of Case 3, shown in Figure 6.3(c), is longer and wider than it is for Case 1 and Case 2 (Figures

6.3a and 6.3b), which are almost identical. The no-slip walls in Case 3 also resulted in altered

behaviour of the mean wake at the spanwise boundaries. This behaviour is shown in Figure 6.4

using isosurfaces of U = 0 and W = ±0.2. There is recirculating flow immediately in front of the

plate, which corresponds to the location of the boundary-layer roll up and the horseshoe vortex.

The latter is also characterized by mean spanwise flow toward the walls, shown by the red and blue

surfaces in Figure 6.4. Immediately behind the plate, the recirculating region is pushed away from

the wall due to the spanwise flow around the plate. The recirculation reattaches to the wall shortly

downstream of this position, which is characterized by mean spanwise flow away from the wall in

the same region. The boundary layer effects observed here are also important to changes in the

fluctuating flow.

The spectrum of the average streamwise energy for each case is shown in Figures 6.5(a), 6.5(c),

6.5(e). All three cases are characterized by a steady reduction of energy fluctuations with increasing

frequency, punctuated by sharp increases in fluctuating energy at the Strouhal number and second

harmonic. This corresponds to the energy stored in the Karman vortex shedding. However, the

most significant changes in the spectrum due to the end conditions are visible in the spanwise energy

fluctuations (Figures 6.5b, 6.5d, and 6.5f). The periodic and slip end conditions are characterized

by broadband spanwise energy fluctuations in Figures 6.5(b) and 6.5(d), respectively, that notably

do not feature significant peaks at the Strouhal number or the harmonics. In contrast, the no-slip

end condition (representing a physical end plate) results in peaks at the Strouhal number and second

harmonic (Figure 6.5f). Due to the established similarity between Cases 1 and 2, only results from

Cases 1 and 3 will be presented from this point on.
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(a)

(b)

(c)

Figure 6.3: Mean streamlines at vertical centre plane for flat plates with different end conditions at
Re = 250. (a) Case 1 (periodic), (b) Case 2 (slip), (c) Case 3 (no slip).
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Figure 6.4: Isosurfaces of U = 0 for flat plates for Case 3 (no-slip end condition) at Re = 250.
Blue and red surfaces in are at W = ±0.2.

6.2 FANS Analysis

Due to the considerable changes in the fluctuating field between cases, the distinct peaks in the

energy spectrum that can be associated to the vortex shedding, and the clear role of the boundary

layer on these changes, the FANS equations can be easily applied to this case. Transverse Fourier

modes are shown at the fundamental frequency (mode 1) in Figure 6.6 for Case 1 and Case 3.

The transverse velocity fluctuations are considerably diminished at the mid span in the no slip

case. This is consistent with the lowered lift fluctuations in Figure 6.1(f). In order to relate this

change to the momentum transport, Figures 6.7 shows the magnitude of the transverse mean-flow

convection and pressure gradient terms, measured along the centreline of Figure 6.6. Case 1 is

shown in blue and Case 3 in black. The terms are nondimensionalized against the same values

in order for direct comparison between cases. Case 3 exhibits a reduction in the peak magnitude

of both terms, and this peak occurs further downstream. This lag is connected to the observed

reduction in lift fluctuations. The reduced pressure fluctuations immediately behind the plate result

in overall lowered pressure differential on the body.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.5: Spectrum of energy fluctuations for flat plates with different end conditions at Re = 250.
Left column (a,c,e): streamwise energy fluctuations. Right column (b,e,f): spanwise energy
fluctuations. (a-b) Case 1 (periodic), (c-d) Case 2 (slip), (e-f) Case 3 (no slip).
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Figure 6.6: Magnitude of the transverse Fourier mode along the mid-span at the fundamental
frequency: (a) Case 1 (periodic), (b) Case 3 (no slip).
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Figure 6.8 shows the real component of the spanwise UT and diffusion terms for mode 1,

measured at the upper edge of the plate, near the spanwise walls. For Case 3, this location is near or

fully in the boundary layer, depending on the streamwise location. The upper plot shows the values

for Case 1. The diffusion term (dashed line) has considerably lower magnitude than the UT (solid

line) except at the plate (x = 0). This aligns with expectations as this represents flow unimpeded

by friction against a solid boundary. In contrast, Case 3 (lower plot) shows a relative increase in

friction. This is also in line with expectations due to the presence of the boundary layer. Likewise,

the two terms are in phase in the region of 1.5 < x/h < 3. This phase relationship indicates that

friction is resisting the fluctuating motion of the flow in this region. Consequently, friction due

to the end plates plays a role in diminishing the transverse velocity fluctuations in the flow. This

damping effect propagates in the spanwise direction along the plate, which results in the diminished

fluctuations in Figure 6.6(b).

The boundary layer also has a significant effect on the spanwise fluctuations in the flow. The

spanwise component of Mode 1 for Case 1 and Case 3 are shown in Figure 6.9, taken at the upper

edges of the plates. There is a clear increase in the magnitude of fluctuation at this frequency for

Case 3, relative to Case 1. This increase in energy, which was also seen in Figure 6.5(f), coincides
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ŵm

-0.035

-0.018

0

0.018

0.035

(a)

0 5 10

x/h

0

2

4

6

z/
h

ŵm
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Figure 6.9: Spanwise Fourier modes at fundamental frequency, measured at the top edge of the
plate (y = 0.5h). (a) Case 1 (periodic), (b) Case 3 (no slip).

with much greater spatial coherence in the mode. It is also possible that these fluctuations are

responsible for the decay of the structures in Figure 6.2(c). The energy is generated by interactions

between the boundary layer and the vortex shedding. The momentum fluxes corresponding to the

mode in Figure 6.9(b) are shown in Figure 6.10. Cores of the mean-flow convection, pressure

gradient, and Fourier stresses (Figure 6.10b, 6.10c, and 6.10d) are localized near the edge of the

boundary layer in the range of 2 < x/h < 5. The strength of these momentum fluxes at the

boundary suggests that they are related to the manipulation of the boundary layer by the rollers.

The rollers entrain quiescent fluid in the boundary layer as they pass by. This results in spanwise

fluctuations of this fluid, which appears as a coherent Fourier mode at the fundamental frequency.

These fluctuations then propagate past x/h = 5 by the mean-flow convection, while the pressure

gradient and Fourier stresses dissipate.
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Figure 6.10: Spanwise FANS terms at the top of the plate at the fundamental frequency with no-slip
end condition (Case 3, no slip): (a) UT, (b) mean-flow convection, (c) pressure gradient, (d) Fourier
stresses. Values are normalized to maximum spanwise acceleration.

It is notable that this spanwise fluctuation is not apparent in the isosurface of �2 (Figure 6.2c),

and that the Fourier mode by itself does not provide any firm answers as to its origin (Figure 6.9b).

This illustrates that the addition of momentum analysis, which is the defining feature of FANS,

is useful in educing the mechanisms behind fluctuations in a flow. The remarkable coherence of

the Fourier mode at the fundamental frequency also allowed for a straightforward discussion of

the average behaviour of the vortex shedding over all time. However, this limited the ability of

the method to analyse the mechanism of the low-frequency fluctuations. Overall, this case study

showed that FANS-based analysis is a strong option for physics investigations, as it was able to

extract previously unknown physics even in a three-dimensional, highly modulated wake.

79



Chapter 7

CONCLUSIONS

This dissertation presents a new method for analyzing fluid flows governed by the incompressible

Navier-Stokes equations. The method utilizes the momentum equations for individual Fourier

modes to analyse simulated or experimental flow fields. These equations are referred to as the

Fourier-Averaged Navier-Stokes (FANS) equations. The rationale for using these equations is to

allow for the direct, localized analysis of recurring forces and interactions in a fluid flow. This

is in contrast to other methods, such as Proper Orthogonal Decomposition and Dynamic Mode

Decomposition, which do not provide spatial information about interactions in the flow (Schmidt,

2020). As well, those methods are not constructed to consider the Navier-Stokes equations, which

makes them flexible (Kutz et al., 2016), but omits key information about the convective, pressure,

and viscous forces that govern the flow. In this work, the FANS equations are derived from a

Fourier series representation of unsteady pressure and velocity fields that is incorporated into the

incompressible Navier-Stokes equations. The basic interpretation of individual terms is discussed

alongside practical recommendations for calculating them from flow field snapshots. The method

is shown to be successful for analysing regularly and irregularly recurring flow behaviour through

case studies. The first three of these cases were periodic vortex shedding in the wake of a square

cylinder, a periodic axisymmetric swirling jet impinging on a plate, and nonperiodic shedding over

a pair of square cylinders. These cases provided examples of the application of the method and
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interpretation of its analysis. In these case studies, the results of the FANS terms are compared

to known physics and results from Bispectral Mode Decomposition (BMD). These investigations

show that the FANS terms can be related to the physics of the flow in both periodic and nonperiodic

cases. The method is then used to investigate previously unknown physics in the 3D wake of thin

flat plates. FANS-based analysis is applied to long, thin flat plates with varying spanwise end

conditions at Reynolds number of 250. These include a spanwise-periodic base case to represent

an infinite span flat plate. This is compared to a case with no-slip end conditions, which are used

to mimic the end plates used in wind tunnel experiments. A case with slip end conditions is also

presented, in order elucidate the effect of eliminating spanwise flow without creating a boundary

layer. These cases are analyzed using FANS to address changes in the lift and transverse velocity

fluctuations. The role of the boundary layer in the development of coherent spanwise fluctuations

is also demonstrated.

Through these applications, the FANS equations are shown to be particularly strong for mo-

mentum analysis of recurring flows. This technique has the capacity to detect similar interactions

as BMD, with reduced requirements for the number of samples to capture a particular structure,

and without the non-intuitive use of a spectral radius calculation. The interactions can also be

directly related to other momentum transport processes. This allows for a quantitative description

of the magnitude of a particular interaction between frequency components in terms of the forces

that they exert on the flow. The benefits in terms of ease of use and interpretability are especially

evident for periodic flows. The analysis is still applicable to irregularly recurring flows, although the

interpretation becomes more challenging in situations with broadband spectra. Challenges related

to irregularity include the need for additional data to adequately capture all processes, as well as

incoherence of individual modes within the broad bands. It should be noted that these challenges

are also shared by BMD and other decomposition methods. The method is promising overall, and

can be deployed for additional studies into cyclic effects in fluid dynamics.
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7.1 Future Work

Beyond applying the method to other cases, there are several avenues to augment the FANS

equations and expand its capabilities.

7.1.1 Role of pressure

Pressure in incompressible flows can be viewed as a way of enforcing the conservation of mass

(Ferziger et al., 2019). This arises by replacing the pressure in the Navier-Stokes equations as a

solution to its Poisson equation:

@u

@t
+

�
I � rr�2r·

�
u · ru =

1

Re
r2u

The operator (I � rr�2r·) is a projection operator that only preserves the divergence-free com-

ponent of the convection term, which allows the momentum equations to satisfy conservation of

mass. For the FANS equations, this relationship between the pressure and convection indicates that

only some of the Fourier stresses have an effect on their corresponding velocity modes, while the

remainder only increase the pressure fluctuations. The degree to which the effects of the Fourier

stresses on the velocity modes are amplified or diminished by the pressure term can be investigated

in future research.

7.1.2 Turbulent kinetic energy and Fourier stresses

A famous consequence of the RANS equations is the turbulent kinetic energy equation and the

closure problem that results when models of the Reynolds’ stresses are developed (Durbin and

Pettersson, 2011). If a truncated series of FANS equations is considered, there would be an

analogous closure problem to be considered. The characteristics of the mechanisms that contribute

to the Fourier stresses would advance the study of how energy and momentum are transported in

turbulent flows.
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7.1.3 Modifications of the base method

There are potential modifications of the method that may be implemented to increase the number

of use cases and improve the statistical power. For instance, ensemble averaging or the SPOD of

Towne et al. (2018) could be added. The application of new operations will result in additional

closure terms.
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Appendix A

FANS Code

In this chapter, the code used in calculating the FANS terms for this thesis are presented. Section
A.1 details custom OpenFOAM function objects for calculating the Navier-Stokes terms during
postprocessing, and a Python utility for calculating the mean of an interval as an OpenFOAM
field. Sections A.2 and A.3 display Python scripts including common simulation information and
functions that feature in several pipeline scripts. The code would be executed starting with the script
in Section A.4, which samples the fields found in the OpenFOAM directories. These samples would
be processed using Fourier decomposition in the script in Section A.5. Important frequencies could
then be screened with the code in Section A.6, and the FANS terms corresponding to interesting
frequencies from screening are fully calculated using Section A.7. As well, functions and minimal
examples for calculating the convection terms from the Fourier modes using the Python library
PyVista (Sullivan and Kaszynski, 2019) is shown in Section A.8.

A.1 OpenFOAM postprocessing
Code for custom OpenFOAM functions to calculate spatial derivatives (ESI version, tested with
OpenFOAM v2012). Part of an overall pipeline for obtaining data from OpenFOAM using Python.

functions
{
diffusion
{

libs (utilityFunctionObjects);

type coded;
name diffusion;

codeWrite
#{

// lookup U
Info << "Looking up field U\n" << endl;
const volVectorField& U = mesh().lookupObject <volVectorField >("U");
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Info << "calculating laplacian\n" << endl;
const volVectorField lapU = fvc::laplacian(U);

Info << "writing laplacian to " << lapU.objectPath() << endl;
lapU.write();

#};

executeControl writeTime;
executeInterval 1;
writeControl writeTime;
writeInterval 1;

}

convection
{

libs (utilityFunctionObjects);

type coded;
name convection;

codeWrite
#{

// lookup U, phi
const volVectorField& U = mesh().lookupObject <volVectorField >("U");

const surfaceScalarField phi
(

IOobject
(

"phi",
mesh().time().timeName(),
U.mesh(),
IOobject::READ_IF_PRESENT ,
IOobject::NO_WRITE

),
fvc::flux(U)

);

Info << "calculating divergence\n" << endl;
const volVectorField divPhiU = fvc::div(phi, U);

divPhiU.write();
#};
executeControl writeTime;
executeInterval 1;
writeControl writeTime;
writeInterval 1;
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}

gradP
{

type grad;
libs (fieldFunctionObjects);
field p;
executeControl writeTime;
executeInterval 1;
writeControl writeTime;
writeInterval 1;

}

convecOfMean
{

libs (utilityFunctionObjects);

type coded;
name convecOfMean;

codeWrite
#{

// lookup U, phi
const volVectorField& U = mesh().lookupObject <volVectorField >("U");
const volVectorField UMean
(

IOobject
(

"UMeanFinal",
mesh().time().timeName(),
U.mesh(),
IOobject::MUST_READ ,
IOobject::NO_WRITE

),
mesh()

);

const surfaceScalarField phi
(

IOobject
(

"phi",
mesh().time().timeName(),
U.mesh(),
IOobject::READ_IF_PRESENT ,
IOobject::NO_WRITE

),
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fvc::flux(U)
);

Info << "calculating convection of mean field by transient\n" << endl;
const volVectorField divPhiU = fvc::div(phi, UMean);

divPhiU.write();
#};

executeControl writeTime;
executeInterval 1;
writeControl writeTime;
writeInterval 1;

}

convecByMean
{

libs (utilityFunctionObjects);

type coded;
name convecByMean;

codeWrite
#{

// lookup U, phi
const volVectorField& U = mesh().lookupObject <volVectorField >("U");
const volVectorField UMean
(

IOobject
(

"UMeanFinal",
mesh().time().timeName(),
U.mesh(),
IOobject::MUST_READ ,
IOobject::NO_WRITE

),
mesh()

);
const surfaceScalarField phiMean
(

IOobject
(

"phiMeanFinal",
mesh().time().timeName(),
U.mesh(),
IOobject::READ_IF_PRESENT ,
IOobject::NO_WRITE

94



),
fvc::flux(UMean)

);

Info << "calculating convection of transient field by mean\n" << endl;
const volVectorField divPhiU = fvc::div(phiMean, U);

divPhiU.write();
#};

executeControl writeTime;
executeInterval 1;
writeControl writeTime;
writeInterval 1;

}
};

These functions require a field UMeanFinal, representing the actual mean of the interval in
question, written in every directory. This can be calculated using PyFOAM as follows:
import numpy as np
from copy import deepcopy
import pickle
from PyFoam.RunDictionary.ParsedParameterFile import ParsedParameterFile
from PyFoam.RunDictionary.SolutionDirectory import SolutionDirectory

t_end = 603.45 # end of window
t_start = 0 # start of window
t0 = 0 # start of mean calculation

UMeanFinal = ParsedParameterFile(f’{t_end}/UMean’)
UMeanRunIn = ParsedParameterFile(f’{t_start}/UMean’)

# extract values for calculation
def convert_list(field):

return np.array([
str(fi).strip(’(’).strip(’)’).split(’ ’)
for fi in field

]).astype(float)

UMeanEstimated = deepcopy(UMeanFinal)

# estimate
internalFieldEstimate = (

(t_end-t0)*convert_list(UMeanFinal[’internalField’])
- (t_start-t0)*convert_list(UMeanRunIn[’internalField’])

) / (t_end - t_start)
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# format and replace internal field values
for i in range(len(UMeanEstimated[’internalField’])):

UMeanEstimated[’internalField’][i] = (
f’({internalFieldEstimate[i]})’
.replace(’[’, ’’)
.replace(’]’, ’’)

)

UMeanEstimated.header[’object’] = ’UMeanFinal’

# Write to directories
sol = SolutionDirectory(’.’)

UMeanEstimated.writeFileAs(f’{t_end}/UMeanFinal’)

The remainder of this pipeline consists of the following scripts:

A.2 common.py

from collections import namedtuple
from pathlib import Path
import pickle

import numpy as np

def load(path):
with open(path, ’rb’) as file:

q = pickle.load(file)
return q

def save(obj, path):
with open(path, ’wb’) as file:

pickle.dump(obj, file)

UINF = 1
HEIGHT = 1
Re = 250
NU = UINF * HEIGHT / Re
WIDTH = 6.28
THICKNESS = .02

fields = [
’U’,
’convection(phi,U)’,
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’convection(phi,UMeanFinal)’,
’convection(phiMeanFinal ,U)’,
’grad(p)’,
’laplacian(U)’

]
scaling = {

’U’: 1/UINF,
’convection(phi,U)’: HEIGHT/UINF**2,
’convection(phi,UMeanFinal)’: HEIGHT/UINF**2,
’convection(phiMeanFinal ,U)’: HEIGHT/UINF**2,
’grad(p)’: HEIGHT/UINF**2,
’laplacian(U)’: HEIGHT**2 / UINF

}

A.3 util.py

import linecache
import matplotlib.pyplot as plt
import numpy as np
from scipy.interpolate import griddata

def read_vector(fname, start, nrows):
"""read vector field at a timestep into numpy, e.g. U, grad(p)"""

tab = np.loadtxt(fname, dtype=float, skiprows=start, max_rows=nrows,
converters={

0: lambda s: float(s[1:]),
1: lambda s: float(s),
2: lambda s: float(s[:-1])

})
return tab.T

def read_scalar(fname, start, nrows):
"""read scalar data file at a timestep"""
tab = np.loadtxt(fname, dtype=float, skiprows=start, max_rows=nrows,)

return tab

def nearest(array, value, idx=False):
"""return entry in array that is nearest to value"""
arg = np.argmin(np.abs(array-value))
if idx:

return array[arg], arg
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else:
return array[arg]

A.4 sample_data.py

from collections import defaultdict
import gzip as gz
from pathlib import Path
from time import time

import numpy as np

import common as com
import util

# ------- INPUTS ---------
# path to openfoam data
SAMPLES_PATH = Path(’.’)
# path to save to
SAVE_PATH = Path(’data/’)

LATEST_TIME = ’603.45’
# path to raw cell center data
CELL_PATH = SAMPLES_PATH / LATEST_TIME / ’C.gz’
# whether or not to generate a new random sample
GENERATE_SAMPLE = False
# which fields to load, downsample , and save
SAMPLE_FIELDS = com.fields
# overwrite files without asking
OVERWRITE = True

t_start = 0

# startline of internalField
start = 23
with gz.open(CELL_PATH) as f:

for i in range(21):
f.readline()

nrows = int(f.readline()[:-1])

# allow for startlines that may not be consistent from field to field
startline = defaultdict(lambda: start)

# Find a set of points to sample and save those points
# A random sample is generated , but the random seed is fixed
# so that it gives consistent results
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if GENERATE_SAMPLE:

cell_centres = util.read_vector(CELL_PATH , start, nrows)
n_total = cell_centres.shape[1]
rng = np.random.default_rng(seed=0)

# generate sample - subregion of field can be isolated optionally
sample = rng.choice(

np.argwhere(
(cell_centres[0] <= 20) & (np.abs(cell_centres[1]) < 5)

).flatten(),
size=n_total//5,
replace=False

)

com.save(sample, SAVE_PATH/’sample_points’)

c_sample = cell_centres[:, sample] / com.HEIGHT
x = c_sample[0]
y = c_sample[1]
z = c_sample[2]
com.save(x, SAVE_PATH/’x’)
com.save(y, SAVE_PATH/’y’)
com.save(z, SAVE_PATH/’z’)

else:
sample = com.load(SAVE_PATH/’sample_points’)

n_cells = len(sample)

vol = util.read_scalar(SAMPLES_PATH/LATEST_TIME/’V.gz’, start, nrows)
com.save(vol[sample], SAVE_PATH/’vol’)

# find and filter data folders
data_folders = [

path
for path in SAMPLES_PATH.iterdir()
if (

path.is_dir()
& path.stem.isnumeric()
& (path/’UMeanFinal.gz’).exists()

)
]

data_folders = [path for path in data_folders if int(path.stem) > t_start]

# extract and save field data
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n_steps = len(data_folders)
t = np.array([float(folder.name) for folder in data_folders])
t_order = np.argsort(t)
t = t[t_order]
com.save(t, SAVE_PATH/’t’)

for field_name in SAMPLE_FIELDS:
if not OVERWRITE:

if (SAVE_PATH/field_name).exists():
overwrite = input(

f’A sample of {field_name} already exists. Overwrite? [y]/n’
)
if overwrite == ’n’:

continue # skip this field

sampled_field = np.zeros((n_steps, 3, n_cells))
print(’reading ’, field_name)
total = len(data_folders)

t0 = time()
for (i, folder) in enumerate(data_folders):

try:
field = util.read_vector(

folder/field_name ,
startline[field_name],
nrows

)
sampled_field[i] = field[:, sample] * com.scaling[field_name]

except:
field = util.read_scalar(

folder/field_name ,
startline[field_name],
nrows

)
sampled_field[i] = field[sample] * com.scaling[field_name]

print(f’{i}/{total}, {folder}, {time() - t0:.2f}’)

del field

sampled_field = sampled_field[t_order]

com.save(sampled_field , SAVE_PATH/field_name)
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A.5 fourier_decomp.py

import gzip as gz
from pathlib import Path
import pickle
from time import time

import matplotlib.pyplot as plt
import numpy as np

from common import *
import util

NEW_DECOMP = True
SAVE_PATH = Path(’data/’)

# load time
t = load(SAVE_PATH/’t’)
# set window
window = t > 0

fields = {
’convection(phi,U)’: ’div(u,u)hat’,
’convection(phiMeanFinal ,U)’: ’div(U,u)hat’,
’convection(phi,UMeanFinal)’: ’div(u,U)hat’,
’laplacian(U)’: ’Lhat’,
’grad(p)’: ’Phat’

}

def get_spectrum_and_compress(Q, dt, n, vol=1):
"""load data, take the real fft, and sample number of modes"""

n_samples = Q.shape[0]

f = np.fft.rfftfreq(n_samples , d=dt)

Qhat = np.zeros(f.shape + Q.shape[1:], dtype=complex)
mode_energy = np.zeros(f.shape)
t0 = time()
n_points = Q.shape[2]

for i in range(n_points):
Qhat[:, :, i] = np.fft.rfft(Q[:, :, i], axis=0) / n_samples

mode_energy += vol[i] * np.sum(np.abs(Qhat[:, :, i])**2, axis=1)

if i % (n_points//10) == 0:
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print(
f’{i/n_points*100:.1f}% complete ({time() - t0:.1f} s)’

)

mode_order = np.argsort(mode_energy)[::-1]

f_idx = mode_order[:n]
f_keep = f[f_idx]

energy_residual = np.sum(mode_energy[f_idx]) / np.sum(mode_energy)

print(
f’selected modes contain ’
+’{energy_residual*100:.5f}% ’
+’of the total energy’

)

return f_keep, f_idx, Qhat[f_idx]

def apply_dynamics(Q, f_idx, vol):
n = Q.shape[0]
Q_mean = np.mean(Q, axis=0)
# print(dyn.shape, Q.shape)
Qhat = np.zeros((len(f_idx),) + Q.shape[1:], dtype=complex)
spectrum_energy = 0
Raa = 0
n_points = Qhat.shape[2]
t0 = time()
for i in range(n_points):

Qhat[:, :, i] = np.fft.rfft(Q[:, :, i], axis=0)[f_idx] / n
spectrum_energy += 2*np.sum(

vol[i]*np.abs(Qhat[1:, :, i])**2
)

Raa += np.sum(vol[i]*(Q[:, :, i]-Q_mean[:, i])**2) / n

if i % (n_points//10) == 0:
print(f’{i/n_points*100:.1f}% complete ({time() - t0:.1f} s)’)

energy_residual = spectrum_energy / Raa
print(

f’selected modes contain ’
+ ’{energy_residual*100:.5f}% ’
+ ’of the fluctuating energy’

)
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return Qhat

def load_decompose_erase(loc, window, f_idx, vol):

q = load(loc)[window]
qhat = apply_dynamics(q, f_idx, vol)
return qhat

def load_transform_erase(loc, window, dt, n, vol):
q = load(loc)[window]
f, f_idx, qhat = get_spectrum_and_compress(q, dt, n, vol)
return f, f_idx, qhat

dt = np.median(np.diff(t))
vol = load(SAVE_PATH/’vol’)

if NEW_DECOMP:
# decompose velocity field and keep only some frequencies
print(’Getting U dynamics’)
f, f_idx, uhat = load_transform_erase(

SAVE_PATH/’U’,
window,
dt,
int(np.sum(window)/2), # keep half the data
vol

)
print(’saving f’)
save(f, SAVE_PATH/’f’)
save(f_idx, SAVE_PATH/’f_idx’)

print(’saving uhat’)
save(uhat, SAVE_PATH/’uhat’)
del uhat

else:
# load previously saved frequencies
print(’loading frequencies to save’)
f_idx = load(SAVE_PATH/’f_idx’)

for field, name in fields.items():
print(f’decomposing {field} ({name})’)
try:

qhat = load_decompose_erase(SAVE_PATH/field, window, f_idx, vol)
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save(qhat, SAVE_PATH/name)

del qhat
except pickle.UnpicklingError:

print(field, ’ is corrupted’)

A.6 screen_frequencies.py

from multiprocessing import Pool
from pathlib import Path

import matplotlib.pyplot as plt
plt.rcParams[’font.family’] = ’serif’
import numpy as np
from scipy.spatial import Delaunay

from common import *
from util import nearest
SAVE_PATH = Path(’data/’)

print(’loading data’)

t = load(SAVE_PATH/’t’)
x = load(SAVE_PATH/’x’)
y = load(SAVE_PATH/’y’)
z = load(SAVE_PATH/’z’)

# complete list of frequencies
f = load(SAVE_PATH/’f’)
n_f = len(f)

uhat = load(SAVE_PATH/’uhat’)

vol = load(SAVE_PATH/’vol’)

print(’find highest energy modes’)
mode_energy = np.zeros(n_f)
for i in range(n_f):

mode_energy[i] = np.sum(vol*np.abs(uhat[i])**2)

energy_order = np.argsort(mode_energy)[::-1]

plt.figure(figsize=(3,3))
plt.plot(f, mode_energy , ’k.’)
plt.yscale(’log’)
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plt.xlabel(’$f^*$’)
plt.ylabel(r’$\vert \hat{u}\vert^2’)
plt.savefig(’figure/mode_energy.pdf’, bbox_inches=’tight’)
plt.close()

A.7 terms.py
In this script the actual Fourier terms at frequencies selected from screening are calculated, which
can then be saved or used in visualizations.
from pathlib import Path

import numpy as np

from common import *
from util import nearest

SAVE_PATH = Path(’data/’)

t = load(SAVE_PATH/’t’)
x = load(SAVE_PATH/’x’)
y = load(SAVE_PATH/’y’)
z = load(SAVE_PATH/’z’)

# complete list of frequencies
f = load(SAVE_PATH/’f’)

# list of estimated interesting frequencies from screening
freq_list = [0, 0.1660, 0.3319]

# index of estimated frequencies in complete liist
freq_idx = np.array([

nearest(f, freq, idx=True)[1]
for freq in freq_list

])

# selected frequencies
f_selected = f[freq_idx]
uhat = load(SAVE_PATH/’uhat’)
P = load(SAVE_PATH/’Phat’)[freq_idx]
D = load(SAVE_PATH/’Lhat’)[freq_idx] / Re
C = load(SAVE_PATH/’div(U,u)hat’)[freq_idx]
C[1:] += load(SAVE_PATH/’div(u,U)hat’)[freq_idx[1:]]
chi = load(SAVE_PATH/’div(u,u)hat’)[freq_idx]
chi -= C
T = -P - chi - C + D
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fields = {
’$T$’: T,
’$P$’: P,
’$D$’: D,
r’$\chi$’: chi,
’$C$’: C

}

A.8 convection.py
Alternatively, if the gradients are not available, the FANS terms can be calculated through numerical
differentiation on the modes:
from pathlib import Path

import matplotlib.pyplot as plt
plt.rcParams[’text.usetex’] = True
plt.rcParams[’font.family’] = ’serif’
plt.rcParams[’mathtext.fontset’] = ’cm’
from matplotlib.ticker import LinearLocator , PercentFormatter
import numpy as np
import pyvista as pv
from scipy.interpolate import LinearNDInterpolator
from scipy.spatial import Delaunay
import vtk

from common import *

BASE_PATH = Path(’data’)

x = load(BASE_PATH/’x’)
y = load(BASE_PATH/’y’)
z = load(BASE_PATH/’z’)

def pyvista_convection(surf, q, U):

surf.point_data[’qU’] = (q*U).T
div = surf.compute_derivative(

scalars=’qU’,
gradient=False,
divergence=’div_qU’

)

return div.point_data[’div_qU’]
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def convection_components(surf, q, U):
"""calculate terms U dx q, V dy q, W dz q as a vector"""
surf.point_data[’q’] = q
grad = surf.compute_derivative(

scalars=’q’,
gradient=’grad_q’

)

grad_q = grad.point_data[’grad_q’]

return grad_q*U.T

# Construct Delaunay triangulation
tri = Delaunay(np.array([x, y, z]).T)

# convert Delaunay simplices to pyvista cell representation
cells = []
for simplex in tri.simplices:

cells += [len(simplex)] + list(simplex)
cells = np.array(cells)

# assign cell types (all tetras)
cell_types = np.array([vtk.VTK_TETRA]*len(tri.simplices))

# construct pyvista ugrid
ugrid = pv.UnstructuredGrid(cells, cell_types , tri.points)

uhat = load(BASE_PATH/’uhat’)

UMean = np.real(uhat[0])

# examples of calculating convective fluxes with pyvista
UU_est = pyvista_convection(ugrid, UMean[0], UMean)

Uv_real = pyvista_convection(ugrid, np.real(uhat[1,1]), UMean)

Uv_imag = pyvista_convection(ugrid, np.imag(uhat[1,1]), UMean)
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