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Abstract

Rational curves and surfaces, which include conics and quadrics, have primary impor-
tance in representing geometric shapes in Computer Aided Geometric Design. Mainly conics

and quadrics expressed in rational parametric forms are studied in this thesis. The main
contributions of this thesis are results on:

e Implementation issues for a simple method for drawing conic sections using a difference
equation.

e Classification by reparameterization of faithful rational quadratic parameterizations
of quadrics in E3.

e Rational quadratic spline curve interpolation on a nondegenerate quadric in E4,d > 3.

e Biarc interpolation on a sphere in E9%, d > 3, which leads to a simple method for
interpolating orientations in E3.

While the common subjects of these studies are conics and quadrics, they are basically
independent of each other. Therefore this thesis is a collection of research on similar topics.
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Chapter 1

Introduction

Computer Aided Geometric Design (CAGD) is an area of computer science that concerns
itself with representing, manipulating, and visualizing geometric shapes. It has applications

in computer graphics, as well as in practical fields such as the shipbuilding and automobile
industries.

Rational curves and surfaces have primary importance in representing geometric shapes
in CAGD. At the inception of CAGD, mainly polynomial curves and surfaces were used.
Later, these were extended to rational curves and surfaces when it was realized that some of
the most useful geometric entities, such as conics and quadrics can be exactly represented
as rational curves or surfaces. Also, rational curves and surfaces are closed under projective
transformations. In addition, in free form curve and surface design, rational curves and
surfaces provide more flexibility than itheir polynomial counterparts. Currently rational
curves and surfaces are one of the two main techniques for shape representation in CAGD;
the other one is the implicit representation where a curve or surface is represented as the

zero set of an algebraic equation f(z,y) = 0 or f(z,y,2z) = 0, called an implicit curve or
surface.

In this thesis we will mainly consider rational curves and surfaces, especially those of
degree two. They include all conics and quadrics. It is well known from classical algebraic
geometry that a rational curve or surface can always be represented as an implicit curve or
surface. The problems we will study are (1) rendering conics using a difference equation; (2)
parametric representation and reparameterization of quadrics; (3) interpolation on quadric
surfaces using rational curves; and (4) spherical biarc interpolation.

The difference method studied in problem (1) is an important contribution of this thesis.



In view of its simplicity and its nice properties, through further research it may become
a fundamental algorithm in computer graphics for drawing conics. Topics (2) and (3) are
mainly theoretical investigations. The last topic, the theory of spherical biarc interpolation,
is the maip contribution of this thesis. This work yields a simple solution to the smooth
curve interpolation problem on a sphere. It can be used to solve the orientation interpolation
problem in 3-D space, which arises in computer animation and computer graphics.

While the common subjects of these studies are conics or quadrics, they are basically
independent of each other. Therefore this thesis is a collection of research on similar topics.

1.1 Rendering of conics

Conics are rational quadratic curves. They are widely used in computer graphics and
geometric modeling, and devising efficient rendering algorithms is an important research
topic. In computer graphics rendering conics involves computing points on or close to the
conic. The method we will discuss uses a difference ecquation to compute an inscribed
polygon of a conic.

The two most commonly used methods for rendering conics are the matrix iteration
method based on the recurrence Piy; = MP;, i > 0 [Smi72, Pav83], and the forward
differencing method based on the rational parameterization of conics [BBB87). The former
generates point sequences of better quality while the latter is more efficient. The method
we will study is a generalization of forward differencing. It uses the difference equation

Pz = (2k+ 1)(Pig2 — Pir)+ P;, 120,

where Py, Py, P, are appropriately chosen initial points and k is 2 constant whose range
depends on the type of the conic to be drawn. This method will be called the difference
method. The difference method is more efficient than the forward differencing method, and
generates the same point sequences as the matrix iteration method. In Chapter 2 the theory
and implementation issues of the difference method will be studied in detail. This extends
the work in [WaW89a, WaW89b].



1.2 Parametric representations and reparameterizations of
quadrics

Reparameterization of a parametric curve or surface involves changing the parameter(s)
of the curve or surface to other related parameter(s). Here we study rational reparame-
terizations of rational curves and surfaces, i.e. the function(s) relating the new and old
parameters are rational functions. Sometimes the term reparameterization is also used to
refer to the curve or surface with the new parameter(s). Reparameterization is a useful

technique. For instance, it can be used to simplify the representation of a curve segment or
surface patch in the Bézier form.

In Chapter 3 we will mainly consider linear and nonlinear rational reparameterization
of rational surfaces, especially in the setting of rational surfaces which are quadric surfaces.
and show that the situation is more complex than that for rational curve. It is known
that any quadric can be represented as a rational quadratic surface [Som51, p.192]. We
will study rational parameterizations of quadrics and the relationship between different
rational parameterizations of a quadric surface in E3. It s shown that (1) any rational
quadratic parameterization of a quadric S C E3 is associated with a unique point on S;
(2) conversely, associated with any point on S there exists a family of rational quadratic
parameterizations of S, which are rational linear reparameterizations of each other; (3) any
two different parameterizations associated with different points on S are rational quadratic
reparameterizations of each other; (4) any rational quadratic parameterization of quadric
S has a rational linear inversion formula.

The above theory will then be used to obtain a rational representation of a triangular
patch on a quadric with rational boundary curves. It is shown that any triangular patch
on a quadric with rational boundary curves of degree n can be represented as a rational
triangular Bézier patch of degree 2n. In particular, if there are three planes each containing
a boundary (a curved side) of the triangular patch, and the three planes intersect at a point

on S, then the patch can be represented as a rational quadratic Bézier patch. This extends
the results in [Jc™790].

1.3 Interpolation on quadrics by rational quadratic curves

Motivated by the point interpolation problem in the unit quaternion space, which arises
in computer animation [Sho85], in Chapter 4 we will study the generalized problem of
interpolating a point sequence on a proper quadric S using rational quadratic spline curves,

3



with the curve lying on S.

We first consider using one piece of a rational quadratic curve (conic arc) between two
consecutive interpolated points. Several results on the existence and construction of such
splines are proved. For instance, it is shown that (1) such a spline always exists on a sphere
S C E?, d > 3, and there are oo! such splines, where oo denotes that the number of
free parameters is k; and (2) on a general quadric such a spline may not exist. A necessary
condition for the existence of such an interpolating spline is that all line segments connecting
consecutive interpolated peints lie on the same side of the quadric.

A spline curve obtained in the above manner is not locally controllable even if it exists.
So we further consider using two smoothly joining rational quadratic Bézier curves, called
a conic biarc, between two consecutive interpolated points. In this setting a biarc is used to
interpolate two points on a quadric and two tangent directions defined at the two points; this
is called Hermite interpolation. To guarantee that these rational quadratic Bézier curves
are continuous, we consider only quadratic Bézier curves with the two end weights being
1 and the middle weight being positive. The resulting conic biarc is called a biarc with
positive weights. Several results on the existence and construction of biarcs with positive
weights solving a Hermite interpolation problem on a quadric are derived.

1.4 Spherical biarcs

A spherical biarc contains two smoothly joining circular arcs on a sphere. In Chapter 5,
we will consider using a spherical biarc to solve the Hermite interpolation problem on a
sphere, i.e. to interpolate two points and two associated tangents on a sphere Sd4-1 ¢ E¢,
d > 3. This is a continuation of the discussion in Chapter 4, with the quadric specialized
to a sphere in EX.

Biarcs, especially plane biarcs, have been studied extensively in CAGD [Bez72, Sab76,
SuL89]. Recently, space biarcs have found applications in surface modeling using cyclides
[NuMS88]. Biarcs are favored because of their obvious advantages: they can be easily rep-
resented, efficiently stored, and easily processed. We first consider the existence and con-
struction of all spherical biarcs interpolating data comprising two given points and their
associated tangent directions on a sphere in E¢, d > 3. It is shown that (1) there exists an
essential distinction between two kinds of data, to be called regular and singular data; (2)
there exist co! spherical biarcs interpolating any given regular data D, with the joints of
these biarcs forming a circle on S, where a joint of a biarc is the point where the two arcs
of the biarc meet; (3) there exist co®~? spherical biarcs interpolating any given singular
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data, with the joints forming a d — 2 dimensicnal sphere on S. Several more properties of
spherical biarcs are derived in Chapter 5.

In Chapter 6, the shape control of spherical biarcs is discussed, i.e. how to choose a
biarc with a fair shape among infinitely possibilities. It is shown that the biarc with the
chords of its two arcs having equal length is a reasonably good choice. Using this shape
control scheme, an algorithm is proposed for interpolating = sequence of points on a sphere
using spherical biarcs.

In Chapter 6, we also address the application of spherical biarcs to interpolating object
orientations in E3. The idea is to use a spherical biarc spline to interpolate a point sequence
in the unit quaternion space. Some examples of this application are illustrated. The point
interpolation problem in the unit quaternion space has been solved in the literature using
various approaches [Sho85, Sho87, Ple89, GeR91]. In view of efficiency and simplicity, we
conclude that the spherical biarc is the best among all the existing G! schemes.



Chapter 2

Difference Method for Rendering

Conics

In graphics, drawing a curve involves computing a sequence of points on or near the curve.
In this chapter we study the computation of point sequences on a conic by using a differ-
ence equation, called the difference method. Applications and implementation issues of the
difference method are addressed.

2.1 Introduction

Conic sections are well-studied curves, both as quadratic algebraic curves and rational
quadratic parametric curves. They are widely used in geometric raodeling and computer
graphics. Although in practice various other curve schemes have been found very useful,
in many cases the relatively simple conic arcs can also fulfill the demand. For example, in
[Boo79, Far89, Pav33, Pras5] conics are used in a compesite conic spline to solve interpola-
tion and approximation problems. So it is stil} of interest to desiga efficient algorithms for
rendering conics.

There are a number of algorithms proposed in the literature of computer graphics to
render conics. Basically these algorithms fall into two categories: one constructs the pixel
representation of the curve, that is, pixels on a display device which approximate the curve
are generated; the other computes a sequence of connected line segments to represent the
curve and then the line segments are rendered with some efficient line-drawing algorithm.
The method we shall discuss belongs to the second class. Specifically, we shall show how to



compute an inscribed polygon approximating a conic arc using a difference equation.

There are several other ways of generating inscribed polygons for conics, usually based
on different representations of conics. We will mention the two most efficient and the most
used ones below, with some of their properties listed for later reference. In order to be

specific in efficiency measurement, and for simplicity of analysis, we shall mainly discuss
conics in the plane EZ.

The most popular method for rendering conics in applications is the forward differencing
method based on the rational parameterization of conics {BBB87, p. 400]. This method
essentially uses the difference equation

Pz =3P42—-3P. 1+ P, 120,

to generate a point sequence on a polynomial quadratic parametric curve, which is a
parabola, with equally spaced parameter values. This point sequence is then mapped pro-
jectively onto a rational parametric curve, which is a general conic. By rearranging, this
method can be implemented by iterative computation of forward differences, therefore it
will be called the forward differencing method for rendering a rational quadratic curve. The
advantage of this method is that the rational representation is compatible with the curve
and surface representation in most current geometric modeling systems, usually including
higher degree rational Bézier curves and surfaces, and rational B-spline curves and surfaces.
Its shortcoming is that the point sequence generated on the conic is usually not evenly
spaced. Although reparameterization or adaptively changing the step size can alleviate this
problem, it will be shown later in Section 2.5 that equidistant points on a circle cannot
be produced by forward differencing. Point sequences generated by forward differencing
can also be generated by subdivision based on the deCasteljau algorithm [Far88], which is
numerically more stable but, at the same time, less efficient than forward differencing.

The matrix iteration method is another way to generate points on a conic. It performs
the iteration

Py =APF;, i>0, (2.1)

for some initial point Py in the plare and a 2 x 2 real matrix A. It is shown in [Pav&3]
that the resulting point sequence {P;}i>0 can be made to lie on any central conic with the
center at the origin by choosing Py and A properly. Therefore, by applying a translation,
any central conic can be dealt with by this method. The characteristic of the matrix A used
for generating a point sequence on a central conic or a straight line is that det(A4) = 1.

The main criteria for judging a method for drawing conics are the efficiency for comput-
ing a point on the curve and the quality of the point sequence generated. For the forward
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differencing method, on average six additions and two divisions are needed for computing
one point on a conic in E2. For the matrix iteration method the computation count is four
additions and four multiplications per point on a central conic; note that two additions are
needed for the translation. Equidistant points on a circle can be generated by this method.
In general, the matrix iteration method generates point sequences on conics of better qual-
ity than the forward differencing method, but is less efficient than the latter on computers
which perform multiplications and divisions at about the same speed.

The method we shall discuss is based on the difference equation
Piiz = (2k+ 1) (Piy2 — Pia) + P, 120,

where k is an appropriate constant. It can be shown that this iteration can generate points
on =ny proper conic; a proper conic is also called a nondegenerate conic. This method
will be called the difference method, and k the difference parameter. For this method
the computation count is four additions and two multiplications for generating a point
on a conic. It will be shown that any point sequence generated by the matrix iteration
method can also be generated by the difference method. So the difference method has
the efficiency of the forward differencing method and the quality of the point sequence
generated by the matrix iteration method. The difference method was first used to draw
ellipses using a microprocessor controlled plotter [Wan86]. Error analysis for this method
has been discussed in [WaW89a] and [WaW89b]. In this chapter, more properties and
implementation issues of the difference method will be discussed.

The main features of the difference method include:

1. 1t is uniform for drawing all conics.

2. The computation involved in each iteration is simple; only two multiplicatiors and
four additions are required. This is the most efficient algorithm for computing a point
sequence on a conic.

3. The generated polygon, as an approximation to the conic, possesses a best approxi-
mation property, which will be explained later.

4. The form of the difference equation is invariant under affine transformations.
This chapter is organized as follows. Section 2.2 studies the difference equation satisfied
by point sequences on conics. In Section 2.3 we determine the difference parameter & such

that the generated polygon approximates the conic within a prescribed tolerance. In Section
2.4 we consider applying the difference method to draw conics represented by the rational
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quadratic parameterization and the quadratic algebraic equation. In Section 2.5 we derive
several properties of the difference method.

2.2 Difference method

In this section we develop the theory of the difference equation satisfied by a point sequence
on a conic. We will first consider a second order difference equation in the case of central
conics with center at the origin, and then consider the case of general conics. A point in the
plane E? is represented by Cartesian coordinates P = [z,y]T. The segment joining points
A and B is denoted by AB. When A # B the straight line passing through A and B is
denoted by 4B. The vector from point A to point B is denoted by AB = B - A. The
length of vector V = [z,y]7 is denoted by |V| = VVTV. A continuous finite arc on a conic
is called a conic erc, or more specifically, an elliptic arc, a parabolic arc or a hyperbolic arc.
Ellipses and hyperbolas are central conics; and elliptic and hyperbolic arcs are called central
arcs. The center of a central arc is the center of the underlying conic. The apices of a conic
are the points that have the maximum curvature. We assume that a point sequence on a
hyperbola lies on a branch of the hyperbola. This assumption does not pose any problem
in applications and is adopted for simplicity.

2.2.1 Conics with center at origin

Now we review the trigonometric parameterizations of ellipses and hyperbolas. Suppose
that C is an ellipse or a branch of a hyperbola. When C is an ellipse it can be mapped into
the unit circle U by an affine transformation, where U: z2 4 y?2 = 1 can be expressed in the
parametric form

P(t) = [cost,sint]T, —oco <t < oo. (2.2)

Although it suffices to restrict ¢ to any interval of length 27, the extended parameter range
will be needed later. Eqn. (2.2) will be called the canonicel form of ellipses. When ellipse
C has its center at the origin it can be expressed as

P(t) = R [cost, sint]¥, —ooc<t< oo, (2.3)
where R is a 2 X 2 nonsingular real matrix.

When C is a branch of a hyperbola it can be brought into the hyperbolic branch H by
an affine transformation, where H: z2 — y2 = 1, = > 0, can be expressed in the parametric



form
P(t) = [cosht, sinh )T, —oco<t< wo. (2.4)

Eqn. (2.4) will be called the canonical form of hyperbolas. When hyperbola H has center
at the origin it can be expressed as

P(t) = R [cosht, sinht]T, —oco <t < oo, (2.5)
where R is a 2 X 2 nonsingular real matrix.
The following theorem is useful in drawing a central conic with center at the origin.

Theorem 2.2.1: Let C be an ellipse or a branch of a hyperbola with center at the origin

1. Let Py and Py be two distinct points on C . Then there ezists a constant k such that
ihe difference equation

Pyo=2kPiy — F, 120, (2.6)

deicrmines a point sequence {P;}i>o on C and the P; have equally spaced parameter values
with respect to representation (2.3) or (2.5). When C is an ellipse, ~1 < k < 1; when C
is a hyperbola, k > 1. Conversely, given the initial point Py on an ellipse or a branch of
hyperbola, and k in the range specified above for each case, there erists a point P, on C
such that the point sequence generated by (2.6) is on C.

Proor: Ellipses and hyperbolas will be treated separately.

Case 1: C is an ellipse. First consider the unit circle U: z2 + y? = 1, which can be
written in canonical form (2.2). Let Py = [costg,sin )T, Py = [cos(to + 8), sin(to + 6)}T be
two distinct points on U. Using the following identities

cos(a + B) + cos(a — B) = 2cos B cos a,

sin(a + B) + sin(a — B) = 2cos Bsin a,

it is easy to show that
Piyo =2kPy1 - F;, 120,

with k = cos 6, generates the point sequence {P;};>o0, where P; = [cos(to +16), sin(to +i9)]7,
which obviously lies on the circle U.

Now consider ellipse C centered at the origin O. The unit circle U can be mapped onto
C by a homogeneous affine transformation, denoted by a nonsingular matrix R. For any
two distinct points Qg and Q; on C, choose P = R~1Qp, P, = R™'Q; on U. Suppose thai
{Pi}i>o is the point sequence on U obtained from (2.6) with Fo, P, as initial points, and
with k = cos 8 as defined above. Let Q; = RFP;,i > 2. Then {Q,-},-ZO is a point sequence on
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C satisfying (2.6). This can b. verified by multiplying R to both sides of (2.6). Since P,
and P, are distinct and k = cos @, we have -1 < k < 1.

Case 2: Cis ¢ -nch of a hyperbola. The proof is similar to that for the ellipse.
Here one starts wit. canonical form (2.4) and uses the identities

cosh(a + B) + cosh{a — B) = 2 cosh 3 cosh a, (2.1

sinh(a + 8) + sinh(a — 8) = 2 cosh 8sinh o (2.8)

In this case £ = coshd > 1 since 8 # 0.

The second part of the theorem follows easily from the above analysis. Assuming P(t) is
in the form (2.3) or (2.5) depending on the type of C, and Py = P(1g). Choose P, = P(ty+9)
where 6 is determined by cos@ = k or cosh@ = k. Then the point sequence generated by
(2.6) is P; = P(to + i8), whichison C. 2

Because tiwo solutions for @ can be found from cos@ = k (or cosh 8 = k), there are iwo
different choices of P, which determine the two different directions of {P;}i>o on C. We
remark that in (2.6), when k is chosen such that £ < —1, the points generated by (2.6)
alternate between the two branches of a hyperbola; they are on a straight line if £ = 1, and
alternate between two parallel lines if £ = —1. In fact, the point sequences produced by
(2.6) always lie on either central conics ( ellipses or hyperbolas ) or straight lines. These
properties can be derived easily by analyzing the characteristic equation of (2.6) [WaWa8&gb].

2.2.2 General conics

To encompass the case of parabolas by the same difference equation as for ellipses and
hyperbolas, we shall consider a difference equation of third order. In this section the centers
of the conics are not necessarily at the origin O.

Let S be the center of a central conic C with parameterization P(t), and let C be the
conic represented by V(t) = P(t) ~ S. Then C is a translation of C and its center is at the
origin O. Let {V;}i>0 be a point sejjuence generated by (2.6) on C with an appropriately
specified k, i.e.

Viee=2kV, 1, - Vi, 72>0.
Let P, = V; + 5. Then a point sequence {P;};>0 on C is derived from {V;}i>0. Substituting
V; = P; — S in the above equation and rearranging , we have

.P,'+2 = 2k13i+1 - -Pg + 2(1 - k)S, (29)
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and
Piy3 = 2kPiyz — Piyy +2(1 — k)S,

Eliminating 2(k — 1)S by subtracting the above two equations, we have
Poyz=(2k+1)Py2—(2k+1)Piya + F;, ¢2>0.

This is the difference equation satisfied by a point sequence {P;};>o on C, which is a central
conic with its center not necessarily at the origin.

Now we can see how the difference equation for parabolas fits into the above equation.
A parabola C is expressible in the following parametric form P(t) = [z(2), y(2)]T where

{z(i)=a1t2+blt+cl —00<t< 00 (2.10)

y(t) = azt? + bat + ¢,

Suppose that on C there is a point sequence {P;}i>o given by P; = P(to + 6), for some 2
and @ # 0. As the third order forward difference of any quadratic polynomial is identically
zero, we have

Piy3 —3Pi42+ 3P4 — P =0.
Hence
Pz = 3.P,‘+2 - 3I>,'+1 + P, 1>0. (2.11)

This is essentially the same equation as used in the forward differencing method. By an
appropriate arrangement, the arithmetic operations required by the forward differencing
method are two additions per coordinate for a new point [BBB87].

We summarize the above results in the following theorem.

Theorem 2.2.2: On a conic C, for any initial point Py and constant k which is in a
range depending on the type of C as indicated below, there exist points Py and P, such that

Piya=(2k+1)Piy2—(2k+1)P.n + P;, i2>0, (2.12)

generates a point sequence {P.};>o that lies on C. For ellipses —1 < k < 1; for parabolas
k = 1 ; for hyperbolas k > 1. For a parabola the distribution and direction of the sequence

{P:}i>o on C are solely determined by P;. For ellipses and hyperbolas the distribution is
determined by k, and the direction by P;.

Later in this chapter we will see how the results of this theorem are applied to drawing
conics. Fig. 2.1.1 illustrates some polygonal approximations generated by the difference
method for four ellipses. An advantage of (2.12) over (2.6) is its invariance under any affine
transformation, while (2.6) is invariant only under homogeneous affine transformations.
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> S

(a)n=3 B)n=2¢6
() n=20 (d) n = 40

Figure 2.2.1 Four ellipses: Polygonal approximations of four ellipses generated by the difference

method. n is the number of sides in each approximation.
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By (2.12),
Fiyz —2kPiyo + Piyn = Piy2 —2kFPip + P, 120.

Therefore
Piyp—2kPy1+P,=c, 120,

witk ¢ being a constant. This is another formula for generating a conic. When C is a central
conic, we have (2.9), i.e.
c=2(1-k)S, i>0.

This equation should be interpreted appropriately when the conic under consideration is a
parabola, for which S is regarded as being at infinity and 1 —k = 0. A consequence of this
relation is that when S is at the origin O, (2.12) reduces to (2.6).

2.2.3 Equivalence with matrix iteration method

The matrix iteration method for drawing conics has been mentioned in Section 2.1. A
detailed discussion of this method can be found in {[Pav83]. The characteristic of the matrix
iteration method is that the determinant of the matrix equals 1, in order to produce a
successive point sequence on a central conic or a straight line. The relationship between the
difference method and the matrix iteration method is explained by the following theorem.

Theorem 2.2.3: Suppose that {P;}i>o0 is a point sequence on a proper conic centered
at the origin but not contained in a straight line. Then {P:}i>o0 is generated by the matriz
iteration method if and only if it is generated by the difference method.

PROOF: Suppose that {P;}i>o is generated by the matrix method, that is, there exists
a 2x2 real matrix A with det(A4) = 1, such that

Piy1 =AF;, 120,
Let the characteristic polyncmial of A be
F(A) = det{ AT — A) = A% — tr(A)A + det(A) = A% — tr(A)A + 1.
By the Cayley-Hamilton Theorem,
f(A) = A2 —tr(A)A+ 1 =0.

So
f(A)P‘ = A2Pi i ‘;'.I‘(A)AI"’, + .P, = .Pi+2 et tl‘(A)-PH-l + Pz = 07
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that is,
Piyr=tr(AYP;ya — P, 12> 0.

Let tr(A) = 2k. Thus {P;}i>0 can be produced by the difference method.

Conversely, let {F;}:>0 be a point sequence generated by the difference method (2.6).
Then there exists constant k such that

Piys = 2kPiyy — Py i2 0.
(PP =[PP ! (2.13
1 Rl=1Rohl - -13)

By the given condition on {P;}i>0, we can assume that P, and P, are linearly independent.

Let

A =[Py Py) [ ‘1) ;1: ] [Py P,]71.
Then
A[P, P} = [P, Py (2.14)

Now the proof is to be completed by induction. Eqn. (2.14) gives the base cases for i = 0
and 1. Suppose for any ¢ < [, we have P,y = AP;, thenfori=1[1+1

Pyo2 =2kPiyy — P =2kAP - APy = A(2kPi— F_,) = APi4,.

By induction we have proved that P;;; = AP, for any i > 0, i.e. {P,-},fzo can be generated
by the matrix method. O

2.2.4 Approximation property and efficiency

The inscribed polygon of a conic arc generated by the matrix iteration method is discovered
in [Smi71] to possess the following best approximation property of maximum inscribed area.
Let P;,7=0,1,...,n, be the point sequence generated by the difference method on a conic
arc C with Py and P, being the two endpoints of C. Then connecting Py and P, gives a
convex polygon G : Py P;...F,. The best approximation property of maximum area states
that the polygon G has the maximum area among all the convex n + 1 sided polygons whose
vertices are on the arc C and include the two endpoints of C. In {Smi71] Smith uses the
matrix iteration method for axis-aligned conics only, but an affine transformation does not
change the property of maximum area, so by Theorem 2.2.3, the inscribed polygons of the
conic arcs generated by (2.6), as well as (2.12), also possess the same best approximation
property as those generated by the matrix iteration method. However, the proof given in
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[Smi71] for the above property contains an incorrect argument. We shall give a procf of

this property in Section 2.5.

The efficiency of the difference method in the plane E? has been mentioned earlier.
The saving of operation counts by this method compares more favorably with the matrix
iteration method in higher dimensional space. Because the difference method represented by
(2.12) is invariant under affine transformations, the difference equation of a point sequence
on a conic in E? has the same form (2.12), with each point having d components. In
E9, d > 2, the difference method needs d multiplications and 2d additions/subtractions for
computing one point. The higher dimensional version of the matrix iteration method, which
generates the same point sequences as the difference method, is obtained by replacing A in
(2.1) by a d x d matrix. It needs d? multiplications and d? additions, including transiation,
to generate a point.

Finally, an observation of importance to applications is that if the value of the difference
parameter k is assumed to be of the form 1 + 27%, where s is a positive integer, then the
computation of each point using (2.6) or (2.12) can be carried out with only additions and
shifts. This means that the inscribed polygon of any conic can be computed without using
multiplications. This feature of the difference method enables it to be implemented in VLSI
easily to speed up the rendering of cornics drastically. This advantage could also be utilized
when the algorithm for drawing conic arcs is coded in machine code or assembly language,
in which shifts can be done efficiently.

2.3 Drawing conic arcs to desired tolerance

In this section we will discuss one of the implementation issues of the difference method.
The problem is: given the equation of a conic arc in some form, two endpoints of the arc,
and a tolerance of approximation u, determine a difference parameter k so that the distances
from the sides of the generated polygon to the arc are not greater than u.

The determination of the difference parameter k is fundamental to the application of
the difference method. By Theorem 2.2.2, k affects the distribution (or density) of the
point sequence generated by the corresponding difference equation. So when a precision
requirement is imposed, we need to find out a suitable difference parameter meeting the
requirement. Intuitively, if the distribution of the point sequence on a curve is dense enough,

the approximation should be good. But a high density of points generated on the arc could
cause excessive unnecessary computation.
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We shall discuss how to specify the precision requirement of approximation, and how to
determine an appropriate difference parameter to satisfy the requirement. The main result
is a simple formula which determines an appropriate difference parameter, once some simple
geometric characteristics of the conic arc are known and the precision requirement is given.
Since k£ = 1 for all parabolas, we shall address parabolas separately.

The following theorem is the preparation for our analysis.

Theorem 2.3.1: Suppose that C is a proper elliptic or hyperbolic arc with cente- the

origin O, and {P;}!, is a point sequence on C generated by the difference methoa €
arc P;P;y;, let F; iy, be the point with the mazimum distance to the segment PP, ,, and
let this marimum distance p; be called the chord-arc offset on the segment P, P.. . Then

(1) when C is elliptic: p; > p; U | Piy1y2]l > | Pijgajel; (2) when C is hyperbolic: p; > pj iff
|Pi+1/2| < |Pjt172l-

In the above | P| denotes the distance of point P to the origin O which has been assumed
to be the center of C. Theorem 2.3.1 can be used to determine the location where the
maximum chord-arc offset on a central arc C occurs. For instance, the thesrem implies
that when C is elliptic, if the middle point P;,/, of arc P; P,y is farthest to the center

among all the |P; /5], j = 0,1,...,n — 1, then the corresponding chord-arc offset is the
largest.

To prove Theorem 2.3.1, we first need the following lemmas.

Lemma 2.3.2: Let {P;}., be a point sequence generated by the difference equation
(2.12) on a central conic C. Then the area enclosed by the arc P;P;;, and the segment
P; Py, is the same for all i > 0.

PrOOF: Since the ratio of areas is invariant under affine transformations, we just have
to prove the lemma for central conics in canonical form.

Case 1: C is elliptic. Although in this case the statement is obvious from a geometric
point of view, we will give a computational proof since the result of the computation will
be useful later in this chapter.

The canonical form of an ellipse is given by (2.2). As indicated in the proof of Theorem

2.2.1, the point sequence {F;}:>0 generated by (2.12), or equivalently by (2.6) since C has
its center at the origin, is

P; = [cos(to + i6),sin(to + i0)]T.
Let S(P;P;41) be the area enclosed by the arc P,P;;; and the segment P, Piy;. Let the
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parameterization of the segment P:Piy; be B(s) = [z(s),y(s)]¥ = sP + (1 — s)Piy1, where
0 < s < 1. By Green’s Theorem [O’Neil, p. 261], the area S(P;F;41) can be calculated by
the following formula.

S(P;Fiy,) =

to+(i+1)8 1
L eyt - vds@) + [ [e(s)du(s) - y(s)dz(s)]

o+16

to+(i+1)8
/ (sin?t + cos? t)dt
to+16

1
2
1
2

+ /Ol[cos(to + (i + 1)8) sin(to + 16) — cos(to + i6) sin(to + (¢ + 1)8)}ds

= %IQ —sin8|, i>0.

Since S(P;P;4+1) is independent of i, the lemma has been proved for ellipses in canonical
form.

Case 2: C is hyperbolic. The canonical form for hyperbolas is given by (2.4). The point
sequence generated by (2.12) is

P; = [cosh(to + i6),sinh(to + i0)]T, i>0.
Through a calculation similar to that in case 1, we obtain
S(PPaD) = —;—]sinhO— 6, i>o0,
which is independent of i. So the lemma is true for hyperbolas in canonical form. D

A similar argument shows that the above lemma is also true for a point sequence gen-
erated by the difference method on a parabola.

Lemma 2.3.3: Let {F;}i;>0 be a point sequence generated on a central conic C with
center at the origin by the difference equation P4z = 2kP;; — P;, ¢ > 0. Then there ezists
{Qi}i>o on C satisfying

Qi+2 = 2let'+1 - Qia 1 = Oa (2'15)
with k' = [(k + 1)/2]*/2 such that Q2; = P;, i > 0.

ProoF: By Theorem 2.2.1, let P; = P(t5+6), i > 0, for some #p and 8 # 0, where P(t)
is the parametric form (2.3) or (2.5) of the arc C. Define Q; = P(%o + :6/2), ¢ > 0. Then it
can be verified that the Q;’s satisfy (2.15) with &’ = [(k 4 1)/2]/2, for in the case of ellipses

k' = cos(6/2) = [(cos @ + 1)/2]** = [(k + 1)/2]"/3;

and in the case of hyperbolas

k' = cosh(8/2) = [(cosh @ + 1)/2]*/? = [(k + 1)/2]'/2.
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Obviously, Q2; = P;, 12> 0. O

Lemma 2.3.4: If {F;}i>0 is a point sequence generated by the difference method on
a proper conic, then P;y, is the unique point on the arc P;P;ys that yields the mazimum
distance from the arc P;P;; 5 to line segment P; P; -.

ProOOF: When the point sequence is generated by the matrix iteration method on a
proper central conic, the conclusion of this lemma is proved in [Smi71}. From Theorem
2.2.3 we know that on a central conic the difference method generates the same point
sequence as the matrix iteration method. So the lemma is true for a central conic. For a
parabolic arc the lemma is proved directly in [Smi71]. O

PRroOF of Theorem 2.3.1: By Lemma 2.3.3, there exists a point sequence {Q;}i>o0 gen-
erated by the difference method with appropriate initial points and parameter &’ such that
Q2; = P;.. By Lemma 2.3.4, Q2;4, is the unique point on the arc P;FP;;, that yields the
maximum distance to segment P; Pi,,, therefore Qo431 = Py, /2 by the definition of F;,/,.

Let the area of triangle AP;Q2;41Piy1 be S(AP:Q2i3+1Pit1), then
S(AP:Q2i41Piy1) = S(PiPiy1) — S(PiQzit1) — S(Q2ix1Pig1) = Area, (2.16)

recalling that S(P,P.4;) is the area enclosed by the arc P, P, and segment F;P,,. By
Lemma 2.3.2, Area is independent of i. Let d; = |P;P;;;]- Then what was said above
is equivalent to %/,L,-d,- = Area, where p; is the distance from Py, /, to P, P;;;. Thus
p; = 2Area/d;. It follows that u; > u; iff d; < d;. So in order to prove the theorem it
suffices to show that (1) d; < d; iff [Piya/2] > |Pj4a1721 when C is elliptic; (2) d; < d; iff
|Piyas2]l < |Pjy172]1 when C is hyperbolic.

Since the Euclidean distance d; is invariant under orthogonal transformations, for con-
venience, we just need to prove the theorem assuming C in the form

P(t) = [acost,bsint]T, —~oc0 <t< oo
or
P(t) = [acosht,bsinht]T, —o0 <t < oo,
for some a, b > 0, depending on whether C is elliptic or hyperbolic.
Case 1: C is elliptic. The solution of {P;}:>0, given by (2.6), is
P; = [acos(to + i6), bsin(to + i6)]T, i>o0.
So

d? = |PiPiyal?
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= J{acos(to + (i + 1)8) — a cos(to + i0)}* + [(bsin(to + (i + 1)8) — bsin(to + i6)]?

2z+1

) + 4b? sin? g cos?(to +
21 + 1

/]
= 4a?sin? 2 sinz(to +

= 4sin? g[a2 + b% — (a? cos2(to +

On the other hand, since {Q;}:>o satisfies
Qiy2 =2K'Qiy1 — Q;, 120,
where k' = cos8/2 and Q»; = P;, we have

Q: = [acos(tg + ), bsin(to + —)]

Therefore

d? = 4sin?(8/2)[e® + b — |Q2:i411%) = 4sin?(8/2)[a® + b* —

This equality implies that d; < d; iff |Fiyy172] > |Pjt1/2l-

Case 2: C is hyperbolic. Since in this case

2:+1

8) + b%sin?(2o +

9).

26))].

|Piy1s2)?), i20.

P; = [a cosh(?o + i), bsinh(to + i®))T, i> 0,

and

= [a cosh(to + g),bsinh(to + -122)]7', i>0,

we have

d? = 4sinh%(8/2)[b? — a® + a® cosh®(tp + 2+l
= 4sinh?(0/2)(b% — a® + |Q2i41]?)
= 4sinh?(0/2)(6* — a® + |Piyay2l?), 2 0.

This equality implies that d; < d; iff |Piy1/2]1 < |Pjgi/2l- O

Now we are able to derive a formula for determining the difference parameter k for a
point sequence {FP;}%,, given a tolerance ux as an upper bound on the chord-arc offsets
resulting from {P;}7.,. Only the case of hyperbolas will be analyzed in detail; the case of

ellipses follows from similar arguments.

Let {P;}", be a point sequence generated by the difference method with difference
parameter k on a hyperbolic arc C with center at the origin O. Then, by Lemma 2.3.3, there
exists sequence {Q;}?2, satisfying the difference equation (2.15) with difference parameter

= [(k + 1)/2)]'/? such that Q4 = P;. Let p be the tolerance imposed as an upper
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Figure 2.3.1 A hyperbolic arc.

bound on the chord-arc offsets u; resulting from {P;}i>0. Let M; = (Qa2i + Q2i42)/2 be the
midpoint of Q2;Q2i4+2. See Fig. 2.3.1 for an illustration. From (2.15) we have

M; — Qz2iq1 = %(in + Q2i42) — E}E(in + Q2it2) = (K — 1)Q2i41-

Let 8; = LOM;Q,;, or equivalently, by Lemma 2.3.4, the angle formed by the line
segment 6@2,-_,_1 and the tangent of C at Q2;+;. For our purpose the two such mutually
supplementary angles have the same effect, since we will only be concerned with sin g;.
According to Lemma 2.3.2 the offset of P;P;;; from the arc P; P, is attained at Q2;4; and

is p; = |M; — Q2:41] sin B;. If it is demanded that the offset on the segment P;P;;; does not
exceed the prescribed tolerance u, then

max{p;} = max{|M; - Qzis1|sinfi}
= mia.x{(k’ — 1D|Q2i41lsin B;} < u. (2.17)
By Theorem 2.3.1, max{u;} occurs at the @Q2i41 with the smallest |Q2;41|. Let Ep and

FE; be endpoints of the arc C, let A be the apex of the underlying hyperbolic branch of C,

and let 8(X) be the angle formed by the line segment OX with the tangent of C at X,
where X = Ej, F1, or A. Then we have

m?x{p;} < (K — 1) max{| E¢| sin B(Ey), | E1| sin B(E;)} (2.18)
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if A is not on C, since in this case Eg or E) is closest to the center among all points on arc
C; and
max{u;} < (k' — 1)|Alsin B(4) (2.19)
2

if A is on C, since in this case A is closest to the center among all points on arc C.

To find k' from (2.17), it suffices to set the right hand side of (2.18) or (2.19) < u. Thus
k' can be chosen to be

K =1+ p/L(C), (2.20)

where L(C) = max{|Eo|sin B(Ep),|E1]sin B(E1)} if the apex A is not on C; or L(C) =
|A|sin 3(A) if A is on C. Finally the difference parameter & of the sequence {P:}i>o0, by
Lemma 2.3.3, is

k=2k"—-1 (2.21)
where k’ is given by (2.20).

For ellipses the reasoning is similar to that for hyperbolas. So we will only give the
formula without proof. For ellipses the counterpart of (2.20) becomes

K =1— p/L(C), (2.22)

where L(C) is defined as above with A being one of the apices of the underlying ellipse of
the arc C. With &’ being known, k is also given by (2.21).

Summarizing the above results, we see that if the difference parameter k is determined
as above, then the generated inscribed polygon of C approximates C within the prescribed
tolerance p. Since the choice of k£ depends only on the geometric properties of C, the above
results also apply to conic arcs with center not at the origin.

It is easy to see that the quantity |X|sin 8(X) appearing in the above equations is
the distance d(X) from the center of the conic section to the tangent of C at X, where
X = Eg, E;, or A. This fact further simplifies the computation of k, since d(X) can now
be calculated easily from either the parametric or the implicit equation of a conic arc. This
observation about |X|sin 8(X) also helps to explain the conclusion of Theogen: 2.3.1.

Now we need to do the above analysis for parabolas. Let the parametric equation of the
parabola be

P)=Ut? +Vit4+ W. (2.23)

We assume that {P(t;)}i>0, where t; = # + 6, is the point sequence produced by (2.12)
with the difference parameter k£ = 1. Since the difference parameter k¥ = 1 for all parabolas,

now we need to find the relation between the parameter increment 6 for successive points
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{P;}i>0 and the degree of approximation. By Lemma 2.3.4, the offset u; of the arc P; Py,
to the segment P; P, is attained at Piyy/2 = P(t; + 6/2). So

I[P(t: + 6/2) — P(t:)] X (P(tix1) — P(t:))]

|-P(tiy1) — P(t:)]
|[(2:6 + 6%/4)U + 8V /2] x [(2t:0 + 6>)U + 8V)|

[(2:6 + 65)U + 6V |

1 8%U x V|
412(t; + 6/2)U + V]|
62 |UxV|
TP +0/2) (2.24)

Hi

On the other hand the curvature of the parabola at P(t) is

w(t) = LEQ) X P _ (22U + V) x @@U)| _ 2|U x V|

|P()P? [Pr(e)P? Ol
Thus, replacing t by t + 6/2,

2|1U x V| ]1/3
k(t+6/2)

Substituting this in the above expression for y;, we have

P+ 0/2) = |

_ & [l x ViEse + 0/2)]°
T4 2 )

Since on a parabola the maximum curvature is attained at the apex, g, attains its maximum
over a parabolic arc C at the endpoints of the arc if the apex is not contained on the arc
C, or at the apex if it is on the arc C. This result is comparable with the similar property
of ellipses and hyperbolas stated in Theorem 2.3.1.

When a bound g on the p;’s is prescribed, by (2.24) the parameter increment 6 is
determined by

16] = 2¢/uL(C)/|U x V|, (2.25)

where L(C) = mirn{|E{|,|E{|} when the apex A of the parabola is not on C; L(C) = |A|
when A is on C. The notation X' denotes the tangent vector of the parabola at point X

with respect to its parametric equation (2.23). By (2.25), the choice of § depends on the
particular parameterization P(t).

23



2.4 Conversion from parametric and implicit forms of con-

ics

In applications usually a conic arc is given in rational quadratic parametric form P(t) or
implicit form f(z,y) = 0, with two endpoints specified. In order to apply the difference
method, we must be able to efficiently derive all necessary parameters, such as the parameter
range of the arc with respect to its canonical form, the position of apices of the underlying
conic relative to the arc, etc. from the given information.

In this section we first consider the case where the conic arc is given in the rational
guadratic parametric form. Our initial method is straightforward, but does not allow direct
processing of the semi-ellipse. Then we introduce a new parameterization for elliptic arcs
which encompasses the semi-ellipse. Finally we deal with the case where the conic arc is
given in the implicit form f(z,y) = 0.

2.4.1 Conics as rational quadratic curves

The rational quadratic parametric representation of conics provides a convenient way to
specify a conic arc [Far89, Lee87]. It can also be used to produce the approximate poly-
gon of the arc using forward differencing. Since the difference method introduced in the
preceding sections is more efficient and produces point sequences of better quality than
forward differencing, we intend to apply the difference method to a conic arc in the rational
quadratic form. To this end, we shall first address the problem of converting the rational
parametric representation to a form in which it is easier to apply the difference method.

First we introduce a parametric representation with a local parameter for elliptic and
hyperbolic arcs with center at the origin. Both representations are closely related to the
canonical forms (2.2) or (2.4) of the underlying conic of the arc, so it is straightforward to
apply the difference method to a conic arc in the new representation. Then we consider how
to convert the rational representation to these new parametric representations for elliptic
and hyperbolic arcs, respectively.

Theorem 2.4.1: Let C be an elliptic or hyperbolic arc with center at the origin, and
with endpoinis V, = P(1g) and V., = P(to+ ), & > 0, where P(t) is given by (2.3) or (2.5).
Then C can be expressed as

sin{(1 — u)a]

—vjaly, | snlua),,
sSin & sin o

V(u) = ey 0<u<l, (2.26)
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when C 1is elliptic and sina # 0; or

V(w)= S0z valy | nhGa)y oy oy, (2.27)
sinh sinh o

when C is hyperbolic.

PRrRooF: Consider (2.26) first. The underlying ellipse of the elliptic arc is equivalent
to the circle canonical form (2.2) under a homogeneous affine transformation. Since the
form of (2.26) is invariant under homogeneous affine transformations, it suffices to prove
the theorem assuming that C is in canonical form, i.e. P(t) = [z(t), y(¢)]T where

{ z(t) = cost

Wh<t<Lt+a, a>0
y(t) = sint, 0 ’ ’

with V; = P(%p), and V., = P({ + ).

Now we must prove that the V(u) defined by (2.26) is a point on arc C. We consider
first the coordinate componeni z(u) of V(u) = [z(u), y(2)]%. Since V, = [z,,¥,]T = P(to) =
[cos i, sin to]T and V, = [:z:e,ye]T = P(to + @) = [cos(to + a),sin(to + a)]T, substituting
zs = costg and z. = cos(lp + a) in the right hand side of (2.26) yields

. sinf(1 — u)a] sin(ua) : \
z{z) — = (costp) + o (cos(to + a})
1 . .
= 2sina[sm(t° + (1 — uw)a) —sin(to — (1 — u)a)

+sin(to + @ + ua) — sin(tg + @ — ua)]

= 2si1na{— sin(tp — (1 — u)e) + sin(tp + a + ua)]

= cos(ip + ua).

Similarly it can be shown that the second component y(u) = sin(¢p + ua). Hence V(u) =
P(to + ua), i.e. V(u) is a local parameterization of the arc C.

The proof for (2.27) follows from similar hyperbolic identities. O
The parameterization (2.26) is used in [Sho85] to represent a circular arc on a sphere.

We now consider converting a given rational quadratic representation of a conic arc
to a form for which the difference method can be used to draw the arc. We will assume
that the conic arc is given in raticnal quadratic Bézier form. Given such a conic arc, we
will convert it directly into the representation (2.26) for an elliptic arc, or to (2.27) for
a hyperbolic arc; the parabola can be drawn with the difference method directly since

its rational representation would reduce to a quadratic polynomial form (2.10) through a
rational linear reparameterization.
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Figure 2.4.1 A rational quadratic Bézier curve with x = 25/16.

Let C be the conic P(t) in Bézier form given by

woBo,2(t)Qo + w1 B1,2(2)Q1 + w2 B2 2(1)Q2
woBo 2(t) + w1 By ,2(t) + w2 B2 2(t) ’

P(t) = 0<t<L1, (2.28)
where Bga(t) = (1 —t)2, By 2(t) = 2¢(1 — t), and B 2(t) = t? ; Qo , Q1 and Q2 are control
points of the arc; wg, w; and ws are the weights associuted with the Q;. Here we assume
w; > 0, i=0, 1, 2, that is, we just consider the case where the Bézier curve is contained in
the control triangle AQoQ1Q:- Changing the sign of w; gives the complementary arc of C
on the underlying conic.

It is well known that k = wowg/wf is an invariant under both the affine coordinate
transformation and the projective parameter transformation provided that the interval [0, 1]
is mapped to [0,1] and the two ends ¢ = 0,1 are fixed [Pat86]. The geometric meaning of
is as follows. (1) & = 1 stands for a parabolic arc; (2) & > 1 stands for an elliptic arc; (3)
x < 1 stands for a hyperbolic arc. The center of the arc in the case k # 1 is given by

X

S=1+ E(n———ﬁ(Q" + Q2 — 2Q1), (2-29)

All the above results can be found in [Lee87]. An elliptic arc in the Bézier form is shown
in Fig. 2.4.1.

The following theorem is the key to converting a rational curve in the form (2.28) to
the form (2.26) or (2.27).

Theorem 2.4.2: (1) When k > 1, the arc C given by (2.28) can be expressed as

_ \sin[(1 — u)a]
Q(u) = (Qo - 5)-——-——————sina

where a = arccos(% — 1) and sina = 2v/k — 1/k.

sin(uar)
sin

+(Q2-5) +5, 0<u<l, (2.30)
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(2) When k < 1, the arc C given by (2.28) can be expressed as

sinh[(1 — u)a]
sinh a

where a = arccosh(2 — 1) and sinh a = 2v/1 = &/k.

sinh(uza)
sinh

Q(u) = (Qo - 5)

+(Q2-5) +S, 0<u<1, (2.31)

Proor: By Theorem 2.4.1, any curve in the form (2.28) with x # 1 can be represented
in the form (2.30) or (2.31). Therefore we just need to determine « in terms of .

(1) When & > 1, C is an elliptic arc. a is determined as follows. The derivative of Q(u)
in (2.30) is
, cos[(1 — u)a] cos(ua)
= — -5 7 - S§)—————
Q'(w) = —a(Qo — )M 4 o(@r - 5) 5
and @1 is the intersection of the tangent lines of C at Q¢ = Q(0) and Q; = Q(1)}, i.e. Q,
is the intersection of

b

To(s) = Qo + sQ'(0), s>0
and

Ti(v) = Q2 — vQ'(1), v>0.
See Fig. 2.4.1. Setting Qq = Typ(s) = Ty (v) yields

Q2 — Qo = sQ'(0) + vQ'(1).
Taking the cross product with @’(1) on both sides yields
[(Q2—5)— (Qo—S)] x Q'(1)|

° = 1Q7(0) x Q'(L)|
- [(Qo— S) x(Q2—S)—(Qo— S)x (Q2— S)cosal
(afsina)] —(Qo — S) X (Q2— S)cos?a+ (Qo— S) x (Q2— S)|
_ 1-cosa
T asina
S0 1—-cosa 1
G1=Qo+ —&—Si'n—;-Q'(O) = Qo + m[(@z - 5)—(Qo — S)cosa].

Rearranging the above equation yields

S=Q;+ ——L——[(Qo - )+ (Q2— Q1))

l—-cosa

Since Q¢ — Q1 and Q2 — @3 are linearly independent, comparing the above expression for

S with (2.29}, we have
1 K

1-cosa 2(k~1)

i.e. cosa =2 —1. So a = arccos(Z — 1) and sina = V1 — cos? a = 2v/k — 1/k.
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(2) When & < 1, C is a hyperbolic arc. Similar calculations to case (1) yield
1
S=Q1+ 75 al(Q— Q1) +(Q2-Cu))
ie. cosha=2-1.5 a= arccosh(2 — 1) and sinha = Veosh’a -1 =2/T—k/k. O

Since only the magnitude of a, instead of its sign, matters in (2.30) and (2.31), @ is
always chosen to be positive in Theorem 2.4.2.

The application of Theorem 2.4.2 in drawing conic arcs is that, once the difference
parameter k is determined from the precision requirement then (2.30) or (2.31) can be used
to evaluate the initial points of the difference method on the conic arc. In order to determine
the difference parameter k, according to Section 3, we have to analyze if arc C contains an
apex of its underlying conic. The formulae for apices of the conic are given in [Lee87].

When the coordinates of the apices of the underlying conic have been obtained by
the above formulae, we can use an inversion formula of the Bézier curve to determine the
corresponding parameter values. An apex is on the conic arc if and only if tke corresponding
parameter value is in [0,1]. Suppose that the rational Bézier curve (2.28) is written in the

form 2
Gp + it + ast

ca+ 1t + cot?’
bo + b1t + b2t2
y(t) = P 2°
o+ a1t + c2t
Then the following is one such inversion formula, given in [GSA84];

-’L‘(t) =

_ (bocz2 — baco)z + (azco — agca)y + (aod2 — azbo)
(bgcl —-b; Cz):t -+ (a102 — Q2C) )y -+ (agbl - a1b2) )

There is also a direct inversion formula for conics in Bézier form in {GSA84].

Now we are able to give the following procedure for applying the difference method to
a conic arc in the rational representation (2.28).

1. Compute the invariant & = wow,/w?. If £ # 1, compute the center S from (2.29) and
go to (2). If k = 1, the arc C is a parabolic arc and (2.28) can be reparameterized
to get all weights equal to 1 [Pat86], i.e. it can be put in the form (2.23). Then the
difference method (2.12) with £ = 1 can be applied directly. Determine the parameter
increment 6 by (2.25). The initial points are Py = P(0), P, = P(@) and P, = P(26).

2. If K > 1, C is an elliptic arc; express it in the form (2.30), and compute parameter
range a = arccos(2 — 1). If k < 1, C is a hyperbolic arc; express it in the form (2.31)
and compute parameter range a = arccosh(Z — 1).
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3. For an elliptic arc (or a hyperbolic arc), compute the apices of tive underlying coni
and test whether any of them is on the arc. Determine k = 2k’* ~ i where k' satisfies

(2.22) (or (2.20;,. Compute the parameter increment 8 = arccos(k) (or arccosh(k)).

4. Compute the initial points Py = Qq, P; = Q(8/a) and P> = Q{28/a) using {2.30C) (
or (2.31)). The number of points to be generated is given by n = [a/6]. Then the
difference formula (2.12) can be applied.

Note that the entire ellipse or the semi-ellipse cannot be expressed by (2.26) or (2.30),
since sin a # 0. In these cases the arc can be first subdivided into smaller arcs in order to be
represented by (2.30), then the above procedure can be applied. But when the expression

for the elliptic arc introduced in the next subsection is used, such a subdivision is not
necessary.

2.4.2 A new parameterization of elliptic arcs

In the last subsection we saw that the local parameterization (2.30) cannot represent the
semi-ellipse, for the denominator of (2.30) sina = sinw = 0. In this subsection we shall
find a new parameterization for the elliptic arc that includes the semi-ellipse, and at the
same time uses the same parameter as in (2.30). This is achieved by using homogeneous
coordinates. When the last component w of a homogeneous coordinate representation

P = [z,y,w]T of a finite point equals one, the representation is said to be in the normalized
form.

In this subsection it is assumed that an elliptic arc may be greater than the entire ellipse.

Theorem 2.4.3: Let C be a circular arc on the unit circle z? + y> = 1. Let a be
the signed central angle of the arc C; an arc with counterclockwise (CCW) direction has
positive angle. Assume that a # 2Ix, | being an integer. Let Xo = [zo,%0,1]7, X2 =

[z2, ¥25 l]T be the hormogeneous coordinates of the two endpoints of C. Then the arc has the
parameterization

[sin(1 — v)a + sin va — sin a]
1—-cosa

X(v) = [1-cos(1-v)a]Xo+ Xy +[1—cos(va)l Xz, 0<v<1,

(2.32)
where

X1 = [y2 — yo,To — Zz,sine]’. (2.33)
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PROOF: Let the equation of the unit circle be XTAX = 0, where X is a generic point
in homogeneous coordinates, and 4 = diag[1,1, —1]. Since

X(:)TAX]_ = Io(yz bl yo) + yo(.’l‘.‘o — 22) —sinao

= ZoY2 — Z2Yo — Sinax =sina —sina =0,

and similarly XTAX; = 0, X, is the intersection of the two tangents XfAX = 0 and
XTAX = 0 of the circle at Xg and X,. Therefore Xp, X; and X; can be regarded as the
control points of the arc as in the Bézier representation.

By (2.26), the homogeneous representation of C is
zgsin(l — v)a + z3 sinva
X(v) = | yosin(l —v)a+ yzsinve (2.34)
sin a

Since o # 2ix, | being «u integer, Xo,X; and X, are linearly independent in homogeneous
coordinates. So let

X (v) = ao(v)Xo + a1(v) X1 + a2(v)Xo. (2.35)
Then, since XTAXo = XTAX; = XTAX, = XT AX, = 0. we have

X(v)TAX, = az(v)XT AXo,
X(v)TAX1 = al(v)XiTAXl,
X(v)TAX; = aog(v) XTAXo.

The coefficients ag(v), a1(v) and a2(v) can be solved for from the above equations as follows.
By (2.34)

X@)TAXo = zo[zosin(1l — v)a + z2sinva] + yo[yosin(l — v)a + Yz sinva) — sin a
(22 + ¥2) sin(1 — v)a + (zoz2 + Yoy2) sinva — sin a
sin(1 — v)a + cosasinva — sina

= sin a(cosva — 1).
Similarly, X (v)TAX; = sin efcos(1 — v)a — 1]. And

X(v)TAX: = (y2 - w)[zosin(l — v)a + z2sin va)
+{zo — z2)[yosin(1l — v)a + Y2 sinva] — sin’ a
= (Y2Zo — YoT2)sin(l — v)a + (Zoy2 ~ T2y0) sin va — sin?a

= sinafsin(l — v)a + sin va — sin a.
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Also we have

XgAXg = k’g,4X'o = Tozr2 + Yoy2 — 1 =cosa — 1,

and
XTAX, = (y2—90)*+ (z0 — z2)® —sin?
= T3+ ¥5+ 23 + 95 — 2(ToT2 + Yoy2) — sin’ &
= 2—2cosa—sin’a = (1 — cosa)’.
So
X(v)TAX, sinafcos(1 — v)a — 1)
ap(v) = XTAX, — ’
5 2 cosa — 1
X(v)TAX,; sineafsin(1 — v)a + sin va — sin o]
a‘l(v) = T = 2 ’
X{AX, (1 —cosa)
X(v)TAXo sina(cosva —1)
02('0) = XTAX = .
3 0 cosa — 1

Since we are using homogeneous coordinates, omitting a factor sin a(1 — cosa)™!, we can
choose

ag(v) = 1-cos(l—v)a,
[sin(l — v)a + sin va — sin @]
a(v) = 1— cosa ’
az(v) = 1-— cosva. (2.36)

So (2.35) is the same as (2.32). Hence (2.32) represents a circular arc with a # 2Ix, [ being
an integer. O

When ¢ = 7, [22,¥2]T = [~20, —%0]7, it is easy to check that (2.32) reduces to

To COS VT — Yo SIn v

X(v)= | ycosvmr 4+ zpsinvr |,
1
which represents a CCW semicircle starting at [zq, Yo, l]T. When a = —x it can be similarly

shown that (2.32) represents a clockwise semicircle starting at [zo, 0, 1}7.

When the arc is a semicircle, the point X, is a point at infinity, so a point on the arc
can be expressed as a linear combination of Xy, X; and X, in homogeneous coordinates.
But in this case the two endpoints X and X are collinear with the origin, explaining why
the representation (2.30) fails. Still a whole circle can not be represented by the new form
(2.32), which in this case reduces to a point.
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When the point X is a finite point in the normalized form, (2.32) can be written as

X (v) = bo(v)Xo + b1(v) X1 + b2(v) X2, (2.37)
where
bo(v) = 1—cos(l~v)a,
sin asin(1 — v)a + sin va — sin ]
bi(v) = : ,
— cosa
b2(v) = 1~ cosve.

Now we generalize (2.32) to elliptic arcs.

Theorem 2.4.4: An elliptic arc that is not the entire ellipse or a multi’e of the ellipse
can be represented in the form (2.32).

PROOF: Consider an elliptic arc C which is not a multiple of an ellipse. Note that
we are still using homogeneous coordinates. Let the endpoints of C be Xp and X in
normalized form. Any elliptic arc can be mapped to a circular arc on the unit circle by an
affine transformation. Let M be the nonsingular matrix of an affine mapping that maps
C to a circular arc € on the unit circle such that the Xo = M Xy, X2 = M X, are also in
normalized form. Then by Theorem 2.4.3, there exist a and X; such that C is represented
in the form (2.32), i.e.

X(v) = ao(v)Xo + a1 (v)X1 + ¢2(v) X2,

where the a;(v) are given in (2.36). Applying M ™! to both sides of the above equation, and
denoting X; = M~1X;, we have the desired representation for the elliptic arc C. Since the
st row of M and M~ is [0, 0, 1], the third component of A’y is the same as that of X;. O

In order to apply Theorem 2.4.4 to an elliptic arc in the rational Bézier form (2.28),
possibly with a nonpositive weight, one has to find the X; and o. First Xo and X, are
the homogeneous coordinates of Qo and Q2 in normalized form, and o can be determined
from Theorem 2.4.2. In this case 0 < |a| < 27 and the sign of a should be determined
appropriately. When a # £w, X; is the homogeneous coordinates of @, with the last
component being sin a. But when o = £, sina = 0, i.e. the conic is a semi-ellipse and X,
is a point at infinity. In this case we may find X; as follows.

To simplify the discussion, we assume that (2.28) is written in the standard form through
the reparameterization [Pat86),i.e. the two end weights wo and w2 are 1. As the conic is a
semi-ellipse, we have the Bézier representation

_ Boa(t)Qo + B1,2(1)Q1 + B2,2(1)Q2
P@) = Bo,2(t) + Bz,2(t) ] (2.38)
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In this case we will show that X; = [£2Q7T,n]T when a = %7, where Q; is a point in affine
coordinates given in (2.38) and X; is in homogeneous coordinates. In the representation
(2.32) or (2.38), a shoulder point of the curve is defined to be the point on the curve at
which the tangent of the curve is parallel to the base XoX3 or QpQ2. Since a = %, by
simple algebra the shoulder point of the conic (2.32) can be shown to be

1 -
;X(§)==.Xb:t)r1+-ﬁq.

On the other hand, the shoulder point of the conic (2.38) can be shown to be

P(%) = —;Qo + Q1+ %Qz-

Since these two points are the same, and considering that Xg and X; are the homogeneous
coordinates of Qo and Q- in normalized form, we have

X; = [+2Q7, 07,
depending on a = +.

Next we consider the stability of using (2.32) to compute a point on the conic arc.
By computing a point we mean to obtain the affine coordinates of the point. Therefore a
stable evaluation requires that the third component of X(v) be not very small, for otherwise
division by a small number will greatly magnify the error in the numerator, resulting in
large errors in the affine coordinates of the point.

The third component of X (v) is

(s

sin . . .
[1 - cos(1—v)a]+ m[sm(l — v)a + sin va — sin a) + [1 — cosva]

33(0)

1
= TToma {(1 — cos a)[2 — cos(1 — v)a — cosva]
+ sin afsin(1 -- v)a + sin va — sin a}}
1 20—~ 1
= -1—_—&)—5;[25in2 g(2 — 2cos % cos v2 a)
2 —
+2sin 52!- cos %(2 sin g— cos =" ~a — sin a)]

= 1 4sin? i 2 sin @ cos bt sin a)
~  2sin?*(a/2) 2 2 2

a
= 2——2c052§ =1-cosa.

Since 1 — cosa = 0 for a = 2n7, n = 0,%1,..., the computation using (2.32) is not stable
when the elliptic arc is very short or very close to a whole ellipse or a multiple of an ellipse.
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A feature of (2.32) is that an elliptic arc that is greater than the whole ellipse can be
represented, i.e. |a] > 27, but a is not an integer multiple of 2r. In this case, as v varies
from 0 to 1, X (v) traverses the arc.

Suppose the form (2.32) is given. If @ is changed, then different elliptic curves will arise.
So a plays a role similar to that played by the weights in the rational Bézier representation
of conics. Complementary arcs can be represented easily when —27 < @ < 27. One just
has to replace a by a — 27 in (2.32) when 0 < @ < 27, and by a + 27 when —27 < a < 0.

2.4.3 Conics in implicit form

In this subsection we discuss how to apply the difference method to draw a cenic arc given
by an implicit equation. A conic arc C in implicit form is specified by giving the implicit
equation of the underlying conic, the two endpoints, and the drawing direction in the case
of an elliptic arc. Let the equation of the conic be f(z,y) = 0, where f(z,y) is a quadratic
polynomial in z,y. Then this equation can be put into the form X TAX 4+20"X +c=0,
where X = [z,y]T, and 4 is 2 2 X 2 symmetric matrix. Arc C is elliptic, parabolic and
hyperbolic according to det(A4;) > 0,= 0, or < 0, respectively.

To apply the difference method we need to find the parameter range of the arc with
respect to the canonical representation (2.2) or (2.4). This range determines the number
of points to be generated on the arc once the difference parameter k is known. Also we
need to find the apices of the underlying conic and test whether any of them is on the arc.
This information is needed to determine an appropriate difference parameter k so that the
generated polygon approximates C within the prescribed tolerance.

The next theorem gives a simple formula for computing the parameter range a for
elliptic and hyperbolic arcs.

Theorem 2.4.5: Let C be a conic arc on XTBX = 0 which is an ellipse or hyperbola,

A

where X = [z,y,1] and B = [ 5T
mogeneous coordinates of the two endpoints of C are Xo = [0, 0,117 and X2 = [z2,¥2,1)T.

Let a be the parameter range of C with respect to the canonical parameterization (2.2) or
(2.4). Then

b
] is a 3 X 3 symmelric real matriz. Suppose the ho-
c

det(A)XgBX2
det(B) ’

cosa=1-—

(2.39)
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when C is elliptic; and
det(A) XTI BX,

cosha=1- det(B) s (2.40)

when C is hyperbolic.

Proor: We will only give the proof for the elliptic arc; the case for the hyperbolic arc
follows almost identically.

Let XTBX = 0 stand for the ellipse containing arc C. Since any ellipse is affinely
My
0
transformation such that MTBM = diagfa,a,—a], a # 0. Cbviously, M sends points on
circle 22432 = 1 onto the arc C and keeps the normalized form of homogenecus coordinates
of a point, i.e. the last component remains one. Let Xo = M~ 1Xo, X2 = M~1X,, which

are on z2 4 y? = 1. Then

equivalent to the unit circle, there exists a matrix M = [ } representing an affine

cosa—1 = XZdiag1,1,-1]X, = XT (M)  diag[1,1,-1]M 1 X,
_ X§BX,
= =02
Therefore
cosa =14+ (XIBX>,)/a. (2.41)

Now let us compute the constant a. From MTBM = diag[a, a, —al, det?(M) det(B) =
~a3. On the other hand, since

MT o A b M, h
MT M = 1
I
_ MT AM, MT AR+ MTb
T | RTAM, +bTM; RTAR +2hTb+c

0

we have MTAM, = [ @
0 a

det(AM,),

]. It follows that det?(M;)det(A) = a®. Since det(M) =

a®  det’(M)det(B) _ det(B)
a? = det?(Mj)det(A)  det(A)’
Substituting it in (2.41) yields

a =

det(A)XT BX,
det(B)

cosa=1-—
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Here we omit the discussion about the computation of apices of a conic, since it can be
four J in standard textbooks on analytic geometry. Once the apices of the conic f(z,y) =
0 are determined it is straightforward to test whether or not an apex is on the arc C,
upon which we will not elaborate. Then accordirg to the discussion in Section 2.3 we can
determine the difference parameter k to satisfy a prescribed approximation tolerance. The
next step is to determine the initial points for applying the difference method.

Suppose the equation of the underlying conic is f(z,y) = YTAY +26TY +¢ = 0, where
Y = [z, 9] are affine coordinates. First assume that C is not a parabolic arc. In this case,
since det{A) # 0, it is easy to verify that

flz,9) = (Y - STAY - 5) +d, (2.42)

where § = —A~1b, and d = ¢ — bT A~1b. So, assuming d # 0 for otherwise the conic is
degenerate, the equation f(x,y) = 0 is equivalent to

Y - $iT(-A/d)(Y - 5)=1.

Let the second initial point be P;. The third point, by (2.6), is
P, =2k(Py - S)—(Po—S)+S. (2.43)

Then we have
(P~ STA(P, - S)+d=0,
and

(P, = S$)TA(P,~S)+d=0,

or, after substituting (2.43) in the last equation, and considering that F; and P, satisfy
(2.42), we have

—4k(Pp — S)TA(P, — §) — 4k%d = 0,

or, assuming k # 0,
(Po— S)TA(P, — S)+ kd=0.

When k£ = 0, C is on an elliptic arc and a = x7/2. In this case PpS and P, S are on
conjugate diameters of f(z,y) = 0, that is,

(Po— S)TA(P, - S)=0.
Therefore, in all cases, the initial point P; is determined by the system

{ (Pr—$)TA(P, - S)+d=0
(Po— SYTA(P, — S)+ kd = 0.
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Geometrically, the solutions of this system are the intersections of the conic f(z,y) = 0
with a straight line. The two solutions stand for the two directions to draw the conic arc

C; the one that is consistent with the specified drawing direction should be chosen when
arc C is elliptic.

When C is given by an implicit equation known to be parabolic, it can be readily
expressed as a quadratic Bézier curve by finding the middle control point as the intersection
of the two tangents of C at its endpoints. Then the approach in Section 2.4.1 can be used.

2.5 More properties >f the difference method

2.5.1 A best approximation property

The best approximation property we shall discuss below is stated in {Smi71]. But the proof
given there is incorrect as we shall explain below. So we now give a proof of this property.

Theorem 2.5.1: Let C be a conic arc with fized endpoints Py and P, and {P;}7 be
a point sequence on C with the P;’s, i = 1,2,...,n — 1, being variable points on C having
increasing arclength order. "2t G, be the set of all (n + 1)-sided conver polygons PoP,..P,
obtained by connecting P; and P;1,, 1 = 0,1,...,n—1, and connecting P,, and Py. Let S(G)
denote the area of convez polygon G. Then max{S(G)| G € G,} ezists and it is attained if
and only if {P;}7—, saiisfies the difference equation (2.12).

To prove this theorem we need the following lemma.

Lemma 2.5.2: Let C be a conic arc with fized endpoints Py and P, and {P;}? ,, n > 2,
be a point sequence on C with increasing arclength order. Let T; be the tangent of C at P;.
Then {P;}?, is a point sequence generated by the difference method if and only if T; is
parallel to the segment P,_1Piyy, 1 = 1,2,...,n— 1.

Proor: We will only consider the case of hyperbolas. Proofs for ellipses and parabolas
are similar.

Necessity: Let C be a hyperbolic arc. Since the property to be pr¢ .. is invariant under
affine transformations, we assume that the equation of C is given by (2.4). By Theorem
2.2.1,

P; = [cosh(tg + i8),sinh(2 + i0)]T, i>0,
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for some 68 # 0. The tangent of C at P(%) is
P'(t) = [sinh ¢, cosht]T.

So
T; = P'(t)le=to+i0 = [sinh(to + i8), cosh(to + i8)]7.

On the other hand, the vector

Pii1Piy1 = [cosh(to+ (i + 1)8),sinh(2o + (i + 1)8)]T
—[cosh(to + (¢ — 1)8), sinh(to + (i — 1)8)]7
= [2sinh @ sinh(to + i6), 2sinh @ cosh(?o + 107
= 2sinh8T;.

Hence T; is parallel to line segment P;_; F;;,.

Sufficiency: Assume again that the hyperbolic arc C has the canonical representation
P(t) in (2.4). Let P; = P(t;) and to < t; < ... < tp—3 < tn, where o and ¢, are fixed.
Then it is easy to show that

-5 i+1 — Li- . L i L; ti_1\17
P;_31P;y = 2sinh (tiu—l) [smh (—ﬂ—-*i-—l-) , cosh (——il—-—‘-——l)] ,
2 2 2
and
T; = [sinh ¢;, cosh t,-]T,
Since T; is parallel to P;_j P;41, we have

sinht; _ sinh[(Zi41 +t:-1)/2]
cosht; ~ cosh{(f;41 + ti-1)/2]

So

sinh[(Zi41 + tic1 )/ZICOSh t; — cosh[(t,-.,.l + 11 )/2]sinh t;

i; 1;—
=sinh(t+1+ 1—1

> -t,-)=o, i=1,2,...,n—1,

i.e. t; = (tig1 + ti—1)/2. Thus there exists € = (t, — tp)/n such that t; = #o + 0. Hence
{ P}, satisfies the difference equation (2.12). O

PROOF of Theorem 2.5.1: First we show that the maximum of S{G) exists in the set G,
of all convex polygons defined above. Let the equation of the conic arc C be P(t) which is in
the appropriate canonical form (2.2), (2.4) or (2.23). Let P; = P(t;). Then, by assumption,
to <t1<...<tno1 <ty Define M = {(t1,%2,..-,2n-1)[to S t1 < ... ta—y <t} in E*7L,
Obviously M is a compact set in E™~1,
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Let G be a convex polygon with vertices F;, ¢ = 0,1,...,n. Then the area S(G) is a
continuous function of F;, therefore it is a continuous function of t;,: = 1,2,...,n—1, since

P(t) is continuous. So S(G) attains a maximum in the compact set M, and hence it has a
maximum in G,.

Consider the necessity part first. Suppose for polygon G with vertices Py, Py,..., P,,
S(G) attains the maximum in G,. Then we claim tlat the tangent T; of arc C at P,
is parallel to the segment P;_; Pip1, ¢ = 1,2,...,n — 1. First of all, we see that no two
consecutive points FP; and P;y; can be identical, for otherwise we can always find three
consecutive points P;, P;;, and Fj2 such that P; = Pjyy % Pjyq or P; # Pjpy = Pjgo
since not all points are identical; without loss of generality, we assume the former case holds.
Then moving P;;; away from P; towards P, will increase the area of polygon G since the
arc C is convex. But this contradicts that S(G) is maximum.

So we have shown that all the P;’s are distinct. Suppose that the tangent T; of C at
P; is not parallel to P;_; P;1; for some i. Then one can move the the point P; to the point
P; on arc P;_; P;;; that yields the maximum distance to the segment P;,_; P;;;. But this
would increase the area of S(G), contradicting that S(G) is maximum. So T; is parallel to
P, 1Py for all i = 1,2,...,n ~ 1. Hence, by Lemma 2.5.2, the point sequence {P;}7,
satisfies the difference equation (2.12).

Now consider the sufficiency part. Suppose {P;}, satisfy the difference equation (2.12).
Now we need to be more specific about the arc C. We will assume that C is a hyperbolic
arc and it is in the form (2.4) . The other two cases can be treated similarly. Let S; denote
the area of the region enclosed by the arc P;P:4; and the segment P, P, ;1. Since 3771 S; is
the area of the region between the arc C and the polygonal line PoP; --- P,, S(G) attains
the maximum if and only if F(G) = 3" S; is minimum. Therefore, we just have to show
that F(G) is minimum when G’s vertices satisfy (2.12).

By the calculation as given in the proof of Lemma 2.3.2, we have S; = i[sinh(t;3, —
t,‘) - (t.'+1 —_ t,')]. So

n-]

F= % 2__“5 sinh(tir1 — &) ~ (tn ~ to)-
Therefore
%F: = %[COSh(ti — ti—1) — cosh(tiv1 — )]
= -—sinh i ; ti-1 sinb 2t - ti—; = titt , t=12,...,n~1.

One consequence of the preceding necessity proof is that all the P;’s are distinct when
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S(G) is maximum. Recalling the compact set M defined above, the boundary of M is
characterized by t; = tj4; for some 0 < 7 < n, i.e. there are identical points in the F;’s.
So the maximum of S(G) can only be attained in In(M), the interior of M. Therefore the
system 8F/dt; = 0,i = 1,2,...,n — 1, has a solution in In(A) which gives the maximum
S(G), or minimum F(G), G € Gn.

On the other hand, it is easy to see that the system 8F/8t; =0,i=1,2,...,72—1, has
a unique solution in In(M), which is,

1 i .
t; = Gimittiv) 1,2,...,n—1.
2
So this is the condition for polygon P(tg)P(%;)---P(t,) to have the maximum area. But by
Theorem 2.2.1, this condition is satisfied by the t;’s corresponding to the sequence {P;}%,
which satisfies the difference equation (2.12). So S(G) is maximum over G,, when its vertices

are generated by the difference method. O

Now we explain why the proof given in [Smi71] for Theorem 2.5.1 is incorrect. It is
argued there that for a point sequence {P;}7, with increasing arclength order on a smooth
convex arc, with the two endpoints fixed, if the tangent T; of C at P; is parallel to the
segment P;qFip1, 1 = 1,2,...,n — 1, then the area of the convex polygon FoPy---Fp is
maximum. In fact, from the given condition one can only deduce that the polygon has
locally maximal area, but, in general, not globally maximal area. One counterexample is
shown in Fig. 2.5.1. The arc shown is part of a curve that is obtained by bulging a square
slightly, making it smooth and symmetric. In Fig. 2.5.1(e), the points P;, ¢ = 0,1,2,3,
satisfy the condition that the tangent at P; is paralle] to P._1P,,1=1,2; however its area
is smaller than that of the polygon Py P; P> P; depicted in Fig. 2.5.1(b).

2.5.2 A projective property

In this subsection we study a projective property of a point sequence generated by the
difference method. From this property we can answer the following question: Can a point
sequence generated on a hyperbola or an ellipse also be generated by the forward differencing
method? Or, more generally, when can two point sequences generated by the difference
method be mapped onto each other by a projective transformation?

First we need some notation about the projective geometry of a conic section. The
following lemma enables us to speak about the cross ratio of four points on a conic.

Lemma 2.5.3: Let Py, Py, P, and P; be four points on a conic C. Then for any point
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1‘33 };3
(a) (b)

Figure 2.5.1 A counterexample: Two polygonal approximations of a smooth convex curve which
is part of a slightly bulging square. If |[PyP2| = 1 in (e), then the area of closed polygon Py P, P, Ps
in (@) is about 1/2, while that of Py P, P,P5 in (b) is about 5/8.

K on C distinct from any P;, i = 0,1,2,3, the four lines KPy, KP,, KP, and K P3 have
the same cross ratio.

This lemma is known as Chasles’s Theorem, and its proof can be found in [SeK50, p.
133]. The cross ratio of four lines {;, ¢ = 0,1,2,3, concurrent at point K in a plane, is
denoted by (lg,l2;!1,13), which is defined to be the cross ratio (Qo,Q2; @1, Q3) of the four
points Q; on the /; intersected by a line ! not passing through K. For four collinear points
Qi,t=0,1,2,3, the cross ratio (Qg, Q2; Q1,Q3) is defined by

Qo@: [/ Q0@
QzQi Q203

where a_gQ_; is the diracted length of segment Q;@;. This definition for (lo,l; 1, I3) makes
sense since it is a basic result of projective geometry that the quantity thus obtained does
not depend on any particular choice of I. Now we can define the cross ratio of four points
P;,:1=0,1,2,3, on a conic.

Definition 2.5.1: Let P;, i = 0,1,2,3, be four points on a proper conic C. The cross
ratio of the P;, i = 0,1,2,3, with respect to C is

(PO':P?;PI’PE!)C = (KP07KP2;KP17KP3)Ca

where K is a point on C which is not equal to any of the P; but otherwise arbitrary, and
K P; denotes the line passing through K and P;, i = 0,1,2, 3.

The subscript C indicates that the cross ratio is defined with respect to the conic C,
and it will be omitted if the context makes the reference to the conic clear. It is important
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to note that by Lemma 2.5.3 the cross ratio thus defined does not depend on any particular
choice of K on C. Hence on every conic we have defined a cne dimensional projective

geometry induced by the projective geometry of the plane.

Since the cross ratio of four concurrent line: in the plane is invariant under prejective
transformations, we have the following obvious lemma.

Lemma 2.5.4: Let Fy, P, P> and P3 be four points on a conic C. Let M be a projective
transformation that maps conic C to conic C’, and the P;’s to the P!’son C',i=0,1,2,3,
respectively. Then

(Po, P2; Py, P3)c = (Fy, Py; Py, P3)cr.

Definition 2.5.2: Let {P;};>0 be a point sequence on conic C. If (P;, Piy2; Pit1. Pit3)
is the same for all i > 0, then {P;}i>0 is called a projective sequence with cross ratio
r = (P, P2; P, P3)c-

We will assume that any projective sequence lies on a unique conic; this can be guar-
arnteed by insisting that the sequence has at least five distinct points in general position.
Therefore a projective sequence has a unique cross ratio.

Theorem 2.5.5: Let {F;};>0 be a point sequence satisfying the difference equation
(2.12) with difference parameter k. Then {P;};>o0 is a projective sequence with cross ratio
r= -—1/(2k + 1).

ProoF: We will consider just the case of hyperbolas; the cases of ellipses and parabolas
can be proved similarly. Since the cross ratio is certainly not altered by affine transforma-
tions, assume that C has the representation P(t) = [cosht, sinht]T. As {P:}i>o satisfies
the difference equation (2.12), we can assume P; = P(to + 1), i > 0, for some g and 8 # 0O.

We first compute the cross ratio of P, P,, P3 and P; on C. Consider four straight lines
PoF;, i =1,2,3,4. The direction vector of line PofP; is

P; — Py = 2sinh(i#/2)[sinh(to + i0/2), cosh(to + i8/2)]T.
So the equation of line FyF,; is
l; = cosh(to + i0/2)(x — 7o) — sinh(tp + i0/2)(y — yo) =0, i=1,2,3,4,
where [0, y0]T = Po. Since sinh(o +i0/2) and cosh(tg+i6/ 2) satisfy the difference equation
Tiyo =2K'zipy — 2z, 120,
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where k' = cosh(8,2), we have

I3 =2K'l, -1,
and

ly = 2K'l3 — 1,.

Substituting I3 = 2k’l; — I; in the above expression,

14 = (4k'2 - 1)[2 - 2k111.

Consider now the one dimensional projective space of the pencil of lines passing through
P,. We can establish a projective coordinate system of this space so that the projective
coordinates (X;, u;) of i, ¢ = 1,2,3,4, are (0, 1), (1, 0), (2k’,—1) and (4k"? — 1, —2k),
respectively. Then, by the definition of the cross ratio [SeK50, p. 25],

A2 — Aapn )(Azps — Agpz)
PoPy, P\ Ps: PoPs, PoPy) = °
(P, By bF2, FoFy) (Azpz — Az2p3)(A1p4 — Agpr)
-1 ~1
4k”? — 1 4cosh?(8/2) -1
-1 -1
2cosh@+1 2k+1°

So, by Definition 2.5.1,

-1

P7P; ’ = ’ ) ] = 37 -
(Py, Py; Py, Py) = (PoPy, PoP3; PoPy, PoPy) E 11

As the above derivation can be repeated for any four consecutive points P;, Piyy, Piy2
and P;;3 with P replaced by P;_;, we have

_1 )
. P ne P. . - - > 0.
(P:, Piy2; Piy1, Piga) %1 2 0

Corollary 2.5.6: The point sequence {F.}i>o0 generated by the difference method on an
ellipse or a hyperbola C cnnnot be reproduced by the forward differencing method.

PrOOF: According to Theorem 2.2.2, { P;}:>0 is generated with difference parameter k #
1. By Theorem 2.5.5, { P;}7, is a projective sequence with cross ratio ~1/(2k+1) # —1/3.
But any point sequence {Q;}i>0 on C generated by forward differencing is the image under
a projective traasformation of a point sequence {Q{}i>0 on a parabola that is generated
by the difference method with £ = 1. By Theorem 2.5.5, {Q}}i>0 is a projective sequence
with cross ratio —1/3. So, by Lemma 2.5.4, the cross ratio of {Q;}i>0 is also —1/3. Hence
{Qi}igo and {P,-}.-z_o cannot be the sarne sequence since they have different cross ratios. O
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2.5.3 On generalization

In this subsection we consider whether the difference equation (2.12) can be generalized to
generate point sequences on rational cubic curves. This question suggests itself naturally
in the following observation. It is well known that the difference equation

Py3=3P42—3P1+F, 120,

generates points on a parabola, which is a pelynomial quadratic curve. By generalizing it
to the equation
Piys=(2k+1)Piy2— (2k+1)Pin+ P, 120,

we have shown that all conics, i.e. all rational quadratic curves can be generated. Now,
since
Piiy=4Piy3— 6P 2+4FPi - P, 120,

can generate all polynomial cubic curves, we ask whether for any rational cubic curve P(t)
one can find a generalization of this equation, which is in the form,

Piyg = caPiys+ coPiy2 +a1Pip1 +coFi, 120, (2.44)
where the ¢; are real, so that a point sequence on P(t) can be generated.

We will show that such a generalization is impossible by proving that there exist scrne
rational cubic curves such that there is no fourth order difference equation that can generate
point sequences on them. If {P;}i>0 can be generated on a curve P(%), we assume that, by
the natural extension of {P;}i>o determined by <2.44), the point sequence {P,}%, is also
on P(t), i.e. there is a point sequence {P,}%° on P(t) that satisfies Eqn. (2.44). Since a
rational cubic curve is always unbounded in E2, we assume that a point sequence generated

on a cubic curve by the difference method is also unbounded if such generation is possible.

Theorem 2.5.7: The fourth order difference equation cannot generate an unbounded
point sequence on some rational cubic curves.

PRrRoOOF: We just need to show that an equation of form (2.44) cannot generate the
rational cubic space curve

1= 2t
Tle+r 240

T
P(t) = [z(2), y(2), 2()}T t] , —oo<t< oo. (2.45)

The proof is by contradiction. So suppose that {P,}% is an unbounded point sequence
on the curve P(1) and it satisfies (2.44) for come constant c;’s. Let

Po = [TnsYny 2n)T = P(ta) = [2(tn), ¥(tn), 2(tn)]T, —o0 < n < oo. (2.46)
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Figure 2.5.2 The cubic curve P(t) and its prejection.

Since the parallel projection of P(t) onto the zy-plane along the z-axis is the unit circle
z? + y% = 1, the sequence {[Z,. ya]% }*°,, lies on this circle. (See Fig. 2.5.2.) Moreover, the
Zn’s and y,’s still satisfy (2.44), which is understood as an equation in scalars instead of in
vectors. Now the sequence {z,}>,, has to be unbounded since {P,}°°, is unbounded.

For a difference equation

m
Z a;jPy; =0,
=0

its characteristic equation is given by
m -
.ol —
E a;s’ =0,
i=0

The solutions P, of the difference equation are linear -o.:binations of n-th powers of the
roots of its characteristic equation when all the roots are distinct; when a root sg has
multiplicity p, the coefficient of sg in P, is a polynomial of order p in n.

So the characteristic equation of (2.44) is
st — e3sd — 252 — 15— ¢ = 0. (2.47)

Let the four roots of this equation be s;, j = 1,2,3,4. First assume that these roots are
distinct. Then

[2n, yn]T = A1sT + A2sF + A3s + Ags], (2.48)
and

Zn = €157 + €255 + e3sy + e4sy, (2.49)
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where the A; and e; are constants, j = 1,2, 3,4. These two expressions are to be appropri-
ately modified when there are multiple roots in the s;, e.g. if sz = s; s 2 double root then
s3 is replaced with nsy.

For any j = 1,2,3, or 4, if A; # 0, then we can show that |s;| = 1, i.e. they are unit
roots. For otherwise, assuming A; # O, |s;] < 1 and |s;] is the smallest among all the
|s;|’s whose coefficient A; # 0, then the right hand side of (2.48) will tend to infinity as
n — —oo. This contradicts the fact that the [z, y]?’s are on the unit circle. Similarly it
can be shown that |s;| can not be greater than 1 by considering n — +o0o. Therefore in
{2.48) [Zn, yn]T is represented as a linear combination of powers of unit roots of Eqn. (2.47).

In the case of repeated roots, it can be similarly shown that all roots that appear in
(2.48) with a nonzero coefficient must also be unit roots. Actually, no terms that contains
a subsequence tending to infinity are allowable in the right hand of (2.48).

Since there are an infinite number of distinct points of {P,}>,, on P(t) and since
different points project to different points on the unit circle, there is at least one pair of
conjugzate complex unit roots, say, s1,2 = e*%® in the s;’s, for the only real unit roots 1 and
—1 can generate at most two distinct points on the circle z2+y2=1. So

[Zn,¥n]T = A1sT+ A25] + A3s3 + Aash
= Cjicos(nB) + Czsin(nf) + Azsy + Assy.

Now we shall show tha. .i3 = A4 = 0. Suppose that Az # 0 or A4 # 0. From the preceding
discussion we must have |s3| = |s4] = 1, and s3 and s; can not be a conjugate pair that is
the same as s; and s2. But when s3 and s4 is a complex conjugate pair that is different from
sy and s3, a contradiction arises from (2.49) since the left hand side of (2.49) is unbounded
but the right hand side is bounded. A similar argument shows that s3 and s4 can not be
distinct real roots, i.e. s3 = —1 and s4 = 1. Now suppose that s3 = s4 = 1. Due to the
boundedness of [z,, y,,]T, the coefficients of s3 and s4 can not be both nonzero. So we can
assume that 4; = 0 and A3 # 0. Therefore

[Zr,¥n]T = C) cos(n) + Czsin(nb) + Az,

which is a point sequence on an ellipse with its center Az not at the origin. Since we have
infinite distinct points on this ellipse and since this ellipse can have at most four points of
intersection with unit circle z2 4+ y? = 1 on the z = 0 plane, we conclude that the point
sequerce can not be on the unit circle. This is a contradiction. Similarly, a contradiction
follows from the case that s3 = s4 = —1. Hence we must have A3 = A4 =0, i.e.

[Zn, ¥n]T = Cy cos(nf) + Casin(nf), —o0 < n < oo. (2.50)

46



Now we claim that C; and C> must be real and orthonormal vectors. First, from the
above equation we have

[xn,yn]T = C; cos(n8) + C;sin(nf), —ococ < n < oo,

where C; and C; are the complex conjugates of C; and 2. Then, subtracting this equation
from the last one, we have

(C1 — C1) cos(nB) + (Cq — C3)sin(nf) = 0, —oc < n < oo.

Since @ is such that infinitely many distinct points are generated by (2.50), the sequence
{cos(n8)}°, and {sin(nf)}>> are linearly independent, i.e. one can not be expressed as
a linear multiple of the other. Then it follows that ¢y = €y and C; = C,, that is, Cy
and C, are real. By considering the condition [Z,,¥n][Zn,yn]T = 1, it is easy to show that
C7Cy = CFCy =1 and CTC, = 0. Therefore C; and C, are real orthonormal vectors.

Let C; = [cosa,sin a]T and C; = [- sin &,cos a]T for some constant a. Then

[Zn, ¥n]T = [cos(a + n8), sin(a + nd)].

But as
] = [L2 B 2 T
nvynj - t%-{-l’t%-*-l )
we obtain
o + né
t, = tan( )-
2
Thus + nd
Zp = ta.n(-a——zj—), —00 < n < 0o, (2.51)

since 2(t) = t by (2.45).

On the other hand, different values of s3 and s4 would generate different expressions
for z, through (2.49) and its modified form in the case of multiple roots, and consequently
different expressions for tan[(a +n#8)/2] by (2.51). Since any such expression for z, must be
unbounded, in order for the right hand side also to be unbounded, there are the following
four possible cases to consider.

(1) s3 = s; and s4 = s2. In this case there are a pair of repeated conjugate roots and

a+nb
2

where d3 # 0 or dg # 0.

tan( ) = d;j cos(nb) + da sin(nf) + n[dz cos(nb) + d4sin(né))],
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(2) s3 and s4 are conjugate, but distinct from the pair sy and s;. Let s3 = §4 = pethB,
and p # 1. In this case

& -ZnO) = dy cos(n@) + d2 sin(nb) + p™{ds cos(nB) + d4sin(nfB)],

where d3 # 0 or d4 # 0.

tan(

(3) s3 = s4 = p are real. In this case
a + né
2
where d4 # 0 if [p| = 1, otherwise d3 # 0 or d4 # 0.

tan( ) = d; cos(n8) + da sin(nb) + dsp™ + ndsp™,

(4) s3 and s4 are real, s3 # s4, and s3] # 1 or |s4] # 1.
o + nf
2
where d3 # 0 if |s4] = 1, d4 # 0 if |s3| = 1, otherwise d3 # 0 or d4 # 0.

tan( ) = dj cos(n8) + da sin(n@) + das3 + dssi,

Now we show that none of the above cases can hold. This contradiction will complete
the proof. In case (1), we have
tan[(a + n6)/2] — dy cos(nf) — dzsin(nf)
d3 cos(n8) + d4 sin(né)
The left hand side is a periodic function of 8, so we can always choose a subsequence
0 < ny < ny <...< +oo such that the left hand side remains bounded. But for any such
subsequence the right side tends to 4o00. This is a contradiction.

In case (2), the argument is similar to that in case (1). Note that if [p] < 1 then the
subsequence {n;} should be made to go to —o0, i.e. 0 > ny > nz > ... > —o0, to force
p™* — oo. In case (3), the argument is the same as case (1) if |p| = 1; otherwise the
argument is the same as for case (2). Case (4) can be treated similarly. O

A consequnce of Theorem 2.5.7 is that any rational cubic space curve that is affinely
equivalent to the curve (2.45) can not be generated by any fourth order difference equation.
An interesting open problem is, besides the polynomial cubic curves, which rational cubic
curves can be generated by a fourth order difference equation.

2.6 Summary

In this chapter we have studied in detail properties of the difference method for drawing
conic sections. It is shown that this method is more efficient as the matrix iteration method
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and generates the same point sequences on a conic than the latter. Compared with the
forward differencing method, the difference method generates more evenly distributed point
sequences on a conic. For instance, it can generate an equidistant point sequence on a circle;
but this is not the case with the forward differencing method. Efficiencies of the difference
method and the forward differencing method are comparable. On a conic in the plane, the
former uses two multiplications and the latter uses two divisions to generate a point.

The numerical stability of the difference method is not discussed here since it has be
addressed in [WaW89a) in the case of ellipses, and in [WaW89b] in the general case. We will
just summarize some results here. When the conic is an ellipse, the difference method is more
stable than the forward differencing method. It is shown in [WaW89a] that, when initial
errors and roundoff errors are considered, the error of the difference methed demonstrates a
quadratic growth. On the other hand, the error growth of the forward differencing method
is cubic. That is because, essentially, the forward differercing method uses a cubic difference
equation, which has a cubic characteristic equation with a triple root 1. So, the error of the
forward differencing method caused by initial errors alone has a quadratic growth, since in
this case the error satisfies the same cubic difference equation used in forward differencing.
Hence, when the contributions of roundoff errors at all points are taken into account, it
can be shown that the total error growth is cubic. In the case of hyperbolas, the difference

method has an exponential error growth. So in this case it is less stable than the forward
differencing method.

We have discussed the problem of choosing the parameter k of the difference method
to ensure that the inscribed polygon formed by the generated point sequence stays within
a prescribed distance of a conic arc. We have considered how to use the difference method
to draw conic sections given in the rational quadratic parametric representation or in the
quadratic implicit form.

Finally, from a more theoretical point of view, we proved that the inscribed polygon
generated by the difference method possesses a certain best approximation property. This

property was found in [Smi71]. Here a new proof is given since the proof in [Smi71] is
incorrect.

An important question about the difference method is whether or not it can be extended
to generate other rational curves beside rational quadratic curves. We have shown that there
exists no fourth order difference equation that can generate a point sequence on a certain

class of rational cubic space curves. The case of rational plane cubic curves aud other higher
degree rational space curves is still open.
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Chapter 3

Parametric Representations and

Reparameterizations of Quadrics

In this chapter we study the reparameterization of rational surfaces and rational quadratic
parameterizations of a quadric in E3. First we will obtain a canonical form for a rational
triangular Bézier surface under rational linear reparameterizations. Then we study some
aspects of nonlinear reparamcterizations in the setting of quadratic parameterizations of a
quadric in E2. The main results are a classification of all rational quadratic parameteriza-
tions of a quadric and their relationship. Finally, the above theory is applied to obtain a
rational triangular Bézier representation of a triangular surface patch on a quadric whose
boundaries are rational curve segments. The motivation for this study is mainly out of
theoretical interests, but the triangular Bézier representation of a triangular patch on a
quadric provides an alternate representation of the patches, and thus has applications in
geometric modeling systems involving quadrics.

3.1 Preliminaries

A rational plane curve of degree n, in affine coordinates, is given by

P1) = [3(_{1 y(t)]T’

w(t) w(t)

where z(t), y(t) and w(t) are polynomials with no common factor and max{deg(z(t)),
deg(y(t)), deg(w(t))} = n. For a complete analysis, the parameter ¢ ta’es values in C, the
field of complex numbers, but in practice it is usually assumed that z(2), y(t) and w(¢) have
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real coefficients and ¢ is in R, the field of real numbers.

There are several other representations of rational curves, which may be convenient in
certain circumstances. First we introduce the homogeneous representation of points in E9,
d < 1. A point in E? can be represented by homogeneous coordinates X = [z1,...,zq41]7,
where at least one z; # 0. Two (d + 1)-tuples X, X, are defined to represent the same
point in E9 if X; = pX, for some p # 0. If Tg+1 = O then X is called a point at infinity with
respect to E%. A straight line passing through two distinct points X and X, is denoted by
Xo0X1, where Xg or X; may be a point at infinity.

In homogeneous coordinates, a rational curve can be put in the form
P(t) = [z(2), y(2), w()]"-
Or, if the homogeneous parameter pair (u,v) is used, we have
P(u,v) = [z(u, v), y(u, v), w(u, v)]7, (3.1)

where z(u, v), y(u, v) and w(u, v) are homogeneous polynomials of degree n in ¢ and v with
no common factor.

A rational surface of degree n in E3, in affine coordinates, is given by

P(s,1) = [z(s,t), ¥(s,t) 2(s,1) ]T,
w(s,t)’ w(s,t) w(s,t)
where z(s,t), y(s,1), 2(s,t) and w(s,t) are polynomials of degree n in s,¢ with no common
factor and max{deg(z(s,t)), deg(y(s,?)), deg(2(s,t)),deg(w(s,t))} = n. Similarly there is
the homogeneous representation of a rational surface with homogeneous parameters (r, s, t),
ie.

P(r,s,t) = [z(r,s,t),y(7,s,1), 2(7, 5, 1), w(r. s, t)]T, (3.2)

where z(r,s, 1), y(7,s,t), z2(r,s,t) and w(r,s,t) are homogeneous polynomials of degree n
in r.s,t with no common factor. Other representations of a rational surface will be given
when they are used.

For a rational parametric representation P(s,t) of a surface S, if the correspondence
of the parameters (s,t) with points on the surface is one-to-one, except perhaps at a finite
number of curves on the surface, then the parameterization P(s,?) is called faithful. A
similar definition exists for rational curves and it is known that any rational curve possesses

a faithful parameterization [Sed86]. But it is not known whether or not it is true of a
rational surface.
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An important concept in the study of rational surfaces is the base point. In the repre-
sentation (3.2), (ro, So,%0) is defined to be a base point of the surface if P(rqo, so,%0) = 0.
Note that a rational curve has no base points, because for a curve, say in representation
(3.1), if there was (ug, vo) such that P(ug,vo) = O then z(u,v), y(u,v) and w(u,v) would
have a common factor (vou — ¥ov).

The presence of base points in a rational surface plays an important role in the properties
of the surface. It is shown [Chi90, p. 145] that a faithfully parameterized rational surface
of degree n possessing b base points is an algebraic surface of degree n? — b. Also, when
P(r,s,t) is a rational surface of degree n, a rational curve of degree m in the parameter
(r, s,t) domain passing through the base points of P(r, s, t) p times is mapped by P(r,s,t) to
a rational curve of degree mn — p [SeK52, p.321]. Therefore a general line in the parameter
domain, i.e. a line not passing through any base point of P(r,s,t), is mapped to a rational
carve of degree n on the surface.

It is well known that a quadric surface S C E3 can be represented as a rational quadratic
surface P(r,s,t) [Som51, p. 192]. The implication of the above results in the case of para-
metric representations of a quadric S is that any faithful rational quadratic parameterization
of a quadric must have exactly two base points, say Bg and B;. Since an isolated base point
is mapped to a line on S and all points on the line ByB; are mapped to a point Xg on S,
which is the intersection of the two lines corresponding to By and B, the two base points
By and B; are mapped to the two generating lines of quadric § at Xp. As the quadric S
is nondegenerate if and only if the two generating lines of § at X, (or any point on S) are
distinct, the quadric S given by P(r,s,t) is nondegenerate if and only if By and B, are
distinct. When the two base points coincide, S is called properly degenerate; in this case S
is either a quadric cone or a conic cylinder. An example of a quadratic parameterization of
a cylinder is given later in Ex. 3.3.1.

When P(r,s,t)is a faithful rational parameterization of surfize §, for a general point
Xo € S, a formula that gives the corresponding parameter tuple (r,s,?) is called an inver-
sion formula of the parameterization P(r, s,t). Inversion formulas for rational surfaces are
discussed in [ChR92].

3.2 Reparameterization

Let P(s,t) = [z(s,t),y(s,1),2(s,t)]T be a parametric surface in E3. Reparameterization in-
volves substituting for the parameters s and ¢t in P(s,t) by functions s(u, v) and #(u,v) so as
to obtain a different parameterization P(s(u,v),%(u,v)) of the same surface in parameters
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2z and v. In the following we will consider only rational parametric surfaces P(s,t), and
assume that the substitutions s(u,v), t(u,v) are also rational functions. Sometimes the
term reparameterization is also used to refer to the new parameterization P(s(u,v),t(u,v)).
Reparameterization is similarly defined for rational curves where only one parameter, in-
stead of a pair of them, is involved [Pat86].

Since a rational curve or surface has different parameterizations and the geometric fea-
tures of a curve or surface does not depend on a particular parameterization, it is convenient
to have a canonical parameterization of the rational curve or surface with respect to a cer-
tain class of its parameterizations. In the following we will discuss this canonical form under
rational linear reparameterizations in the case of a rational triangular Bézier surface. Later
we discuss reparameterizations that use substitutions of functions of degree > 1. Various
aspects of these nonlinear rational reparameterizations are illustrated in the next section
when we investigate rational quadratic parameterizations of a quadric in E3. But before all
this we first briefly review the caronical form of a rational curve [Pat86].

A general rational Bézier curve of degree =n is given by

_ o WiFiB;n(t)
P = Z?:owz'Bi.n(t) ’

where the w; are called weighis, the F; are called control points, and the

0<t<1, (3.3)

_ n! i n—i .
Bi,n(t)—mt (1-t)**, i=0,1,...,n,
are n-th degree Bernstein polynomials. When wg > 0 and w, > 0, through a rational linear

reparameterization given by
an

Tout fl—u)

where @ = wi /™ and B =wq Y ", the same curve segment can be put in the form

?:0 wglai-Bi,ﬂ.(u)
Yo wiBia(u) ’

where w} = w;c'B"~*, that is, the two corner weights wj = w/, = 1. Note that when wyq

P(t(x)) =

0<u<Ll,

or w, is zero, the denominator and the numerator have a common factor, meaning that
the curve is of degree less than n. When wg < 0 and w, < 0, changing the sign of the
denominator and numerator in (3.3), we can set wg > 0 and w, > 0. When wow, < 0,
the denominator vanishes at a point in [0, 1], therefore the Bézier curve segment is not
continuous. So our assumption that we > 0 and w, > 0 is not an essential restriction since
in practice only continuous Bézier segments are of interest.
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For a rational quadratic Bézier curve, the canonical form is

PoBo‘g(u) + wl-PlBl,Z(u) + P2B2,2(u) 0<
T <u<l.
Bo’g(u) + un Bl,z(u) + Bg'g(‘u)

Plu) =

This representation will be used in Chapters 4 and 5.

3.2.1 Rational linear reparameterization

In this subsection we will derive the canomical form of a rational triangular Bézier sur-
face under rational linear reparameterization, with the substitution functions mapping the
parameter domain triangle onto itself.

Given three noncollinear points X, X1, and X> in affine coordinates in the plane, any
point X in the plane can be represented uniquely as X = rXg+sX;+4tX,, where r+s+t = 1.
The tuple (7, s,t) is called the barycentric coordinates of X with respect to Xo, X3, and Xo.
A point X is inside the triangle AXo X1 X2 iff r>0,s>0,and > 0.

A rational triangular Bézier surface of degree » with parameters in barycentric coordi-
nates is given by

P(r.s,t) = >itjtk=n Wi jkPiikBiikn(r,s,t)

3.4
Pititke=n WiikBiikn(r,s,t) (3.4)

where r+s+t = 1,7,5,t > 0 and B; jrn = T_;‘!!,g—!r‘sjtk. The conditions 7, s,t > 0 represents
a triangle A in the paramet: - ~ :main, explaining the name triangular surface. A will be
called the domain triangle. i.- re we assume that the surface patch is continuous and wy 00,
Wo,n,0 and wo 0, are all positive.

Now we seek a linear reparameterization of (3.4) so that under the new parameters
the three corner weights v',,00, Won,0 and wpge ., are 1. Suppose that the rational linear
substitution functions for the required reparameterization are

_aqu+bv+qw
T agu+ byv + cuw’
_ au+bv+ cow
T agu+ by + cqw’
_azu+bzv+ caw
T agu+ bgv + cqw’

(3.5)

Since it is required that the three vertices (u, v, w) = (1,0,0), (0,1,0), and (0,0,1) of triangle
A be fixed by the substitution (3.6), we have

a1y =aq, ba=by, c3=cy4,
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and

a2=a3=bl=b3=c1=C2=0.
Let a4 = a, by = B and ¢4 = «v. Then the substitution can be expressed as

_ au
T au+ Bv+yw’
Bv
au+ fv + yw’
= yw
T au+ fyv+yw’
Here a,3,4 > 0 can be assumed in order to map the interior of A onto itself. The tu-
ple (a,53,7), up to a common factor, characterizes a rational linear reparameterization
that maps triangle A onto itself and keeps the three vertices fixed. Since (u,v,w) =
(1/3,1/3,1/3) is mapped to

_ - B Y
(rys,t) = (a+ﬁ+'y’a+ﬂ+7’a+ﬂ+‘y)’

the image of the center of A in the 7,s,t? plane also characterizes the rational linear repa-
rameterization indicated above.

Applying the above linear reparameterization to the rational surface (3.4) we have an-
other parameterization of the same surface

Plu,v,w) = i pitken Wik BIVEP; 1By kn(u, v, w)

Pitjtk=n Wik BI7E Bk n(, v, w)
Zi+j+k=n ws,j,kR',j,kBi,j.k,n(uo v, w)

Zi+J+k=n ws,j,k'Bivj1kyn(u7 v’ w)

(3.6)

Let a = (wn00) V", 8 = (Wo.n0)"*/™ and + = (wo,0,,)"2/". Then the three corner weights
Wy, 0.00 Whno aid Whg, in (3.6) are 1. In the case of rational quadratic triangular Bézier
patches, i.e. n = 2, we can reduce the six weights in a gereral parameterization to three
weights w; 1,0, wo,1,1 and w01 using a linear reparameterization.

in the above it was assumed that the three corner weights are positive. When some
corner weight is zero, the parameter values zt that corner are a base point of the rational
surface, i.e. parameter values that make all the numerators and the denominator in the
right hand side of (3.4) vanish. Geometrically, in this case, if it is the only base point of the
surface in A, the parameter domain triangle is no longer mapped to a triangular surface
patch, but to a four-sided patch. The general case and the application of this singularity
in surface modeling are discussed in [War90]. The case that two of wy 0,0, won0 2nd woo,n
are of opposite signs is excluded by the assumption that the surface patch is continuous.
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3.2.2 General reparameterization

A reparameterization of a rational surface can be carried out with rational functicns of
degree higher than one. And in this case, the new parameterization may still be faithful,
i.e. there is a one-to-one correspondence between points on the surface and the points
in the parameter plane, except perhaps on a finite number of curves. This is in contrast
with the case of rational curves, where for a faithfully parameterized rational curve P(%),
if the substitution ¢t = t(u) is of degree n > 1, the correspondence between the parameter
values u and points on the curve P(#(u)) is n-to-one; therefore the curve is unfaithfully
parameterized [JoW90].

That a nonlinear rational reparameterization of a faithfully parameterized surface can
still be faithful follows from the fact that there exist rational transformations of any degree of
the parameter plane which are one-to-one, except perhaps on a finite number of curves. But
on the straight line a one-to-one rational transformation must be rational linear. The theory
of general one-to-one rational transformations of the plane, called Cremona transformations,
have been extensively studied in algebraic geometry [Sal34, p. 314, SeK52, p. 230].

Let

- fl(us 'U) t = f2(u7 ‘U)

=12 ==

g(u,v) g(u,v)
be a rational transformation of degree n in the parameter domain. Then it is known that
this transformation is a Cremona transformation iff it has n? — 1 base points {Sal34, p. 314},
i.e. there are n? — 1 points {u,v) where the polynomials f;, f2 and g vanish simultaneously.
The argument is basically as follows. We just need to show that corresponding to a general
point (so,20) there is only one associated point (u,v) when the mapping has n2 — 1 base

points. Clearly any point (u,v) that is mapped to (sg, o) satisfies
sog(u,v)— fl(ua 'v): O’ tog(uvv)_fZ(uvv)‘:' 0.

Therefore the point (u,v) is an intersection of these two curves, which have n? intersections
in all. Since n? ~1 of them are base points, whick are fixed, there is only one free intersection,
denoted by (ug,v0), which corresponds to (sg,tg). This argument can be made complete by
using homogeneous parameters, so that points at infinity are also accounted for.

From the above discussion it follows that a faithful parameterization of a rational surface
does not necessarily have minimum degree. In fact, the existence of a nonlinear Cremona
transformation on a plane is a nonlinear rational faithful parameterization of the plane,
which, as a surface, has a faithful linear parameterization. A nontrivial example is the
following faithful rational cubic parameterization, in affine coordinates, for the cylinder
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1— u? 2u T
[:r.y,z]r= , vl .
i ‘ 14 u%’ 14 u?

In the next section we will see that this cylinder has a faithful quadratic parameterization.

There are many unanswered questions about the parameterizations of a rational surface.
For instance, does a rational surface always have a faithful parameterization? Are any
two parameterizations of minimum degree of a rational surface related by a rational linear
reparameterization? The answer to the first question is unclear. We will see in the following
sections that two faithful parameterizations of minimum degree of a rational surface are not

necessarily related by a rational linear reparameterization.

3.3 Rational parameterizations of quadrics

In this section we study rational quadratic parameterizations of a nondegenerate or properly
degenerate quadric S given by XTAX =0in E®, i.e. rank(A)= 4 or 3, where A isa 4 x 4
symmetric matrix and X is in homogeneous coordinates. We also consider how different
quadratic parameterizations of S are related by a reparameterization. It is known that a
quadric can be represented as a rational quadratic surface [Som51, p. 192]. Here we shall
study the structure of all quadratic parameterizations of a quadric §. It will be shown
that (1) associated with any point on a quadric S in ES3 there is a family of quadratic
parameterizations of §; (2) any rational quadratic parameterization of 5 is associated with
a point on S; (3) any quadratic parameterization of S has a rational linear inversion formula,
which can be interpreted as a projection from the associated point of the parameterization;
(4) two quadratic parameterizations of S associated with the same point are related by a
rational linear reparameterization; (5) two quadratic parameterizations of S with different
associated points are related by z raticnal quadratic reparameterization.

3.3.1 Parameterizations by projection

Given a quadric surface § : XTAX = 0, we first derive one of its quadratic parameteriza-
tions. The approach we use is the stereographical projection of a quadric surface [Som51,
p- 192),i.e. choose a point Xp on $ and project other points on S onto a plane not passing
through Xp. Point Xg is called the center of projection (COP) of the parameterization.

Although this parameterization is well known, here we are interested in the relationship of
all these parameterizations.
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Let Xg € S. Then all lines passing through Xy are parameterized by Pr(u,v) = uXp +
vT, where T is a variable point on a plane BT X = 0 not passing through Xo,i.e. B Xo # 0,
and u,v are homogeneous parameters of straight line X¢7. The line Pr(u,v), for fixed T,
has two intersections with S, one of which is Xg. To find the other, substituting Pr{u,v)
in XTAX = 0, we have

u?XT AXg + 2uvXT AT + v*TTAT = 0.

Since X7 AXo = 0, the other intersection corresponds to the parameters (ur, vr)=(TT AT,
—2XT AT). So a rational parameterization of S, in homogeneous coordinates, is

P(T) = Pr(ur,vr) = (TTAT) X, — 2(XT AT)T, (3.7)
where T, restricted to the plane BZ X = 0, stands for the rational parameters of the surface.

When TTAT = TTAX, = 0, (ur, v7) = (0,0), which are not well defined homogeneous
parameter values. Let Tg and T be the two solutions of T solved from T7T AT = TT A X, = 0.
Then Ty and T} are the two base points of P(T). Since X AX = 0 is the tangent plane
of S at Xjg, the straight lines XoJp and X¢T; are the two generating lines of S at Xg. So
the two base points Ty and 7 of P(T") are mapped to the two generating lines at X in a
general sense.

To obtain the inversion formula for (3.7), consider a2 general point X € S which is not
Xo. Let the corresponding parameter be T = A} X¢o + 11 X. Then from

0=BIT=MBYX,+ uBIX,

we have

T = (Bf X)Xo - (B Xo)X, (3.8)

which is a rational linear inversion formula of (3.7). Let (r,s,t) be a projective coordinate

system on the plane Bf X = 0. Since T is a point on this plane, there exists a 4 x 4

nonsingular matrix M such that T = M [r,s,t,O]T; in fact, the first three columns of M

represent the three reference points of the projective system (r, s, t) of the plane BT X = 0,

and the fourth column is any point not on the plane. Now r,s,t can be regarded as

homogeneous parameters of the representation (3.7). An inversion formula eguivalent to
(3.8)is

[r,5,2,0]T = M~ (B X)X, ~ (BJ Xo)X]. (39)

Example 3.3.1: We illustrate the above results in the case where S is the cylinder

S: XTAX = 0, with 4 = diag[1,1,0,—1] and X = [z,y, 2z, w]T being homogeneous co-

ordinates. Let the COP X, = [1,0,0,1)7, and the parameter plane be BT X = 0 where
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Bg = [1,0,0,0)T. Let T = [0,r,s,¢]T, where r,s,t are homogeneous parameters. Then, by
(3.7), a quadratic parameterization of S is

[z, ¥, z,w) = [r? — 13,27, 251, 7% + 217 (3.10)

It is easy to check that (r,s,t) = (0, 1,0) is a double base point of the above parameteriza-
tion. For an inversion formula we see that

T =[0,7,s, t]T = M[r,s, ¢,0]7,

where

ﬂ/f =

O O w~ O
o =0 O
-0 O O
QO O -

Then by (3.9) we have
[rys,t, 0]T =[-y,—z, - w, O]T.

So an inversion formula for (3.10) is

(T’S,t)=(y,3’w*1)- (3‘11)

Substitutir.g in the parameterization (3.10), we have
(yv Z,w— 1?) = 2t(T,S, t)‘

So (3.i1)is a correct inversion formula, which is invalid when y = z = w —z = 0, i.e. when
iz,y,z,wT =[1,0,0,1]7, which is the COP. Obviously, all points [1,0,2,1]T, z # 0, on the
double generating lines of S at COP [1,0,0,1}7 have the same parameter tuple (0, 1,0). O

Now we consider how two quadratic parameterizations of the same quadric as obtained

above are related through reparameterization. Suppose that we have two parameterizations
of S,

P(T) = (TTAT)Xo - 2(XZ AT)T, (3.12)
and
QU)=(UTAU)X, - 2(xTAU)U, (3.13)

both of which are obtained using the stereographic projection, where T and U are restricted
to the planes Bf X = 0 and BT X = 0, respectively. Furthermore we assume that BfXo #0
and BY X, # 0. Now we shall find a reparameterization relating the parameters T and U.
By (3.8), the parameter T of the point @Q(U) generated through (3.12) is

T = [BI Q(U)}Xo ~ (BI X0)Q(U),
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or, substituting in Q(U),

T = (UT AU)[(BT X1)Xo — (BE X0)X1] - 2(XT AUY(BIU)Xo — (BT Xo)U].  (3.14)
This is the reparameterization relating U and T. Conversely, we have

U = (TTAT)(BT Xo)X1 — (BT X1) Xo] — 2XJ ATY(BIT) X1 - (B{ X1)T].  (3.15)

In general, the reparameterization (3.14) is quadratic. Obviously, it becomes linear if Xo =
X1, i.e. P(T) and Q(U) have the same COP, because in this case

T = —2(XT AU)(BIU)Xo - (B] Xo)U),

and the common factor —2(XT AU) can be omitted. Hence (3.14) becomes linear if P(T)
and Q(U) have the same COP. We will show later that (3.14) is quadratic if P(T") and
Q(U) have different COP’s. Therefore two minimum degree parameterizations of a quadric

surface are not necessarily related by a rational linear reparameterization.

Example 3.3.2: Here we consider the following two parameterizations of sphere S:
XTAX = 0, with 4 = diag[1,1,1,—1]. Let the two COP’ be X; = [0,0.1,1}7 and
X, =[0,0,-1,1}7. Let the two parameter planes be BIX =0 and BfX = 0, where By =
B; = [0,0,1,0)7, i.e. the two planes are the same. Let T = [r,s,0,t]¥ and U = [u,v,0,q)7
be homogeneous parameters, restricted in the planes BIX =0 and B X = 0, respectively.
By (3.7) we obtain two parameterizations of S

P(T) = [2r1,2st,7? + s — 12,72 + s2 + 2|7

and
Q(U) = [2uq, 2vq, —u? — v* + g%, u? + o* + ¢*]".

By (3.14),
T(U) = [-2uq, —2vg, 0, —-2(u2 + v2).]T.

So the gquadratic reparameterization froin U to T is
(r,5,t) = (ug,vg,u” + v%),

which is a Cremona transformation as it has three base points (u,v,q) = (0,0,1) and
(1,+4,0). Q

The reparameterizations (3.14) and (3.15) are Cremona transformations that are inverse
to each other. According to the above discussion, they each should have three base points
when X and X, are different points. For (3.14) it is easy to verify that its three base points
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are the two intersections of UTAU = 0 with X7 AU = 0 (and B U = 0), denoted by Up
and Ui, respectively, and U; = (B? Xo)X; — (B;‘r X1)Xo. i.e. these three points mzake T(U)
vanish. The three base points of (3.15) are the two intersections of 77T AT = 0 with X7 AT =
0 (and BYT = 0), denoted by Tp and T3, respectively, and T, = (BT X)X, — (BIXo)X,.

It is interesting to note that the composition of quadratic parameterization (3.12) and
quadratic reparameterization (3.14) is the quadratic parameterization (3.13), instead of a
quartic one as expected in general. We shall briefly examine the role played by the base
points of (3.12) and those of (3.14) in this regard.

The three base points of (3.14), i.e. Up, U} and Uz = X; — X, determine three lines
'oU1, UgU, and U L. These three lines are mapped onto three points in the parameter T
domain through T(U) (3.14). From [SeK52, p.231], we know that the three base points of
T(U) are mapped onto three lines in the T plane, and these three lines intersect pairwise at
the three base points of U(T') (3.15), which is the inverse of T(U). Therefore two of these
three points are the intersections of TT AT = 0 and XZ AT = 0, which have been shown to
be the base points of P(T'). Now let us consider a general line ! in parameter U domain.
First, I is mapped by T(U) to a rational quadratic curve !’ on S. Since { intersects the
three knes Ugl,, UgUsz and U, Uz, !’ passes through the two base points Ty and Ty of P(T),
therefore !’ is mapped by P(T') to a rational quadratic curve on £. Thus a general line in U

domain is mapped by Q(U) = P(T(U)) onto a rational quadratic curve on S. Hence Q(U)
is a rational quadratic parameterization of 5.

3.3.2 General parameterizations

So far we have considered only the rational quadratic parameterizatious that are obtained
explicitly using stereographic projection. Now we ask whether any rational quadratic pa-
rameterization of S can be obtained in this way. By answering this question, we will gain

a Letter understanding of quadratic parameterizations of a quadric S and their mutual
relationships.

There exist unfaithful rational quadratic parameterizations for some quadric surface.
For instance, the cone z? + y? = 22 has the unfaithful parameterization z = r? — 52,
y = 2rs, z = 12 + 52, and w = t%. This parameterization maps two parameter points into a
point on the cone, and has no base points. In the following discussion we will consider only
faithful parameterizations.

Theorem 3.3.1: Let S be a quadric surface in E® and P(r,s,t) be a faithful rational
quadraiic parameterization of S with homogeneous parameters r,s,t. Then there ezists a
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rational linear inversion formula of P(r,s,t).

Proor: First suppose that S is nondegenerate. Then P(r,s,t) has two distinct base
points By and B;. Select a point B, which is not on the line BoB;. Then By, B; and B;
determine three lines lo: B1B2 , Iy : BgB> and I, : BgB;. We will use l;(r,s,t) = 0 to
denote the linear equation of the line /;, : = 0,1,2.

Let P(r,s,t) = [z(r,s,t), y(7, 5,1),2(r, 5, 1), w(r. & s.)]T. Then z(r, s, t), y(r, s, t), 2(r, s, 1),
w(r, s,t) are linearly independent. For if

c1z(r,s,t) + coy(r,s,t) + c3z(r,s.t) + caw(r,s,1) = 0
with the ¢; being not all zero, then S is contained in the plane
i1z +c2y+c3z+cqw =0,
which is impossible.

All conics passing through the two base points By and B, form a projective space £
of dimension 3, where the coefficients of the quadratic equation of a conic are regarded as
homogeneous coordinates for ihe conic. Since z(r,s,t),y(r,s,t), 2(r,s,t) and w(r,s,t) € L
are linearly independent, their linear combinations span the space £. Now consider three
conics in L: lp(r, s, )la(r,s,t) = 6, i(r, s, t)lz(r,s,t) = 0, and I3(r,s,t) = 0. Then we have

lo(r, s, t)lao(r, s, 1) = agyz(7, s, ) + ao2y(r, s,t) + acaz(r, s,t) + aosw(r, s,t),
Ii(r, s, t)la(r, s, t) = anyz(r, s, t) + ar2y(r, s, t) + a13z(r, s, t) + ayqw(r, s,t),
l%(r, 5,1t} = anz(r,s,t) + az2y(r, s,t) + az3z(r, s,t) + azqw(r, s,1), (3.16)

for some constants a,;. Thus for a point {z,y, z, w]T = [z(r, s, 1), y(r, 5, 1), 2(r, 5, 1),
w(r,s,t)]T on S,

IO(T! S, t)12(r7 S, t) = a1 T + ao2y + ap3z + oW = Ll(l’, Y.z, 'UJ),
h(r, s, t)la(r,s,t) = anz + a12y + 613z + arqw = Lo(z, y, 2, w),
13(r,5,t) = anT + a2y + a3z + aqw = La(z,y, z, w). (3.17)
As lo(7, s, t), Iy (7, s,t) and I3(r,s,t) are linear in homogeneous parameters =, s and ¢, after

dividing by l2(r,s,t), we can solve for an inversion formula from the above system in the
form,

T = bz + b2y + biaz + byaw = Ay(z,y, 2, w)
s = b1z + b2y + bazz + bogw = Ag(z,y,2z,w)
i = baz + baoy + b3zz + byyw = Az(z,y, 2z, w), (3.18)
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for some comnstants b;;,1 = 1.2,3,7 = 1.2,3.4.

When S is properly degenerate, the two base points Bg and B; coincide. So the four
conics z(r,s,t) = 0, y(r,s,t) = 0, 2(r,s,t) = 0 and w(r,s,t) = 0 in the parameter domain
have a common tangent at By = B;. This common tangent can then be used as the line
l(r,s,t) = 0 as in the above argument, and the lines lp and [; are chosen so that they do not

intersect in a point on {5, but otherwise arbitrary. The remaining proof follows identically.
a

It is worthwhile to point out the singularity with regard to inversion formula (3.18), i.e.
the cases where (3.18) does not give a one-to-one correspondence. First we note that the
choices of Iy and !; are arbitrary, except that they are distinct and do not coincide with
lo: BoB,, with l; being defined appropriately when Bg = B;. The inversion formula (3.18)
determines two pencils of planes by 7, s and t, which are

rAsz(z,y,z,w) — tA;(z,y,z,w) =0,
$A3(.T, Y, z, w) - t-42(:9 Yy,2, w) = 0. (3-19)

Since the line /» passes through the two base points By and B;. its image under P(r,s,t)
is a single point on S. Let Xg € S be this point. Then from (3.16) and (3.17), we have
Li(Xo) = L2{Xo) = L3{(Xo) = 0. Therefore the A;(Xg) = O since the A;(z,y,2,w) are
linear combinations of the L;(z,y, z, w), t = 1,2,3. Hence no definite parameters 7, s,t can
be computed for from (3.18) to correspond to Xo. Geometrically, the axes of the two pencils
in (3.19) both pass through Xg. From Ex. 3.3.1 we see that the COP X, of parameterization
(3.10) is given by the solution of (y,z,w — z) = (0,0,0), i.e. Xp = [1,0,0, 1]7.

Another singularity is for points on the two generating lines of S passing through Xg.
Let go be onc of the two. Then there is a plane pg: r7gA3z — tgA; = 0 and a plane p;:
spA3 —1pA2 = 0 belonging to the two pencils, respectively, such that py and p; both contain
the generating line go. Therefore all points on go, except Xp, have the same parameter
value (7o, sg, 20)-

The correspondence of other points on S with parameter tuples (r, s, t) within a constant
factor is one-to-one, and for such a point on S a unique parameter triple, up to a proportional
constant, can be computed from (3.18). Since the axes of the two pencils in (3.19) pass
through Xy, for any fixed parameters r;, s; and ¢; two corresponding planes of the two
pencils intersect in a line passing through Xo. This line intersects the quadric S in another
point X; besides Xg, so X; corresponds to the parameters (r1,s;,t1). Hence P(r,s,t)
can be obtained through a stereographic projection, and the associated point of a quadratic
parameterization of S can be identified with its COP. Note that here the plane of projection
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can be any plane not passing through X, and (r,s, t) is an appropriate projective coordinate
system in that plane.

Now we consider the reparameterization that relates two different faithful quadratic
parameterizations of a quadric in E3. Let

P(r,s, t) = [z(r,s,t),y(r,s,t), z(r, s, 1), w(r,s, t)]T,

Q(#,5,1) = [2(F, 5,1),9(F, 5,1), 2(F, 8, 1), 0(F, 5, 1)) T

be two faithful rational quadratic parameterizations of a quadric § C E3. Let the associated
points of P(r,s,t) and Q(F,3,t) be Xo, X3 € S, respectively. According to Theorem 3.3.1,
we have an inversion formula of P{r,s,t)

r = Ay(z,y, 2, w),

s = A2(I’ Y, 2, w)7

t= A3(I, Yy, 2, ’lU),
where A,, A3, A3 are linear. Substituting in the components of Q(7,3,%) for z,y, 2, and

w in the above inversion formula, we have the reparameterization that relates (7,3,%) and
(r5,¢)

t = A3(%(7,5,1), %(%, 5, 1), 2(F, 5, 1), ©(F, 5,1)). (3.26)

They are, in general, rational quadratic functions. Since, by symmetry, we can express ¥,
3, and t as rational quadratic functions in r,s and ¢, (3.20) is a Cremona transformation.

Theorem 3.3.2: The reparameterization erpressed by (3.20) is rational linear if and
only if Xo = X, 1.e they have the same COP.

Since by using inversion formulas we have shown that every faithful rational quadratic
parameterization of a quadric can be obtained by a projection through its COP, the suffi-
ciency of Theorem 3.3.2 has been in fact proved in Section 3.3.1. Here we will give another
geometric proof for it.

PROOF: Suppose that Xg and X; are the same point. To show that (3.20) is in fact
rational linear, we just have to prove that a general line in (7, 3,t) domain is mapped by
(3.20) onto a line in (r,s,?) domain.

Let | be a general line in (7,5,?) domain and let By and B; be the two base points of
Q(7,5,%). Since ! intersects the line BoB;, which is mapped to X; € S, ! is mapped to a
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conic on S passing through X;; when By = B, the line Bo B, is defined appropriately as in
the proof of Theorem 3.3.1. Conversely, any conic on § passing through X, is the image of a
line in (F,3,7) domain; that is because, as indicated above, any quadratic parameterization
is obtained by stereographic projection. Therefore there is a one-to-one correspondence
between all general lines in (7,5,?) domain and all conics on § passing through X,. As
the same correspondence also holds for the parameterization P(r,s,t) «f $ and Xp = X,
we conclude that a general line in (7.5,7) domain corresponds to a line in (r,s,t) domain

through the mapping P~1Q. Hence the reparameterization expressed by (3.20) is rational
linear.

The necessity can be proved similarly. In the above argument, when Xy and X, are
different, a general conic on S passing through X; projects from Xg to a conic in the (r, s, t)
plane, and thus it corresponds to a conic in the (7, s, ) plane. So a general line in the (7,5, )
plane is mapped by P~!Q onto a conic in the (r,s,t) plane. Hence (3.20) is quadratic. O

Let P(r,s,t) be a quadratic parameterization of a quadric S obtained by projection
from a point Xg € S. The two generating lines of § at X then correspond to the two base
points of P(r,s,t). So the two base points are real if and only if the two generating lines

of S at Xo, or equivalentiy at any other point on S, are real. For example, the following
parameterization of the unit sphere

P(r,s,t) = [2rt, 2st, 2—-r2-% 24+924 sz]T,

has imaginary base points (1,+¢,0).

3.4 Bézier representation of a triangular patch on a quadric

In this section we consider the following problem: given a triangular patch on a quadric
S C E® whose boundaries are rational curve segments, find a rational triangular Bézier rep-
resentation of the patch. This problem has applications in surface modeling using quadrics
[Dah89]. Several works address problems similar to the above. In [FPWS88] an octant of
a sphere is represenied as a rational quartic Bézier surface. In [Sed85] triangular patches
on a quadric that can be represented as rational quadratic Bézier surfaces are considered.
In [JoW90] triangular patches on quadrics with conic arcs as boundaries are represented as
rational quartic Bézier surfaces.

The main results of this section are: (1) using stereographic projection and reparameter-
iza!ion, a triangular patch 7 on a quadric § whose boundaries are rational curve segments
of Jdegree at most n can be represented as a Bézier surface of degree at most 2n; (2) the
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Bézier representation of 7 is quadratic if and only if there exist three planes each containing
a boundary segment of 7 such that the three planes intersect at a point on S. The second
result is proved in [LoW90]. The necessity part of result (2) is also proved in [Sed85]. But
our approach is different in that we do not transform the quadric in question into the surface
of a quadratic function as done in [LoW90].

As an application of the above results, we will show that any rational triangular Bézier
representation for an octant of a sphere is of degree at least 4. Therefore the representation
given in [FPW88] is of minimum degree.

3.4.1 General triangular patches

Let 7 be a triangular patch on a quadric S bounded by the rational curve segments g;(¢) of
degree at most n, 7 = 0,1, 2, with at least one of the g;(t) of exact degree n. By a triangular
patch we mean that each side »f the patch does not intersect itself, and two sides of the
patch intersect exactly once. Assume that there exists a point Xg € S outside 7 so that
none of the generating lines of § at X intersects 7. Note that when S has only imaginary
generating lines, like a sphere, any point X € S outside 7 satisfies this assumption. Let p
be a plane that does not pass through X¢ and does not intersect 7. Let F be the projection
from E2 to the plane p with center of projection on Xp, and let 7/ = F(7). From the
assumption that none of the generating lines at X intersects 7, and the fact that any line
passing through X intersects S in exactly one other point unless it lies entirely on S, the
mapping Flr, from 7 to 7’ is one-to-one, where Flr is the restriction of F to 7. Hence
T’ is also a triangular patch.

Let the boundary segments of 7’ be g;(t), : = 0,1,2. Since the projection F is rational
linear, g;(t) is of the same degree as ¢;(t), ¢ = 0,1,2. Now it is straightforward to construct
a rational mapping R(7,s,t) of degree n in Bézier form from a domain triangie A to 77. We
just have to treat 7' as a planar Bézier surface patch of degree n, with the interior control
points chosen appropriately. Let P(r,s,t) be the quadratic parameterization of S obtained
by projection with COP at Xy, which is the inversion of the mapping F'|s, the restriction of
F to quadric S. Then the triangular patch 7 can be readily represented as the triangular
Bézier surface P(R(r,s,t)) of degree 2n.

Although it is easy to obtain a rational mapping from the domain triangle A to the
planar patch 77, in general it is unknown how to make this mapping one-to-one. Conditions

that guarantee that this mapping is one-to-one in the case that the boundaries of 7 are
conic arcs are given in [JoW90].
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With this construction, an octant of a sphere is represented by a rational quartic Bézier
surface in [FPWS88].

3.4.2 Quadratic Bézier surfaces on a quadric

In this subsection we consider a special triangular patch 7 cn a quadric S.

Theorem 3.4.1: A triangular patch T on quadric S C E® can be represented as a
faithful quadratic Bézier surface if and only if there exist three planes each containing a

boundary segment qi(t) of 7, i = 0,1,2, such that the three planes intersect at a point on
S.

The necessity of Theorem 3.4.1is proved in [Sed85]. The sufficiency is proved in [JoW90].
This result is also proved in [LoW90]. Here we give a proof without transforming the quadric
S into the surface of a2 quadratic function as done in [LoW90].

Proor: Sufficiency: Suppose that 7 is a triangular patch on S with the three boundary
segments respectively contained in three planes which intersect at a point Xg € S. Select a
plane p that does not pass through X¢ and does not intersect 7. Then the image 7’ of 7
on plane p under the projection through Xj is a triangle. Now parameterizing S using the
projection with COP being at X, we can obtain a quadratic Bézier representation P(r,s,t)
of 7 with 77 as the parameter domain triangle.

Necessity: See [Sed85]. O

Theorem 3.4.2: An octant of a sphere can be represented by a rational quartic trian-
gular Bézier patch; and this representaiion ts of minimum degree.

PROOF: A quartic representation has been given in [FPW88]. We just have to prove
that the part 7 of the unit sphere S2 in the first octant of the coordinate system, i.e. where

z,¥,z > 0, can not be represented by a rational quadratic or cubic triangular Bézier patch.

Let P(r,s,t) be a rational triangular Bézier representation of the triangular patch 7.
Obviously, P(r, s,t) can not be a faithful quadratic parameterization. This follows directly
from Theorem 3.4.1, since the three planes determined by the three boundary circular arcs
of 7 intersect in the center of the sphere, which is not on the sphere.

Secondly, we need to show that P(r,s,t)is not an unfaithful quadratic parameterization.
Suppose that P(7r,s,t) is unfaithful. Then P(r,s,t) has at most one base point. Choose
a general real point X on 7 so that there are two distinct parameter points U and V in
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the plane (r,s,t) corresponding to the point X € 7 through P(r,s,t). Note that, since
P(r,s,t) is quadratic, there are at most two distinct parameter points corresponding to the
general point X . Obviously, one of U and V is real, since X corresponds to at least one
real parameter point. Let U be real. Then we claim that V is also real. From P(V) = X,
we have P(V) = X = X, where V is the complex conjugate point of V. If V is not real,
then V, V, and U are three distinct parameter points corresponding to X through P(r,s,1).
This contradicts the assumption that P(r,s,?) is quadratic.

Let L be the straight line passing through the points U and V. Then L is a real line.
The image P(L) of L on S? is a real straight line if L passes through one base point of
P(r,s,t); and P(L) is a real conic on $? if L passes through no base point of P(r, s,t). The
former case can be excluded since there is no real line on S2. In the latter case, we ¢an
exclude the possibility that P(L) is a proper conic, because then the two distinct points U
and V on L can not be mapped onto the same point X. Therefore the conic P(L) should be
a re:d double line on S2; but again, this is impossible. Note that we do not have to consider
the case that P(L) is a point on $?, because in that case P(r,s,t) would have two base
points, and therefore be faithful. Hence we have shown that P(r,s,t) is not a quadratic
representation of the octant 7, whether faithful or not.

Finally, we show that P(r,s,t) is not cubic. f P(r,s,t) is of exactly cubic degree, then
a general real line in the parameter domain, i.e. a line not passing through any base point
of P(r,s,t), is mapped onto a real cubic curve on S2. Since a real cubic curve is always
unbounded, but S2 is bounded in E3, this is a contradiction. O
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Chapter 4

Interpolation on Quadric Surfaces
by Rational Quadratic Spline
Curves

In this chapter we discuss the problem of constructing a tangent continuous rational quadratic
spline curve lying on a regular quadric surface S : XTAT = 0 C E¢, d > 3, that interpolates

a given point sequence {X;}% ;. It is shown that a necessary condition for the existence of
a nontrivial interpolant is (X{ AX2)}(XFAX:i41) >0,i=1,2,...,n — 1. Also considered is

the Hermite interpolation problem on a quadric surface: a smooth interpolating curve on

S is sought to interpolate two points and two associated tangent directions. The solution

provided to this probler is a biarc consisting of two smoothly joining conic arcs on $, which

is similar to the biarc interpolant in the plane or space [Bol75]. Several conditions for the

existence of a biarc are derived, among which is a necessary and sufficient condition for the

existence of a biaic whose two arcs are not major elliptic arcs. In addition, it is shown that

this condition is always fulfilled on the sphere S9~! C E? for generic irterpolation data.

An algorithm is presented to apply the biarc interpolant to solve the point interpolation

problem by providing the tangent direction at each data point from nearby data points.
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4.1 Introduction

4.1.1 Problems

Giveu a sequence of points {X;}/., on a quadric surface § C E¢. d > 3, we want to
construct a smooth curve ¢» S, i.e. a curve on S with unit tangent vector continuity, to
interpolate { X} ;.

While it is not hard to identify this problem ir CAGD, especially when d = 3, an
interesting instance of this problem arises in computer animation, which involves the curve
interpolation problem in the unit quaternion space that forms the unit sphere S3 C EA
More about this application can be found in [Sho85j.

In this chapter we will mainly consider using the raticnal quadratic spline curve as the
interpolating curve. Obviously, the rational quadratic spline is the simplest curve possible
to sclve the problem. There are many papers in the literature using rational quadratic
splines, or conic splines, to solve interpclation and approximation problems in the plane or
space, e.g. [Boo79, Pav83, Pra85]. Some authors studied special cases of rational quadratic
splines, e.g. quadratic polynomial splines cr circular arc splines. The advantages of raticnal
quadratic splinss are obvious. Its low algebraic degree ensures simple representation and
evaluation, and in many applications its tangent continuity can well meet the requirement
for smoothness. Of course, in general, the rational quadratic spline does not have curvature
continuity in the plane [Far89] and torsion continuity in space, since conic sections are
planar curves.

The first problem we will discuss is how to construct a smooth rational quadratic spline
curve on S using a single segment between any two consecutive data points. This problem
will be referred to as point interpolation on the quadric surface. We will show how to
construct such a spline curve, and will prove that if the solution exists then all the line
segments X Xit1-¢t = 1,...,2n— 1, are on the same side of § and the spline has d — 2
degrees of frcedom. It will be seen that this spline curve is not locally controllable.

As the second problem, we will discuss the biarc interpolant on the quadric surface, or
simply diarc, which is a composite curve consisting of two smoothly joining conic arcs on
S and is made to interpolate two points Xp and X; and two associated tangent directions
or. S. This problem arises in solving the interpolation problem in which, besides {X;}%.;,
the tangent direction at each point X is also specified. Evidently, in general, the rational
yuadratic spiine with a single curve segment between two consecutive ponts is insufficient to
solve this problem due to the limited flexibility of conics. We will adop* an approach similar
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to the biarc interpolation in the plane [Bol75, Sab76], i.e. using on S to interpolate
two consecutive points and the two end tangents, to match the degrees of freedom of the
spline with the increased number of interpolation conditions. This approach provides an
improved solution to the point interpolation problem on the quadric surface. Given a point

sequence on a quadric surface, this improved solution is realized by generating the tangent
direction at each point from nearby points.

Several conditions for the existence of these biarc interpolants will be derived. We
mainly consider a special class of biarcs which do not contain major elliptic arcs, where a
major elliptic arc is an arc greater than half an ellipse. For the existence of these kinds of
biarcs a necessary and sufficient condition will be derived, and this condition will be shown
to be satisfied for generic data on the sphere S%~1 C E¢ d > 3.

The remainder of this chapter is organized as follows. In the rest of this section we will
review relevant preliminaries. Sections 4.2 and 4.3 deal with the two problems mentioned
above. In Section 4.4 an algorithm is described to apply the biarc interpolant in the point

interpolation problem. We conclude the discussion in Section 4.5 with a summary of these
results and some cpen problems.

4.1.2 Preliminaries

Due to the nature of the problems discussed we will be mainly concerned with the Euclidean
space E?, d > 3, although frequently we have to use projective transformations. Therefore
homogeneous coordinate representations for points in E? will be used extensively. The
homogeneous representation also simplifies the representation of different quadric surfaces

to a unified form. The following remarks on calculation with homogeneous coordinates will
be found useful.

A point in E? is represented by one of its homogeneous coordinate representations
X =[zq,.. .»Zg4+1]T, where z; € R, the field of the real nurnbers, and at least one z; # 0.
Two (d + 1)-tuples X;, X, are defined to represent the same point in E4 if X; = pX; for
some g # 0. If z44; = 0 then X is called a point at infinity wi‘h respect to EZ. The point
represented by homogeneous coordinates X is denoted by [A'|. When there is no danger of
confusion we also cail X a point.

We say that a finite point X = [z1,...,Za4+1]7 € E? is in norrnalized form if z44; = 1.
Let X,Y be two points in homogeneous form. Then the straight line XY is parameterized
by AX + upY, where A,u € R are two independent real homogeneous parameters with
A2 4+ p® # 0. When X,Y are in normalized homogeneous form, the straight line segment
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XY is parameterized by AX + puY, where A,y € R are subject to A > 0 and A% + 2 z 0.
A direction in E? is represented the homogeneous coordinates T of a point at infinity. Note
that T and —T represent two opposite directions, though they stand for the same point at
infinity. But 7" and p7, where p > 0, represent the same direction.

Using homogeneous coordinates. a quadric surface S C E? is represented by XTAX =0,
where A is a (d + 1) x (d 4- 1) real symmetric matrix, and X is a generic point on S in
homogeneous representation. In this chapter we will mainly study rea regular guadric
surfaces. By reqular we mean that the surface as a projective entity has no singular peints.
Regular quadrics are also said to be non-degenerate. The characterization for XTAX = 0
to be a real regular quadric surface is that the matrix A is nonsingular and indefinite, i.e.
(XTAX)YTAY ) < 0 for some X and Y. A regular quadric surface is irreducible, i.e. not
composed of hyperplanes {SeK52]. For a regular quadric surface S, the tangent hyperplane of
S at a point Xo. W AX = 0. which is the polar plane of X with respect to S, is well defined,
because vhen .+ s nonsicgular X7 A # 0 if Xo # 0. Like in £3, a straight line is called
a generating li.ie oi S if 1t is entirely contained in S. It is easily verified that two distinct
points X¢,X; on S are on the same generating line of §,i.e. (AXo+pX, )TA(z\Xg-l-pX]) =0
for all (A, u) # (0,0), if and cnly if XTAX, = 0. Two points X,X; are defined to be on
opposite sides of S :XTAX =0, if (XJTAXo)(XTAX,) < 0; they are on the same side of S
if (XFAXo)(XTAX,) > 0. Of course, X AXo = 0 means Xg € S.

A quadric surface S C E¢ is composed of at most two disjoint real connected :ompo-
nents; for if there are more than two, then three distinct points can be chosen on §, each
from a different component. If these three points are collinear, the line passing through
them intersects S in three points. Then by Bezout’s Thecrem, the line lies entirely in
S, connecting the three components; this is a contradiction. If the three points are not
collinear, then the conic section obtaired as the intersection of S and the plane determined
by the three points has at least three real components, which is again .o ossible. Quadric
surfaces with one and two components are exemplified by the ellipsoid and hyperboloid of
two sheets in E3, respectively. A necessary requirement for two points on S to be inter-
polated by a continuous curve on S is that they should be on the same component of S.
Throughout we will assume that the points {X;}? ; to be interpolated are on the same
component cf 5.

When two surfaces can be mapped into each other by a projective transformation we
say -hat they are projectively equivalent, otherwise ;. rojectively different. Similarly we have
the concept of affine equivalence. There are five classes of projectively different real quadric
surfaces in E3: they are, taking one representative from each class, the elliptic paraboloid,
the hyperbolic paraboloid, the quadric cone, the parallel planes and the coincident planes.
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Only the first two kinds of surfaces are regular. The last two kinds of surfaces are of
no interest to us. Each of the first three classes can be further divided into subclasses
of affinely equivalent surfaces. The first class contains the ellipsoid, the hyperboloid of
two sheets, and the elliptic paraboloid; the second class contains the hyperboloid of one
sheet and the hyperbolic paraboloid; the third class, often referred to as properly degenerate
quadric surfaces, contains the quadric cone, the elliptic cylinder, the parabolic cylinder, and
the hyperbolic cylinder.

The properly degenerate quadric surfaces are not regular surfaces; for cylinders the
singular point is at infinity. Most of our results in E? will be derived only for regular
quadric surfaces, but we will be explicit when the results can be extended to any singular
quadric surface.

The rational quadratic Bézier curve will be used to represent each piece of a spline in
our discussion. Here, for the purpose of this chapter and the next, we will discuss the
homogeneous representation of the rational quadratic Bézier curve

P(u) = 'wO.PoBo'z(‘U-) + wlPlBl,g(u) -+ ‘U)szBg_g(u), 0<u<l, (4.1)

where Py, Py and P,, which are in homogeneous representation, are cailed the control
points of the curve; the w;’s are the weights associated with the F;’s, 2 = 0,1,2; B;3(t) =
-1,(%_:5;(1 — u)?>~iu', i = 0,1, 2, are the second degree Bernstein polynomials. Here note that
Po, P; and P, are not the control points in the usual sense since different homogeneous
representations P; of the [P;] may result in different curves.

The following notation is about conics and a finite piece of a conic. A conic that is
composed of straight lines is said to be degenerate, otherwise proper. A conic arc refers
to a continuous and finite piece of a conic section. A smooth conic arc refers to a tangent
continuous conic arc, with a line segment included even though the underlying conic is
degenerate. A proper conic arc refers to a conic arc on a proper conic; therefore a proper
conic arc is a smooth conic arc. A proper conic arc determines a plane, since the underlying
conic does. A continuous and finite piece of a rational quadratic curve is called a conic arc. or
interchangeably, a rational quadratic segment. Through a rational linear reparameterization,
a conic arc can be represented in the standard form [Pat86)

P(u) = PyBo2(u)+ wPlBl,g(u) + P2B32(u), uwe€]0,1], (4.2)

where Py, P, are in normalized homogeneous form; w is called the weight of the curve,
which is not necessarily positive. Note that w is not unique since different representations
of [P;] come intu play. If the representation P, is fixed, two weights with opposite signs give
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complementary arcs of the same conic section [Lee87]. Therefor: both arcs are continuous
if and only if the conic is an ellipse.

A curve segment (4.2) is continuous provided wzgy4; > 0, where z44; is the last com-
ponent of P;. When w = 0 the curve becomes the line segment PoP;; when z44y = 0 and
w # 0 the curve is half an ellipse. In the following we will mainly consider the case w # 0,
as it will be shown later on that straight line segments are essentially useless in our solution.

Definition 4.1.1: Suppose that P in (4.2) is in normalized form when it is a finite
point. A real, nonzero, and finite weight w is called a positive weight if w > 0; it is called

a negative weight otherwise.

Note that a real nonzero finite weight w is either a positive weight or a negative weight;
when [P;] is a point at infinity, the positive weight and the negative weight are defined
with respect to the particular representation P;. A rational quadratic curve with a positive
weight can only give a continuous piece of a hyperbolic arc, parabolic arc or minor elliptic
arc, including a semi-ellipse when P; is at infinity. An important property of the rational
quadratic Bézier curve is thai the straight line segments Py Py, P P, are tangent to the
curve P(u} at Py = P(0), P, = P(1), respectively.

The condition on the smooth joining of two rational quadratic Bézier curves is important
in ouvr discussion. Let the control polygon of two Bézier segments be XpYpX; and X Y1 X
respectively, where Yy, ¥; may be points at infinity. It is evident that for the two Bézier
curves to join smoothly the three points Yy, X and Y; have to be collinear with [X;3] # [Yo],
[X,] # [Y1]- In this case the following two rules are easily observed, which are given as a
lemma. for later reference.

Lemma 4.1.1: When the joint point X, is between Yy and Y] the two Bézier curves join
smoothly if and only if they both simultaneously have positive a weight or a negative weight.
When X, is not between Yy and Y3, including the case [Yo] = [Y1], the two Bézier curves

join smoothly if and only if one curve has a positive weight and the other has a negative
weight.

For the above rules to make sense it is required that the arc given by a negative weight
is continuous.
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4.2 Point interpolation on a quadric

4.2.1 Local representation

Let {X;}/—;, n > 3, be a point sequence in normalized form on a quadric surface S:
XTAX =0 € E4 d > 3. Assume that {X;}7, are on the same real component of S
in the case that S is composed of two components in E4. Our goal in this section is to
construct a smooth rational quadratic spline on S to interpolate { X;}™, . First we con-
sider the existence and properties of a single quadratic Bézier curve on S interpolating two
points, say Xo and Xj.

Let the tangent hyperplanes of § at Xg and X} be Qq: XgAX = 0 and Q;: X,TAX =0,
respectively. Let Lo be the intersection of Qq, @;. Then Lg is a (d — 2)-dimensional affine
manifold; Lg is a straight line when d = 3. Let Cp : Po(u) be a rational quadratic Bézier
curve on S ‘nterpolating Xg and X, and let Xp,Yp and X; be the control points of Po(u).
Then, as Cp is on S, it is necessary for Yy to be on Lg, i.e. X(TAYO = 0 and XJAY; = 0;
for otherwise the straight line Yy X or Yp.X; would not be tangent to S.

Suppose that Co : Po(u) is in the standard Bézier representation
Iyiu) = XoBoa(%) + wYoBi2(u) + X1B22(u), 0<u<l. (4.3)

The weight w must satisfy Po(u)TAPo(u) = 0 for all u € [0,1] since Cy C S. Substituting
(4.3) in Po(u)TAPo(u) = 0, noting that X AXo= XTAX,= XJAYo= “aYp = 0, and
B?,(2) = 4Bg 3(u)B2,2(u), we obtain

2XJ AX1Bo2(1)Bazii) -+ wiYy AYpB? y(u) = 0,

or when YL AYy #0 -

’ X¢ AX]

w? = "E‘f%T—Z?o' (4.4)
When the right hand side of (4.4) is fir"*~ and nonnegative, {4.4) is said to be valid. A real
value of the weight can be calculate: from (4.4) if and only if (4.4) is valid. Note that (4.4)
being wvalid is just a necessatry condition for Po(u) to be a conic arc on S interpolating Xy
and X,; a necessary and sufficient condition is that Yy € Lo and that (4.4) is valid. Now
we shall find a condition on Y, under which 7/ .4) is valid since only reai values of w yicld

real curves. First we exclude a trivial case.

Lemma 4.2.1: Let Xg, X, be distinct points on the same generating line of the quadric

surface S. Then ihe line segment XgX, is the only smooth conic arc on S interpolating
Xo,X1.
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PROOF: We just need to show that there is no other proper conic arc on S interpolating
X, and X,. Suppose there is such a proper conic Co passing through X¢,X;. Then the two
dimensional plane containing Co intersects the surface S in Cp plus the straight line XoX),
contradicting the fact that any plane section of a quadric surface is a conic. O

Obviounsly, X, X1 are on the same generating line of S if and only if [Xo + X,] € S.
which is a point on the segment XoX; since Xg and X; are in normalized form. Bat
(Xo + X1)TA{(Xo + X1) = 0 is equivalent to XgAXl = 0. Thus we have

Lemma 4.2.2: Let w be determined by (4.4) and Y§f AYy # 0. Then w = U if and only
if Xo,X1 are on the same generating line of S.

Since w = 0 in (4.3) gives a straight line segment FPy(u}, Lemma 4.2.2 is just a restate-
ment of Lemma 4.2.1. Because of the following fact, the case in which two consecutive
Euints  0,X) are on the same generating line of S is not of interest to us, and will therefore
br evcluded.

_einma 4.2.3: On a regular quadric surface S a straight line segment and a proper
conic arc can not meet with tangent continuity.

ProOF: The proof is verv much like that of Lemma 4.2.1. Suppose thai = proper conic
arc C and a straight line segment / on S join with common tangent T'. Let Pc be the two
dimensional plane determined by C. Then Pc contains T', and therefore contains I. So the
plane Pc intersects the quadric surface S in a proper conic that contains C plus the straight
line containing /. This absurdity indicates that the lemma must hold. O

The following theorem provides a geometric condition for the existence of and a way of
constructing the local interpolating rat...ial quadratic curve.

Theorem 4.2.4: Let Xo,X1 € S: XTAX =0 C E9 be distinct points on the same
component but not on the same ,enerating line of S. Then Xo.Yo and X, form the control
points ¢f a smooth rational quadratic Bézier curve on S interpolating Xo,X; if and only if
XTAYo = XT AYo = 0 and (YF AYo)(XT AX,) < O, or geometrically, Yo € Lo and Y, and
the line segment XgAi; are on opposite sides of S.

PRrROOF: Let Xg acd Xy be in normalized form. Then Xp+ X; stands for a point on the
line segment XoX,. First we remark that the segment XoX; is entirely on the same side

of § as the point [ X + X4], since Xp and X, are the only intersections of the straight line
XoX, with §.

When X(,Yp and X; are the control points of a smooth Bézier curve of the form (4.3)
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on 5, obviously Yp € Ly, i.e. XgAYo = XITAYO = 0. Also Xy, Yy and X; are not collinear;
for otherwise, the Bézier curve would be a generating line of § passing through X and
X;. Also we have YOTAYO 7 0. For otherwise, from Y AYy = 0, i.e. Yy € S, combined
with XgAYo = X{AYO = 0, it would follow that Xy and Yy are on the same generating
line of S, and so are X; and Yp for the same reason. Since the intersection of the quadric
and the plane containing the rational Bézier curve already contains two lines, these must
be the conic of intersection. Hence the Bézier curve would consist of the joint line segments
XoYo and Yp.X;. which is not smooth. Thus }"OTAY;) # 0. Since the curve is well defined,
—-Xg AX,y /(2Y0TAY0) -~ w? > 0. As Xo,X; are not on the same generating line of S,
XJ AX, # 0; therefore (XJ AX1 ) (YT AYy) < 0. Since (X + X)) TA(Xo + X1) = 2XT AN,
we have

(KXo + 2 )T A(Xo + XD)(YF AYD) < 0.

Hence Yy and the segment XoX; are on the opposite sides of S.

Now suppose that (i) XJAY; = XTAYy = 0 and (41) (YFAYN XZ 4X;) < 0. Since
Yo € Lo, by (2), we can construct a Bézier curve on S of the form (4.3), with the weight w
determined by (4.4). By (i7), we have
-xfax,
2Y T AY,
Therefore a positive weight w can be solved for from (4.4),i.e. X,Yp and X, are the control
points of a smooth Bézier curve on S interpolating Xo and X;. O

> 0.

It is evident that when X,X; are distinct points on the sphere S4~! C E9 or any surface

thati. nely equivalent to 541, (YF AYs)(XT AX,) < 0 holds for any Yy € Lo. Therefore
we have

Lemma 4.2.5: Let X, X1 € S%! ¢ E? be distinct points. Then for eny Yo € Lo, Xo,
Yo and X1 are the control points of two smooth rational quadratic Bézier curves interpolating
Xo and X, on S9!, one with the positive weight and the other with the negative weight.

In fact, memma 4.2.5 can be generalized to any properly degenerate qua<lric surface in
F3,i.e. any proper cylinder or the quadric cone, with one slight modification. When S is
a properly degenerate quadric surface in £? and X, X; are not on the same generating
line of S, (YOTAYO)(XEAXl) < 0 for any Yy £ 7~. - th the one exception that Y is not
the vertex of a quadric cone. Here for convenience we say that the quadric cone in E3 is
composed of two components joining at the vertc- This statement is not strictly accurate
by definition but is based rather on the observation that if two points are on different parts
of a quadric cone S then either they are on the saine generating line of S or the condition
(YF AYp)(XT AX1) < 0 in Theorem 4.2.4 is violated for any Yy € Lo.
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For a general regular quadric surface we have only a weaker result. From Theorem 4.2.4
it is scen that Yy € Lo gives a smooth interpolating Bézier curve (4.3) if and only if (4.4) is
valid.

Lemma 4.2.8: Let Xo, X, be distinct points on the same component but not on the
sarne generating line of a regular quadric surface S: XTAX =0 € E? d>3. Then there
exrizts Yo € Lo such that (4.4) is valid.

Lemma 4.2.6 is equivalent to the statement that for any two distinct points on the same
component of a regular quadric S in E?, there exists a smooth conic arc on S connecting
the two points. To prove Lemma 4.2.6, we need the following lemma.

Lemma 4.2.7: Let A be a real n X n nonsingular symmetric matriz. Let A kave p
positive and v negative eigenvalues, p+r = n. Let B be an n x (n~ 1) matriz of rankn — 1.
Then the symmetric matriz BT AB has at least p — 1 positive and at least r — 1 negative

eigenvalues.

ProOF: Since the rank of B is n — 1, we can add a new column & io it such that
D =[P b} is nonsingular. Then BT AB is the leading (n — 1) X (n — 1) principal submatrix
of DT AD. By the Sylvester law of inertia {GoV89, pp. 416-417], the number of positive
eigenvalues and the uumber of negative eigenvalues of 2T AD are the same as those of A.
Let the eigenvalues of BTAB be X\;, i = 1,2....,n — 1, and let the eigenvalues of DTAD
be pj, 7 = 1,2,...,n. Since the eigenvalues of BT AB separate those of DTAD [Wil65, pp.
103-104], i.e.

1 <A Spr <AL <A < pap,

we conclude that BT AB has at least p — 1 positive eigenvalues and at least r — * r2gative
eigenvalues.O

PROOF of Lemma 4.2.6: First we need an affine classification of real quadric surface: n
E? [Xu65, pp. 471-474). 1t is straightforward to show that any real regular quadric surface
in E¢ is affinely equivalent to en: of the following forms:

1. XTAX =0, where 4 = diag[1,03,...,04,-1],0; =%1,i=2,...,d; or

No -1

2. XTAX=0,whereA:diag[o‘l,...,od_l,l 1 o ”,a;::j:l,i:l,...,d—l.

Let A have p positive and r negative eigenvalucs. Since A is indefinite for XTAX = 0 to
be a real surface, p>1and r > 1.
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We just have to show that the lemma holds for surfaces in these two canonical forms.
First consider the class of quadrics XTAX = 0 with p= 1 or r = 1. These quadrics must
be in one of the following three cases:

1. XTAX = 0 with A = diag[ly, —1];

2. XTAX = 0 with A = diag[~1, 1], which gives the same quadric as by A = diag[1, -14);

Y S |
3. XTAX = 0 with A = diag |4, .
-1 o
For these three cases, p = d and r = 1. Define a point Xy to be inside * - 0if
XTAXo < 0. Let S be any one of the above three surfaces. Then, given «: - distinct
real points Xo = [z01,...,%0,d,1}T, X1 = [Zz1.1... -»Z1.4,1]7 on the same con.- - - at of S,

it will be shown t'...t the line segment Xy X, is inside S.
(1) The case 4 = diag{ly, —1]:

(Xo + Xl)T.4(.X0 + Xl) = 2Xg'.4_}':1 = -—(.Xo _ .Yl )TA()K—O -— X]) < 0.

(2) The case A = diag|~1, I ]: Since z; = 0 is the separating hyperpiane of 5, 5 has two
components. Since Xg, X are on the saine component of S, we have z09,1Z1,1 > 0. Then

zo,lxl,l(Xo + Xl)TA(Xo + Xl) = 2$0'1$1'1X'3A.¥1
= —(211X0 ~ 201 X1)T A(z12 X0 — 201 X;) < 0.

Thus (Xo + X1)TA(Xo + X1) < 0.

-1

(3) The case A = diag [Id—u { 1 o

” : Since Xo, X, are real points on S, g4 > 0

and z; 4 2 0. Then

—(zoa + VW z14+ 1)(Xo+ X1)TA(Xo + X1) = —2(zoq + 1)(z1 4+ 1)XTAX,
= {(®14 : 1} 0= (o + DX1)TAl(z1,0 + 1) X0 — (z0.a + 1)X1]
d—1
=1
d—1 _ )
= Y [(z1a+ Dzoi ~ (204 + 1)z1,]? + 2(21,4 - To4)? > O,
i=1
since Xp, X; are distinct points. Thus (Xo + X )TA(XO + X1) < 0 since zg 4+ 1 > 0 and
z1,4+ 1 > 0. Hence for the three quadrics the segment Xy X, is inside the surface.
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Fig. 4.2.1 Local interpolation on hyperboloid of one sheet: The straight line Lo intersects
tne hyperboloid of one sheet in two points. Therefore a point Yo € Lo can be selected that is on the

same side of the surface as the segment XoX;.

Let L = Qo1 Q1, where Qo and Q; are the tangent hyperplanes of § at Xo and X,
given by XTAX = 0 and X{ AX = 0, respectively. Let ¥;,7 =1,...,d— 1, be d — 1 affinely
independent points in L. Similar to the Gram-Schmidt orthogonalization process [GoV89,
p. 218), the Y; can be constructed so that YTAY; = 0 for i # j. Let Z = AXo + pX;
be a variable point on the straight line XoX;. Then ZTAY; =0fori=1,...,d— 1. Let
B =[Y1,...,Y4_1,Z]. Then BT AB = diag[YT AY1,...,Y] ;AYs_1,ZTAZ]. So B has rank
d. By Lemma 4.2.7, BT AB has at least d — 1 positive eigenvalues since A has d positive
eigenvalues. But since Z is on the straight line XoX1, it can be chosen so that ZTAZ < 0;
therefore the Y‘-TAY.- > 0. Thus YTAY > 0 for any Y € L. Hence when S is any of the
three quadrics, for any Y € L, the line segment XoX; and ¥ are on opposite sides of S.

Now consider the remaining case, i.e. the quadrics XTAX = 0 withp > 2and r > 2. Let
B = [Y4,...,Y4_1, Z) be the same matrix as constructed above. For the same reason, B has
rank d and BTAB = diag[YlTAYl, .. .,Yd'{lAYd..l,ZTAZ]. In this case, by Lemma 4.2.7,
BT AB has at least one positive eigenvalue and one negative eigenvalue, so it is indefinite.
Therefore the ¥;T AY; do not have the same sign; for otherwise, choosing ZT AZ to have the
same sign as the Y?AY,-, BT AB would become positive or negative definite, a contradiction.
Since the Y,~TAY.- have different sigyns, there exists ¥ € L such that XoX;1 and Y are on
opposite sides of S. O

Lemma 4.2.6 can not be made as strong as Lemma 4.2.5 because on a hyperboloid of
one sheet S in E3 it is easy to give two points Xo, X; € S and a Yp € Lg such that Yp and
Xo.X; are on the same side of S. See Fig. 4.2.1. Thus by Theorem 4.2.4, Xg, Yo and X;
can not be the control points of a well defined interpolating curve (4.3).
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Fig. 4.2.2 Control points: The control point Yi4, € Li;: is the projection of Y; € L; through
Xi+1.

4.2.2 Construction of interpclating splines

Given {X;},,» > 3,o0n S: XTAX =0 C E¢4, now we consider constructing a smooth
rational quadratic spline on S interpolating {X;}%,. Let X;, ¥; and X;4, be the control
points of the local curve segment C; in the standard Bézier representation (4.3). We need to
determine the Y;'s such that C; and C;4; join with tangent continuity, i = 1,...,n— 1. We
nme that any two consecutive points are distinct and {X;}7; are on the same component
By Lemma 4.2.1, when {X;}%, are all on the same generating line of S, either there
1s no solution or that generating line is a trivial solution. Therefore we will assume that
not all {X;}% , are on the same generating line of S. And by Lemma 4.2.3, we may further
assume that no two consecutive points are on the same generating line of S.

Now given {X;}-,, by Lemma 4.2.6, we can first choose Y; € L1 such that (4.4) is valid.
Suppose, recursively, that Y¥; has been determined. Let us find Y;;;. Since Y;X;;; and
Yi+1Xit1 are the tangents to C; and C;4, at their joint point X;4,, in order for C; and C;4,
to have common tangent at X;;;, the point Y;,1 € L;;; has to be the projection of Y; € L;
through X;;;. See Fig. 4.2.2 for an illustration in the case d = 3. So, inductively, Y;4
depends projectively on Y;. The following lemma gives an expression for this dependence.

Lemma 4.2.8: Let M; = H§=1 R;, with Ry = I, the identity matriz, and
Rj=X;XFA— (XTAX;), j=2,...,n~ 1.

If an irterpolating quadratic spline exists, then Y; = M;Y;, i=1,...,n — 1.

81



ProoOF: Because Y;, X4, and Y;;; are collinear, we have

Yiq1 = aXiyy + bY;,

for some constants ¢ and b. Premultiplying X7,

A to both sides, we obtain
0 = a(XH2AXi41) + 0(XF24Y)),

since XZ,_ZAY;H = 0. So omitting a nonzero multiplicative constant, we can put

Yipr = (X{24Y)Xin — (XT2AXin)Yi
= [Xip1 XG4 — (XE1AXi)TTY (4.5)

Let Rj = X; X, A— (XTAX;41)[,j=2,...,n— 1. Then the theorem follows. O

The following theorem is the main result of this section which gives a necessary condition
for the existence of an interpolating spline to the points {X;}%;.

Theorem 4.2.9: Let a sequence of points {X;}., be given on the same component of
a quadric surface S: XTAX = 0 € EZ. Assume that no two consecutive points Xi, Xit1
are on the same generating line of S. A necessary condition for the ezistence of a smooth
rational quadratic spline curve on S interpolating { X;} is that (Xf A X2} (XTAX;41) > O.
i=1,...,m—1, i.e. all segments X;X;4; are on the same side of S.

The next lemma will be used in the proof of the above theorem and later on.

Lemma 4.2.10: Let {X;}, be given as in Theorem 4.2.9. LetY, € Ly andY; = M;Y;,
i=2,...,n— 1, as defined in Lemma 4.2.8. If Yy AY; # 0, then (YTAYZ)(YTAY.) > 0,
i=1,2,...,n—1, t.e. all Y;’s are on the same side of S.

PROOF: As obtained in the proof of Lemma 4.2.8,
Yigr = (XE2AY) Xip1 — (XH1AX2)Ys, i=1,...,n -2,
Since X,J;IAX i1 = X?_;_IAY,- = 0, it follows from the above expression that
Y, AYir = (XT AXip2) (YT AY).

Since Xit1, Xit2 are not on the same generating line of 5, (X1 ;4X:12)® > 0. Hence the
lemma is proved inductively. O

Proor of Theorem 4.2.9: The existence of the smooth interpolating spline implies
that (4.4) is validi for all ¥, = M;Y; € Zi, i = 1,...,n— 1, i.e. YTAY; # 0 and
(XTAX i)/ (YT AY;}< 0. since XTAX;2y # ° By Lemma 4 2.10, all the V;T AY; have the
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same sign. Therefore all the X7 AX;,; have the same sign, i.e. (XTAX)(XTAX 1) > 0.
Since (X; + Xip1)TA(X: + Xiq1) = 2X,TA Xit1. all segments X; X4, are on the same side
of §.0

The condition given in Thuorem 4.2.9 is, in general, not sufficient, although if. can be
shown that (4.4) is valid for - h ¢ when the condition is fulfilled. When the alignment of
the data {X;}7, on § has . "< -~l changes, the weights found from (4.4) must be determined
by applying Lemma 4.1.1 - .rce tangent continuity between adjacent curve segments.
Since some weights ma; noi »« positive, there may result in a discontinuous Bézier curve,
as we have remarked tk .. Li.¢c arc corresponding to a negative weight is continuous only
when the underlying ¢onéc is elliptic. This analysis indicates the following result.

Theorem 4.2.1%: :iiven a point sequence {X;}7, on S C E? which is affinely equiv-
alent to the sphere $* !, and any point Yy € L., there ezxists a smooth rational quadratic
spline on S interpolating {X:}",, with the initial control point Y| as given.

PRrOOF: Since the condition in Theorem 4.2.9 is satisfied when {X;}7, C S, we just
need to show that in this case it is also sufficient.

Let Y, € L and Y;, ¢ = 2,...,2 — 1 be given as in Lemma 4.2.8. By Lemma 4.2.5,
for any Y1 € L; we have —(X7 AX,)/(2YTAY1) > 0 since ATAX, # 0. By Lemma
4.2.10, (YTAY;)(Y{AY}) > 0, i = 1,2,...,n — 1. Since {X;} C S and X; # Xi1,
(XTAX)(XFAXiy1) > 0. Therefore ~(XTAXi41)/(2YTAY;) > 0,i = 1,2,...,n — 1,
i.e. two real weights can be obtained from (4.4) for each 7, any one of which yields a con-
tinuous and smooth Bézier curve segment since the underlying curve is an ellipse. So the
required interpolating spline is given by applying Lemma 4.1.1 to choose the appropriate
weights successively to ensure tangent continuity between all adjacent C;. O

We remark that the condition of Theorem 4.2.9 imposes a substantial restriction on
other kinds of quadric surfaces. For example, on a hyperboloid of one sheet in E3, it is easy
to come up with a point sequence {X;}%; such that not all the segments are on the same
sides of the surface. See Fig. 4.2.3. Hence by Theorem 4.2.9 it is impossible to construct a
smooth rational quadratic spline curve on the surface to interpolate {X;}%,.

Fig. 4.2.4 illustrates the application of the method discussed above in interpolating six
data points on a sphere in E® by choosing different points Y1 € L,. We still do not know
what the best choice of ) is or if there is always an acceptable choice of Y; for all possiule
data. In general, the position of ¥ has an undesirable global influence over the whole curve.
Later in this thesis we will use biarc interpolants to solve this problem.
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Figure 4.2.3 Data on hyperboloid of one sheet: All the line segnents between consecutive
points of the given sequence are not on the same side of the hyperboloid of one sheet S. Therefore

this sequence does not admit a rational quadratic spline interpolant on S.

4.2.3 Closed interpolating splines

Given points {X; :‘__‘."12, n>3o0nS: XTAX = 0 with X1 = X1, Xnt2 = X2, we now
consider constructing a closed smooth rational quadratic spline on S interpolating {X,;}~,.
In order for this problem to have a solution, clearly it is necessary that there exist Yj € Ly
such that M, 1Y) = pY; for some p # 0, where M, is defined in Lemma 4.2.8.

From its definition in Lemma 4.2.8, M; = l"[f;-___1 R;, where R; induces a projection from
L;j_1 to L;. Therefore M;, when restricted to L,, is a prcjective transformation from L,
to L;; in particular, M,;; induces a projective transformation on L;. Thus the following
theorem is evident.

Theorem 4.2.12: The closed interpolation problem has a solution if and only if there
erists a smooth rational gquadratic spline interpolating {X; :‘:12 with initial control point
Y1 € L; such that Y, is a real fized point of Mpq;.

Now in arbitrary dimension precise conditions for the existence of a real fixed point of
My, 41 in Ly are still not known. We will discuss the two most encountered cases, that is
d =3 and d = 4. When d = 3, L, is a straight line in E3, and M,,;; induces a homography
H(L,) on L,. A homography on a straight line is a rational linear transformation on it. A
united point of a homography is one of its fixed points on the straight line. By the theory
of homographies on straight lines {SeK52, p. 50], H(L;) has either two distinct real united
points, or a double real united point, or a pair of conjugate complex united points. So M, 4,
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(e) (f)

Figure 4.2.4 Interpolations on a sphere: Six different choices of the point ¥; € L; determine

six different spline curves on a sphere interpolating the same set of data points marked by o.
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does not always have real fixed points on L;-
When & = 4, L, is a 2-dimensional plane in F*.

Lemma 4.2.13: When d = 4, My, always has a fized poini on the real projective
plane L.

Proor: First establish a projective frame of reference F' in L;. Then the transformation
induced by M,4; on L; can be represented, with respect to F, by a nonsingular 3 x 3 real
matrix M. Since any such matrix has a nonzero real eigenvalue and an associated real
eigenvector, the projective transformation M, 4+, has a real fixed point Y; € L,. O

Thus, in particular, for the closed interpolation probiem oen $3 ¢ E4 we have

Theorem 4.2.14: Let {X;}; be a point sequence on the sphere S C E*. There erists
a closed smooth rational quadratic spline interpolating {X;}"; on S3.

Proor: By Lemma 4.2.13, Y; € L; can be chosen to be a real fixed point of M, ;.
Let {X;}7%? be defined as X! = X;,i=1,...,n, and X541 = X1, X} 45 = X2. Then by
Theorem 4.2.11, there is a smooth rational quadratic spline interpolating {X/}2+? with the

initial point as Y7, which, by Theorem 4.2.12, is a closed spline interpolating {X;}%_,. O

t=1"

For a closed interpolation problem on §? C E*, the matrix M in Lemma 4.2.13 need
not be constructed when a fixed point Y¥; of M,y in L; is wanted. One can instead find
the real eigenvectors of M, directly, one of which is guaranteed to be in L, by Lemma
4.2.13. The closed splire can then be computed using this point as Y;.

4.3 Biarc interpolation on a quadric

In this section we consider the biarc interpolation problem on a quadric surface S formulated
as follows. Let Xo, X; be two distinct points in normalized homogeneous form on §-
XTAX =0 C E4, d> 3, and assume that Xo, Xy are on the same compIn=u: but not on
the same generating line of S. Let Tp, T be the tangent directions to be inierpolated at
Xo, X1, respectively. The problem is to find a biarc on § interpolating the data Xg, 7o, X

and T;. Naturally we assume that Tp, T are also tangent to S. Hence we have Xg' ATy =0,
XTAT, = 0.

A biarc on S is a composite curve consisting of two smoothly joining rational quadratic
Bézier curves, or smooth conic arcs. The point where the two arcs join is called the joint

86



Figure 4.3.1 A spherical biarc: The data points are marked by o, and the joint point marked
by e.

of the biarc. Since, in general, the complementary arc of a continuocas £onic arc is not
continuous vnless the given arc is elliptic, we will mainly consider only those special biarcs
that are composed of rational quadratic curves with positive weights. These curves will be
called biarcs with positive weights. First we shall establish a condition for the existence of
a biarc with positive weights. Then the existence of the general biarc will be addressed.
Finally several properties of the biarc will be derived.

4.3.1 Biarcs with positive weights

Our goal is to find a conic biarc B consisting of two conic arcs Cp, C;1 on S with standard
Bézier representations Po(u), Pi(v), 0 < u,v < 1, such that tangent directions Tp, 77 are
interpolated at Xo = Po(0) and X3 = P;(1), and Po(u) and P;(v) share the same tangent
direction at their joint Z and have positive weights.

Denote the three tangent hyperplanes of § at Xy, X3 and Z by, respectively, Qo:
XTAX =0,Q1: XTAX = 0and Q: ZTAX = 0. Let the control points of Py(u) and Pi(v)
be Xo, Yo, Z and Z,Y;, X:. By the discussion in the last section, Yp must be on the (d —2)-
dimensional manifold Lo = QoNQ: XTAX = ZTAX = 0. Similarly ¥; € L; = QN Qx:
ZTAX = XTAX = 0. In order that Cp, C; joir smoothly at Z, the points Yy, Z and Y3
must be collinear. Let

Yo = Xo + koTo,
Y1 = X1 - k14,
where kg,k; > 0 and are yet to be determined. See Fig. 4.3.1. That kg, k; > 0 follows from
the assumption that only the biarcs with positive weights are being discussed. Consequenily,

(4.6)
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by Lemma 4.1.1, the joint Z is between Y; and ¥;. Now we assume that [¥p] # [Y}]): therefore
the straight line YpY; is uniquely defined.

Since XTAXo = XTATo= X7 AX,; = X AT\ = 0, it follows from (4.6) that

Y& AYy = K3TE AT, (4.1
)

¥\TAY: = B2TT AT,.

As a solution to the above biarc interpolation problemn can be regarded as a solution to the

point interpolation problem discussed in the last section for the data points Xg, £ and X,

we obtain the following necessary condition.

Lemma 4.3.1: A necessary condition for the biarc interpolation problem to have a
solution is

(TF ATo}TT ATY) > 0.

PROOF: When the problem is solvable, by Lemma 4.2.10, (Y{ AYo ) (Y AY:) > 0. By
(4.7), since k3k? > 0, we obtain (T AT} (TTATY) > 0. O

We now proceed to derive an equation that governs kg and k. Because of .,emma 4.3.1,
without loss of generality. we can normalize Ty, T}, replacing A by — A if necessary, such

that T ATo = TT AT} = 1. From now on we will always assume that Ty and T3 are so
normalized. Thus (4.7) can be written as

YT AY, = K2,

4.8
YT AY; = k2. (4.8)

By the preceding observation regarding the relation between Yy, Z and Y;, the straight
line YpY; is well defined and Z is the tangent point of the line YpY; : AYy + 1Y) to S. Thus

the Joachimsthal’s equation [SeK52], obtained by substituting the point AYp + p#Y; in the
equation of S,

M (YT AYD) + 22u(YT AY1) + 2 (YT AY:) = 0,
has a double root. Therefore the discriminant
A = 4[(YT AY1)? — (Y AYo)(Y{T AY)] = o,

or, by (4.8)
(Yo AY:)? — K3k =
Then we have
YL AY; — kok; =0 (4.9)
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or

Y& AY; + kok; = 0. (4.10)

When A =0, A/p = —(YJ AY,)/(Y{ AY,). Thus, omitting a nonzero multiplicative factor,
the straight line AYp + ¢Y; touches S at

Z = (Y§ AN1)Yo — (Y AYo)Y1.
By (4.9) or (4.10) we obtain, respectively,
Z = kok Yy — k2Y4 (4.11)

or
Z = —kok Yo — kY. (4.12)

Since Yy and Y; are in normalized homogeneous form and Z is required to lie between Yy
and Y3, we discard (4.11) and retain (4.12) as the desired expression for Z, because when
ko,ky > 0, (4.11) gives Z outside line segment YpY;. Dividing by —kg in (4.12) yields

Z(ko, k1) = k1Yo + koY1 = k1(Xo + koTo) + ko( X1 — k1Ty)

4.13
= k1{Xo + ko(To — T1)] + ko X ( )

Substituting (4.6) in (4.10). ky and k; are related by
XTAX) + koXT ATy — by XT AT + koky(1 — TEFATY) = 0. (4.14)

In the above derivation it has been assumed that [Yp] # [Y3]; for otherwise the straight
line YoY] is not uniquely defined. It will be shown that [Y5] = [¥;] for some ko,k; satisfying
(4.14) occurs only for a class of data with a special configuration.

Definition 4.3.1: The datea D = {Xo,To,X1,71} is singular if Xo + pTo = X1 + pTy
for some finite p # 0 or Ty = T1. The data that is not singular is called regular.

Note that if D is singular then the four points Xg, Ty, X1,7; are coplanar, i.e. linearly
dependent; here Ty and T are regarded as points at infinity. But the converse is not true.
An example of singular data is illustrated in Fig. 4.3.2.

Lemma 4.3.2: Given data D = {Xy,To,X1,T1} on the quadric surface S, [Yp] = [Y3]
for some kg and k, satisfying (4.14) if and only if D is singular, where Yy and Y, are given
by (4.6) and ko, k; may be of any sign.

ProoF: First consider necessity. There are two cases to consider: (i) [Yp] = [Y1] is a
finite point; (#7) [Yp) = [¥1] is a point at infinity.
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Figure 4.3.2 Singular data: An instance of singular data on S? is shown with one of its degenerate
biarc interpolants and the control polygons. The joint point Z is marked with e, which coincides
with Xg. The ends of tangents Ty and 17 are marked with o.

() In this case ko and k; are finite and [Yp] = [¥7] implies that Yy = Y;. Since X,, X,
are distinct points, kg # 0 or &; # 0; for otherwise from Y, = Y7 and (4.6), Xg = X; would
result. First assume ko # 0. By (4.6),

Y& AYo = (Xo + koTo)T A(Xo + koTo) = k2.

On the other hand, since ¥y = Y; and ko,k; satisfy (4.10), which is equivalent to (4.14),
YL:-"AYD = YOTAY1 = --koky. Therefore k2 = —kok;, or ko = —k; since kg # 0. Thus from
Yo = Y1, we obtain

Xo+ koTo = X — kbiTh = Xy + koTh-

Hence, by definition, D is singular. When k; # 0, the same conclusion follows from a
symmetric argument.

(#7) In this case ko and k; are infinite. From [Yu] = [V3], we have either Ty = T} or
To = —T1. Eqn. (4.14) can be rewritten as

XFAX, + X{ATo XJAT,

—_— T =

which is satisfied by ko, k&1 when Tp = T; but not when Tp = —T}, since when Ty = T3,
l—TOTATl = 1-—TOTAT0=0, but when Ty = —Tq, l—TgATl = l-i-TOTATo = 2. Thus we
are left with 79 = 7). Hence D is singular.

Now we prove sufficiency. Suppose that D is singular. When Xg + pTo = X + pTh
for some finite p # 0, then using this equality, it can be verified that ko = p and k; = —p
satisfy (4.14). For this pair of kg and k;, Yo = Y;. When Ty = T;, as above it can be
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shown again that kg = £oc and ky = £ satisfy (4.14). For this pair of ko and k;, we have
[Yo] = (1] = [To] = [T3). ©

Another necessary condition for the biarc interpolation problem to have a biarc with
positive weights as a solution is that {4.14) has solutions ko > 0 and k; > 0. From the
derivation of the at«ve conditions on kg and ki, we have obtained the following necessary
and sufficient condition on the existence of a biurc with positive weights when the data is
regular, which can ajso be used to construct the biarc if it exists.

Theorem 4.3.3: There erists a biarc wilh positive weights interpolating the regular
data D = {Xo,Tp,X1,T1} on the quadric surface S: XTAX = 0 C E¢ if and only if
(TTAToNTT ATy) > 0, and Eqn. (4.14) has solutions ko > 0 and k; > 0, assuming that To
and T; have been normaiized to TE ATy = T,TAT1 = 1, replacing A by — A if necessary.

Proor: The necessity has been shown in the above discussion. For the sufficiency we
observe that when the conditions hold a joint Z between Yy and Y; is given by (4.13), and
then by Lemma 4.1.1, a biarc with positive weights can be constructed.O

While the first condition of Theorem 4.3.3 is easy to and understand, the second con-
dition can only serve in algorithmic treatments. Regarding (4.14) as a hyperbola in ko-k;
plane, the conditons for the existence of solutions ko > 0 and k; > 0 can be readily estab-
lished, which is equivalent to that the hyperbola passes through the first quadrant. But
the geometric significance of the second condition is yet to be understood. That is, for a
general quadric surface S, we still do not know the geometric characteristic of a data set
which satisfies the second condition, or how restrictive this condition really is. However, on
the sphere S9! C E? this condition is satisfied for generic data.

Before giving the result on $9~! we need to distinguish a degenerate biarc solution from
a proper biarc solution to the biarc interpolation problem. There are some cases where the
biarc interpolating the data D becomes degenerate.

Definition 4.3.2: A biarc is degenerate if one of its arcs reduces to a single point. A
biarc that is not degenerate is called proper.

A biarc with control points Xg, Yy, Z and Z,Y;, X is degenerate if and only if Z coincides
with Xo or X;. The necessity is obvious. For the sufficiency suppose that [Z] = [X;]; the
other case is similar. Then the control polygon ZY; X; collapses into two coincident line
segments. First assume k; # 0. Since ZTAX; =0 and YITAYI = k2 # 0, the weight of the
second arc is 0 by (4.4), i.e. the arc controlled by ZY; X, is a point. When k; = 0, by (4.6),
[Z] = [¥1] = [X1], and again the arc becomes a point.
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In the following both proper and degenerate biarcs are regarded as solutions to the biarc
interpolation problem since in both cases Egn.(4.14) is satisfied by nonzero k¢ and k;. But
we are only interested in finding the proper biarc with positive weights. Next we shall show
that for regular data on S$?-1, which is generic, a proper biarc with positive weight always
exists.

The following lemmas assert that given data D on S, a biarc with positive weights and
kok; # 0 is degenerate if and only if D is singular. Presently we avoid discussing the case

[Ys] = [Y1], since then the argument leading to (4.14) is not valid. This case will be dealt
with in Section 4.3.2.

Lemma 4.3.4: For singular data D on a quadric surface S, all the biarcs with positive
weights and ko # 0. ky +& Q0 are degenerate, where ky,ky satisfy (4.14) and are such that

[Yo] # M)

Proor: Let D = {Xo,To,X:,T1} be sovixs . I nere are two cases to consider: (i)
Xo + pTo = X1 + pT for some finite p # 0; (i) To = Th.

(2) In this case Tg # T;. The left hand side of Eqn.(4.14) becomes

XT A(Xo + pTo — pTh) + ko(Xo + pTo — pTh)T AT — ky(XT ATY) + kok1(1 — TY ATY)
= —p(X3 ATy) + kop(1l ~ TT ATh) — ki(XT ATh) + kok:1 (1 — TL ATh)

(k1 + p)[ko(1 — T3 ATy) — (XT AT1))

(k1 + p)[ko(1 — TJ ATy) — (X1 + pT1 — pTo)T AT

(k1 + p)[ko(1 — T3 AT1) — p(1 — TJ AT)]
= (1 =T AT )(ko — p)(k1 + p).

Since the left side of Eqn.(4.14) is not identically zero as XZ AX; # 0, it factors, with
solutions ko = p or ky = —p. First we take (ko, k1) = (p, k1), k1 # —p; as solutions of (4.14).
Here k; # —p since kg = p and k; = —p would cause Yy = Y;. Therefore by (4.13),

Z = k1(Xo + koTo) + ko(X1 — k1Th) = ki(Xo + pTo — pTh) + pX1 = (k1 + p)X1.

Thus [Z] = [X}] since k1 + p # 0. Hence the resulting biarc is degenerate. When {(ko, —p),
where ko # p, are taken as solutions of (4.14), it can be similarly shown that [Z] = [X,).

(#1) To = T1. In this case 1 — T ATy = 1 - T ATo = 0, X§ ATy = XT AT = 0, and
XT ATy, = XT ATy = 0. Therefore (4.14) can be rewritten as

X§AX, | XTAT, _ XTAT,

- 7T =
kek] kl kc + ] (4] AT] 0,
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which reduces to (XT AX, j/(kok1) = 0. This equation is satisfied by ko = to00 or k; = *oc.
But when ko = 0o and k1 = o0, [Yy] = [Y1] = [To], which is excluded by the assumption
of the theorem. Therefore one of &g and k; is finite. First take a finite 4o and &; = oo as
solutions of (4.14). Then
[Z] = [ki(Xo+ koTo) + ko(X1 — k1Th)] = [ki(Xo + koTo — koT1) + koX|]
= [k1X0+koX]] = [Xo]
Hence the resulting biarc is degenerate. The cases in which kg and &, take other combina-

tions of values can be proved similarly. O

Lemma 4.3.5: For regular data D on a quadric surface S, all its biarcs with ko > 0
and ky > 0 are proper, where ko and ky satisfy (4.14).

PROOF: We just need to show that any solution kg, k1 of (4.14), where ko, k; > 0, results
in a proper biarc. Suppose the opposite. Then for regular D = {Xy,Tp, X1,T1} there is
a degenerate biarc with kg, k3 > 0. Without loss of generality, assume that Z = 8Xg for
sorie B # 0; then by (4.13),

BXo = k1(Xo + koTo) + ko( X1 — b1 Th).

Since X¢ and X; are in normalized homogeneous form and the last components of Tp and
T, are zero, B = ko + k1. Thus

koXo — kok1To = ko X1 — kok1Th,

or, since kg # 0,
Xo —_ k]To = X] - k]T].

Since ky # 0, the data D is singular. This is a contradiction. O

Theorem 4.3.6: There ezists a proper biarc with positive weights for data D on S~ C
E¢ if and only if D is regular.

Proor: The necessity is implied by Lemma 4.3.4. We only have to prove the sufficiency.
By Lemma 4.3.5, since D is regular, every biarc for D with kg, k; > 0 must be proper. It
suffices to show that the two conditions (¢) and (i¢) of Theorem 4.3.3 are always met on
S4-1_ Then it will follow that a proper biarc with positive weights for D exists.

Let the equation of $¢~! be XTAX = 0, with
elre]
0 -1
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where I is the d x d identity matrix. Since T ATo = T{ Ty > 0 and TF AT, = ITT, > 0,
obviously, the first condition of Theorem 4.3.3 is always satisfied. The second condition is
that Eqn.(4.14), or in this case

XTAX, + ko XTTo — b XTIy + koky(1 = TITY) = 0, (1.15)
has positive kg, k; as solutions. Since Xg, X, are in normalized homogeneous form, and
Xo # X, we have

(Xo - X1)T(Xo-X1) = (Xo- X1)TA(Xo - X))
= -2x74X, > 0.

Thus XOTAXI < 0, i.e. the constant term of (4.15) is negative. Since D is regular, by
definition, Tp # 7. Therefore

1 -
1 -TIT = -2—(T0—-T,)T(70—-T1) > 0. (4.16)

That is, the coefficient of kok;: in (4.15) is positive. Hence (4.15) has positive solutions kg
and k; because ky = k; = 0 makes the left hand side of (4.15) negative and sufficiently large
positive values of kg, k; make it positive. O

Setting kg = k; in (4.14) yields the equation
ak? + bk + ¢ = 0, (4.17)

where @ = 1 — T ATy, b= XT ATy — XT ATy and ¢ = XJTAX;. As argued in the above
proof, this equation has positive solution k = [~b 4 (b? — 4ec)!/?]/(2a) for regular data D
on S9-1, Therefore a particular positive solution of (4.14), in this case, is kg = k; = k. Fig.
4.3.3 shows the biarc interpolants orn S? for several different data configurations, using the
positive root of (4.17) as kg and ;.

4.3.2 General biarcs

In the previous subsection we concentrated on the existence of biarcs with positive weights.
Corresponding but weaker results exist for general biarcs, since in general a rational quadratic
curve with a negative weight is not continuous. In this subsection we will examine the con-
sequence of aliowing negative weights in a biarc when the resulting curve is continuous.
Such a biarc is called a general biarc.

If negative weights are allowed, then the parameters kg and k; are not restricted to be
positive. Let a biarc interpolating D = {Xo,70, X1,71} consist of two rational quadratic
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(e)

Figure 4.3.3 Biarc interpolations on a sphere: Five different data configurations on a sphere
and their biarc interpolants. The data points X, and X, are marked with o, the ends of To and T3

with o, and the joint point Z with e. Here the parameters ko and k; of each interpolant are the
positive root of Eqn. (4.17).
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Bézier curves Cp and C; with weights wo and w;. Let the control points of Cp and C,
be Xo,Yo,Z and Z,Y7, X, where ¥y and Yj are given by (4.6). A cimple analysis shows
that, to meet the end tangent conditions, the weight w; should be positive if k; > 0, and
negative if k; < 0, ¢ = 0,1. Then it can be shown, with the aid of Lemma 4.1.1, that by
choosing such weights according to the nonzero solutions ko and k; of (4.14), the two Bézier
curves meet smoothly at Z, but the continuity of each curve is not guaranteed unless the
weight is positive. Also it can be shown that by choosing such weights to meet the end
tangent conditions, the two resulting curves corresponding to any nonzero solutions k¢ and
k; of (4.9) can not meet smoothly because the tangents of the two arcs at Z point opposite
directions. This means that we do not have to consider the solutions of (4.9) even when
studying general biarcs. Note that it is for a different reason that (4.9) was rejected in the
previous discussion of the biarc with positive weights.

When the general biarc is allowed, singular data may also have proper b.arc solutions.
By Lemma 4.3.4, for singular data D, when Yy # Y7 the locus of the joint Z given by (4.13)
consists of two isolated points X and X; in this case the resulting biarcs are easily seen to
be degenerate. When Y, = Y; for some ko, k1, the arguments leading to (4.14) break down

since the straight line YopY3 is not uniquely defined; Lemma 4.3.2 shows that this happens
if and only if D is singular.

When Yo = Y; for singular data D = {Xy,T0, X1,T1}, where Xg + pTp = Xy + pT) for
some p # 0, we have Yo = X¢o + pTo and Y; = X; + pTi. Therefore ky = p and &; = —p.
Because Z is only required to be the tangent point to S of a straight line passing through
Yo = Y;, the locus of Z is the intersection of S with the polar hyperplane Y AX =: 0
of Yo, which is denoted by J. For each point Z € J but Z # Xg,X;, when the p»int
Yo = Y) is finite kok; = —p? < 0; therefore one of the two resulting Bézier curves has the
negative weight; when Yy = Y is at infinity, i.e. in the case of Ty = T}, the two curves are
semi-ellipses. These two Bézier curves yield a preper biarc interpolating L if they are both
continuous. See Fig. 4.3.4 for an illustration of two general biarcs on S? for singuiar data
in which Ty = T3. For singular data D, if proper biarcs exist then their degrees of freedom,
whicli are the degrees of freedom of Z € J, are d — 2. We will see later on that the degree
of freedom of proper biarcs for regular data, if they exist, is always one. Therefore, when
d > 3, it is probable that more proper biarcs exist for singular data than for regular data.
This is exactly the case on the sphere §4-! C E¢, d > 3.
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(a) (b)

Figure 4.3.4 Biarc interpolatons for singular data: On S? when Ty = T3 the data is singular.
There is a family of biarcs with the joint point Z, marked with e, lving on the great circle passing
throuh X and X;.

4.3.3 Properties of biarcs with pesitive weights

In this subsection we prove two properties concerning the locus of the joint Z When (4.14)
does not factor into two linear terms, &) can be expressed in terms of kg; then Z(ko, k;)
given by (4.13) will be a parametric curve in ko.

Lemma 4.3.7: Egn. (4.14) does not factor into linear factors for coplanar regular data
and generic noncoplanar regular data.

PRrROOF: Since a bilinear function azy + bz + cy + d, with a # 0, factors if and only if
the discriminant ad — bc = 0, we just need to show that the discriminant of the }J=fi hand
side of (4.14) does not vanish for the stated data.

First consider generic noncoplanar regular data D. Let F be the 3-dimensional projec-
tive space spanned by the four points of D. We assume that D is generic in the sense that
the 2-dimensional quadric § intersected by F from S : X7 AX = 0 is regular. Let h; and
h, be the discriminants of (4.9) and (4.10) respectively, after substituting (4.6), i.e.

h = ~(X§ AX1)(1 + TJ AT,) + (X3 ATy (X{ ATo),
and
hy = (XTAX))(1 — T ATh) + (XTATY)(X T AT,).

Let M = [Xo To X3 Th)T A[Xo T: X1 T1]. It can be verified that det(M) = hyh,. Since the
quadric § is regular, det(M) # 0 as M is the coefficient matrix of S. Hence h; # 0.
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When D is coplanar regular data, noting that the last compon:.i: of Ty, Ty are zero
and Xop, X; are in normalized form, Xo + poTo = X3 + p1T1 for some pg and p;. Then

{Xo + poTo)T A(Xo + poTo) = (X1 + ;)T A(X) + piTh),

or, after simplifying, p3 = p?. Since D is not singular, we conclude that pg = —p;. Letting
p = po = —p1, we have Xp + pTp = X — pTi; obviously p # 0 since Xg # X;. Using this
equality it can be verified directly that h, = 2Xg' AX; # 0, since Xo,X; are not on the
same generating line of S. Hence h, # 0 for coplanar regular data and generic noncoplanar
regular data, i.e. Eqn. (4.14) does not factor for these data.0

Theorem 4.3.8: For coplanar regular data and generic noncoplanar regular data D =
{Xo0,70,X1,T:} on a quadric surface S, the locus of Z given by (4.13) is a conic on S
passing through Xo and X.

Proor: By Lemma 4.3.7, (4.14) is irreducible, so k; can be expressed in terms of ko,

XTAX) + koXT AT,

k, = .
' 7 XTAT, + kol TTATy - 1)

Substituting this expression in (4.13) and clearing the denominator, we have
Z(ko) = [X3 AX1+ koX{ ATo)[Xo + ko(To — T1)) + kol XE ATy + ko(Tg AT — 1)]X;. (4.18)

So the locus of Z is a rational quadratic curve on S. Since Z = (Xg AX1)Xo when ko = 0,
the locus passes through X,. Symmetrically, it passes through X;.0

Theorem 4.3.9: When the data D = {Xg,To, X1,T1} are taken from a proper conic arc

C on a quadric surface S, any proper biarc with positive weights interpolating D reproduces
C.

Proor: Obviously, C provides a biarc solution to D. Now we show that the locus J of
the joint Z for D coincides with the underlying conic of C. Then it will follow that all the
biarcs with positive weights, which must have their joints on C, reproduce C.

By Theorem 4.3.8, [Z(ko)k,=0] = [Xc]- And by (4.18),

Z'(ko) = (XTATo)[Xo+ ko(To— T1)]+ [X§AX1 + ko XT AT (To — Th)
+XT ATy + 2ko(TT ATy - 1)} X,

Then

Z'(ko)lko=0 (XTATO) X0 + (XTAX To — Ty) + (XT AT ) X,y

= (XTATo)Xo + (XT AX1)To — (XT AX1)Th + (XT AT) X,
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Since D is coplanar but not singular, as has been shown in the above proof of Lemma 4.3.7,
Xo+ pTo = X3 — pT, for some p # 0, or

X1 = Xo+ pTo + pT1.
So

Z'(koMig=o = (XTATo)Xo+ (XTAX1)To
—[XT A(Xo + pTo + pT1)IT1 + (XT AT1)(Xo + pTo + pT1)
= (XTATo)Xo+ (XTAX1)To — p(XTAT)Th
+(XT ATy) Xo + p(X3 ATY)To + p(XT AT1)Th
= (XTATy + XT AT X0 + (XTAX, + pXT AT To.

Therefore Z’'(ko)|k,=0 is on the straight line Xo7p, i.e. Z(ko) shares the same tangent with
C at Xp. By symmetry, the same holds at X;. Hence the locus of Z coincides with the
underlying conic of C, since they are both the conic obtained by intersecting S with the
2-dimensional plane containing C. O

4.4 Point interpolation using biarcs

In Section 4.2 we saw that when a rational quadratic spline is used to interpolate a point
sequence {X;}%, on a quadric surface, if the solution exists it is determined by a global
parameter Y3 € Li, which has (d —2) degrees of freedom. This property is quite undesirable
because any local perturbation of the data or change of ¥; would have global influence on
the curve. Now we consider using the biarc interpolant to obtain a locally controllable
interpolating spline to {X;}~,. Of course, more curve segments are needed to achieve this
goal than in the previous approach.

The algorithm is given as follows.

Algorithm 4.4.1:

Given {X;}7, on the same component of a regular quadric surface S C E¢, d > 3,
such that no two consecutive points X;, X;;; are on the same generating line of S, and
(XTAX)(XTAX41)>0,i=1,2,...,n— 1.

1. Determine the tangent I; associated with X; as the tangent to the conic C.on S
interpolating the three points X;_;, X; and X3, ¢ = 1,2,...,n. The direction of
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Figure 4.4.1 Spline interpolation using biarcs: The same data points as in Fig. 4.2.4 are
interpolated using the biarc interpolant as described in Algorithm 4.4.1. The parameters ko, k; of

each biarc interpolant are given by the positive root of Eqn. (4.17).

each tangent conforms with the direction along which a variable point travels on C;
from X;_; through X; to X;;1 without covering the whole C;. Here we assume that
Xo = X3 and X, 43 = X,—-2 to provide the end tangent directions.

2. Use a biarc with positive weights to interpolate D, = {X,, T3, Xi41, Li41}-i = 1,...,n—
1. 4.

The tangent T; in the above algorithm can be computed as follows. Let T; = [t,1a,.. .,
td.H]T. Since T; is in the plane determined by X;_;,X; and X;,;, we can write T; =
aX; 1 +bX;+cX;y1. The constants a, b and ¢ can be uniquely determined by the following
constraints: (z) 443 = 0, which means that T; is a point at infinity; (i7) XTAT: = 0, i.e.
T; is on the tangent hyperplane of S at X;; (i) (Xix1 — X,-_l)TT‘- > 0, which determines
the direction on C; at X; from X;_; to Xit+1; and (iv) T,TAT; = 1, which is required by the
algorithm.

Fig. 4.4.1 shows the effect of using Algorithm 4.4.1 to interpolate the same data points
as in the Fig. 4.2.4 by biarcs. The : sramete-; of each biarc are determined by (4.17), i.e.
ko =k; > 0.

A feature of the above algorithm is that conic sections can be locally reproduced in
the serse that if X; .1, X;, Xi;1 and X;;2 are on aay conic C on S, then C is reproduced
between X; and X;4; by the algorithm, : = 1,...,n — 1. This property follows from the

scheme of assigning tangents to {X;}%, described in the above algorithm and Theorem
4.3.9.
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According to the results established so far we can only be sure that the above algorithm
works correctly for a point sequence on a surface S which is affinely equivalent to 59-1, For
a general quadric surface the restriction (X§AX2)(XTAX:y1) > 0 on the input {X;}%,
is necessary but not sufficient for this biarc scheme. For if a smooth interpolating spline
exists, and if Z; is the joint of the biarc between X; and X;;;, then, by Theorem 4.2.9, all
the linc segments X;Z; and Z;X;41,2=1,...,n — 1, are on the same side of S. But for any
i, X:Z; and Z; Xi4+1 are on the same side of S as the segment X,;X;;; therefore all X;X;;1,
i=1,...,n— 1, are on the same side of S, i.e. (XFAX)(X?AXi41) > 0.

In the second step of Algorithm 4.4.1, if there exist biarcs interpolating D;, we have
to choose one of them according to some criterion. A satisfactory choice would entail a
study of the influence of the parameters kg and k; on the shape of the resulting biarc. On
a general quadric this problem remains open. In the case of a sphere this problem will be
addressed in the next two chapters.

4.5 Summary

We have studied two probiems: point interpolation and biarc interpolation on a regular
quadric surface § C E¢, d > 3. Given a point sequence {X;}%,, n > 3, on areal component
of $: XTAX = 0, it is shown that a necessary condition for a nontrivial rational quadratic
spline on S interpolating {X;}%, to exist is (X{ AXo N XTFAXi41)>0,i=1,2,...,2 -1,
or geometrically, all the line segments X;X;41, ¢ = 1,2,...,7 — 1, are on the same side of
S. This condition is sufficient and always true when S is affinely equivalent to a sphere.

For the second problem, let Xy, X; be distinct points on S and 7y, T3 be tangent
directions to be interpolated at X¢ and X, respectively. The interpolant we use, called
the biarc interpolant, is composed of two smoothly joining rational quadratic segments. It
is shown that for generic data this scheme provides a solution with one degree of freedom
when the solution exists. A necessary and sufficient condition for the existence of a biarc
with positive weights is given. It is shown that this condition is satisfied by generic data on
the sphere $%-! C E9, d > 3.

Several open problems still remain. We have shown that not every point sequence on
a general quadric surface admits a rational quadratic spline interpolant. So as this kind of
data occurs in practice, an alternate scheme should be developed to cope with it.

For the biarc interpolation problem we have given a necessary and sufficient condition
for the existence of the interpolant. Yet, except for the sphere S9!, where the condition is
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always fulfilled, we do not know how restrictive this condition really is on a general quadric
surface in terms of a geometric characterization. For instance, how restrictive this condition
is on a hyperbolic paraboloid of one sheet in E? is still an open question.
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Chapter 5

Theory of Spherical Biarc

Interpolation

The curve interpolation problem on the unit sphere §3 C E* arises in computer anima-
tion for controlling the orientation of objects. This problem motivates us to coansider the
following interpolation problem con a sphere in E? d > 3. Given two points and their
associated tangent directions on a sphere, we investigate the existence of spherical biarcs
to interpolate the given points and the tangent directions on the sphere. Spherical biarcs
are curves consisting of two smoothly joining circular arcs on a sphere. Therefore they can
be easily represented and evaluated. It is shown that there always exist spherical biarcs
interpolating any data as specified above, and a complete description of all such spherical
biarcs is given. Specifically, for generic data on a sphere S in E4 it is shown that there is a
family of interpolating spherical biarcs with one degree of freedom; for the class of singular
data on §, the family of the interpolating spherical biarcs has d — 2 degrees of freedom.
Several more properties of spherical biarcs are derived in this chapter.

The problem dealt with in this chapter is a special case cf Section 4.3, where the guadric
is a sphere; therefore there are similarities between the discussion here and that of Section
4.3. The most important distinction between the spherical biarcs to be discussed here and
those investigated in Section 4.3 is that the restriction that a biarc is compased of two
rational quadratic Bézier curves with positive weights no longer applies here; that is, here
we will discuss spherical biarcs in the most general setting.
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5.1 Introduction

A biarc is a curve composed of two circular arcs joining smoothly with unit tangent vector
continuity. Biarcs in the plane and in 3-D space have been studied for curve and surface
modeling in CAGD [Bez72, Bol75, SuL89. Sab76, Sha87, NuMS8R8]. The main reasons for
using biarcs are that it is easy to represent a circular arc and it is simple to compute points
on it. Also, on an NC milling machine the circular arc is usually the only curved locus that
can be traced efficiently [Sab76]. In this chapter we will study the biarc on a sphere in E9,
d > 3, which will be called the spherical biarc. To distinguish it from biarcs in the plane or
in space, the latter will be called plane or space biarcs.

The goal of this chapter is to study interpolation properties of spherical biarcs. An
application of the interpolation of a point sequence on a sphere arises in computer animati.n,
when a smooth motion needs to be interpolated from the positions of the object at a series
of distinct time instants. This problem, ignoring the translation of the object positions, can
be transformed to an interpolation problem for unit quaternions, which form the unit sphere
S§3 C E* under Euclidean topology. It is well known [Sho85] that any rotation in E3 can
be represented by two diametrically opposite unit quaternions on 5§ C E4, and conversely,
a unit quaternion detormines a unique rotation in E3. Any two orientations of an cbject
can be made to coincide through a rotation in E3. So orientations can be represented by
unit quaternions with respect to a reference orientation. Thus the orientation part of the
motion interpolation problem is reduced to an interpolation problem on $2 C E4. Note that
the interpolation of translation in the motion interpolation problem can be solved relatively
easily, e.g. using a cubic spline. For more details about this application the reader is referred
to [Sho85]. See also the next chapter.

Several interpolation schemes have been proposed in the literature to solve the above
spherical interpolation problem. In [Sho85] Shoemake constructs a spherical interpolating
curve in a way analogous to the deCasteljau construction for the cubic Bézier curve. In
[Sho87] Shoemake proposes another spherical interpolant whose construction is analogous
to Boehm’s quadrilateral construction for the cubic curve. Only exponential parametric
representations are known for curves generated by these two constructions. In [GeR91]
the following method is proposed: First cubic polynomial curves are used to interpolate
spherical data points. Since the resulting curves do not in general lie on the sphere, a
central projection from the center of the sphere is applied to project the curve onto the
sphere. While the parametric representation of such curves is relatively simple, the shape

properties of these curves are yet to be studied. None of the above spherical interpolants
are rational curves.
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In this chapter we consider the following spherical biarc interpolation problem: Let a
data set be D = {Xo,To, X1, 71}, where Xp, X; are two distinct poin:s on a sphere S in
E4 d > 3, and Tp, T) are two tangent directions defined at X and X, respectively. Find
a spherical biarc B on S to interpolate the points Xp, X;, and the tangent directions Tp
and 7;. Such a biarc B is said to interpoiate the data D. Our main conclusion is that there
always exist spherical biarcs to interpolate any such data D. So we will always have an

interpolating rational spline curve since circular arcs are rational quadratic curves.

The main results and the basic organization of this chapter are as follows. Let S be a
sphere in E¢, d > 3. It will be shown that for generic data D on S, to be called regular
data, there exist a family of spherical biarcs interpolating D with one degree of freedom.
For a class ot special data on S, to be called singular data, there exist a family of spherical
biarc interpolants with d — 2 degrees of freedom. These results will be derived in Section

5.3 after preliminaries are reviewed in Section 5.2.

In Section 5.4 more properties of spherical biarcs are derived. The most important one
is that the locus of all joints of spherical biarcs interpolating regular data D is a circle on
S4-1_ while the locus for singular data is a d — 2 dimensional sphere on $4-!. Section 5.5

contains concluding remarks.

5.2 Preliminaries

Using homogeneous coordinates, a real sphere in E? can be represented by the guadratic
equation XTAX = 0, with
I; b
A= ,

where I, is the d x d identity matrix, and 76 — a = 72 > 0, where r > 0 is the radius
of the sphere. Since the properties we shall deal with on a sphere in E? can always be
transformed affinely onto the unit sphere $9-1 C E9 without affecting the nature of the
problems and solutions, we shall always assume that the sphere under discussion is the unit
sphere §9~1  E? with equation XTAX = 0, where

A= fa 0 .
o -1
One consequence of this assumption is that XTAY = XTY if X or Y is a point at infinity.
This fact will be used frequently later on.
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The tangent hyperplane of $9~! at point Xg € S9! is the polar hyperplane of Xg
with respect to §9-1: Xg'AX = 0. Also we say that a point Xg € E? is inside S¥~! if
XTAXo < 0 and outside S9-1 if XT 4X, > 0.

In the following discussion all circular arcs will be represented as rational quadratic
Bézier curves. It is well known that any circular arc can be represented in the standard
rational quadratic Bézier form [LeeR7, Pat86], which has the homogeneous representation

P(u) = PoBovg(‘u) + wPlBl'g(u) -+ Pngvg(u), 0<u<l, (5.1)

where Py.P;.P; are the control poinis of the curve, and Py and P, are assumed to be in
normalized form. When P, is a finite point. it is assumed to be in normalized form. We will
also refer to Py P; P, as the control polygon of the curve. The scalar w is called the weight

of the curve, and B (u) = m;":ﬁui(l —u)?7%, i = 0,1,2, are the second degree Bernstein
polynomials.

By the symmetry of a circular arc, it is easy to see that a necessary condition for (5.1)
to represent a circular arc is that PyP; P is an isosceles triangle with the base Py P; when
P, is a finite point or the direction represented by P; is perpendicular to PoP; when P,
is a point at infinity. Besides, the weight must be chosen appropriately. This is done as
follows when the arc is restricted to lie on the sphere $9-!. Let C be a circular arc on §%-!
given by (5.1). Then P(u)TAP(u) = 0. Since it is required that Py, P, be on S4-! and
the straight lines Po P, and P, P; be tangent to S9! at Py and P,, respectively, PTAP, =
PFAP, = P{AP, = PfAP, = 0. Therefore substituting (5.1) in P(u)T AP(u) = 0, we
have

2PT AP, Bo2(u)B22(u) + w2PT AP, B2 ,(u) = 0.

Since B? ,(u) = 4Bo2(u)B22(u) and PT AP, # 0, we obtain

PTfAP,
2PF AP,

w? = (5.2)

As Pp and P, are in normalized form,
1
POTA.Pz = —§(Po - Pg)TA(Po — P)< 0.

On the other hand, PIT AP, > O since P, is lies outside the sphere. So for a well posed
problem, two real nonzero values of w with opposite signs can be solved for from (5.2), which
will be referred to as the positive weight and the negative weight of the curve. These two
weights give respectively the minor arc and the major arc of the circle on $94-! with control

polygon Py P;P,. A minor arc lies inside the triangle A Py P, P, while the complementary
major arc lies outside APy Py P;.
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Figure 5.2.1 The two cascs indicated in Lemma 5.2.1.

Semicircles are vrepreseitec by (5.1) when P is a point at infinity. In this case the positive
weight and the negotive weight give two mutually complementary semicircles. Apparently,
a weight w solved for from (5.%2) can never be zero unless [Pp) = [P;].

The condition on the smooth joining of two circular arcs in Bézier form (5.1) is important
in constructing a spherical biarc. Let Co and Cy be two circular arcs on S$2-1 joining at
Z with control polygons X¢YpZ and ZY;X,, respectively. Then a necessary condition for
them to meet with unit tangent vector continuity is that Y5, Y3 and Z are collinear. If we
assume that this is the case, the following conditions for their smooth joining, which are
given without preof, are obvious.

Lemma 5.2.1: Using the above notation, assume that Yo, Y1 and Z are collinear,
[Z] # [Yo] and [Z] # [Y1]- When Z is interior to the line segment YoY;, assuming [Yo] # [Yal,
Co and C, join smoothly at Z if and only if they both simultaneously have positive weights
or negative weights; when Z is outside YoY1, including the case [Yo) = [Y1], Co and C; join
smoothly if and only if one of Cyg and C, has a positive weight and the other has a negative
weight.

The two cases indicated in Lemma 5.2.1 are illustrated in Figure 5.2.1. Note that Lemma
5.2.1 is also true when Yg or Y; are points at points at infinity. When only one of them
is a point at infinity, the segment Y5Y; becomes a half-line; when both of Y, and Y; are
points at infinity, which are necessarily two opposite directions since Z is a finite point,
YoY; becomes the straight line passing through Z and Y.

When Cg and C; form a biarc B, the points X, Yo, Y7 and X, are called the control
points of B. And Z is called the joint of B.
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5.3 Existence of spherical biarc interpolants

In this section we will prove the exister dherical biarcs interpolating any two distinct
points Xg, X; and the associated tangent directions Tp, 7} on the sphere S9! ¢ £, d > 3.
We emphasize again that the restriction to positive weights of a biarc used in the previous
chapter no longer applies here. In order to define a tangent direction at a point of a biarc
so as to make it meaningful to say that a tangent direction is interpolated, we associate
a biarc passing through X and X; with the direction in which a variable point on the
biarc moves from X, to X; through the joint point. For our purpose we will distinguish
two kinds of data D = {Xy,X,To,T1} to be interpolated; the first is called regular data,
which is generic, and the second kind is called singular data (definitions will be given later).
In Subsection 5.3.1 we treat the case of regular data and show that there exists a family
of biarcs interpolating any regular data, and this family has one degree of freedom. In
Subsection 5.3.2 we prove the existence of spherical biarcs for singular data and show that

there exists a family of spherical biarcs interpolating any singular data, and this family has
d — 2 degrees of freedom.

5.3.1 Existence for regular data

Let Xp, X; be two distinct points in normalized form on S9-! ¢ E9, Let To, T1 be two
tangent directions specified at X, X, respectively. To have a weli defined problem, To
and Ty are required tc be tangent to 541 at Xo and X, respectively. Thus XgAXo =
XgATo =X{I'AX1 = X{TATI = 0. Furthermore, without loss of generality, assume that
TgATo = TITATl = 1. Any data D = {Xo,To, X1,71} on S%! satisfying the above
assumptions is called a data set for the biarc problem, or data for short.

Our goal now is to find a biarc B on S¢~! to interpolate the data D. B is also said to
be a biarc for D. Let biarc B be composed of two arcs Cp and C; with control polygons
XoYoZ and ZY) X, where Z is the joint. Let

Yo = Xo + koTo,
Y =Xy - k7T, (5.3)

where kg, k1 are parameters to be determined.

Definition 5.3.1: A4 biarc is degenerate if one of its arcs reduces to « single point. A
biarc that is not degenerate is called proper.

By definition, the spherical biarc B is degenerate if and only if [Z] = [X(] or [Z] = [X;].
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Necessity follows from the definition. To see the sufficiency, without loss of generality,
suppose that [Z] = [X(]. In this case we obtain w = 0 from (5.2). Therefore the Bézier
curve becomes the line segment Z X5, which collapses to a point. Only proper spherical
biarcs interpolating D are useful to us because in a degenerate biarc the tangent at the ead
point of the degenerate arc is not defined. So we will assume kok; # 0 for otherwise from
(5.3) [Yo] = [Xo] or [Y1] = [X1], consequently, [Z] = [Xo] or [Z] = [X1], and the resulting
biarc would be degenerate since the control polygon reduces to a point. Another observation
concerning the signs of kg and k; is that, in order to interpolate the end tangent directions
To and T4, the arc C; of B, i = 0,1, must take the positive weight if k; > 0 or the negative
weight if k; < 0. Hence C; is a minor arc if and only if k; > 0 and Y; is a finite point.

We presently assume that the points Yp and Y; are distinct; this assumption will be
justified later. Thus the straight line YpY; is uniquely defined. Since the point Z is on
YoY1, let Z = AYy 4+ pY;. Then YpY; must be tangent to $2-1 at Z. So the Joachimsthal’s
equation [SeK52], obtained by suhstituting Z = AYp + uY; in sphere equation X7AX = 0,

A2YT AYs + 22uYd AY; + u?Y 7 AY; =0
has double roots A/u. Thus the discriminant
A = 4[(YT AY1)? — (YT AY) (YT AYy)] = 0. (5.4)
From (5.3), since XTAX, = X3 ATy = 0 and TTATy = 1,
Y& AYy = XTAXo + 2ko XT ATo + K2TT ATo = K2.
Simiiacly, ¥;¥ AY; = k2. Thus by (5.4), (YL AY1)? — k3k? = 0. That is,
YL AY; = kok; or (5.5)
YL AY; = —kok;. (5.6)
On the other hand, when A = 0, the double root of the Joachimsthal’s equation is
Mu = —(YT AY2)/ (YT AYo).

Thus, omitting a nonzero multiplicative factor, the tangent point Z of the line YpY; with
§d-1 45
Z = (YF AV1)Yo — (YT AYL)Y,. (5.7)

Substituting (5.5) or (5.6) in (5.7), respectively, we have

Z = kokl}’o - ngl or
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Z = —kok1Yo — k2Y1,
which can be rewritten as
Z = k1Yy — koY; or (5.8)
Z = k1Yo + koY1, (5.9)
since kg # 0. We note that (5.8) and (5.9) are derived from (5.5) and (5.6), respectively.

So far we have proved the following lemma.

Lemma 5.3.1: For any data D = {Xo,To, X1,T1}, if a proper spherical biarc interpo-
lating D exists with the control points Yo and Y, being distinct, then the joint Z is given by
(5.8) or (5.9) for some ko and ky satisfying (5.5) or (5.6), respectively.

For simplicity, we adopt the following convention: when we say that the solutions kg
and k; of Eqn. (5.6) (or Eqn. (5.5)) give a biarc, we mean that the control points Yy and
Y; are given by (5.3) and the joint Z is determined by (5.9) (or (5.8)).

Now we need to decide which of (5.8) and (5.9) gives a smooth joint Z. To this end we
introduce the definition of singular data.

Definition 5.3.2: The data D = {Xo,Tp, X1,T1} is singular if
Xo + pTo = X1 + pTh
for some p # 0 or if Iy = Ty. The data that is not singular is called regular.
Fig. 5.3.1 illustrates instances of regular data and singular data.

A necessary, but not sufficient, condition for D to be singular is that Xo, Xi, To and T}
are coplanar, i.e. they are linearly dependent. A simple classification of coplanar data D
can be obtained easily, which will be used in later discussions. For coplanar D, considering
the last components of Xg, Tp, X1, and T3, we have either (1) Ty = pT; for some p # 0; or
(2) Xo + poTo = X1+ p1T for po # 0, p1 # 0. In case (1), by T ATy = TT AT, = 1, we
have either Tp = T1, which stands for singular data, or Tg = —7T}, which stands for regular
data. In case (2), from

(Xo + poTo)T A(Xo + poTo) = (X1 + mT1)TA(Xy + ;1 Th),

and using X AXo = XJ ATo = XTAX, = XT AT, = 0, TT AT, = TT ATy = 1, we obtain
pE = p%,i.e. po = p1 or pg = —p1. So we have either Xo + poTo = X1 + poT}, which stands
for singular data, or X¢o + poZp = X1 — poT1, which stands for regular data.
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(¢) (%)

Figure 5.3.1 Regular data and singular data: (a) Regular data on S? with a proper biarc: (b)
Singular data on 52 with a degenerate biarc. Note that the two tangents in (b) intersect at a point
in E3.

In this subsection we will focus on the existence of biarcs interpolating regular data.
When the data D is regular, the next lemma justifies the eazlier assumption that [Yp] # [¥3]
when Y,, Y3 are control points of a proper biarc for D.

Lemma 5.3.2: Il Xp13Z and 233X, are the conirol polygons of a proper biarc B
interpolating regular data D, then [Yp] # [Ya)-

PRrRoOF: Surnose there is a proper biarc interpolating D with [Yp] = [Y3]. First assume
that [Yp] = [Y1] is a finite point. In this case D is coplanar data. By the above classification
of coplanar data and the fact that D is regular, we have

Yo = Xo + p0To = X7 — poT1 = 11,

for some po # 0. Since ko = k; = pg # 0, in order to interpolate Tp and 73 at X and
X1, Co and C; must take positive weights or negative weights simultaneously, depending
on the sign of pg. On the other hand, the joint Z must be the tangent point to S¢-! of a
straight line passing through Yp, which is outside $9~1. Thus Z is outside the degenerate

line segment YY; on the line Y3Z. By Lemma §.2.1, Cg and C; cannot join smoothly. This
is a contradiction.

Now consider the case where [Yp] = [¥7] is a point at infinity. Again from the classifi-
cation of coplanar data, we have Ty = —T) since D is regular. In this case both Cp and
C, are semicircles. Since Cp, C; interpolate tangent directions Tg and 7T} at Xp and X3,
respectively, the tangent directions of Co and Cj at joint Z are —Tp and —T; = Tp, respec-
tively. Therefore Cp and C) cannot join smoothly at Z since they have opposite tangent
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directions at Z. O
By Lemma 5.3.1 and Lemma 5.3.2, we have

Lemma 5.3.3: For regular data D, the joint Z of any propcr spherical biarc interpolating
D is given by (5.8) or (5.9).

Now we assert that a point Z is the joint of some proper biarc interpolating regular data
D if it is given by (5.9), where kg and ki, with kok; # 0, satisfy (5.6), i.e.

(XTAXy) + (XT AToYko — (XT ATy + (1 — TT ATy )koky = O. (5.10)

Theorem 5.3.4: For regular data D = {Xo,Tp,X;,T1}, a point Z given by (5.9)
with eny solutions ko, k, of (5.10), where kok; # 0, is the joint of a proper spherical biarc
interpolating D, and the associated control points Yy and Y; are determined by ko, k, through

(5.3).
We need the following lemmas to prove this theorem.

Lemma 5.3.5: Given data D = {Xo,To, X1,T1} on S%1, [Yo] = [Y1] for some ko and
ky satisfying (5.10) if and only if D is singular, where Yy and Yy are given by (5.3).

The proof for Lemma 5.3.5 is essentially the same as that for Lemma 4.3.2 of Chapter
4, so it is omitted here.

Lemma 5.3.6: Let D be regular data on S). Let kg and k; be ary solutions of (5.10)
with koky # 0. Then [Z) # [Xo] and [Z] # [X,], where Z is given by (5.9).

Proor: The proof is by contradiction. Suppose the opposite. Without loss of generality,
assume that for regular data D = {Xg¢, Tp, X1,T1} there exist solutions ko and k,; of (5.10)
with kok; # 0 such that Z = 58X, for some 3 # 0. Then by (5.9) and (5.3),

BXo = kl(Xo + koTo) + ko(‘Yl - k]Tl).

Since X and X, are in normalized form and the last components of Ty and T; are zero,
B = ko + k1. Thus
koXo — kok1To = ko X — kok1Th,

or, since kg # 0,
Xo bt leo - X1 hnd lel'

Since ky # 0, by definition, D is singular. This is a contradiction. O
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ProoF of Theorem 5.3.4: By Lemma 5.3.5, given regular data D, [Yo] # [Yi] for any
ko and k; satisfying (5.10). By Lemma 5.3.6, [Z] # [Xo] and [Z] # [X}] for any solutions
k¢ and k, of (5.10) with kok; # O; therefore no degenerate biarc can arise from solutions of
(5.10) when kok:1 # 0. Now we will show by construction that a point Z given by (5.9), with
ko and k; satisfying (5.10) and kok; # 0, is the joint of a proper biarc on § 4-1 jnterpolating
D. Let Co and C; be the two arcs with control polygons XoYpZ and ZY; X, respectively.
There are four cases to consider.

(?) ko > 0 and k; > 0. Since [Yp] # [¥1] and Yp and ) are in normalized form, by (5.9),
Z is between Yy and Y;. To interpolate Tp and T3 at the two end points, let Cp and C; both
take positive weights. Then by Lemma 5.2.1, we have a smooth biarc on § 4-1 jnterpolating
D. This case is illustrated in Fig. 5.3.2(a).

(it) ko < 0, k1 < 0. As in the first case, [Yp] # [Y1] and Z is between Yp and Y;. To
interpolate Tg and 7j at the two end points, we assign the negative weights to Cp and Cj.
By Lemma 5.2.1, the two arcs join smoothly at Z. This case is illustrated in Fig. 5.3.2(b).

(iii) ko > 0 and k; < 0. By (5.9), Z is outside the segment YpY;. There are now two
subcases: when kg + k1 > 0, Vs is between Z and Yp; when kg + k1 < 0, Yp is between Z
and Y;. In both cases. to interpolate Ty and T3, let Cg take the positive weight and C; take
the negative weight. Then by Lemma 5.2.1, we have a smooth biarc interpolating D. This
case is illustrated in Fig. 5.3.2(c) and (d). We remark that ko + k; # 0 always holds under
the assumption of the theorem, because kg + k; is the last component of the finite point
Z € S9-1. This fact will also be proved later in Theorem 5.4.4.

(iv) ko < 0 and k; > 0. In :his case, by (5.9), Z is outside the segment YpY;. There
are again two subcases: when kg + k1 > 0, Yg is between Z and Yy; when ko + k1 < O,
Y; is between Z and Yp. In both cases, to interpolate Ty and T3, let Cp take the negative
weight and C, take the positive weight. Then by Lemma 5.2.1, we have a smooth biarc
interpolating D. This case is illustrated in Fig. 5.3.2(¢) and (f). As remarked in case (iiz),
ko + k1 # 0 always holds for regular data.

In the above cases it is implicitly assumed that kp and k; are finite. For regular data,
the solutions kg and k; of Eqn. (5.10) cannot both be infinite. For from (5.10) we have

x¥ax, + X{ATo X3 AT
kok: k1 ko

+1-TTAT, = 0.

If both kg and k; are infinite then it would follow that 1 — Tg ATy = 0; thus Ty = T3,
contradicting the assumption that D is regular. Now suppose only one of kg and k; is
infinite. Then simply replacing the segment YpY; by a half-line YpY; or ;Y5 in the above
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cases furnishes the desired proof. Hence in all cases, under the assumptions of the theorem,
a proper biarc can be constructed to interpolate regular data D. O

By Theorem 5.3.4, the existence of proper biarcs interpolating D depends on the exis-
tence of nonzero solutions k¢ and k; of Eqn. (5.10). The next lemma shows that for regular
data Eqn. (5.10) always has such solutions. In the following co™ denotes the number of
elements in a family with n degrees of freedom, where n is a nonnegative integer.

Lemma 5.3.7: For regular data D = {Xo,70, X1.T1}, Eqn. (5.10) has co! many pairs
of nonzero solutions ko, ky, i.e. koky # 0.

Proor: All solution pairs kg, k3 of (5.6) comprise points on the curve represented by
(5.10) in the ko-k; plane. We just have to show that there are oo! poirts of the curve which
are not on the kg or k; axis.

Since Xy and X; are distinct, XOTAXI # 0. Also we have 1 — TOTATI = %(To -
T1)T A(To — T1) > 0, since Tp # Ty as D is regular. So the constant term and the coefficient
of kgky in Eqn. (5.10) are nonzero. This implies that Eqr. (5.10) represents hyperbola and
(ko, k1) = (0,0) is not a solution of Eqn. (5.10).

If Eqn. (5.10)is irreducible, it represents a proper hyperbolza in the kok, plane. Therefore
there are oco! many points (kg, 1) of the hyperbola for which kok; # 0. If Eqn. (5.10) is
reducible, it represents two straight lines, at least one of which is not the k¢ or k; axis; for
otherwise the origin (ko,%1) = (0,0) would be a point on the curve represented by (5.10),
a contradiction. So again there are co! points (ko, k;) on the two lines for which k¢k; # O.
In fact, we will later show that Eqn. (5.10) is irreducible for any regular data. O

Theorem 5.3.4 indicates the following way to construct a smooth biarc with a joint
given by (5.9). For each of the arcs Cp and C; there are two possible weights that can be

computed from (5.2); the positive weight is used if k; > 0 and the negative weight is used
ifk;<0,1=0,1.

Combining Theorem 5.3.4 and Lemma 5.3.7, we have proved the existence of proper
spherical biarcs interpolating regular data D. But for a complete description of all proper
biarcs for a given regular data set D, by Lemma 5.3.1, we stiil have to consider whether Eqn.
(5.8) gives any point Z that is the joint of a proper biarc interpolating D when [Yy] # [Ya].
Recall that the case where [¥p] = [Y3] has been excluded by Lemma 5.3.2.

vemma 5.3.8: For any data D, a point Z given by {5.8) with kg and k, satisfying (5.5)
is not the joint of any proper spherical biarc interpolating D with [Yo) # [Y3]-
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(a) ko > 0 and k; > 0 (b) ko < 0 and k; < 0

(d) ko > 0, k; < 0 and ko + k1 < O

(e)ko<0,ky>0and kg+ k1 >0 (f)ko<0,k1>0a.ndkg+k1<0

Figure 5.3.2 The six cases in the proof of Theorem 5.3.4.
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Proor: The proof is by contradiction. Let ko, k; be solutions of Eqn. (5.5) and
kok; # 0, recalling that k; = 0, ¢ = 0 or 1, leads to a degenerate biarc. Let Cp and C; be
the arcs with control polygons XoYoZ and ZY1X,, respectively, where Yy and Y7 are given

by (5.3) and Z by (5.8), with the above kp and k;. Suppose that Cp and C, form a proper
biarc B interpolating D.

[Yo] # [Y1] implies that the straight line YY7 is uniquely defined, and the argument
leading to (5.8) is valid, i.e. any possible joint must be given by (5.8). Assume that
[Z] # [Xo] and [Z] # [X}], for otherwise a degenerate biarc would result. Now there are
four cases to comsider: (i) kg > 0 and k; > 0; (7t) kg < 0 and k; < 0; (i22) kg > O and
ky < 0; (2v) ko < 0 and k; > 0. We will consider just case (z). The proofs for the remaining
cases are similar and thus omitted.

(?2) ko > 0 and k; > 0. First assume that kp and k; are finite. In order for B to
interpolate Ty and T at X and X;, respectively, we are forced to assign the positive
weights to both arcs Cg and C;. On the other hand, by (5.8), Z is outside the segment
YoY; when kg > 0 and k; > 0. Thus by Lemma 5.2.1, Cg and C; do not meet smoothly
at Z. This is a contradiction. When only one of kg and k; is infinite, simply replace the
segment YpY; by a ray, and a contradiction still follows from Lemma 5.2.1. When both kg
and k, are infinite, [Yp] = [Yi1], whick is the case exciuded by the lemma. O

The following is the complete existence theorem for proper spherical biarcs interpolating
regular data.

Theorem 5.3.9: Let D be regular data on S~! C E¢, d > 3. Then there are oo’ many
proper spherical biarcs interpolating D on S°~!. The joints of ali these biarcs are given by

(5.9) with kg and k, satisfying (5.10) and koky # 0. The control points Yy and Y; are given
by (5.83) in terms of kg and k.

In Section 5.4 it will be shown that for regular data D all the joints of proper biarcs
for D together with X, and X; form a circle on $¢-!. Fig. 5.3.3 shows a family of proper
biarcs interpolating the indicated regular data.

5.3.2 Existence for singular data

In this subsection we consider the existence of proper biarcs interpolating singular data D
on S9-1,
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Figure 5.3.3 A family of biarcs on S? interpolating regular data.

Theorem 5.3.10: Let D be singular data on §% !, LetY =Ty if To =T, or Y =
Xo + pTo if Xo + pTo = X1 + pTy for some p # 0. Let J be the (d — 2)-dimensional sphere
which is the intersection of S%~! with the polar hyperplane of Y with respect to §d-1 e
J = {X|XTAX =0, YTAX = 0}. Then any point Z € J — {Xo,X1} is the joint of 4
proper spherical biarc interpolating D with control points Yo =Y; =Y.

Proor: When [Yp] = [Y1] = [Y], in order to construct a biarc consisting of two circular
arcs Cp and C; with control polygons XgYpZ and ZY; X, respectively, we need to find a joint
Z which is the tangent point to S9! of a straight line passing through Ys. All such points
Z {orm the (d — 2)-dimensional sphere J, which is defined by X TAX =0and YfAX =0.

It is easily verified that Xp and X; € J. They cannot be the joint of a proper biarc
interpolating D. For any Z € J —{Xg, X1}, we need to show that there is a proper spherical
biarc for D with joint Z. Note that each such Z is outside the degenerate line segment YooY
on the line ZY,. First suppose that Y = Yp = Y} is a finite point. In this case kg = p,
ky = —p. So, to meet the end tangent conditions, we must assign the positive weight to Co
and the negative weight to C; if p > 0, and the opposite igns if p < 0. Then by Lemma
5.2.1, Co and C; join smoothly with such assignments of weights.

Now suppose that [Y] = [Yo] = [Y31] is a point at infinity, in which case Ty = T3 and
Co and C; are semicircles. We choose the weights of Cp and C; so that Ty and Tj are
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interpolated. Then Cp and C; have —Ty and —T; = —Tj as tangent directions, respectively.
at the joint Z. So Cg and C; join smoothly at Z. O

Theorem 5.3.10 only covers the case where [Yp] = [¥1]. In order to give a complete
description of all proper biarcs interpolating singular data D, by Lemma 5.3.1, we have to
consider whether (5.8) or (5.9) can yield a joint of some prouper biarc interpolating singular
data D when [Yp] # [¥1]. Lemmea 5.3.8 indicates that (5.8) does not give the joint of a
proper biarc for any data, whether it 1s regular or singular. So in the case where [Yo] # [Y1]
and the data D is singular, we only need to consider (5.9) with k¢ and &, satisfying (5.6).

The next lemma states that for singular data D only degenerate biarcs result from

the solution kg, ky of (5.6). Therefore all proper biarcs for singular data are completely
described by Theorem 5.3.10.

Lemma 5.3.11: For singuler data D on S%~!, any solution kg and k, of (5.10) for
which [Yg] # [Y1] yields only degeneraie biarcs.

Proor: Let D = {X,,Tp, X;,T1} be singular. There are two cases to consider: (i)
Xo+ pTo = X1 + pT for some finite p # 0; and (:¢) Tpo = T7.

(2) Xo + pIo = A; + pI; for some p # 0. In this case Ty # T37. Then the left hand side
of Eqn. (5.10) becomes

XTA(Xo + pTo — pTh) + ko(Xo + pTo — pT1)? ATo — ki (XT ATY) + koky(1 — TY ATY)
= —p(X3 AT1) + kop(1 — Tg ATh) — ki (Xg ATy) + kok1(1 — Tg ATh)
= (k1 + p)[ko(1 — TT ATh) — (XT ATY)]
= (k1 + p)lko(1 — T§ AT1) — (X1 + oTi ~ pTo)T ATH]
= (ki + p)lko(1 — T§ AT1) — p(1 - T3 ATh)]
= (1-T5 AT1)(ko ~ p)(k1 + p)-

Here 1 — 75 ATy = %(To — )7 A(Ty — Th) # 0 since Tp # T3. So Eqn.(5.10) factors,

with solutions kg = p or k; = —p. First we consider the solutions (ko, k1) = (p, k1), where
ki # —p. Here we can assume that k; # —p, for otherwise kg = p and k; = —p would result
in

Yo=Xo+koTo=Xo+pTo=X1+pTh = X1 - kiTh =1,

which has been excluded by the assumption of the lemma. Therefore by (5.9),

Z = ky(Xo + koTo) + ko(X1 — k1Th) = ki(Xo + pTo — pTh) + 2 X1 = (k1 + p)X.
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Thus [Z] = [X1] as k; + p # 0. Hence the resulting biarc is degenerate. When the solutions
(ko, —p) are considered, where kg # p, it can similarly be shown that [Z] = [X].

(ii) To = Ty. In this case XTAT) = XJTATo = 0, X{ ATo = X{fAT, = 0, and 1 -
TTAT; = 1 - TF ATy = 0. So Eqn. (5.10), which can be rewritten as

xTAax, + X{ATo XIATh
kokl k] kO

+1-TF AT, =0,

reduces to (XJ AX;)/(kok:) = 0. This equation has solutions kp = *oo or k; = *oo.
But when kg = *oo and k; = too, we have [Yp] = [Yi] = [To], which is excluded by the
assumption of the lemma. So we assume that one of kg and k; is finite. First consider the
solutions (ko, k1) = (ko, o), where kg is finite. Then

(2] = [k1(Xo+ koTo) + ko(X1 — k1T1)] = [k1(Xo + koTo — koT1) + koX1]
= [k1Xo + koXi] = { X0}

Hence the resulting biarc is degenerate. The cases in which kg and k; take other combina-
tions of the allowable values can be proved similarly. O

Based on the foregoing discussion we have proved the following complete existence the-
orem for proper spherical biarcs interpolating singular data.

Theorem 5.3.12: Let D be any singular data on S%'. Then there are c0® 2 many
proper spherical biarcs interpolating D and these biarcs are given in Theorem 5.3.10.

We note that when D is regular the family of biarcs for D has one degree of freedom,
which is independent of the dimension of $9~!; when D is singular the family of biarcs for
D has d — 2 degrees of freedom. Thus when d > 3, there are more proper spherical biarcs
interpolating singular data than those interpolating regular data. When d = 3 the number
of degrees of freedom for both cases is one.

5.4 Properties of spherical biarcs

5.4.1 Fundamental properties

It has been shown in Theorem 5.3.10 that there are co! many proper biarcs interpolating
any regular data on S9!, In this section we shall investigate more properties of spherical
biarcs. Among them, the most important is that the locus of the joints of all proper spherical
biarcs interpolating any regular data D is a circle on $%~! passing through X, and X;. As
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only the joints of proper biarcs are relevant, of course, the points Xg and X, should be
excluded from the locus.

Theorem 5.4.1: Let D = {X,4,To,X1,T1} be regular data on S4-! ¢ E9. Then the

joints of all proper biarcs for D form a circle on S%~! passing through X, and X,, but
excluding Xo and X,.

We need the following lemma. to prove the theorem.

Lemma 5.4.2: For regular data D = {Xq,To, X1,T1}, Eqn. (5.10) does not factor, i.c.
it is trreducible.

ProoF: The discriminant of a bilinear equation azy + bz +cy+d = 0, a # 0, is defined

to be ad — bc. Eqn. (5.10) is irreducible if and only if its discriminant does not vanish. So
we will show that its discriminant

h = (XTAX,)1-TFAT) + (XTATo)(XT AT))
= (X§AX1)+ (XTATo)(X§ ATY) — (XT AX\ (T ATy) (5.11)

is nonzero when D is regular. First we consider the case where D is noncoplanar, i.e. Xp,
To, X1 ard T; are linearly independent, and then the case where D is coplanar but regular.

() D is noncoplanar. Let L = [Xo Ty X; T}, which is a (d + 1) X 4 matrix. Since D is

noncoplanar, L has full column rank. Let M = LTAL, where 4 = [ I: 01 ] Then
X3
T T3
M = L AL: Xir A[XoToXl Tl]
T
0 0 xFfax, xIAT
_ 0 1 XTAT, T AT,
T | xTax, XTAT, 0 0
XTAT, TIAT 1] 1

By expanding the determinant det(M) about the first two rows, it is easily verified that

det(M) = [(X{ATo) (X3 AT1) — (XTAX:1) (T ATy)P — (XTAX,)?
= R[(XTATO)(XTAT)) — (XTAX,)(1 + TTATY)). (5.12)

We now want to show that det(M) # 0. To see this, let us consider the quadratic equation
UTMU = 0, where U is a 4 by 1 vector. Geometrically, this quadratic equation stands
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for the 2-dimensional sphere which is the intersection of S§4-1 with the 3-dimensional affine
manifold determined by Xg, 7o, X1,71. In E? this intersection is either empty, or a single
point, or a proper real sphere. Since it contains at least two distinct points Xp and X; on
54~1_ it is a proper 2-dimensional real sphere. So its coefficient matrix M is nonsingular.
Hence det(M) # 0.

Because det(M) # 0, we obtain h # 0. Incidentally, observe that the other factor of
det(M) in (5.12) is the discriminant of the equation of ko and k; resulting from (5.5).

(it) D is coplanar. From the classification of coplanar data fellowing Definition 5.3.2,
and the fact that D is regular, we have Xo + pTp = X1 — pT) for some p # 0, or Ty = —T1.
In the former case,

h = (XTAX))(1 - TIAT) + (XT ATo)(XT ATy)
[XT A(Xo + pTo + pT1)I(1 = T ATy) + [(Xo + pTo + pT1)T ATo)(XF AT1)
p(X§ATy)(L - T§ ATY) + p(1 + Tg AT1)(X3 ATh)
= 2p(XTAT))
= 2XJA(Xo + pTo + pTh)
= 2XFAX, #0.

In the latter case, since XTAT) = —XTATo = 0, X7 ATo = —X{ ATy = 0, and T ATy =
—1, we have

h=(XTAX))(1 - TTAT) + (XTATOWXTATY) = 2xF AX, # 0.

PROOF of Theorem 5.4.1: By Theorem 5.3.9, we just have to show that the locus of Z
given by (5.9) is a circle on S9! passing through X and X;. By (5.9) and (5.3), Z is given
by

Z = k1Yo + koY1 = ko X1 + k1(Xo + koTo — koT1), (5.13)

where kg and &; satisfy (5.10). By Lemma 5.4.2, (5.10) is irreducible; therefore k; can be
expressed in terms of kg, that is,

XgAXl + koXlTATo

k1 = .
17 XT AT + ko(TT AT, — 1)

Substituting this expression into (5.13) and omitting a nonzero multiplicative factor, we
have

Z(ko) = kol[XT AT + ko(TT AT, — 1)1 X,
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+(XTAX: + ko XT ATH) (X0 + koTo — koT1)
= RK[(TT ATy - 1)X; + (XTAT)(To ~ Th))
+ko[(XJ AT ) X1 + XT AX1(To — Th) + (XT ATo)Xo)
+(X& AX1)Xo. (5.14)

Let us consider the coefficient of k2. Since D is regular, To # T). So T AT, — 1 =
—%(To — T1)T A(To — T) # 0. Observing that the last component of (Tp — T}) is zero, we
conclude that the coefficient of &¥3 in (5.14) is a nonzero vector. So (5.14) is a rational

quadratic curve on S94-1,

Now we need to show that the curve (5.14) is proper, i.e. it is a circle on S9-1. We
will prove this using a geometric argument. The curve (5.14) can be a single point, part of
a straight line or a circle. Since Z(ko)|r=0 = (X& AX1)Xo, the curve passes through Xg;
symmetrically, it also passes through X;. So the curve cannot degenerate into a point. Also
‘t cannot be part of a straight line since the sphere S9~! does not contain the line segment
XoX1. Hence (5.14) must be a circle on $4-1.0

For some applications one may hope to accomplish the interpolation of a data set using
a curve with reasonably small windings. For spherical biarc interpolation, this requirement
leads to the following question: Is it possible to use spherical biarcs consisting of only minor
arcs to interpolate any data D = { X, To, X1,731}? The following argument shows that this
is possible for regular data but impossible for singular data. Here a minor arc is assumed
to be less than a semicircle.

Obviously, from the proof of Theorem 5.3.10, no such solutions exist for singular data,
for the two arcs of the interpolating biarc always have to take weights of opposite signs. For
regular data D both arcs of a biarc are minor arcs if and only if kg > 0 and k; > 0, where

ko and k; are finite solutions of Eqn. (5.10). The next theorem asserts that for regular data
there always exist such solutions of Eqn. (5.10).

Theorem 5.4.3: Fqgn. (5.10) has solutions kg > 0 and k1 > O for any regular data D =

{Xo,To, X1,T1}. That is, for any regular date D there exist spherical biarcs interpolating
D that consist of minor arcs only.

Proor: Let

F(ko, k1) = XTAX, + ko(XT ATo) — ky(XT ATh) + koki(1 — TS ATY). (5.15)
Then Eqn. (5.10) is just F(ko, k1) = 0. First observe that

F(0,0) = XTAX, = —%(x0 — X1)T A(Xo — X1) < 0.
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Since D is regular, Ty # T1. So the coefficient of kok; in (5.15) is
1
1-TF AT, = 5(To - ) (To -~ Th) > 0.

Therefore F(ko, k) > 0 for sufficiently large positive k9 and %;. Hence there exist kg > 0
and k; > 0 such that F(kg,k;) = 0. O

From the above proof it follows, geometrically, that the straight line k¢ = k; always
intersects the hyperbola represented by (5.15) in the first quadrant, i.e. where ky > 0 and
ki > 0. Let kg = k; in (5.15). Then a particular positive solution of Eqn. (5.10) is given by

—b + Vb2 ~ 4ac
ICQ = k] = %a (5.16)

where
a=1-TFATy, b= XTATo — X ATy, ¢ = XTAX,.

By Lemma 5.4.2, when D is regular, (5.10) represents a proper hyperbola with asymp-
totes parallel to the two axes of the ko-k; plane. Therefore, in general, kg does not depend
on &) continuously throughout the interval (~o0,c0). But, to adjust the shape of a biarc by
changing the two parameters k¢ and k. continuous dependence between the two parameters
in a certain range is desirable. The next theorem shows that this is always possible when
ko and k; are both positive.

Theorem 5.4.4: For regular data D, all solutions (ko,k1) of (5.1C), where kg > 0,
k1 > 0, are related by a continuous rational linear function ky = f(ko), defined on 0 <
ap < ko < oy < 00 jor constants ag and ay; symmetrically, k; can be expressed in terms of
ky in the same manner.

PRrooOF: Obviously, a rational linear function k; = f1(ko) can be obtained from (5.10),
which is of the form F(kg,k;) = 0. We just need to show that only one branch of the
hyperbola F'(ko, k1) = O intersects the first quadrant of the ko-k; plane.

First we show that the hyperbola F(ko, k1) = 0 does not intersect the straight line kg +
ky = 0 in the ko-ky plane. This is true if F(ko, —~ko) = O does not have real solutions. This
can be proved by showing that the discriminant % of the quadratic equation F(ko, —ko) = 0
is negative. In fact,

h = (XTATo + XTATY)? — «(XTAX))(TT ATy — 1)
= [(Xo— X1))TA(To — T1)? - [(Xo — X1)TA(Xo — X1))[(To — T1)T A(To - Th)]

= [(Xo— X1)T(To - TW)]* - [(Xo - X1)T(Xo — X1)][(To — T1)T(To — T1)]
< 0.
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AS
k0+k1=0\\ F(ko,kl)-:O
N ee— ko

Figure 5.4.1 The hyerpola F(ko, k1) = 0.
The last strict inequality follows from the Cauchy-Schwarz inequality, and the fact that
Xo — X1 # p(To — Th) for any p since D is regular.

Because the hyperbola F(kg, k1) = 0 does not intersect the straight line ko + k; = 0, it
is the translation of a hyperbola koky = r, r > 0, as shown in Fig. 5.4.1. In the proof of
Theorem 5.4.3, it is shown that F(0,0) < 0 and F(ko, k1) - O for sufficiently large positive
ko and k1. Thus only one branch of the the hyperbola intersects the first quadrant. O

In fact, (5.10) can be expressed as
(ko — k§)(k1 — k) = A/(1 - Tg ATy )?,
where (k§, k), the center of the hyperbola, is given by

ke = xTAn e XTAT,

=0 =t 0 5.17
T 1 -TTAT YT ITAT, -1 (5.17)

and
A = (X§ AX: (T ATy - 1) — (XT ATy N XT ATo).

Since the hyperbola F(ko,k1) = 0 is a translation of hyperbola koky = r > 0, A/(1 -
TT ATy)? > 0. It follows that A > 0 since 1 — TT ATy > 0 for regular data.
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The range (ao,a;) referred to in Theorem 5.4.4 can be determined as follows. The

center of the hyperbola F(kg, k1) = 0 is given by (5.17). So we have the following cases:

1. ap = k§ , @y = oo when k§ > 0, kf > 0;
2. ap = k§ ,a; = —(XTAX1)/(XTATs) when k§ > 0, k§ < 0;
3. g =0, o = oo when k§ < 0, k] 2 C;

4. 0p =0, a3 = —(XTAX1)/(XFATo) when k§ < 0, k§ < 0.

In the above a; is found by setting k; = 0 in (5.10) and solving for kq.

The next property concerns the reproduction of a circular arc on § 4-1 by the spherical
biarc.

Theorem 5.4.5: Let the reguler data D = {Xo,To, X1,71} be interpolated by a circular
arc C on S%1. Then every biarc interpolating D either coincides with C or covers the
circle that contains C. Moreover, every biarc interpolating D that consists of only minor
arcs coincides with C.

PRrRoOF: Let P be the plane on which C lies. Then X, To, X1 and T; are coplanar and
lie on P. From Theorem 5.4.1 and (5.14), the locus of the joint Z is a circle C’ on S% ! in
the affine manifold spanned by Xg, Ty, X3 and 73, which in this case is P. Thus C’ is the
circle on $¢-1 that contains C. Then a biarc coincides with C when Z € C — {Xo, X} or
covers C' including C twice when Z € C' — C. Obviously, a biarc for D consisting of only
minor arcs cannot cover C’, so it reproduces C. O

Note that the data that can be interpolated by a single arc is regular coplanar data.

Now we prove one more property of spherical biarcs. This property states that, for
generic data D = {Xo,70, X1,71} and a generic point K on S2, there is a unique proper
spherical biarc interpolating D on $? and passing through K.

Lemma 5.4.6: Let D = {Xo,To, X1,T1} be noncoplanar regular or singular data on
S9-1_ Let B and B’ be two different spherical biarcs interpolating D on S®'. Then B and
B’ do not intersect ezcept at Xo and X;.

Proor: First consider the case where D is noncoplanar regular data. Let F be the 3-d
affine manifold determined by D. Then all the spherical biarcs interpolating D are on the
two dimensional sphere § = S¢~1[ F. Let J be the circle which is the locus of joints of all
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biarcs interpolating D. Obviously J C S, and J divides § into two disjoint parts, denoted
by Sg and §;.

Let the biarc B be composed of two ar- s Cg and C;, and B’ composed of two arcs C{
and Ci. Let Z, Z’ € J be the joints of biarcs B and B’. Obviously, a proper spherical biarc
interpolating noncoplanar regular data can not be contained in the circle J, for otherwise
the data would be coplanar. Therefore we can assume that Cg and C§ are in So. and C;
and Cj are in S;. Since B an.. B’ are different biarcs, Z and Z’ are different points, for
the spherical biarcs interpolating D are in one-to-one correspondence with the points on J.
Therefore arcs Co and C§ do not intersect in Sg, except at Xy, since they have the common
tangent Tg at Xo. Similarly, arcs C; and C] do not intersect in 5), except at X,. Since
Co and Cj belong to different parts Sp and S; of S, they do not intersect. For the same
reason C; and C§ do not intersect. Hence the biarecs B = Co|JCy and B’ = C{|JC} do not
intersect, except at Xg and X,.

When D is singular data, by Theorem 5.3.12, the locus J of joints is a d — 2 dimensional
sphere on S?~!. The sphere J divides $9"! into two parts, still denoted by Sg and 5,. The
remaining argument is the same as the one above given for the regular data. Q

Theorem 5.4.7: Let D = {Xo, 10, X1,71} be noncoplanar regular daia or singular data
on S%1, d > 3. Let S be the 2-dimensional sphere cut on S%=1 by the 3-d affine manifold
F determined by D when D is noncoplanar regular data; let 5 be S4~! when D is singular
data. For a generic point K on S, i.e. a point K that is not on any of the degenerate

biarcs on S interpolating D, there ezists a unigue proper spherical biarc interpolating D
that passes through K.

PrROOF: We just need to prove the existence of the spherical biarc described in the theo-
rem; uniqueness follows from Lemma 5.4.6. First consider the case where D is noncoplanar
regular data. Let Sp and S; be the two parts into which S is divided by the circle J, the
locus of joints of biarcs interpolating D. Then for a generic point K # Xg on Sp C S, the

2-dimensional plane P determined by the tangent line of S at X, with direction Tp and the
point K cuts S in a circle C.

Now we claim that Ty is not tangent to the circle J at Xg. To see this, let us consider
a proper biarc B interpolating D with the joint Z’ € J. Let Cp and C; be the two arcs of
B such that Cj starts at Xp and C; ends at X,. If Tp is tangent to J at Xp, then Cy is
an arc on J since it is tangent to J at Xp and intersects J at the joint Z’. It follows then
that C; must also be an arc on J since C; is tangent to J at Z’ and intersects J at X,.
Therefore the biarc B is in fact a single arc on J. So D is coplanar regular data. This is a
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contradiction to our assumption.

Since 7o is not tangent to J at Xo, the circle C and the circle J, both are on sphere
S, intersect in two points, one of which is Xo, and the other is denoted by Z. We assume
that Z # Xo and Z # X; this is ensured bv assuming that K is not on the circular arc on
So passing through X and X; and having tangent Tp at Xo. Then this joint Z defines a
spherical biarc interpolating D and passing through K. When K € S; C S is not on the
circular arc on S, passing through X, and X; and having tangent 77 at X, the conclusion
can be proved similarly by considering the circle determined by the point Xo, the tangent

y of § at X, and the point K.

Now consider the case of singular data D. Again § = S9! is divided into two disjoint
parts So and $; by the locus J of joints, which is 2 d — 2 dimensional sphere on S%~!. Now
the remaining proof is similar to the one above given for noncoplanar regular data. O

Theorem 5.4.7 is illustrated in Fig. 5.3. ~We remark that there are two degenerate
biarcs interpolating D when D is noncoplanar regular data, and there is only one such biarc
when D is singular. The case where D is coplanar regular data is not governed by this
theorem. For coplanar regular data, all interpolating spherical biarcs are contained in a
circle, as indicated by Theorem 5.4.5.

Another simple property of spherical biarcs is that a spherical biarc interpolating D does
not intersect with itself if D is noncoplanar regular data; when D is coplanar and regular,
a spherical biarc interpolating D might overlap with itself as its two arcs are contained in
the same circle.

5.4.2 Perturbation of singular data

In Section 5.3 we saw that the spherical biarc solutions for regular and singular data have
different structures. For data D on S9-! C E¢9, the locus of joints of all spherical biarcs
interpolating D is a circle when D is regular; the locus is a d— 2 dimensional sphere on S9!
when D is singular. On the other hand, regular data is generic and a small perturbation
to singular data can make it regular. Therefore we ask the following question: Let D’ be
regular data obtained from singular data D through a small perturbation a to D. Let the
loci of joints for D’ and D be J’ and J respectively. Is the circle J’ close to the sphere J?
The significance of this problem is as follows: using the above notation, if we have a spherical

biarc C’ interpolating regutar data D’, can we expect to find a biarc C interpolating singular
data D so that C is very close to C'?
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The answer to this question is yes. So, as the perturbation yielding D’ tends to zero,
the circle J’ approaches the sphere J, and finally merges into it. Because the perturbation

a can assume different directions, the corresponding circle J’ approaches J from different
directions.

We shall consider a special case in the next theorem, that is, only the tangent direction
To in D is subjected to a perturbation. But a similar argument applies to the case where
the points Xp and X; and the tangents Tg and T3 are all subjected to perturbations. When
only 7o is subjected to a perturbation «, the new data is D' = {Xo,To + o, X;,T3}. By
convention, the perturbati~rn o must satisfy certain conditions.

Definition 5.4.1: Let o # 0 be a point at infinity in E¢. Then « is called an allowable
perturbation if

XTATo+a)=0, (To+ a)TA(To+a)=1. (5.18)

Theorem 5.4.8: Let D = {Xo,To, X,,T1} be singular data on S4~2 C E¢, d > 3. Let
D' = {Xo,To+ a, X1,T1} be regular data on S?!, where a is a sufficiently small allowable
perturbation. Let J and J' be the loci of joints of spherical biarcs for D and D’ respectively.
Then the circle J' approaches the sphere J uniformly as |a| = VaTa — 0.

First we need some lemmas.

Lemma 5.4.9: Let D = {Xo,To,X1,T1} be singular data on S¥~). For a sufficiently

small allowable perturbation a # 0, the points Xo, Tg + o, X, and T\ are linearly indepen-
dcnt.

Proor: The proof is by contradiction. If they are linearly dependent, since Xg and
X, are in normalized form, and 7o and T3 are points at infinity, then we have two possible
cases. (i) To+ a = o1} for some o; or (iz) Xo + po(To+ a) = X1 + p1T; for some po and p;.

In case (i) we have
(To + )T A(To + ) = o?>TT AT,

So 02 = 1. When ¢ = 1, we have To+ a = T}, or @ = Ty — Tp. This contradicts the
assumption that « is sufficiently small and a # 0, for T} — Ty is constant. When o = —1, a
contradiction follows similarly.

In case (i7) we have

[Xo + po(To + a)]T A[Xo + po(To + )] = (X1 + p1T1)TA(X, + pTy).
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Simplifying this equation using (5.18), we obtain pé = p2. When pg = p1, we have
Xo + po(To + a) = X1 + poTi- (5.19)
Clearly po # 0 since Xg # X1. So
a = p; (X1 — Xo) + (Th — To)-
Multiplying XZ A to both sides of (5.19), and by Definition 5.4.1, we find
X3 AX1 + poXT ATy = 0,

that is, pg! = ~XJ AT:1/XZ AX,. Substituting this in the above expression for a,

XT ATy .
= ——F—— (X - X Ty — Tp).
a X{{AXI( 1= Xo) + (71 — To)
This is contradictory to that a is sufficiently small and o # 0. When pg = —p;, a contra-

diction follows similarly. O

Lemma 5.4.10: Let U = (Xo — X1)/|Xo — X:| and V = a/|a| be two vectors of unit
length in E®. Let « be the angle between U and V, 0 < v < w. Then there exists a constant
¢ > 0, such that sin-y > c.

Proor: Since XTA(To + @) = 0 and XT ATy = 0, we have XTAa = 0, or XTAV = 0.
So the direction V is parallel to the hyperplane X3 AX = 0.

On the other hand, as X('{AXO = 0 and XgAXl # 0, the direction Xg— Xj; is not parallel
to the hyperplane Xg' AX = 0. Let 3 be the angle formed between the direction Xo — X;
and the hyperplani:. 4X = 0. Then we can assume 9 < 8 < 7/2. Since, by definition, 8
is the minimum of a._ ¢s formed between direction Xp— X; and all the directions parallel to
hyperplane Xg AX = 0, we have 8 < v < m — B. Therefore sin4 > sin 8. Setting ¢ = sin 3
compietes the proof. O

Lemma 5.4.11: Let S C E3 be a sphere of radius r. Let Jo and J; be two circles on S
intersecting at two distinct points. Let the Hausdorff distance of Jo and Jy be defined as

dr(Jo, 1) = max{min{d(z,y)|z € Jo,y € J1},min{d(y, z)ly € Jo,z € N1}},
where d(z,y) is the Fuclidean distance between points z and y. Then
dy(Jo,J1) < 2rsin 6,

where @ is the angle between the two planes containing Jo and J,, respectively, and it is
assumed that 0 < 8 < w /2.
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Figure 5.4.2 The section of the spher: 5 intersected by the plane KN P,.

Proor: When 6 = 0, the lemma is trivially true. So assume that 0 < 6§ < 7 /2. Let Jp
and J; intersect at points Xo, X; € S, where X # X;. In the following we first show that
for any point Py € Jp,

mgin{d(Po, yY)y€ i} < 2rsiné. (5.20)

Let Jo and J; be contained in the two planes gp and ¢, respectively. Let ¢ be the plane
that passes through the straight line XoX; and bisects the angle 8 between g and ¢;. Let
points K, N € S be such that segment K N passes through the midpoint M of XgX; and
is perpendicular to plane g. Note the segment K N is unique. For any point Py € Jg with
Py # Xo and Py # X1, let KN Py denote the unique plane containing A, N and Fy; when
Py = Xg or Py = X3, (5.20) is trivially true because miny{d(Po,y)ly € J1} = 0.

Let C be the circle intersected on S by the plane KN Py. Suppose that K N F intersects
the plane go of Jo and the plane ¢, of J; in two lines PoPj and P, P, respectively, where

%, P1 and P] are on the circle C. The section of S intersected by the plane KN F, is
illustrated in Fig. 5.4.2.

Without loss of generality, assume that ZPopM P, < LPiLMP]. Let v = [PoMP,. Then
by the above construction it follows that ¥ < 8; in fact, equality holds if and only the plane
KN Py is perpendicular to the line XoX,. From elementary plane geometry it is known
that an angle inside a circle is equal to half the sum of the degrees of the two arcs of the
circle subtended by the angle and its opposite angle. Let arc(FPoP;) be the length of the
minor arc of C between Fy and P;, and arc(FPgP;) be defined similarly. Then we have

arc(PoPy) + arc(PgP]) = 2r'7,
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where 7’ is the radius of C. Since ' < r, it follows that
arc(FPoP,) + arc(P§P]) < 2ry.

Thus
arc(FPoPy) < 27r7.

Therefore
min{d(Po,y)| y € J1} < |PoP1| < 2rsiny < 2rsiné,
v

where | FPo P;| is the length of the segment Py P;. Since Py is an arbitrary point on Jg, we
have
max{min{d(z,y)lz € Jo,y € /1} < max {|PoP1|} < 2rsiné.
T v FPoedo

Symmetrically, we have
mlz_xxm!}n{d(y,:c)ly € Jo,z € J1} < 2rsin 6.
Combining these two inequalities completes the proof. O

Proor of Theorem 5.4.8: To determine the distance from the ciscle J’ to the sphere J,
we consider tne follow measurement

D(J',J) = max min{d(z,3y)|z € J', y € J},

where d(z, y) is the Euclidean distance between point r and y. Note that the above mea-
surement is not symmetric and is different from the Hausdorff distance. Our goal is to prove
that D(J', J) — 0 uniformly for all & as |a| — 0.

Recall that J, as the locus of joints for singular data D, is a d — 2 dimensional sphere
on §41, The idea of the following proof is to intersect S9! with an appropriate 3-d affine
manifold F so that J* C F and that J = J(}F is a circle. Then we can estimate the
distance between the two circles J' and J with respect to some perturbation a, which is
easier than estimating the distance from the circle J’ to the sphere J directly.

Since o is sufficiently small, by Lemma 5.4.9, we can assume that Xo, 7o+ a, X; and 7}
are linearly independent. Let F be the 3-d affine manifold determined by these four points.
Then $2 = §9~1 N F is a 2-dimensional sphere on $%~1. Now introduce a coordinate system
E3 in the 3-d Euclidean space F with the origin O at the center of 52. Let the equation of
5% in E3 be XTAX = 0, where A = diag[1,1,1,—7?] and r is the radius of $2. Clearly, D
and D’ are still singular and regular data on $2. For simplicity, we use the same symbols to
denote D, D’ and the points they are composed of in E3. Now we have two spherical biarc
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problems on 52 with data D and D', respectively. Let J = J{F and J' = J’. Clearly, by
the construction of F, J and J’ are the loci of joints for D and D’ in S2, and both J and
J'! are circles passing through X and X; on S§2.

Below we shall be concerned with the geometry of E® when we estimate the distance
between the circles J' and J. First consider the case where D is singular with Xo + pTg =
X1 + pT; for some p # 0. In this case the unit normal to the plane containing J is, by
Theorem 5.3.10, _

Y-O
T y-or

where Y = X + pTo = X1 + pTh, and O = [0,0,0, 1]7 is the center of S2.

AT

Since, by (5.14), the plane containing J’ is spanned by the points Xg, X; and To+a~—T1,
a normal vector to this plane is

(_X'Q—XI)X(T()-{-CK—TI) = (XQ—Xl)X[(TQ—T1)+a]
= (Xo— X1) x [p7 (X1 - Xo) + 0]
= (XQ—Xl)XQ.

In the above simplification only the linearity of the cross product and the fact that the
cross product of a vector with itself is the zero vector are used. Since the points are in

homogeneous representation, the actual manipulation of the cross product based on 3-d
vector notation is illegal here.

Let 8 be the angle between the two planes containing J and J’. Then 8 is also the angle
between the normal vectors of the two planes. Setting V = a/|a|, we have

(X0 — X1) x o] x (¥ — O)|
[(Xo— X1) x| |Y — O
[[(Xo - X1) x V] x (¥ — O)
[(Xo— X1) x V[ [Y = O]
[[(Xo = X1)T(Y = O)V — [VT(Y - O)|(Xo — X3)| ]
| (X0~ X)) X VY = O] - (5.21)

sinf =

Here the familiar identity
{axb)xc=(a-c)b—(b-cla

is used.
Now we will simplify (5.21). First,
Xo-X1)T(Y -0) = (Xo-X)TA(Y - 0)
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= XTAy - XTAY — (Xo- X1)TAOD
XTA(Xo + pTo) — XT A(X1 + pTh)
= 0.
Secondly, by Definition 5.4.1, we have XJA(Ty + @) = 0. Therefora X&Aa = 0, since
XZT AT, = 0. Hence XJ AV = 0. Finally, also by convention, we have (To+a)T A(To+a) =1,
or
TT ATo + 2TT Ao + ot Ao = 1.
Since TL ATo = 1, we have
Ty Aa = T ha= ~LtaTa= —--1-]a|2.
2 2
So
TIAV =TT A
By these properties of V, from (5.21) we have

(X0 — X1)7(¥ = O)V = [VT(Xo + pTo — O))(Xo — X1))|

siné = (Xo— X)X VY = O]
1ol [a] 1 Xo — X
2|(Xo — X1) x V| |Y - O
ol |

U x V||Y — O]’

where U = (Xo — X1)/|Xo — X1|. By Lemma 5.4.1¢, we have U x V| > ¢, where ¢ > 0 is a
coustant independent of a. Moreover, since

(Y -0)I(Y -0) = (Y -0)TA(Yy -0)
= (Y -0)TAY - (Y -0)TA0 =YTAY - 0T Ay
= (Xo+ pTo)T A(Xo + pTo) + 7° = p? + 12,

we have |Y — O] > |p]. So

sind < 1%' (5.22)

When D is singular with To = 73, let Y = Ty = T3 in the above proof. We can still
prove

(Xo—- X1)TA(YY -0)=0, XTAV =,
and
Tg' JV = —élai.
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Using these results, (5.22) can be obtained similarly.
Since 52 is on the unit sphere S9!, its radius 7 < 1. By Lemma 5.4.11, we have
mg.x{myin{d(m,y)l:z: €J,ye J}} <2rsinf < 2sinb.
It follows that, since J C J,

D(J',J) = mg:{myin{d(:t,y)la: eJ',yeJ}

AN

mgxmgn{d(z,y)kz: eJ,yeJ}
< 2siné < I—C:—I.

Hence the circle J’ tends to the sphere J uniformly as |a] — 0. O

5.5 Summary

In this chapter we have developed the theory of spherical biarc interpolation. Spherical
biarcs are used to solve the Hermite interpolation problem on a sphere, i.e. to interpolate
two points Xp, X; and the associated end tangents T3 and T3, collectively called data
D = {Xo,T0,X1,T1}, on a sphere » in E% d > 3. Given such data, an interpolating
spherical biarc is determined by the joint, the point where the two arcs meet. It is shown
that there are two kinds of data: regular data, which is generic, and singular data. Given
regular data, the locus of joints is a circle on the sphere S, while for singular data the locus
of joints is a (d — 2)-dimensional sphere on S.

Several more properties of spherical biarcs are derived. For instance, give any data D
on a two dimensional sphere S in E3, any two different spherical biarcs interpolating D do
not intersect each other except at the end points Xy and X;. For a general point K on S,
there exists a unique spherical biarc interpolating D that passes through K; that is, the
tangent vectors of all spherical biarcs interpolating D define a vector field on S, with X,
and X; being the only singular points of the field. The relation between spherical biarcs
interpolating regular and singular data is also investigated.
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Chapter 6

Shape Control and Applications of
Spherical Biarcs

By the shape control of spherical biarcs we mean appropriately choosing the joint of the
biarc so that it looks fair. Since for any data D = {Xg,70,X;1,T1} on $%-! there exist
infinitely many spherical biarcs interpclating D, the determination of a good joint is crucial
to the application of spherical biarcs. In the first two sections of this chapter we shall
argue, with support from experimental results, that if a simple and explicit formula for
determining the joint is desired, the biarc with its two arcs having chords of equal length is
an acceptable choice.

In Section 6.3 an algorithm is proposed for interpolating a sequence of points on a sphere
using spherical biarcs. Biarcs with equal chord lengths are used in this algorithm.

Finally, in Section 6.4, we will address the application of spherical biarcs in orientation
interpolation by using a spherical biarc spline to interpolate a point sequence in the unit
quaternion space. Compared with other existing solutions to this problem, we show that
our solution is simpler and more efficient.

6.1 Criteria and choices for shape control

In the first subsection we will discuss some issues in the shape control of spherical biarcs,
from which three possible criteria are derived: the ratio of the two radii of the two arcs, the
winding, and the twist of a spherical biarc. Then in the next two subsections we derive two
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simple formulae to compute the joint of a biarc interpolating regular data D; one gives a
biarc with equal chords, the other a biarc with minimal twist. Together with the formula

(5.16) which gives kg = k7 > 0, we have three formulae available. In the next section these
three formulae are evaluated and compared through experiments.

To simplify the terminology, the two radii of the two arcs of a biarc will be called the
radii of the biarc, and the smaller one of the two radii when they are not equal will be called
the smaller radius of the biarc.

6.1.1 Criteria

There are no fixed mathematical criteria according to which a biarc, or a general interpo-
lating curve, is fair or not. However, in the traditional study of plane biarcs, an empirical
criterion is to minimize the difference of the two radii of a biarc, or the difference of the
curvatures of the two arcs, or some other similar criteria {Bez72, NuM88, SuL89]. These
criteria are used to reduce the jump in the curvature at the joint of the biarc and avoid
having one arc with extremely high curvature relative to the other arc, which gives the
appearance of a sharp turn on the biarc. We shall regard the ratio of the two radii of a
biarc as the most important criterion in our analysis of spherical biarcs.

We have two more concerns in our analysis. The first is that while major circular arcs
are usefui in constructing fair spherical biarcs, they should be used only when it is necessary,
for otherwise excessive winding of the biarc would result. This issue has not been of concern
in most previous studies of plane biarcs, in which major circular arcs are not used at all; this
usually requires that the data are quite well behaved. For example, even S-shaped plane
biarcs are excluded in [SuL89]. Such assumptions are possible and reasonable because of
the intended application of plane biarcs; they are mainly used to approximate some existing
smooth curves, cubic spline curves say, or to interpolate data points that represent smooth
geometric shapes [Bez72, SuL89]. But since a main application of spherical biarcs is to
interpolate points in the unit quaternion space which .epresent some object orientations
in E3, no assumptions on the type of the data should be imposed. This means that in
the discussion of spherical biarcs all possible data configurations need to be addressed. In
this case, although Theorem 5.4.3 ensures that there always exist proper biarcs consisting
of minor arcs interpolating D as long as D is regular, major arcs are still useful because
it is hard to find a formula giving a biarc consisting of ¢nly minor arcs whose shape is
acceptable for any data, especially data that is close to singular data. Recall that when the
data D is singular, Theorem 5.3.10 implies that a proper interpolating spherical biarc must
contain one major arc. So another criterion is how to use major arcs appropriately to avoid
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excessive winding in a biarc.

The second concern is specific to space biarcs, which include spherical biarcs. Usually the
two arcs of a space biarc are not on the same plane. We are interested in the angle formed by
the two planes of the two arcs of the biarc, called the twist of the biarc. The twist measures
the jump in the torsion of the biarc as a space curve. The problem of minimizing the twist
of a space biarc has been discussed in [NuM88], where some restrictions are assumed on the
alignment of the data. In the following we want to give a comprehensive analysis of this
problem in the setting of spherical biarcs, and see if minimizing the twist can yield a fair
spherical biarc.

So far we have introduced three possible criteria to judge the shape of a spherical biarc:
(1) minimize the difference of the two radii of a biarc; (2) restrain the use of major arcs
in order to avoid excessive winding; (3) minimize the twist of a biarc. These will be called
criterion 1, criterion 2 and crilerion 3, respectively. Since it is usually difficult to achieve
all three goals with a single choice of joint, one expects to make compromises among these
criteria. In this respect we regard the first two criteria as more important than the third
one, unless a certain application requires a minimal twist.

The these three criteria will be incorporated in our analysis as follows. We will initially
discuss only regular data, with singular data to be addressed later. Three formulae will be
proposed to compute the parameters (kg, k1) of the joint of a biarc. The first formula gives
a biarc with the chords of its two arcs having equal length, called an equal chord biarc;
intuitively, such a biarc is reasonably good since the lengths of the two arcs do not differ
much when they are both minor arcs. The second formula is given by (5.16), which yields
the solution ko = k3 > 0; this sclution guarantees that the two arcs of the biarc are always
minor arcs, thus enforcing criterion 2. This biarc will be referred to as the equal k biarc.
The third formula gives a spherical biarc with a minimal twist, called a minimal twist biarc.
The methods for computing the joint by the above three formulae will be called choice 1,
choice 2 and choice 3, respectively. Because it is not clear whether or not the equation in
terms of kg and k; set up according to criterion 1 can be solved explicitly, instead of using
numerical techniques to solve this equation, criterion 1 is used to judge the above three
formulae in our investigation as follows. The three biarcs are judged according to which
biarc gives the ratio of radii that is closest to one in the worst case and on average. Our
experiments, to be explained later in this section, suggest that the equal chords biarc, i.e.
choice 1, is the best one among the three.

The ratio of the two radii of a biarc is not the only indicator of its shape. Although a
biarc with the two radii not differing toe much is considered to be fair, a biarc with the
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(a) (6)

Figure 6.1.1 Comparison of two biarcs: The two biarcs have different shapes, but their two
arcs have the same radii.

two radii differing radically may also be acceptable in some cases. For instance, while the
biarc shown in Fig. 6.1.1(a) does not look fair because of the sharp turn, the biarc in Fig.
6.1.1(b) should be acceptable; however, these two biarcs have the same radii. They look
different because in Fig. 6.1.1(b) the smaller radius of the biarc is not very small relative
to the distance [ XoX1|. Therefore, the ratio of the smaller radius of a biarc to the distance
| X0X1| between two interpolated points should also be taken into account in shape analysis.
The significance of this remark is that a biarc cannot be judged as not fair solely because
of a large difference between the two radii of its two arcs; only when the radius of one arc
of a biarc is considerably small relative to both the radius of the other arc and the distance
[ X6X1] can the biarc be considered to contain a sharp turn.

6.1.2 Equal chord biarc

In this subsection we will give a formula to compute the joint of a spherical biarc with equal
chords for its two arcs, and we will study some properties of this biarc. This biarc will be
compared with biarcs generated in two other ways later in this section.

Our problem then is that given data D = {Xo,70,X1,T1} on S9!, how to find a
spherical biarc interpolating D such that its two arcs have chords of the same length. The
existence of a solution to this problem is obvious by the following geometric observation. A
spherical biarc interpolating D = {X,To, X1,T1} has equal chords if and only if the joint
is on the y-ipendicular bisecting hyperplane of Xp and X, in E¢, denoted by L. If D is
regular, by Theorem 5.4.1, the locus of joints of all spherical biarcs interpolating D is a
circle passing through Xo and X;, and this circle intersects the hyperplane L in two points.
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When D is singular, by Theorem 5.3.12, the locus of joints isa d — 2 dimensional sphere on
S9-1_ which intersects the hyperplane L in a d — 3 dimensional sphere, where d > 3.

The equation of the hyperplane L is easily seen to be (Xo — X)T(2X —Xo-X1)=0
with X in normalized form. This can be expressed as (X¢g — Xl)TA(2X —-Xo—-X;)=0.
After simplification, using X7 AXe = X{ AX1 = 0, we have

(Xo— X1)TAX =0, (6.1)
with X now not necessarily being in normalized form.
First suppose that D is regular. Then substituting Z(ko) of (5.14) in (6.1) yields

KA(TF AT, — 1)(XTAX,) — (XT ATo)(XT ATo + X§ ATh)]
—2ko(XTATONXT AXy) — (XT AX1)? = 0.

Solving this equation for kg, we have the two roots

k(l) — —Xg-AXI
° T XTAT,-VA
and T
L2 _ —X5 AXH .
° T XTATo+ VA
where

A = (XTAX WTTAT, — 1) — (XT AL )(XT ATo).

By the remark following the proof of Theorem 5.4.4, A > 0 for regular D, thus confirming
that the two roots are real and distinct. By (5.10) the two corresponding k;’s are found to
be

O -X5 AX

VT xTAT - VA
£® -X§ AX,

' ~X§AT, + VA’

Hence we have obtained two joints that give equal chord biarcs. These two joints are given
by (K&, k') and (k{7 k{?), respectively.

Although both of these two biarcs have equal chords, we will see that the one given
by (k((,z), kgz)) is better, in the sense that it give biarcs consisting of minor arcs in more

cases than (k((,l), kgl)). To see this, note that the numerator —Xg AX; > 0 in all the above
expressions for k‘(,‘), kgl), kgz) and k{"). Also

XTAT, - VA < XT AT, + VA,
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and
—XFATy - VA < -XT AT + VA,

i.e. the denominators of k‘(,l) and kgl) are smaller than those of kg“) and k?). It is clear

then that at least one of the two biarcs given above consists of two minor arcs if and only if

XTATo +vVA >0,

and
—-XgATl -~ ‘\/K >0,

that is, if and only if the biarc given by k((,z) and k?’ consists of two minor arcs. Based on

this argument, in the following discussion by the equal chord biarc we mean the one given
by k§2) and £{®.

Experiments showed that the last two inequalities do not hold for some regular data.
So the question is for what kind of data these inequalities hold. Although we still have no

geometric characterization of snich da' ... we will show that certain well behaved data, to
b= explained below, are included. Sinze A .- 0, for thhe above two inequalities to hold it is
sufficient that X7 AT > 0 and — X 47, = ., which can be rewritten as

(X1 —Xo)To >0

and
(Xy ~ Xo)'Ty >0,

since XgATo = 0, XITAT;_ = 0 and the last components of X; — X, Tp and T3 are zero. The
geometric interpretation of these two inequalities is that the angle between the vector m
and the tangent direction T and the angle between )—fo—f—; and the tangent direction T) are
both not greater than = /2. Clearly, it is reasonable to consider data D = {Xo,To, X3,T1}
satisfying this property as well behaved. For regular data that does not satisfy this property,
i.e. not well behaved data, it is possible that k(()z) or k?’ is negative. But in this case, since
either the angle between m-; and Ty or the angle between )_(o—}:; and T, is greater than

m /2, the possible use of major arcs in the interpolating biarc is justifiable in some degree.

For singular data a spherical biarc with equal chords is generated if the joint point Z
is chosen from {(J — {Xo,X1})N L, where J is the (d — 2)-dimensional sphere specified in
Theorem 5.3.10. Since in this case the two control polygons of the two arcs of the biarc are
congruent (because Yp = Y; ), the two arcs also have equal radii. Note that for singular data
D, there exist no proper spherical biarcs interpolating D consisting only of minor arcs.
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6.1.2 Minimal twist biarc

In this subsection we will derive a formula to compute a spherical biarc with minimal twist
interpolating regular data D on S$9-!. The main idea of this derivation is based on an
insight in [NuM88]. First we will investigate the spherical biarc with the minimum twist, or
twist angle. Let Cg and C; be the two arcs of a spherical biarc B interpolating D. The twist
angle of a spherical biarc is deaned to be the angle ¢ between the two planes containing
arcs C: and C;, where we take the angle ¢ to be the smaller of the two supplementary
angles thus formed, i.e. 0 < |¢| < 7/2. Below we will only discuss the minimum twist
biarc solution for regular data. The problem of finding minimum twist spherical biarcs for
singular data has not yet been solved.

The explicit solution to the minimum twist angle biarc, to be described below, involves
simple formulas that are easy to compute but relatively difficult to derive. Consider regular
data D = {Xo,7T5,X1,71} on S%1. Then the two parameters ko and k; of any spherical
biarc for D are related by (5.10). We will show first that tan? ¢ is a simple function of
ko + kq; this is the technique used for 3D space biarcs in [NuM88]. Then we will translate
the minimization problem for ¢ to that of minimizing |ko + k.].

Lemma 6.1.1: Let D = {Xo,To,X1,T1} be regular data and let ¢ be the twist angle
of a proper spherical biarc B interpolating D on S9-1 given by ko and k; satisfying (5.10),
where koky # 0. Then

a
tan?¢ = : )
¢ [Af(ko+ k1) + X{ AT — X§ ATy)?
where
a = —2TFATXTAT))XTAT) — (XTI ATY)?
—(XTATo)? — 2[1 — (T AT1)’N(XT AX1),
and

A = (xXTAx)(TTAT, — 1) — (XT AT (XT ATy).

Proor: First we compute cos? ¢. Let XoYpZ and ZY; X; be the Bézier control polygons
of the two arcs of biarc B, where Yy and Y] are given by (5.3), and the joint Z is given
by (5.9). By Lemma 5.3.2, Yy # Y;, where Yp and Y7 are in normalized form; therefore
the straight line YpY; is well defined. Let Ry and R; be points in normalized form on the
straight line Y3Y; so that both lines XoRg and X;R; are perpendicular to YpY;. Denote
Vo = Xo — Rp and V}; = X; — R;; then Vp and V; are two points at infinity in E¢ since
Xo. Ro, X and R, are in normalized form. So Vp and V; can be regarded as two vectors
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making the twist angle . i.e. cos¢ = V§ V1/(|Vo| |V1]). where for a point V at infinity we

define |V| = VVTV,

Since Y = Y; — Yo # 0, W = Y/|Y| is well defined. As the projection of X¢o — Yy on the
direction W is Rg — Yp, we have
Ro — Y = [(Xo — Yo)T W)W,
Thus
Vo = Xo— Ro=(Xo~—Yo)— (Ro—-Yo)
= Xg-Y5-[(Xo~-Yo)TW]W.
Similarly,
Vi=X,-Y - [(X; - ) Tw)w,
Since Yg = Xo + koTp and Y; = X; — k1T, we obtain
Vo = —koTo + ko(TE W)W,
and
[Voi? = Vo' Vo = &3[1 — (T4 W)?].

Similarly
1=k Ty — ky(TT W)W,

and consequently,
Val? = &1 — (TT W)?},
and
Vo Vi = koki[(Tg WYT{ W) — (T3 Th))-
Then, recalling that W = Y/|Y|, where Y = Y; — Yy, we have

B (VTV )'2
R AEAT

_ {@@wyrIw) — (13 T))?

T = (@FwW)R - (TTW)?

_ @I XTEY) - (TET)(YTY))?

T YTY —(TFY)2IYTY - (TTY )]
So
tan? ¢ 1 — cos? ¢

cos? ¢
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YTy - (TIY)YTY — (TTY Y] - (TTY NITY) - (T T (Y TY )P
[(TFY)TTY) - (T TV IV
[YTAY — (TFAY)2IlYTAY — (T AY)?] - [(TTAY)(TT AY) — (3T AT (YT AY)]?
[(TTAY)(TTAY) - (TT AT)(Y T AY )2

NUM
DENOM"®
Now we will simplify this expression to express tan? ¢ as a function of the sum kg + k;. By
(5.3) and (5.6), which is equivalent to (5.10),

YTAY = (3 -Yo)TA(Y: - Yo)
YT AY: + YL AY, — 2YF AY,

= K2+ k2 + 2kok,

= (ko + k1)
Substituting in ¥ = Y7 — Yo = X7 — X — koTp — k371 and regrouping, we obtain

NUM = (ko +k1)? {-2(T§ ATy)(XT ATo)(XT ATo) — (XTATy)? — (X¥ ATo)?

~2[1 — (T3 AT1)’)(X3 AX1)
+2(1 — (T3 AT’ NXT AKXy + koXT ATo — ka XT AT + koks (1 — TF AT1)}}
(ko + k1 )2a,

where
a = —20TATXTATYXT ;) - (XTATY)? — (XT AT,)?
—2[1 - (TJ ATy *|(XT AXY).

Note that the last term drops out due to (5.10).

Now consider the denominator DENOM. Substituting in Y = X, — Xo — koTo — k17T
and simplifying yield

VDENOM = —(XZATWXXTATo) + ko[TT AXo — (TT AT (TT AX})]
+hi[-TF AXy + (TT ATV)(TT AXo)] + koki[1 — (TT ATY)J2.

Using (5.10), we substitute
kok:(1 —Tg ATY) = —~XTAX, — koXTATo + k1 XT AT,
for the last term in the above expression and obtain

VDENOM = —(XJATW\)W(XTATo)- (1-TFAT)(XTAX,)
+(ko + k1 )(XT AT, — XT AT)
= A+ (ko+ k1) (XT AT, — XT ATy),
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where
A = (XTAX))TTATy - 1) ~ XT ATY(XT ATy).

S
° AT lf JM a

t 2 4 - = -
SN CT DENOM ~ [Af(ko+ k1) + XTAT, — XTATOP

Since || is not greater than 7 /2, to minimize ¢ we just need to minimize tan? ¢ over
%o + k3. That is, to maximize |A/(ko + k1) + p|, where p = XJ AT, — X{AT,. Now we
show that for this maximum to be attained it is necessary (but not sufficient) that a local
minimum of |ko+ k1| 1s attained. First, the maximum |A/(ko+ k;) + p| is a local maximum.
When A/(ko + k1) and p are of the same sign or Aj(ko + k1) and p are of opposite signs
(including p = 0) and |{A/(ko + k1)| > |pl|, obviously, |ko + k1| is a local minimum if and
only if |A/(ko + k1) + p| is a local maximum; if A/{k¢+ k1) and p are of the opposite signs
and [A/(ko+ k1)| < |p| then |A/(ko+ k1) + p| can not be the maximum for simply choosing
another pair of k{ and k] such that (ko + k1)(k§ + k7) < 0, which is always possible as can
be seen in Fig. 5.4.1, we would have

|A/(ko + k1) + pl < |pl < |A/(Kkp + K1) + p)I,

which is a contradiction.

In the proof of Theorem 5.4.4 it is shown that the straight line kg + k7 = 0 in the ko-k;
plane does not intersect the hyperbola (5.10) (see Fig. 5.4.1). That is, the straight line
ko + k1 = O lies between the two branches of the hyperbola. Therefore kg + &7 # 0 and the
two local minima of |kg + k1| are attained on the two branches of the hyperbola (5.10). It
is clear that |kg + k1| has no maximum over the hyperbola.

Let S(kp} == ko + ki. Solving (5.10) for k; in terms of ko yields
XTAX, + koXT AT,

ko) = ko < . 6.2
S(ko) = ko 3 XZT AT, + ko(TT ATy — 1) (6:2)
The two solutions of dS(k¢)/dko = O are easily found to be
-XJAT + VA
k(l) = 0 ! 3
° TIAT, -1 (6-3)
and TAT. — VA
P = ZXe AT - VA (6.4)
and the corresponding k;, solved for from (5.10), are
T P
kg;) _ Xi ATy + VA (6.5)

TSI AT, -1
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and
L2 _ XTAT, - VA
T TTAT, ~1

The fact that A > 0 is indicated by the remark following the proof of Theorem 5.4.4.

(6.6)

The followirg theorem summarizes the procedure for determining the minimum twist
angle solution ko, k;.

Thecrem 6.1.2: Using the above notation, if

S(k‘”) I |S(k(2’ pl’

then the solution (ko, k1) that minimizes the twist angle ts (k(l) k(])), otherwise (kg, k1) = (k(z)

E).

The hyperbola determined by F(ko,k1) = 0 (see Eqn. (5.15)) is a translation of a
hyperbola kok; = r > 0. As indicated in the proof of Theorem 5.4.4, this hyperbola does
not intersect the straight line ko + k; = 0. On the other hand, we know that the two local
minimal twist solutions (k(l) . kgl)) and (k((,2) , kgz) ) are two points on the two branches of the
hyperbola. Since in (6.3) and (6.5) the denominator T§ AT} — 1 < 0 for reguiar data, it
follows that k{!" < k¥ and k{") < k{?, that is (8", £{") must a point on the left branch of
the hyperbola. Thus at least one of kf,l) and kgl) is negative. Since a negative kg or k; gives
a major arc in a biarc, which is undesirable for its relatively large winding, in applications
we may want to consider only the other solution (k((f), kgz)) given by (6.4) and (6.6), which
has more chance to be a biarc consisting of two minor arcs. Experiments showed that this
is not always the case, i.e. for some regular data (kf,”,k?)) is not in the first quadrant of
the ko-k; plane. The situation is illustrated in Fig. 5.4.1, i.e. no point of the hyperbola
F(ko,k;) = 0 in the first quadrant attains a local maximum distance to the straight line
ko + k; = 0. So if only minor arcs can be used for constructing biarcs, the minimum twist
biarc problem may not have a solution. In the following discussion by the minimal twist
biarc we will mean the biarc with the joint determined by k((,z) and k?) given by (6.4) and
(6.6).

In the next section we will see that the minimal twist biarc tends to give a large difference
between the two radii and a large winding compared with the equal chord biarc.
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6.2 Evaluation of three choices

In Section 6.1 two simple formulae have been derived for computing the joint of a spherical
biarc interpolating regular data D on S9~!. Together with the solution ko = k; > 0 given
in (5.16), there are now the following three choices of joints available:

(1) Choice 1: The equal chord biarc:

oo —XTAX,
°T XTATo + VA’
~XTAX,
k = 0 ) 6.7
VT OXTAT, 1 VA (6.7)

where
A = (XTAX))TTAT, — 1) - (XTAT)(XT ATo).

(2) Choice 2: The equal % biarc:

—b4+ VI =
ko = Ky = b+ Vb 4ac, (6.8)
2a
where
a=1-TJAT, b=XTATo - XJAT), c¢=XTAX,.
{3) Choice 3: The minimal twist biarc:
i — X3AT + VA
°T T1-TTAT,
—xT
by = X7 AT;+ \/Z’ (6.9)

where A is defined as above.

In this section these three choices for kg, k) are used to compute the joint of a biarc to
interpolate randomly generated data on $2, and the ratio of the radii of each biarc is com-
puted. Each choice will then be judged by the statistics thus obtained. Our experimental
results suggest that the equal chord biarc is the best choice of the three. In the following

t:)e design of the experiment is explained; then the experimental results are presented and
analyzed.

Let 79 and 7, be the radii of the first and second arcs of a spherical biarc interpolating
I = {Xo,To, X1,T1}, i.e. the arc starting at X and the arc ending at X,. The random
~aria ole that is observed in the experiment is K = min{ro/71, 71/70}, instead of the ratio
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ro/71. R will be called the radius ratio of the biarc. Note that the range of the radius ratio
R is [0, 1], and R is an upper bound for the smaller radius since the largest circle on S?
has radius 1. When R is close to 1, the two radii are close and a spherical biarc wit' .ir
shape is expected.

The following explains why the ratio ro/7; is not observed. Suppose for a biarc we have
ro/T1 = 100 and for another biarc we have rg/r; = 0.01. These two ratios represent the
same fact as far as we are concerned; that is, the radius of one arc is 100 times greater than
that of the other. But when we compute the mean or the standard deviation of ro/7,, the

above two values obviously yield different contributions, which is an undesirable resuilt.

Three experiments have been performed to compare the above three choices for the joint.
In each experiment up to 50000 sets of data D = {Xp,Tp,X1,T1} are randomiy generated
on §2 C E3. For each of these 50000 data sets the three formulae listed at the beginning of
this section are used to calculate three joints of biarcs. Then the radius ratio R is computed
for each of the three biarcs, with the three radius ratios being denoted by R;, R, and Rs.
Our intention is to find out in the worst case how small the radius ratio resulting from each
formula can be, and on average which formula gives the largest radius ratio. We are also
interested in the ratio of the arclength of a biarc to the distance | XpX1] and the ratio of the
smaller radius of a biarc to [ XoX:|, because the former measures the winding of the biarc
and the latter tells whether or not the biarc has a sharp turn wien the distance |X¢X}4] is
small. In the three experiments the data D = {Xj, Ty, X1,T1} are such that | XoX,]| is not
restricted, | XoX;| > 0.4, and | XoX;| < 0.1, respectively.

The purposes of these three experiments are as follows. In the first experiment general
observations on the distributicns of radius ratios R;, R, and R3 were made. As indicated
in the last section a very small radius ratio alone does not in general imply that the biarc
has a sharp turn. So in the second experiment random data were generated such that
| XoX,1] > 0.4, in which case we can tell that a biarc has a sharp turn if its radius ratio
is very small. In order to investigate the case where the two points X¢ and X, are very
close on S2, in the third experiment the data were generated such that |XoX;| < 0.1. In
this case, there is a sharp turn on a biarc if the ratio of the smaller radius of the biarc to
the distance | X¢X;| is very small, and a biarc has an excessive winding if the ratio of the
arclength of the biarc to | XoX4| is very large.

The fact that the experiments were carried out only on $2? does not affect the generality
of the results, since given noncoplanar regular data D on S9! C E9, all the spherical
biarcs interpolating D are contained in the 3-dimensional affine manifold determined by D,
therefore contained in a 2-dimensional sphere on §4-1.
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Random data D = {Xo, 70, X1,71} are generated as follows. In the first experiment,
to obtain a random point oun §2, first a random point that is uniformly distributed in the
cube [—~10, 10}® is generated, and then this point is projected onto the sphere S? from the
center of the sphere. To generate a random tangent direction T' = [to,t1,22,0]T at a point
U € S2, to and t; are generated as uniformly distributed numbers in [-10,10], and t; is
determined such that UT AT = 0 is satisfied, where 4 = diagl, 1, 1, ~1]. Then T is
normalized so that 7T AT = 1. In this way X and X; and Tp and T, are generated. In the
second experimert once Xp is obtained, X is randomly generated subject to the condition
that | XoX;| > 0.4. In the third experiment the data are generated similarly.

In each experiment the means and standard deviations of the three radius ratios R, R>
and R3 were recorded, denoted by mean_R;, mean_R,, mean_R3, stdv_R,, stdv_R,, and
stdv_R3, respectively. These data are shown in Table 6.2.1, 6.2.4, and 6.2.7 for the three
experiments. Each row is the observed means and standard deviations for the sample of
indicated size, from 100 to 50000. Also recorded are the minima of the radius ratios over
the sample, denoted by min_R;, min_R;, and min_R3, which are shown in Table 6.2.2,
6.2.5, and 6.2.8 for the three experiments. Finally the maxima of the ratio of the arclength
of a biarc to the distance [X¢X;|, denoted by maz._ad;, i = 1,2,3, and the minima of the
ratio of the smaller radius of a biarc to | XoX|, denoted by min_rd;, i = 1;2,3, are listed
in Tabie 6.2.3, 4.2.6, and 6.2.9 for the three experiments. In all these tables, a sampie of
certain size is a subset of a sample of a larger size.

In the first experiment, in Table 6.2.1, note that mean_R; is significantly greater than
mean_R; and mean_R3; also the standard deviations indicate that R; has less fluctuation
than R; and R3. The latter may be in part due to the fact that mean_R, is closer to the
boundary of the range [0, 1] than meen_R2 and mean_R3. Table 6.2.2 shows that the radius
ratios R, and R3 are more inclined to give extremely small values than R;. For example,
for the sample of 50000 data, min_R; = 0.023410, min_R; =~ 0, and min_R3 = 0.000002.
Finally, Table 6.2.3 indicates that, as expected, on average the second choice gives the
smallest arclength to distance ratio, i.e. the smallest winding in the worst case among the
three biarcs, and the equal chord biarc gives the second smallest winding, while the minimal
twist biarc gives the largest winding. From the min_rd;, ¢t = 1,2, 3, we see that unlike the
equal chord biarcs the other two biarcs do have very sharp turns in the worst case.

In the second experiment, the data D = {Xo,To, X1,T1} are such that |[XoX,| > 0.4.
From Table 56.2.4, on average the first choice still gives the largest radius ratio. From Table
6.2.5, for the sample of 50000 data, min_R; = 0.000004 and min_R3 = 0.000020, so we
can conclude that in the worst case the second and third choices can give a biarc with an
extremely sharp turn on it even when |X.X,| is relatively large; this is also confirmed by
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[ size of sample | mean_R, | mean_R> | mean_R3 | stdv_R; stdv_Ro | stdv_R3
160 0.797128 | 0.566336 | 0.566900 | 0.186403 | 0.311543 | 0.304779

200 0.786460 | 0.599301 | 0.581998 | ©.194265 | 0.299317 | 0.310807

500 0.791816 | 0.580340 | 0.581721 | 0.187589 | 0.304658 | 0.301960

1000 0.790914 | 0.573618 | 0.576835 | 0.194869 | 0.307181 | 0.304135

2000 0.798489 | 0.570528 | 0.576780 | 0.188689 | 0.305348 | 0.299257

5000 0.797896 | 0.565220 | 0.573587 | 0.190352 | 0.305769 | 0.300509
10000 0.796198 | 0.564235 | 0.568783 | 0.191140 | 0.304847 | 0.301012
20000 0.797505 | 0.561132 | 0.569268 | 0.191134 | 0.306732 | 0.301589
50000 0.799047 | 0.564019 | 0.571974 | 0.1856523 | 0.307232 | 0.302413

Table 6.2.1 mean_R; and stdv_R;: The means and standard deviations of the three radius ratios
R;,i=1,2,3, for random data on S2.

size of sample | min_Ry | min_ Ry, | min_Rj
100 6.187908 | 0.000086 | 0.007883

200 0.187908 | 0.000096 | 0.006189

500 0.172216 | 0.000096 | 0.003759

1000 0.115345 | 0.000096 | 0.000941
2000 0.115345 | 0.000096 | 0.000014
5000 0.078263 | 0.000096 | 0.000014
10000 0.070873 | 0.000096 | 0.000014
200090 0.023410 | 0.000038 | 0.000014
50000 0.023410 | 0.000000 | 0.000002
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size of sample maz._ad; maz.ad; maz_adz | min_.rdy; | min_rd, | min_rds
100 8.383589 4.458478 6.520546 | 0.273540 | 0.000298 | 0.004565

200 24.825400 | 24.776892 24.776580 | 0.253849 | 0.000298 | 0.003837

500 24.825400 | 24.776892 24.776580 | 0.253849 | 0.000298 | 0.002059

1000 24.825400 | 24.776892 77.002241 | 0.253849 | 0.000298 | 0.000523
2000 29.425547 | 29.361194 77.002241 | 0.251326 | 0.000298 | 0.000008
5000 30.812709 | 29.361194 77.002241 | 0.251080 | 0.000236 | 0.000008
10000 86.054463 | 53.528423 88.426479 | 0.250883 | 0.000076 | 0.000008
20000 86.054463 | 53.528423 | 104.138630 | 0.250883 | 0.000022 | 0.000008
50000 119.495479 | 96.685922 | 174.438704 | 0.250883 | 0.000000 | 0.000001

Table 6.2.3 maz_ad; and min_rd;: The maxima of arc-distance ratios ad; and the minima of

radius-distance ratios rd; of the three biarcs for random data on S%,i=1,2,3.

the min_rd;’s in Table 6.2.6. Note that since the largest circle on S? has radius one, the
radius ratio actually gives an upper bound on the smaller radius of the biarc. So when
R; = 0.000004 and R3 = 0.000020, the two corresponding arcs with the radii < 0.000004
and < 0.000020, respectively, are too small relative to the distance | XpX;| > 0.4.

In the same setting we have min_R; = 0.137636 for the equal chord biarc, which is
considerably large compared with min_R, and min_R3. In fact, we can show that with
|Xo0X1| > 0.4 no very small radius ratio can be generated by the equal chord biarc. For, let
! = |{XoXi| £ 1and d = |[MXy| where M is a point on $2 such that |M X,| = |M X,| and
|M Xol is the minimum. Then, referring to Fig. 6.2.1, it is straightforward to obtain

1-—
2sin(6/2) = 2\/———;19

_ 2\/1—\/1—si1126' _2\/1—\/1—-(1/_2)_2
= 5 = 5 .

d =

Since I > 0.4, d > 0.201018. Let the two radii of a biarc interpolating D be rg and 7 and,
without loss of generality, assume 7o < 7. Let Z, with |ZX| = |Z X}/, be the joint given
by choice 1. Using the triangle inequality it is clear that 2rq > |ZXo|> |[M Xo| = d, and
71 < 1. Then the radius ratio

d
Ry =22>2 0.100509.
Tl 2

Therefore min_R; > 0.100509, which conforms with the min_R; in Table 6.2.5.

Finally, the maz_ad;, i = 1,2,3, in Table 6.2.6 support the same conclusion derived
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Figure ©.0 .

from Table 6.2.3. And the min_rd;, ¢ = 1,2,3. onfirm again the fact that very sharp turns
can be found in biarcs given by the choices 7 .nd 3.

The results of the third experiment are resented in Table 6.2.7, 6.2.8, and 6.2.9. First
of all, Table 6.2.7 shows that in this cass i.e. when the Xg and X; are very close to
cach other, there is =~* ~~ much differen among mean_R;, 7 = 1,2,3, as shown in the
first two experiment: Therefore wi: conciude that only when the distance | XpX;| is not
very small, the equal chord biarc tends to give a greater radius ratio than the other two
biarcs, while when |XoX;]| is very smali, mean .~ s about the same as mean_R3, and
mean_R, is the smallest. In Table 6.2.8, we see : 1at extremely small radius ratios can be
observed in all the three choices of the joints, but sincs | XX;]| is small in this case, this
does not indicate that the biarc with the shown small radius ratio necessarily has a sharp
turn. Table 6.2.9 contains the most significant information about the shape of the biarc.
From the maz_ad;, i = 1,2,3, we see that the second choice gives smallest windings in the
worst case as expected; actually, the same ordering of performances of the three choices
with respect to the winding are kept here as in the first two experiments. Finally, from the
min_rd;, ¢ = 1,2,3 in Table 6.2.9, note that even relative to the distance |X¢X}]|, choices 2
and 3 still give biarcs with an arc of extremely small radius. But at the same time it seems
that min_rd; is bounded below by 1/4. In fact, it is easy to see that this is indeed the case,
since 4r > ! follows from the triangle inequality, where r is the smaller radius of the biarc

and | = [ X¢X|. Hence, relative to | X¢X;]| the two radii of an equal chord biarc can not be
very small.

Based on the above experiments and analysis we conclude that, if the sharp turning of
a biarc is the major concern in the shape control, the equal chord biarc gives better results
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size of sample | mean_R, | mean_R; | mean_R3z | stdv_R; | stdv_Ry | stdv_Rs
100 ¢.766125 | 0.546021 | 0.530648 | 0.210087 | 0.301873 | 0.320598

200 0.792935 | 0.557503 | 0.553674 | 0.191862 | 0.305203 | 0.321075

500 0.798240 | 0.577798 | 0.567308 | 0.181221 | 0.303723 | 0.318409
1000 0.803513 | 0.581572 | 0.566898 { 0.181370 | 0.303017 | 0.314929
2000 0.810874 | 0.577990 | 0.574894 | 0.174460 | 0.303608 | 0.305918
5000 0.807002 | 0.573175{ 0.573695 | 0.178951 | 0.305068 | 0.303168
10000 0.807611 | 0.572483 | 0.574661 | 0.179088 { 0.306292 | 0.302371
20000 0.806647 | 0.569364 | 0.571955 | 0.179189 | 0.304894 | 0.302311
50000 0.807685 | 0.569445 | 0.571950 | 0.179042 | 0.305278 | 0.303046

Table 6.2.4 mean_R; and stdv_R; with |XpX;} > 0.4: The means and standard deviations of the
three radius ratios R;, i = 1,2, 3, for random data on S2? for which | XoX;| > 0.4.

size of sample | min_R, min_ Ry | min_R3
100 0.254670 | 0.003057 | 0.000594
200 0.167321 | 0.0r1391 | 0.00059:1

500 0.167321 | 4G.001391 | U.000594 |
1600 0.167321 | 0.001391 | 0.000594
2060 0.153422 | 0.001291 | 0.060524
5000 0.137636 | 0.000461 | 0.000227
16000 0.137636 | 0.000086 | 0.000227
20090 0.13763€ | 0.000054 | 0.000026
50000 0.137636 | 0.000004 | ¢.000020

Table 6.2.5 min_R; witiz {XoX,;| > 0.4: The minima of the three radius ratios R;, i = 1,2, 3, for
random data on S2 for which |XoX| > 0.4.
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size of sample | maz_ad; maz_ad, maz_ads | min_rd; | min_rdy, | min_rds
100 8.383589 7.389397 | 12.435508 | 0.253684 | 0.002126 | 0.000353

200 8.383589 7.389397 | 12.435508 | 0.253684 | 0.00i118 | 0.000353

500 9.703329 8.486590 | 12.435508 | 0.253458 | 0.001118 | 0.000353

1000 13.491321 | 10.969571 | 12.435508 | 0.253458 | 0.001118 | 0.000353
2000 13.491321 | 11.290834 | 14.284111 | 0.253166 | 0.001027 | 0.000353
5000 13.644763 | 12.906835 | 14.284111 | 0.252841 | 0.000236 | 0.000127
10000 13.983047 | 13.177054 | 14.732622 | 0.251967 | 0.000045 | 0.000127
20000 14.727013 | 14.711459 | 14.732622 { 0.251967 | 0.600031 | 0.000014
50000 15.504469 | 14.711459 | 14.732622 | 0.251946 | 0.000002 | 0.000014

Table 6.2.6 maz_ad; and min_rd; with [XX,;| > 0.4: The maxima of arc-distance ratios ad;

and the minima of radius-distance ratios rd; of the three biarcs for random data on S? for which

[XoX1]>04,i=1,2,3.

size of sample | mean_R, | mean_R> | msan_Ra | stdv_R; stdv_Ro | stdv_Rg3
100 0.513139 | 0.339255 | 0.508100 | 0.286391 | 0.299262 | 0.281459
200 0.518718 | 0.360062 | 0.514996 | 0.292357 | 0.306163 | 0.290297
500 0.535859 | 0.382144 | 0.534002 | 0.298900 | 0.313135 | 0.298035
1000 0.544639 | 0.395551 | 0.542258 | 0.299421 | 0.315552 | 0.299293
2000 0.558113 | 0.405809 | 0.555884 | 0.297544 | 0.318138 | 0.297370
5000 0.555589 | 0.400917 | 0.553016 | 0.299202 | 0.316001 | 0.299083
1007 . 0.555950 | 0.398597 | 0.553320 | 0.299415 | 0.314910 | 0.299447
2000y 0.562228 | 0.400922 | 0.559324 | 0.299370 | 0.316738 | 0.299587
50000 0.561702 | 0.401452 | 0.558801 | 0.299364 | 0.316189 | 0.299633

Table 6.2.7 mean_R; and stdv_R; with |X(X;| < 0.1: The means and standard deviations of the

three radius ratios R;, i1 = 1, 2, 3, for random data on S? for which |XoX,| < 0.1.
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size of sample | min_R, nun_Re | min_Rs
100 0.024499 | 0.001649 | 0.024449

200 0.0244939 | 0.000395 | 0.024449

500 0.007879 | 0.000036 | 0.004666

1600 0.005920 | 0.000036 { 0.001353
2000 0.003982 | 0.000036 | 0.001003
5000 0.002822 i 0.000036 | 0.000240
10000 0.002822 | 0.000036 | 0.000138
20000 0.001051 | 0.000036 | 0.000124
50000 0.001051 | 0.000008 | 0.000040

Table 6.2.8 min_R; with |[ApX;| < 0.1: The minima of the three radius ratios R,, i = 1,2, 3, for
random data on S? for which |[ApX;| < 0.1.

size of sample mazr_ad, maz_ad; maz_adz | min_rdy | min.rd, | min_rd;
100 260.269499 24.524743 644.807746 | 0.261847 | 0.009274 | 0.014089

200 795.462196 73.246363 644.807746 | 0.255050 | 0.001110 | 0.014089

500 795.462196 256.545119 | 6312.642710 | 0.251316 | 0.000640 | 0.003689

1000 795.462196 | 544.065434 | 6312.642710 | 0.250673 | 0.000640 | 0.001055
2000 795.462196 | 544.065434 | 6312.642710 | 0.250052 | 0.000122 | 0.000512
5000 1448.419133 671.653572 | 6312.642710 | 0.250018 | 0.000122 | 0.000143
10000 2213.575014 | 1003.793661 | 6312.642710 | 0.250018 | 0.000101 | 0.0¢™)74
20000 2213.575014 | 1003.793661 | 6312.642710 | 0.250008 | 0.000101 | 0.000074
50000 2213.575014 | 1511.330495 | 8210.653188 | 0.250002 | 0.000010 | 0.000025

Table 6.2.9 maz_ad; and min_rd; with |XoX;| < 0.1: The maxima of arc-distance ratios ad;

and the minima of radius-distance ratios rd; of the three biarcs for randomn data on S? for which
| XoX1]<0.1,i=1,2,3.
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than the second and third choices, in the sense that it never gives an extremely sharp turn
relative to | XoX;| and on average it gives the larger radius ratio than the other two choices
when | XoX;/| is not very small. One caution about using the equal chord biarc is that when
the interpolated data is not well behaved (cf. the next to last paragraph in Subsection
6.1.2), the biarc may have large winding.

The mair .- .=tn that the second choice of the joint is not very ideal is that the condition
ko = k1 >~ * .+ not have any direct relationship with the radii of the two arcs of the biarc,
except th~. :nsures that the two arcs are minor. As for the i(hird choice, which also tends
to give a very sharp turn on a biarc, it should be realized that the original goal of this choice
is to give a minimal twist biarc. Therefore, we can only conclude that minimizing the twist
and minimizing the difference of the two radii of a spherical biarc are two conflicting goals
for some regular data. In an application where the minimal twist is important, the third
choice certainly gives the only acceptable biarc.

Fig. 6.2.2 illustrates the biarcs given by the three choices of the joint discussed above
interpolating different data. In (a) and (&), the three biarcs all are satisfactory interpolants;
they have the same shape in (a) but different shapes in (4). In (¢) the minimal twist biarc
has a large winding, while in {d) the equal chord biarc has a large winding. In (e) the
minimal twist biarc has a sharp turn, and in (f) the equal k biarc has a sharp turn.

6.3 Interpolation of a point sequence

In this section an algorithm is presented for interpolating a point sequence on S$9-1 using
spherical biarcs. The idea of the algorithm is to determine the tangents at the interpolated
points so that the shape of the data is preserved. The shape of the data can be regarded as
the shape of the spherical polygon obtained by connecting consecutive data points X; and
Xi41 by the geodesic line on the sphere which is the minor arc on the great circle on S9!
that passes through X; and X;;,. Here we assume that X; and X, are not antipodal for
otherwise the geodesic line is not uniquely defined.

Algorithm 6.3.1: The input is a2 point sequence {X;}~., in normalized form on S9!,
d > 3 and n > 3. Assume that no two consecutive points are antipodal. Let C; be the miuor
arc connecting X; and X;;; on the great circle of §¢-1 passing through X; and X;;;, with
its direction being from X; to X,4;. Let T} be the tangent direction of C;_; at X;. Let
T? be the tangent direction of C; at X;. Let d; = arccos(XT X4, — 1), i.e. the spherical
distance between X; and X4y, j = 1,2,...,n — 1. Note that the X;’s are homogeneous
coordinates in normalized form.
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(a) (b)

(¢) (d)

(e) (f)

Figure 6.2.2 Interpolations by the three biarcs: Different data configurations interpolated by
the three spherical biarcs. The biarcs labelled 1, 2, and 3 are the equal chord biarc, the biarc with

ko = k, > 0, and the minimal twist biarc, respectively.
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(a) (b)

Figure 6.3.1 Interpolation of data on S? by Algorithm 6.3.1.

1. The tangent direction T; at X is defined to be

T1 — T;",,
d;i1 T2 + d;T?
i : L, T=2,..., -1;
SR v v N
T. — T

2. Apply the spherical biarc to interpolate D; = {X;,T;, Xi+1.Ti41}, ¢ = 1,...,n — L.
When D; is regular, use the equal chord biarc where the parameters kg and %; are
given by (6.7). When D; is singular, use an equal chord biarc with the joint Z
being any point in (J — {X;, Xi31})( L, where J is as defined in Theorem 5.3.10 and
L = {X](X; — X;41)TAX = 0} is the perpendicular bisecting hyperplane of Xy and
X, in E? (cf. Eqn. (6.1)).0

Fig. 6.3.1 illustrates two examples of interpolating data points on S5? using Algerithm
6.3.1. In Fig. 6.3.1 (a) the distances between consecutive data points are quite uniform and
they are not uniform in (b).

In Algorithm 6.3.1 the equal chord biarcs are used as a result of the study in Section 6.2.
As an application requires, biarcs determined by other criteria can also used in Algorithm
6.3.1. We feel that the determination of appropriate tangent directions at the interpolated
data points is more important and more crucial to the global quality of the resulting spline
than the choice of joints that affects the local shape. Further research is needed in this
direction. For instance, how should the tangent directions at the data points and the joints
be chosen so that the resulting spline satisfies a certain global optimal goal?
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6.4 Interpolation of unit quaternions for orientation mod-
eling

In this section we discuss the application of spherical biarcs for interpolation in the unit
quaternion space. This problem has applications in computer animation modeling object
orientation and other aspects of computer graphics [PleS89]. We will use spherical biarcs
to interpolate a sequence of unit quaternions, and use the difference method discussed in
Chapter 2 to evaluate an equidistant sequence of in-between quaternions on the spherical
biarc spline curve. As a result, only 4 multiplications and 8 additions/subtractions are
needed to compute an in-between quaternion on the interpolating curve, which is a sig-
nificant speedup over other existing schemes. For instance, in [Sho87] the Squad curve is
proposed, for which 31 multiplications and several table look-ups are necessary to compute
an in-between quaternion.

6.4.1 About quaternions

The use of quaternions for representing object orientations has been known since the relation
between quaternions and rotations in E3 was discovered by Cayley (see [Ple89]). Tie
application of this idea in computer graphics has been explored since 1985 [Sho85, Sho&T,
PleB9]. Quaternions can be represented as

g=w+zt+yj+ zk,

where w,z,y, z are real numbers, and i,j,k are the imaginary units for the quaternions.
Quaternions form a norcommutative ring with zddition like that for complex numbers, and
multiplication governed by

i2 = P=k%=-1,
jk = =kj=1,
ki = —ik=],
i = —ji=k.

The norm of a quaternion is defined by
lgl = (w? + 2% 4+ y* + 2%)1/2,

and the normalization ¢/|g|, when ¢ # 0, gives a unit guaterion, i.e. a quaternion with unit
norm. Unit quaternions can be identified with unit vectors in E?%, or points on the unit
sphere S C E4.
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Like 3 x 3 orthogonal matrices M with det(M) = 1, unit quaternions can be used to
represent rotations in E3. A rotation around the unit direction vector [u, v, w]? through
the angle @ can be represented by the unit quaternion

g = cos(@/2) + sin{0/2)(ui + vj + wk).

And conversely, any unit quaternion can be written uniquely in the above form with -7 <
# < 7, anc this represents the corresponding rotation. Since

—q = cos[(2r — 6)/2] + sin[(27x - 8)/2](—ui — vj — wki,

and the rotation around the axis [—u, —v, —w]T through the angle 2 — 8 |s the same as the
rotation around the axis [u, v, w] through the angle 6, the two antipoda’. unit quaternions
—q and ¢ represent the same rotation.

An important fact about the above correspondence is that the product of two unit
quaternions gives the same rotation as the composition of the two rotations corresponding
to the two original quaternions. This property enables one to use quaternions to formulate
and solve problems involving rotations in E3. Since a unit quaternion contains only four
dependent parameters, it provides a more compact tool to describe a rotation ihan the
orthogonal matrix. The foilowing fact is also responsible for the application of unit quater-
nions in modeling object orientation: two orientations of an object in E® differ merely by a
rotation in E3, ignoring any translation. Therefore unit quaternions can be used to represent

orientations of an object in E2 with respect to a reference orientation of the object.

Given a unit quaternion ¢ = w + zi + yj + zk, the corresponding orthogonal matrix is

w? + 2% — y? - 2 2zy — 2wz 27z + 2wy
2zy + 2wy w? ~z?+y? - 22 2yz — 2wz .
2zy — 2wy 2yz + 2wz w2 —z?—y2 422

Conversely, using combinations of entries in a rotation matrix, one can extract the corre-
sponding quaternion. A procedure that avoids numerical exceptions for the conversion from
a rotation matrix to a pair of antipodal quaternions is given in [Sho85]. For more properties
of quaternions, the reader is referred to [Alt86, Sho85, Ple89].

6.4.2 Orientation interpolation problem

In animation the following problem arises. Let the unit quaternion space be denoted by U.
To model the gradual change of the orientation of an object in E2 over a time interval, first
the orientations of the object at a seric: «i key-frames, called key-frame orientations, are
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represented by a sequence of quaternions {g;} C ¢/, which are called key-frame quaternions.
Then a continuous curve in U is sought to interpolate {g;}. Finally, a sequence of unit
quaternions on the interpolating curve, which are called in-between quaternions and are
usually denser than {g;}, are computed to represent orientations of the object in a number
of consecutive frames between the key-frames, called in-between frames. Because I/ can be
identified with the unit sphere §3 C E*, the above problem is equivalent to designing a
curve to interpolate a sequence of data points {g;} on S3.

There have been several solutions proposed in the literature to solve the above problem.
The simplest solution is to use the so called Slerps on S3 to connect successive points g;
and ¢;;+1, where the Slerp is a minor arc on the great circle of $3 that passes through g¢;
and g;;1. This solution merely provides a G° interpolating spline curve, i.e. the curve is
continucus. The evaluation of Slerps is discussed in [Sho85, Sho87].

Usually, a smooth interpolating curve, which is understood to be unit tangent vector
continuous, or G! continuous, is desired in applications, because a kink on the interpolating
curve means an abrupt change of the rotation axis. Note that by a simple reparameterization
a G! curve can be made to be C1. Now the problem is to design a G! interpolating curve in &
while minimizing the cost of computing in-between quaternions. Shoemake [Sho85] proposes
a spherical version of the cubic Bézier curve using the deCasteljau recursive construction,
replacing the six linear interpolations by six Slerps. The resulting curve is known to have
only an exponential parametric expression, and an in-between quaternion is computed by
evaluating six Slerps. The cost of computing one in-between quaternion is more than
60 multiplications. Later, Shoemake [Sho87] gives an analogue of Boehm’s quadrangle
construction of cubic curves, called Squad, which requires three Slerps to evaluate a point
on the curve. In [Ple89] spherical analogues of the cubic cardinal spline and the tensioned
B-spline curve are used. These curves are defined by subdivision procedures and no explicit
expressions have been obtained. In these schemes the cost of computing one in-between
quaternion is about the saine as for the Squad. Common features of the above schemes
are that the curve is constructed directly on S3 and that the computation of in-between

quaternions is based on Slerps, which are relatively expensive to compute.

A different approach is taken in [GeR91], in which the parametric Hermite cubic in-
terpolant is used to interpclate two points and two end tangents on S3, and then the
interpolant is normalized onto the sphere S3. The advantage of this approach is that vir-
tually any known interpolating curve scheme can be used to do the interpolatica and then
followed by the necessary normalization, thus providing more flexibility in controlling the
shape of the curve cor achieving higher continuity. The normalization step requires an extra

square root and 8 extra multiplications/divisions in computing each in-between quaternion.
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If points on the interpolant are obtained using forward differencing, this method is expected
to provide a considerable time improvement over the approaches based on Slerps.

6.4.3 Spherical biarc solution

Now we explain how spherical biarcs are used to interpolate key-frame quateruions, thus
giving 2 smooth interpolation of orientations. The spherical biarcs given in the Bézier form
are in general only G! continuous. In our algorithn: the arclength parameterization is used
to make a spherical biarc C! continuous, and the difference method introduced in Chapter
2 is then used to compute inbetween quaternions on it. Simple examples are given to show
the effects.

Initially, the positions (determined by translations) and orientations (determined by ro-
tations) of an object are specified in a number of key-frames. It is required to interpolate
these positions and orientations so that the object can smoothly change its position and
orientation between the key-frames. In our examples the positions in key-frames are inter-
polated by a cubic B-spline curve. Key-frame orientations are first converted to a sequence
{g:}7, of unit quaternions. As there are two antipodal unit quaternions on §3 C E* corre-
sponding to the same orientation, after ¢; has been determined, the subsequent quaternions
are chosen in such a way that among the two candidates, ¢;+; is the one that has the
shortest distance to ¢; on S3, 7 > 1; a tie is broken arbitrarily. Then Algorithm 6.3.1 is
used to generate a spline curve interpolating {¢;}*,, and a required number of in-between
quaternions on the curve are computed using the difference method (2.12). Finally the
in-between quaternions are converted to rotation matrices that determine the consecutive
orientations of the object in in-between frames.

In Fig. 6.4.1 two examples of orientation interpolation by spherical biarcs are shown.
The object is a frustum of a pyramid placed in space and two different paths for positions
are used in Fig. 6.4.1 (e) and (b). The key-frames are marked by e.

In a sophisticated animation system the sampling of points on the cubic spline curve
interpolating key-frames positions and in-between quaternions on the spherical biarc spline
curve interpolating orientations should be determined by some animation parameters. The
sampling is simplified in the above examples, in which the number of points sampled be-
tween two key-frames is approximately proportional to the distance between the key-frame
positions. Moreover, the in-between quaternions on a single circular arc of the spherical
biarc spline are assumed to be equidistant, which makes it possible to apply the difference
method to compute the in-between quaternions.
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Figure 6.4.1 Orientation interpolation: Two examples of interpolating object orientations by
sphorical biares. The key-frames are marked with o,
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6.4.4 Comparisons

Now we compare all the methods mentioned so far. These include the spherical analogue
of the cubic Bézier curve [Sho85], the Squad [Sho87], the spherical analogues of the cu-
bic cardinal spline and the tensioned B-spline [Ple89], the normalized Hermite interpolant
[GeR91], and the spherical biarc. All these methods lead to G! interpolating splines on S3
and provide local control. The main difference is in the efficiency of computing in-between
quaternions.

In the spherical analogue of the cubic Bézier curve an in-between quaternion is computed
by evaluating six Slerps. According to [Sho87], three of these six Slerps are static, the other
three are dynamic, where in a static Slerp the two end points are fixed and in a dynamic Slerp
the two end points vary; 8 multiplications are needed to compute a point on a static Slerp
and 15 multiplications are needed for a dynamic Slerp. So the total cost for computing
one in-between quaternion in this scheme is about 69 multiplications and several table
look-ups for the sin and arccos functions. The Squad requires two static Slerps and one
dynamic Slerp to evaluate a point on the cuarve, thus reducing the cost of computing one in-
between quaternion to about 31 multiplications and several table look-ups for trigonometric
functions.

In the subdivision scheme for the spherical analogues of the cubic cardinal spline and the
tensioned B-spline, two Smids and a dynamic Slerp are needed to compute one in-between
quaternion, where the Smid is a special form of the Slerp which can be computed using
8 multiplications/divisions and a square root. So the cost of computing one in-between
quaternion in this scheme is at least 31 multiplications/divisions and 2 square roots, which
is about the same as the Squad.

In the normalized Hermite interpolant, on the average the forward differencing used
to generate points on the unnormalized curve needs 12 additions for each point, and
the subsequent normalization step for each point requires a square root and 8 multipli-
cations/divisions.

The spherical biarc scheme needs 4 multiplications and 8 additions/subtractions. So if
in an application only G?! continuity is needed, in view of efficiency the spherical biarc is
an obvious choice.

Observe that the cost of computing a static Slerp can be reduced to 4 multipli ;ations
per point using the difference method, since it can be evaluated at equally spaced parameter
values. So the Squad curve can be made more efficient, requiring only 23 muitiplications
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per in-between quaternion.

It is natural to ask whether there are other simple curves for doing G! interpolation in
the unit quaternion space. Next to the quadratic curve. one may consider using the cubic
curve. However, it is easy to see that no proper real cubic curve can be contained in the
sphere §% C E“, because a real cubic curve is unbounded, but $3 is bounded. By analytic
extension, the same is true of a finite piece of a cbic curve. Therefore, rational cubic
curves can not be used for interpolation in unit quaternion space. More research is needed
to study higher degree rational curves or other simple curve schemes for interpolation in the
unit quaternion space with G! or higher continuity which allow efficient evaluaticn of in-
between quaternions. Recently, a very interesting construction of rational curves on §2 Cc E3

is proposed in [HoS91]. There should be little difficulty in generalizing this construction to
high dimensioral spheres.

6.5 Summary

From the viewpoint of automatic design, in this chapter we have considered how to choose
an appropriate spherical biarc interpolating given data D from the infinitely many available.
It is found that the biarc with its two arcs having chords of equal length is a reasonable
choice, and a simple formula for computing this biarc is derived.

The spherical biarc has several applications. First of zll, it is a simple curve scheme for
modeling features on a sphere. We have shown by examples the application of spherical

biarcs to orientation modeling, where biarcs are used to interpolate points in the unit
quaternion space.

Another application of the theory of spherical biarcs is to study space biarcs in Eu-
clidean space. Recently, space biarcs in E3 have been found useful in surface modeling
using cyclides [Sha87, NuM88]. In the present investigations of space biarcs, including
plane biarcs (space biarcs in E?), mainly geometric methods are used. This approach is
intuitive and has been very fruitful in deriving useful optimal plane biarcs in practical cases
[SuL89]. But it has several drawbacks: it is not suitable for tackling the general case, con-
sequently, degenerate cases are not clearly distinguished; and it does not apply to space
biarcs in higher dimensional spaces. The above problems are easily solved with the theory
of spherical biarcs. As stereographic projection is circle preserving, this map establishes a
one-to-one correspondence between all spherical biarcs on $¢~! C E? and space biarcs in
E?-1, Therefore several properties of the spherical biarcs on S9~! obtained algebraically in
Chapter 5 and Chapter 6 can be transformed readily to space biarcs in E4~!, d > 3.
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Chapter 7

Concluding Remarks

7.1 Summary

In this thesis four topics concerning the theory and applications of conics and quadrics in
computer graphics and geometric modeling have been studied. They are (1) the difference
method for rendering conic arcs; (2) quadratic parameterizations of quadrics in E3; (3)
rational quadratic spline curve interpolation on a quadric in Ed4, d > 3; (4) spherical biarc
interpolation on a sphere in Ed d > 3.

The difference method is the most efficient method for computing an inscribed polygon
of a conic arc known so far. We have explained the theory of this method and studied its
properties and some implementation issues. This method has been used successfully for
drawing elliptic arcs using a microprocesscr controlled plotter [Wan86].

In geometric modeling the rational parameterization of quadric surfaces in E3 provides
an alternate representation which is useful in many applications. There have been a number
of papers published on this topic [FPW88, Sed85, AbB88]. Our contribution is to give a
classification of all faithful rational quadratic parameterizations of a quadric. It is shown
that (1) by projection from a center at a point on an irreducible quadric S C EB, one can
get a family of rational quadratic parameterizations of S, and all faithful rational quadratic
parameterizations of S can be generated in this way; (2) two faithful rational quadratic
parameterizations of S are related by a rational linear reparameterization if they have the
same projection center, and related by a rational quadratic reparameterization if they have

different projection centers; (3) any faithful rational quadratic parameterization of S has a
rational linear inversion formula.
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We then used the technique of parameterizing by projection to obiain a rational tri-
angular Bézier representation of u triangular patch on a quadric S. It is shown that if a
triangular patch satisfies certain practical restrictions and its boundaries are rational curve
segments of degree at most n, then it can be represented as a rational triangular Bézier
surface of degree at most 2n. In particular, if there are three planes each containing a side
of a triangular patch on S and the three planes intersect at a point on S outside the patch,
then the patch can represented as a rational quadratic triangular Bézier patch.

The study of the rational quadratic spline curve interpolation on a proper quadric S C
E?,d > 3, is mainly a theoretical investigation. It is motivated by the application of smooth
curve interpolation on a sphere in computer graphics {Sho85]. Given a point sequence
{X}%, on a same component of S, it is shown that a necessary condition for the cxistence of
a G' rational quadratic spline curve interpolating {X;}%, is that all segments {X; Xi31 )75}
are on the same side of S. Also we show that for any point sequence on a sphere in £¢ there
exists a family of rational quadratic interpolating spline curves with one free parameter.
As any rational quadratic interpolating spline curve on S, when one exists, is not locally
controllable, we then turned to study biarcs to solve the Hermite interpolation problem on
S, i.e. two points and their associated tangents on S are interpolated by a pair of smoothly
joining rational quadratic Bézier curves. Only biarcs with their two rational Bézier curves

having positive weights are considered and a necessary condition for their existence is given.

The theory of spherical biarc interpolation is developed in Chapter 5. This is the main
contribution of this thesis. The spherical biarc provides a simple solution to the smooth
curve interpolation problem on a sphere. Here spherical biarcs, which are curves composed
of two smoothly joining circular arcs, are considered for interpolating two points Xg, X3
and two tangent directions Ty, 77 at the two points on a sphere in E9, d > 3. Two kinds
of data D = {Xo, Tp, X1,T1} are distinguished: regular data, which is generic, and singular
data. The existence and properties of spherical biarcs for both regular and singular data
are studied in detail. The main conclusions are (1) spherical biarcs exist for any data and
are easy to construct; (2) the family of spherical biarcs interpolating data D has one free
parameter when D is regular, and d — 2 free parameters when D is singular.

In Chapter 6 the shape control of spherical biarcs is considered. Among the infinitely
many biarcs interpolating given data D, by analysis and experiments we concluded that the
biarc with its two arcs having chords of equal length is a satisfactory choice. Finally, the
application of spherical biarc interpolation of unit quaternions for modeling orientation is
illustrated by examples. The spherical biarc solution compares favorably with other existing
methods in terms of efficiency and simplicity.
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7.2 Open problems

Several open problems arise in our research.

(1) Identify which commonly used curves in CAGD can be generated efficiently by a
difference equation. We have shown in Subsection 2.5.3 that some rational cubic space
curves can not be generated by a fourth order difference equation.

(2) Efficiently change the step size of the difference method so that it can generate
adje  nt pixels on a conic directly in a raster device.

(3) Classify all rational quadratic parameierizations on a quadric in E3, including un-
faithful ones.

(4) More research is needed on shape controi for spherical biarcs. One problem is how
to provide a theoretical foundation for the empirical results in Chapter 6. The choice of
biarc favored in our research is the equal chord biarc. This choice has the shortcoming that
for some poorly behaved data the chosen biarc may contain a major circular arc. On the
other hand, it has been shown that for regular data, which is generic, there always exist
interpolating spherical biarcs that contain only minor arcs. Therefore it is hoped that one
can find an explicit formula cr an efficient procedure which gives an interpolating spherical

biarc that contains two minor arcs, and the difference of the radii of its two arcs is minimal.

(5) Apply the theory of spherical biarcs to study space biarcs. This problem is briefly
addyressed in Section 6.5.

(6) Use rational curves to construct interpolating splines of higher order continuity on
a sphere. Research in this direction has been done in ([Ho$91} in which rational curves on
S2?  E3 are constructed. Another possible abproach is to use stereographic projection to
map a rational spline curve in E?_ which is relatively easy to construct, onto the sphere
54-1_ A problem with this approach is controlling the shape of the image curve on 5S¢~
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