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Abstract 

 

Petroleum reservoir managers must make decisions about projects (e.g. infill drilling and/or 

operational strategies) with uncertain economic results due to imperfect knowledge of the 

reservoir geometry and properties. Their decision-making workflows should actively 

manage the geological uncertainty. This requires transferring the geological uncertainty to 

probability distributions of a response variable suitable for decision-making and use of a 

decision criterion that considers the reservoir manager’s preferences toward the project’s 

return-risk trade-off. This is challenging in petroleum reservoir management because 

transferring the geological uncertainty is time and computationally expensive.  Moreover, 

common decision-making criteria do not consider preferences toward the geological risk 

of the projects. 

This dissertation improves reservoir management decision-making practices in steam-

assisted gravity drainage (SAGD) projects by introducing: 1) A novel graph-based 

simplified physics simulator, called APDS, that efficiently transfers the geological 

uncertainty into steam-chamber evolution paths that can directly support SAGD reservoir 

management or be converted to a monetary response variable, and 2) A decision-making 

criterion consistent with the utility theory framework that combines Mean-Variance 

Criterion (MVC) and Stochastic Dominance Rules (SDR) to guide the decision process.  

APDS is formulated and implemented using graph theory, simplified porous media flow 

equations, heat transfer concepts and ideas from discrete simulation. It works on 

homogeneous and heterogeneous reservoirs and is computationally efficient enough to be 

applied over multiple geostatistical realizations. A case study performed with a realistic 

multi-realization geological model validates the predictive capabilities of APDS. Visual 
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and numerical comparisons with the results obtained from a conventional full physics 

thermal flow simulation are satisfactory. APDS was 3 orders of magnitude faster than the 

conventional simulator to model the steam-chamber expansion and to provide predictions 

of reservoir response. The reduction in the precision of the results is deemed acceptable. 

Another case study demonstrates that APDS can complement methodologies for 

assimilation of 4D-seismic dynamic data to improve reservoir characterization.  

This thesis also demonstrates that MVC-SDR is a viable criterion for decision making 

under geological uncertainty. MVC-SDR does not rely on a specific utility function and 

leads to decisions that are considered rational to risk-averse reservoir managers. The 

shortcoming is a reduced ability to rank projects with very similar value. Two examples 

illustrate the use of MVC-SDR, the first one relates to the selection of a SAGD well-pad 

to be drilled from a set of several possible options, and the second one considers the 

problem of finding the best vertical location for a SAGD well-pair project in a target 

volume. 
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1 Graph-Based Simulator for Steam Assisted Gravity Drainage 

Reservoir Management  

 

1.1 Introduction 

 

Petroleum reservoir managers must make decisions about projects (e.g. infill drilling and/or 

operational strategies) with uncertain economic results due to imperfect knowledge of the 

geometry and properties of the reservoir. This geological uncertainty can be characterized 

by a set of geostatistical realizations that taken all together form a geological model (Pyrcz 

& Deutsch, 2014). Geostatistics provides well established methods to generate geological 

models (Caers, 2011; Chiles & Delfiner, 2012; Deutsch & Journel, 1998; Goovaerts, 1997; 

Pyrcz & Deutsch, 2014) but the information embedded in them is only partially used. 

The substandard practice can be linked to three causes: the high dimensionality of the 

space of feasible projects that must be searched to find the best project; the time and 

computational cost of transferring the geological uncertainty into a suitable response 

variable for decision making; and the lack of a practical decision-making criterio that 

actively manajest the risk that arises from the geological uncertainty. 

This research tackles the last two causes in the context of the steam-assisted gravity 

drainage (SAGD) recovery technology. SAGD is a thermal recovery process in which heat 

is injected in the reservoir to lower the bitumen viscosity and produce it by gravity. The 

empty pore-space left behind by the bitumen is replaced by steam creating a steam-chamber 

in the subsurface. A graph-based simplified physics simulator is developed for efficiently 

transferring the geological uncertainty into steam-chamber evolution paths that can directly 

support SAGD reservoir management or be converted to a monetary response variable to 

input decision-making workflows.  

Additionally, a decision-making criterion for active geological risk management is 

introduced. The criterion is consistent with the utility theory framework and combines 

Mean-Variance Criterion (MVC) and Stochastic Dominance Rules (SDR) to guide the 

decision process. Searching the high dimensional space of feasible projects in petroleum 

reservoir management (PRM) is out of the scope of this thesis. 
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1.2 Petroleum Reservoir Management Decision-Making Workflow 

 

To clarify the jargon of the dissertation and further define the extent of this research, the 

PRM decision-making workflow is illustrated on Figure 1.1 in the framework of a formal 

rational decision-making under uncertainty model with four elements: a set of feasible 

actions, a set of outcomes, a preference ordering of the outcomes and one concept of 

rationality that governs the decision process (Stirling, 2012). 

 

 

Figure 1.1: Components of a Petroleum Reservoir Management Decision-Making workflow. 

 

The Set of feasible actions represents the set of projects from which a choice must be 

made by the reservoir manager. The type of project that a reservoir manager is concerned 

with ranges from the selection of type, number and location of wells to the definition of an 

entire field development plan.  

The Set of outcomes refers to the consequences of every project under analysis. The 

results cannot be anticipated with certainty because they depend on unknown reservoir 

properties. Defining the set of outcomes requires performing two complex and demanding 

tasks, one is to build a geological model and the other is to process the projects and the 

geological model through a transfer function (e.g. dynamic flow simulation and cash flow) 

to obtain a probability distribution of the response variable that will be used to make the 

decisions.  

The Preferences and the concept of rationality are required to choose from multiple 

options with different distributions of value. After transferring the geological uncertainty, 

selecting a project from the set of feasible actions is equivalent to make a choice between 

the probability distributions of the response variable (Johnstone & Lindley, 2013). To make 

that choice, the investor’s preferences over the space of outcomes can be encoded in a 
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utility function (Kochenderfer, 2015) . A decision maker will make a “rational” decision, 

if he selects a project that maximizes expected utility. 

This research focuses on the components of the PRM decision-making workflow 

highlighted on Figure 1.1, that is, transferring the geological uncertainty in SAGD projects 

and formulating a decision-making rule that considers the geological risk.  

 

1.3 Problem Setting 

 

Reservoir managers of SAGD projects are familiar with a decision-making workflows that 

does not conform to the managerial principle of considering the risk and reward trade-off, 

even though the decisions involve significant geological uncertainty. Yet, optimal 

decision-making is sensitive to the dynamic reservoir response and to geological 

uncertainty. Decisions that do not consider geological uncertainty may be suboptimal. 

One reason for this situation is that reservoir managers often have tight timeframes to 

make their decisions. For example, projects are constrained by rig contract schedules or 

must be executed during favorable weather condition windows. Therefore, they cannot wait 

for the excessive computational time that takes processing projects and all the geostatistical 

realizations through a full physics flow simulator to feed their decision-making workflows. 

Moreover, being SAGD a thermal recovery process, the complex combination of heat and 

flow transport phenomena makes the numerical simulation even more time-demanding 

than for conventional displacement techniques  (Majdi Yazdi & Jensen, 2014) exacerbating 

the problem of timely transferring of the geological uncertainty for decision making 

purposes. 

When the set of realizations is processed through a reasonable transfer function, the 

projects are customarily selected based on the maximum expected monetary value 

criterion, not on the maximum expected utility criterion. The maximum monetary expected 

value rule is a special case in the utility theory framework that assigns a risk neutral linear 

utility function to the decision maker. As a consequence, the approach considers that the 

reservoir manager is only concerned about the returns of the projects and not the associated 

risks (Levy 2016). In this situation, the effort of using many geostatistical realizations may 

not be completely compensated by the quality of the decision. 
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The following example of deficiencies found in the technical literature support the 

research undertaken in this thesis: (1) despite having a geological model, only one scenario 

is chosen to be further processed through the dynamic flow simulator (e.g. Alusta et al. 

2012), (2) clustering or ranking techniques are applied to select a small set of realizations 

that are then post-processed (e.g. Sarma et al. 2013). The propagation of the geological 

through the whole workflow is not undertaken; and, (3) after geological uncertainty 

transferring the projects are selected based on the maximum expected monetary value 

criterion, not on the maximum expected utility criterion (e.g. Shirangi and Durlofsky 

2015).  

 

1.4 Proposed Approach 

 

1.4.1 Graph-Base Steam-Chamber Simulator for Transfering the Geological 

Uncertainty in SAGD Projects 

 

SAGD is a thermal recovery technique that uses gravity as the driving force to produce 

heavy oil. Steam is injected in the reservoir through a horizontal injector well to heat the 

bitumen and decrease its viscosity. The heated bitumen becomes mobile and drains by 

gravity to a producer well completed below the injector well. As the bitumen moves down, 

the steam moves up to occupy the pore space creating an expanding steam-chamber 

(Butler, 1991). 

SAGD performance in terms of oil production and steam consumption is intrinsically 

coupled with the expansion rate and the geometry of the steam-chamber. For that reason, 

since the conception of SAGD in the 1980’s, understanding and modeling the evolution of 

the steam-chamber has been an important research topic. 

Notwithstanding the extensive research, current techniques for modeling the steam-

chamber have shortcomings that limit their practical implementation, especially when 

many possible SAGD projects need to be evaluated. Analytical and semi-analytical SAGD 

models (Butler, 1985; Butler, Mcnab, & Lo, 1981; Butler & Stephens, 1981) predict the 

movement of the steam-chamber but only for idealized homogeneous reservoirs. Others 

authors modified the Butler’s model by imposing specific steam-chamber shapes; for 
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example, triangular (Reis, 1992) and circular (Azad & Chalaturnyk, 2012). 4D-seismic 

images provide reliable information about the steam-chamber location but is not by itself 

a predictive method. Full physics thermal flow simulation is perhaps the best method to 

predict the expansion of the steam-chamber but is too computationally demanding and time 

consuming to assess SAGD projects that requires evaluating a large number of alternatives. 

For instance, thermal flow simulation is impractical to evaluate the response of a SAGD 

well-pair location over a set of geostatistical realizations or for considering many possible 

SAGD well-pair locations over large areas. 

A novel graph-based algorithm named Approximate Physics Discrete Simulator 

(hereafter APDS) is proposed in this dissertation for SAGD geological uncertainty 

transferring. APDS efficiently integrates Darcy’s Law, material balance and heat transfer 

concepts to represent the reservoir and emulate the flow of the bitumen and the steam in 

SAGD. APDS models the steam-chamber evolution as a shortest-path problem where the 

objective is to find the minimum travel time for the steam to move from the well to the 

remaining connected nodes in the graph. The problem is solved using a propagation 

mechanism inspired in the algorithm proposed by Dijkstra (1959) to find the one-to-all 

shortest-paths in a graph. The output is a model of the steam-chamber expansion through 

time. APDS works with heterogeneous reservoirs and is computationally efficient. 

Additionally, working on the hypothesis that the performance of SAGD projects is 

strongly linked to the size, shape and rate of growing of the steam-chamber, this research 

demonstrates that a response variable obtained from APDS on a multi-realization 

geological model, is a suitable input for a decision-making workflow. The goodness of the 

chosen variable is measured through its degree of correlation to a pair of metrics calculated 

from a full physics thermal flow simulator.  

 

1.4.2 Mean-Variance Criteria and Stochastic Dominance Rules to Consider the 

Geological Risk-Reward trade-off 

 

At the heart of petroleum reservoir management (PRM) resides the challenge of selecting 

the best project from a group of feasible candidates in the presence of geological 

uncertainty. The challenge is particularly relevant in low oil price investment environments 
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where many upstream projects are economically marginal and must be optimized. 

Companies are now more cautious. Investors are aware that they should consider not only 

the rewards of the projects, but also their risks. For these reasons, the selection of the 

projects to be implemented in the field should consider the geological risk and the capacity 

of the companies to tolerate it. The decision-making criterion adopted ultimately 

determines which project is selected and implemented. 

A decision-making criterion for active geological risk management is formulated and 

implemented. The criterion is consistent with the utility theory framework and combines 

Mean-Variance Criterion (MVC) and Stochastic Dominance Rules (SDR) to guide the 

decision process. It differs from other researches that applied the utility framework to PRM 

(Güyagüler & Horne, 2004; Ozdogan & Horne, 2006) because a specific utility function is 

not required. Projects selected using MVC-SDR are reasonable to all risk-averse reservoir 

managers. The shortcoming is a reduced ability to rank projects with very similar 

cumulative distribution function response variables. The thesis demonstrates that MVC-

SDR is a viable criterion for SAGD decision-making under geological uncertainty. 

 

1.5  Dissertation Outline 

 

Chapter 2 presents the APDS formulation and its components: the graph, the propagation 

algorithm and the ranking function. This chapter also discusses the relationship between 

the SAGD steam-chamber expansion and the shortest path problem found in the study of 

transportation networks (Deo & Pang, 1984). It also describes a pseudocode to implement 

APDS and a stepwise execution example for a homogeneous and a heterogeneous 

reservoir.  

Chapter 3 is devoted to the APDS implementation and validation. The chapter first 

describes the assumptions made to implement an APDS prototype in the Python 

programming language. After that, it presents a case-study performed with a realistic multi-

realization geological model demonstrating that the APDS steam-chamber and metrics 

calculated from it compares satisfactorily with results obtained from full physics thermal 

flow simulation. 
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Chapter 4 introduces the MVC-SDR decision-making criterion for PRM problems. 

First, PRM problems are stated in terms of a formal decision-making model under 

uncertainty. Then, concepts of projects, geological uncertainty characterization, transfer of 

geological uncertainty, preferences over the outcomes and utility theory are discussed. 

After that, the theory of MVC and SDR are introduced to PRM. The chapter ends with one 

conceptual example explaining how these two criteria works together. 

Chapter 5 presents a case-study where the reservoir manager must decide the location 

of a SAGD horizontal well-pair inside a target volume. It is a representative problem 

commonly found in the exploitation of oil sands in Western Canada. The case-study uses 

APDS to transfer the geological uncertainty and then uses MVC-SDR as decision-making 

criterion. 

Chapter 6 presents a case-study that illustrates how APDS efficiently assists a 

geostatistical-anomaly enforcement methodology (Hadavand & Deutsch, 2017) to 

integrate 4D-seismic information to SAGD reservoir characterization. 

Chapter 7 discusses the merits and shortcomings of APDS and MVC-SDR to support 

SAGD decision-making workflows. It also presents research avenues for future works and 

concludes the thesis. 

The thesis includes several appendices with the Python code implementing APDS. 
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2 SAGD Steam-Chamber Modeling with APDS: Formulation  

 

2.1 Introduction 

 

SAGD is a thermal recovery technique that uses gravity as the driving force to produce 

heavy oil as illustrated in Figure 2.1. Steam is injected in the reservoir through a horizontal 

injector well to heat the bitumen and decrease its viscosity. The heated bitumen becomes 

mobile and drains by gravity to a producer well completed 5 to 10 meters below the injector 

well. As the bitumen moves down, the steam moves up to occupy the pore space creating 

an expanding steam-chamber (Butler, 1991). 

 

Figure 2.1:  Steam-assisted gravity drainage (SAGD) process (obtained from Peacock (2010)). 

 

SAGD performance in terms of oil production and steam consumption is intrinsically 

coupled with the expansion rate and the geometry of the steam-chamber. For that reason, 

since the conception of SAGD in the 1980’s, understanding the evolution of the steam-

chamber has been an important research topic.  
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2.2 Review of Steam-Chamber Modeling Techniques 

 

Contrary to APDS that first models the steam-chamber geometry and then calculates 

metrics from it to support decisions, current techniques focus on forecasting the bitumen 

production and the location of the steam-chamber is calculated as a by-product.  The first 

analytical model for SAGD production forecasting in homogeneous reservoirs was 

proposed by Butler and his colleagues (Butler et al., 1981). They obtain the steam-chamber 

shown in Figure 2.2.a. The chamber has the issue that the lower part of the interface moves 

away from the production well (Butler et al., 1981). Afterwards, Butler & Stephens (1981) 

assumed that the steam-chamber interface remains straight in the lower part and that is 

tangent to the curves of the original model. This model was called Tandrain and is 

illustrated in Figure 2.2.b.  

 

Figure 2.2:  Steam-chamber shapes. a) Original Butler’s analytical model, b) Tandrain model. 

b) TANDRAIN MODEL

Modified after Butler and Stephens, 1981
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a) BUTLER et al, 1981
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Other authors modified Butler’s analytical model by imposing specific steam-chamber 

shapes; for example, triangular (Reis, 1992) and circular (Azad & Chalaturnyk, 2012) as 

depicted in Figure 2.3. 

 

 

Figure 2.3:  Steam-chamber with imposed geometry. a) Inverted triangle model, b) Circular model. 

 

Butler (1985) proposed a semi-analytical model to predict the SAGD production rate 

and the movement of the interface obtaining the steam-chamber illustrated on Figure 2.4.a. 

The model was re-visited by Heidari, Pooladi-Darvish, Azaiez, & Maini (2009) to analyze 

the effect of drainage height in the SAGD performance obtaining the steam-chamber 

shown in Figure 2.4.b. 

b) CIRCULAR MODEL

Modified after Azad and Chalaturnyk, 2012 

Modified after Reis, 1992 
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Figure 2.4: Steam-chamber from semi-analytical models. a) Butler (1985) semi-analytical model, b) 

Heidari et al. (2009) semi-analytical model. 

 

Note that the aforementioned analytical and semi-analytical models predict the 

movement of the steam-chamber for idealized homogeneous reservoirs. Yet, reservoirs are 

heterogeneous and the steam-shape can take any irregular shape. 

Dehdari (2014) developed a semi-analytical approximate thermal simulator and 

proposed an empirical method based on connected hydrocarbon volume (Wilde & Deutsch, 

2012) to forecast the location of the steam-chamber in heterogeneous reservoirs. 

4D-seismic images provide reliable information about the steam-chamber location but 

is not by itself a predictive method. Full physics thermal flow simulation is perhaps the 

best method to predict the expansion of the steam-chamber; however, this approach is too 
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computationally demanding and time consuming to be used in SAGD projects that require 

evaluating a large number of alternatives in a timely manner. 

 

2.3 Steam Chamber Evolution Posed as a Shortest Path Problem 

 

APDS uses graph theory to model the reservoir and the steam-chamber evolution through 

time. Since the work of Fatt (1956) pore-scale networks models have been extensively used 

to study the flow of fluids in porous media with the goal of predicting macroscopic 

transport properties from pore-scale parameters (Oren, Bakke, & Arntzen, 1998). However, 

the use of graphs proposed in this dissertation at the macroscopic scale of the cells of the 

numerical model to predict a mega-scale reservoir response such as the steam-chamber in 

SAGD is novel in the technical literature. 

Modeling the evolution of the steam-chamber has similarities with the shortest- path 

problem found in the study of transportation networks (Deo and Pang, 1984). In 

transportation, the objective is to find the minimum distance from one given location to 

another destination or to all other destinations in a network. Usually the distances between 

vertices are known before hand and the path-length is the sum of the length of intermediate 

edges or arcs. However, the notion of distance can be generalized to represent other 

properties of the path being traversed, such as minimum travel time (Deo and Pang, 1984). 

In steam-chamber SAGD modeling, the objective is to find the path with the minimum 

travel time for the steam to move from the well to all connected nodes in the graph. This is 

also the path with the least resistance for the heated bitumen to flow toward the producer 

well. Different to the transportation network case, how fast or slow the bitumen can move 

between two nodes in the graph is not known beforehand. This has to be calculated during 

the steam-chamber growth. APDS solves this problem using a propagation mechanism 

inspired in the algorithm proposed by Dijkstra (1959) to find the one-to-all shortest-paths 

in a graph. The output is a model of the steam-chamber expansion through time. The next 

section presents how APDS uses graph theory, Darcy’s Law, material balance and heat 

transfer concepts to represent the reservoir and efficiently emulate the flow of the bitumen 

and the steam in SAGD. APDS works in homogeneous and heterogeneous reservoirs. 
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2.4 APDS Formulation 

 

APDS has three main components: a graph, a propagation algorithm and a ranking 

function.  They are integrated to obtain the steam-chamber evolution. These components 

are described below.  

 

2.4.1 Graph 

 

Graphs are convenient mathematical tools to model the SAGD recovery process. They 

consist of nodes and edges. The nodes can store petrophysical and fluid information, and 

the edges can be assigned with direction and weights related to porous media flow 

concepts. Figure 2.5 shows a reservoir cross-section represented as a graph. It has 𝑛 = 9 

vertices and 𝑚 = 20 directed edges. The set of vertices is 𝑉 = { 𝑥1, 𝑥2,𝑥3, . . . , 𝑥9} and the 

set of edges or arcs is 𝐸 = { 𝑒1−2, 𝑒2−1,, . . . , 𝑎5−9}. Each edge is an ordered tuple 

representing the connection between two vertices. For example, 𝑒1−4 = (𝑥1, 𝑥4) where 𝑥1 

is the initial vertex and 𝑥4 is the terminal vertex. Note that the vertex 𝑒4−1 = (𝑥4, 𝑥1) where 

𝑥4 is the initial vertex and 𝑥1 is the terminal vertex is not present in the graph.  In APDS, 

the cells in the geological model with permeable rocks (i.e. sands) are connected vertices 

in the graph { 𝑥1, 𝑥2,𝑥3, 𝑥4, 𝑥5,𝑥7, 𝑥8, 𝑥9}. Non-permeable rocks (i.e. shales) are isolated 

vertices in the graph, vertex { 𝑥6}. Two vertices connected by an edge are neighbors, and 

all the neighbors of a given vertex 𝑥 are called the neighborhood of 𝑥 (Voloshin, 2009). 

For example, the neighborhood of 𝑥1 is 𝑁(𝑥1) = { 𝑥2, 𝑥5, 𝑥4}. A path is a sequence of edges 

connecting vertices. In Figure 2.5 a path from the vertex 𝑥1 to 𝑥9 denoted as (𝑥1, 𝑥9) −

𝑝𝑎𝑡ℎ = { 𝑥1, 𝑥5, 𝑥9}. Vertices store petrophysical information and a real-valued function 

𝑤 generates the edges weights. Since the graph represents a geological model in APDS, 

the terms cells, nodes and vertices are used interchangeably. 
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Figure 2.5:  Illustration of a 2D-grid geological model represented as a graph.  

 

2.4.2  Propagation Algorithm 

 

APDS models the steam-chamber evolution as a shortest-path problem where the objective 

is to find the minimum travel time for the steam to move from the well to the remaining 

connected nodes in the graph. A technique for solving the shortest-path problem is the 

Dijkstra algorithm (Dijkstra, 1959) that finds the one-to-one and one-to-all shortest-paths 

in a graph. It works with non-negative arc values that must be known beforehand. The 

algorithm is efficient, easy to understand, implement and customize. Interested readers can 

find the description of Dijkstra’s algorithm in books devoted to graph algorithms (e.g. Even 

2011; Ortega-Arranz et al. 2015).  

Although the direct application of Dijkstra’s algorithm does not model the evolution of 

the steam-chamber in SAGD, its structure was the base to formulate the propagation 

algorithm in APDS. It works one cell at the time, that is called the active cell, and while 

the computation progresses the cells are classified as being part of the steam-chamber or 

the heated volume. Figure 2.6 illustrates the propagation algorithm: 
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Figure 2.6: APDS propagation mechanism.  Red shapes are not part of APDS. They were drawn to help 

visualizing the steam-chamber expansion. Edge labels omitted in this figure are shown in Figure 2.5. 
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 To initialize the algorithm, the producer well location is provided, vertex 𝑥2  in 

this example. At step 1, heated bitumen drains through the vertex 𝑥2 and steam 

concurrently fill-up the empty pore-space expanding the steam-chamber. Vertex  

𝑥2  becomes part of the red colored steam-chamber. Now, bitumen can drain 

from the neighborhood 𝑁(𝑥2) = { 𝑥1, 𝑥3, 𝑥4, 𝑥5} that becomes part of the blue 

colored heated volume. The travel time for the edges 

{𝑒2−1,𝑒2−3, 𝑒2−4, 𝑒2−5} connecting 𝑥2 with its neighborhood is calculated with 

the ranking function explained in section 2.2.3. 

 

 At step 2, bitumen drains from the vertex in the heated volume through the edge 

with the lowest travel time, edge 𝑒2−5  in this case, and the vertex 𝑥5  is added 

to the steam-chamber . Now, bitumen can also drain from the neighborhood 

𝑁(𝑥5) = {𝑥4, 𝑥7, 𝑥8, 𝑥9}  that is added to the heated volume. 

 

 The algorithm progresses until all vertices connected to 𝑥2 are processed. Note 

that the isolated vertex  𝑥6 will not be part of the steam-chamber. Figure 2.6 

shows three additional steps. The red filled shape was added to highlight the 

steam-chamber generated by the propagation algorithm.  

 

Observe that the order in which the cells are added to the steam-chamber is intended to 

reflect the evolution of the steam-chamber in the subsurface. 

 

2.4.3 Ranking Function 

 

The ranking function to calculate the travel time plays a key role in the propagation 

algorithm. It maps the petrophysical properties, the fluid properties and the local 

geometrical features of the reservoir model into ranking values - edge weights in graph 

terminology - that governs the development of the steam chamber.  

The ranking function is the sum of two components, the cell time and the model time. 

It has the units of time. 
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2.4.3.1 Cell Travel Time 

 

Cell travel time measures how long it takes to drain movable bitumen from one cell to an 

adjacent cell in the direction of a sink. Cell travel times are computed independently for 

every edge without a reference time; however, because these values are based on Darcy’s 

Law, material balance and heat transfer concepts, they are comparable across different 

locations in the reservoir. In other words, no matter their location in the reservoir model, 

two cells with the same petrophysical, fluid and geometrical properties will have the same 

cell travel time.  

Darcy’s Law (Equation 2.1) and material balance at the cell scale (Equation 2.2) are 

used for the cell travel time. The formulation assumes that gravity is the only driving force 

(Butler et al., 1981). Chapter 3 demonstrates that the current APDS implementation is 

consistent with a heat transfer mechanism by conduction with a steady state temperature 

(𝑇) distribution ahead of the advancing steam-chamber interface given by Equation 2.3.  

𝑞𝑜 =
𝐴𝑡𝑘𝑜𝑔 𝑠𝑖𝑛 𝛽

𝜐ℎ𝑣
 

 
(2.1) 

Where, 𝑞𝑜 is the oil rate, 𝐴𝑡 is the transversal area for the flow in the direction of the 

angle (β), 𝑘𝑜 is the effective oil permeability, 𝑔 is the gravity constant, β is the sink angle 

and 𝜐ℎ𝑣 is the kinematic oil viscosity in the heated volume. 

𝐶𝑒𝑙𝑙 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 =
𝑉𝑐∅ ∆𝑆𝑜
𝑞𝑜

 
 

(2.2) 

Where, 𝑉𝑐 is bulk cell volume, ∅ is porosity and ∆𝑆𝑜 is recoverable oil saturation. 

𝑇 − 𝑇𝑟
𝑇𝑠𝑡 − 𝑇𝑟

= 𝑒−𝑈𝜉/𝛼 

 

(2.3) 

Where, 𝑇𝑟 is the initial reservoir temperature, 𝑇𝑠𝑡 is the steam temperature, U is the 

steam-chamber velocity in the direction normal to the interface, 𝜉 is the distance measure 

normal to the steam-chamber interface and 𝛼 is the reservoir thermal diffusivity. Figure 

2.7 illustrates most terms of previous equations. 
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Figure 2.7: Steam-chamber interface and temperature distribution (modified after Butler (1991)). 

 

The concepts of sink angle (β), transversal area (𝐴𝑡) and kinematic oil viscosity in the 

heated volume(𝜐ℎ𝑣) in the context of the APDS are further explained in Chapter 3 devoted 

to the implementation and validation of APDS. 

 

2.4.3.2 Model Time 

 

The model time tracks the time elapsed from the beginning of the steam-chamber. It 

provides the reference starting point to every cell time. Model time is defined as the ranking 

value of the latest cell added to the steam-chamber; and therefore, it is continuously being 

updated as the steam-chamber grows. When a cell becomes part of the steam-chamber, its 

ranking value is saved and added to the cell time in its neighborhood. 

 

 

 

𝜉

U

𝐹𝑙𝑜𝑤

Cell in the 

Neighborhood

Cell added to

Steam-chamber

𝛽

Steam 

temperature = 𝑇𝑠𝑡

Initial reservoir 

temperature = 𝑇𝑟



19 

2.4.4 APDS Outputs 

 

APDS generates a sequence of graph nodes ordered by time as depicted in Figure 2.8.a. for 

the example presented in section 2.2.2. The nodes do not appear at regular time intervals 

because the algorithm only captures the time when the event of one cell moving from the 

heated volume to the steam-chamber occurs. In this sense APDS is a discrete event 

simulator. If the geological model has a large number of cells, the small time interval 

between events creates an output that is almost continuous in time ; this is clearer during 

the early stages - rising and spreading- of the steam-chamber (Butler, 1991). The sequence 

of ordered nodes reflects the evolution of the steam-chamber in the subsurface (Figure 

2.8.b). It can also be assembled and combined with the volumetric information of the nodes 

to generate the steam-chamber volume variable that is a proxy of the cumulative oil forecast 

(Figure 2.8.c). 

 

Figure 2.8: APDS Outputs: a) Ordered sequence of nodes, b) Steam-chamber model, c) Cumulative steam-

chamber volume. 
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The following sections present pseudocode for APDS and a stepwise execution example 

for a homogeneous and a heterogeneous reservoir. 

 

2.5  APDS Pseudo Code  

 

The following pseudocode implements APDS. A line-by-line explanation is given below. 

 

 

1 APDS (Graph, Source, Sink): 

2 Create containers. Steam Chamber (SCH), Heated Zone (HZ) and Parent Sink (PS) 

3  for each node 𝑥 in Source: 

4   HZ [𝑥] ← 0 ranking value    

5   PS [𝑥] ← 𝑥 

6   add 𝑥 to Sink 

7  while HZ is not empty: 

8   active-cell ← node in HZ with minimum ranking value 

9   remove active-cell from HZ 

10   SCH [active-cell] ← ranking value 

11   Model Time ← ranking value of active-cell plus delay 

12 

13   if active-cell in Sink: 

14    temp-PS ← active-cell 

15   else: 

16    temp-PS ← PS [active-cell] 

17 

18   for each neighbor 𝑥 of the active-cell and not in SCH: 

19    𝛽 ← Sink angle between temp-PS and neighbor 𝑥 

20 

21    if 𝛽 equals zero (0): 

22     temp-ranking value ← arbitrary large ranking value 

23    else: 



21 

24     temp-ranking value = Model Time + Cell Time + ∈ 

25 

26    if 𝑥 not in HZ: 

27     HZ [𝑥] ← temp-ranking value 

28     PS [𝑥] ← temp-PS 

29 

30    if 𝑥 in HZ and temp-ranking value < HZ [𝑥]: 

31     HZ [𝑥] ← temp-ranking value 

32     PS [𝑥] ← temp-PS 

33 

34  return SCH [ ]  

 

Pseudocode description: 

 

Line 1. APDS inputs are: (1) a Graph, the reservoir mathematical model, (2) the Source, 

a list of indexes of the cells intersected by the production wells. The source is not limited 

to one set of adjacent cells, for that reason, APDS can handled multiple well locations, and 

(3) the Sink, a list of indexes pointing all the cells that could behave like sinks in the 

reservoir. 

Line 2. APDS maintains three containers: (1) the Steam Chamber (SCH), for preserving 

the order in which the cells are added to the steam chamber and their ranking values, (2) 

the Heated Zone (HZ), a priority queue with cells ordered according to the raking values, 

and (3) the Parent Sink (PS), for tracking the parent sink history of every node in the graph.  

Lines 3 to 6:  APDS initialization. All nodes in Source are assigned to HZ with an initial 

raking value of zero (0). Note that any other convenient ranking value can be used to 

initialize APDS. Moreover, every cell in the Source can have its own initialization value. 

This property is useful to model SAGD well-pairs that enters in production at different 

times. All nodes in Source are also defined with their own PS and added to the Sink. 

Line 7. The main loop of the algorithm. APDS will run until exhausting all nodes in the 

HZ. 
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Lines 8 to 10. The node with the minimum ranking value is extracted from the HZ, 

labeled as the active-cell and added to SCH. 

Line 11. Model time is updated to be the active-cell ranking value plus a delay. 

Line 13 to 16. If the active-cell is a sink, it is assigned temporarily as the neighborhood 

parent sink. If the active-cell is not a sink, the neighborhood temporarily inherits the active-

cell parent sink. 

Line 17. Loop through the neighborhood of the active-cell 

Line 19. Calculate the sink angle. 

Line 22. If the sink angle is zero (0), the time to mobilize bitumen from a cell to its PS 

tends to infinite. For that reason, the implementation assigns an arbitrary large ranking 

value, so the cell will be placed at the end of the priority queue HZ.  

Line 24. If the sink angle is not zero (0), the ranking value plus 𝜖 is calculated. 𝜖 is a 

very small random number introduced in the APDS implementation to break ties between 

cells having the same raking value. 

Lines 26 to 28. If the cell is visited for the first time, it is added to HZ with its raking 

value and PS. 

Lines 30 to 32. If the cell is already in HZ and the newer calculated ranking value is 

smaller to the previously stored value, the raking value and the PS are updated. 

Consequently, the cell will jump positions in the priority queue HZ. 

Line 34. APDS exits when the HZ is exhausted and returns SCH. 

 

2.6 Step-wise Procedure 

 

The application for a cross-section in a homogeneous and a heterogeneous reservoir shown 

in Figure 2.9 is intended to further explain the pseudocode and how it deals with the 

presence of barriers. The example uses typical Athabasca oil-sand parameters (Cokar, 

Kallos, & Gates, 2013) listed in Table 2.1. The cell size is 1m x 1m x 1m in x, y and z 

directions, respectively. Figure 2.10 and Figure 2.11 show detailed calculations. 
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Figure 2.9: APDS stepwise procedure. Top row shows the algorithm initialization and the cell indexes. 

Well and sinks locations are labeled. Black outlines drawn to help visualizing how the APDS handles 

barriers. 
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The first row in Figure 2.9 is the initialization of the algorithm. The well is located in 

cell 5 that is added to the heated zone (Priority queue). Cell 5 is also considered a sink. 

Note that if any other cell is selected for the well, the algorithm will generate a very 

different steam-chamber shape, especially in the heterogeneous case. 

At step 1, cell 5 is extracted from the heated zone. It becomes the first cell in the steam-

chamber in both cases.  Neighbors of cell 5 are added to the heated zone with their ranking 

values. Note that cells 4 and 6 have a sink angle of zero (0) that results in an infinite ranking 

value. Then APDS assigns an arbitrary ranking value of 10950 days (30 years) to ensure 

that these cells will occupy the end of the priority queue. At step 2, cell 14 is extracted 

from the heated zone and added to the steam-chamber in both cases. Note that in the 

heterogeneous reservoir some neighbors of cell 14 are shales, then the barrier begins to 

affect the steam-chamber growing. Figure 2.9 shows 3 additional steps. At step 5, the shape 

of the heated zone is very different for the two cases and the order in which the cells are 

added to the steam-chamber starts to change. 

 

Table 2.1: Typical Athabasca oil-sand parameters used in the stepwise procedure (Modified after Cokar et 

al. (2013)). 

Property Value 

𝑇𝑟 (°𝐶) 10 

𝑇𝑠𝑡(°𝐶) 260 

𝜌𝑜 (𝑘𝑔/𝑚
3) 998 

∅  0.35 

𝑘𝑎𝑏𝑠 (𝑚
2)  3.05 x 10-12 

𝑘𝑟𝑜 (𝑚
2)  0.2 

𝑆𝑖𝑜 0.84 

𝑆𝑜𝑟  0.14 

𝜐𝑠𝑡 (𝑚
2/𝑠) 4.28 x 10-6  

m 3 
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Figure 2.10:  APDS calculations for the homogeneous reservoir depicted in the left column of Figure 2.9. 
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Figure 2.11: APDS calculations for the heterogeneous reservoir depicted in the right column of Figure 2.9. 

 

2.7 APDS Time Complexity 

 

The time complexity of APDS is associated to Dijkstra’s algorithm (Dijkstra, 1959) and its 

implementation. The current APDS version uses a priority queue that leads to a complexity 

of 𝑂 = (𝑚 log(𝑛)), where 𝑛 is the number of cells and 𝑚 is the number of edges (Ortega-

Arranz et al., 2015).  
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2.8 Potential Applications 

 

APDS has a straightforward mathematical formulation to secure an efficient computational 

implementation; it is not intended as a replacement for a full physics thermal simulator. 

APDS is mainly envisioned to be a cost-effective transfer function to support decision 

making models that considers geological uncertainty. APDS is especially suitable for 

guiding decisions in SAGD that can be make based on the geometry and growth rate of the 

steam-chamber. In this context, some potential applications are described below. 

 

2.8.1 SAGD Well-pair Location.  

 

The oil production and steam consumption in SAGD depend on the steam-chamber 

evolution that is a consequence of the relative position between the well-pairs and the 

barriers in the reservoir. While the location of the well-pairs is an engineering decision, the 

location of the barriers is uncertain. APDS allows to test every candidate well-pair location 

through the geostatistical realizations to obtain a cumulative distribution function (CDF) 

of the steam-chamber size at a time of interest. These CDFs are used to decide about the 

well-pair location. 

 

2.8.2 SAGD Operation.  

 

SAGD performance can be affected by reservoir layers with high permeability and low oil 

saturation that might increase heat losses and affect the steam-chamber growth (C. Wang 

& Leung, 2015). These layers are called lean zones and their analysis is often addressed 

using numerical simulation (e.g. Xu et al. 2014; Wang and Leung 2015) with the limitations 

imposed by the computational cost of this technique. APDS applied on geostatistical 

realizations allows to identify areas where the steam-chamber has higher probability of 

contacting lean zones. An estimation of the time in which the contact might occur is also 

readily available. This information helps to anticipate operational pressure strategies to 

control heat losses, and to consider using flow control devices. 
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2.8.3 4D-Seismic Integration. 

 

4D-seismic provides reliable images of the steam-chamber. These images might reveal 

anomalies by the absence or unexpected location of the steam-chamber that can be enforced 

into geostatistical realizations to improve reservoir characterization (Hadavand & Deutsch, 

2017). Analyzing the effect of the geostatistical-anomaly enforcement methodology 

requires comparing the estimation of the steam-chamber before and after applying the 

enforcement through all the geostatistical realizations (Hadavand & Deutsch, 2017). APDS 

is efficient enough to perform this task and serve as a tool for assisting 4D-seismic 

integration in SAGD reservoir characterization. 

 

2.8.4 SAGD Geomechanics. 

 

The geomechanical response of a reservoir to SAGD processes is influenced by steam-

chamber growth that impact the stress and strain field in situ (Chalaturnyk & Li, 2004). 

Deformations of the reservoir and caprock can yield to failure of both, affecting the safety 

of SAGD operations (Pathak, Tran, & Kumar, 2014). Assessing caprock integrity requires 

considering the steam-chamber dimensions, the pay thickness (Collins, 2007) and the 

reservoir heterogeneity, among other factors. The uncertainty associated with caprock 

integrity due to reservoir heterogeneity has been study using coupled geomechanics 

thermal reservoir simulation (e.g. Pathak et al. 2014), but computational time is even longer 

than in conventional thermal simulation. APDS provides continuous measures of steam-

chamber dimensions, such as volume, height and width, that can enrich analysis of the 

uncertainty associated with caprock integrity.  

 

2.9  Discussion  

 

The APDS was conceived to support workflows that requires the assessment of many 

SAGD projects. For example, quantification of the impact on a SAGD performance of the 

geological uncertainty represented in a set of geostatistical realizations, or scanning vast 

areas in the early development of SAGD fields. For this reason, APDS is intended to be 
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mathematically simple and yet to have reasonably good predictive capabilities. The 

predictive capabilities of APDS are bounded by the simplifications imposed in its 

algorithmic structure and equations. For example, APDS does not model any physics 

beyond the heated zone and it cannot predict complex physical phenomena that might occur 

inside the heated zone but that the ranking function does not describe. 

The ranking function can be expanded to more closely reproduce the STARS results, 

but this improvement may decrease computational efficiency. APDS is not designed to 

replace robust full physics thermal simulator. APDS with a complex ranking function will 

not match the sophistication and complexity of a thermal simulator, but it might lose its 

efficiency advantage.  

APDS has optional by-products that can support the design and operation of SAGD 

projects. Some examples are the path of the steam from the producer well to each cell, an 

approximate value of the steam chamber’s interface dimension, the number of non-

producing cells –overburden and shales – contacted, and the number and locations of the 

sinks. 

The next chapter describes the assumptions made to implement APDS. 
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3 APDS:  Implementation and Validation 

 

3.1 Introduction 

 

The APDS formulation is based on well-established engineering principles of flow in 

porous media, material balance and heat-transfer. However, a successful implementation 

of the algorithm in a graph framework requires assumptions and practical simplifications 

that are presented in the first part of this chapter. The structure of the APDS prototyped in 

the Python programming language is discussed. In the second part of the chapter, a case-

study performed with a realistic multi-realization geological model is compared to a 

commercial simulator to validate the predictive capability and computational efficiency of 

APDS. The results strongly favor the use of APDS as a fast way to use multiple realizations 

to support SAGD decision making workflows in the presence of geological uncertainty. 

 

3.2 APDS Assumptions and Simplifications 

 

As discussed in Section 2.4.3.1, the steam-chamber expansion is controlled by Equations 

3.1 (Darcy’s Law) and 3.2 (Material balance). This section describes their variables and 

explains the assumptions and simplifications applied. 

𝑞𝑜 =
𝐴𝑡𝑘𝑜𝑔 𝑠𝑖𝑛 𝛽

𝜐ℎ𝑣
 

 

(3.1) 

Here, 𝑞𝑜 is the oil rate, 𝐴𝑡 is the transversal area for the flow in the direction of the 

parent sink, 𝑘𝑜 is the effective oil permeability, 𝑔 is the gravity constant, β is the sink angle 

and 𝜐ℎ𝑣 is the kinematic oil viscosity in the heated volume.  

𝐶𝑒𝑙𝑙 Travel T𝑖𝑚𝑒 =
𝑉𝑐∅ ∆𝑆𝑜
𝑞𝑜

 

 

(3.2) 

Here, 𝑉𝑐 is bulk cell volume, ∅ is porosity and ∆𝑆𝑜 is recoverable oil saturation. 
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3.2.1 Sinks, Parent Sink and Sink Angle (β) 

 

During the steam-chamber growth, the heated bitumen flowing downward will go around 

the barriers (shales). The cells at the edges of the barriers act like sinks for the bitumen on 

its way down to the producer well. The angle between one cell and one sink is called sink 

angle (β), it reflects the initial direction of the flow. Figure 3.1 shows the sink angle 

between cell A and two out of 13 available sinks, red cells in layer 3. 

 

 

Figure 3.1:  Bitumen flowing downward from cell A to the well will pass through one of the sinks (red 

cells). The angle between cell A and one sink cell is called sink angle. This figure shows two possible sink 

angles β1 and β2. 

 

During the expansion of the steam-chamber, APDS uses the ranking value to assign a 

unique sink to cell A that is called the parent sink of A. The parent sink is the sink that 

minimizes the travel time. It depends on the relative position between the cell, the barriers 

and the producer well. Figure 3.2 illustrates the concept. The top image sketches a vertical 

cross-section of a reservoir with one horizontal barrier. It has 2 potential sinks located at 

the edges of the barrier. There are 3 producer-well locations, named W1, W2 and W3. The 

figures below (a, b, c) describe the bitumen path from an arbitrary chosen cell A to each 

well location. 
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Figure 3.2:  The bitumen path depends on the relative position between the cell, the well and the barriers. In 

figures a and b, the steam-chamber approaches cell A from the left-side and the sink 1 is marked as Parent 

Sink of A. In figure c, the steam-chamber approaches cell A from the right-side and the sink 2 is marked as 

Parent Sink of A 

 

Figure 3.2.a. (left column) shows two potential paths for the bitumen in cell A to 

circumvent the barrier and reach well-1. In this case, the steam-chamber is approaching 

cell A from the left-side. Therefore, bitumen will drain to the well through the sink-1 that 

is marked as the Parent Sink of cell A. Figure 3.2.b. shows a different well location (W2) 

that also results in sink-1 being marked as the Parent Sink of cell A. On the contrary, Figure 

3.2.c. presents a case where due to the location of the well-3, the steam-chamber is 
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approaching the cell A from the right side. Here, the bitumen will drain through sink-2 that 

becomes the Parent Sink of cell A. Note how even in these simple examples, there are very 

different steam-chamber shapes. 

 

3.2.2 Transversal Area (At) 

 

The bitumen flows from a heated cell toward an adjacent cell in the direction defined by 

its parent sink angle (β). At is calculated perpendicular to the direction of the flow. For a 

cell of unit thickness measured into the paper At = St x 1, where St is the transversal side 

as shown in Figure 3.3. If β is greater than 45◦, St  is calculated with the length of the cell. 

If β is smaller than 45◦, St uses the height of the cell. 

 

 

Figure 3.3: The transversal side (𝑺𝒕) concept used in APDS. 
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The kinematic viscosity depends on the temperature distribution in the heated volume. The 

temperature distribution in its turn depends on the petrophysical and thermal rock 
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(Butler, 1985; Butler et al., 1981) APDS assumes a steady state temperature (𝑇) distribution 

ahead of the advancing steam-chamber interface given by Equation 3.3. The temperature-

dependent kinematic viscosity (υ) relationship is given by Equation 3.4. 

𝑇 − 𝑇𝑟
𝑇𝑠𝑡 − 𝑇𝑟

= 𝑒−𝑈𝜉/𝛼 (3.3) 

Here, 𝑇𝑟 is the initial reservoir temperature, 𝑇𝑠𝑡 is the steam-chamber temperature, U is 

the steam-chamber velocity in the direction normal to the interface, 𝜉 is the distance 

measure normal to the steam-chamber interface and 𝛼 is the reservoir thermal diffusivity.  

𝜐𝑠𝑡
υ
=  (

𝑇 − 𝑇𝑟
𝑇𝑠𝑡 − 𝑇𝑟

)
𝑚

 (3.4) 

Here, 𝜐𝑠𝑡 is the kinematic viscosity at steam temperature and the parameter 𝑚 captures 

the effect of temperature on viscosity. 𝑚 can be calculated from Equation 3.5. and its value 

is typically in the range 3 to 5 (Butler & Stephens, 1981). 

𝑚 = [∫ (
1

υ
−
1

𝜐𝑟
)

𝑇𝑠𝑡

𝑇𝑟

𝑑𝑇

𝑇 − 𝑇𝑟
]

−1

 (3.5) 

From Equations 3.3 and 3.4, Butler (1985) demonstrated for a section of unit thickness 

measured into the paper, that the flow parallel to the steam-chamber interface is given by 

Equation 3.6. This equation implies that the heat transfer is by conduction only and at a 

constant velocity 𝑈 . 

𝑞𝑜 =
𝛿𝑘𝑜𝑔 𝑠𝑖𝑛 𝛽

𝑚 𝜐𝑠𝑡
 (3.6) 

Here, 𝛿 =  𝛼/𝑈 is the heat-penetration depth. APDS assumes that when a cell is added 

to the steam-chamber its neighborhood is already heated, therefore, by comparing Equation 

3.1 to Equation 3.6 it follows that if  𝑆𝑡 =  𝛿 then υhv =  𝑚 𝜐𝑠𝑡. 
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3.2.4 Permeability  

 

Permeability anisotropy impacts the steam-chamber expansion and hence the SAGD 

project performance (Azom & Srinivasan, 2013; Sharma, Khataniar, Patil, Kamath, & 

Dandekar, 2002). During the SAGD process, the interface angle of the steam-chamber 

continuously changes, and because the bitumen flows parallel to it, it is reasonable to 

conclude that the relative influence of the vertical permeability (𝐾𝑣) and horizontal 

permeability (𝐾ℎ) on the bitumen flow is also continuously changing. This is a local 

phenomenon. At any given time, there are sectors of the steam-chamber’s edge where 𝐾𝑣 

dominates over 𝐾ℎ, and others where the contrary occurs. To account for this phenomenon, 

APDS implements the permeability model given by Equation 3.7. 

𝐾𝛽 = 𝐾𝑣 sin
2 𝛽 + 𝐾ℎ cos

2 𝛽  (3.7) 

Here, 𝐾𝑣 and 𝐾ℎ are the permeability in the vertical and the horizontal direction, 

respectively. 𝐾𝛽 is the permeability in the direction of the angle 𝛽. 

Azom & Srinivasan (2011) derived this permeability model by resolving the SAGD 

flow in the direction of the resultant gravity head. They concluded that Equation 3.7 is 

mathematically in agreement with Butler’s analytical model. 

 

3.2.5 Steam-chamber Interface Velocity 

 

APDS works one cell at a time, and once a grid-cell has been classified as part of the steam-

chamber it is not processed again. This mechanism is myopic about the future evolution of 

the steam-chamber and overestimates the interface velocity. A deceleration exponent 

applied to the model time variable introduced in Section 2.4.3.2 corrects this 

overestimation. 

Figure 3.4 illustrates the cause of the overestimation. It shows the rate of bitumen 

flowing in (𝑞𝑖𝑛) and flowing out (𝑞𝑜𝑢𝑡) of a cell in the heated zone. Note that the advance 

of the steam-chamber interface at a velocity 𝑈 is only possible if 𝑞𝑜𝑢𝑡 > 𝑞𝑖𝑛 . In other 

words, the advance of the interface is determined by the difference in the rates, and not 
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only by the output rate (Butler, 1991).  Because APDS considers 𝑞𝑖𝑛 = 0, the cell travel 

time calculated with the Equations 3.1 and 3.2 is less than a value calculated with 𝑞𝑖𝑛 > 0. 

Consequently, the interface velocity U and the steam-chamber expansion rate increases. 

 

Figure 3.4: The advance of the steam-chamber interface at a velocity U is determined by the difference 

between 𝑞𝑖𝑛 and 𝑞𝑜𝑢𝑡. 

 

Figure 3.5 shows that assuming  𝑞𝑖𝑛 = 0 is reasonable for cells located on the top edge 

of the steam-chamber (e.g. top-cell A), but questionable for cells located on the lateral edge 

of it (e.g. lateral-cell B). At the beginning of the steam-chamber, there are more top-cells 

than lateral-cells; therefore, the estimated interface velocity is acceptable. However, as the 

steam-chamber grows, the number of lateral-cells increases at a faster rate than the number 

of top-cells, resulting in the overestimation of the interface velocity.  
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Figure 3.5: The advance of the steam-chamber interface is determined by the difference between the 

flowing in (𝑞𝑖𝑛) and flowing out (𝑞𝑜𝑢𝑡) rates. 

 

Because the surface of the steam-chamber increases exponentially with time, it is 

expected that the interface velocity also accelerates exponentially. For that reason, APDS 

controls the inflation of the steam-chamber interface velocity with a deceleration exponent. 

It is applied directly to the model time variable (Sections 2.4.3.2 and 2.5) acting as a delay 

to the ranking value time of every cell. 

 

3.3 APDS prototype computer program 

 

APDS was prototyped in the Python programming language. The code is presented in 

Appendix A. The program has 3 modules: the graph generator, the steam-chamber 

generator and the post-processing module. They interact according to the diagram shown 

in the Figure 3.6.  

The graph generator module takes the numerical reservoir model in GSLIB format 

(Deutsch & Journel, 1998) and outputs the graph and a list with all the cell-sinks. The input 

must contain the porosity, vertical and horizontal permeability, fluid saturation and rock-

type data to be stored at the graph nodes. The module not only transforms the mathematical 

representation of the reservoir, but also enriches it by adding flow path information 

particular to the SAGD recovery process, through the number and direction of the graph 

edges. 
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Figure 3.6: Structure of the APDS prototype. 

 

The steam-chamber generator module takes the graph, the sinks and the SAGD project. 

The definition of the SAGD project must include the trajectories of the producer and the 

injector wells in GSLIB format, the bitumen kinematic viscosity at steam temperature, the 

Butler’s temperature-viscosity exponent, 𝑚. This module outputs the sequence of graph 

nodes ordered by ranking values or time. 

The post-processing module transforms the ordered sequence of nodes to GSLIB 

format. The outputs include a grid with the time (ranking values) that each-cell was added 

to the steam-chamber, and a file in VTK format (Schroeder, Martin, & Lorensen, 2006) to 

visualize their evolution in a third-party software. A forecast of the cumulative steam-

chamber volume is also generated. 

 

3.4 APDS Validation 

 

APDS is mainly envisioned to be a cost-effective transfer function to support decision 

making models that considers geological uncertainty. To evaluate its suitability for the task, 

a case-study was prepared to compare results from the Computer Modeling Group (CMG) 

thermal flow simulator STARS (CMG, 2010) and APDS over a set of 100 geostatistical 

realizations. STARS is widely used in industry operations and academic research to flow 

simulate SAGD projects, and hence, it is a reasonable benchmark to validate APDS.  

APDS would be considered a suitable transfer function for SAGD projects if 1) there is 

a good visual and quantitative agreement between the steam-chambers obtained from 
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STARS and APDS over the entire set of realizations, 2) metrics calculated from STARS 

and APDS exhibit good/strong positive correlation, and 3) the ranking of the reservoir 

realizations using a STARS’s metric is similar to that with a APDS’s metric.  

This section presents the geological model and the engineering assumptions for flow 

simulating the SAGD project. Steam-chambers and metrics extracted from APDS and 

STARS are compared visually and numerically, and the results discussed. The 

computational time to run both methods is reported. 

 

3.4.1  Geological Model 

 

The geological model consists of 100 geostatistical realizations. Each realization has 

200,000 cells: 40 x 50 x 100 cells in the x, y and z directions, respectively. The grid blocks 

are 25 m x 1 m x 1 m in the x, y and z directions, respectively. The interested reader is 

referred to Hadavand & Deutsch (2017) for a detailed description of the numerical reservoir 

model and the geostatistical workflow used to generate it. Figure 3.7 depicts some of the 

main characteristics of the reservoir model. The images have a data aspect ratio between 

the x-axis to y-axis and x-axis to z-axis of 5 in both cases. 

 

 

Figure 3.7: Illustration of one realization of the geological model. 
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Hadavand (2017) reports that the construction of the geological model used spatial 

bootstrap to account for parameter uncertainty related to the well data (porosity, 

permeability and water saturation), but not related to the categorical variable. It is worthy 

to highlight that the decision-making workflow will benefit from incorporating parameter 

uncertainty in the geostatistical simulation (Khan & Deutsch, 2016). However, the APDS 

validation discussed in this chapter is not affected by the workflow implemented to 

construct the geological model. 

 

3.4.2 SAGD Project 

 

In the reservoir-simulation model, the well-pair length is 1000 m and the vertical inter-well 

distance is 5 m. The steam-injection pressure is constrained to a maximum value of 3,500 

KPa and the maximum steam injection rate is set to 400 𝑚3/𝑑  with 90% steam-quality. 

The production well is constrained to a maximum steam rate of 5 𝑚3/𝑑 to mimic steam- 

trap control. A circulation period of 4 months was modeled with heater wells. Table 3.1 

summarizes other parameters used in the reservoir simulation. Temperature and 

compositional dependent relative permeability curves taken from the CMG SAGD guide 

(CMG, 2013) are depicted in Figure 3.8. APDS uses the same well-pair geometry, the 

viscosity at steam-temperature is 𝜐𝑠𝑡 = 7.11 x 10-6  𝑚2/𝑠 , the Butler’s temperature-

viscosity exponent 𝑚 = 4.1 and the oil relative permeability is 𝐾𝑟𝑜 = 0.25. 

Table 3.1: Reservoir simulation parameters. 

Parameter Value 

Well length (𝑚) 1000 

Inter-well distance (𝑚) 5 

Reservoir thickness (𝑚) 35-40 

Initial reservoir temperature 𝑇𝑟 (°𝐶) 12 

Initial reservoir pressure at top of the model (𝑘𝑃𝑎) 2500 

Depth at top of the model (𝑚) 500 

Dead bitumen viscosity at 15 °𝐶  (𝑚𝑃𝑎 ∙ 𝑠)  3,260,000 

Bitumen density at 𝑇𝑟   (𝑘𝑔/𝑚
3) 1012 

Bitumen molecular mass (𝑔/𝑔𝑚𝑜𝑙)  600 

Initial methane molar fraction (%) 5 
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Figure 3.8: Temperature and compositional dependent relative permeability curves (CMG’s SAGD guide 

(2013). 

 

3.4.3 Steam-chambers from STARS and APDS 

 

A visual comparison between APDS and STARS for two geostatistical realizations 

confirms the ability of APDS to model the steam-chamber expansion in SAGD. They also 

serve to illustrate how this novel algorithm handles complex reservoir heterogeneities. A 

Conformance Index calculated over the 100 geostatistical realizations validates the good 

predictive capabilities of APDS.  
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3.4.3.1 Visual Comparison #1.  

 

The location of the steam-chamber from STARS was calculated every year using the oil 

saturation (𝑆𝑜). It was assumed that a difference of 10% between the initial oil saturation 

(𝑆𝑜𝑖) and the oil saturation at a time of interest (e.g. oil saturation after 5-years,𝑆𝑜_5𝑦) 

indicates the presence of the steam-chamber at that time. Similarly, the APDS output 

originally in time units, was transformed to an indicator variable showing the location of 

the steam-chamber – years 1 to 5 - for comparison purposes. 

Figure 3.9 shows the steam-chamber from APDS and STARS after 5 years. The match 

between the two results appears satisfactory. A detailed comparison was performed in two 

vertical cross-sections separated by 250 m along the x-axis as depicted in Figure 3.10. 

Cross-section A is located in the middle of the horizontal well-pair and cross-section B 

toward the toe. 

 

 

Figure 3.9: APDS and STARS steam-chamber after 5 years. 

 

Figure 3.10: Cross-section A and B selected to compare STARS and APDS. 
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Cross-section A in Figure 3.11 shows from the bottom to the top the steam-chamber 

evolution for 5 years. The left and right columns show the results from STARS and APDS, 

respectively.  

A visual comparison demonstrates a close agreement between the STARS and the 

APDS results in this cross-section. At the beginning, the APDS steam-chamber does not 

rise as quickly, but soon it reaches a similar growth rate to the STARS’s steam-chamber. 

The APDS steam-chamber evolves honoring the reservoir heterogeneity. For example, a 

long barrier located at the right-side of the cross-section reduces the vertical growth of the 

chamber between years 2 and 3 causing it to rise asymmetrically to the left of the cross-

section. The STARS results confirm this complex behavior. Figure 3.11 shows that the 

good agreement in shape and size is maintained through the studied time horizon. 

Figure 3.12 shows cross-section B; again, there is a good agreement between the 

STARS and APDS results. Note that cross-section B has a different geometric pattern than 

cross-section A. In this case, two long stair-stepped barriers located at the left of the cross-

section inhibit the movement of the steam. Figure 3.12 illustrates how APDS predicts the 

impact of these obstacles in a similar way to STARS. Once more, the good agreement in 

the shape and size is maintained through the studied time horizon. 
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Figure 3.11: Cross-section A comparing APDS and STARS for 5 years.  
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Figure 3.12: Cross-section B comparing APDS and STARS for 5 years. 
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3.4.3.2 Visual Comparison #2. 

 

In this comparison, the location of the steam-chamber from STARS was calculated after 5 

years using the oil saturation (𝑆𝑜).  Likewise, the APDS output was transformed to an 

indicator variable showing the location of the steam-chamber at year 5. 

Figure 3.13 shows a satisfactory match between the STARS and APDS steam-chambers 

once more. The top image shows the location of permeable and not-permeable rocks. Note 

how the barriers in the well-pair proximities hamper the expansion of the steam-chamber 

leading to unstimulated planes. The negative effect of the reservoir heterogeneity in the 

SAGD performance is captured correctly by APDS.  

 

 

Figure 3.13:  Steam-chamber location after 5 years generated by STARS and APDS. 

 

Figure 3.14 and Figure 3.15 present a detailed comparison of vertical cross-sections 

along the axis of the well-pair, and perpendicular to the axis the well-pair every 300 meters. 

In all the cases, the visual comparison demonstrates a close agreement between APDS and 

STARS results. Note how APDS deals with the complex reservoir heterogeneity. 
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Figure 3.14: Vertical cross-sections along the axis of the SAGD well-pair. Arrows mark the location of 

cross-sections plotted in Figure 3.15. 

 

 

 

Figure 3.15: Vertical cross-sections every 300 meters perpendicular to the axis of the SAGD well-pair. 
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Since is not practical to perform a one-to-one visual comparison of the 3D steam-chambers 

over the entire set of geostatistical realizations, a Conformance Index (CI) defined as the 

percentage of cells in the STARS steam-chamber correctly predicted by APDS was 

calculated for all of them. The histogram in Figure 3.16 shows that in average 87% of 
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APDS

STARS

100 m 300 m 500 m 700 m 900 m

X

Z

X

Z well

well

Unstimulated ReservoirSteam-chamber

X-Section 
100 m

X-Section 
300 m

X-Section 
500 m

X-Section 
700 m

X-Section 
900 m

Y

Z

APDS

STARS

Y

Z

Unstimulated ReservoirSteam-chamber



48 

of the realizations, the CI is at least 86%. This result confirms the good predictive 

capabilities of APDS. 

The CI changes with time. At early stages CI tends to have relatively low values due to 

instabilities in both methods, APDS and STARS, associated to modeling the process of 

establishing the initial thermo-hydraulic communication between the producer and the 

injector well. At later stages, CI tends to have artificially high values because the steam-

chambers reach the limits of the reservoir. Gallardo & Deutsch (2018) showed an example 

describing how CI changes with time. 

 

Figure 3.16: Conformance Index histogram. 

 

3.4.4 Metrics from STARS and APDS 

 

The metrics to numerically compare APDS to STARS are the Cumulative Oil Production 

(COP) and the Steam-Chamber Bitumen Volume (SCHV) as described below. 

 

3.4.4.1 STARS Cumulative Oil Production 

 

Figure 3.17 shows the COP forecasts for a subset of 50 realizations and Figure 3.18 shows 

COP histograms at every year. Only 94 values are reported because 6 flow simulations 

failed to reach 5 years of production. CPO at every year will help to understand the stability 

through time of this variable to rank the geostatistical realizations for SAGD. 
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Figure 3.17: COP forecasts from STARS after 5 years for 50 realizations. 

 

Figure 3.18: Histograms of COP from STARS for years 1 to 5 (Y1 to Y5). 



50 

3.4.4.2 STARS Steam-Chamber Bitumen Volume  

 

SCHV from STARS was calculated using the porosity and recoverable oil saturation of the 

cells inside the steam-chambers calculated in section 3.4.3. Figure 3.19 shows the 

histogram. 

 

Figure 3.19: Histogram of SCHV from STARS after 5 years. 

 

3.4.4.3 APDS Steam-Chamber Bitumen Volume 

 

SCHV from APDS was calculated by accumulating the oil volume of the ordered cells until 

year 5, as shown in Figure 3.20a.  These curves resemble the COP from STARS forecasts 

depicted on Figure 3.17. They are somehow different because there is a time lag between 

them that depends on the rock-fluid interaction properties and on the size and shape of the 

steam-chamber. Figure 3.20b shows the SCHV from APDS histogram after 5 years. 
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Figure 3.20:  a) Cumulative SCHV from APDS, b) Histogram of SCHV from APDS after 5 years.  

 

3.4.4.4 Analysis 

 

A good visual agreement between the steam-chambers obtained from STARS and APDS 

over the entire set of realizations was already established in Section 3.4.3. Now, a 

good/strong positive correlation coefficient between STARS’s COP versus APDS’s SCHV 

and between STARS’s SCHV versus APDS’s SCHV will also support the use of APDS as 

a tool for decision making workflows. 

Since the COP curves cross each other, the rank of the realizations using this variable 

changes from one year to another. Then, a first step of the analysis is to determine a time 

a)

b)
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horizon in which the comparison between STARS and APDS will produce stable results.  

Figure 3.21 shows the scatter plots of STARS’s COP forecast from year 1 to 5. Note that 

the correlation coefficient between two consecutive years increases with time only until 

year 4. For instance, the correlation coefficient between years 1 and 2 (Y1 and Y2) is 

ρ=0.91, between years 2 and 3 (Y2 and Y3) is ρ=0.96 and between years 3 and 4 (Y3 and 

Y4) is ρ=0.98. This tendency demonstrates that ranking this set of geostatistical realizations 

based on COP is stable after 4 years of production. 

Figure 3.22 shows scatter plots of the rank of geostatistical realizations based on 

STARS’s COP from year 1 to 5. In this case study, ranking with COP is stable after 4 years 

of production. Ranking based on 1 or 2 years of COP is not recommended, since by year 5 

the result could be significantly different. On the other hand, ranking with 4 or 5 years of 

COP provides similar results. The Spearman rank correlation coefficient between years 4 

and 5 (Y4 vs Y5) is 𝜌𝑠 = 0.98. 

 

 

Figure 3.21: Scatter plots of COP from STARS forecasts from years 1 to 5. 
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Figure 3.22: Scatter plots of rank of realizations based on COP from STARS from years 1 to 5. 

 

Table 3.2: Statistics from APDS and STARS. 

 COP-STARS 

(m3/1000) 

SCHV-

STARS 

(m3/1000) 

SCHV-APDS 

(m3/1000) 

    

Mean 240.2 238.5 239.7 

p75 247.9 246.7 251.4 

p50 239.3 238.8 240.9 

p25 233.6 232.0 226.1 

Min 262.5 262.1 280.0 

Max 216.8 213.6 188.8 

 

Table 3.2 summarizes statistics from the histograms in Figures 3.18, 3.19 and 3.20. Here 

is worthy to highlight that the mean and p50 of the SCHV from APDS has a percent error 

of less than 1% when is compared to the corresponding statistics of STARS’s COP and 

SCHV. APDS also exhibits a larger interquartile range (IQR) than STARS, the larger 



54 

variance could be the effect of APDS being more sensitive than STARS to the reservoir 

heterogeneity. APDS is an algorithm that trades accuracy for efficiency.  

Figure 3.23a. shows a scatter plot between the COP from STARS and the SCHV from 

APDS. They have a good linear relationship with 𝜌 = 0.86. APDS also predicts very well 

the COP from STARS. Approximately 70% of the values lie in a +/- 5% band of the value 

predicted by the thermal simulator, and 95% of the values lie in a +/- 10% band. Figure 

3.23b. shows a rank correlation coefficient 𝜌𝑠 = 0.86, which indicates that APDS can 

preserve moderately well the rank of this set of geostatistical realizations. Approximately 

80% of the rank predicted by APDS is inside a 2 deciles band of the rank predicted by 

STARS using COP. 

 

Figure 3.23: a) Scatter plot of COP from STARS and APDS from SCHV, b) Scatter plot of COP from 

STARS ranks and SCHV from APDS ranks. 

a)

b)
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Figure 3.24a. shows the scatter plot between the SCHV from STARS and the SCHV 

from APDS. They have a good linear relationship with 𝜌 = 0.88, which is slightly higher 

than the previous case. The improvement is expected because in this case the comparison 

involves the same property. Figure 3.24a. also shows that 81% of the APDS’s SCHV values 

are in a +/- 5% band of the value predicted using the thermal flow simulator. The 

percentage rises to 97% when a +/- 10% band is used. The Spearman’s correlation 

coefficient of 𝜌𝑠 = 0.88 (Figure 3.24b) corroborates that APDS can preserve fairly well 

the rank of this set of geostatistical realizations. 

Figure 3.24a shows that poor performing realizations in terms of STARS’s SCHV are 

slightly underestimated by APDS, while good performing realizations are slightly 

overestimated. This behavior seems to be a consequence of using a single deceleration 

exponent value to control the steam-chamber interface velocity for all the geostatistical 

realizations as explained in Section 3.2.5. 
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Figure 3.24: a) Scatter plot of SCHV from STARS and SCHV from APDS. b) Scatter plot of SCHV ranks 

from STARS and SCHV ranks from APDS. 

 

The rank correlation coefficient improves when the comparison is done at later times in 

the steam-chamber evolution. Figure 3.25a. shows that STARS’s COP after 5 years and 

APDS’s SCHV after 7 years have 𝜌𝑠 = 0. 89, while STARS’s SCHV after 5 years and 

APDS’s SCHV after 7 years have 𝜌𝑠 = 0.93. Both values strongly indicate that APDS is 

rank preserving with respect to the similar metric calculate with STARS. 

 

a)
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Figure 3.25: a) Scatter plot of COP from STARS after 5 years and SCHV from APDS after 7 years. b) 

Scatter plot SCHV ranks from STARS after 5 years and SCHV ranks from APDS after 7 years. 
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3.4.5 Computational Time 

 

3.4.5.1 Study-Case Running Time 

 

Running the thermal flow simulator for 100 realizations with the engineering assumptions 

previously described took an average of 33 hours per realization. Since it was possible to 

run 3 realizations in parallel, the total effective simulation running time was 46 days. The 

current APDS Python prototype run the case-study in 5 hours, which results in an average 

time of 3 minutes per realization. APDS did not use parallel computing. Based on these 

numbers, it is concluded that in this case-study the graph-based algorithm was 3 orders of 

magnitude faster than the conventional thermal flow simulator. 

It is worthy to mention that an independent implementation of APDS written in the C# 

programming language. It took 20 seconds approximately to process one realization of the 

geological model used in this case-study (Wilde, B. personal communication, September 

20, 2018). On this implementation, APDS was 4 orders of magnitude faster than STARS. 

 

3.5  Discussion  

 

3.5.1 APDS Level of Physics 

 

APDS shows encouraging results that indicates the assumptions and simplifications 

implemented capture most of the physical phenomena occurring in the reservoir that are 

relevant to the steam-chamber expansion. Differences to the thermal flow simulator outputs 

are explained by flow in porous media and heat transfer thermal mechanisms that APDS 

does not address directly, as well as by the nature of the algorithm that works one cell at 

the time. 

As mentioned before, the ranking function can be expanded to more closely reproduce 

the STARS results, but the improvement of the results should counterbalance the decrease 

in computational efficiency. Interestingly, maintaining a flexible ranking function offers 

the opportunity of tailoring the APDS level of physics (or complexity) to the particular 

decision problem that the reservoir manager must solve. 
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Figure 3.26 illustrates that in terms of complexity, APDS is superior to many analytical 

and semi-analytical models, especially given its capacity to handle reservoir 

heterogeneities. It is by design inferior to full physics flow thermal flow simulators, 

because it is intended to be faster than them. The opportunity appears because the range of 

APDS complexity is not difficult to adjust. A low complex physics APDS could be useful 

when the decision requires a 3-level discrimination (good, fair, poor) of the projects. For 

instance, to screen very large areas looking for sweet-spots during a SAGD exploration 

phase. A medium complex physics APDS could be useful when the decision requires a 5-

level discrimination (very-good, good, fair, poor, very-poor) of the projects. For instance, 

to rank SAGD-Pads in a specified area. Finally, a high complex APDS could be useful 

when is necessary to approximate as close as possible thermal simulator results but within 

a constrained timeframe. For example, deciding the orientation and/or the vertical locations 

of well-pairs.   

 

 

Figure 3.26: Conceptual level of physics of different transfers functions for SAGD. 
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3.5.2 APDS Validation 

 

The visual and numerical comparisons of the steam-chambers generated with STARS and 

APDS confirm the ability of the later to predict the evolution of the SAGD steam-chamber 

in complex heterogeneous reservoirs. 

The steam-chamber volume (SCHV) obtained from APDS exhibits strong and positive 

correlation with two different metrics (cumulative oil production and steam-chamber 

volume) calculated from STARS. The result strongly favors the idea of using APDS as a 

transfer function to support SAGD decision making workflows in the present of geological 

uncertainty. 

 

3.5.3 APDS Prototype and Computational Time 

 

In the case-study, APDS was 3 orders of magnitude faster than STARS to model the steam-

chamber expansion and to provide a response variable. The cost was a reduction in the 

precision of the results. 

Further gains in computational processing time can be reached by parallelizing APDS. 

The modular structure of the algorithm is very convenient for this as is shown in Figure 

3.28. A geological model with L reservoir realizations can be converted to graphs by 

running in parallel several modules type I (i.e. graph generators). Then, the SAGD projects, 

for example, N potential well-trajectories under evaluation, can be processed by multiple 

modules type II (i.e. steam-chamber generators) running in parallel too.  The outputs would 

be gathered by post-processing modules type III to assemble the probability distributions 

of the response variables. 
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Figure 3.27: Parallelization computing scheme for APDS. Note that the output are cumulative distribution 

functions (CDF) of the response variables, one per each SAGD project. 

 

Figure 3.27 also illustrates that the output of transferring the geological uncertainty are 

N cumulative distribution functions, one per SAGD project. It makes evident that the 

problem of selecting a project in the present of geological uncertainty is equivalent  to the 

problem of making a choice between the probability distributions of the response variables 

(Johnstone & Lindley, 2013).  

The next chapter introduces a practical decision-making rule to guide the selection of 

the CDF. It accounts for the risk-reward trade-off and the decision maker’s preferences. 
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4 Mean-Variance Criterion and Stochastic Dominance Rules for 

PRM 

 

4.1 Introduction 

 

Considering the risk and reward trade-off for decision making in the presence of 

uncertainty could be thought of as common-sense knowledge. However, this principle is 

seldom implemented in petroleum reservoir management (PRM), even though the 

decisions involve significant geological uncertainty. The geological uncertainty reflects a 

lack of knowledge in the geometry and properties of the reservoir. Although the geological 

uncertainty is characterized by geostatistical methods, this information is often not 

transferred through PRM workflows.  

One reason for this situation, already discussed in the previous chapters, is the  excessive 

computation time of transfering the geological uncertainty. Another one is  the lack of a 

practical decision-making criterion that actively manages the risk that arises from 

geological uncertainty. The importance of the latter reason should not be underestimated; 

it is the decision-making criterion adopted that ultimately determines which project is 

selected and implemented. 

The decision-making criterion introduced to PRM in this dissertation considers the 

geological uncertainty in the selection of projects. It is consistent with expected utility 

theory and combines Mean-Variance Criterion (MVC) and Stochastic Dominance Rules 

(SDR). It differs from other research that applied the utility framework to PRM  (e.g. 

Güyagüler and Horne 2004; Ozdogan and Horne 2006) because a specific utility function 

is not required. 

This chapter has the following structure. First, PRM problems are stated in terms of a 

formal decision-making model under uncertainty. In this framework, the concepts of 

projects, geological uncertainty characterization, transfer of geological uncertainty, 

preferences over the outcomes and utility theory are discussed. Secondly, the theory of 

MVC and SDR are introduced to PRM. At the end, a conceptual example explains how 

MVC and SDR work together to guide the selection of a SAGD project. 
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4.2 Decision-Making Model in Presence of Geological Uncertainty 

 

Figure 4.1 shows a PRM workflow translated to the words of a formal decision-making 

model under uncertainty with four elements: a set of feasible actions that represent the 

projects from which a choice must be made by the reservoir manager, a set of outcomes 

that refers to the consequences of every project under analysis, a preference ordering of the 

outcomes and a concept of rationality or decision rules that governs the decision process 

(Stirling, 2012). These components are described below. 

 

 

Figure 4.1: Components of a Petroleum Reservoir Management Decision-Making workflow. 

 

 4.2.1 Set of Feasible Actions or Projects. 

 

The set of contender projects from which the reservoir manager must make a choice is the 

space of feasible actions of the decision-making model. There are many different types of 

projects that a reservoir manager is concerned with including drilling a single producer 

well or defining the integrated development of several fields (SPE, 2007). Notwithstanding 

the differences, all projects have an intrinsic geological spatial nature. 

The spatial nature of the projects leads to a space of feasible actions that is often 

extremely high dimensional. For instance, the well location problem in a 3D grid has a 

combinatorial nature that even for small cases quickly leads to an intractable number of 

configurations. da Cruz (2000) explained how the number of possible combinations of 10 

wells in a 30 x 30 grid is in the order of 1029. 

The dimension of the space of feasible actions in PRM makes it impractical to perform 

an exhaustive global search for selection purposes. Optimization algorithms including 

Genetic Algorithms (Goldberg, 1989) and Particle Swarm Optimization (Kennedy & 
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Eberhart, 1995) have been studied (Echeverria-Ciurri, Conn, Mello, & Onwunalu, 2012; 

Isebor, Echeverría-Ciaurri, & Durlofsky, 2013; H. Wang, Echeverría-Ciaurri, Durlofsky, 

& Cominelli, 2012). 

In some cases, accepted reservoir engineering principles can eliminate many possible 

projects from consideration and thus the set of feasible actions may be a well-defined set 

of contenders (Raiffa & Schlaifer, 1961). 

 

4.2.2  Set of Outcomes 

 

The results of the projects cannot be anticipated with certainty because they depend on the 

unknown reservoir properties. Defining the set of outcomes requires performing two 

complex and demanding tasks, one is to build a geological model and the other is to process 

the projects and the geological model through transfer functions (e.g. conventional flow 

simulation or APDS) to obtain a probability distribution of the response variable that will 

be used to make the decision. 

 

4.2.2.1 The Geological Model 

 

The geological model is a set of geostatistical realizations that taken all together provides 

an assessment of the geological uncertainty (Pyrcz & Deutsch, 2014). By construction, 

every realization in the geological model is an equally likely to be drawn representation of 

the reservoir; and yet, any one realization could never be an accurate representation of the 

true reservoir. 

The methodology and software to generate geological models of petroleum reservoirs 

are mature and well established. An up to the date collection and explanation of the 

geostatistical simulation techniques can be found in Pyrcz & Deutsch (2014). There are 

other important references devoted to the theory and practice of geostatistics and its 

algorithms (Caers, 2011; Chiles & Delfiner, 2012; Deutsch & Journel, 1998; Goovaerts, 

1997).  
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4.2.2.2 Transfer of Geological Uncertainty 

 

Transferring the geological uncertainty to a production forecast (that might be later 

converted to a monetary value) is achieved by running a full physics flow simulator on 

each geostatistical realization with the set of projects being assessed (da Cruz, 2000). An 

optimization framework is considered when this comprehensive approach is too 

computationally demanding and time consuming. 

An alternative to the full physics flow simulator is to run a relatively simpler and faster 

flow model such as streamline simulation or a simplified physics model (Pyrcz & Deutsch, 

2014). The precision of the results will be compromised but the relative ranking of the 

realizations may be preserved. If a good correlation between the response variable obtained 

from the alternative method and the result obtained by the full physics dynamic simulator 

can be demonstrated, then the cumulative density function of the faster method would be 

suitable to assist decision making.  

Experimental design and response surfaces (Damsleth, Hage, & Volden, 1992) have 

been explored to obtain the distribution of the response variable, but the process requires 

careful calibration with the dynamic flow simulator and it is impractical to be used over a 

set of realizations. Ranking the realizations through a quick-to-calculate transfer function 

and selecting a few representative realizations for post-processing with a more complex 

transfer function is a common practice (Pyrcz & Deutsch, 2014), but since all the 

realizations are equally probable and any one realization could be misleading this method 

should be used very carefully. Computing a static measure such as recoverable 

hydrocarbon volume in place or a measure of connectivity of the reservoir-quality rock for 

all the realizations is also valuable to understand the global characteristics of the geological 

model (Pyrcz & Deutsch, 2014).  

 

4.2.3 Preferences and Concept of Rationality 

 

Preferences and the concept of rationality are the foundation of a decision-making model. 

After transferring the geological uncertainty, selecting a project from the set of feasible 
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actions is equivalent to make a choice between the probability distributions of the chosen 

response variable (Johnstone & Lindley, 2013).  

To make that choice, the investor’s preferences over the space of outcomes can be 

encoded in a utility function (Kochenderfer, 2015). A decision maker will make a rational 

decision if he chooses a project that maximizes the expected utility. A decision-making 

model to support PRM should belong to the utility theory framework to fully take 

advantage of the quantification of the geological uncertainty.  

The concept of maximum expected value as an optimal criterion for decision making 

under uncertainty was proposed by the mathematicians Blaise Pascal and Pierre de Fermat 

in the 17th century (Machina, 1987). Although appealing, this criterion does not explain 

real decisions under uncertainty, especially with asymmetric consequences of risk 

associated with large projects. 

The concepts of the utility function and the maximum expected utility were proposed 

by Daniel Bernoulli in 1738. However, only in 1947, John von Neumann and Oskar 

Morgenstern developed the formal theory of expected utility (Von Neumann & 

Morgenstern, 2007). They demonstrated axiomatically that the preferences of a decision 

maker can be encoded in a real-valued utility function. Then, a rational decision maker 

must act as if their objective is to maximize the expected utility (Johnstone & Lindley, 

2013). 

In PRM the decision-making problem can be formulated as: 

argmax
𝑎𝜖𝐴

𝐸[𝑢(𝑥(𝑎, 𝑤))] = argmax
𝑎𝜖𝐴

∫ 𝑓(𝑥(𝑎, 𝑤))  ∙ 𝑢(𝑥(𝑎, 𝑤))dx (4.1) 

Here, 𝑎 represents projects from the set of feasible actions 𝐴; 𝑤 represents realizations 

from the geological model; x(𝑎, 𝑤) represents the payoff calculated after transferring the 

geological uncertainty; 𝑓(𝑥(∙)) is the probability density function of 𝑥(∙) and 𝑢(𝑥(∙)) is 

the utility function. Equation 4.1 emphasizes that the payoff of 𝑥(∙)  depends on the 

decisions 𝑎𝜖𝐴 and on the geological uncertainty characterized by a set of geostatistical 

realizations 𝑤. 

The utility function is difficult to quantify in practice; however, as shown in Figure 4.2, 

they can be classified in three groups according to the preferences of the decision maker: 
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risk-averse, risk-neutral and risk-taker utility functions. A decision maker with risk-averse 

utility function (a concave function, i.e.  𝑢′′(𝑥) ≤ 0) will not play a fair game. “A fair game 

is defined as a game in which the price of a ticket to play the game is equal to the expected 

prize” (Levy, 2016). A decision maker with risk-neutral utility function (linear function) is 

indifferent between playing the fair game or not. A decision maker with risk-taker utility 

function (convex function, i.e. 𝑢′′(𝑥)  0) will play the fair game. The evidence indicates 

that most investors exhibit some degree of risk aversion (Levy, 2016); therefore, in this 

research the decision-making model for PRM is formulated only for risk-averse decision 

makers. Note that all utility functions are non-decreasing functions (i.e. 𝑢′(𝑥)  0). 

 

 

Figure 4.2: Types of utility functions,  𝑢(𝑥). 

 

Considering that the utility function of companies is difficult to determine or simply not 

known, an alternative is to look for decision criteria that use only partial information on 

the decision maker’s preferences (e.g. monotonicity, risk aversion, etc.) and/or the 

distribution of the response variable to rank candidate projects. MVC (Markowitz, 1959) 

and SDR (Hadar & Russell, 1969; Hanoch & Levy, 1969; Rothschild & Stiglitz, 1970) are 

two criteria that allow decision makers to make rational choices between projects with 

uncertain outcomes without knowing the exact form of the utility function. 

 

4.3  Utility Theory in PRM 

 

In the oil and gas industry, the use of expected utility as a criterion for drilling investment 

was introduced in 1968 (Newendorp & Campbell, 1968). However, the authors of the paper 
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commented that implementing utility theory was problematic because there were no 

effective methods to construct or determine a decision maker’s utility curve.  

This problem remains unsolved. Walls (1995) assumed an exponential utility function, 

𝑢(𝑥) = −𝑒−𝑥/𝑅, and proposed inferring the risk tolerance parameter, 𝑅, using an industry 

specific questionnaire or by reconstructing the risky alternatives that were selected by the 

firm for capital allocations (Walls, 2005). To circumvent the problem of inferring 𝑅, some 

authors perform sensitivity analysis over a range of R to evaluate the robustness of the 

decisions to different risk attitudes (Güyagüler & Horne, 2004; Ozdogan & Horne, 2006). 

Begg, Bratvold, & Campbell (2003) and Bratvold, Begg, & Campbell (2003) provide an 

extensive review of utility theory, and introduced indifference curves to portfolio decision-

making in the oil and gas industry. They assumed risk-averse investors with exponential 

utility functions in their research.  

 

4.4  Mean Variance Criterion and Stochastic Dominance Rules  

 

MVC and SDR are two approaches for making choices without a complete knowledge of 

the decision maker’s utility function (Hadar and Russell 1969). The MVC is the 

cornerstone of the construction of Markowitz’s efficient frontier (Markowitz, 1959) in 

modern portfolio selection theory. It allows the construction of efficient portfolios based 

on the maximization of a function of expected return and of its variability (Levy & Sarnat, 

1970). SDR is suitable for ranking response variable distribution functions with limited 

information of the decision maker’s preferences.  

SDR is superior to MVC when the task is to compare two distributions. SDR is inferior 

to the MVC when the task is to construct efficient portfolios by combining individual assets 

(Levy, 2016). Note that the optimization algorithm proposed by Markowitz cannot be 

applied to the selection of petroleum reservoir projects under geological uncertainty 

because they have very limited divisibility. For example, one well cannot be further divided 

into smaller parts, therefore it is meaningless to calculate an efficient portfolio containing 

fractions of different wells. 
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4.4.1 The Mean-Variance Criterion (MVC)  

 

MVC states that given the response variable probability distribution functions of projects 

F and G, F will be preferred to G, if the following conditions are met. It is also required 

that both equalities do not met simultaneously (Levy & Sarnat, 1970). 

EF(x)  EG(x) and VarF(x) ≤ VarG(x) (4.2) 

Where 𝐸 and 𝑉𝑎𝑟 stand for expected value and variance, respectively. MVC reduces a 

set of opportunity projects to those that are optimal in a Markowitz sense.  The set of 

optimal projects is called the efficient frontier as shown in Figure 4.3. Each project on the 

efficient frontier dominates all projects located to its “southeast” because those have both, 

lower expected value and higher variance or standard deviation. For instance, in Figure 

4.3. Project A dominates projects B, C and D located in the hatched region. MVC makes 

explicit that investors must consider the trade-off between risk and return when selecting 

from uncertain projects. 

 

Figure 4.3: Illustration of Markowitz´s efficient frontier (Modified after Johnstone & Lindley (2013)). 

 

MVC should be applied with caution, the following example modified after Levy & 

Sarnat (1970) illustrates a shortcoming of this criteria. Given the payoff for projects F and 

G on Table 4.1, any decision maker by common sense will prefer F over G, because having 

the same probabilities, F has higher payoffs than G in all cases. However, according to 

MVC, both projects belong to the efficient set and theoretically some decision makers 
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could choose F and others G. Note that project F has both higher expected payoff and 

higher variance than project G, then the MVC’s inequalities in Equation 4.2 do not hold.  

 

Table 4.1:  Payoff matrix for projects F and G (Modified after Levy and Sarnat (1970)). 

 

 

The Figure 4.4 provides another clarifying example. It depicts the response variable 

CDF’s of two projects named A and B. For any rational decision maker, project A is 

preferred to project B because the minimum value of A is higher than the maximum value 

of B. However, MVC cannot resolve which project is better because not only  

𝐸𝐴(𝑥) > 𝐸𝐵(𝑥) but also  𝑉𝑎𝑟𝐴(𝑥) > 𝑉𝑎𝑟𝐵(𝑥). The analysis of these type of situations 

motivated the formulation of SDR. 

 

 

Figure 4.4: MVC criterion fails to discern which project is preferred between A and B. 
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4.4.2 Stochastic Dominance Rules (SDR) 

 

SDR ranks uncertain projects based on partial information about the investor’s preferences 

or the response variable distribution (Levy, 2016) and is consistent with maximizing 

expected utility. This section on SDR is based on the work of Levy (2016) and Levy & 

Sarnat (1970). 

 

4.4.2.1 First Degree Stochastic Dominance (FSD)  

 

FSD rule states that given two cumulative distributions functions (CDF) 𝐹(𝑥) and 𝐺(𝑥), 𝐹 

dominates 𝐺, if and only if: 

F(x) ≤ 𝐺(x), ∀x ⇔𝐸𝐹[𝑢(𝑥)] ≥ 𝐸𝐺[𝑢(𝑥)] , ∀ 𝑢′(𝑥)  0 (4.3) 

The underlying space of uncertainty is the same; F(x) and G(x) represent the cumulative 

distributions of payoff calculated from the same set of realizations for projects F and G. 

𝐸𝐹[𝑢(𝑥)] and 𝐸𝐺[𝑢(𝑥)]  represent the expected utility for the projects F and G, 

respectively. FSD assumes that investors always prefer more money rather than less money 

(Levy, 2016), thus, FSD decisions are valid for all non-decreasing utility functions 

(i.e. 𝑢′(𝑥)   0). If 𝐹(𝑥) and 𝐺(𝑥) intersect, then FSD does not provide a choice to the 

investor. 

Figure 4.5 depicts the CDFs for projects in Table 4.1. FSD unambiguously indicates 

that investors should prefer F over G since for any quantile F dominates G. Even though F 

has higher variance than G, it does not change the decision; on the contrary, since the lowest 

payoff of F is at least equal to the highest payoff of G, the higher variance represents 

desirable upsides of project F. Also note that for the example on Figure 4.4, SDR indicates 

that 𝐴 dominates 𝐵 by FSD because 𝐴(x) ≤ 𝐵(x), ∀x. 
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Figure 4.5: Project 𝐹 dominates project 𝐺 by FSD because F(x) ≤ 𝐺(x), ∀x. 

 

As stated above, FSD requires that the CDFs under comparison do not cross each other, 

although they can touch each other. For that reason, in Figure 4.6a neither F dominates G, 

nor G dominates F by FSD. However, in Figure 4.6b, F dominates G by FSD even though 

there is a range of 𝑥 where  𝐹(𝑥) = 𝐺(𝑥). 

The relationship between FSD and the utility function can be extracted from Equation 4.4, 

that was derived from the expected utility definition applied to projects F and G (details 

are provided in Appendix B). 

𝐸𝐹[𝑢(𝑥)] - 𝐸𝐺[𝑢(𝑥)] =  ∫ [𝐺(𝑥) − 𝐹(𝑥)] 𝑢′(𝑥)𝑑𝑥 
𝑏

𝑎

 (4.4) 

From the application of FSD, [𝐺(𝑥) − 𝐹(𝑥)]  0. Moreover, 𝑢(𝑥) is a non-decreasing 

function with 𝑢′(𝑥)  0. Then, the integral is non-negative and we can conclude that:  

𝐸𝐹[𝑢(𝑥)] - 𝐸𝐺[𝑢(𝑥)]  0  or  𝐸𝐹[𝑢(𝑥)] ≥ 𝐸𝐺[𝑢(𝑥)] (4.5) 

Thus, Equation 4.4 and Equation 4.5 show that by applying FDS, a decision maker 

maximizes the expected utility.  
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Figure 4.6: a) Since CDFs cross each other, there is not FSD, b) Although CDFs touch each other,  𝐹 

dominates 𝐺 by FSD. 

 

4.4.2.2 Second Degree Stochastic Dominance (SSD) 

 

SSD rule states that if the investor has a convex utility function (i.e. He is a risk averse 

investor), then 𝐹 dominates 𝐺, if and only if: 

∫ [𝐺(𝑡) − 𝐹(𝑡)]𝑑𝑡 
𝑥

𝑎

≥ 0 , ∀ x ∈ [a,b]

⇔𝐸𝐹[𝑢(𝑥)] ≥ 𝐸𝐺[𝑢(𝑥)] , ∀ 𝑢′′(𝑥) ≤ 0 

(4.6) 

Equation 4.6 entails that F will be preferred over G, even if the CDF’s intercepts 

multiple times, as long as the cumulative difference between them is non-negative for all 

values of 𝑥 (Levy & Sarnat, 1970). In Figure 4.7a we can conclude that project 𝐹 dominates 

𝐺 by SSD. In Figure 4.7b, neither F nor G dominates the other by SSD. F does not dominate 

G because the cumulative first differences between the two CDF’s is negative in the range  

3  𝑥  5 . G does not dominate F, because G has a lower left tail than F. The SSD 
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formulation implies that a distribution with lower left tail cannot dominate distributions 

that start at its right (Levy, 2016). 

 

 

Figure 4.7: a) 𝐹 dominates 𝐺 by SSD, b) Neither F nor G dominates the other by SSD. 

 

Insights about the relationship between SSD and the utility function can be gained from 

the analysis of CDFs shown in Figure 4.8. Firstly, by visual inspection it is possible to 

conclude that F dominates G by SSD because the cumulative difference between the CDFs 

is non-negative over the entire domain 𝑎 ≤ 𝑥 ≤ 𝑐.  

Note that in this case the right-side of Equation 4.4 can be expanded as shown in 

Equation 4.7. 

 

𝐸𝐹[𝑢(𝑥)] - 𝐸𝐺[𝑢(𝑥)]

=  ∫ [𝐺(𝑥) − 𝐹(𝑥)] 𝑢′(𝑥)𝑑𝑥 
𝑏

𝑎

+ ∫ [𝐺(𝑥) − 𝐹(𝑥)] 𝑢′(𝑥)𝑑𝑥 
𝑐

𝑏

 

(4.7) 
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Figure 4.8: 𝐹 dominates 𝐺 by SSD (Modified after Levy (2016)). 

 

The cumulative difference [𝐺(𝑥) − 𝐹(𝑥)] is positive in the range 𝑎 ≤ 𝑥 ≤ 𝑏 and 

negative in the range b ≤ 𝑥 ≤ 𝑐.  Now, by the risk-aversion assumption, the utility function 

is concave, which means than 𝑢′′(𝑥)  0 and therefore 𝑢′(𝑥) is a declining function of  𝑥. 

This observation implies that in Equation 4.7, the first integral has a larger absolute value 

than the second integral, and thus the right side of Equation 4.7 is positive. Since the 

integral is positive, we can conclude again that:  

𝐸𝐹[𝑢(𝑥)] - 𝐸𝐺[𝑢(𝑥)]  0  or  𝐸𝐹[𝑢(𝑥)] ≥ 𝐸𝐺[𝑢(𝑥)] (4.8) 

Thus, Equation 4.4, Equation 4.7 and Figure 4.8 show that by applying SSD, a decision 

maker maximizes the expected utility.  

Besides FSD and SSD, higher order stochastic dominance rules have been derived (e.g. 

third or fourth order stochastic dominances), but their economic interpretation is not as 

clear as for FSD and SSD and they rely on extraordinarily precise distributions. For these 
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reasons, only the first two degrees of stochastic dominance are considered in this 

dissertation as criteria for PRM problems. 

 

4.4.2.3 Stochastic Dominance Matrix (SDM) 

 

After ranking a set of projects using SDR, the results can be summarized in a Stochastic 

Dominance Matrix (SDM) as shown on Figure 4.9. In SDM, projects on the columns 

dominates projects on the rows, conversely, projects on the rows are dominated by projects 

on the columns. Projects from left to right are ordered from higher to lower expected value. 

The color and number represent the stochastic dominance degree. Green and zero (0) mean 

there is no dominance, blue and one (1) mean FSD, red and two (2) mean SSD. For 

example, project A dominates B by SSD and it dominates all other projects by FSD. 

 

 

Figure 4.9: Stochastic Dominance Matrix. 

 

Based on the above discussion, this dissertation proposes using MVC-SDR sequentially 

in PRM decision-making workflows. MVC compares the first two moments of the response 

variable probability function is applied to the set of feasible actions to identify an initial 

efficient frontier, and then SDR is applied to the projects on the efficient frontier to further 

reduce its size. Section 4.6 provides an example of the methodology. 
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4.5 MVC and SDR in PRM 

 

In the oil and gas industry, portfolio theory optimization (Markowitz, 1959) that is based 

on MVC was proposed to support budget allocations and investment/divestment decisions 

that result in efficient portfolios of assets (Bratvold et al., 2003; Edwards, 1993). However, 

while this method developed for financial instruments is readily applicable to assets, it 

cannot be used directly to solve project selection problems in the presence of geological 

uncertainty. Capolei, Suwartadi, Foss, & Jørgensen (2015) implemented an objective 

function based on MVC to identify the efficient frontier of a production optimization 

problem in the presence of geological uncertainty and suggested the Sharpe ratio to trade-

off risk and return. The efficient frontier in their work represents different operational 

strategies to maximize the net present value (NPV) of a waterflooding project. In the case 

study, they reported the issue that the strategy obtained with MVC and the Sharpe ratio has 

a maximum NPV that was smaller than the minimum NPV of one competing strategy in 

the efficient frontier. Chang, Bouzarkouna, & Devegowda (2015) implemented a mean-

variance approach to find the solution of well placement problems considering geological 

uncertainty. They obtained an efficient frontier but did not try to further reduce its size. As 

far as the author knows, MVC-SDR have not been previously implemented to solve PRM 

problems. 

 

4.6 Example of MVC-SDR Methodology  

 

This example is designed to explain the MVC-SDR methodology step by step. The next 

chapter presents a realistic case-study that integrates APDS to MVC-SDR to guide the 

solution of a representative SAGD problem commonly found in the exploitation of oil 

sands. 

Consider the problem of selecting one SAGD well-pad to be drilled from a set of thirteen 

possible options illustrated in Figure 4.10. It is assumed that a geological model is available 

and that the probability density function (PDF) of the response variable (net present value 

in this case) is also available by transferring the geological uncertainty through flow 

simulation (or APDS) and economic modeling for every realization for all well pads. 
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Figure 4.10: SAGD well-pad locations and assumed net present value probability distribution functions. 

 

With the given information, the MVC-SDR proceeds as follow: 

(1) Compute the mean and variance values of each option and use MVC to establish 

Markowitz’s efficient frontier. The red dots in Figure 4.11 represent the projects on the 

efficient frontier. Note that each red-dot project dominates all the other projects located to 

its southeast. For example, B dominates D, H and L. Projects on the efficient frontier are 

not dominated in Markowitz’s sense by any other project.  

 

Figure 4.11:  Red dots are projects on the efficient frontier. Project B dominates D, L and H because it has 

higher mean and less variance.  
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 (2) Apply the first and second degree SDR to possibly eliminate some of the projects on 

the efficient frontier.  

FSD. Figure 4.12 shows the PDFs and CDFs for the well-pads I, F, A, B and K. A 

percentile to percentile comparison between the pairs of projects I-A and F-A demonstrates 

that A dominates I and F by FSD. Then, projects I and F should be discarded from the 

efficient frontier, while projects A, B and K should remain. It is noteworthy that K and B 

do not dominate F. 

 

Figure 4.12: PDF (top) and CDF (bottom) of projects on the efficient frontier. After FSD, projects I and F 

should be discarded. Projects A, B and K remain in the efficient set. 
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SSD. Figure 4.13 shows the integral of the CDF for projects A, B and K. Observe that 

the curve K is always to the right side of curve B; thus, K dominates B by SSD. Projects B 

should be discarded from the efficient frontier, while projects A, K should remain. Observe 

that in this case, project A does not dominate projects B or K by SSD; but similarly, A is 

not dominated by any other project. SDM in Figure 4.14 summarizes the results of applying 

FSD and SSD. 

 

 

Figure 4.13: Integral of CDF for projects A, B and K. After SSD, project B should be discarded. Projects A 

and K remain in the efficient set. 

 

 

Figure 4.14: Stochastic Dominance Matrix  

K B A F I
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After applying MVC-SDR, the number of contender projects is reduced from 13 to 2. 

While most reservoir managers should agree with this result, the final choice between A 

and K depends on the specific reservoir manager’s utility function.  

 

4.7  Discussion 

 

The MVC-SDR decision-making model is general enough to be applied to any kind of 

PRM problem. In the example above, SAGD well-pad selection is demonstrated. 

MVC and SDR considers the risk and return trade-off according to the utility theory 

framework. They work without knowing the exact form of the decision-maker’s utility 

function. This is an advantage over models that require the utility function. While most 

decision-makers might agree with the use of a risk-averse function, they probably will not 

agree with the level of risk (risk tolerance) that they are willing to accept.  

MVC-SDR leads to decisions that are considered rational to risk-averse reservoir 

managers. This desirable property comes at the expense of losing the ability to discriminate 

between very similar projects. In the example, the result is two projects from which the 

manager should make the final decision.  

Geostatistical reservoir models to quantify the geological uncertainty have increased in 

complexity over the years; for that reason, reservoir managers might have more difficulty 

selecting projects. MVC-SDR will not always help them to find a single project, but they 

can reduce the number of alternatives from which the final decision must be make. 

To obtain robust results from MVC-SDR the response variables CDF’s must be stable 

and representative. Therefore, transferring of the geological uncertainty should be done 

over many geostatistical realizations, it is recommended to use at least 100 realizations. 
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5 Case-Study: SAGD Vertical Well Placement 

 

5.1 Introduction 

 

A graph-based APDS is formulated, implemented and validated. It can efficiently transfer 

geological uncertainty into SAGD steam-chambers over hundreds of geostatistical 

realizations. Making a selection among a group of SAGD competitor projects is equivalent 

to make a choice among their corresponding response variable CDFs. For this purpose, the 

MVC-SDR criterion is proposed because it considers the decision maker’s preferences on 

the risk-reward information embedded in the CDFs. 

The case study documented here applies all the aforementioned concepts. The problem 

consists in finding the best vertical location for a SAGD well-pair project in a target 

volume. The example is a challenge commonly found in the exploitation of Canadian oil 

sands.  

 

5.2  SAGD Vertical Placement Well Problem  

 

5.2.1 Problem Setting 

 

Consider a reservoir manager that must decide the elevation of a 500 m SAGD horizontal 

well-pair inside a 40 meter wide x 10 meter thick target volume shown in Figure 5.1. The 

manager faces the challenge illustrated in the Figure 5.2, they would like to drill the 

producer well as close as possible to the base formation to increase the drainable oil 

column, but the risk of having an ineffective well length is higher there (Figure 5.2.a). An 

intermediate well location reduces the risk of losing effective well length, but near-well 

barriers could negatively impact the steam-chamber growing (Figure 5.2.b). In contrast, a 

higher producer well location in the target volume would likely contact good quality 

reservoir, but at the expense of a reduced hydrocarbon column (Figure 5.2.c). Figure 5.2 

has a vertical exaggeration of 8. 
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The geological uncertainty is characterized by a set of 100 geostatistical realizations. 

The reservoir manager must make the decision considering the risk and return trade-off 

and their preferences. Hereafter, the problem is setup with the decision-making model 

elements previously described. 

 

 

Figure 5.1: Target volume for vertical placement case study. 

 

5.2.2 Set of Feasible Actions 

 

The set of feasible actions from which a decision must be made are all possible well 

locations inside the target volume depicted in Figure 5.1. The target volume was discretized 

in quadrants and the wells locations were modeled using levels every meter. Consequently, 

wells were indexed by quadrant and levels; for example, W15 refers to a well located in 

the first quadrant and the level 5. Figure 5.1 has a vertical exaggeration of 8. 
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Figure 5.2: Description of vertical placement well location challenge. a) Location #1 has ineffective well 

length, b) Location #2 intersects low-placed barriers, c) Location #3 has a small hydrocarbon column. 
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5.2.3 Geological Model 

 

The geological model with 100 reservoir realizations is described in Section 3.4.1. Figure 

5.3 shows some cross-sections through the target volume from different geostatistical 

realizations. 

 

 

Figure 5.3: Cross-section through the target volume on several geostatistical realizations. 

 

5.2.4  Transffering the Geological Uncertainty with APDS 

 

APDS was used to transfer the geological uncertainty. After modeling the steam-chamber 

for 5 years, the heated hydrocarbon volume (also called heated steam-chamber volume - 

SCHV) was calculated and converted to a monetary value using a net present value per 

barrel (NPV/bbl) of 5 US$/bbl. The NPV/bbl is based on the supply costs study for a 30,000 

BPD SAGD project published by the Canadian Energy Research Institute (CERI, 2018) 

and assuming a WTI price of 65 US$/bbl. The typical design parameters of a 30,000 BPD 

SAGD project with its supply cost summary are reported in Tables 5.1 and 5.2 (CERI, 

2018) , respectively.  
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Table 5.1: Typical design parameters for a 30,000 BPD SAGD project. (Obtained from CERI (2018)). 

 

 

APDS provides for each potential producer well location a set of 100 cumulative heated 

hydrocarbon volume curves. Figures 5.4 and 5.5 show the curves for wells located 5 and 6 

meters above the grid base, respectively. Note that every curve corresponds to one 

geostatistical realization. Figure 5.6 shows the box-plots of the heated hydrocarbon 

volumes after 5 years for all 40 possible well locations.  
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Table 5.2: Supply cost summary for a 30,000 BPD SAGD project. (Obtained from CERI (2018)). 
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Figure 5.4: Heated hydrocarbon volume forecast for wells in level 5 of target volume. 

 

 

Figure 5.5: Heated hydrocarbon volume forecast for wells in level 6 of target volume. 
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Figure 5.6: Box-plots of heated hydrocarbon volume for wells in target zone. 



90 

Note that wells located in levels 1 and 2 have small volumes and small interquartile 

ranges. These wells tend to intercept non-productive formations and have long ineffective 

sections that do not contribute to bitumen production. Figure 5.7 shows a steam-chamber 

generated by a well located in the second quadrant and the level 2. 

 

 

Figure 5.7: Steam-chamber of well located in second quadrant and level 2. The long ineffective well 

section has a negative effect on the steam-chamber development. 

 

Wells in levels 3 to 7 contact sandy formation sections and their box-plots show higher 

volumes and higher dispersion than the previous group. Figure 5.8 shows a steam-chamber 

generated by a well located in the second quadrant and the level 7. 

 

 

Figure 5.8: Steam-chamber of well located in second quadrant and level 7.  
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Wells above level 7 have a reduced hydrocarbon column and they will produce less 

bitumen than the previous groups. Figure 5.9 shows a steam-chamber generated by a well 

located in the second quadrant and the level 10. Note the large amount of unrecoverable 

bitumen below the producer well. Heated hydrocarbon volume was converted to net present 

value before applying the decision criteria.  

 

Figure 5.9: Steam-chamber of well located in second quadrant and level 10. Note the large amount of 

unrecoverable bitumen below the producer well. 

 

5.2.5 MVC 

 

MVC was applied to the set of 40 potential locations to find the initial efficient frontier 

depicted in Figure 5.10. The 13 efficient locations are EF = {W11, W12, W21, W22, W13, 

W31, W23, W24, W25, W26, W27, W34, W33}. Note that MVC fails to reject locations 

in levels 1 and 2 that any reasonable reservoir manager would never select, for example, 

W11, W12, W21 or W22.  
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Figure 5.10: Efficient frontier and dominated locations after MVC. 
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5.2.6 SDR 

 

SDR was applied to the remaining 13 efficient locations with the results summarized in the 

SDM on Figure 5.11. The SDM shows that locations W27, W33 and W34 dominate by 

FSD or SSD all other locations. Figure 5.12 shows the mean-variance plot with all the 

initial well locations partitioned into 3 optimal locations, 10 dominated locations after SDR 

and 27 dominated locations after MVC. 

MVC-SDM indicates that in the target volume the optimal windows to drill the wells 

are in the quadrants 2 and 3.  It is worthy to note that these optimal zones were obtained 

by using all the geostatistical realizations. SDR ensures that every decision maker with a 

convex utility curve will agree with the result. The final choice of the well to be drilled 

depends on the specific reservoir manager’s utility function. 

 

 

Figure 5.11: Stochastic Dominance Matrix. W33, W34 and W27 dominates by FSD and/or SSD the 

remaining well locations.
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Figure 5.12: Mean-Standard Deviation space. MVC-SDR results on an optimum set with 3 locations. EF = 

{W33, W34, W27} 
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5.3 Computational Time 

 

40 potential well locations were assessed through the entire set of 100 geostatistical 

realizations resulting in a total of 4,000 steam-chamber models. The current APDS Python 

prototype runs the case-study in 13 hours, which is an average time of 11.7 seconds per 

steam-chamber modeled.  

The analysis benefited from the modular design of the algorithm, because the graphs 

had been already generated for the validation study presented in Section 3.4. Moreover, 

considering that the standard operation of a SAGD well-pair is around 10 years (Zhao, 

Law, & Coates, 2003), additional computational time was saved by modeling the steam-

chamber only for 15 years. 

 

5.4  Discussion 

 

This case study shows that the combined MVC-SDR criterion is viable for decision making 

under geological uncertainty. It also confirms that APDS is an efficient transfer function 

for SAGD projects. 

In the example, MVC-SDR reduced the initial set from 40 candidate well locations to 3 

possible well locations. The final set of locations should be acceptable to risk-averse 

reservoir managers given the reward-risk trade-off preference assumptions underlying the 

formulation of the MVC-SDR criterion. The definitive selection of a single location 

requires knowing the particular reservoir manager’s utility function. 

The examples presented in this case study and in Section 4.6 make manifest that the 

MVC-SDR criterion do not always lead to a single project; for that reason, the criterion are 

primarily applicable to problems with a well-defined finite set of decision options. It is not 

suitable for problems that use optimization algorithms for searching extremely large 

combinatorial decision spaces. 

The workflow presented in this case study can also be applied to solve other SAGD 

problems, such as selecting the length and orientation of the producer-injector well-pair or 

analyzing the producer-injector inter-well distance. 
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Regarding computational time, the APDS prototype took on average 11.7 seconds to 

model each steam-chamber without using parallel computing. This processing time appears 

encouraging to undertake problems with larger finite decision spaces. However, is not yet 

efficient enough to embed APDS into an closed-loop field optimization work flow (e.g. 

Echeverria-Ciurri et al. 2012; Wang et al. 2012; Shirangi and Durlofsky 2015). It is 

recommended to look for substantial efficiency gains in the scale of 1-3 additional orders 

of magnitude compared to a conventional thermal flow simulator. The obvious first step is 

to use a compiled language such as C, C++, C# or Fortran and to take advantage of the 

graphs staying very similar for small changes in well locations.
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6 Case Study: SAGD Reservoir Characterization with APDS 

 

6.1 Introduction 

 

The APDS capability of modeling the steam-chamber propagation, that is the dynamic 

response of the reservoir to the steam injection, motivates using APDS as a companion tool 

of methodologies for 4D-seismic data integration in SAGD reservoir characterization. 

Time-lapse seismic, or 4D-seismic, is an important source of dynamic data for 

monitoring heavy-oil reservoirs. It captures changes in the subsurface conditions caused 

by SAGD operations that are reliable manifestations of the steam-chamber presence. The 

analysis of seismic attributes recorded at different times might reveal anomalies by the 

absence or unexpected location of the steam that can be enforced into geostatistical 

realizations to improve reservoir characterization (Hadavand & Deutsch, 2017).  

A practical methodology for enforcing these anomalies in geostatistical reservoir 

models was proposed by Hadavand & Deutsch (2017). They implemented the technique 

on a real SAGD project located in the Athabasca region, northeastern Alberta, Canada 

(Hadavand et al., 2018). Assessing the effect of the geostatistical-anomaly enforcement 

methodology requires comparing the estimation of the steam-chamber before and after 

applying the enforcement through all the geostatistical realizations. This procedure cannot 

be performed with full physics thermal flow simulators due its computational cost. 

However, APDS is efficient enough to perform this task and serve as a tool for assisting 

4D-seismic integration in SAGD reservoir characterization. 

Additionally, this case study uses a high resolution realistic geological model that 

represents the fluvial and estuarine depositional system of the McMurray  (Ranger & 

Gingras, 2010). It exhibits sectors of blocky clean sands with horizontal barriers/baffles of 

different lengths, and sectors with heterogeneous inclined layers alternating shale and 

sands. The complexity of the reservoir model illustrates how APDS handles complex 

geological settings. 
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6.2  Assessment of Geostatistical Anomaly Enforcement with APDS 

 

APDS is used to assess the result of the geostatistical anomaly enforcement methodology. 

It allows to compare the geometry of the steam-chamber before and after updating the 

geostatistical realizations with 4D-seismic information. Improvements in the SAGD 

reservoir characterization is shown by local improvements in the estimation of the steam-

chamber propagation (Hadavand et al., 2018). The result of the validation procedure is 

summarized in a probability of steam-chamber presence volume after the 4D-seismic 

integration. This probability volume carries quantitative information about the evolution 

of the steam-chamber that is valuable to support SAGD reservoir managment decisions. 

 

6.2.1 Geological Model 

 

The following analysis requires two sets of geostatistical realizations or geological models. 

An initial set of realizations that is conditioned only to static-well data including core and 

logs; and an updated set of realizations that additionally considers the dynamic information 

obtained from 4D-seismic data. In this chapter, the former set of geostatistical realizations 

is called the pre-enforced model and the latter the post-enforced model. 

This case study was performed on a SAGD well-pair reservoir volume (i.e. pre-enforced 

and post-enforced geological models) prepared for a drainage area located in the Athabasca 

region, northeastern Alberta, Canada. The formation of economic interest is the McMurray 

formation. Figure 6.1 shows one pre-enforced realization of the vertical permeability for 

the entire drainage area indicating the extracted volume. 

The geostatistical workflow to generate these reservoir models was set-up by several 

research assistants at the Centre for Computational Geostatistics (CCG) at the University 

of Alberta, Canada, particularly Hadavand, M., Silva, D. and Pinto, F. Geostatistical 

techniques recently introduced to the practice of geomodeling were applied. Hierarchical 

Truncated PluriGaussian (HTPG) (Silva, D., 2018) for modeling categorical variables and 

Projection Pursuit Multivariate Transform (PPMT) (Barnett et al., 2014) with Sequential 

Gaussian Simulation (SGS) for modeling the continuous variables. The Anomaly 

Recognition Tool (ART) (Hadavand, 2017) was used to update the set of geostatistical 
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realizations. The workflow is described in detail in Hadavand et al. (2018) and Hadavand 

& Deutsch (2017) and the geological setting of the McMurray formation is found in Baniak 

& Kingsmith (2018), Hassanpour (2013) and Moreton & Carter (2015).  

 

 

Figure 6.1:  Reservoir realization of the pre-enforced geological model for the entire drainage area. The 

figure indicates the well-pair volume extracted for this case study. 

 

6.2.1.1  Pre-enforced Geological Model 

 

The extracted geological models (pre-enforced and post-enforced) consist of 50 

geostatistical realizations of one SAGD well pair volume. Each realization has 1.78 million 

cells: 344 x 29 x 178 cells in the x, y and z directions, respectively. The grid blocks are 5 

m x 5 m x 0.5 m in the x, y and z directions, respectively.  

Figure 6.2 shows vertical and horizontal cross-sections of one extracted pre-enforced 

reservoir realization. The image has a data aspect ratio between the x-axis to y-axis and x-

axis to z-axis of 5 in both cases. Unless otherwise specified, all figures in this chapter have 

the same aspect ratio. The numerical model exhibits a pattern commonly found in Canadian 

oil sand operations, there is a sand-rich interval at the bottom of the formation and a 

sequence of interlayered sand-shale/siltstone and abandoned mud channels at the top (Yi 

Su, Wang, & Gates, 2017). This interlayered sequences of sand and shale are common in 
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point bar depositional environments. They are denoted as Inclined Heterolithic Strata (IHS) 

(Moreton & Carter, 2015) and have a major effect in the steam-chamber propagation. IHS 

impacts negatively the economic performance of SAGD projects (Y. Su, Wang, & Gates, 

2013; Yi Su et al., 2017). 

 

 

Figure 6.2:  Reservoir realization of the pre-enforced geological model for the extracted well-pair volume 

used in the case study. 

 

Figure 6.3 shows three vertical cross-sections along the axis of the SAGD well-pair. 

The top image (Figure 6.3.a) is a clean cross-section showing only the producer-injector 

well pair trajectory. It shows the location of low permeability rocks or non-net reservoir 

(i.e. shales) represented by solid blue areas, and net-reservoir. The non-net rocks are 

barriers to the flow of steam and bitumen. 
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Figure 6.3: a) Vertical cross-section of pre-enforced geological model showing location of well-pair and 

net-reservoir and non-net reservoir distribution. b) Sketch of the steam-chamber obtained from 4D-seismic. 

c) The absence of the steam-chamber in net-reservoir sections near the wells represent potential anomalies.  

 

Figure 6.3.b sketches a steam-chamber inferred from 4D-seismic. In most areas along 

the well-pair axis the steam-chamber has a good conformance with the distribution of net 

and non-net reservoirs. However, there are some areas in which the steam-chamber has a 

poor development even though the pre-enforced reservoir model has predominantly net-

reservoir. These areas do not seem to agree with the dynamic information carried by the 

4D-seismic and thus they are potential reservoir anomalies (Figure 6.3.c) according to the 
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geostatistical anomaly enforcement methodology (Hadavand & Deutsch, 2017). The work 

presented here is based on Hadavand & Deutsch (2017) and is not based on the actual 4D-

seismic that was not accessible to the author. 

 

6.2.1.2 Post-enforced Geological Model 

 

Geostatistical Anomaly Enforcement proposes two main types of anomalies: positive 

(Type +1) and negative (Type -1). Positive anomalies caused by flow conduits locally 

makes the steam-chamber growing faster than expected. Negative anomalies caused by 

barriers or baffles locally hampers the steam-chamber (Hadavand et al., 2018). 

Accordingly, the potential reservoir anomalies depicted in Figure 6.3.c are Type -1. 

Not all local anomalies reflect changes in fluid saturations and reservoir properties, 

some of them are caused by operational steam-injection strategies, the well-pair trajectory 

or the well-pair completion design, among other factors. For that reason, the identification 

and final decision about the anomalies that should be enforced, called reservoir anomalies, 

relies on professional judgment (Hadavand et al., 2018; Hadavand & Deutsch, 2017). 

The anomalies showed on Figure 6.3.c were judged as reservoir anomalies, and 

therefore the pre-enforced geological model was updated with this dynamic information. 

Figures 6.4 and 6.5 shows two updated realizations. Both, pre-enforced and post-enforced 

realizations are depicted to facilitate the comparison. Note the presence of enforced 

barriers/baffles in the updated reservoir realizations. 

 

6.2.2 Assesing SAGD Reservoir Characterization Improvement with APDS 

 

The evidence of an improvement in reservoir characterization is a better local match in the 

areas with enforced anomalies between the steam-chamber obtained from 4D-seismic and 

the modeled steam-chambers over all the post-enforced geostatistical realizations. A 

fidelity analysis based on the effective directional permeability demonstrates 

improvements in the anomaly reproduction (Hadavand & Deutsch, 2017). However, the 

consequences or effects of the enforced features (i.e. barriers or conduits) should be 

evaluated by a direct comparison of the steam-chamber geometry.  
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As previously discussed, modeling the steam-chambers using conventional thermal 

flow simulation requires significant computational cost especially with many realizations. 

On the other hand, APDS can efficiently model the steam-chamber propagation on the 

updated geostatistical realizations to assess the quality of the 4D-seismic integration in the 

SAGD reservoir characterization.  

 

 

Figure 6.4: Vertical cross-section of: a) Pre-enforced realization showing location of anomalies Type -1. b) 

Post-enforced realization showing enforced barriers.  
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Figure 6.5: Vertical cross-section of: a) Pre-enforced realization showing location of anomalies Type -1. b) 

Post-enforced realization showing enforced barriers. 

 

Figure 6.6 illustrates the idea with three vertical cross-sections along the axis of the well-

pair. Here, net reservoir is represented by the lighter color and non-net reservoir is the 

darker color. Figures 6.6.a and 6.6.b sketch the steam-chambers obtained from the 4D-

seismic and APDS, respectively. Since the steam-chambers exhibit a good local agreement, 

especially in the areas influenced by the enforced barriers, it is inferred that the reservoir 

characterization was improved because it honors the 4D-seismic dynamic information. 

A local disagreement between the steam-chambers would call to reconsider the location 

or the existence of that particular anomaly. In such cases, the feedback provide by APDS 

not only supplements the geostatistical anomaly enforcement methodology, but actively 

helps to improve reservoir characterization. 
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Figure 6.6: Vertical cross-section of post-enforced realization showing: a) 4D-seismic steam-chamber and 

anomalies Type -1, b) APDS steam-chamber and anomalies Type -1, and c) Comparison of the steam-

chambers. 

 

Figure 6.7 shows the 3D-steam-chambers modeled with APDS for a 3 year period on 

six post-enforced geostatistical realizations. They show the capacity of APDS to handle 

complex geometries in 3D. Note the presence of cold pockets (volumes where the steam 

has not reached) caused by reservoir heterogeneities that might deteriorate the SAGD 

project economic performance. Figure 6.8 shows vertical cross-sections along the axis of 

the well-pair of each post-enforced realization to ease the comparison with the 4D-seismic 
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steam-chamber (dashed line). The arrows indicate locations of the enforced anomalies.  

The effect of the dynamic data integration is seen in all the steam-chambers, with the only 

exception of the left anomaly in the realization #2. The steam-chamber propagation was 

deterred by the enforced anomalies resulting in good local matches with the 4D-seismic 

steam-chamber, which demonstrates the improvement in reservoir characterization. 

It is impractical to individually compare each realization. The information about the 

APDS steam-chamber presence in the post-enforced realizations can be embedded in a 

steam-chamber probability volume. When this probability volume is compared to the 4D-

seismic steam-chamber, reservoir volumes influenced by enforced barriers should have 

low probability of steam-chamber presence. Conversely, reservoir volumes with good 

petrophysical properties should have a high probability of steam-chamber presence.  

Figure 6.9 shows a vertical cross-section along the axis of the SAGD well-pair of the 

steam-chamber probability volume after 3 years calculated using the post-enforced 

geological model. It has low probability of steam-chamber development in zones 

influenced by the enforced barriers and high probability of steam-chamber development in 

good quality reservoir zones. Hence, after considering all the post-enforced geostatistical 

realizations, APDS helps to demonstrate that the 4D-seismic anomaly enforcement 

methodology improves SAGD reservoir characterization.  

SAGD reservoir decisions, such as: optimization of steam-injection strategies (Gates, 

Kenny, Hernandez-Hdez, & Bunio, 2007; Li, Mamora, Li, & Qui, 2011) , installation of 

flow control devices (Banerjee & Hascakir, 2018; Burke & Ghazar, 2018) or targeting 

bypassed oil with well workovers or sidetracks (Lumley & Behrens, 1998) benefits from 

an improved geological model. 
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Figure 6.7: 3D-steam-chambers modeled with APDS for a 3 year period on six post-enforced geostatistical 

realizations. 
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Figure 6.8: Vertical cross-sections along the axis of the well-pair showing the steam-chamber modeled with 

APDS for 3 years on 6 post-enforced realizations. 
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Figure 6.9: Probability of steam-chamber presence after 3 years. 

 

APDS has the capability of modeling the steam-chamber in an almost continuous 

timeline. This makes it is easy to generate images of the probability of steam-chamber 

presence at any time of interest. For instance, Figure 6.10 condenses information about the 

first 5 years of steam-chamber propagation and also includes the tenth year. Note that 

APDS shows that the negative impact of the enforced barriers in the steam-chamber 

expansion is stronger at earlier times, and the impact diminishes as time advances. 

Nowadays is common practice to monitor the SAGD steam-chamber with periodical 

seismic surveys. For instance, in the  4D-seismic integration field-case study of the 

Surmont project located in the Athabasca region, northeastern Alberta, Canada, (Hadavand 

et al., 2018) reported eight seismic surveys, one baseline and seven monitors. The resulting 

set of seven incremental 4D-seismic data and APDS would almost certainly enhance the 

assimilation of the dynamic data in the reservoir characterization workflow. Even more, if 

a good agreement between the initial 4D-seismic data sets and APDS is demonstrated, there 

is a venue for optimizing the frequency of the seismic survey recording. The economic 

impact would be a reduction of the overall SAGD project operational cost. 
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Figure 6.10: Probability of steam-chamber presence modeled at six different years. 
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6.2.3 APDS Modeling of Steam-Chamber in Point Bar Systems 

 

The high resolution geological model illustrated in Figure 6.1 is representative of several 

commercial Canadian SAGD operations exploiting the McMurray Formation (Yi Su et al., 

2017). Their distinctive characteristic is an IHS interval deposited on top of a blocky sand 

zone (Moreton & Carter, 2015). IHS are shallow-dipping heterogeneous point bar deposits 

whose strata show original depositional dip (Labrecque, Jensen, Hubbard, & Nielsen, 

2011). The heterogeneity takes the form of alternating sand and shale layers as shown in 

the Figure 6.11. Observe that the sandwich-like pattern is very evident in all the vertical 

cross-sections presented in this case study. 

 

 

Figure 6.11: Upward-fining HIS packages with hypothetical gamma ray log (Modified after Labrecque et 

al. (2011)). 

Extensive conventional thermal flow simulation (Y. Su et al., 2013; Yi Su et al., 2017) 

demonstrates that IHS have a pivotal effect in the shape of the steam-chambers which 

ultimately impacts negatively the thermal efficiency and well utilization in SAGD 

operations. Thus, it is worthy to understand qualitatively the APDS ability for modeling 

the steam-chamber in point bar systems. 

Yi Su et al. describes the expected steam-chamber growing pattern in a point bar deposit 

obtained from several thermal flow simulations (Yi Su et al., 2017). Figure 6.12 shows a 

vertical cross-section of one of the reservoir models they used. Note the similarities with 

the top image in Figure 6.13. Initially, the steam-chamber grows relatively uniformly in 

the lower clean sand interval, although it might be locally affected by barriers. After that, 
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the steam penetrates the IHS in the form of ‘fingers’. The combined effect leads to 

amorphous steam-chambers. The expansion rate of the steam-chamber is faster in the 

blocky sand than in IHS. The authors reported that their simulation results are consistent 

with field observations in the Underground Test Facility (UTF) project Phase B pilot. 

 

 

Figure 6.12: Vertical cross-section of one reservoir model used by Yi Su et al. (2017) in the thermal flow 

simulations. Permeability scale was not presented in original figure. (Modified after Yi Su et al. (2017)). 

 

Figures 6.13 and 6.14 show the propagation of the APDS steam-chamber every six 

months for 5 years on a vertical cross-section along the axis of the well-pair. During the 

first 2 years, the overall steam-chamber expansion is uniform. Locally the propagation is 

hampered by two horizontal barriers located near the wells. Around the second year, the 

steam reaches the top of the basal clean zone and starts moving up like ‘fingers’ into the 

IHS. By the end of the fifth year, the steam had penetrated some distance into most IHS 

sand layers, but some of them, isolated by shales, are by passed and remain as cold spots. 

By visually comparing the height of the steam-chamber between years 2 and 5, it is possible 

to infer that the rate of expansion was faster in the clean basal zone than in the IHS. 

The above discussion on Figures 6.11 to 6.14 supports concluding that APDS generates 

steam-chambers that compare satisfactorily to the results obtained from conventional 

thermal flow simulation in complex geological settings. 
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Figure 6.13: Vertical cross-section of post-enforced realization showing the steam-chamber every 6 

months. Years 1 and 2. 
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Figure 6.14: Vertical cross-section of post-enforced realization showing the steam-chamber every 6 

months. Years 2 to 5. 
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6.2.4 Computational Time 

 

Running this case-study for 50 post-enforced realizations took 2.8 hours, that is, an average 

of 3.4 minutes per steam-chamber modeled. Steam-chambers were modeled for 15 years. 

The total computational time was allocated 77 % building the graphs and 23% modeling 

the steam-chambers. The result indicates that when looking for efficiency gains, the APDS 

graph generator module is a candidate for parallel computing. 

 

6.3  Discussion 

 

This case study demonstrates how 4D-Seismic Anomaly Enforcement methodology and 

APDS complement each other to improve geostatistical SAGD reservoir modeling. The 

updated models are expected to improve SAGD reservoir decisions related to optimization 

of steam-injection strategies, installation of flow control devices and/or execution of well 

workovers or sidetracks among others. Better informed reservoir manager decisions should 

increase the profitability of SAGD operations. 

The probability of steam-chamber presence volume is introduced. It condenses in one 

single image the information about the steam-chamber location of an entire set of 

geostatistical realizations. APDS easily captures in a sequence of images the steam-

chamber propagation at any time period of interest. An obvious choice is to match these 

probability volumes with the recording time of seismic monitoring surveys to improve the 

assimilation of dynamic data in the SAGD reservoir characterization. In this line of 

reasoning, APDS might also help to quantify the value of information (VOI) of the seismic 

surveys. Reservoir managers could optimize the number and frequency of seismic data 

acquisition, resulting in a reduction of the projects operational costs. 

The APDS ability to predict the steam-chamber location in a complex point bar 

depositional system is discussed. The qualitative analysis is encouraging regarding the 

APDS outputs, because the general expected expansion steam-chamber pattern found by 

other researches (Y. Su et al., 2013; Yi Su et al., 2017) using conventional thermal flow 

simulation is correctly reproduced. As a future work, it is desirable running the 
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conventional simulator in the post-enforced geological model to perform a precise 

quantitative comparison. 

Regarding computational time, the APDS prototype takes an average of 3 minutes to 

model each steam-chamber without using parallel computing. Around 77 % of the time is 

consumed by the graph generator module. Using parallel computing for this module is an 

easy to implement option to reduce computational time in a few factors. However, as 

mentioned in Section 5.4, to obtain substantial efficiency gains measurable in terms of 

orders of magnitude, the initial approach is to re-engineer APDS using a compiled 

programming language.  
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7 Summary of Contributions and Future Work 

 

This chapter summarizes the main contributions of the dissertation. It discusses strengths 

and limitations of the APDS algorithm and the proposed MVC-SDR decision-making 

criterion. Ideas for future work are provided to expand this research.  

 

7.1 Summary of Contributions 

 

At the heart of petroleum reservoir management (PRM) resides the challenge of selecting 

the best project from a group of feasible candidates in the presence of geological 

uncertainty. The challenge is particularly relevant in low oil price investment environments 

where many upstream projects are economically marginal and must be optimized. 

Companies are now more cautious. Investors are aware that they should consider not only 

the rewards of the projects, but also their risks. For these reasons, the selection of the 

projects to be implemented in the field should consider the geological risk and the capacity 

of the companies to tolerate it. 

This thesis advocates for decision-making workflows in reservoir management that 

actively manage the geological uncertainty.  That is, the geological uncertainty is 

transferred to probability distributions of the response variable, and the decision criteria 

that governs the final selection considers the decision maker’s preferences toward the 

project’s return-risk trade-off. 

In the context of the SAGD recovery technology, this thesis contributes to improve 

reservoir management decision-making practices in several ways. 1) The formulation, 

implementation and validation of a graph-based simplified physics simulator named 

APDS, for efficiently transferring the geological uncertainty into steam-chamber evolution 

paths that can directly support SAGD reservoir management or be converted to a monetary 

response variable to input decision-making workflows, 2) the introduction and validation 

of a practical decision-making criterion consistent with the utility theory framework that 

combines MVC-SDR for active geological risk management, and 3) the thesis 

demonstrates that APDS can complement a 4D-seismic integration methodology to 
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improve reservoir characterization. Reservoir manager decisions supported on a better 

geological model should increase the profitability of SAGD operations. 

 

7.1.1 APDS Formulation 

 

SAGD is a thermal recovery process to produce bitumen from oil-sands. In this technology, 

steam is injected in the reservoir to reduce the viscosity of the bitumen that drains by 

gravity to a production well. In the subsurface, a steam-chamber evolves and grows with 

time. Understanding the geometry and rate of growth of the steam-chamber is necessary to 

manage an economically successful SAGD project; for that reason, Chapter 2 of this thesis 

formulates a graph-based algorithm called APDS to model the steam-chamber evolution. 

It uses graph theory, simplified porous media flow equations, heat transfer concepts and 

ideas from discrete simulation.  

Even though graph theory has been used since 1956 (Fatt, 1956) to model the flow of 

fluids in porous media at pore-scale to predict macroscopic transport properties (Oren et 

al., 1998), the use of graphs proposed in this dissertation at the macroscopic scale of the 

cells of the numerical model to predict a large scale reservoir response such as the steam-

chamber in SAGD is a novel contribution to the technical literature.  

Chapter 2 formulates APDS, presents the pseudocode of the algorithm, and a step-wise 

application example that demonstrates how the steam-chamber evolution is predicted in 

homogeneous and heterogeneous reservoirs. APDS is intended to be mathematically 

simple and yet to have reasonably good predictive capabilities; for that reason, it will not 

match the sophistication and complexity of a conventional thermal flow simulator. 

However, APDS formulation is flexible enough to allow adjusting the complexity of the 

algorithm to the problem at hand and the timeframe available to provide a solution. Section 

7.3 in future work, later in this chapter, offers specific ideas to expand the physical 

complexity modeled in APDS.  

Finally, Chapter 2 discusses the use of APDS in SAGD projects to support operational 

strategies, geomechanical analysis, well-pair location decision making and 4D-seismic 

integration. The case studies in Chapters 5 and 6 successfully demonstrate the last two 

applications. 
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7.1.2 APDS Implementation and Validation 

 

Being mathematically sound and based on well-established engineering principles of flow 

in porous media, material balance and heat-transfer does not guarantee a practical, 

successful or immediate implementation. Sometimes, there is a time gap between the 

formulation of an algorithm and its implementation and/or adoption. To mention one 

example, the principles of streamline simulation were stablished in 1934 (Muskat & 

Wyckoff, 1934), but according to Batycky, Blunt, & Thiele (1997) the technology only 

resurfaces to the reservoir simulation practice in the nineties after the introduction of the 

practical concept of time of flight along the streamlines (Pollock, 1988).  

In the case of APDS, its successful implementation requires assumptions and practical 

simplifications that must be compatible with the graph-based structure of the algorithm. 

The implementation presented in Chapter 3 is considered a contribution to the practice of 

SAGD reservoir simulation on its own. In the future, starting from the same APDS 

formulation presented in this thesis, other researches might suggest different assumptions 

and/or simplifications to implement the algorithm. 

A case study performed with a realistic multi-realization geological model validates the 

predictive capabilities of APDS. Visual and numerical comparisons with the results 

obtained from a conventional full physics thermal flow simulation are satisfactory. APDS 

was 3 orders of magnitude faster than the conventional simulator to model the steam-

chamber expansion and to provide predictions of reservoir response. The cost was a 

reduction in the precision of the results. These results favor using APDS to support SAGD 

decision making workflows in the presence of geological uncertainty.  

Finally, Chapter 3 discusses the APDS prototype written in the Python programming 

language. The structure of the prototype with 3 modules (graph generator, steam-chamber 

generator and post-processing) is convenient to further reduce computational running time 

by parallelizing APDS. 
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7.1.3 Decision-Making Criterion for Active Management of Geological 

Uncertainty 

 

Reservoir managers want to select and implement projects that add value. The selection is 

difficult because project performance depends on the geological uncertainty. The 

geological uncertainty can be quantified with geostatistical methods, but this information 

is not often used because the decision-making models are not always formulated to exploit 

the geological risk. 

Chapter 4 of this dissertation claims that for PRM, the decision process must be guided 

by a criterion tuned to the risk-reward preferences of the companies. For that reason, a 

decision-making criterion consistent with the utility theory framework is formulated and 

introduced. The proposed criterion ranks the projects to be implemented by combining 

MVC and SDR optimality criteria. The main advantages of the MVC-SDR model are that 

(1) it does not rely on a specific utility function and (2) the results are reasonable to all risk-

averse reservoir managers. The shortcoming is a reduced ability to rank projects with very 

similar CDFs. 

This thesis presents two examples that demonstrate MVC-SDR as a viable criterion for 

decision making under geological uncertainty. The first example in Chapter 4 considers the 

problem of selecting one SAGD well-pad to be drilled from a set of several possible 

options. It is designed intentionally simple with the goal of explaining the MVC-SDR 

methodology step by step. The second example in Chapter 5 considers the problem of 

finding the best vertical location for a SAGD well-pair project in a target volume. This 

example uses a realistic geological model and showed that APDS was computationally 

efficient enough to model 4000 steam-chambers in 13 hours. This is a reasonable 

computational time for supporting problems that require transferring the geological 

uncertainty over a well-defined finite set of decision options. 

The examples show that the MVC-SDR criterion do not always lead to a single project; 

for that reason, it not suitable for problems that use optimization algorithms for searching 

extremely large combinatorial decision spaces. MVC-SDR will not always help reservoir 

managers to find a single optimum project, but they can reduce considerably the number 
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of alternatives from which the final decision must be make. The final choice depends on 

the specific reservoir manager’s utility function. 

 

7.1.4 Assisting 4D-Seismic Integration in Reservoir Characterization 

 

4D-seismic is an important source of dynamic data for monitoring heavy-oil reservoirs. It 

provides images of the SAGD steam-chamber at different times that might reveal 

anomalies caused by barriers/baffles and conduits. These anomalies can be enforced into 

geostatistical realizations using the practical integration of 4D-seismic methodology 

proposed by Hadavand & Deutsch (2017). 

Chapter 6 demonstrates with a realistic case study, that after the geostatistical anomaly 

enforcement, APDS can efficiently model the steam-chamber propagation on the updated 

geostatistical realizations to assess the quality of the 4D-seismic integration in the SAGD 

reservoir characterization. In fact, APDS not only supplements the geostatistical anomaly 

enforcement methodology, but it actively helps to improve reservoir characterization by 

providing valuable feedback about the location of the anomalies. The updated models are 

expected to improve SAGD reservoir decisions related to optimization of steam-injection 

strategies, installation of flow control devices and/or execution of well workovers or 

sidetracks among others.  

Chapter 6 also introduces the probability of steam-chamber presence volume. This 

practical contribution permits to condensate in one single image the information about the 

steam-chamber location of an entire set of geostatistical realizations. The APDS capability 

of modeling the steam-chamber in an almost continuous timeline makes it is easy to 

generate probability volumes at any time of interest. They can be synchronized with the 

recording time of seismic monitoring surveys to improve the assimilation of dynamic data 

in the reservoir characterization. 
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7.2 Limitations and Future Work 

 

Reflections on the limitations of APDS and MVC-SDR are included in the closing section 

of each chapter. This final section recalls some of those limitations, discusses new ones, 

but mainly focusses on offering specific ideas to overcome them. 

Future works that might improve the methods and algorithms developed on this thesis 

or build upon the results obtained include: 

 Improve current APDS outputs or develop new ones. For instances, production oil 

forecast and steam-oil-ratio forecast. 

 

 Improve or expand the APDS physical complexity to offer higher flexibility without 

affecting the computational efficiency. For example:  include relative permeabilities 

curves, improve handling of high-water saturation cells or develop a new two-phase 

APDS algorithm. 

 

 Integrate APDS to well-established methodologies to improve reservoir 

characterization, such as the Ensemble Kalman Filter (EnKF). 

 

 Couple APDS with models that describe aspects of the SAGD physics not 

considered in the ranking function, for example, the steam properties variations 

along the injector wellbore trajectory. 

 

 Develop additional case studies applying APDS to larger or more complex SAGD 

problems. For example, study the optimization of SAGD-Pads placement.  

 

 Improve APDS computational efficiency 

 

 Regarding the decision-making model: calibrate the decision-maker’s position on 

risks coming from the geological uncertainty and use APDS to determine the value 

of information (VOI) of monitoring seismic surveys. 

These future work ideas are described in the next sections. 
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7.2.1 Production Oil Forecast 

 

APDS combines the sequence of graph nodes ordered by time with their volumetric 

information to approximate the cumulative oil forecast. The calculation requires the 

recoverable oil saturation (∆𝑆𝑜) of every cell; that is, the difference between the initial oil 

saturation (𝑆𝑜𝑖) and the residual oil saturation (𝑆𝑜𝑟). 𝑆𝑜𝑖 is available from the input 

geological model, but 𝑆𝑜𝑟 must be assumed.  

APDS assumes that when a cell is heated, all its recoverable oil is produced 

instantaneously. This assumption causes discrepancies to the conventional thermal 

simulator results, because the oil saturation (𝑆𝑜) is a time-dependent variable. The oil 

saturation remaining in the steam-chamber changes through time until it reaches 𝑆𝑜𝑟.  

Implementing the time-dependent average 𝑆𝑜𝑟̅̅ ̅̅  proposed by Cardwell & Parsons (1949) 

might improve the APDS oil production forecast. 

𝑆𝑜𝑟̅̅ ̅̅ =
(𝑏 − 1)

𝑏
(
𝜐𝑠𝜙𝑍

𝑏𝑘𝑔𝑡
)
1/(𝑏−1)

 

 

(7.1) 

Here, 𝑆𝑜𝑟̅̅ ̅̅  is the average residual oil saturation after time t, 𝜐𝑠 is the kinematic viscosity 

of the oil at the steam temperature, 𝜙 is the porosity, Z is the drainage height, 𝑘 is the 

permeability, 𝑔 is the gravity constant, and 𝑏 is the exponent in Cardwell and Parson’s 

equation for relative permeability, 𝑘𝑟 = 𝑆
𝑏. After applying a typical value for 𝑏 of 3.5 

(Butler, 1991), the average residual oil saturation in the steam-chamber after a time (t) can 

be approximate by: 

𝑆𝑜𝑟̅̅ ̅̅ = 0.43 (
𝜐𝑠𝜙ℎ

𝑘𝑔𝑡
)
0.4

 

 

(7.2) 

Note that the variable Z was replaced by the height of the steam-chamber h that can be 

calculated at any time 𝑡 from APDS. 
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7.2.2 Steam-Oil Ratio (SOR) Forecast 

 

SOR is a key economic performance indicator of a SAGD project. The current APDS 

implementation does not provide the steam consumption of the process.  However, all the 

inputs to estimate the SOR are readily available from APDS. 

After calculating the oil production forecast, the steam consumption can be estimated 

by adding the heat to expand the steam-chamber, the head storage ahead of the interface of 

the steam-chamber and the head loss to the over-burden. The following equations from 

Butler (1991). 

 

7.2.2.1 Heat to Expand the Steam-chamber (𝑄𝑠𝑐ℎ) 

 

The heat to raise the steam-chamber from the reservoir temperature to the steam-

temperature is calculated with the following equation, 

𝑄𝑠𝑐ℎ =
𝑄𝑜

∅∆𝑆𝑜
𝑀(𝑇𝑠𝑡 − 𝑇𝑟) 

 

(7.3) 

Where, 𝑇𝑠𝑡 and 𝑇𝑟 are the steam temperature and the initial reservoir temperature, 

respectively. 𝑀 is the volumetric heat capacity of the reservoir, 𝑄𝑜 is the cumulative 

recoverable oil, ∅ is the porosity and ∆𝑆𝑜 is the recoverable oil saturation. 

Note that APDS provides 𝑄𝑜, ∆𝑆𝑜 was discussed in Section 7.3.1, ∅,𝑀, 𝑇𝑟 are inputs 

from the geological model, and 𝑇𝑠𝑡 is set by the reservoir manager. 

 

7.2.2.2 Heat Storage Ahead of the Steam-chamber Interface (𝑄𝑠𝑡𝑔) 

 

The heat to raise the oil temperature ahead of the steam-chamber from 𝑇𝑟 to 𝑇𝑠𝑡 is calculated 

with the following equation, 

𝑄𝑠𝑡𝑔 =
𝐾𝐴𝑖
𝑈
(𝑇𝑠𝑡 − 𝑇𝑟) 

 
(7.4) 
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Where, 𝐾 is the thermal conductivity of the reservoir, 𝐴𝑖 is the area of the steam-

chamber interface, 𝑈 is the interface velocity, and  𝑇𝑟 and  𝑇𝑠𝑡 were previously defined. To 

solve this equation, APDS provides estimate values of  𝐴𝑖 and 𝑈. 

7.2.2.3 Heat Loss to the Overburden (𝑄𝑜𝑣𝑏) 

 

The heat losses to the overburden above the steam-chamber is calculated with the following 

equation, 

𝑄𝑜𝑣𝑏 =
4

3
𝐾𝐴𝑜𝑏(𝑇𝑠𝑡 − 𝑇𝑟)√

𝑡

𝜋𝛼
 

 

(7.5) 

Where, 𝐴𝑜𝑏 is the area in contact with the overburden at the time 𝑡, 𝛼  is the thermal 

diffusivity of the overburden and the other variables were previously defined. To solve this 

equation, APDS provides estimate values 𝐴𝑜𝑏. 

 

7.2.3 Oil Relative Permeability (Kro) 

 

The travel cell time is one component of the APDS ranking function that controls the 

steam-chamber propagation. After combining Equations 2.1 and 2.2 it can be expressed as, 

𝑇𝑟𝑎𝑣𝑒𝑙 𝐶𝑒𝑙𝑙 𝑡𝑖𝑚𝑒 = (𝑉𝑐∅ ∆𝑆𝑜) (
𝜐ℎ𝑣

𝐴𝑡𝑘𝑜𝑔 𝑠𝑖𝑛 𝛽
) 

 

(7.6) 

Where all variables in this equation were previously defined. Note the effective oil 

permeability (𝑘𝑜) variable in the denominator. APDS currently uses a constant oil relative 

permeability value (𝑘𝑟𝑜) in the range 0.2 to 0.4 to convert the absolute oil permeability 

(𝑘𝑎𝑏𝑠) to 𝑘𝑜. This simplification should cause differences from the results obtained with a 

thermal flow simulation. 

SAGD is a thermal recovery process where high temperatures impact 𝑘𝑟𝑜. Therefore, it 

is worthy to expand the APDS physics with an oil/water relative permeability correlation 

at the edge of the steam-chamber. The following correlation proposed by Mosavat, 

Mohsenzadeh, & Al-Wahaibi (2016) that modifies Corey’s equation could render good 

results. Corey’s correlation is given by. 
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𝑘𝑟𝑤 = (𝑆𝑤
∗ )4 

 
(7.7) 

𝑘𝑟𝑜 = (1 − 𝑆𝑤
∗2) (1 − 𝑆𝑤

∗ )2 
 

(7.8) 

Where, 𝑘𝑟𝑤 is water relative permeability, 𝑆𝑤 water saturation and  𝑆𝑤
∗  is the normalized 

water saturation that depends on the irreducible water saturation 𝑆𝑤𝑖𝑟𝑟. The equation of  𝑆𝑤
∗   

is, 

𝑆𝑤
∗ = (

𝑆𝑤 − 𝑆𝑤𝑖𝑟𝑟
1 − 𝑆𝑤𝑖𝑟𝑟

) 
 

(7.9) 

Mosavat et al. (2016) developed the following temperature-dependent oil/water relative 

permeability correlations that are function of water saturation and oil-water viscosity ratio. 

They reported that the correlations were obtained from curve-fitting SAGD experimental 

data publicly available. 

𝑘𝑟𝑤 = 𝑆𝑤
∗𝑎 

 
(7.10) 

𝑘𝑟𝑜 = (1 − 𝑆𝑤
∗𝑏) (1 − 𝑆𝑤

∗ )𝑐 
 

(7.11) 

The parameters 𝑎, 𝑏, 𝑐 are given by, 

𝑎 = 1.32 + 0.00123𝜇𝑅 − 7.47 ∗ 10
−7𝜇𝑅

2  
 

(7.12a) 

𝑏 = 1.02 − 0.000298𝜇𝑅 − 1.38 ∗ 10
−7𝜇𝑅

2  
 

(7.12b) 

𝑐 = 2.22 + 0.00318𝜇𝑅 − 1.22 ∗ 10
−6𝜇𝑅

2  
 

(7.12c) 

𝜇𝑅(𝑇) = (
𝜇𝑜𝑖𝑙
𝜇𝑤𝑎𝑡𝑒𝑟

)
𝑇

 

 

(7.13) 
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Where, 𝜇𝑅(𝑇) is the viscosity ratio at temperature (𝑇).  𝜇𝑜𝑖𝑙  and  𝜇𝑤𝑎𝑡𝑒𝑟  are the oil and 

water viscosity in 𝑐𝑃 at temperature 𝑇, respectively. 

Implementing the 𝑘𝑟𝑜 correlation should improve the APDS results, so they better match 

a full physics thermal flow simulator. However, using a 𝑘𝑟𝑜 curve might result in 

mathematical instabilities in cells with initial high-water saturation. In such cases, 𝑘𝑟𝑜 will 

tend to zero and the travel cell time given by Equation 7.6 will tend to infinity. To overcome 

this issue, it is suggested to include in the APDS implementation a condition to assign very 

large ranking values to cells with travel cell time that tends to infinite. 

It is recommended to search and test other oil/water relative permeability correlations 

that could be available in the technical literature. The correlation that better compares to 

the conventional full physics thermal flow simulator should be implemented. 

 

7.2.4 Cells with High Initial Water Saturation (Swi) 

 

APDS classifies cells with initial water saturation (Swi) above a user-defined cut-off, as 

isolated nodes in the graph, so they are treated like shales. This approximation is not 

completely satisfactory. Reservoir layers with initial high-water saturation slow-down the 

steam-chamber propagation, and after the connate water is drained, the steam can pass 

through them. 

Regarding cells with high Swi , a practical and more flexible alternative to the current 

APDS assumptions, it is to calculate the travel cell time using water properties or oil 

properties, depending on a pre-defined water saturation condition. For example, if  𝑆𝑤𝑖  >

 40% , then: 

𝑇𝑟𝑎𝑣𝑒𝑙 𝐶𝑒𝑙𝑙 𝑡𝑖𝑚𝑒 = (𝑉𝑐∅ ∆𝑆𝑤) (
𝜐𝑤𝑎𝑡𝑒𝑟

𝐴𝑡𝑘𝑎𝑏𝑠𝑘𝑟𝑤𝑔 𝑠𝑖𝑛 𝛽
) (7.14) 

All variables in this equation were previously defined. If 𝑆𝑤  ≤  40%, then Equation 

7.6 is used.  

A more complex solution to high Swi zones involves implementing a fractional flow 

model that considers both, oil and water saturations, into the travel cell time equation. As 

a starter point for future research, the fractional flow between one cell and its neighbors, 
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after neglecting the effect of the capillary pressure, can be calculated with the following 

equation (Butler, 1991). 

𝑓𝑤 =
𝑞𝑤
𝑞𝑡
=

1 −  𝜑

1 +
𝜇𝑤
𝑘𝑟𝑤

𝑘𝑟𝑜
𝜇𝑜

 
(7.15) 

Where, 

φ =
𝑘𝑎𝑏𝑠𝑘𝑟𝑜𝐴𝑡∆𝜌𝑔𝑠𝑖𝑛𝛽

𝑞𝑡𝜇𝑜
 (7.16) 

Where 𝑞𝑤, 𝑞𝑡 are water and oil flow rate, respectively. All other variables in these 

equations were previously defined. How to combine these equations with a material 

balance of both fluids (oil and water) at the cell-scale in a consistent way with other APDS 

assumptions is not solved yet. However, a solution of this type would certainly render a 

better representation of the actual physical phenomena occurring at the edge of the steam-

chamber and it would be an important advance in the APDS formulation. 

 

7.2.5 Assisting the Ensemble Kalman Filter (EnKF) Technique with APDS 

 

EnKF is an inverse-modelling local optimization technique intended for sequential 

assimilation of static and dynamic into a model (Aanonsen, Nævdal, Oliver, Reynolds, & 

Vallès, 2009). It consists of two recursive steps, the forecast step to propagate state 

variables as a function of the updated parameters from one timestep to another, and the 

analysis or updating step for data assimilation (Zagayevskiy & Deutsch, 2015). 

EnKF was applied to assimilate time-lapse temperature observations and 4D-seismic 

data in SAGD reservoir characterization by Zagayevskiy & Deutsch (2015). They 

discussed two challenges to implement EnKF. It requires an ensemble with a large number 

of geostatistical realizations, and they all need to be processed during the forecast step. The 

forecast step can be performed with a full-physics thermal flow simulator but is 

computationally too expensive. Using APDS should reduce drastically the computational 

overburden of running the forecast step with a marginal loss in the quality of the estimate. 
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A case study intended to explore the advantages and limitations of assisting EnKF with 

APDS is suggested. 

 

7.2.6 Coupling APDS with a Thermal Wellbore Simulator 

 

APDS assumes a uniform pressure profile along the injector wellbore. However, in SAGD 

projects, the pressure difference between the heel and toe of a long horizontal steam 

injector due to frictional losses can be significative. These pressure differences can affect 

the development of the shape of the steam chamber (Tan, Butterworth, & Yang, 2002). 

It is anticipated that coupling a thermal wellbore simulator to APDS will improve the 

ability of the latter to predict the steam-chamber propagation. As a starter point for this 

research path, the following literature about modeling thermal wellbore conditions in 

SAGD is suggested (Ju & Zhao, 2016; Oballa, Coombe, & Buchanan, 1997; Tan et al., 

2002; Vander Valk & Yang, 2007). The challenge is making compatible existing thermal 

wellbore simulators with the APDS formulation.  

 

7.2.7 APDS Applications 

 

The APDS applications discussed in this thesis used geological models representing SAGD 

well-pair volumes. To further test the limits of the APDS predictive capabilities and assess 

its potential use in commercial SAGD projects, additional case studies using larger scales 

are required. 

In this regard, a challenging problem worthy of being revisited having APDS as a 

companion tool, is the placement of SAGD surface production pads and subsurface 

drainage areas to maximize the economic potential of an area tackled by Manchuk & 

Deutsch (2013). 

 

7.2.8 APDS Computational Efficiency 

 

The case studies presented in this thesis indicate that APDS is around 3 orders of magnitude 

faster than conventional full-physics thermal flow simulators to model the steam-chamber 
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expansion and to provide a response variable. This processing time appears encouraging to 

undertake problems with large finite decision spaces. However, is not yet efficient enough 

to embed APDS into a full-scale field optimization work flow. It is recommended to look 

for substantial efficiency gains in the scale of 1-3 additional orders of magnitude compared 

to a conventional thermal flow simulator. It is suggested to program APDS using a 

compiled language such as C, C++, C# or Fortran. Moreover, the structure of the program 

must ensure that APDS can be parallelized. 

 

7.2.9 Decision-Maker Position on Geological Risk 

 

The MVC-SDR criterion is primarily applicable to problems with a well-defined finite set 

of decision options. It helps reservoir managers to reduce the number of alternatives from 

which the decision must be made, but at the end, the final choice depends on the specific 

reservoir manager’s utility function. Utility functions are also required as objective 

functions to account for geological uncertainty in closed-loop field optimization work 

flows. The reservoir manager’s position on risk should be explicitly embedded in a utility 

function, so the PRM decision-making problem can be generically formulated as: 

argmax
𝑎𝜖𝐴

𝐸[𝑢(𝑥(𝑎, 𝑤))] = argmax
𝑎𝜖𝐴

∫ 𝑓(𝑥(𝑎, 𝑤))  ∙ 𝑢(𝑥(𝑎, 𝑤))dx (7.17) 

Where, 𝑎 represents projects from the set of feasible actions 𝐴; 𝑤 represents realizations 

from the geological model; x(𝑎, 𝑤) represents the payoff calculated after transferring the 

geological uncertainty; 𝑓(𝑥(∙)) is the probability density function of 𝑥(∙) and 𝑢(𝑥(∙)) is 

the utility function. 

Because there is no clear method to determine a decision maker’s utility function, it is 

recommended to follow a pragmatic approach similar to Güyagüler & Horne (2004) and 

Ozdogan & Horne (2006). That is, the utility function is assumed to be exponential, 𝑢(𝑥) =

−𝑒−𝑥/𝑅, and the position on risk of the reservoir manager, represented by the risk tolerance 

parameter 𝑅, is calibrated performing a sensitivity analysis over a range of R. In the case 

of SAGD decision-making problems, this procedure will benefit from the APDS efficiency, 
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because it requires transferring the geological uncertainty over the set of geostatistical 

realizations, as many times as needed for the calibration of the R parameter. 

 

7.2.10 Value of Seismic Information on SAGD projects 

 

The APDS probability of steam-chamber presence volumes condense the information 

about the steam-chamber location of an entire set of geostatistical realizations. They can 

be estimated at the recording time of different seismic monitoring surveys to improve the 

assimilation of dynamic data in reservoir characterization. 

The bitumen forecast provided by APDS can be used to quantity the value of 

information as incremental 4D-seismic data become available (Hadavand, 2017). 

However, since the steam-consumption is the largest operational cost in SAGD projects, it 

is recommended to develop and validate the procedure to obtain the Steam-Oil Ratio (SOR) 

forecast from APDS (Section 7.3.2) before undertaking this VOI problem. 
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Appendix A  

Computer Programs 

 

This appendix presents the APDS prototype written in the Python programming language. 

The prototype is a collection of programs organized in 3 modules: Graph generator, Steam-

chamber generator and Post-processing (Figure 3.6). APDS programs are self-documented, 

they have a heading describing the function of the program, the inputs and outputs. In the 

codes, star symbols (***) indicates the start and the end of the program, and text inside 

number symbols (###), or after them, are explanatory comments. This appendix has the 

following structure: 

1. Section A.1 presents the dependencies, requirements and licenses. 

2. Section A.2 presents a workflow to run APDS. 

3. Section A.3 contains the programs. 

 

A.1 Dependencies, Requirements and Licenses 

 

A.1.1 Dependencies and Requirements 

 

APDS requires Python 3.X or higher such as the Anaconda distribution from Continuum 

Analytics, https://www.continuum.io/downloads. The following packages are required: 

 NumPy- Python math library - http://www.numpy.org/ 

 SciPy - Python math library - http://www.scipy.org/ 

 Pandas - Python data analysis library - http://pandas.pydata.org/ 

 Spyder – Python environment with MATLAB-like features - 

https://pypi.python.org/pypi/spyder 

 pqdict 1.0.0  - Dictionary Priority Queues. - https://pypi.python.org/pypi/pqdict/ 

 pygeostat is recommended from https://ccgsrv.geostats.ualberta.ca/ccgkb/doku.php 

 

 

 

https://www.continuum.io/downloads
https://pypi.python.org/pypi/pqdict/
https://ccgsrv.geostats.ualberta.ca/ccgkb/doku.php
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A.1.2 Licenses 

 

A.1.2.1 CCG Software Terms of Use for APDS and pygeostat 

 

Pygeostat Python code is licensed under CCG Software Terms of Use, which are copied below. Use and Support of 

Software from the Centre for Computational Geostatistics (CCG). Last Revised August 30, 2016. 

The Centre for Computational Geostatistics (CCG) at the University of Alberta has evolved over the years, yet the 

basic idea remains the same: organizations provide research funding for access to research results. CCG software is 

intellectual property of CCG; the following principles apply to the use and support of CCG software. 

1. Openness within the CCG Community 

All researchers within CCG share all software developed at the CCG openly within the CCG community. All 

software aims for high standards, but many programs are works in progress. 

2. Support of CCG Software 

There is no support provided for CCG software. CCG researchers may address questions and reports of errors 

and deficiencies. CCG Research Partners receive greater consideration.  

3. Software Use for Short Courses and the Citation Program in Applied Geostatistics Course participants use 

CCG software for exercises and projects, but should not use the software for commercial application outside 

of the CCG community after the training course. 

4. Use in Commercial Software 

A CCG member may embed CCG software within commercial software that they develop or apply, if they 

take responsibility for the product. 

5. Software Use if a CCG Member Drops Support 

It is an expectation of the CCG community that former CCG members discontinue the use of CCG software 

embedded within their practices and applications, unless they were the developer. 

6. Software Use by the Developer 

A particular researcher within CCG can distribute their software as they see fit. Special care is required for 

derivative works built on previous CCG software. 

7. Released Software 

Certain software is released as part of journal publications or on our website. Such software is released and licensed 

under https://creativecommons.org/licenses/by-nc-nd/4.0/ 

************************************************************************************** 

The following text should be disclosed within CCG code and when CCG code is executed: This software is the 

intellectual property of the Centre for Computational Geostatistics (CCG). It is made available to the CCG community, 

but no support is provided. For more information, please refer to the terms of use on http://www.ccgalberta.com/software-

terms-of-use. 

************************************************************************************** 

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A 

https://creativecommons.org/licenses/by-nc-nd/4.0/
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PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT 

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF 

CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE 

OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 

************************************************************************************** 

Subroutines from GSLIB are redistributed under the license from GSLIB: 

************************************************************************************** 

Copyright (C) 2003, Statios Software and Services Incorporated.  All rights reserved. 

This program has been modified from the one distributed in 1996 (see below).  This version is also distributed in the 

hope that it will be useful, but WITHOUT ANY WARRANTY. Compiled programs based on this code may be 

redistributed without restriction; however, this code is for one developer only. Each developer or user of this source code 

must purchase a separate copy from Statios. Copyright (C) 1996, The Board of Trustees of the Leland Stanford Junior 

University.  All rights reserved.  

************************************************************************************** 

The programs in GSLIB are distributed in the hope that they will be useful, but WITHOUT ANY WARRANTY.  No 

author or distributor accepts responsibility to anyone for the consequences of using them or for whether they serve any 

particular purpose or work at all, unless he says so in writing.  Everyone is granted permission to copy, modify and 

redistribute the programs in GSLIB, but only under the condition that this notice and the above copyright notice remain 

intact. 

 

A.1.2.2 MIT License for  pddict 

 

From: https://pqdict.readthedocs.io/en/latest/intro.html#license 

From: https://opensource.org/licenses/MIT 

 

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated 

documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights 

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to 

whom the Software is furnished to do so, subject to the following conditions: 

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the 

Software. 

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A 

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT 

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF 

CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE 

OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 

 

 

https://pqdict.readthedocs.io/en/latest/intro.html#license
https://opensource.org/licenses/MIT
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A.1.2.3 NumPy License 

 

From: http://www.numpy.org/license.html 

 

Copyright © 2005-2018, NumPy Developers. All rights reserved. 

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the 

following conditions are met: 

Redistributions of source code must retain the above copyright notice, this list of conditions and the following 

disclaimer. 

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following 

disclaimer in the documentation and/or other materials provided with the distribution. 

Neither the name of the NumPy Developers nor the names of any contributors may be used to endorse or promote 

products derived from this software without specific prior written permission. 

 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND 

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 

IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 

INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY 

OF SUCH DAMAGE. 

 

A.1.2.4 ScyPy License 

 

From: https://www.scipy.org/scipylib/license.html 

 

Copyright © 2001, 2002 Enthought, Inc. 

All rights reserved. 

Copyright © 2003-2013 SciPy Developers. 

All rights reserved. 

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the 

following conditions are met: 

Redistributions of source code must retain the above copyright notice, this list of conditions and the following 

disclaimer. 

http://www.numpy.org/license.html
https://www.scipy.org/scipylib/license.html
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Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following 

disclaimer in the documentation and/or other materials provided with the distribution. 

Neither the name of Enthought nor the names of the SciPy Developers may be used to endorse or promote products 

derived from this software without specific prior written permission. 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND 

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 

IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 

TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY 

WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 

 

A.1.2.5 Pandas License 

 

From: http://pandas.pydata.org/pandas-docs/stable/overview.html#license 

 

BSD 3-Clause License 

Copyright (c) 2008-2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team. 

All rights reserved. 

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the 

following conditions are met: 

Redistributions of source code must retain the above copyright notice, this list of conditions and the following 

disclaimer. 

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following 

disclaimer in the documentation and/or other materials provided with the distribution. 

Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products 

derived from this software without specific prior written permission. 

 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 

IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 

INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY 

OF SUCH DAMAGE. 

http://pandas.pydata.org/pandas-docs/stable/overview.html#license
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A.1.2.6 Python License 

 

From: https://docs.python.org/3/license.html#psf-license-agreement-for-python-release 

 

PSF LICENSE AGREEMENT FOR PYTHON 3.7.1¶ 

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"), and the Individual or 

Organization ("Licensee") accessing and otherwise using Python 3.7.1 software in source or binary form and its 

associated documentation. 

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive, 

royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare 

derivative works, distribute, and otherwise use Python 3.7.1 alone or in any derivative version, provided, 

however, that PSF's License Agreement and PSF's notice of copyright, i.e., "Copyright © 2001-2018 Python 

Software Foundation; All Rights Reserved" are retained in Python 3.7.1 alone or in any derivative version 

prepared by Licensee. 

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 3.7.1 or any part 

thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby 

agrees to include in any such work a brief summary of the changes made to Python 3.7.1. 

4. PSF is making Python 3.7.1 available to Licensee on an "AS IS" basis. PSF MAKES NO 

REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED.  BY WAY OF EXAMPLE, BUT 

NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY 

OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF 

PYTHON 3.7.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS. 5. PSF SHALL NOT BE LIABLE 

TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.7.1 FOR ANY INCIDENTAL, SPECIAL, OR 

CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING, DISTRIBUTING, OR 

OTHERWISE USING PYTHON 3.7.1, OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE 

POSSIBILITY THEREOF. 

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions. 

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or 

joint venture between PSF and Licensee.  This License Agreement does not grant permission to use PSF 

trademarks or trade name in a trademark sense to endorse or promote products or services of Licensee, or 

any third party. 

8. By copying, installing or otherwise using Python 3.7.1, Licensee agrees to be bound by the terms and 

conditions of this License Agreement. 

 

 

 

https://docs.python.org/3/license.html#psf-license-agreement-for-python-release
https://docs.python.org/3/license.html#psf-license-agreement-for-python-release
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A.1.2.7 Spyder License 

 

From: https://pypi.org/project/spyder/. Spyder was released under MIT License (MIT) 

From https://opensource.org/licenses/MIT 

 

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated 

documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights 

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to 

whom the Software is furnished to do so, subject to the following conditions: 

The above copyright notice and this permission notice shall be included in all copies or substantial portions 

of the Software. 

 

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A 

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT 

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF 

CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE 

OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

https://pypi.org/project/spyder/
https://opensource.org/licenses/MIT
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A.2 APDS Workflow 

 

The script “Run1_APDS_2018.py” implements a workflow example to model the steam-

chamber for two geostatistical realizations with APDS. Figure B.1 shows that the Project 

folder initially has 2 subfolders. The subfolder “0_Data” contains the vertical and 

horizontal permeabilities (KV1.npy, KV2.npy, KH1.npy, KH2.npy), the porosity 

(PHI1.npy, PHI2.npy), the water saturation (SW1.npy, SW2.npy), the rock-types 

(TRT1.npy, TRT2.npy) and the null cells (NullCells.npy). The subfolder “1_Well-

Trajectory” contains the producer well trajectory. The input data are NumPy arrays in 

GSLIB format. 

After executing the “Run1_APDS_2018” program, 4 new subfolders are generated. The 

subfolder “3_Graph-Sinks” contains the outputs of the Graph generator module, that is, the 

Graphs (Graph_1.npy, Graph_2.npy) and the Sinks (Sinks_1.npy, Sinks_2.npy). The 

subfolder “ 4_Steam-Chamber” contains the outputs of the Steam-chamber generator 

module, that is, the ordered sequence of cells to build the steam-chambers 

(Chamberorder_1.npy, Chamberorder_2.npy) with their ranking values 

(Chambertime_1.npy, Chambertime_2.npy). Finally, the subfolder “ 5_VTK” contains the 

outputs of the Post-processing module, that is, the VTK files (SteamChamber_1.vtk, 

SteamChamber_2.vtk ) for visualizing the steam-chambers in a third-party software.  

 

Figure A.1:  Workflow to run APDS. 

Project

0_Data 1_Well-Trajectory

Project

3_Graph-Sinks 4_Steam-Chamber

5_VTK

Run1_APDS_2018
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************************************************************************ 1 
**NAME: Run1_APDS_2018.py  2 
**APPROXIMATE PHYSICS DISCRETE SIMULATOR (APDS) 3 
** WORKFLOW 4 
************************************************************************    5 
########################################################################6 
## Import Modules: pygeostat, pqdict, numpy, pandas 7 
######################################################################## 8 
 9 
import pygeostat as gs  # Read CCG terms of use 10 
from pqdict import minpq # Used by sagdgeom. MIT License.               11 
import numpy as np  # Read License 12 
import pandas as pd  # Read License 13 
from math import cos, acos, atan, degrees, sin, radians 14 
import os 15 
 16 
######################################################################## 17 
## Licenses 18 
######################################################################## 19 

######################################################################## 20 

## MIT License for pqdict and Spyder 21 

## https://pqdict.readthedocs.io/en/latest/intro.html#license 22 

## https://pypi.org/project/spyder/ 23 

## https://opensource.org/licenses/MIT 24 

######################################################################## 25 

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 26 

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A 27 

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT 28 

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF 29 

CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE 30 

OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 31 

######################################################################## 32 

########################################################################33 

## CCG Terms of Use for pygeostat software  34 

######################################################################## 35 

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 36 

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A 37 

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT 38 

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF 39 

https://pqdict.readthedocs.io/en/latest/intro.html#license
https://pypi.org/project/spyder/
https://opensource.org/licenses/MIT
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CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE 40 

OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 41 

######################################################################## 42 

 43 

########################################################################44 

## Python License  45 

## https://docs.python.org/3/license.html#psf-license-agreement-for-python-release 46 

######################################################################## 47 

PSF is making Python 3.7.1 available to Licensee on an "AS IS" basis. PSF MAKES NO REPRESENTATIONS OR 48 

WARRANTIES, EXPRESS OR IMPLIED.  BY WAY OF EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO 49 

AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS FOR 50 

ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 3.7.1 WILL NOT INFRINGE ANY THIRD 51 

PARTY RIGHTS. 5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.7.1 52 

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF 53 

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.7.1, OR ANY DERIVATIVE THEREOF, 54 

EVEN IF ADVISED OF THE POSSIBILITY THEREOF. 55 

###################################################################################### 56 

 57 

########################################################################58 

## numPy License 59 

## http://www.numpy.org/license.html 60 

######################################################################## 61 

 62 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY 63 

EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 64 

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT 65 

SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 66 

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 67 

TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 68 

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 69 

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY 70 

WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 71 

 72 

########################################################################73 

## scyPy License 74 

## https://www.scipy.org/scipylib/license.html  75 

######################################################################## 76 

https://docs.python.org/3/license.html#psf-license-agreement-for-python-release
http://www.numpy.org/license.html
https://www.scipy.org/scipylib/license.html
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THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY 77 

EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 78 

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT 79 

SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 80 

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 81 

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 82 

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 83 

STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 84 

OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 85 

 86 

########################################################################87 

## Pandas License  88 

## http://pandas.pydata.org/pandas-docs/stable/overview.html#license 89 

######################################################################## 90 

 91 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY 92 

EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 93 

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT 94 

SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 95 

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 96 

TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 97 

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 98 

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY 99 

WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 100 

 101 

######################################################################## 102 

 103 

########################################################################104 
## Folders with Outputs. Example of Workflow 105 
######################################################################## 106 
     107 
    if not os.path.exists ('2_Preprocesing'):             108 
        os.makedirs ('2_Preprocesing') 109 
     110 
    if not os.path.exists ('3_Graph-Sinks'):             # For Graphs and Sinks 111 
        os.makedirs ('3_Graph-Sinks') 112 
         113 
    if not os.path.exists ('4_Steam-Chamber'):        # For Chambertime and Chamberorder 114 
        os.makedirs ('4_Steam-Chamber') 115 
         116 
    if not os.path.exists ('5_VTK'):                   # For VTK files 117 

http://pandas.pydata.org/pandas-docs/stable/overview.html#license
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        os.makedirs ('5_VTK') 118 
         119 
########################################################################120 
## Create Paths for Input and Output Data 121 
######################################################################## 122 
     123 
    datapath = '0_Data/' 124 
    wellpath = '1_Well-Trajectory/' 125 
    procpath = '2_Preprocesing/' 126 
    graphpath = '3_Graph-Sinks/' 127 
    stchpath = '4_Steam-Chamber/' 128 
    vtkpath = '5_VTK/'    129 
 130 
 131 
########################################################################132 
## Grid Definition 133 
######################################################################## 134 
    135 
    grdstr="""40 1 25 - nx, xmn, xsiz 136 
                  100 1 1 - ny , ymn , ysiz 137 
                  50 1 1 - nz , zmn , zsiz """ 138 
     139 
    griddef = gs.GridDef (gridstr = gridstr)   140 
 141 
    nx = griddef.nx    # For convenience 142 
    ny = griddef.ny 143 
    nz = griddef.nz 144 
    xsiz = griddef.xsiz       145 
    ysiz = griddef.ysiz            146 
    zsiz = griddef.zsiz  147 
    148 
########################################################################149 
## Constant, Conversion Factors 150 
######################################################################## 151 
    m3ToStb = 6.28981           # Convert m3 to bbl 152 
    Resid_So = 0.25                # APDS input. Residual Oil Saturation 153 
    kvCutoff = 200                 # kv Cut-off in md 154 
    BulkCellVol = xsiz*ysiz*zsiz*m3ToStb # Bulk cell volume in m3  155 
 156 
########################################################################157 
## Load Well Trajectories 158 
######################################################################## 159 
     160 
    well1= np.load (wellpath + 'ProdWellTrajectory.npy') # Producer Well 161 
    well2 = range(0,0)      # Range (0,0) if there is one well 162 
    source = load2wells(well1,well2) 163 



154 

    injtracj = range (0,0)  # Injector well trajectory 164 
 165 
########################################################################166 
## Loop for 1 to N Geostatistical Realizations 167 
######################################################################## 168 
     169 
    NReal = [1,2]          # List of realization indexes. This example has 2 realizations 170 
     171 
    for i in NReal: 172 
        173 
####################################################################### 174 
## Load Input Data 175 
####################################################################### 176 
 177 
        APDSRT = np.load (datapath + 'TRT%i.npy'%(i))                 # Rock Type 178 
        APDSPhi = np.load (datapath + 'PHI%i.npy'%(i))                  # Porosity  179 
        APDSKv = np.load (datapath + 'KV%i.npy'%(i))                   # KV  180 
        APDSKh = np.load (datapath + 'KH%i.npy'%(i))                   # KH  181 
        APDSSw = np.load (datapath + 'SW%i.npy'%(i))                   # SW  182 
        APDSNull = np.load (datapath + 'NullCells.npy')                   # 1 – 0        183 
 184 
####################################################################### 185 
## Creating a Data-Frame 186 
####################################################################### 187 
         188 
        df = pd.DataFrame ({'Kv':APDSKv, 189 
        'Kh':APDSKh,'RT':APDSRT,'Phi':APDSPhi,'Sw':APDSSw,'Null':APDSNull})      190 
 191 
####################################################################### 192 
## Processing Rock-types (‘RTGraph’) to obtain a binary variable, (1) for net-rock and 193 
## (0) for non-net rock, to input the Graph Generator 194 
## The Hydrocarbon Cell Volume (HCV) is calculated 195 
## A dataframe is not necessary, but is convenient to work with Pandas        196 
#######################################################################       197 
         198 
        df ['RTGraph'] = df ['RT'] 199 
        df ['RTGraph'][df ['RTGraph'] == 5] = 0           # Rock Type 5 is shale. Code as 0 200 
        df ['RTGraph'][df ['RTGraph'] != 0] = 1            # Rock Types 2,3,4 != 0 are now 1 201 
        df ['RTGraph'][df ['Kv'] <=  KvCutoff] = 0       # Apply Kv Cut-off 202 
        df ['RTGraph'][df ['Kv'] > KvCutoff] = 1          # Apply Kv Cut-off 203 
        df ['RTGraph'] = df ['RTGraph']* df['Null']      # Apply Null Cells 204 
        df ['HCV'] = BulkCellVol*df['Phi']*((1-df ['Sw']) - Resid_So) 205 
        df ['HCV'][df ['HCV'] < 0] = 0    # If HCV is negative, then replace by zero 206 
                207 
   208 
####################################################################### 209 
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## Inputs to "Mygraph" program 210 
#######################################################################     211 
 212 
        gslib = np.array (df['RTGraph'])                # mygraph program requires np.array 213 
        NCVapds = np.array (df['HCV']) 214 
        Kvapds = np.array (df['Kv']) 215 
        Khapds = np.array (df['Kh']) 216 
                217 
####################################################################### 218 
# Graph Generator Module  219 
####################################################################### 220 
                     221 
        Graph, sinks = mygraph (gslib, nx, ny, nz, Kvapds, Khapds, NCVapds) 222 
 223 
####################################################################### 224 
# Steam-Chamber Generator Module 225 
####################################################################### 226 
         227 
        chambertime, chamberorder, parent_sink = sagdgeom (Graph, source, injtracj, sinks) 228 
####################################################################### 229 
##    Save Graph, Sinks, Chambertime and Chamberorder 230 
########################################################################   231 
      232 
        np.save (graphpath + 'Sinks_%i'%(i), sinks)    233 
        np.save (graphpath + 'Graph_%i'%(i), Graph) 234 
        np.save (stchpath + 'Chambertime_%i'%(i), chambertime) 235 
        np.save (stchpath + 'Chamberorder_%i'%(i), chamberorder) 236 
 237 
####################################################################### 238 
## Post-Processing Module 239 
####################################################################### 240 
         241 
        grid= GridVTK (chamberorder, chambertime, nx, ny, nz) 242 
         243 
        VTKPlot (grdstr, grid, 'Time', vtkpath + 'SteamChamber_%i. vtk'%(i)) 244 
 245 
************************************************************************ 246 
** End of Program 247 
** *********************************************************************248 
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*********************************************************************** 1 
** def load2wells (range1, range2): 2 
************************************************************************ 3 
######################################################################## 4 
## Program Description 5 
####################################################################### 6 
 7 
    Author: Enrique Gallardo 8 
    Date: June 2017 9 
    Use: Add two horizontal wells into a single list to generate the APDS's source. This 10 
    program is required by “Run1_APDS_2018.py” 11 
    Input: 12 
    range1: NumPy array with the indexes of the producer well trajectory 13 
    range2: NumPy array with the indexes of the producer well trajectory 14 
    Output: 15 
    source: python list with consolidated trajectories to steam-chamber module 16 
 17 
######################################################################## 18 
  19 
    well1 = [] 20 
    well2 = []   21 
     22 
    for iter in range1: 23 
        well1.append (iter) 24 
         25 
    for iter in range2: 26 
        well2.append (iter) 27 
     28 
    source=well1 + well2 29 
     30 
    return source 31 
 32 
************************************************************************ 33 
** End of Program 34 
************************************************************************35 
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A.3 APDS Programs 

 

APDS programs are presented by modules and in order of appearance. 

 

A.3.1 Graph Generator Module Programs 

 

************************************************************************ 1 
**def mygraph (gslib, nx, ny, nz, kv, kh, NetCelVol): 2 
************************************************************************ 3 
######################################################################## 4 
## Program Description 5 
######################################################################## 6 
 7 
    Author: Enrique Gallardo 8 
    Date: February 2018 9 
    Use: Identify unstimulated planes in a SAGD process 10 
    Input:  11 
    gslib: Binary (0-1) NumPy-array. 0 non-reservoir and 1 reservoir 12 
    nx, ny, nz: Cells in the grid in x, y, z directions, respectively 13 
    kv, kh: NumPy-array with vertical and horizontal permeabilities 14 
    NetCelVol: Numpy-array with net cell volumes 15 
    Output:  16 
    dict_unstplanes: Dictionary keyed with unst_idxs and values is a 17 
    list with the unstimulated planes 18 
    set_unstplanes: Set with indexes of unstimulated cells 19 
    Output: 20 
    mygraph: Graph  21 
    set_sinks: Set with the sink cells 22 
 23 
######################################################################## 24 
 25 
    import collections 26 
    keys_sand,_= RockType_split(gslib) 27 
    SetOutSide = outside (nx, ny, nz) 28 
 29 
######################################################################## 30 
## Mask Definitions 31 
########################################################################  32 
     33 
    bilevel_mask = [1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1]   34 
    lf_mask = [0,1,1,0,0,1,0,1,1,0,1,1,0,1,1,0,1,1] 35 
    ff_mask = [0,0,0,1,0,1,1,1,1,0,0,0,1,1,1,1,1,1] 36 
    rf_mask = [1,1,0,1,0,0,1,1,0,1,1,0,1,1,0,1,1,0] 37 
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    bf_mask = [1,1,1,1,0,1,0,0,0,1,1,1,1,1,1,0,0,0] 38 
    flb_mask = [0,0,0,0,0,1,0,1,1,0,0,0,0,1,1,0,1,1] 39 
    frb_mask = [0,0,0,1,0,0,1,1,0,0,0,0,1,1,0,1,1,0] 40 
    brb_mask = [1,1,0,1,0,0,0,0,0,1,1,0,1,1,0,0,0,0] 41 
    blb_mask = [0,1,1,0,0,1,0,0,0,0,1,1,0,1,1,0,0,0]   42 
    tf_mask = [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0]  43 
    tlf_mask = [0,1,1,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0] 44 
    tff_mask = [0,0,0,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0] 45 
    trf_mask = [1,1,0,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0] 46 
    tbf_mask = [1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0] 47 
    fltc_mask = [0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0] 48 
    frtc_mask = [0,0,0,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0] 49 
    brtc_mask = [1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 50 
    bltc_mask = [0,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0] 51 
 52 
######################################################################## 53 
## Location Indexes 54 
######################################################################## 55 
 56 
    lfidx_all = [nx*iy for iy in range(ny*(nz))] 57 
    ffidx_all = [ix+(nx*ny*(iz)) for iz in range((nz)) for ix in range(nx)] 58 
    rfidx_all = [nx*(iy+1)-1 for iy in range(ny*(nz))] 59 
    bfidx_all = [(ix+(nx*ny*(iz)))+(nx*(ny-1)) for iz in range((nz)) for ix in range(nx)] 60 
    lf_idx = lfidx_all[:ny*(nz-1)]          61 
    ff_idx = ffidx_all[:nx*(nz-1)] 62 
    rf_idx = rfidx_all[:ny*(nz-1)] 63 
    bf_idx = bfidx_all[:nx*(nz-1)] 64 
    tlf_idx = lfidx_all[ny*(nz-1):]     65 
    tff_idx = ffidx_all[nx*(nz-1):]     66 
    trf_idx = rfidx_all[ny*(nz-1):]     67 
    tbf_idx = bfidx_all[nx*(nz-1):] 68 
    flb_idx = [nx*ny*(iz+1)-(nx*ny) for iz in range(nz-1)] 69 
    frb_idx = [nx*ny*(iz+1)-(nx*ny)+nx-1 for iz in range(nz-1)] 70 
    brb_idx = [nx*ny*(iz+1)-1 for iz in range(nz-1)] 71 
    blb_idx = [nx*ny*(iz+1)-nx for iz in range(nz-1)] 72 
    fltc_idx = [nx*ny*(nz)-(nx*ny)] 73 
    frtc_idx = [nx*ny*(nz)-(nx*ny)+nx-1] 74 
    brtc_idx = [nx*ny*(nz)-1] 75 
    bltc_idx = [nx*ny*(nz)-nx] 76 
    tf_idx = [(nx*ny*(nz-1))+ix for ix in range(nx*ny)]    77 
 78 
######################################################################## 79 
## Apply Masks 80 
######################################################################## 81 
 82 
    Mygraph = collections.defaultdict (dict)    # Dictionaries 83 
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    set_sinks = set()                          # Set of sinks 84 
     85 
    for loc in keys_sand:  86 
         87 
        if loc not in SetOutSide: 88 
            neighbors, Hnbors = applymask (loc, bilevel_mask) 89 
         90 
        else: 91 
                 92 
            if loc in lf_idx:     93 
                neighbors, Hnbors = applymask(loc, lf_mask)    94 
             95 
            if loc in ff_idx:     96 
                neighbors, Hnbors = applymask(loc, ff_mask) 97 
             98 
            if loc in rf_idx:     99 
                neighbors, Hnbors = applymask(loc, rf_mask) 100 
      101 
            if loc in bf_idx:     102 
                neighbors, Hnbors = applymask(loc, bf_mask)  103 
            if loc in flb_idx:      104 
                neighbors, Hnbors = applymask(loc, flb_mask) 105 
                            106 
            if loc in frb_idx:    107 
                neighbors, Hnbors = applymask(loc, frb_mask) 108 
                 109 
            if loc in brb_idx:    110 
                neighbors, Hnbors = applymask(loc, brb_mask) 111 
             112 
            if loc in blb_idx:    113 
                neighbors, Hnbors = applymask(loc, blb_mask) 114 
                         115 
            if loc in tf_idx:    116 
                neighbors, Hnbors = applymask(loc, tf_mask)            117 
                 118 
            if loc in tlf_idx:     119 
                neighbors, Hnbors = applymask(loc, tlf_mask)      120 
             121 
            if loc in tff_idx:     122 
                neighbors, Hnbors = applymask(loc, tff_mask) 123 
             124 
            if loc in trf_idx:     125 
                neighbors, Hnbors = applymask(loc, trf_mask) 126 
      127 
            if loc in tbf_idx:     128 
                neighbors, Hnbors = applymask(loc, tbf_mask)   129 
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            if loc in fltc_idx:      130 
                neighbors, Hnbors = applymask(loc, fltc_mask) 131 
                            132 
            if loc in frtc_idx:    133 
                neighbors, Hnbors = applymask(loc, frtc_mask) 134 
                 135 
            if loc in brtc_idx:    136 
                neighbors, Hnbors = applymask(loc, brtc_mask) 137 
             138 
            if loc in bltc_idx:    139 
                neighbors, Hnbors = applymask(loc, bltc_mask) 140 
 141 
######################################################################## 142 
## Sinks 143 
######################################################################## 144 
         145 
        tsink = identifysink(Hnbors, gslib, loc) 146 
        set_sinks.add (tsink) 147 
 148 
######################################################################## 149 
## Loop to Populate the Graph 150 
######################################################################## 151 
 152 
        for neigh in neighbors:  153 
            if gslib[neigh]==0:      154 
                continue 155 
 156 
######################################################################## 157 
## Permeabilities  158 
######################################################################## 159 
 160 
            k_av = Harmonick (kv[loc],kv[neigh]) # Vertical permeability 161 
            k_ah = Harmonick (kh[loc],kh[neigh]) # Horizontal permeability 162 
 163 
######################################################################## 164 
## Populating the Graph 165 
## Loc is first key; neigh is second key, and value is  a tuple (kv, kh, CellVol) 166 
######################################################################## 167 
 168 
            mygraph[loc][neigh]=[k_av, k_ah, NetCelVol[neigh]]  169 
     170 
    return mygraph, set_sinks   171 
 172 
************************************************************************ 173 
** End of Program 174 
** *********************************************************************175 
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************************************************************************ 1 
**def RockType_split (RT_array): 2 
************************************************************************ 3 
######################################################################## 4 
## Program Description 5 
########################################################################    6 
  7 
    Author: Enrique Gallardo 8 
    Date: January 2018 9 
    Use: Split a NumPy binary array into non-reservoir (0) and reservoir cells (1) 10 
    Input:  11 
    RT_array: NumPy array coded shale (0) and sand (1) 12 
    Output:  13 
    keys_sand: List with 0-phyton indexes for sand (1) 14 
    keys_shale: List with 0-phyton indexes for shale (0) 15 
 16 
######################################################################## 17 
 18 
    RT_array0 = np.where(RT_array == 0)     # np.where generates iterators 19 
    RT_array1 = np.where(RT_array == 1)      20 
     21 
    keys_sand = RT_array1[0].tolist()       # Iterator to list 22 
    keys_shale = RT_array0[0].tolist() 23 
 24 
    return keys_sand, keys_shale 25 
 26 
************************************************************************ 27 
** End of Program 28 
** *********************************************************************29 
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************************************************************************ 1 
**def outside (nx, ny, nz): 2 
************************************************************************ 3 
######################################################################## 4 
## Program Description 5 
######################################################################## 6 
 7 
    Author: Enrique Gallardo 8 
    Date: February 2018 9 
    Use: Subroutine identifies cells at the border of the grid 10 
    Input:  11 
    nx, ny, nz: Cells in the grid in x, y, z directions, respectively 12 
    Output:  13 
    Outside_idx: Set with 0-python indexes of cell at the grid border 14 
 15 
######################################################################## 16 
 17 
    lfidx_all = [nx*iy for iy in range(ny*(nz))] 18 
    ffidx_all = [ix + (nx*ny*(iz)) for iz in range((nz)) for ix in range(nx)] 19 
    rfidx_all = [nx*(iy+1)-1 for iy in range(ny*(nz))] 20 
    bfidx_all = [(ix + (nx*ny*(iz))) + (nx*(ny-1)) for iz in range((nz)) for ix in range(nx)] 21 
    tf_idx = [(nx*ny*(nz-1)) + ix for ix in range(nx*ny)] 22 
    Outside_idx = lfidx_all + ffidx_all + rfidx_all + bfidx_all + tf_idx 23 
     24 
    return set (Outside_idx) 25 
 26 
************************************************************************ 27 
** End of Program 28 
** *********************************************************************29 
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************************************************************************ 1 
**def applymask (pyloc, mask): 2 
************************************************************************3 
######################################################################## 4 
## Program Description 5 
######################################################################## 6 
 7 
    Author: Enrique Gallardo 8 
    Date: June 2017 9 
    Note: Returns a list with Neighbors and Horizontal Neighbors of given cell and mask 10 
    Input:  11 
    Pyloc: Location in 0-python index, called pyloc 12 
    mask: Masks are defined inside the mygraph program 13 
    Output:   14 
    Neighbors: 0-python indexes of neighbors 15 
    Hnbors: 0-python indexes of horizontal neighbors 16 
 17 
########################################################################  18 
 19 
    from itertools import compress 20 
    21 
    loc=pyloc+1             # 0-python index is converted to 1-gslib index 22 
     23 
########################################################################  24 
## Neighbors 25 
########################################################################  26 
 27 
    locnbors = [loc-nx-1, loc-nx, loc-nx + 1, loc-1, loc, loc+1, loc+nx-1, loc+nx, loc+nx+1, 28 
             loc+(nx*ny)-nx-1,loc+(nx*ny)-nx,loc+(nx*ny)-nx+1,loc+(nx*ny)-1,loc+(nx*ny), 29 
             loc+(nx*ny)+1,loc+(nx*ny)+nx-1,loc+(nx*ny)+nx, loc+(nx*ny)+nx+1] 30 
 31 
########################################################################  32 
##Apply Mask 33 
########################################################################  34 
    35 
    neighbors = list(compress (locnbors, mask))                36 
    Hnbors = list(compress (locnbors, mask[:9]))                   37 
    neighbors = [i-1 for i in neighbors]     # Subtracting 1 to obtain 0-python indexes  38 
    Hnbors = [i-1 for i in Hnbors]     #  Subtracting 1 to obtain 0-python indexes  39 
 40 
    return neighbors, Hnbors 41 
 42 
************************************************************************ 43 
** End of Program 44 
** *********************************************************************45 
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************************************************************************ 1 
**def identifysink (Hnbors, gslib, loc): 2 
************************************************************************ 3 
######################################################################## 4 
## Program Description 5 
######################################################################## 6 
 7 
    Author: Enrique Gallardo 8 
    Date: June 2017 9 
    Use: Mark a loc as a potential sink 10 
    Input:  11 
    Hnbors: Horizontal neighbors indexes 12 
    Gslib: Binary (0-1) NumPy-array. 0 for non-reservoir and 1 for reservoir. 13 
    loc: Location in 1-gslib index order 14 
    Output: 15 
    tsink: index of loc that is a potential sink 16 
 17 
######################################################################## 18 
 19 
    binaryNbors = [gslib[i] for i in Hnbors ] # Mask 20 
     21 
    tsink = None    # Initializing tsink 22 
                        23 
    if any(I = = 0 for i in binaryNbors): 24 
        tsink = loc 25 
 26 
    return tsink 27 
 28 
************************************************************************ 29 
** End of Program 30 
** *********************************************************************31 
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************************************************************************ 1 
* *def Harmonick (k1, k2):  2 
************************************************************************ 3 
######################################################################## 4 
## Program Description 5 
######################################################################## 6 
 7 
    Author: Enrique Gallardo 8 
    Date: June 2017 9 
    Use: Calculate harmonic average permeability 10 
    Input: 11 
    k1 and k2: Cell permeabilities in md 12 
    Output: 13 
    Harmonic average permeability in md 14 
 15 
########################################################################    16 
 17 
 harmk=1 / ((1/2) * ((1/k1) + (1/k2))) 18 
  19 
    return harmk 20 
 21 
************************************************************************ 22 
** End of Program 23 
***********************************************************************24 
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A.3.2 Steam-Chamber Module Programs 

 

************************************************************************ 1 
**def sagdgeom (graph, source, injtracj, sinks): 2 
************************************************************************ 3 
######################################################################## 4 
## Program Description 5 
######################################################################## 6 
 7 
    Author: Enrique Gallardo 8 
    Date: February 2018 9 
    Use: This program generates the steam-chamber  10 
    Input:  11 
    graph: The Graph generated by the program mygraph 12 
    source: The well list generated by the program load2wells 13 
    injtracj: List with injector well trajectories 14 
    sinks: The sinks generated by the program mygraph  15 
    Output:  16 
    chamber: Dictionary. Key are the locations and value the chambertime  17 
    chamberorder: List with the order cells are added to steam-chamber  18 
    parent_sink: Parent sink of every cell 19 
 20 
######################################################################## 21 
## Identify Unstimulated Planes 22 
######################################################################## 23 
     24 
    prod_welllocson = np.asarray(source)                 25 
    prod_welllocs1above = np.asarray(source) + (nx*ny*1)   26 
    prod_welllocs2above = np.asarray(source) + (nx*ny*2)   27 
    inj_welllocson = injtracj 28 
 29 
######################################################################## 30 
## Concatenate all and get Unstimulated Indexes 31 
######################################################################## 32 
    33 
    inj_welllocs =   34 
    np.concatenate([prod_welllocson,prod_welllocs1above,prod_welllocs2above, 35 
    inj_welllocson])          36 
    unst_idxs = UnstimulatedidxsGraph(graph,inj_welllocs) 37 
 38 
######################################################################## 39 
## Add to Unstimulated Indexes the Head and Toe of the Source Well 40 
######################################################################## 41 
 42 
    head_idx = source[0]-1                   43 
    toe_idx = source[-1]+1                   44 
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    unst_idxs.append (head_idx) 45 
    unst_idxs.append (toe_idx) 46 
 47 
######################################################################## 48 
## Set of Unstimulated Planes 49 
######################################################################## 50 
 51 
    _ , setunstplanes = Unstimulated_Planes (unst_idxs, nx, ny, nz)  52 
 53 
######################################################################## 54 
## Initializing Containers and Constants 55 
######################################################################## 56 
 57 
    chamber = {}          # Dictionary. Keys are nodes. Values are model time 58 
    parent sink = {}      # Dictionary. Keys are nodes. Values are parent sinks 59 
    pqedge = minpq()     # Priority queue 60 
    chamberorder = []      # List for chamberorder 61 
    sourcelist = []         # List for well trajectories 62 
    grav_fu = 32.174                 # Gravity in field units [ft/sec2] 63 
    densityConvF = 16.01846   # Multiply lbm/ft3 * Conversion factor to get [kg/m3] 64 
    TransmConvF = 1.127        # Conversion factor to get field units 65 
    GravityConvF = 0.21584*1e-3        # Conversion factor to get field units 66 
    decexp = 1.003                    # Deceleration Exponent. [1.003 is default. Dimensionless]  67 
                      68 
######################################################################## 69 
# User Inputs. 70 
######################################################################## 71 
    72 
    dens_bit = 1000                   # Bitumen density [kg/m3] at steam temperature 73 
    m = 4.1                                # Butler’s temperature-viscosity exponent. Common range  74 
    # is 3-5. See equation 3.5 75 
    visc = 7.31                           # Kinematic viscosity at steam temperature [cp] 76 
    PermFactor=0.25                 # Relative oil permeability [fraction] 77 
    maxtime = 3650                   # Steam-chamber modeling time [days] 78 
    preheattime = 120                # Time to establish communication between producer 79 

 # and injector well in days [120 days is default] 80 
     81 
######################################################################## 82 
## Initialization from the Source List 83 
######################################################################## 84 
     85 
    for i in source: 86 
         87 
        pqedge[i] = 0               # Initializing cells in source  88 
        parent_sink [i] = i        # Initializing the parent sink  89 
        sinks.add (i)                 # List of sinks is updated with well trajectory (source) 90 
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        sourcelist.append (i)    # Source as a list 91 
        set_sinks = sinks             # Sets are more efficient 92 
 93 
######################################################################## 94 
## While Priority Queue is not empty, do this loop 95 
######################################################################## 96 
    97 
    while pqedge: 98 
        node, cellTime = pqedge.popitem()         99 
        AbsTime = (cellTime**decexp)                100 
        chamber [node] = AbsTime                  101 
        chamberorder.append (node)                102 
     103 
        if AbsTime > maxtime:                     # Break loop if maxtime is reached 104 
            break             105 
        if node in set_sinks:                    106 
            temp_parentsink = node                                              107 
        else: 108 
            temp_parentsink = parent_sink[node] 109 
 110 
######################################################################## 111 
## Iterate the Neighbors 112 
######################################################################## 113 
 114 
        for neighbor in graph[node]:       115 
             116 
            if neighbor in chamber:  117 
                continue             118 
             119 
            if (neighbor in pqedge) and (parent_sink[neighbor] = = temp_parentsink):  120 
                continue 121 
 122 
######################################################################## 123 
## Rules for Oil Viscosity 124 
######################################################################## 125 
 126 
            if AbsTime < preheattime:          # Preheating time viscosity  127 
                visc= 3             128 
                 129 
            if neighbor in setunstplanes:       # Viscosity for unstimulated planes  130 
                visc= 500  131 
 132 
######################################################################## 133 
##  Travel Cell Time Calculations 134 
########################################################################   135 
                             136 
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            s_angl, _ = s_ang3D (temp_parentsink, neighbor, nx, ny, nz, xsiz, ysiz, zsiz)   137 
            alpha=(90-s_angl)           # Alpha is the sink angle 138 
            Harm_k = 139 
            (((graph[node][neighbor][0])*sin(radians(alpha))**2) + 140 
            ((graph[node][neighbor][1])*cos(radians(alpha))**2)) / 1000 141 
                         142 
            if alpha <= 10:              143 
                PotentGrad = 0.000001            # To avoid numerical instabilities 144 
            else: 145 
                PotentGrad = sin(radians(alpha))          146 
             147 
            Area_ft = AreaFlow (alpha, xsiz, ysiz, zsiz)            148 
            Qrate = 149 
            (TransmConvF*Area_ft*(Harm_k*PermFactor)* 150 
            (dens_bit/densityConvF)*GravityConvF*grav_fu*PotentGrad)/(visc*m) 151 
            new_rel_celltime = (graph[node][neighbor][2])/Qrate 152 
            new_abs_celltime = (new_rel_celltime) + (AbsTime) 153 
 154 
######################################################################## 155 
## Update Priority Queue, Parent Sink 156 
######################################################################## 157 
 158 
            if neighbor in pqedge: 159 
                 160 
                if new_abs_celltime < pqedge[neighbor]:                         161 
                    pqedge[neighbor] = new_abs_celltime 162 
                    parent_sink[neighbor] = temp_parentsink 163 
            else: 164 
                pqedge[neighbor] = new_abs_celltime 165 
                parent_sink[neighbor] = temp_parentsink 166 
                     167 
    return chamber, chamberorder, parent_sink 168 
 169 
************************************************************************ 170 
** End of program 171 
** *********************************************************************172 
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************************************************************************     1 
**def UnstimulatedidxsGraph (Graph, inj_welllocs): 2 
************************************************************************ 3 
######################################################################## 4 
## Program Description 5 
######################################################################## 6 
 7 
    Author: Enrique Gallardo 8 
    Date: February 2018 9 
    Use: Identify unstimulated cells in a SAGD process 10 
    Input:  11 
    Graph: Graph 12 
    inj_welllocs: Indexes of the injector well trajectory 13 
    Output:  14 
    unst_idxs: List with indexes of unstimulated cells  15 
     16 
######################################################################## 17 
 18 
    unst_idxs=[]                              19 
                               20 
    for loc in inj_welllocs: 21 
        if not Graph[loc]:                   22 
            unst_idxs.append(loc) 23 
             24 
    return unst_idxs 25 
 26 
************************************************************************ 27 
** End of Program 28 
** 29 
************************************************************************30 
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*********************************************************************** 1 
def Unstimulated_Planes (unst_idxs, nx, ny, nz): 2 
************************************************************************ 3 
######################################################################## 4 
## Program Description 5 
######################################################################## 6 
 7 
    Author: Enrique Gallardo 8 
    Date: February 2018 9 
    Use: Identify unstimulated planes in a SAGD process 10 
    Input:  11 
    unst_idxs: It is the output of the program UnstimulatedidxsGraph 12 
    nx, ny, nz: Cells in the grid in x, y, z directions, respectively. 13 
    Output:  14 
    dict_unstplanes: Dictionary keyed with unst_idxs and values is a 15 
    list with the unstimulated planes 16 
    set_unstplanes: Set with indexes of unstimulated cells 17 
 18 
######################################################################## 19 
     20 
    dict_unstplanes = {}           # Dictionary 21 
    set_unstplanes =  set()        # Unstimulated plane set 22 
 23 
    for loc in unst_idxs:  24 
        temp_idxs = [loc + (nx*i) for i in range (ny*(nz))]   25 
        dict_unstplanes[loc] = temp_idxs       26 
        set_unstplanes.update (temp_idxs)           27 
         28 
    return dict_unstplanes, set_unstplanes 29 
 30 
************************************************************************ 31 
** End of Program 32 
** *********************************************************************33 
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************************************************************************ 1 
**def s_ang3D (loc1,loc2,nx,ny,nz,xsiz,ysiz,zsiz): 2 
************************************************************************ 3 
######################################################################## 4 
## Program Description 5 
####################################################################### 6 
 7 
    Author: Enrique Gallardo 8 
    Date: June 2017 9 
    Use:  Calculate the angle between two cells. 10 
    Input:  11 
    loc1, loc2: Two locations using 0-python indexes 12 
    nx, ny, nz: Cells in the grid in x, y, z directions, respectively. 13 
    xsiz, ysiz, zsiz: Cell sizes in x, y, z directions, respectively. 14 
    Output: 15 
    s_ang: Angle between loc1 and loc2 16 
    dist: Distance between loc1 and loc 2 in meters 17 
 18 
########################################################################    19 
    20 
   vec = np. asarray (gslibindx(loc2,nx,ny,nz)) - np.asarray (gslibindx (loc1,nx,ny,nz)) 21 
     22 
    dist= np.linalg.norm (vec*[xsiz, ysiz, zsiz]) 23 
     24 
    if dist==0:                     # To avoid an error message of dividing by zero 25 
        s_ang = None                 26 
         27 
    else: 28 
     29 
        unitvec = (vec*[xsiz, ysiz, zsiz])/np.linalg.norm(vec*[xsiz, ysiz, zsiz]) 30 
      31 
        s_ang = degrees (acos (unitvec [2])) 32 
     33 
    return s_ang, dist 34 
 35 
************************************************************************ 36 
** End of Program 37 
** *********************************************************************38 
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************************************************************************1 
**def gslibindx (loc, nx, ny, nz): 2 
************************************************************************ 3 
######################################################################## 4 
## Program Description 5 
######################################################################## 6 
 7 
    Author: Enrique Gallardo 8 
    Date: June 2017 9 
    Use:  It gets a 0-index Python and return 1-gslib indexes. Needed by other subroutines 10 
    Input: 11 
    loc: Location index in 0-index Python order 12 
    nx, ny, nz: Cells in the grid in x, y, z directions, respectively 13 
    Output: 14 
    (ix, iy, iz): Tuple with gslib indexes ix, iy, iz, respectively 15 
 16 
########################################################################      17 
 18 
    iz = 1+int(loc/(nx*ny)) 19 
    iy = 1+int((loc - (iz-1)*nx*ny)/nx)                       20 
    ix = ((loc+1) - (iz-1)*(nx*ny)- ((iy-1)*nx)) 21 
     22 
    return (ix, iy, iz) 23 
 24 
************************************************************************ 25 
** End of Program 26 
** *********************************************************************27 
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************************************************************************ 1 
**def AreaFlow (alpha, dx, dy, dz): 2 
************************************************************************ 3 
######################################################################## 4 
## Program Description 5 
######################################################################## 6 
 7 
    Author: Enrique Gallardo 8 
    Date: May 2018 9 
    Use: Transversal area 10 
    Input: 11 
    alpha: Complement of sink angle to 90°. 12 
    dx, dy, dz: Cell sizes in x, y, z directions, respectively. In meters. 13 
    Output/Return: 14 
    areaflow: Transversal area in ft2 15 
 16 
########################################################################  17 
 18 
    gamma=degrees(atan(dz/dy)) 19 
     20 
    if alpha <= gamma: 21 
        areaflow=dz*cos(radians(alpha)) * dx*10.763 22 
    else: 23 
        areaflow=dy*sin(radians(alpha)) * dx*10.763 24 
         25 
    return areaflow 26 
 27 
************************************************************************ 28 
** End of Program 29 
** *********************************************************************30 
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A.3.3 Post-processing Module Programs 

 

************************************************************************1 
**def GridVTK (chamberorder, chambertime, nx, ny, nz): 2 
************************************************************************ 3 
######################################################################## 4 
## Program Description 5 
######################################################################## 6 
 7 
    Author: Enrique Gallardo 8 
    Date: May 2018 9 
    Use: Chambertime plotting function 10 
    Input: 11 
    chamberorder: NumPy array with chamberorder 12 
    chambertime: NumPy dictionary with chambertime 13 
    nx, ny, nz: Grid cells in x, y, z directions, respectively. 14 
    Output/Return: 15 
    Grid with chambertime in gslib format. 16 
 17 
######################################################################## 18 
 19 
    grid = [0] *nx*ny*nz      20 
    length=int (len (chamberorder))       21 
     22 
    for k in chamberorder [: length]:         23 
        temporal = chambertime [k] 24 
        grid[k] = temporal 25 
         26 
    return grid 27 
 28 
************************************************************************ 29 
** End of Program 30 
** *********************************************************************31 
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************************************************************************1 
**def VTKPlot (grdstr, propertyarray, propertyname, outputname): 2 
************************************************************************ 3 
######################################################################## 4 
## Program Description 5 
######################################################################## 6 
 7 
    Author: Enrique Gallardo 8 
    Date: May 2018 9 
    Use: VTK plotting function. Compatible with latest pygeostat version 10 
    Input: 11 
    grdstr: grid-string for pygeostat 12 
    propertyarray: NumPy array with porosity, permeability, rock-type, etc. 13 
    propertyname: 'porosity', ‘permeability’, ‘rock-type’, etc. 14 
    outputname: 'porosity.vtk', ‘permeability.vtk’, ‘rock-type.vtk’, etc. 15 
    Output: 16 
    vtk file: To visualize the property in third-party software 17 
 18 
######################################################################## 19 
 20 
    griddef = gs.GridDef (grdstr) 21 
    ColName=[propertyname]     22 
    dframe = pd.DataFrame (propertyarray, columns=ColName) 23 
    datfl = gs.DataFile (data=dframe, griddef=griddef) 24 
    datfl.writefile (outputname) 25 
    26 
*********************************************************************** 27 
** End of Program 28 
*********************************************************************** 29 
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Appendix B 

 

Insights about the relationship between FSD, SSD and the utility function were drawn from 

Equation 4.4. Appendix B derives this equation from the expected utility definition, as 

given in Levy (2016). 

 

The expected utility of the payoff 𝑥 with 𝑎 ≤ 𝑥 ≤ 𝑏 is: 

 

𝐸[𝑢(𝑥)] ≡ ∫ 𝑓(𝑥) 𝑢(𝑥)𝑑𝑥 
𝑏

𝑎

 (B-1) 

 

The difference in expected utilities between two projects F and G can be written as: 

 

∆ ≡ 𝐸𝐹[𝑢(𝑥)] - 𝐸𝐺[𝑢(𝑥)] =  ∫ 𝑓(𝑥) 𝑢(𝑥)𝑑𝑥 
𝑏

𝑎

− ∫ 𝑔(𝑥) 𝑢(𝑥)𝑑𝑥 
𝑏

𝑎

 (B-2) 

 

Aggregating terms on the right side: 

 

∆≡ ∫ [𝑓(𝑥) − 𝑔(𝑥)] 𝑢(𝑥)𝑑𝑥 
𝑏

𝑎

 (B-3) 

 

Knowing than the integral of 𝑓(𝑥) is 𝐹(𝑥), that is, 

 

𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑥 
𝑥

𝑎

 (B-4) 

 

Equation B-3 is integrated by parts to obtain: 
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∆= [𝐹(𝑥) − 𝐺(𝑥)]𝑢(𝑥)|
𝑏

𝑎
− ∫ [𝐹(𝑥) − 𝐺(𝑥)] 𝑢′(𝑥)𝑑𝑥 

𝑏

𝑎

 (B-5) 

 

The first term of the right-hand reduced to zero because for 𝑥 = 𝑏 , 𝐹(𝑏) − 𝐺(𝑏) = 0 and 

for 𝑥 = 𝑎 , 𝐹(𝑎) − 𝐺(𝑎) = 0. Then, ∆ results in: 

 

∆= 𝐸𝐹[𝑢(𝑥)] - 𝐸𝐺[𝑢(𝑥)] =  ∫ [𝐺(𝑥) − 𝐹(𝑥)] 𝑢′(𝑥)𝑑𝑥 
𝑏

𝑎

 (B-6) 

 


