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Abstract

Classical mass action kinetics are generally so assumed to occur that its basic
tenets are rarely questioned. However, elementary chemical kinetics are quite differ-
ent when reactions are dimensionally restricted. The compact Brownian motion of
the drugs leads to anomalous diffusion and to atypical rate laws. Under these condi-
tions, the conventional rate law exhibits a characteristic reduction of the rate constant
with time. These anomalous macroscopic rate laws are a manifestation of the

entropic self-ordering of reacting molecules on a mesoscopic scale.

This report is an attempt to describe the pharmacokinetics of the drug mibe-
fradil utilizing these physical arguments. A physiologically motivated model is
designed with the goal of improving the accuracy of the data descriptions and to
provide mechanistic insights into the pharmacokinetics of mibefradil. The heteroge-
nous interpretation of drug kinetics within the liver is adopted by the inclusion of a
time-dependent rate coefficient, while the liver itself was argued to be fractal like.
As an outcome of the implementation of the model, an experimental value for the
spectral dimension of a dog liver is produced. Along the way, the basic principles of
pharmacokinetics, and scientific modeling, philosophy, and statistics are

contemplated.
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() angle brackets are reserved to indicate reference numbers in the

body of text.

@) the use of round brackets is limited to indicate grouping of terms:
5(¢-1) = s*(¢-1), as usual parentheses within regular sentences,
to indicate an open interval, or cartesian coordinates.

(1 the use of square brackets are reserved to enclose variables of functions,
such that, /{7] denotes a function f of the variable ¢, and to denote a matrix
or vector, exempli gratia, ¥ = [v, v5, v;]. But, could be used to indicate
a closed interval.

i} double square brackets are used in the context of chemical equations to
indicate the concentration of a chemical, exempli gratia {S] indicates the
concentration of a substrate S.

Within the body text of the thesis, all mathematical variables are italicized for recogni
tion within sentences; within equations, variables are written plain for uncomplicated
reading. Equations are numbered only if they are directly refered to later in the body
of text.



Forward Pharmacokinetics in Fractal Liver 1

Chapter One

Forward

Pharmacokinetics is the quantitative study of the fate of a drug in the body
through time as the drug undergoes absorption, distribution, metabolism, and excre-
tion. The term "Pharmacokinetics” was coined in 1953, by Professor Dost in Ger-
many - a pediatrician (1) but the idea had been around for a long time before that.
For example, a Swedish scientist, Widmark, published a paper where he introduced
the idea now considered as the volume of distribution and noted that the elimination
of ethanol from the blood followed an exponential law in its final phase, back in
1919 (2). Since then, Pharmacokinetics has maintained an emphasis on clinical
applications, resulting in improvements in drug utilization for patients, and has
firmly established a role within the huge science and industry of pharmacology
concerning the design and development of new drugs and the reassessment of estab-
lished drugs.

Traditionally, Pharmacokineticists have concered themselves more with the
integration of aspects of physiology, pharmacology, biochemistry, and physiochemis-
try that influence drugs and less with biophysics. This was proper considering the
obvious importance and complications of the biological and chemical connections
with pharmacokinetics. But as the boundaries of pharmacokinetic research, assisted
by technological improvements in analytical chemistry, are edged towards the founda-
tional facets of drug deportment, questions of a more physical nature arise necessar-
ily. This, in tum, provides an opportunity for those with a physical science back-
ground and with the interest to contemplate systems unlike most traditionally studied
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under the rubric, Physics, to contribute. This thesis represents the author’s attempts
in this regard: to extend outside of physics, and even just the familiar comfort of the

classroom.

Yet, true to my past, I did not escape from presenting what is essentially a
Physics paper. The topic of pharmacokinetics remains mostly as the environment
within which a hopefully coherently developed course of concepts were cultivated
and presented. There are some redundancies of ideas inside the thesis, but they are
deliberate attempts to illustrate an evolution of thought and a progression of complica-
tions that require occasional revisiting of issues. The arrangement of the ideas
advanced is intended to: familiarize a reader with a physics background to a pharma-
cokinetics setting, introduce the reader to the biological model system' studied, and
then accrue more knowledge and statistical tools within the thesis to properly build a
theoretical model of the biological model system as a foundation upon which conclu-

sions can be made.

! There are two definitions using the term "model® listed in the glossary at the end of the thesis - one
with specific biological implications, the other with general conceptual implications. Let the reader's
attention also be drawn to the word "linear” which is hereafter used in three different ways. Note that
the glossary is comprehensive and could be useful for answering many questions of vocabulary

throughout the report.
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Chapter One

A Few Pharmacokinetic
Forethoughts for Physicists

An Overture of Basic
Pharmacokinetic Concepts

Before turning to those moral and mental aspects of the matter which present the
greatest difficulties, let the inquirer begin by mastering more elementary problems.
-Sherlock Holmes, 4 Study in Scarlet
Sir Arthur Conan Doyle

Following administration of a given dose of pharmacologically active drug to
human, dog, or some other biological model system, concentrations of that drug
appear in various body tissues, and ultimately a physiologic effect is produced.
Because of the relationship between the intensity and duration of action of a drug
and the concentration of the drug present, plasma concentrations of drug are usually
evaluated over time in Pharmacokinetic studies. A variety of descriptive pharmacoki-
netic parameters characterize the behavior of the drug, such as clearance, bioavailabil-
ity, absorption rate, volume of distribution, etc. - only a few of which will be briefly
explained (3). For an understanding of this thesis, it is most important to note that
estimates of these parameters are facilitated by an accurate portrayal of the plasma
concentration-time data by mathematical techniques that generate a concentration

time-course curve, Cir} (4) (see Figure 1.1).
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Time (min)
Figure 1.1: A didactic diagram introducing indicative pharmacokinetic
concentration time course data, (1;,C;),i=1,2, ..., n, fit by a function, Cl.

Plasma concentration data following intravenous injection provides partial
characterization of drug disposition properties. Accurate assessment of volumes of
distribution (V) and systemic clearance (CL) can best be attained with intravenous
data. The volume of distribution is the apparent volume necessary to account for the
total amount of drug in the body, Xbody, If it were present throughout the body at the
same concentration found in the plasma: ¥, = Xbodv/Cplasma - Factors which tend to
keep the drug in the plasma or increase Cplasma » such as escalated plasma protein
binding, reduce the volume of distribution; while factors which decrease ¢ plasma -
such as increased tissue binding or lipid solubility, increase the volume of distribu-
tion (sece Appendix 4). The minimum value of the volume of distribution is the
blood plasma volume (Vpiasma). If the drug instantaneously and homogeneously
equilibrated itself throughout the body, then ¥, = Dose/Cy, where C, o is the initial

concentration immediately after intravenous bolus injection before any drug elimina-

tion. When the volume of distribution is time dependent, it may be estimated as

Dose - AUC[
Vdlt) = ————— | AUCI = f Clcidr,
Crtl -AUCH, ! A
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]

where AUCf;' =AUC is unimaginatively called the Area Under the Curve. The
clearance can be imagined as the intrinsic ability of the body and its organs of elimi-
nation to remove drug from the plasma, expressed as a volume per time. The total
amount of drug removed depends on the plasma concentration of drug as well as the
clearance. Consider a biological model system at steady state when the drug plasma
concentration, Cgeady siae, is stable, such that the rate of sustained intravenous drug
administration, R;, , is equal to the rate of drug elimination. Clearance can then be

measured as a proportionality constant at steady state (5):
Riv. = Relimination = CL - Cgteady state»

where systemic clearance is equal to the sum of all organ clearance processes:
CL = CLnepatic + CLrenal + CLogher -

Plasma concentration data following oral doses of the drug in solution and
common dosage forms provides additional pharmacokinetic parameters related to
absorption and intrinsic clearance. These data permit assessment of bioavailability
(F) and of the mean absorption time (MAT). Bioavailability refers to the fraction of
an oral dose that actually reaches the systemic circulation of the biological model
system. Since the availability of an intravenous dose is usually unity, bioavailability
can be estimated by comparison, adjusted for differences in the oral and intravenous

doses, as follows (6):

F = AUCqca1 / Doal
AUCi.\'. / Di.\'. .

Clinical pharmacokinetics is an applied health science focused primarily on the
pharmacokinetic aspects of the individualized optimization of drug therapy for
patients; an important study since there can be appreciable interindividual differ-
ences in pharmacodynamics (the study of the effects) of a drug (7). Pharmacokinet-

ics proper is a biological science concerned with the characterization and mathemati-
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cal description of the absorption, distribution, metabolism, and excretion of drugs
and their metabolites through time. Especially when the research is focalized on the
investigation of drug elimination mechanisms or equilibrium distribution mecha-

nisms, pharmacokinetics may be quite theoretical.

The vulnerability of Pharmacokinetics to analysis and cogitation using the
principals and approaches of physics originates from its dependence on drug metabo-
lism, which is a function of the reaction kinetics, which is a function of reactant
diffusion, which is part of the general problem of transport physics (8). The meth-
ods used to describe transport in general physical systems may be useful in the
quantification of the progress of a drug throughout the body or the invasion of the
drug in an isolated tissue. This topic now partially fits within the expanding scope of
physics that includes more complex biophysical phenomena. Physicists of the past
tended to focus on simpler archetypical problems not only for the love of fundamen-
tals but due to the practical simplicity of such problems and their susceptibility to
deep understanding. Whereas, in relatively recent times, a better understanding of
complex, often mathematically nonlinear, systems coupled with the employment of
modern computers has allowed Physicists to consider solving complicated secondary
problems with their particular physical approach. This has been encouraged by
scientists in other fields, like the Biological sciences, who in a sense have met the
physicists halfway by extending their fields of study towards a more fundamental
physical understanding, thus providing convergent interests whereby a multidisci-

plinary thesis such as this may be made.

A Reminder of Classical Kinetics

When a bimolecular reaction proceeds in solution, two effects conspire to

determine how brisk the reaction will be. Firstly, the intrinsic velocity is determined
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by the detailed molecular mechanism of the reaction and involves a knowledge of
such things outside the scope of the thesis as the distribution of electrons as they
rearrange during the reaction. Secondly, the statistical probability accounting for the
existence of adjacent reactive pairs must be considered. In the language of statistical
mechanics this probability factor is the pair distribution function for the reactive
molecules. Generally, in an assemblage of particles, each particle moves about in a
random way. The particles spread out from their nearest neighbors as a result of this
irregular individual motion. When this microscopic irregular movement results in
some macroscopic motion of the group, it is considered a diffusion process. When
there is a bulk flow drift juxtaposed with the diffusion process, it is considered a
biased diffusion process.

Consider the simple bimolecular annihilation chemical reaction

E+C—E, (1)

where £ may be considered a sink or an unsaturable trap, and C a species of reactant
or its concentration, [C'] & C. The traditionally used Law of Mass Action says that
the rate of a homogeneous reaction is proportional to the concentrations of each of

the reactants, such that

dC dC
S0 <€ N ¢ <E
C
> 2% = kE-C= —K[EIC

where £ is the second order rate constant of proportionaiity. From the turn of the last
century, Smoluchowski has been widely regarded to have showed that for diffusion-
limited homogeneous dilute reactions in three dimensions, the reaction rate is also

proportional to the reactant diffusion rates: koc D (9, 10, 11). Thus establishing that
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diffusion is the transport process in solution that determines the encounter between
the reacting pair, where D is the effective mutual diffusion coefficient.

Contemplate now diffusion in three dimensions and the exemplary differential
mass conservation equation (equation of continuity)

dC
— +VI=r11C1,
dt + [C" tl’

where C is the reactant concentration, 7 is a general flux transport and let the source
term, fIC,7,1=0. If Fick's Law is used to describe the flux in terms of diffusion

along a concentration gradient (12)

Jc -VC = 1=-DVC

’

then the conservation equation becomes

‘fi—f ~-p¥cC=o0. (1.2)
ICHirl = Qi) ¢ )
\,.\' _ . - - - - - \‘\/
T T AN N
s N /l qm' '] = CD

r N

\‘ AN
i
o / 7
C

Figure 1.2: A notional diagram of the microscopic conditions nearby an single
annihilating trap. Whenever movements caused by diffusion bring two distinct
species together closer than R, annihilation of C occurs.
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Applying the conservation equation to the bimolecular annihilation reaction
(1.1), as shown in Figure 1.2, to the situation of an isolated sink, £, within an endless
sea of reactant, C, the following boundary conditions may be proposed:

(Ir=R.1} =0, Clr-w,q)=C,, where D=Dg +Dc is the effective mutual diffusion
coefficient, and R is the radial distance of closest approach of a molecule of reactant
to the trap before annihilation. The boundary conditions and equation (1.2) are of
the form of a homogeneous spherical heat equation and may be solved for using
methods of separation of variables. For the steady state limit - o, the remaining

radial solution is
R
Csslrl = C, (1 - T)'

Now at steady state, the diffusion flux at the distance of closest approach is propor-
tional to the observed reaction rate, kC,, (remember that £ is taken to be unity) so
that
kC, = @I-da = -D#VC-dﬁ -4 dSs | +47RDC,
dr | g
= k=4nRD.

The significance of this derivation of classical mass-action kinetics for diffuse
reactants in three dimensions is that a direct causal link is affixed between the macro-
scopic measurable quantities of concentration and reaction constants with the micro-
scopic quantities of the size of the individual molecules and the diffusion of the
molecules. Ergo, possessing a different understanding of the physics of diffusion

allows for alternative macroscopic descriptions of reaction rates.
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A Brief Explanation of Michaelis-Menten Kinetics

An aspect of life is the vital ability to induce, maintain, and manage multifari-
ous chemical reactions that normally do not occur with significant rates at the temper-
atures and concentrations found in most environments. Subsequently, a preponder-
ance of the metabolic reactions studied in Pharmacokinetics are enzyme-catalyzed
reactions. The minimal chemical equation to describe a simple, one-substrate, one-
product, reaction catalyzed by an enzyme is

k
E + C ——= EC_X

»E + P,

where E denotes the conserved enzyme, C is the single substrate, P is the metabolite
product of the reaction, k; are the rate constants, and it is assumed that the reverse
reaction between £ and P is negligible. To derive a relatively simple expression for
the reaction rate of the substrate, not in terms of the elusive or difficult to measure
variables of

[£C] and k;, consider the differential equation for the rate of change of the complex
EC, such that

T = kl E’C—(k_|+k2)EC, (13)

where now, and for the rest of this section, £, C, EC are concentrations of enzyme,
drug substrate, and enzyme-drug complex respectively, exempli gratia [EC] - EC.

Accepting the Briggs-Haldane assumption, that the [EC] quickly builds, as the
free enzyme is bound with the substrate, to a near constant value for most of the
reaction time, a steady state, when dEC/dt =0, is achieved such that,

E«C (k) +ky) _ _
e = 5 = constant = Ky, (1.4)
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from (1.3), where K4 is the Michaelis-Menten constant. Since k_, and k; are first-
order rate constants and k; is a second-order rate constant, the Michaelis-Menten
constant has the units of concentration.

The following differential equation describes the rate of change of the substrate
C that is of most interest:

%. = k1 EC - k) E«C = -k EC, (1.5)

by substitution from (1.3) at steady state.
Throughout the reaction, it is assumed that the total amount of the biological
catalyst is conserved in the forms of bound and free enzyme, such that

Fia = EC + E

C 1.6
= i = EC + KM (1.6)

Km
= EC(I + T)
by substitution from equation (1.4).
In the presence of high drug substrate concentrations, the enzyme will be

saturated or otherwise bound with the abundant substrate, such that Eyxal = EC, and

the reaction will occur at a maximum zero-order rate of

. dC .
(l:l_{nm? = lim ~k; EC ~ —k; Bigtal = Vimax (1.7)

by substitution into (1.5). Therefore, generally

_d_g = —k, EC = -k Eoxal _ Vmx _ Vmax C
dt 2 2+ Re)y (a+%)  Km+C (1.8)

by substitution from equations (1.6) and (1.7), is the Michaelis-Menten equation that
describes the rate of change of the concentration of a single drug substrate undergo-
ing single enzyme catalysis. Unfortunately, biological reality ensures that most
reactions entail complicating inhibitions, multiple substrates, multiple enzyme, and
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other reaction mechanisms, though the Michaelis-Menten descniption is still often
used as an approximation (13). These complex reactions require extensive in vitro

kinetic studies to accurately estimate all the appropriate kinetic constants.

A Review of Classical Pharmacokinetic Models

Use the term myth for any theory that has been accepted by a society or some
significant segment thereof primarily on the basis of the theory's attractiveness.
-William S. Hatcher
In an attempt to interpret and quantify pharmacokinetic data, a commonly used
model scheme, now termed "classical”, was established. The biological model
system under study is described by one, two, or more kinetically distinguishable
interacting compartments. Each compartment represents a space of the body that is
assumed to be kinetically distinct and homogeneously distributed with the drug (2).
The movement of drug between the compartments and the elimination of drug are
assumed to follow the law of mass action to the first-order with time independent
rate constants, &; ;. Their mammillary structure are intended to correspond with
biological model systems composed of organ arrangements that receive blood circula-
tion in parallel, as in humans. Source terms, R, are usually given as an initial condi-
tion for an effectively instantaneous bolus injection, as a zero-order (constant rate)
Lv. infusion, or a first-order absorption of the drug from an oral dose (see Figure
1.3).  Ordinarily, measurements of drug plasma concentration are taken from the
"central compartment” which is assumed to contain most or all of the blood (6, 14).
The basis for classical multicompartment exposition in Pharmacokinetics may be
abstractly summarized as the conceptual model of stochastic transitions between
states (spatial and chemical) of drug molecules behaving independently and with
constant transition probability densities (15).
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k2;
R X| = Massl
Central Compartment
Sources k
12
Sinks

Figure 1.3: A schematic of a general 2-compartment model where the sources enter,
and measurements are taken from, the central compartment. The ith-compartment is
considered open if it looses drug to the environment, kg; >0 , otherwise it is closed,
ko; =0 . A multicompartmental model is considered mammillary if the secondary
compartments are connected to the central compartment in a parallel arrangement,
and is considered catenary if the secondary compartments are connected in a series
alignment.

The mass balance equations for a multicompartmental system with m compart-

ments are first-order differential equations that can take the vector-matrix form

dX
7t—=-KX+E, (1.9)
C=v1!Yx

where X is a column vector of the m independent state variables (mass or concentra-
tion) of the system, K is a constant matrix composed of the first-order rate constants,
ki, such that, if the model is open (see F igure 1.3) then K is non singular and invert-
ible (2), R is the column vector describing the sources, C is the vector of compart-
ment concentrations, and V is the distribution volume matrix. Solutions to this
differential system are realized by standard matrix methods to be sums of exponen-
tials with the form for each compartment of
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c;lt} = iAi,- e~ (1.10)
i=0

where 4,; and a;; are both functions of the first-order rate constants, fik; ], and m is

the number of compartments in the model. The form of the solution is the key rea-

son that multicompartmental modeling is so popular (16). The model parameters ki

and V; may be found directly from these solutions while the decaying exponential

functions serve as a power basis set for describing the normally declining concentra-

tion time-course Pharmacokinetic data.

Classical mammillary multicompartmental models possess the properties of
constant clearance, linearity, time invariance, and a terminal monoexponential phase.
Linearity and time invariance of this model is due to the linearity and time invari-
ance of the differential operator, d/dt, and the constant matrix K. Similar to equation
(1.7), the systemic clearance, CLg, is the extraction rate (rate of elimination),
dXgl/dt, divided by the plasma concentration of drug, such that for an i.v. bolus dose,

_dXe/dt _ 4% Xe[l  0-X,  Dose - comst
Cru [Cudt  ["Cudt  AUC AUC

Finally, the terminal monoexponetial phase occurs, since beyond some time, 1, all

but one exponential term, say i=m, will be approximately zero, such that
C;lt} zAmJ'ea"'t Vi>t,.

Normally, a physical relevance while choosing the structure or form of the
compartmentalization is attempted by the use of model state variables and parame-
ters that have direct analogies in the biological model system. Due to experimental
constraints and a limited physiological knowledge base, the required abstractions
constrain the ultimate complexity and form of a compartmental model, such that, the
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actual correlation of pharmacokinetic compartments with real anatomical tissues or
organs is rather complex and, at times, impossible.

It is often said in the recent pharmacokinetic literature, that the compartmental
modelling view of the body as relatively few, kinetically homogeneous compart-
ments is unrealistic and difficult to justify from physiological reality (4, 17). That
the model structure and parameter values may have only an indirect relationship to
real physiological structures and quantities. Yet despite efforts to purge this appar-
ently hackneyed technique from Pharmacokinetics it remains in most modern books
I have read on the subject (5, 7, 14) and some recent articles (18, 19). The multicom-
partmental model concept may have resilience because many of the same concerns,
or other apprehensions of equivalent significance, are as applicable to alternative

types of modeling in Pharmacokinetics.

A Synopsis of Physiologically Based
PharmacoKinetic (PBPK) Models

I have yet to see any problem, however complicated, which, when you looked at
it the right way, did not become still more complicated.
-Paul Anderson

Some Theoretical Context

PBPK models generally envisage the organism as a network of compartments
representing individual organs or tissue groups interconnected by the arterial and
venous blood (sec Figure 1.4). They are motivated by the belief that physiologically
based models have greater application and relevance, particularly those applied to
hepatically eliminated drugs (20). A typical PBPK model can involve twenty or
more physiological, physicochemical, and biochemical parameters, each of which is
subject to some extent of error (21). Yet, the aim of a PBPK model is to accurately
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and realistically describe the Pharmacokinetics of a xenobiotic (a drug for our pur-
poses) using an accurate and detailed biologically motivated internal structure (22).
Uptake, distribution, metabolism, and excretion in a PBPK model are described in
terms of quantitative interrelationships among certain physiological parameters such
as tissue volumes and blood flow rates, physicochemical parameters such as partition
coefficients, and biochemical parameters such as Michaelis-Menten constants.
Exposure —3

Target Organ Sub-Compartment
A1 Vascular | ( °Proteinor
— *{ Membrane Binding
Dose Interstitial _ _
| * Mctabolic Reactions
- BE Cellular |. Network

Figure 1.4: An abstract representation of a Physiologically-Based Pharmacokinetic
(PBPK) Model indicating: a structural interrelationship between organs and tissue
groupings, a possible internal arrangement within an organ, and an indication of
some biochemical and physicochemical concerns within an organ or a part thereof.

It is clear that physiological and physicochemical parameters are subject to
certain constraints. For example, the total volume of all body tissues must equal the
total body volume, and the sum of the blood flow rates in different tissue groups
must equal the rate of cardiac output. Most of the physiological quantities are esti-
mated prior to modeling by in vitro experiments and are subject to a certain degree
of uncertainty, depending on the precision and accuracy of the methods used for
their determination. As the complexity of the PBPK model increases, the impact of
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the various assumptions, constraints, and parameter uncertainties on the predictions
and results of the data becomes inscrutable without careful sensitivity analysis (21,
23).

Absorption of the drug from outside the model can occur via several routes of
entry: ingestion, which involves the digestive system, inhalation, which involves the
respiratory system, dermal absorption, which involves the cutaneous structure, or i.v.
injection. Once absorbed, the drug is distributed throughout the body to various
organs and tissues. A routine assumption regarding the transport of the drug
between the various defined compartments, is that movement is constrained to be
limited within the blood (24).

Absorption or transport into or out of a particular organ or group of tissues is
described by a mass balance around that compartment (see Figure 1.5). Any tissue
diffusion within the compartment could be illustrated by either a lumped-parameter
or a distributed-parameter model. The lumped-parameter approach assumes that the
concentration of drug within a compartment is homogeneous and that the physical
vanables describing the transport processes in the compartment are only time depen-
dent. This approach would yield a system of ordinary differential equations (ODEs)
with initial conditions required to describe the data. The distributed-parameter
approach assumes that the physical processes change both spatially and temporally,
thereby yielding a system of partial differential equations, such that both the bound-

ary and initial conditions are needed to solve for the solution.
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C —> C C E = mass accumulating in organ per unit volume
in out dt

j - drug flow density

dC fc] = rate of drug climination density in the ssue
= Jm - .'Ol.lt - r[C] Cin * Cou generally

dt

Figure 1.5: A general mass balance equation for a lumped-parameter compartment.

Most of the physiological based pharmacokinetic models published assume
that all of the chemical delivered by the flow of blood rapidly equilibrates and is
taken up by the various tissues under the control of a "partition coefficient” (Py =
Cj/Ci ot P = C/Cou). This physicochemical parameter is an attempt to describe
the different equilibrium concentrations of a drug within two compartments of a
model that are in contact. Another issue is that of drug binding to the proteins in
blood or in membranes, since it is often assumed that only the fraction of drug in the
circulating blood which is free or unbound in the plasma is available for transport,
metabolism, or excretion (6). When partition or binding occurs within any of the
compartments, the mass balance ought to include the effects of the partition coeffi-
cient and any linear or non-linear binding constant, in the latter case, to account for

both the free and bound fractions of drug.

Elimination of the drug can occur in various tissues via several processes, but
the two most important are by enzymatic metabolism in the liver and by first order
clearance in the kidney. Enzymatic mechanisms are often complex, resulting in
nonlinear kinetic equations. Consequently, their incorporation into PBPK models is
usually limited to the reduction of these equations into the Michaclis-Menten form,
with apparent Vpey and K, usually fitted from in vitro empirical measurements
(24).
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Several levels of simplification of a PBPK model are possible and are often
used depending on the availability of the data. To reduce the total number of compart
ments, tissues with similar characteristics, such as vascular perfusion, can be
grouped together. Within a compartment, the interplay between blood flow, mem-
brane transport, and binding describes the movement of the drug between the subcom-
partments. Assumptions regarding the rate limiting step in these processes lead to a
simplification of the description of the organs and the resulting mass balance equa-
tions (see Figure 1.6). The resulting PBPK model is then the simplest possible one
which would describe the physiological processes of interest.

Capillary-limited 3-Subcompartments Flow-Limited
Q [Vascutar Q
| vascutar R c.v. > Y Q
C, s C.V, C. Co —e'—CT- C. G C v C
) Extravascular '\ Interstitial l-'i 'e P
- c Ccliular
=
7 .
.. = Subscripts:
Membrane-Limited ?l;‘ Q: plasma flow rate p: plasmla
& Extracellular _Q> 5 C: drug concentration :/lr:tl:fsl:l:;l
& % &% |c. §_ V: tissue volume c: cellular
Cellular j: drug flow density cv: extravascular
i G \ T~ ec: extracellular

Figure 1.6: An illustration of the possible internal structures of a compartment
depending on the speculated rate limiting transport process in the subcompartments.
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The Mathematical Framework
for a Flow-Limited Lumped-Parameter PBPK Model

PBPK models are typically expressed mathematically with a system of first
order differential equations (90), as shown by the following heuristic example. Let
C; represent the concentration of chemical in the ith compartment. The rate of
change of concentration of drug in each non-eliminating compartment is described
mathematically as

dC;,

_G
dt \'A

=) (1.11)

(Ca

for i representing the various tissues. Here Oi, Vi, and P; are blood flows, tissue
volumes, and partition coefficients which indicate the relative solubility of a circulat-
ing drug in a specific tissue, for the ith compartment, respectively. Cj, is the concen-
tration of the blood entering the compartment. The rate of change in the concentra-
tion of the drug in an eliminating or metabolizing organ is

d C; ; C; 1 dX;

ﬁz%(m—l’—:)—v’f#, (1.12)
where X; is the amount of drug eliminated or metabolized in the tissue. The rate of
metabolism is typically given by the Michaelis-Menten equation govemning enzy-
matic reactions

dXj  Vmax;C;/P

dt K; +C;/P;’

(1.13)

where Vpax j and K; are the maximum velocity and the Michaelis-Menten constant

for the metabolizing organ.

The PBPK model should contain 2 minimum number of adjustable parameters,
to reduce data requirements and facilitate the use of the model in a predictive fashion
(25). But a difficulty concerning physiologic pharmacokinetic models, somewhat
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reducing their value, occurs because of the inordinate number of assumptions which
usually must be built into the model (4). All the physiological parameters such as
the blood flow rate, tissue volume, binding terms, and kinetic terms need to be deter-
mined from physiological or in vitro experiments or taken from the literature.
Another major obstacle is that the model structure is most frequently must be
inferred from input-output data that are predominantly functional in nature. Unfortu-
nately, the functional behavior of biological systems generally bears no simple
relationships to these structural elements (26). Nevertheless, it is an attempt of this
thesis to improve the Pharmacokinetic analysis of Mibefradil based on physical
arguments. Once the final form of the model is determined and all parameter values
are specified, the coupled ordinary, and sometimes nonlinear first-order differential
equations which describe the mass balance of the system (1.11), (1.12), and (1.13)
need to be solved, usually numerically, to simulate the real data (27).

A Note on Noncompartmental Analysis

For the purposes of this thesis, the general term noncompartmental modelling
is used to broadly encompass, what have been called in the pharmacokinetic litera-
ture, "model-independent methods”, "system analysis”, or "the system approach".
These methods are characterized by the attempt to describe the pharmacokinetic
system or some response of the system with fewer restrictive assumptions than
classical compartmental or PBPK modelling. Specific properties of the system are
then mathematically described, and the resulting mathematical structures are
exploited to address specific applications (17). When theoretical physical interpreta-
tions are attempted from noncompartmental analysis a model with a compartmental
nature, as shown in Figure 1.7, is necessarily implied (15, 16, 4).
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Motivating factors for the development of noncompartmental methods include
the common criticisms of PBPK models, such as intractable complexity and exten-
sive inputs, and the criticisms of classical compartmental modeling, such as it is
physiologically fanciful, as well as the desire for estimating basic pharmacokinetic
parameters quickly and automatically (17). But as such, noncompartmental analysis
says little about mechanism. Theoretically, noncompartmental modelling provides
few alternatives to these other methods, but, the system approach may provide a
more general and efficient method to answering most of the practical questions in
clinical pharmacokinetics. The use of noncompartmental techniques seems to have
increased as the theoretical background and mathematical principles became more
familiar to most pharmacokineticists.

Endogenous
v Sources

Exogenous

Central
Measurement
Pool

Recirculations
or
Exchanges

Metabolism,
Sinks| Degradation,
Excretion, Etc.

Figure 1.7: The basic physical model structure implied by noncompartmental
analysis when a scientific physiological interpretation is made.

Three properties often used in the derivation of noncompartmental methods are
as follows:
i. Constant total clearance: that is, the total elimination rate is proportional to the

systemic drug concentration:
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, _ dAqly
Acl = dt = CL’C[!I

where CL is the constant clearance with respect to time, and A,; is the cumulative
amount of drug eliminated from the body. In the context of compartmental model-
ling, this is equivalent to first-order elimination from the central sampling compart-
ment.

ii. Linear, time-invariant pharmacokinetics: id est, the relationship between the input
rate and the resulting systemic concentrations has the properties of superposition and
time invariance - properties that are a generalization of dose dependence. Under this
assumption, the relationship between the input rate and the resulting systemic drug
concentration is described by the convolution integral equation:

Cid = R+Cs)t) = fR[i] C.;[t—'t‘]di
0

where R[] is the rate of drug input reaching the systemic circulation and the function
Cs is the unit impulse response for the relationship, that is, the systemic drug concen-
tration time-course resulting from the instantaneous input of a unit of drug.

ili. Existence of a terminal monoexponential phase in the systemic drug concentra-
tion time course: id est, there exists some time ¢, such that for all 7 > t, the concen-

tration time-course is well described by:
Citl = Ce ™!, t>y,
where A; is the terminal rate constant, and is especially used for extrapolating

beyond given concentration time course data.

On the basis of the general properties described above, noncompartmental
modeling can be applied to the estimation of the pharmacokinetically descriptive
summary parameters, such as clearances, volumes of distribution, and mean resi-

dence times. With estimates of the unit impulse response Cj, predictions and simula-
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tions for the systemic drug concentration, resulting from any specified input rate
time-course Ry}, can be made for all systems that satisfy the other assumptions of the
noncompartmental modeling. Finally, it is also worth mentioning that accurate
simulations through noncompartmental, multicompartmental, and PBPK modeling
have the laudable potential to reduce the number of experimental animal model
systems. A few other noncompartmental concepts and resulting formulas are located
in Appendix 4.
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Chapter Two

Certain Remarks on Scientific Modeling

Some Comments on the Philosophy of Modeling

The main problem we face as self aware subjects is how to obtain valid knowl-
edge of the phenomena of reality.
-William S. Hatcher

Before considering any deeper or more complex questions addressing the
Pharmacokinetics of Mibefradil, a delineation of the philosophical context of this
thesis is introduced. Most generally it is recognized that no meaningful part of the
universe is sufficiently simple that it can be grasped without abstraction, and, that
almost all of our thoughts implicitly utilize abstraction to selectively focus on certain
aspects of a situation and consider it in terms of one's personal aims. Let an abstrac-
tion or combination of abstractions attaining a certain level of refinement in structure
and behavior be called a model. For the remainder of this thesis a model will be
assumed to be a collection of specialized mathematical techniques for selection and
analyzing data, as well as optimizing hypothesized system variables and parameters
(26). Moreover, the author will endeavor to be conscious not to delude himself or
others into believing that any resulting theory or model closely mimics the reality in
which the model is anchored in, rather that the model in some small way contributes
to our interpretation of said reality.

The paradigm of scientific method is that we start with experience on some
level, primarily based on the research strategy of explanatory reductionism, and that
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we formulate a certain number of observational statements which we consider as
facts. Inevitability there comes a point in this process when we seek a hypothesis
capable of relating the separate facts and welding them into a coherent whole - here
the mental processes are reversed. While collecting observations, we have been
interested in exploring how things, in fact, are. We now need to use our creative
imagination in order to conceive how things might, in fact, be. But it is now known,
there are no rules for finding a fruitful hypothesis (28) - we must use our intuition
and guided imagination. This seems to be true because there are generally a poten-
tially infinite number of theories consistent with any given (necessarily finite) set of
facts. In short, theory is underdetermined by fact, yet, as personally discovered,

conceiving of even one plausible theory can be difficult.

Now, it seems that biological systems are amongst the most complicated physi-
cal systems known (29), and given the depth of understanding that Physicists assume
in other, more traditional, fields of research, the steps forward that may be expected
to be taken within the context of a Masters thesis in this field are modest by compari-
son. The inherent complexity of the biological system must be circumvented by the
employment of an abstracting model, not by choice, but out of necessity. It is hoped
that, by use of a homomorphic model and with the assumption that some less impor-
tant information will be lost, more relevant information can be gained and isolated
from the data. With this approach it can be made apparent that any model created
does not capture any reality within, but may only serve as a human construct, as a
tool, to help one understand the unobservable reality of the physical system on our
OWn terms.
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First one must decide what aspects of the physical system are important, and
then create and manipulate models to reflect the system sufficiently well so as to
answer those questions that were previously selected for study (30). It is at this
point, during the formative stage at which the very questions that are asked that will
determine the character of all following research, where the differences between
those from Pharmacology and Physics, the two scientific disciplines that this thesis
attempts to bridge, first appear. The individual scientist has ambitions, either held
personally or imposed by his or her working environment, that require satisfying
from any model developed. Now, two characteristics that models can offer in vary-
ing degrees are truthfulness and usefulness (28). A model that accurately interprets
a broad array of data of some, hopefully large, portion of reality can be said to reflect
some truth of that reality. We can say that a model is useful if it describes a state of
affairs which would satisfy some important need by its application. Thus, the truth
and usefulness of a model, as defined for this thesis are logically independent. Of
course, everyone is allured to an seemingly truthful and useful model, but I suggest
that the motivations of Pharmacokineticists are more immediately practical and
yearn for application to clinical situations, so they would tend to be most attracted to
an apparently useful model. On the other hand, the Physicist's motivations are more
theoretical and focused on foundational knowledge, and he or she would be inclined
to an apparently truthful model. Aforesaid differences are not revealed as an excuse
for the author, studying within the Theoretical Physics Institute, to pursue an irrele-
vant or arcane area of Pharmacokinetics, but as an admonishment to any non-physi-
cist reading this of the perspective from which further investigation respectfully
proceeds.
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A Concrete Proem
to Modeling in Pharmacokinetics

It is, after all, much easier for me to know what I need or want to know to be
true, than to know what is true.
William S. Hatcher

The value of a model usually derives from the supposition that the system
undergoing analysis is a prototype or in some other manner typifies a class of similar
systems. Although, the ultimate functions of models are usually to characterize and
explain phenomena, they may be designed with a variety of emphases. Within this
report, a mathematical model will be used: to permit some simulation, for the under-
standing of possible physical causative factors influencing the pharmacokinetics of
Mibefradil, to establish the adequacy of a point of view, and even to estimate system

parameters not directly accessible.

Models can be divided into two broad categories - "models of data" and
“models of systems" (16). Models of data tend to be descriptive, phenomenological,
and empirical; widely used examples in Pharmacokinetics include those based upon
noncompartmental analysis, often called "model independent”. The advantages of
these, henceforth described, phenomenological models are: they require few assump-
tions about the system studied, they allow for predictions and simulations, they
require few resources in their development relatively speaking, and they are simple
and accurate. The disadvantages of phenomenological models are that they are
superficial, so provide little theoretical insight, and they are not easily falsified, so
they lack credibility (15).

Models of systems incline to be theoretical, structural, and mechanistic; a
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typical example in Pharmacokinetics is a PBPK model. Models of systems, hence-
forth termed representational models, link input to output by positing a mechanism,
usually involving physical constructs (such as enzymes, organs, or blood), laws
regulating model behavior (such as the law of mass balance), and a temporal vector
of events - all to provide an interpretation of the data. The advantages of representa-
tional models are: they are lucid, providing insights into how we a least believe
things work, they are easily falsified, thus providing a high degree of credibility, and
finally, they fulfill our emotional need (28) to find cause and effect as well as mean-
ing in nearly all events. Unfortunately, the development of representational models
is often costly and time consuming, and as these models approach the full complex-
ity of the system, the more unwieldy they become and the less intellectual leverage
they provide.

The classification of a classical compartmental model, as a phenomenological
or a representational model seems to be less obvious. Clearly, a polyexponential
function, or similarly a spline function, with no analogy to biological model system
states attempted, fitted ad hoc to drug plasma concentration-time data following an
i.v. bolus injection, is a phenomenological model of data. However, given a well-
structured multicompartmental model with some degree of physical relevance in
choosing the structure to answer a question posed in advance, despite these being
presently out of fashion, a physical interpretation of the data through the resulting
polyexponential equation is nonetheless a representational model (26, 15). Itis the
epistemological context the model is used within and not the mathematical structure
of the model itself that determines whether or not an approach is phenomenological
or representational in character.
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In attempting to describe fundamental differences between phenomenological
models (which they include compartmental models within) and representational
models, Colbum et alia (4) state: "With the exception of physiologic models, these
methods are deterministic; the data determines what model can be fit to the data." In
doing so, the mentioned authors exhibit, what I believe to be, a common misconcep-
tion about the essential validity of PBPK (physiologic) models compared to multicom
partmental models (see also (31) for a comparable misjudgment). The observation,
"the data determines what model can be fit to the data”, applies as well to PBPK
models as any other types of models. No model can fulfill strong objectives without
some relation to data. In the process of relating to data, the design of a PBPK model
undergoes the same recursive pattern of modification of structure and comparison to
data as any other model. As well, noncompartmental and classical compartmental
models should not be applied ad libitum without critical consideration of whether the

underlying assumptions are valid in each specific case.

Process Noise Measurement Errors

1ﬁm 1601

R-m Biological Model Yics @ Exogenous Z{
——1_5| SystemDynamics | YILZTI_|  \po 0 romen 44

Drug a Response System Measurement

Inputs X3, vl Outputs Data

Figure 2.1: An abstract block diagram indicating the distinction and relations
between the biological model system, the measurement system, and the variables
used to construct the mathematical model.

The elementary conceptual relation between the biological model system,
experiment, data, and pharmacokinetic model is given in Figure 2.1. Usually, sets of
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differential equations believed to represent system dynamics or kinetics are written
in concise vector notation,

% = f[x[t, 1 1], K[t]’ 5] A E[X[t, 1 ul, E[tl, al > 0,

where X is a column vector of the m dependent state variables of the system, exem-
pli gratia, amount of drug, R is a vector describing the drug inputs to the biological
model system, @ is a vector of the A model parameters, % is a vector describing any
"noise”, caused by random or chaotic unaccounted inputs, that impinges on the
deterministic description of the biological model system, f is a vector function that
embodies the model structure including topology, and % is a vector describing the
initial and/or boundary conditions. The biological model system responses are
described by

Yir. 8. vl = g[Xie 2 wj, @1

where ¥ is a vector of m model observable outputs, and g is a vector function that
characterizes the structure of the measurement system (16). To account for measure-
ment errors, an uncertainty term, 2, is usually added to ¥ in (2.1), such that the sum,

Z, is the actual measured data vector
Zie) = Yie s ) + & . 2.2

From the measured data, the sought after pharmacokinetic parameters are estimated.

It may be the case that classical multicompartmental models sacrifice more
realism for precision, and that PBPK models sacrifice precision for realism. But all
models, especially representational models, are at least partially based on presupposi-
tions that are either false (e.g., instantaneous and homogeneous mixing of a drug in
the compartments of a lumped-parameter PBPK model) or not known whether they

are true or false (assumptions of classical kinetics). As well, the validity of 2 model
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is goal dependent, and any model can be judged successful if it fulfills the objectives
of the investigator. Accordingly, the specific choice of pharmacokinetic model must
be determined by the questions asked and the type of answers sought by the investiga-
tor with the legitimacy of the model being appraised on those terms. Therefore,
despite the significance of many types of noncompartmental analysis techniques
currently used in Pharmacokinetics, due to the limited role it plays in the revelation
of underlying physical mechanism with which a thesis in Physics is generally con-
cerned, noncompartmental analysis in Pharmacokinetics will not be considered in
detail for the remainder of the thesis.

The Practicalities of Modeling
in Pharmacokinetics

You have erred perhaps in attempting to put colour and life into each of your
statements instead of confining yourself to the task of placing upon record that
severe reasoning from cause to effect which is really the only notable feature
about the thing. You have degraded what should have been a course of lectures
into a series of tales.
-Sherlock Holmes, The Adventure of the Copper Beeches
Sir Arthur Conan Doyle

Pharmacokinetic data do not speak to us directly, but require interpretation and
context. Once the general intentions and emphases of the inquiry are determined by
the investigator, the specific description, testing, and verification of any pharmacoki-
netic model are achieved by the tools of mathematics and statistics. The basic mathe-
matical structures of the pharmacokinetic models considered in this thesis have
already been described, while a broad description of the statistics to help evaluate the

models follows.

To start, a figure-of-merit function, that measures the agreement between the
data and the model, must be chosen or designed. The merit function is convention-
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ally arranged so that small values represent close agreement between the data and the
model with a particular choice of parameters. These parameters of the model are
then adjusted to achieve a minimum in the merit function; thus, the attunement
process is a problem of minimization in many dimensions yielding the best-fit param-
eters (32). Also, once calculated, the precision of the parameters as determined by
the data set must be estimated for meaningful reporting of results.

In general, the data never exactly fit the model that is being employed, even
when that model is veracious. This is a consequence of the pharmacokinetic data not
typically being exact since each datum is subject to various measurement and system-
atic errors. Therefore, a test for the goodness-of-fit against some useful statistical
standard is required to assess whether or not the model is appropriate. Unambiguous
identification of the most correct model is often impossible because more than one
model of comparable complexity is consistent with available data (17). But, the
probability that the data observed was generated by a system faithfully described by
the model can be calculated with the appropriate statistical tools. Whereas, it is not
meaningful to ask or try to calculate what the probability that a particular set of fitted
parameters within a model is correct for the data, since that is actually a question of
truth and not probability, it is possible to consider, given the assumption of a particu-
lar set of parameters and a model, the probability that the data set could occur. This
second approach is statistical in nature and so can never establish the essential truth
of a model, that identification being left to the intuition, but if the probability of
obtaining the data set is very small, then it can be concluded that the parameters and
model under consideration are unlikely to be correct (32).

Consider a fit to N datum points (4,C;), i=1, ..., N, to a model that has M
adjustable parameters a;, j=1, ..., M. Let the model predict a functional relationship
between the measured dependent and independent variables,
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Ci) = Clt; ay, ..., am)
where the dependence on the parameters is indicated explicitly on the right-hand
side. A common assumption in pharmacokinetics, often taken so casually for
granted that it's rarely specifically addressed, is that each datum point C; has a mea-
surement uncertainty that is independently random and distributed as a Gaussian
distribution (see Appendix 3) with standard deviation o; about the true model CYs] as
observed by the data. Given that presupposition, the probability # of the data set
occurring is the product of the probabilities of each point happening (33), such that
N
P o« I—le"lf(s';'r-gm)z :
i=l
Since the natural logarithm is a monotonic nondecreasing function, maximizing P is
equivalent to maximizing the natural logarithm of P, Max[P] = Max{In#P], such that

N 2
InP o Inl[ | e ¥ | infab] = Infa] + In[b]

i

:In?«iln[e-%(s‘vfm)’ i %(C C[t.])
i= i=1

Therefore, because this is a negative function that is to be maximized, the maximum
likelihood estimate for the model parameters is obtained by minimizing the quantity

Xz = g(cl - C[ti;o.aila ---,aM])z = gwip% = gxlz

called the "chi-square”, where p; = C;-Cl1,] are called the residuals and w, = l/o?
can be considered the statistical weight of each datum point.

There are a variety of mathematical techniques to minimize the usually large
and complicated chi-square figure-of-merit functions that arise from often involved
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pharmacokinetic models (34, 35). If the model is linear with respect to the parame-

ters ay, ..., aps of the form
M
C = ) 3¢5l 23)
=1

where ¢4, ..., dyl] are arbitrary, even nonlinear, basis functions of ¢, then a
solution may be found by use of the normal-equation method or, even better, by use
of singular value decomposition method. These approaches also provide parameter
uncertainty estimates. When the model is nonlinear on the set of A unknown parame-
ters a;, j=1,...,M, iterative mathematical minimization procedures are utilized,
exempli gratia Levenberg-Marqgardt or Gauss-Newton methods. Starting from given
trial values for the parameters, these procedures improve on the trial solution until
some indifference criterion is satisfied and the effective minimum of y2 is estab-
lished (34, 36), but no error estimates for the parameters are yielded immediately.
Also, said procedures are of a general nature and can be applied to linear models as

well.

Once the difficult task of calculating the parameters of the pharmacokinetic
model is complete a reckoning of the goodness-of-fit must be ascertained. For
absent this estimate, the parameter values lack objective statistical significance and
physical meaning. If the model is linear, as defined in equation (2.3) then the proba-
bility P, that the calculated y? value could be as large as it is or less by chance, is
given by

= v Xz - 1 xzz_—u 5 -1
Py—P[E',T —F[iT]\Io‘ e "u? dll,

where P €[0,1) is the incomplete gamma function (37), v = N-M is the number of
degrees of freedom, and I is the gamma function. Altematively, Q = 1-P, the
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complement of P, can considered and interpreted as the probability that the calcu-
lated y? value could be as large as it is or greater by chance, to serve as a quantita-
tive measure of the goodness-of-fit of the model. If Q is a very small probability,
then the apparent discrepancies between the pharmacokinetic model and the particu-
lar data set are unlikely to be chance fluctuations. It would seem that more plausible
explanations are: (i) the model interprets reality poorly and can be statistically
rejected as useless, (ii) the measurement uncertainties o are actually larger than
stated, or (iii) the measurement uncertainties are not Gaussianly distributed. As
always with statistical tests, the choice on the boundary between what is reasonably
probable, and thus supportive of the model, and what is incredible, is a subjective
decision made by the investigator and the scientific community.

a
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Figure 2.2: A hypothetical two-dimensional confidence region ellipse centered at ?
corresponding to values of chi-square larger than the fitted minimum. The one-
dimensional confidence intervals for the parameters are indicated by the appropriate
projections of the region onto the axes.

When the pharmacokinetic model depends nonlinearly on the set of M
unknown parameters a;, j=1,...,M, a straightforward analytical estimate of the
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goodness-of-fit of the model and the variances of the fitted parameters are generally
not possible to derive. Instead, confidence limits on the fitted parameters are implied
by analyzing the behavior of the y? function near it's minimal value (see Figure 2.2).
Let @ be a vector of the M fitted parameters when the value of the chi-square func-
tion is a minimum, y2,. A "confidence region” in the M-dimensional parameter
space, centered at @, is bounded by the constraint that y2 < y2,, +482, where 6>
is set by statistical analysis via Monte Carlo simulations. These M-dimensional
surface contours of constant 5y are often ellipsoids and their projections onto the
various M-axes indicate the confidence limits for the corresponding parameter (38).

Monte Carlo analysis rests on the premise that there exists some underlying
true set of parameters, "°a, that are essential to the nature of the pharmacokinetic
model system, but hidden from the experimenter. These fundamental parameters are
statistically realized via the response outputs, ¥, by the measured data, Z or °7 , to
which the experimenter is privy (see Figure 2.1). By fitting the data to a model by
X* minimization, values for the parameters, @ or %2, are calculated, but because
process noise and measurement errors have a random component, %2 is not a unique
realization of the true parameters of the pharmacokinetic model system, ™2,
Instead, Monte Carlo analysis assumes there could exist infinitely many other realiza-
tions of the true parameters potentially measured as the hypothetical data sets, !Z,
22,32, ..., each one yielding a slightly different set of fitted parameters, 'a, 2 a, 3a,
..., respectively (see Figure 2.3) (32). Only from knowledge of the distribution of
these hypothetical parameters and their corresponding chi-squared values can confi-
dence intervals be constructed for the fitted parameters, 62 or 6°2.

Though direct observation of the true parameters of the pharmacokinetic model
system, "™, or even the hypothetical parameters, ‘@, i=1,... o, which could be
discovered by repeated experiments is not possible, a precept of the Monte Carlo
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approach, that within the context of this thesis is unctuously accepted, is that the
fitted parameters, %@, may serve as a reasonable surrogate for the true parameters,
g, for further statistical methods. A supplementary supposition is that the probabil
ity distribution of the hypothetical parameters around the true parameters, ‘@ -™eg,
i=1,...,%, is comparable to the probability distribution of the synthetic Monte Carlo
parameters around the fitted parameters, -2, i=1,... N. So, from the fitted
parameters, °2, or from the actual data set, °Z (when using the bootstrap method), a
statistically significant number, N, of synthetic data sets, £Z , i=1,..., N are ran-
domly generated by computer to mimic the best understanding of the probability
distribution, ‘2-™<g, j=1,...,c, or the underlying the process noise, %, and mea-
surement errors, 2 (see Figure 2.1 and equations (2.1) and (2.2)). These synthetic
pharmacokinetic data sets provide an accordant distribution of chi-squared values
and best fit parameter vectors about, @ or %@, from which a subjectively defined
confidence region may be chosen (see Figure 2.2).

Lastly, and to me most incredibly, a statistical appraisal of the model adequacy
can be ascertained. Following the above described tenets of the Monte Carlo
approach, the fitted pharmacokinetic parameters, %2, may serve as a proxy for the
true parameters of the biological model system, ™<@. At the appropriate set of
times, 4, i=1,... N, concurrent with the actual data set, °Z, a second series of syn-
thetic data sets are begat. From the subsequently calculated chi-squared values, a
tailored chi-square probability function can be approximated specific to the perhaps
nonlinear pharmacokinetic model, taking into account the process noise of the biologi
cal model system and the measurement errors of the experiments (Dr. Lele, Associ-
ate Professor of Statistics, University of Alberta, personal communication, 20
August, 2001). To this probability function, may the chi-squared value of the actual
data set, %Z,.,, be compared, thus providing an objective account of the probability
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Figure 2.3: An abstract block diagram sketching the Monte Carlo simulation of an
experiment. Computer generated random numbers are used to synthesize many
simulated data sets from the single experimental realization. It is assumed that the
statistical distribution of synthetic Monte Carlo parameters, {3, i=1,..., N,
around the fitted parameters, %4, is similar to the distribution of hypothetical
parameters, '3, i=1, ..., 0, around the true parameters, ™3,
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that the actual data set could occur and motivating subsequent subjective interpreta-
tions of model adequacy. Briefly summarizing, to be genuinely useful a fitting
procedure should provide (i) values for the unknown parameters, (i) error estimates
on the parameters, and (iii) a statistical measure of goodness-of-fit.
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Chapter Three

An Initial Consideration of the
Biological Model System

A Summary of Relevant Knowledge
on Mibefradil

Pharmacokinetic inquiries introduced to me by Dr. Tuszynski performed under
the aegis of Dr. Yun K. Tam's laboratory in the mid-1990s at the University of
Alberta on the drug mibefradil provided results that provoked the hitherto unstated
thesis of this report. Now mibefradil is a calcium antagonist designed for the treat-
ment of hypertension and angina since it has the useful effects of being able to relax
blood vessels allowing more blood and oxygen to reach the heart but at the same
time not reducing the performance of the heart (39, 40,91). Most relevant for this
report, was that experiments on chronically instrumented dog model systems evinced
nonlinear pharmacokinetics for mibefradil as dosage was increased and that the liver
was identified as the major organ for elimination of the drug (41). The resulting
experimental facts were many plasma concentration time-course data sets for differ-
ent dogs at different oral and i.v. dosages upon which the remainder of this report is

based (see Figure 3.1).
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Figure 3.1: A representative concentration verses time data set from the dog model
system studied with a characteristic sharp peak and elongated tail. The measured
concentrations are of Mibefradil in the plasma of the number two dog taken at
various times from the portal vein after an intravenous dose (IV-PV-D2). The
uncertainty of the concentration measurements was calculated to be 9%.

Because the uncertainties of the concentration measurements were never explic-
itly stated and perhaps never calculated in either (42) or (41), this value was directly
calculated from the documented concentration calibration chromatograms of HPLC
assays of mibefradil in the dog plasma from (41). The percentage errors of mea-
sured concentration values of the known test standards were assumed to be Gauss-
ianly distributed, such that the standard deviation of the distribution, to randomly
account for the discrepancies 90% of the time, was 9%. The uncertainty in the
documented measurements of the independent time variable likewise was not stated

in (42) or (41), but is assumed to be small for the purposes of this report.

Since the declared nonlinear behavior of mibefradil after higher oral doses is at
least partially attributed to a possible increase in gut absorption (42), and rather than
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challenge or confirm these results, or complicate this report with concemns of drug
absorption via the gut or first-pass effect of the liver, only the data of the i.v. trials
from the rather comprehensive study of Skerjanec in (41) was considered for
renewed investigation and interpretation within this report. It was additionally
concluded in (41) that the observed nonlinear kinetics of mibefradil in dogs was
mainly due to dose- and/or time-dependent reductions of hepatic clearance, though
the mechanisms remained unknown. Naturally, aside from the potential pharmacoki-
netic causes for the observed nonlinear behavior of mibefradil, such as alterations to:
plasma protein binding, hepatic tissue binding, and enzyme activities (43) following
drug administration, given the author's background, a physical explanation was
pondered. Therefore, the major objective of this report is to offer a novel physical
mechanism that at least contributes towards the explanation of the observed nonlin-
ear pharmacokinetics of mibefradil.
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A Scrutiny of the Data
by Empirical Curve Fitting

The triumphant vindication of bold theories—are these not the pride and justifica-
tion of our life's work?
-Sheriock Holmes, The Valley of Fear
Sir Arthur Conan Doyle

A Brief Rationale

There are practical reasons for a pharmacokinetic researcher, regardless of
motivations, to invest at least a modest amount of time to complete some empirical
curve fits to the data of interest. Clinical researches can condense the real pharmacok-
inetic data to a comparatively small set of mathematical terms for efficient use in
applied analysis, while theoretical researchers may glean some insights into the
underlying processes of the situation - a low level empirical generalization may be
constructed. Results obtained for the mathematical relationships describing the data
should be distinguished from model parameters that may be deduced from the
results. Nevertheless, initial observations of patterns by empirical curve fitting impel

explanations and seed hypotheses.

Yet, it seems that empirical curve fitting can constrain conjectures somewhat,
since simple observations have the asymmetric puissance to prove that a theory is
wrong though not right. That is, the future model can in some sense be constrained
without appealing to a priori knowledge. Misguided models may never be explored
if the researcher understands, by curve fitting, the properties of the data then realizes
that the model in question is unable to reproduce similar behavior. Of course, with
enough parameters, many types of functions form a strong enough basis set to fit a
wide variety of data. Therefore, parameter parsimony will assist in the interpretation
of the data (44) based on the relevance of simplicity to physics. Yet, it remains a
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philosophically vexing problem how to justify the initial choices regarding the form
of the phenomenological model and the trade off between the unification of the data
by a paucity of parameters with the total degree of fit.

The Debut of a Modified Prony's Method
to Include Weighted Datum Points
for Curve Fitting in Pharmacokinetics

What ineffable twaddle! I never read such rubbish in my life.
-Dr. Watson, A Study in Scarlet
Sir Arthur Conan Doyle

The equations generated by classical compartmental models, and sometimes
used by noncompartmental techniques, are sums of exponentials. Prony's method is
a mathematical routine to fit said equations to data and was studied for its merits in
pharmacokinetic applications. Broadly described, the approach of Prony's method is
to convert exponential expressions to nonlinear algebraic equations and then trans-
form those to a larger number of linear algebraic equations that can be easily solved
by the method of least squares. So, presuming that drug concentration time-course

data is to be fit to an approximation with 2M unknowns of the form

Citl ~ A + Aje?' + ... + Ay &M 3.1
let w = €%, to put the exponential relation into the more convenient configuration
of

Cltl ~ Ay + Appth + - + Ay gy . (3.2)

Now Prony's method demands that ordinate values of C11] are specified on a set
of N>2M equally spaced points, and that a linear change of variables has been
introduced in advance in such a way that the abscissa datum points are at 1 —» k=0,
1,2, ..., N-1. Therefore, the real data must be translated in time so the first meaning-

ful datum is at time =0, and then scaled by a lowest common denominator and
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mapped onto the natural numbers. If the data set is incomplete at this point, then the
only known option is to complete the data set by interpolation between the actual
datum points. By successive substitution of each transformed datum (k,Cy) into
(3.2), each relation of the following group

Co = Alﬂ? +Ang + - +AM;1&, p2 =1

C zA|y= +A2[1§ + .- +AM[1§,|
Cr =~ Arpf + Aa g} + - + Am pily (3.3)

Cn-t = A~ + A ! 4+ -+ Ap !

necessarily would be met, such that, the exponential approximation may be based on
the result of satisfying these N algebraic expressions as nearly as possible.

To help solve this group of mostly nonlinear algebraic relations, introduce a

temporary variable 2 and construct the equation

=) (-2 (u-pm) = 0
where uy, o, ..., up are the roots of the expanded algebraic equation

@ yM + a) yM" + a pM'Z + -0+ aMoy ;1' + aMm #0 =0 3.4)
where @; =flu, u2, ..., uac] and ag = 1 without loss of generality (45). The strategy
is to temporarily isolate the nonlinearity of the system within the single polynomial
(3.4) and transform (3.3) into a set of linear algebraic equations. In order to deter-
mine the coefficients a|, a3, ..., ayy, the first equation in (3.3) is multiplied by ay,,
the second equation by aps_i, ..., the Mth equation by ;, and the (M+1)th equation

by a9, and add the results, as follows
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CozAlp?+A2yg+"-+AMy& TR
Cl ~ Al ‘l{ + Azﬂ% + e + AM [llM AN,
szA|p%+A2p%+-"+AMﬂ§‘ XoriNy

Cum = Alyr + A [13‘ + - + Am ﬂm X o

= Coam + Ciam-) + Crapm_| + -+ + Cumap
M -1 1 0 (3.3)
~ 0= (oM +ar M+ ramo g +am 1) (Ar + - + Aw).

Notice, since N>2M, the above demarche does not include all of the N equa-

tions in (3.3). But, with the same approach, by starting instead successively with the

second, third, ---, (N - M)th equation, all of the equations of (3.3) are used, and

N-M-1 additional equations of similar form to (3.5) are obtained. Together, the

above treatment implies the set of N- M linear algebraic equations

Cmao + Cy-1a; + Cy_2ar + -+ + Coam = O

CMmsr1@0 + Cqa; +Cy_jay + -+ + Ciamg = 0 3.6)

Cn-1a20 + Cnozay + Cn_z @y + -+ + Chn-Mm-1aMm = O.

Since the ordinates C; are determined from the real data, the above set generally can
be solved using the method of least-squares.

From this course of actions, after the a's are determined, the Af H's, and subse-
quently the unknown parameters ay, ---,ayy, are found as the roots of the single
polynomial equation (3.4). After substitutions, the equations (3.3) then become
linear equations in the M A's with known coefficients p. Finally, the unknown
parameters Ay, ---, Ay are determined again by applying the least squares technique
to this set of equations to complete the process of obtaining values for all of the
sought after pharmacokinetic parameters.

A typical example of the adeptness of Prony's method in fiting the Mibefradil
data set by a sum of exponentials of the form of equation (3.1) can be appreciated in
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Figure 3.2. Because the real data from Dr. Tam's dog experiments was not complete
in the sense, as previously described, that Prony's method demands, additional adsciti-
tious datum points were synthesized by linearly interpolating between the real datum
points. Once combined, the resulting new set of data could be mapped to the natural
numbers by division by the lowest common denominator: 5 minutes.

(E 300 |
ml _
250 | x> =452
250
zm |
Drug [ J
150
200 C Early-Time Behavior
100 |
150
S0 } "
100 W 25 0 75 100 125 1%0 175
S0 Time t
200 400 600 800 1000 1200 (min)

Figure 3.2: A curve generated using a sum of six exponential terms fit by the
standard Prony's method compared to the concentration time-course data taken after
an intravenous dose from the portal vein of dog number two (IV-PV-D2).

The first seven datum points of the concentration peak were matched remark-
ably well considering the rapidly changing, and broad range of, drug concentration
values over a narrow domain of time. The global fit of the data was generally not as
successful as indicated by a rather large figure-of-merit chi-square function value. A
view of the statistical residuals, R; = |C; -Ci4]l, of the data indicated that most of
the discrepancy as measured by the figure-of-merit function between the curve fit
and the data was due to the datum points in the long shallow sloped tail (see Figure



Chapter Three Initial Consideration of the Biological System o

3.3). This was not surprising since the standard Prony's method must perform with
all the data, real and synthesized, without discrimination, while the chi-square figure-
of-merit function is only concerned with the agreement between the fitted curve and
the real experimental data. Whereas the chi-square function weights all absolute
deviations between the fitted curve and the real datum points inversely proportional
to the uncertainty (previously shown to be 9%) of the measured concentration at that
point (w; = 1/07), thus demanding greater absolute accuracy at the low concentra-
tions of the tail, the standard Prony's method has no abilities to take into account
weighted datum points and considers the absolute deviation of all datum points
equally. An amelioration of Prony's method appeared necessary for the statistical
technique to be influenced by the real datum points to a larger extent than the interpo-
lated datum points and, since the range of the ordinate data spans 4.3 orders of magni-
tude (relative to base e), to consider absolute residuals differently for each datum

point.
')E ¢
Xi
Cl]-Ci\2
i 2 _wip2 = [T

25 fl wl pl ( O.w C|
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Figure 3.3: A plot of the weighted residual squared for each of the real datum
points separated in time to indicate their relative contribution to the disparity with
the curve produced by Prony's method as measured by the chi-squared figure-of-
merit function for the trial IV-PV-D2.



Chapter Three Initial Consideration of the Biological System S0

From the theory of approximation by the method of least-squares for discrete
data (see Appendix 2), a system of equations of the form (3.6) can be used to manu-
facture a set of M normal equations with which the Af unknowns ay,as, ...,ap, €an
be exactly solved for using matrix methods. Establishing the rth normal equation
entails multiplying each relation of (3.6) by the coefficient of , in that equation, and
by the weight associated with that equation, and summing the results, as follows

Cm =~ Cq-12) + Cyzaz + - + Coam S, BN

~ - CC
—Cn?n Cma +Cy-1a2 + - + Cyay RRE G.7)

~CN-1 = CN-2a@) + Cnz @ + -+ + Cnm-1 aM U ow

where r=1,2, ..., M, agp=1, and w; are the unknown weights. Besides possessing
the appropriate form to be susceptible to solution by the method of least-squares
through the use of normal equations, the above group of relations possesses the
critical difference, compared to groups of relations formed by an approximation to
data with a linear model, of each of the relations not being dependent on a single
discrete datum value (see Appendix 2, equation (a.2)). Usually, each of the rela-
tions, analogous to those of (3.7), have coefficients that are dependent on one abscis-
sal datum value and constants that are dependent on the corresponding ordinate
datum value. An examination of the individual relations of (3.7) evinces that the
coefficients and constants are dependent on a train of M+ | ordered ordinate datum

values.

Since weights are normally applied to a single relation, such as those of (3.7),
as functions based on the one corresponding datum point determining the coeffi-
cients and constants of the single relation, the same weighting scheme for Prony's
method is unworkable. An altered weighting scheme based on the entire ordered
series of ordinate concentration values of an individual equation was devised ad hoc.
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Because any ordered sequence of ordinate data implies an ordered sequence of
abscissal data, the weight assigned to each equation was considered to be the average
weight attributed to each datum point as a function of time. For example, the first
equation in (3.7) was given the weight

W2lCurmitm], Cm-1lta-1]), CMm-2itu-2], ..., Coltol]
= Mean[wit], Wltm-11, Wltm-2l, ..., Wlol],

wo

where wiy), k=0,...,N-1 are the values of the weight function at the discrete
datum points.

Using aggregate weights as define above, effectively smears in time the influ-
ence of the weight function, w, around each abscissal datum value, 7, over a domain
t € [tk—aa-1, terrs1 ). This occurs because each equation in (3.7) that is used to calcu-
late the aggregate weight is a train in time, M+ 1 cars long, that requires 2 A+ 1 units
of time to pass. Therefore, this weighting scheme performs most like a regular linear
least-squares weighting procedure when the number of parameters, M, is small and
the short train is more like a point along the abscissa than a long line. Illustrative
results of the process can be discerned from Figure 3.4.
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Figure 3.4: A plot of the calculated aggregate weight values assigned to each of the
N-M equations of (3.7) for the IV-PV-D2 data. Large values cluster around real
datum assigned large weights whereas zero values indicate equations constituted
entirely of interpolated data given no weight.

An advantage of the described weighting system for Prony's method for fitting
pharmacokinetic data, is that much of the influence of the interpolated datum points,
introduced because of an incomplete data set as a necessity of the procedure, can be
removed by setting the weight function to be zero for all interpolated data, such that
witl=0 V (k,C;) € {interpolated data}. This results in the interpolated data mostly
being diminished to valueless placeholders that the method requires, but that affect
the final fit diminutively. The nonzero weights assigned to real datum points were
the same as those for the normal linear least-squares method: wie| = 1/0? V (k,C)
€ {real data}, where o, = 9% C;. Because Prony's method uses a least-squares fit a
second time, in a more conventional format of (3.3), the weights of the individual

datum points are used again to calculate for the A's.
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Finally, to calculate the rth normal equation contributing to a direct solution as
described above, as a first step in Prony's method, for the unknowns a,,a,, ...,ay,,
the aggregate weights were implemented explicitly as follows

M =Cma @ +Cyagay + - +Coam -, - wic.
CM+1 =Cmay + Oy ap + - + Cy aMm SN Wi

—Cn-1 = Cn2 g +Cnzap +--- +CnM-1aM - Cnnio wn

+

Sr1@ +Gr2a2 + - + gmam = & (rth normal equation),

where ¢, ; are the constant coefficients of the unknown parameter variables a;
described by

N-
Stj = ), Wit b, ... t-m) Cice Cicj

i=M
and &, are constants described in terms of known values by

N-1

Er = —Z WI(‘, ti—lt [EETY tl—h‘] Ci—r Cl .
i=M

The consequences of the utilization of the weights can be appreciated in Figure 3.5.
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Figure 3.5: A curve generated using a sum of six exponential terms determined by
the weighted Prony's method to the [V-PV-D2 concentration time-course data
exhibiting an improved fit, but where arrows indicate anomalous behavior.

The improvement of the curve fit to the Pharmacokinetic data was most clear
by the observed reduction in the calculated chi-square merit function value from 45.2
t026.9. But, I expect the regular Prony's method was fortunate to fit the real data so
well in the first place. Since, although it did not weigh the calculated residual values
from the tail any more than the residual values from the peak, as it should have
because of the smaller variances there (w oc 1/02), the nature of the incomplete data
set conspired to provide hundreds of interpolated datum points along the shallow
extended tail that compensated for this neglect. [ predict that the improvements of
the weighted Prony's method would be even greater if the original data contained

gaps more evenly spread or contained no interruptions at all.

Regardless of the improved accuracy of a weighted Prony's method for fitting
pharmacokinetic concentration-time course data, apparently the method can not be
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used to assist in any kind of standard interpretation of results in connection with
classical compartmental models. The actual expression, in the form of (3.1), for the

curve of Figure 3.5 was

Citl ~ 377 ®!* + 250 0Bt 4 (9 _ 132 4) ¢(-02+02t
+(9+1320)et 0202 _ (157 _1g] j)el-02+041 _ (152+ 181i)el~02-04t

The complex exponential coefficients arise naturally, and without possible restric-
tion, from equation (3.4) when the 4's are solved for as the roots of a polynomial.
Since the exponential coefficients are a function of the M's, i = €% from (3.2), the
a's, and the 4's from subsequent calculations, have imaginary components generally.
The result is a concentration curve that is oscillatory and that possesses physically
impossible negative concentration values at very early times. Obviously, until com-
plex disposition rate constants, as those produced in the equation above, are consid-
ered, Prony's method will never find significant use in pharmacokinetics.

Yet if classical multicompartmental models are generalized somewhat to
similarly include linear interactions, based on the amount of drug in a compartment
with other compartments, that do not imply a direct transfer of material, then control
systems based on positive or negative feedback signals can be represented by com-
partmental analysis (46). Allowing this paradigm, the influence of one compartment
upon the other can be represented by a constant of a meaning that is no longer
restricted to the fraction of the material in a given compartment entering another in
one unit of time as for a first-order transfer constant (exempli gratia, ky;and 4y, in
Figure 1.3), but corresponds to a signal from one compartment acting upon the other.
In this case the signal or coupling coefficient may be negative such that the level of
drug in one compartment decreases the level of drug of another compartment. 1
speculate the means of this may be from the induction of metabolism in one compart-

ment due to the presence of drug in another compartment via one of the signaling
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systems of the body. Prony's method could then serve a useful purpose when describ-
ing a system from this new perspective.

A Justification for Restriction of the Data

If the early time-course data, following an L.V. dose of Mibefradil given at a
constant rate of ten minutes duration, for all four dogs are compared, such as in
Figure 3.6, then it is observed that between the initial condition, (o ,C0)=(0,0), and
the peak concentration, there exists zero or one datum point. This condition of
limited early sampling is considered as a "lack of sampling” by Tam et alia in (47).
The LV. infusion is a zero-order process, such that dC/dt = +k,, resulting in a linear
rise of concentration in a2 homogeneous system in the absence of elimination or a
curve of decreasing slope in the presence of drug elimination. With one parameter
remaining, k,, after the initial condition is satisfied, and only one or two datum
points to the peak concentration, the rise in the concentration data is trivially and
superficially fit. Therefore, to focus on the more complicated phamacokinetic
process of the elimination of the drug, and to reduce the number of parameters uti-
lized while only expending zero or one datum point and an initial condition, further
analysis of the Mibefradil concentration time-course data was restricted to the time
of the peak concentration onward. Further analysis proceeded as if the brief L.V.
dose was actually a V. bolus dose (a reasonable assumption in itself given the short
time duration of the dose compared to the entire domain of the data), with the assump-
tion that the original initial condition and a first-order I.V. infusion approach could

be accommodated later without significant changes to any conclusions made.
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Figure 3.6: An inspection of the very early time behavior of the concentration time-
course data for each dog model indicating the initial increase in drug concentration
occurs over a shorter time than the resolution of the experiment.

A General Technique of Nonlinear Fits with a
Global Optimization Method

Only a small portion of curves that can economically fit data are expressible as
a linear combination of terms with respect to the adjustable parameters of the form
(2.3). Generally, nonlinear functions, of free parameters that cannot be linearized,
generate the most economical match to the data, and those curves must be fit by
minimizing a figure-of-merit function as previously described. Locating the absolute
minimum, and not some local minimum, of a function is a challenging undertaking

and was pursued for the remainder of the thesis using global optimization techniques.

Given a real valued function y2[a] 3 R¥ >R and a compact set SCRM a
point 2°€S is a global minimizer (48) of y2[a] if

1< @ Vv aes.
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With the challenge originating from the difficulties in winnowing the global mini-
mizer from any local minimizers, such that a point " €S is a local minimizer of
Xoanif

JeeR A >0 3 ig1< @ vV d e B, €INS,

where Bl £] is a neighborhood around @. The largest open connected neighbor-
hood of @, Dtar), for which

Xiw1= 181 V deDig)c RM,

is called the region of descent to @~ (23). Specifically for this thesis, the real func-
tion just defined above to be minimized will be the chi-squared figure-of-merit
function and the vector @ will be a A1 matrix of the adjustable parameters for the
curve ([r,ay,...,ay]. Therefore, the problem of realizing a curve that best fits the
pharmacokinetic data (1,,C,), i=1,...,N becomes a problem of finding a vector
d(a).....an] in M-dimensional parameter-space that globally minimizes y2.

Traditional iterative gradient (local) approaches briefly mentioned previously,
such as Levenberg-Marqardt or Gauss-Newton methods have the following disadvan-
tages: they generally require a reasonably accurate initial trial solution, they require
that the function be continuous, they often have difficulty converging to a solution
when the optimum is within a very flat neighborhood, Bia', €], or when there is non-
unique global minima, and they are susceptible to converging to local minima, 7;,
with substantial regions of descent, Dz} Adaptive Grid Refinement (AGR) is a
simple though robust alternative global algorithm for minimizing functions. [t
generally requires less presupposed comprehension of the nature of the function to
be minimized, and no trial solution to begin (38). The function even may be discon-
tinuous since no derivatives are made and no search vectors are used. The drawback

of this convenience and capability tends to come at an additional cost of computer
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time due to the large number of function calls (repeated evaluations of y2) within
programs implementing AGR.

The adaptive grid refinement algorithm works as follows and is portrayed in
Figure 3.7. A closed continuous set, SCR™, which may be large, is defined such
that for each of the M parameters, g;, the projection of S is a closed domain
[**a;,*™a;] within which the minimizing value of that parameter, a, is hopefully a
member. Over the defined domain, n grid points, where n=7 in Figure 3.7, are
chosen to be separated by a distance Aa; =[**'g,;,*™4,}/n, and aside from the
domain boundary at a distance of Aa;/2. At each grid point, ai.a;3, ..., ain, the chi-
squared function to be minimized, x?(a;], is evaluated and the extrema, y2,. and
Xax are identified. A selection criterion, y2, . calculated as a function of the
difference between the extrema, then determines which grid points will be kept for

further refinement in the forthcoming iteration.

Xewoft = Xonin + Otax — Xin)®> @€ (0, 1).
All those grid points with function values less than y2,, ¢ are retained, while the rest
are discarded. For each grid point preserved beyond the selection process of the
previous iteration, new daughter grid points are spawned on each side at one-third
the distance between the previous grid points. This provides a new grid of higher
resolution covering a generally smaller, sometimes piecewise, domain for the itera-

tive AGR algorithm to repeat itself.
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Figure 3.7: A heuristic illustration along one-dimension of the first two stages of
the AGR procedure for minimization of a hypothetical merit function with many
local minima starting with a grid size of seven over a defined domain.
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The evolution of the grid refinement continues until an earlier chosen toler-
ance, Taop, defining the minimal amount of absolute improvement (decrease) in the
value of the chi-square function, is not achieved afier the completion of an iteration,
such that

IFT= 2, _x}nm’wm > Tgop THEN STOP.

The lastly identified minimal value of chi-square is assumed to be the global mini-
mum, while the ith corresponding grid point is assumed to be a parameter of best fit
and the ith component of the global minimizer, @°. The above described global
minimization technique requires computing time in proportion with grid density to
the power of the dimension of the problem in parameter space (38),
computing time oc (grid density)™ .

But since the law of parsimony was liberally administered to keep the number of
unknown parameters from being large, this constraint on the applicability of the
method was not a factor. With little further mention of any more practicalities of the
implementation of AGR, the method was utilized in all further calculations involving

the minimization of a chi-squared function.

A Second Study of the Sums of Exponentials

The initial estimates of the macroconstants, 4; s and a;s of (1.10), was con-
ducted by an exponential curve stripping process from the original program Model
Maker to reduce the potential domains of the parameters, the corresponding comput-
ing times, and any resulting chances for bias (see Figure 3.8) (19). The equations
were then fitted by minimizing weighted sum of squares within Model Maker for a
one, two, and three term sum of exponentials to obtain the macroparameters, 4; and

aj,i=1,2,0r3.
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Figure 3.8: A Semi-Log plot of [Mibefradil] verses time shows an intuitive
estimation of the domain of the linear elimination before curve stripping for the V-
PV-D2 data. The graph and associated buttons below are from an original curve
stripping program designed to provide first estimates of parameter values for the
original nonlinear fit program Model Maker.
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Figure 3.9: Mibefradil time course data fit with a single exponential term, 8,
a sum of two, &, and a sum of three exponential terms, -, for trial [V-PV-D2.

As the number of terms in the sum of exponential functions was increased the
deviation of the curve from the data decreased, as measured by the chi-squared merit
function (see Figure 3.9). The data seemed to be closely fit with a three-term sum of
exponentials requiring six free parameters, yet the domain where the slope of the
graph subjectively changed from the early-time behavior of the peak to the late-time
behavior of the tail, was estimated to be [5,25) where few datum points reside.
Observations of the residuals for those datum points in this domain for all of the dog
trials, intuitively revealed a non-normal distribution indicating an unrealized pattern.
The inability of the exponential functions to describe this transition was unsatisfying.
This in turn implied that an interpretation of the pharmacokinetics of mibefradil
based on a classical compartmental model would also be disappointing.
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The Analytical Equations Implied by Michaelis-Menten
Kinetics

A fit by analytical functions, never observed by the author in any Pharmacoki-
netic related material, implied by Michaelis-Menten kinetics was studied. Starting
from the common statement describing a simple enzymatic reaction,

dC VmC (KM

= KM+C > +1)dc = ~Vpax dt
= KMIn[C] + C = -Vt + C*, C=20.

Ate=0,let Cirj=Clo]=C,, so C* = KpyIn[C,] + C,, therefore

C _ Co — Vmax t R
In[C] + E = In[Cy] + T B _{‘_\\ .

~Voa t

5 e+ - € g _ G

Km KM Km

A

~Vog t

Km ]

= w[—eé] = — = w[
= Ci = Ky W[-E;— P ] (3.8)

where W (see Appendix 1) is called Lambert's W function (49) or the product log
function (50), such that W[z] = Wwe®] = w. Equation (3.8) satisfies the given
initial conditions since

GCo
Km

Clo] = Ky w[kci’{— e

—‘Co.

Using equation (3.8) a fit of the data was attempted with typical results illustrated in
Figure 3.10.
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Figure 3.10: Mibefradil time course data fit with a single term analytical function
implied by Michaelis-Menten enzyme kinetics for trial [V-PV-D2 using the original
program Model Maker. The calculated value of the chi-square merit function is no
better than that of a single exponential term.

It was observed that sums utilizing the product log function, empirically fit the
data with no better accuracy, as measured by the chi-squared merit function, than
sums of exponentials with the same number of terms and fewer parameters. This
occurs when the Michaelis-Menten constant, K, often associated with the strength
of binding of drug to enzyme, is large such that from (1.8)

dC _ VaC Vg C

= ~ = t «C.
dt ~ Km+C Ky constant «

The low concentration limit of the Michaelis-Menten equation is revealed as follow-
ing first-order kinetics while the analytical functions implied by Michaelis-Menten
kinetics fit the data no better than exponentials. Therefore, it is unlikely that signifi-
cant aspects of the pharmacokinetics of Mibefradil in a dog model system are
explained by the phenomenon of enzyme saturation. Consequently, the use of the
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otherwise common Michaelis-Menten equation in this thesis for further investiga-
tions is unjustified by the phenomenological observations.

A Fit by a Single Power Function

Empirical observations that the concentration time-course of several studied
drugs metabolized in the liver were well approximated by a power function were
reported by Norwich et alia (51). Later, a physiological interpretation for pharmacok-
inetic data described by the power function of the kind, C = 4™, was proposed
based on the assumption of gamma distributed disposition residence times of drugs
for a random walk model of circulatory drug transport within a noncompartmental
model (see Figure 1.7) (52). Here the parameter a determines the shape of the con-
centration time-course, while the parameter b defines the time scale of the kinetic
process. Afier a trivial temporal translation of Tam's pharmacokinetic data, such that
the initial condition was set to be (f9,Co)=(1,0) rather than (0,0), matches to a

humble power function of the variety, C = 41, were completed (see F igure 3.11).
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Figure 3.11: Mibefradil time course data fit with a single power term for the trial
[V-PV-D2 using the original program Model Maker. The ostensibly apt way a
function with so few parameters seems to deftly shift from early to late-time
behavior to match the data was impressive.

Several Illations from Empirical Curve Fitting

Because the models are not linear with respect to their parameters, simple tests
of goodness-of-fit cannot be enlisted to discriminate between the capabilities of the
analytical functions employed for empirical curve fitting. Yet, direct comparison of
quantitative chi-squared figure-of-merit function values can be used to compare the
absolute accuracy of the curve fits (Dr. Lele, Associate Professor of Statistics, Univer-
sity of Alberta, personal communication, 20, August, 2001) as summarized in Table
3.1
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Type of fof Terms | # of Parameters 2
AnalyticalFunctions | in Equation Employed
exponential 1,23 2,4, 6 171, 45, 11
product log ' \
(Michaelis — Menten) 1 3 171
power 1 2 25

Table 3.1: A comparison of empirical fits to the pharmacokinetic data by equations
utilizing three distinct types of functions as measured by the chi-squared figure-of-
merit function.

The comparison of fits between product log and exponential functions indi-
cated that the mibefradil concentrations in the experiments were not high enough to
observe the effects of Michaelis-Menten kinetics beyond first-order kinetics. The
comparison of fits between power and exponential functions indicated that the power
function most efficiently summarized the data. Indeed, a single-term power function
with two parameters captured the nature of the experimental data nearly as well as a
three-term sum of exponentials with six parameters. These qualitative results com-
pelled further investigations to establish a sound physical motivation for the at least
partial description of the concentration time-course data as some function of powers

of time and without consideration of Michaelis-Menten kinetics.
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Between the individual sinusoids of the interior of a lobule, one-cell-thick
sheets of hepatocytes are interspersed (55). Facing the blood spaces, the convoluted
uptake surface of the hepatocytes expands the blood-tissue interface by the

-

Figure 4.3: A picture of the decidedly structured microvillar surface of the
sinusoidal face of and isolated liver cell. Magnification = x6000. Photo taken
directly from (53).

presence of numerous microvilli, as shown in Figure 4.3. Separating the hepatocytes
and the blood space, is a topologically complex enothelium lining that defines the
minute passages of the sinusoids (see Figure 4.4). The fenestrae of the endothelium
allow direct access of drug within the circulating plasma to the surface of the hepato-
cytes via the space of Disse. A very thin but functional and distinct extracellular
space of the liver, comprising the space of Disse, exterior of the sinusoid, which
contains both collagen fibers and ground substance, and wherein the microvilli of the
hepatocytes extend, can also be seen in Figure 4.5. Summarily stated, observations
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of the liver reveal an anatomically unique and complicated structure over a range of
where mibefradil metabolism transpires.

N

length scales designating the space

Figure 4.4:. The porous endothelial lining of a sinusoid containing fenestrae
(pores or holes) on different scales of size (but all smaller than the diameter of an
erythrocyte). The two faint black arrow heads point to hepatocyte microvilli
(see Figure 4.3) protruding through the larger fenestrae into the sinusoid lumen
(space). Magnification=x10 000. Photo taken directly from (53).

The Liver as a Fractal

I am obviously walking a tightrope between the law of parsimony on the one
hand and the reductionist fallacy on the other.
-William S. Hatcher

An important observation in sundry research fields is that many complex
natural objects, over wide scale intervals, can be efficiently approximated to ideal
fractal forms - a mathematical concept expounded in the next section. [t is observed

that complexity is encapsulated in comparatively simple hierarchical and iterative
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descriptions that lead to fractal sets. Fractal analysis consists in associating such a
fractal set to an object under study and describing it through fractal geometry approxi-
mations, instead of using simpler Euclidian sets at the expense of realism or very
complex calculations (56).

., - ~

e T Endothelium Stnusoid
: “@ _ﬁ\\{

T."Q..:- Q’ R~

Space ot Disse

Microvilli

Figure 4.5: A cross-section of a liver cell bordering a sinusoid. Numerous
irregularly oriented microvilli project into the narrow space of Disse between the
hepatic cell and the endothelium lining the sinusoid. A black arrow indicates a small
fenestra in the the sinusoid lining. Magnification = x18000. Photo taken directly
from (53).

By the above observations that the liver has a hierarchic structure with compli-
cations at many length scales from the order of its macroscopic diameter to the order
of the macromolecular make-up of the matrix within the space of Disse, it is hypothe-
sized that the liver is fractal-like. That the structure of, and blood flow heterogeneity
in, the liver and other visceral organs is fractal, has been suggested and at times
experimentally tested before, especially in fields outside of pharmacology and phar-
macokinetics (57,58,59). For example, by means of analysis of ultrasonic wave

scattering from calf liver tissue, Javanaud measured the fractal dimension as approxi-
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mately dy =2 over a wavelength domain of (0.15, 1.5)mm (60). Correspondingly,
the liver, as experienced by the drug mibefradil, will hereafter be assumed to at least
have the possibility of being well approximated by a fractal between experimentally

relevant length scales (61).

An Introduction to Fractals

For any speculation which does not at first glance look crazy, there is no hope.
-Freeman J. Dyson.

Scientific approaches to measure and model phenomena are characteristically
simple in geometric terms. Yet, many objects in nature are so complicated and
irregular that they cannot be modeled well using conic sections, polygons, spheres,
cylinders, and the other familiar objects of classical geometry with the corresponding
mathematical milieu. For example, circulatory systems, clouds, trees, mountains,
and coastlines cannot easily be reduced to, or be approximated by, combinations of
simple shapes from classical geometry. The term fractal was introduced by the
mathematician Benoit Mandelbrot in response to the need for a more sophisticated
explanation of numerous phenomena commonly encountered in nature (62). But
even by the end of last century, mathematicians, such as Cantor and Koch, had
studied the sets that are now known as fractals.

However, even the definition of fractals is far from being trivial, such that
several articulations have been proposed over the years as mathematicians struggled
with the complex properties of fractals; and, all notions of fractals first depend on a
formal definition of dimension. That the topological dimension of a smooth curve is
expectantly one and that of a surface of a sphere is two may seem very intuitive.
Yet, the formal definition of dimension was only given in 1913 by the Dutch mathe-

matician L. Brouwer (1881-1966). Importantly, the notion is not unique, moreover,
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given the continued development of the new study of fractal geometry - a discipline
as yet without a strong foundation, it seems that fractal dimension is necessarily a

multi-faceted concept (63).

Figure 4.6: Levels 0-8 of a dichotomously branching "tree” in two dimensions
generated by a trivial recursive rule: for each generation pairs of branches are added
with a length and at an angle relative to the terminal segments of the previous
generation. Qualitatively, compare to some aspects of the branching network of
microcirculatory structure of Figure 4.2.

For this report a relaxed definition of a fractal will be adopted: a geometric
figure or natural object that combines the following characteristics: a) the parts have
a related form or structure as the whole, except that they are at a different scale and
may be slightly deformed; b) the overall form is extremely irregular or fragmented,
and remains so, over a broad scale of examination; and c) it contains distinct ele-
ments whose scales are very varied and cover a large range (64). From this nebulous

concept, a few specific features of fractals are proffered:

self-similarity: a hallmark of an object with parts that are sculpturally or statistically
resembling the whole object in a non-trivial manner (see F igure 4.6 and Figure 4.7),
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such that some property, L{gr), measured on a piece of an object at a particular
resolution is proportional to the same property, L{r], measured over the object at a
coarser or finer resolution. Hence,

Liar] = wiqlLir] , @“.n
where w is a constant of proportionality and ¢ determines the scale or resolution. In
the analysis of experimental data, a scaling, g7, can only extend over a finite range,
constrained by either the measurement technique or the limits of the physiologic
object. For example, the average rate at which new vessels branch off from parent
vessels in a physiological structure can be related for large and small vessels over a

circumscribed range.

A2
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Figure 4.7. Levels 0-5 of the Sierpinski Gasket. Qualitatively, compare to some
aspects of the porous endothelial lining of a sinusoid containing fenestrae on
different scales of size in Figure 4.4.

scaling: attributed to an object with characteristics that depend on the measurement
resolution, such that there is no one unique value for some measurements. How the
estimated value depends on the measurement resolution is called the scaling relation-
ship. It is often determined by the self-similarity of the object to be of the power law

form

Liri= AP, 4.2)
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where 4 and a are constant for any particular fractal object or process (65,57). Such
power law scalings are revealed on a In-In graph of the measurement of a characteris-

tic plotted against the measurement scale since
In[L] = ainfr] + InfA]

has the format of a straight line. The scaling relationship as a function of the resolu-
tion scale g is reveal by the substitution of (4.2) into (4.1) to find

Ligqri = Lirlq*. 4.3)

Different scaling relationships produce different exponent values, a, each of which
are identified as a dimension of the fractal; therefore, fractals differ from Euclidean

objects by having more than one relevant dimension.

self similarity dimension: a simple and applicably limited but heuristically useful
notion to grasp the concept of a fractal dimension, formed by considering geometri-
cally self-similar objects at different resolutions. If the scale of resolution of an
object, F, is changed by a factor g, and there are N pieces observed to be similar to
the original, then let the self-similarity dimension, ds be given by the scaling
relationship

_ In[N]
Infq]

Figure 4.8 illustrates how this fractal dimension is consistent with our usual senti-

N=q*% = de

ments of the properties of integer dimensional objects. Furthermore, the relatedly
defined HausdorfT dimension, which is a measure of the number of bounded, non-
overlapping, D-dimensional hyperspheres of Euclidean radius r that are required to
cover the object F, is useful for grasping the dimension of a fractal that is not strictly

a self-similar one, as the liver is likely to be (66).
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In3
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Figure 4.8: Illustrated calculations of the fractal dimension based on self-similarity
considerations for a line, square, and Koch curve. Calculated values for the more
general Hausdorff dimension would be similar for the above examples. See Figure
6.1 to view an example of a further developed Koch curve (snowflake).

space filling properties: fractal objects may be considered to exist between the
familiar Euclidean dimensions, such as between points and segments, segments and
planes, or planes and solids. The fractal abides between the integer topological
dimension, dr, of the structures that compose it, and the integer Euclidean dimen-
sion, D, that the entire fractal object is embedded within. For example, the tree-like
fractal shown in Figure 4.6 (or regard Figure 4.9) has a topological dimension of one
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since the basic units of its construction are lines, while the fractal itself is embedded
in a two dimensional plane. Since the tree-like fractal fills space to a greater extent
than a line yet does not completely cover the plane that it is embedded in, its fractal
dimension, as defined above, has a value dre(1,2).

Figure 4.9. My own tentative attempts to construct a knobby fractal. The
topological dimension is dr =1 and the Euclidean space in which the fractal structure
is embedded in is D=2. Instead of alterations of a one-dimensional line, imagine
similar protrusions of a two-dimensional surface and qualitatively, compare to
aspects of the microvillar structure on the surface of a hepatocyte in Figure 4.3.

spectral dimension: first introduced in 1982 by Alexander and Orbach, especially
relating to random walk properties confined to fractal structures, that is most useful
in the study of dynamics and critical phenomena. It is generally not of the same
value as dy since it relates to different features of the fractal and it contains different
information (67). While the fractal dimension, d, is intimately related to the extent
an object pervades the space in which it is embedded, the spectral dimension, d;,
appertains to how many options a random walker will posses on average for each
step made as it diffuses about due to the connectivity of the structure. Ata particular
resolution, let the connectivity of a structure be defined as the average number of
traversable bonds connecting one site of the object to its neighbors (see Figure 4.10).
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Figure 4.10: Geometric figures with equal fractal dimensions d, = 1.65, but with
different spectral dimensions arising from the differences in the connectivity of the
geometric objects. The connectivity of the top fractal is equal to six, while for the
lower fractal, the connectivity is twelve. Picture taken directly from (68).
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The spectral dimension is defined as an exponent in a scaling relationship with
the same form as (4.3) common to other fractal dimensions. Consider the diffusion
of a particle in a fractal medium, such that the retun probability, Prit), may be
defined as the probability for the particle to be back at the initial position at some
later time, 1. The scaling exponent with time defines the spectral dimension (68):

Prit] < t 42 ¢ 1. 4.4)

Notice that for a limiting case when d; -0, as for a fractal dust, the random walker
diffuses away not at all, but remains sequestered. Now for a Euclidean structure,
Prlt], can be obtained from the nornalized solution of the diffusion equation in a
radially symmetric media corresponding to an initial Dirac delta profile, such that

PR[I', tl = At—sz e-'l'zl4Dl’

where 4 is a normalization constant, D is the Euclidean dimension, D is the diffu-
sion constant of the particle, and r is the distance from the origin. So the return
probability for the particle to be back at the initial position is offered when r= 0,
such that

Prit]) o« t702

has the same form as (4.4). Consequently, the spectral dimension, d,, is revealed as
equal to the Euclidean dimension, D, for Euclidean structures (69). In summary, for
Euclidean spaces, dr <d, =dy =D, while, for fractal spaces, dr <d <dr<D(9).

The aforementioned properties of fractals may have subtle or overt manifesta-
tions within natural phenomena. The relatively new analytical tool of fractal analy-
sis as applied to pharmacokinetics, will be adopted and wielded with the intentions
of offering a novel interpretation of the experimental pharmacokinetic data.
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The Implications of Fractal Kinetics

Early humans were faced with the task of explaining quite an exteasive variety
of phenomena, but based on relatively limited experience. It is therefore natural
that this situation led to a veritable riot of speculative imagination.
-William S. Hatcher
A deeper analysis of the metabolism of mibefradil in the liver requires a consid-
eration of the theoretical description of transport phenomena with chemical reaction
in complex media. This can be performed by means of fractal geometry, using two
introduced basic exponents: the fractal and the spectral dimension. Yet, the defini-
tion of mean field approximation for reaction-diffusion phenomena in complex
fractal media is still an open question, such that a comprehensive theory for reaction
processes in fractal media is still to be elaborated (68). But, some enlightening and

influential upshots are established.

Classical transport theories, and the resulting mass-action kinetics, applicable
to Euclidean structures do not apply to transport phenomena in complex and disor-
dered media. The geometrical constraints imposed by the heterogeneous fractal like
structure of the liver strongly modify diffusional dynamics (70). Topological proper-
ties like connectivity, presence of loops or dead ends, etcetera, play an important
role, hence, it is to be expected that media having different dimensions or even the
same fractal dimensions, but different spectral dimensions, could exhibit deviating
behavior in diffusional propagation (68). The resulting abnonmal diffusion requires
a significant change in the mathematical description of reactions in the liver and
implies the introduction into transport theory of the results of fractal geometry.
Secondly, the statistical probability accounting for the existence of adjacent reactive
pairs must be considered. In the language of statistical mechanics this probability

factor is the pair distribution function for the reactive molecules. These two related
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concemns are addressed in the microscopic concept of an exploration volume of a
migrating random walker (drug particle) within the fractal (liver), or otherwise
described as the mean number of distinct sites, S, visited on the fractal for some
resolution. A second scaling relationship for the spectral dimension that includes S
is

Sit] o t4/2, 4.5)
where time ¢ is proportional to the number of random walk steps (71), such that, the
diffusion is monitored by the spectral dimension. Notice that for low spectral dimen-
sions, the random walk will be compact. Subsequently the macroscopic reaction
rate, which is given by the time derivative of St1], sometimes described as the effi-

ciency of the diffusing, reacting, random walker, will be

S
o« < d[t" oc th271 = (-4 (4.6)

for transient reactions. While strictly valid for low concentrations (C-0) as an
asymptotic limit (¢ - o), the above equation (4.6) is rapidly approximated for realis-
tic concentrations (72). This time dependent rate constant, is the manifestation of
the anomalous microscopic diffusion in a dimensionally restricted environment

leading to a resulting anomalous macroscopic kinetics.
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Phenomenological Issues

It is now well understood that chemical rate laws are a direct reflection of the
spatial distribution of particles (73) (see Figure 4.11). In particular, the classical rate
law reflects a random Hertzian distribution, that is one in which the probability that
the nearest neighbor of a given particle, to be found at a distance 7 in a given direc-
tion, peaks at 7=0. It is the continual supply of close pairs of particles, even as they
react, as capacitated by diffusion characteristic to three dimensions, that is embodied
in the usual bimolecular rate law - a law that assumes that changes in concentration
with time do not affect chemical reactivity. Practically, classical kinetics is often
Justified since the fluid systems considered are usually three dimensional and habitu-
ally well-stirred mechanically or by convection (74), such that, the experimental
canons fulfill the tenets of classical mass-action formalism. But heterogeneous
reactions taking place at interfaces, membrane boundaries, or within a complex
medium like a fractal when the reactants are spatially constrained on the microscopic
level culminate in deviant reaction rate coefficients, as described by (4.6), that
appear to have a sort of temporal memory. The compactness of the low dimensional
random walk implies ineffective diffusion and an entailing aberrant macroscopic rate
coefficient. In a fractal-like reaction system the distribution of reactants becomes
less random on a mesoscopic scale due to the formation of depletion zones around
the traps (75) resulting in a self-ordering or self-unmixing of the reactants around
traps - a spontaneous segregation of the reactants occuring at both low and high

concentrations (76).
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Figure 4.11: Two identical fractal containers, with identical macroscopic
concentrations of reacting molecules, but with different instantaneous reaction rates.
The probability for instantaneous reaction is obviously higher in the container on the
left. In specifying a concentration, a uniformly random distribution in space of the
reactants is implicitly assumed. Only under such an assumption can two containers
with the same concentration have identical reaction rates - this seems not to be the
case with fractal containers.

The case d; =2 is found to be a critical dimensional value (critical point) of the
phenomena of self organization of the reactants for the consequential atypical time-
dependent reaction rate coefficients (77,78), where if D<3 then d, <2 (72). For
d;>2, the scale of the self organization of the reactants is microscopic and indepen-
dent of time, such that, Sjrjoc ! (is linear) and k=dS/d is a constant so the reaction
kinetics is classical (74). Below the critical dimension, mesoscopic density fluctua-
tions of the drug become relevant and affective upon the reaction rate coefficient
(60), whereby S is sublinear of the form (4.5). This can be further appreciated by
attention to (4.4): if ds is low (<2), then a random walker (drug) is likely to stay at
its original vicinity and will eventually recross its starting point - microscopic behav-
ior conducing to produce mesoscopic depletion zones around traps (enzymes), else,
at higher spectral dimensions (>2), a random walker has a finite escape probability
and tends not to return to its starting point - microscopic behavior conducing to
rerandomize the distribution of reactants (ensemble) around a trap and replete a
supply of reactive pairs and thus stable macroscopic reactivity as attested by the

classical rate constant.
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The Thesis

As exemplified by Ngo, there generally exists a tacit assumption, almost by
definition, that time-dependent pharmacokinetic phenomenon necessarily “involves
actual physiological or biochemical changes in body tissues which are associated
with nonlinear drug disposition processes” as manifested by a time-dependency of
the drug elimination rate during i.v. infusion trials (43). Yet fractal kinetics implies
time-dependent pharmacokinetics will occur given only a static, time-independent
fractal physiological environment, as in the liver, where resulting time-dependent
metabolic reactions take place. The thesis of this report shall be that important
aspects of the pharmacokinetic disposition of mibefradil in the dog model system are
due to the fractal structure of the liver via the occurrence of non-classical, heteroge-
nous kinetics within. A physiologically motivated model will be constructed with
the dual goals of supporting this hypothesis by comparison to experimental data,

and, providing an objective estimation for the spectral dimension of the liver.

Considering the implications of Chapter Three and Chapter Four above, the
metabolism of mibefradil will be presupposed hereafier to follow the bimolecular
annihilating trap reaction of equation (1.1) within a fractal liver. Furthermore, a
constant concentration of a metabolizing enzyme, E e [E], is presumed to be
present in the liver such that the reaction is premised to be a psuedo-monomolecular
equation where only C (the concentration of drug) varies in time. Using (4.6), the
form of the pseudo-first-order rate coefficient for the metabolism of mibefradil is

assumed to be of the power law form:
kit =kt 704 =t | 151, &y <2, 4.7

where «={[£] and is taken to be constant for the experimental data and {€{[0,1) is an
unknown parameter to be fit by the experimental data (83).
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Chapter Five

The Developement of a Theoretical Model

Indeed, we might say that the essential characteristic of human intelligence is its
capacity to model phenomena.
-William S. Hatcher

As faras[cantell,therehasnotbeenapaperpublishedexplainingthemathe-
matical methods for implementing fractal kinetics nor any other time-dependent
kinetic coefficients for PBPK models or classical multicompartmental models. A
simple approach for including, within a multicompartmental model, time dependence
of the transfer coefficients that vary continuously with the age of human patients was
described by Eckerman et alia (79), but time dependence was for over periods much
greater than a single or small series of dosages. This simplified the mathematics
such that there was no time dependence of coefficients for the time course of a single
dose. Within a physiological model, over a very long time-scale of 98 days, Ferris et
alia (80) introduce time-dependent compartment volume changes due to growth in
the studied rat model system. Finally, Macheras in (61) introduces the explicit use
of time-dependent drug disposition, motivated by the microvascular fractal networks
of the body, within what is ostensibly a noncompartmental approach but is mathemati-
cally and conceptually equivalent to a one-compartment model. Presented below is a
simple physiologically-based pharmacokinetic model containing an eliminating
compartment with a time-dependent rate of elimination based on fractal kinetics (see
Figure 5.1).
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Figure 5.1: A simple flow limited Physiologically-Based Pharmacokinetic (PBPK)
Model where clearance of the drug occurs only in the liver by fractal kinetics.

Let there be a defined total blood flow (34), such that

where 0, is the blood flow into the liver and Q, is the blood flow into a non-eliminat-
ing tissue. Let the blood:tissue partition coefficient be a constant for each compart-
ment, such that P; =C;/Cy, i = h,1,...,5. Let any drug binding that occurs in the
blood or a tissue be linear and independent of time, such that, Cj, = 8C f» where Cy is
the concentration of the free unbound drug (24), and the following mass balance
equations may only be incidentally affected by a constant term, 8.

Let the drug mass balance differential equation for the blood compartment be

dXy _ Q. G
T_—chb+§R—iC'+ﬁch’
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where X}, is the amount of drug in the blood and C;, i=h,1,....n are the tissue drug
concentrations. Let the drug mass balance differential equations for the non-eliminat-

ing tissue compartments be
dX; Q
— - C — — -
dt @Gy R; G

and for the metabolizing liver compartment be

d
s =thb-%ch"CLhCh,

where CL, is the hepatic clearance (30).

Consider the pharmacokinetics of the model after an i.v. bolus injection into
the blood, such that X30]=X? =dose and X;[0]=0 V i#b, are the initial conditions
of the system. Let the hepatic clearance be described as CL,C,, =kC,, accepting that
the metabolism of the drug is a first order process in Cj, as a trap annihilation reac-
tion described by (1.1), where £ is the first-order rate coefficient. Let the rate coeffi-
cient be time dependent of the form k=k{j=«r ¢, assuming that the metabolism
transpires within a fractal environment, where « is constant in time and {e€[0,1).

Now the mass balance differential equation for the metabolizing liver adopts the form

d—d)i—h— = Qth—(% +Kt_{)ch .

The set of homogeneous linear first-order differential equations may be

described with a concise vector notation similar to (1.9):

X = AnRX, X=X
C=v1'X,

where X' =[X3, X), ..., Xy, X4]" is a (s+2)-dimensional column vector of the depen-
dent state variables, £=[Xg,0, ...]T is a (+2)-dimensional column vector of

(5.1)

constnats describing the initial conditions, V=6;;Vi, i=b,1,...,n,h, is a constant
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matrix of the compartment volumes, and A[] is a matrix describing drug pharmacoki-
netics with at least one time variable component (see Appendix 5 for an explicit
statement), and C; = X;/V; are compartment concentrations.

Since a system of (77+2) first-order equations with at least one variable coeffi-
cient is equivalent to a general (17+2)th-order differential equation, for which exact
closed-form solutions exist only rarely when the order is greater than or equal to two
(81), solutions for (5.1) typically remain elusive. Considering that for a PBPK
model there may be any natural number, 7, of non-climinating tissues and that the
unknown parameter, £, may have a range of fractional values, a general closed form
exact solution is impossible because A will be a nonconstant matrix of differing
sizes. Now, while systems of differential equations may be solved numerically,
exempli gratia by Gear's method for stiff differential equations (80), said techniques
depend on input values for all of the parameters, some of which may not be known.
These numerical techniques do not allow for unknown parameters, such as ¢, to
remain for subsequent fitting directly from the data. Moreover, analytical solutions
better lend themselves to teaching and understanding of pharmacokinetic models and
their implications compared to obfuscating numerical methods. Therefore, it
remained a major objective of the report to describe solutions to the PBPK model
analytically and provide an objective estimate of the spectral dimension of the liver.
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An Approximate Analytical Solution
by Pertubation Methods

If the influences of fractal kinetics in the liver are minor, then { will be a small
parameter, such that in the limit as £— 0, familiar classical annihilation kinetics are
restored since k1% > «, a constant. With this view, fractal kinetics within the dog
model liver can be considered as a slight alteration or pertubation of classical kinet-
ics. Pertubation theory is a collection of iterative methods of dilute rigor, by mathe-
matical standards, for slyly obtaining approximate solutions to problems involving
small free parameters, as { is presumed to be for the remainder of this report. Follow-
ing attested pertubation approaches (81), the solution of the pharmacokinetic system

was assumed to be of the form

Xit1=) " Xa, (52)

n=0
for the initial conditions X'o{0]=X and X,[0]=0 V n>1, where the zero-order term,
X, fullfills the original initial conditions alone and all terms must submit to the
physical boundry condition of X,,[r-c]=0 V¥ n. Because { is a small number, larger
powers of { and the corresponding higher terms of the above summation are
expected to have relatively small magnitudes. Unlike local analysis of differential
equations by series substitutions, pertubation techniques are global in the sense that
if the pertubation series converges, then it does so for all finite values of f, not just

for the abscissal domain within a radius of convergence around some time, o (81).

Notice that since { is a free parameter independent of ¢, afier the substitution of
(5.2) into (5.1), such that
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ié"x.'. =Alt,{li£"x.., (5.3)
n=0 n=0

an equivalence of terms for each power of { between the left and night sides of (5.3)
is implied. But with the coefficient matrix, A[t/], harboring a term with the form of
1, the aforementioned equivalences are obscured. Using an approach unobserved
in any literature to solve similar problems, the recalcitrant term implied by fractal
kinetics was approximated as a Maclaurin series expansion in the variable {, with
results useful for insertion into pertubative methods. Since, Ax)=X 0 anx”, where
an=f"[0)/ n! by Maclaurin series, if fig]=¢~¢ and because dréide=14n(-1) =
SOU=1Y(ng)" ¢ then a, =(-In{))"/n!, such that

¢ =Z Sl An(th)" * = 1-Inft)¢ +%(ln[t])2 Z-... (54
n=0

Like the pertubation expansion of X1, this expansion of r~¢ is local in { (around
¢=0) but global in ¢ (see Figure 5.2).

1.5 ¢
b {=0.15
05 ¢ ¢
f t -—;E_‘“_,ﬁ
alt] 800 1000 1200 1400
05 Time t (min)

Figure 5.2: A comparative graph indicating that the series expansion (5.4) rapidly
converges over the domain of ¢ spanning the experimental abscissal data for an
experimentally relevant value of .

Afier substitution of the series expanasion of 1%, the coefficient matrix was
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mulZ( (nfth” Ac £* = Ao - Inft] A £ + 3 (Int])?A, {2 59

= ALl = Ao + L ALl + A + .,

where A_ ocdpp is a constant matrix containing a single nonzero component, and A,
is a constant matrix of the form to be expected if classical kinetics alone was occur-
ing in the liver (see Appendix 5 for explicit statements). The substitution of the
series form of the coefficient matrix (5.5) into (5.3) establishes the equivalence of
terms for each power of { between the left and right sides, such that

Zrﬁ Z‘ (MD&CZ?X

which allows the following important statements of equality:

2 X:)=ono

& Ri=AR +A %,

32 X=AX+A R +A, R
: (5.6)

oE & =2Aixn—i

i=0

The zeroth-order pertubation equation from (5.6), describing a system of
homogeneous first-order linear differential equations, incorperates all of the pharma-
cokinetic information of the PBPK model if the drug kinetics within the liver were
assumed to be classical. Because Ay is a matrix with constant coefficients and the
initial conditions are known, a solution may be realized, analogous to a single homo-
geneous first-order linear differential equation, of the form (82),

Ro=Ao%o A Roloi=X = Xof=etX, (57)
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where a term of the form e is called a matrix exponential (sec Appendix 5). The
acheivable solution to the zeroth-order pertubation equation in turn renders higher-
order pertubation equations assailable. Afier substitution of (5.7) into the first-order
pertubation equation of (5.6), a nonhomogeneous first-order linear differential equa-
tion, A1 X being the inhomogeneity, most importantly with constant coefficients,
that is susceptible to solution by the method of variation of parameters as defined in
equation (a.3), results:

Ri=AoRi+A % = X.[t1=e“°‘fe"‘°‘Aleo[tldt, X0 =0.

The iterative process of pertubation theory replaces the original intractable differen-
tial system (5.1) with a sequence of amenable inhomogeneous equations. Generally,
the nth-order pertubation equation has a solution based on the solutions of all the
previous pertubation equations, such that

X, =Zn:Aa Ro-i = Xalt) = e“"‘f e At (i Ailt] i’.._imjdt, Xal01 = 0.
i=0 =l

The final, closed form analytical desription of the proposed PBPK model describing
the amount of drug in each compartment in terms of pharmacokinetic parameters,
which may remain as unknowns for subsequent direct estimation by comparison to

experimental data, is established by correct insertions into (5.3), such that

RtI~X+{X+ 2%+ ... + Ry

By a consideration of the uncertainty of the experimental data, a rational decision
regarding the maximum order, 7, of the pertubation term that is warrented for inclu-

sion may be reached.
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Chapter Six

Model Predictions & Comparison to Data

However, a given theory may have been conceived as nothing more than an
intellectual exercise with no pressing motivation and with little concern for its
possible truth or usefulness.

-William S. Hatcher

Because of the heuristic intent of the paper, its theoretical emphasis, and lim-
ited familiarity of the author regarding current practical implementation of clinical
PBPK models, a mathematically analogous two compartment model will be used for
further analysis. Given the complexity and the large number of nonphysics assump-
tions and input required for a PBPK model, all upon which the author remains too
ignorant of, it is surmised that any results obtained by use of an ill-executed PBPK
model would be less meaningful than what is achieved below. Besides, there exists,
in my opinion, a kind of denial amongst many Pharmacokinetic researchers regard-
ing either the continued relevance of, or the similarity of their own models to, classi-
cal multicompartmental models. It is rarely observed that the mathematical structure
of most PBPK models is very similar to that of a similarly complicated classical
multicompartmental model. At its core the argument is primarily one of philosophi-
cal foundations rather than practical capabilities, since both methods can be used for
most clinical pharmacokinetic applications (17) and a rationally designed classical
multicompartmental model may have some theoretical ramifications (84). There-
fore, I establish a classical two-compartment open model as a test case by kinetically
discriminating between a fractal and non-fractal processes of drug disposition and

elimination. Let the liver, and therefore the elimination of mibefradil, be contained
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within the fractal compartment and the concentration measurements be taken from
the nonfractal compartment as shown in Figure 6.1.

k2
X; =Mass
Xo o
vV Bol Central Compartment
LV. Bolus V| = Volume, kiz V2 = Volume;,
Time Dependent

Elimination

Figure 6.1: A diagram of a 2-compartment model where the i.v. bolus source
enters, and measurements are taken from, the central compartment. The secondary
compartment is considered fractal with a time dependent rate of elimination.
Compare to Figure 1.3.

Let the drug mass balance differential equation for the central compartment be

X
% = —ky X +kp2 Xy, Xy[o] = X =dose. 6.1)
Let the drug mass balance differential equation portraying the fractal compartment be

ax;
dt

where C;=X;/V;, ky; and ky are positive first-order transfer rate constants, and ko, is

= ka1 Xj —ki2 X2 ko2 X2, X001 =0, 6.2)

an elimination coefficient. Let the elimination coefficient be time dependent as

implied by fractal kinetics, such that
ko =kt%, k>0

where {€(0,1]. Since concentration measurements were drawn from the central

compartment, only a solution for that space need be elucidated. By isolating for X3
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in (6.1), calculating its derivative, and substituting both results into (6.2), a generally
cantankerous homogeneous second order linear differential equation with variable
cocfficients describing the drug concentration in the central compartment is caused:

X7 + (k2 +ki2 +kt™) X] + ko kt ¥ X; = 0. (6.3)
Initial conditions are X;[0)=X and, by substitution of X 1[0) and X5f0] into (6.1),
Xi(0)=-k2, X, while an additional physical requirement is '™ x,(0)=0. Now, a
cursory glance at equation (6.3) ostensibly reveals an potential singularity when =0,
but a phase portrait of the corresponding system of first-order differential equations,
(6.1) and (6.2), indicates a stable trajectory for the solution towards a nodal sink at
the origin for /- o as yielded by the particular initial conditions for this model (see
Figure 6.2).

Xz xz

{=0 {>0

xl X|

Figure 6.2: A numerical plot sketch using experimentally relevant numerical values
for the parameters to qualitatively suggest the perturbative affects of fractal kinetics
on the trajectory in the phase plane for the model system using equations (6. 1) and
(6.2) (Dr. Li, Associate Professor of Mathematics, University of Alberta, personal
communication, 10 September, 2001).

To expunge superfluous subscripts and to stress the unspecific mathematical
applicability of the following method for solution of equation (6.3), not quite in its
most generic form, accede the temporary substitutions of ¢ for X;, a for k31, and b
for k3, such that

¢"+(a+b+kt"{)¢'+akt‘{¢=o, (6.4)
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Now, congruous with the previously described perturbative approach within the
PBPK model, let the influences of fractal kinetics in the fractal compartment be
diminutive, so { will be a small parameter and the solution of the pharmacokinetic
system can be assumed to be of the form

o= ) att, (6.5)
=0
such that
su=) o A\ sn=d raw ©656)
n=0 n=0

After substitutions of terms of the differential equation (6.4) with the expansions
(5.4), (6.5), and (6.6), and following some subsequent sorting, an equivalence of
terms for each power of { may be recognized which requires the following series of
statements of equality:

£ ¢ +(a+b+kgh+akéo =0, gol0}=X, dio]=-aX

2t 7 +(a+b+k)¢] +akg, = kin[t]¢g +akInft] ¢y,

#1001=0, ¢j[0j=0
$2: #7 +(a+b+k) g} +akey =kint1 ¢} +aklng ¢,
~ 2 kot ¢~ L ak(dnw)? do, S2101=0, o) =0
2 : 2 ©6.7)

(-1
i

. i , _ n )i+l i d .
o ¢n+(a+b+k)¢n+ak¢n_§ T k)’ (- +a) o,

$al0) =0, ¢y101=0
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The zeroth-order perturbation equation from (6.7), describes a classical two
compartment open model if the elimination kinetics within the secondary compart-
ment were assumed to be classical. The solution is of the form of a sum of exponen-
tials of equation (1.10):

doltl =& €' + 8, %! (6.8)
where s and s) are negative coefficients that are a function of a, b, and k, while O )

and &, are real coefficients that are functions of a, b, k, and X (see Appendix 6 for

explicit statements).

Contingent upon the successful simple solution to the zeroth-order equation, as
(6.9) is, the contributions from the second and all higher order equations are calcu-
lated. Success of the method of integration by the variation of parameters used for
the post-zero terms, depends on at least solutions to integrals of the form

I = f (In[tD)" €' dt,

where 6la,b,k] is some constant. While these solutions and their derivatives exist,
their account requires the special functions: Euler gamma function I'[gy), exponential
integral function Ei[¢s), and the generalized hypergeometric function pFql@; B,01]
(see Appendix 6 for explicit statements). Finally, compliance to the initial condi-

tions depends on terms behaving asymptotically like

tlin(l) Inft](e** - %Y =0
occurring at each step of the perturbation.

It is disappointing that the analytical solution to the fractal compartmental
model, assembled with the perturbation terms acquired from (6.7), quickly becomes
complicated because this blunts a touted advantage of this approach - that it is a
teaching tool and a method for physical and pharmacokinetic insight superior to
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strictly numerical methods. The behaviors of the first three perturbation terms are
shown in Figure 6.3. Also, the variable, ¢, introduced in (6.4), may just as well be
interpreted as a concentration of the drug in the central compartment for the remain-
der of the report since C, =X,/ V; .

¥
(ng) D
rug 0.006 Very Early-Time Behavior
Xor¢
100 |
0.004 . (_’;?; i
75
0.
olt) 002 Ayl =)0 =0
! 02 04 o.
25 -
200 400 600 800 1000 1200 1400
Time t (min)
=25t

Figure 6.3: Comparative graphs of the first three terms impelled by the series of
equalities in (6.7) for the pharmacokinetic model employing illustrative values of q,
b, k, and X. Notice that the initial conditions for the higher order perturbation terms
are met at the origin (). The solution implied is ¢(i]=@o[r] + {P1 1] + L2 Sai1] .

The Spectral Dimension of the Dog Liver
A three term perturbation expansion approximation to the solution of the
differential equation (6.4) was adopted of the form

ot ~ dolt) + LAl + 2 dottl , L <1, (6.9)

per (6.5), and compared to the pharmacokinetic data using the techniques of nonlin-
ear fits with a global optimization method as previously described in chapter three
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(see Figure 6.4 for an example). The best-fit values for the small parameter, £, were:
{p1 =0.084, {p; =0.092, {p3 =0.111, and {ps =0.043, for dogs one to four respec-
tively. The absolute discrepancy was estimated by the chi-squared function to be:

Xb1=17, x3; =10, xB;~14, and 3, =~23.

(22) =
m 200 ¥ =~10
¢ =0.092
200 | 150 |
Drugf § Early—Time Behavior
C 100
150 H
i) L
100 H . — . .
75 100 125 150 175
50 t Time t
0 200 400 600 800 1000 1200 (min)

Figure 6.4: Mibefradil time course data fit with a three term perturbation series
implied by a 2-compartment model with fractal kinetics in the eliminating
compartment for trial [V-PV-D2.

Because the pharmacokinetic model (6.5) is nonlinear with respect to the
unknown parameters, to establish the variance of the fitted small parameter zeta,
synthetic sets of data via Monte Carlo methods were fabricated. While a standard
Bootstrap approach (85) is based on resampling methods whereby sets of N datum
points are randomly selected with replacement from the original set of data, °2 (see
Figure 2.3), this technique is troublesome for the pharmacokinetic data studied in
this report. Since the data sets are rather small and with a particular lack of sampling

at early times when rapid changes in concentration occur, and a data set missing
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influential datum points would prejudice calculations (consider Figure 6.4 with
either the first or last datum point missing), synthetic data sets more reflective of the
experimental data sets were devised. A Gaussian distribution centered at each point
in 92, with a standard deviation, 0; =0.09C;, i=1,...,N, allows for new data sets,
still possessing the inherent uncertainties but without duplications or omissions, to
be created (Dr. Lele, Associate Professor of Statistics, University of Alberta, per-
sonal communication, 20 August, 2001).

A statistically suspect but practically manageable number, N=300, of syn-
thetic data sets, §Z , i=1,..., N, were pseudorandomly generated by computer for
each dog and fit. A resulting M-dimensional distribution of fitted parameters, (d,
i=1,...,N, corresponding to different chi-squared values can be observed over one
intersecting plane in Figure 6.5. The one dimensional confidence intervals for the
parameters are indicated by the appropriate projections of the region onto the axes
(93).
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Figure 6.5: The confidence region intersecting the -{ plane in parameter space for
trial IV-PV-D2, indicating an ellipse of 90% confidence.

The best-fit values for the small parameter, ¢, including uncertainties, were:
¢{p1=0.084+0.020, {p; =0.092+0.014, {p3 =0.111+0.016, and {ps =0.043 +0.028,
for dogs one to four respectively. This implies, by (4.7), calculated values of the
spectral dimension for each of the dog livers are: dP!=1.832+0.040,
dP2=1816+0.028, dP3=1.778+0.032, and d®*=1914+0.056. A comparison
indicates that there is not agreement amongst all of the results to within experimental
and theoretical uncertainty, but a mean value of the spectral dimension for some
imaginary average dog, by the basic methods of error propagation, is J2Veraec
=1.84+0.04 .
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Model Adequacy

Lastly, the goodness-of-fit of the model, as described in chapter two, may be
reckoned by concocting a last data set useful for establishing a meaningful compari-
son of the model to the real data. Using the model equation (6.9) itself, a Gaussian
distribution is centered at each point (1;,¢(4]), i=1,...,N, with the standard devia-
tion, 0; =0.09C;. Analogous to the previous procedures, a series of new synthetic
data sets, N=300, are made, via a pseudorandom number generator over the Gauss-
ian distribution, and fit, via the chi-squared figure-of-merit function, to the same
model from whence they originated. This establishes an ad hoc distribution of the
chi-squared function around the model based on (pseudo) random fluctuations of the
data as managed by the expected Gaussian distribution at each point. Finally, a
meaningful statistic may be calculated comparing the model to the real data: the
probability that a data set, exhibiting at least as much disagreement with the model
as the real data set does, could arise from the model, assuming it is correct, given the

expected random noise as observed from the experiment (see Figure 6.6).
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25 s 715 10 12.5 15 XZ

Figure 6.6: The ad hoc chi-square distribution for the model to which a chi-square
value may be compared to estimate the probability that such a model could give rise
to that data set or to one that fits at least as poorly. The probability is simply the
ratio of the statistical weight of the bins to the right of the observed chi-square value
to the total number of all observations (N= 300). Relevant to IV-PV-D2.

Following said procedure, the calculated chi-square probability for each set of
dog data was: Pp, =0, Pp, ~0.11, Pp; =0.02, and Pp; =0. Thus it seems that a at

least half of the trials do not support the model given the experimental uncertainty.
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Chapter Seven

Discussion

Subjective reality has the capacity to create abstract internal mental models of
phenomena, and it is these mental representations that are really 'known'. They
become the object of our scrutiny, contemplation, and social discourse.

-William S. Hatcher

Upon reflection on the results of fitting the new theoretical model to the data
sets, despite the apparent lack of approval indicated by the statistical tests used, there
were some tantalizing possibilities for a positive interpretation. An improved fit, as
measured by the chi-square values, compared to a corresponding classical model was
observed (compare Figure 6.4 to Figure 3.9). Unlike the negative indications from
the data of any effects due to Michaelis-Menten kinetics, the calculated values of L,
between 0.043 and 0.111, do not agree with the null hypothesis, that =0, within

experimental uncertainties.

It may also be the case that the adopted experimental uncertainty of 9% was
too conservative or that it was not normally distributed. Indeed, a further consider-
ation of the uncertainties of the data is warranted. For example, since the slope is so
steep during the initial peak phase of the experiment, <25 min., even small uncertain
ties in the measurement times, which were assumed to be zero, would produce large
uncertainties in the concentration measurements. Additionally, the intrinsic uncertain-
ties of the biological model systems are likely to produce outlying data points that
conspire to indicate low goodness-of-fit tests. This lack of predictability may arise
form different sources; these include system instability (perhaps due to chaos),

environmental fluctuations due to effects outside of the systems modeled, and mea-
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surement uncertainties (especially in time). Besides containing mundane signal and
noise, irregular time series may be chaotic - irregularities produced by the intrinsic
deterministic dynamics of a nonlinear biological system. (88) The least-squares
fitting, linear or nonlinear, is 2 maximum likelihood estimation of the fitted parame-
ters if the measurement errors are independent and Gaussianly distributed and may
not have been ideal for the data sets provided. Perhaps a reanalysis of the data is
justified within the context of robust statistics - statistics that are less sensitive to
noise within the data (96,97,98,99).

Evidence that the data sets may not be well behaved is the simple observation
that the peak concentration for two of the three concentration-time course curves
occurred before the end of the intravenous infusion dose at ten minutes. The only
way this can occur is if the rate of removal of drug from the blood was greater than
the zero-order rate of the intravenous dose - an impossibility within the context of
classical kinetics or its extensions such as Michaelis-Menten kinetics. This observa-
tion may also imply a time dependent rate coefficient, even a reactivity of the system

to an input of drugs.

Considering that this report favors the interpretation that the kinetics of mibe-
fradil are affected by the fractal structure of the liver that consequently reduces the
rate of metabolism and clearance of drug over time, the question of why nature
would design the liver in such a way is raised. Now while there is no performance
advantage over a well stirred classically imagined compartment, one with a rate
constant due to a uniformly random distribution of drug and enzyme, such a compart-
ment may well be impossible to achieve under biological designs and the implied
comparison is therefore an ill posed one. It may be that the fractal liver design is the
best design possible, such that comparisons against non-ideal theoretical models, like
a poorly stirred sphere with enzyme adhered along the inner wall, are favorable. For



example, the fractal structure, with may layers of membrane at its interface, allows
the organ to possess a high number (concentration) of enzymes, thus giving it a high
reaction rate despite time dependent (decay) fractal kinetics. Indeed, the intricate
interlacing of a stationary, catalytic phase of the hepatocytes, with a liquid phase of
the drug dissolved in blood, along a fractal boarder is what reduces the required
diffusional distances for reactions to take place with any appreciable celerity. More-
over, the complicated structure of the liver which provides for a huge interface
between drug and hepatocytes, despite, may be generated quite simply during the
growth of the liver (see Figure 4.6). The fractal form may be parsimoniously
encoded in the DNA, indirectly specified by means of a simple recursive algorithm
that instructs the biological machinery how to construct the liver. In this way, a
vascular system made up of fine tubing with an effective topological dimension of
one may fill the three dimensional embedding space of the liver. These possibilities

reveal that the structure of the liver may necessarily be that of a fractal.

Finally, it is suggested that the often reported (87), poor correlation between in
vivo and in vitro effects of drugs may be explained by the difference in the physical
environments the two situations provide. I assume that most in vitro experiments of
enzyme performance are made under the standard laboratory the conditions that
satisfy classical kinetic assumptions. It is suggested that if the in vivo tests on hepati-
cally metabolized drugs were made while attempting to reproduce the dimensionally
restricted conditions of the liver, such as within a porous medium, the results may

more closely match the results from in vivo experiments.
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Chapter Eight

Conclusions

Even if we have so far been unsuccessful in fulfilling some individual need, we
can always hope that we will in the future discover some heretofore unknown
resource or power that can engender success.

-William S. Hatcher

The pharmacokinetics of mibefradil in a dog model system was scrutinized.
En route, the basic principals of kinetics, pharmacokinetics, and scientific modeling,
philosophy, and statistics were contemplated.

Experimental pharmacokinetic data sets were first addressed by empirical
means. The unknown experimental uncertainty was estimated to be 9% and was
assumed to be Gaussianly distributed. Pure power functions seemed to be the most
efficient basis set with which to fit the data. Phenomenological evidence did not
support the notion that Michaelis-Menten kinetics occur in the liver at the dosages
studied. Mibefradil is likely to be eliminated in an annthiiating trap reaction with
liver enzymes. An improved, weighted Prony's method was observed to be problem-
atic for construing Pharmacokinetic data because it generally implies that the drug
levels in a compartment are oscillatory to some extent. Interpretation of this phenom-
ena within the context of biological signal and control systems is possible and may

be a topic for further research outside of this report.

The physiology of the liver supported the hypothesis that mibefradil may
experience a fractal like environment within. Fractal kinetic theory suggested the
adoption of a time dependent rate constant, with power law form, monitored by the
spectral dimension. A general PBPK model was proposed and elucidated incorporat-
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ing at least one heterogeneous compartment following fractal kinetics. Afier a local
series expansion of the time dependent rate constant around {=0, assuming that the
fractal effects on the time dependent rate constant were small, approximate analyti-
cal solutions to the model differential mass balance equations were derived by purtur-
bative techniques.

Mibefradil concentration-time course data were analyzed with a mathemati-
cally analogous multicompartmental model with the goal of measuring the effective
spectral dimension of the dog liver. Estimates were: dP!=1832:+0.040,
dP?=1.816+0.028, 4% =1.778+0.032, and d®* =1.914+0.056, for the four dogs,
though these results are not enthusiastically endorsed by the chi-squared test statistic
for the adopted experimental uncertainty. Yet, it is proffered that heterogeneous
processes of drug distribution and reaction in the liver can obey the principles of
fractal kinetics. Elaboration of present PBPK and multicompartmental models to
include fractal kinetics should be considered.
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Appendix

The world is full of obvious things which nobody by any chance ever observes.
-Sherlock Holmes, The Hound of the Baskervilles
Sir Arthur Conan Doyle

Al. An Introduction to Lambert's W Function

The omega function, product log function, Productl.og[x] in Mathematica
notation, or Lambert's W-function, is a generalization of the natural log function, and
a comparison has heuristic value:

natural logarithm : x = ¢ <= In[x] = In[e'] = y, while

productlog: z = we” < W[z] = Wjwe®] = w.

fiz]t
In[z]

-
F

-1t

Figure a.1: A graphical comparison of the obscure product log function, H#jz], with
the related ubiquitous natural logarithm function, In{z).
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The derivative of W is

1 _ W[z}
(1+WizheVd ~ z(1+Wjz]) °

Wz = z %0

The omega function satisfies the differential equation
df f

dz z(l+f)'

Lambert's W-function has the series expansion

( l)lll—z i
wn-z TR

W(1) is called the "omega constant™ and can be considered a sort of "golden ratio" of

exponentials since

e Wil Wil] = In

i
W[lll = W[1].

A2. A Recapitulation of the Method of Least-
Squares Approximation Over Discrete Sets of
Points

Consider the case when the data comprise a discrete set of N points, (¢;,C}),
(2,C3), ..., (tn,Cn). Let the approximation of the data at any of the points be a sum
of basis functions, ¢ j» linear in the parameters, a;, of the form

M
G = Z a; ¢jlu] = Cls; a, ..., ay), (a.1)
e

where M<N. Now the best approximation in the least-squares sense for the above
equation is defined to be that for which the parameters are determined so that the
magnitude of the chi-squared function is at its nadir:
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N
minimize }? = 3" Wik [(C; ~ Clt;ay, ..., ay))?,
i=1

where w;[1;] is the weight assigned to that datum point, such that often wilti] is a
function of C;, and C;-Cy] is called the residual at t;. This requirement imposes the
necessary conditions

N
ad
3;2 wilt1(Ci - Clt;ar, ..., an))> = 0, r=12 ..., M),
i=1

that lead to the exactly solvable M simultaneous linear equations in the A unknown
parameters a),a, ...,ap. These important "normal equations” of the method of
least-squares can be obtained (45) through an elementary process by first writing
down the N equations which would require that (a.1) be an equality at the N points ;
by direct substitution. The rth normal equation is obtained by mulitiplying each
equation by the coefficient of a,, that being ¢,[ _] for this set of equations, and by the
weight associated with that equation, and summing the results, as follows:

frlula) + daltilay + - + pyltilay = C,

dilla; + $ai2]a; + -+ + dminlam = Cy

) (a.2)
S1ien]a; + dalnlay + -+ + Pulitnlay = Cn

+

Sr1d1 + G628 + - + Gmay = & (rth normal equation),

where ¢, ; are the constant coefficients of the unknown parameter variables a;
described by
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N
Sei = ), WISt fu]

and &, are constants described in terms of known values by

N
& = ) WiII5IC;.

A3. A Brief Definition of the Gaussian
Distribution

The normalized Gaussian distribution is a probability density function

1 x-XP
f; x} = e“ﬁ"
X, 0[ ] o m

’

where X is the center (the mean), and o is the width (standard deviation) of the
distribution, while x is the independent variable. The function describes the limiting
distribution of results in an independently repeated measurement of a quantity x

whose true value is X, if the measurement is subject only to random errors (33).
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Ad. Coda of Pharmacokinetic Concepts
Volume of Distribution
a Volume of Distribution
Drug Cplasma___ Tissues D
________ . ~ o5
g . feoeeao - & T O VedR e . a
(@) ?—Ele 9800C Tp o TS o s Vdistibution
Dose A asmal - .. - @
Concentration R
Tissucs T e LT
[ e S — T T [ 3 A e @
(b) [_chooooo\«ﬁ cte 8600€ Lo i R I
Tjeeseas b * FItees . . . o ° ‘;
Dose A C plasma e - I
distribution
TR /F§SQS§‘\ : b4 [ z .‘9
o sy veana i oy
- L N e C e e distribution
plasma L

Figure a.2: (a) The administration of a drug into the body produces a specific
plasma concentration. The apparent volume of distribution, Vdistribution , 1S the
volume that accounts for the total dose administered based upon the observed plasma
concentration, Ceoncentrarion- (b) Any factor that suppresses the drug plasma
concentration will increase the apparent volume of distribution. (c) Conversely, any
factor that increases the plasma concentration will decrease the apparent volume of

distribution (5).

Drug located outside of the plasma is present in the tissues. The apparent

volume of a tissue compartment has two basic determinants: physiologic weight or

volume of each tissue (¥;) and partition or distribution factors (K;). Whenever

tissues are grouped together for analysis their apparent volumes are combined

Viissues = ZKi Vi
i

and the volume at steady state is Vi, = Volasma + Viissues-
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Additional Noncompartmental Analysis Formulas -
Statistical Moments

The time course of drug concentration in plasma can at times be regarded as a
statistical distribution curve (6). Irrespective of the route of administration, the zero
and second moments are defined as follows:

L cudt  aumc
AUC = C[tl dt MRT = = .
-Jo /\ L Cudt  AUC

where MRT is the mean residence time of the drug in the body and AUMC stands
for Area Under the first Moment Curve. With the above values, estimates for the
Pharmacokinetic parameters of drug bioavailability, clearance, half-life, volume of
distribution, mean absorption time, and fraction metabolized can be simply calcu-
lated (89).

AS. Expounders of the Developement of the
PBPK Mathematical Model

The (7+2)x(n+2) coeifficient matrix, Afs] , of (5.1) characterizes the pharmacok
inetic intercourse between compartments of the PBPK model.

Q> O Q . Q &

V., Vi &V, R,V, R Va
T g2 0 - 0 0
Al = ‘% 0 "y 0 0
: : 0 0 0
w00 g% 0
! % 0 0 0 —(&Vb +VL -{)

After substitution of the series expanasion of ¢~%, the coefficient matrix could be

expressed as the series,
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Al {I=Ao—|n[tlAc{+%(lnltl)zl\c{z—--- .

The first term of the coefficient matrix series was

2 Q& 9 &
QV§ R| V| Rz V2 R' V. Rﬁ vi
'3 A o o 0
A=| % 0 w®mv; 0 0 :
: 0 -~ 0 0
w 0 &V 0
f 4
| % 0 0 0 0 ReVs V. |

the same matrix to be expected if the physiological model implemented only classi-
cal kinetics. For the remainder of the matrix series, only a simple (7+2)x(5+2)

constant matrix appears
060000
—-K -«|0 000
A':‘v_.,‘s""‘".,'oooo
00071

The coefficient matrix, A[1], can aiso be expressed as the series
Al 1=Ag + A+ Aslt) + ...,
where

-

dnith" A., n=1.
n!

At =

An Introduction to the Matrix Exponential (82)

Let the nxn constant matrix A have # distinct eigenvalues, 2 j» and a characteris-
tic polynomeal P{s}=(s-A; )(s-13)... (s-A,). A matrix exponential form with A is

=Mt Myttt + M, Mt
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possessing the same behavior of the exponential function under derivation:
(d/dnje?'=eM A. The square matrices of order n are given by M ;=L,[A), where
Lagrange polynomeals are designated to be L ,[s]=(N,[s]¥ N,{A;], where Njis] is
obtained by omitting the factor (s-A ;) from Pfs].

The Definition of the Method of Variation of Parameters
Y=AY+fly > Y=eM fe"“ fidt (a.3)

A6. Expounders of the Solution of the
Multicompartmental Mathematical Model

The two zeroth order pertubation exponential coefficients have the explicit

values of

- ~(@+b+k)ty(@+b+k? - 4ak
- 2

(eigenvalues).

a,b k>0 (@+b+kP-dak<(@+b+ k)? = s<0, so 3 real unequal eigenvalues
of the same sign (-), such that the critical point (X}, X2)=(0,0) is called a nodal sink.
The coefficients ¢; and &, take the values

s X(—a+b+k+\/(a+b+k)2—4ak)
1

1l

»

2V @+b+k? —4ak

. X(a-b-k+y@+b+k?-4ak)

2V@+b+Kk? —4ak

The Euler gamma function is defined by the integral I'zj= [**~' e~/ dt , and
can be viewed as a generalization of the factorial function, valid for complex z.
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The exponential integral is defined by Eifz] =- e /edt.

The generalized hypergeometric function has a series expansion,
qula;B;z]=Zf=o(al)k---(ap)k/{(ﬂl )k---(ﬂl )q}zk/k! .
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Glossary of Scientific & Literary
Vocabulary

Many of the following definitions are specific to this thesis, such that the

words or phrases may have other, or more general, definitions in a different context.

aberrant - deviating from the ordinary, usual, or normal type; exceptional.
abscissa - Cartesian coordinate obtained by measuring parallel to the x-axis.
abstract - disassociation from any specific instance.

accede - to express approval or give consent.

ad hoc - for the particular end or case at hand without consideration of wider
application: improvised.

ad libitum - in accordance with one's wishes; abbreviated as ad lib.

admonishment - to express warning or disapproval to especially in a gentle, eamest,
or solicitous manner.

adscititious - derived or acquired from something extrinsic.

adsorbent - a solid that absorbs another substance from a gas or liquid phase.
aegis - control or guidance especially by an individual or, group, or system.
ameliorate - to make better or more tolerable; improve.

amenable - liable to be brought to account; capable of submission.

analytical chemistry - the branch of chemistry concerned with analyzing materials
by chemical methods.

anatomy - the branch of biology concerning the structure of organisms.

angina pectoris - brief attacks of chest pain precipitated by insufficient
oxygenation of the heart.

antagonist - a drug that reduces the action of another agent.
appertain - to belong as a part, right, possession, attribute, etcetera; relate.
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a priori - relating to or derived by reasoning from self-evident propositions.

archetype - the original patiern or model of which all things of the same type are
representations or copies.

arteriole - any of the small terminal twigs of an artery that ends in capillaries.

assay - the determination of the concentration of a drug in comparison with that of a
standard preparation.

batch reaction - a reaction process where the reactants (drugs and enzymes for this
paper) are introduced with some given initial concentration without any further
introductions such that a nonzero steady state is never achieved.

begat - to sire or produce especially as an effect or outgrowth.
biliary - relating to bile-conveying structures.

bioavailability - the fraction of an oral dose that actually reaches the systemic
circulation of the biological model system.

biochemistry - the branch of science dealing with the chemical compounds,
reactions, and other processes that occur in living organisms.

biophysics - the application of physical techniques and physical methods of
analysis to biological problems.

bolus - a large pill, as used in medicine.

calcium - Ca?*; high intracellular [Ca?*] causes smooth muscle contraction around
blood vessels and contributes to high blood pressure.

canon - an accepted principal, rule, standard, or norm.
cantankerous - difficult or imritating to deal with.
capacitate - to make capable; enable.

capillary - any of the very fine blood vessels that form a network between the
arterioles and the venules throughout the body.

celerity - rapidity of motion or action.

chromatogram - the result of a chromatographic separation that may be visible or
that may take the form of a graph after processing of data.

chromatography - a group of analytical techniques for separating the components
of a mixture by differential adsorption of compounds to adsorbents or other
means.
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chronic - marked by long duration and frequent or continuos recurrence.

clearance - a measurement of the body or an organ to remove drug from the plasma,
measured as a volume per unit time (flow) of blood from which all drug is
extracted and excreted or metabolized. In pharmacokinetic terms, clearance is
the extraction rate divided by the plasma concentration of drug.

clinical pharmacokinetics - is a health sciences discipline that deals with the
application of pharmacokinetics to optimize the pharmacotheraputic
management of individual patients.

coda - something that serves to round out, conclude, or summarize and that has an
interest of its own.

coliagen - a group of insoluble fibrous proteins of very high tensile strength that
form the main component of connective tissue.

compact set - a set £ in a metric space (X, d) is compact < Y sequence of points
{Pn} C E, 3 some subsequence {q,} c {p,} which converges to a point pP,EE.

concoct - to prepare by combining raw materials; devise; fabricate.
conduce - to lead or tend to a particular result.
congruous - being in agreement, harmony, or correspondence.

convolution - The expression w(1] = (feg)ir] = L' Jrigu—-ride is called the
convolution of fand g. It gives the response at the present time  as a weighted
superposition over the inputs at times ¢ <t. The weighting factor g{¢-r')
characterizes the system and f{r] characterizes the past history of the input.

curt - short; shortened; brief; abrupt in manner.
demarche - a course of action; maneuver.
deportment - the manner of conduct.

didactic - designed or intended to teach.
diminutive - indicating small size.

disposition rate constant - in terms of classical compartmental models, it is the first
order rate constant used to describe the concentration time-course data,
expressible as a function of the individual intercompartmental transfer rate
constants and elimination constants.

distributive phase - afier a rapid i.v. injection of drug, the finite time for a drug to
distribute fully throughout the available body space.
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Dyson, Freeman J. - (1923- ) physicist, Fellow of the Royal Society, London;
Professor Emeritus, Princeton, NJ; never received a PhD.

ecological fallacy - invalid conclusions about causality may occur when
relationships between variables measured at the group level are assumed to
apply at the individual level.

embedding dimension - the dimension of the Euclidean space R” in which a shape
(fractal) F resides, thus dg =n. For a warped surface inR3 | for example,
dr =2, and dg =3.

endogenous - arising or developing within an organism, tissue, or cell, and
excluding any consequences of externally added drugs.

endothelium - the single layer of thin, flattened cells that lines the blood vessels as
in the liver.

entropic - chaotic, disorganized, and random.

enzyme - a biological macromolecular substance composed wholly or largely of
protein, that catalyzes, more or less specifically, one or more biochemical
reactions at relatively low temperatures.

epistemology - the study or a theory of the nature and grounds of knowledge,
especially with reference to its limits and validity.

ergo - therefore; hence.

erythrocyte - red blood cell; hemoglobin-containing cells that carry oxygen to the
tissues and are responsible for the red color of blood.

et alia - and others; abbreviated as et al.

evince - to constitute outward evidence of.

exemplar - serving as a pattern.

exempli gratia - for example; abbreviated ase.g..

exogenous - originating outside an organism, tissue, or cell.

expounder - the noun form of verb expound - to state; to explain in careful detail.

extraction ratio - the fraction of drug which is removed from the plasma as it passes
through an eliminating organ.

extremum - the maximum or minimum of a mathematical function.

fact - an observed configuration.
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fenestra - a small anatomical opening among the hepatic endothelial cells between
the space of Disse and the sinusoidal lumen.

figure-of-merit function - a function that measures the degree to which a model
approximates a data set.

first-order rate - the rate of change in drug concentration or amount of drug,
is proportional to the drug concentration, such that, dC/df « iCl.

first-pass effect - since all the blood emerging from the intestines first passes
through the liver, the fraction of drug reaching the systemic circulation is given
by 1- ER, where ER is the extraction ratio of the liver. Therefore, the first-pass
effect is a significant characteristic of drugs with a high hepatic extraction ratio.

fractal - any of various extremely irregular curves or shapes for which any suitably
chosen part is similar in shape or statistical feature to a given larger or smaller
part when magnified or reduced to the same size.

Gaussian distribution - a probability density function defined in Appendix 3; also
called a normal distribution.

global optimization - the process of locating an extremum of an equation with
perhaps more than one local extrema.

Golden ratio - often called ¢; has the following properties: 9 =¢+1, it is the limit
of F[i+1)/F{i] as i - o where F is the Fibonacci relationship
Fli+2] = F(i+1] + F(i}, and finally, it can be expressed as a continued
fraction ¢ = I+ 1/(1+1/(1+1/(1+...))).

ground substance - a more or less homogencous matrix that forms the background
in which the specific differentiated elements of a system are suspended; the
intercellular substance of tissues.

Hatcher, William S. - (1935- ) Canadian philosopher and Professor of Mathematics
at Laval University.

Hausdorff dimension - for a shape F imbedded in D-dimensional Euclidian space
Sp, define the measure M, to be

M, = 8D N,
where £€R and N is the minimum number of points in the space Sp such that

every point in F lies within a neighborhood of radius ¢ of at least on point.
The Hausdorff dimension of F would be
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In[N,]

en0 Infe] -

dy =

A simple way of estimating the Hausdorff dimension for fractals is by
calculating the box-counting dimension. First compute the box-counting
dimension from a grid that is superimposed on a fractal image and count how
many boxes in the grid contain part of the fractal. Then increase the number of
boxes in the grid (but covering the same area: the boxes get smaller) and count
again. If the number of boxes in the first and second grids are G, and Gy, and
the counts are C) and C;, then you compute a dimension by the formula:

dy = In[Cy/C]/ n[VG, /G, ] .

hepatocyte - the major cell type of the liver. They are arranged in folding sheets
facing blood-filled spaces called sinusoids. Hepatocytes are responsible for the
metabolism of a wide range of substances including mibefradil.

Hertzian distribution - a one sided distribution wita maximum probability at r=0.

homomorphic - a structure preserving mapping from one structure to another, such
that, if objects in the first structure bear a certain relationship to one another,
then their images in the second structure under the mapping bear the
corresponding relation to one another.

HPLC - High Performance Liquid Chromatography.

hypertension - abnormally high arterial blood pressure.

id est - that is; abbreviated as i.c..

illation - a conclusion inferred; the action of inferring.

inscrutable - not readily investigated, interpreted, or understood.

interface - a surface forming a common boundary of two bodies, spaces, or phases.
intersperse - to place something at intervals in or among.

interstitial fluid - the portion of the extracellular fluid, consisting mainly of water,
that occurs outside the blood vessels and the lymphatics.

intravenous - within a vein; used especially of an injection, infusion, transfusion, or
aspiration; abbreviated as IV or i.v..
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in vitre - of any biological process occurring or made to occur outside an organism,
"in glass".

in vive - of any biological process occurring or made to occur within a living
organism; "in life".

juxtaposed - to place side by side.
laudable - worthy of praise; commendable.

law of mass action - the rate of a simple process (reaction) is proportional the
concentrations of each of the reactants under homogeneous conditions.

law of superpasition - a model follows this law when its responses (outputs) to
different test inputs (¢, %) are additive, such that L]ap + by] = aLly] + bL[Y],
where L is a linear operator and a and 5 are constants.

linearity - a word with multiple meanings: in pharmacokinetics, a biological model
system is said to be linear if the systemic drug concentration at any time is a
function of the unit impulse response and directly proportional to the dose,
such that it obeys the law of superposition. A mathematical model is linear in
its parameters when it can be expressed as a sum of products between a
parameter and a basis function. A differential operator, 7, is said to be linear if
itisof the form Tp) =M +p, | Y*D+ _+p v/ +pyy, wherey=yfx],
and p; = fix].

lobules - a fundamental histological unit containing a sinusoid plexus.
lumen - the cavity of a tubular organ space, exempli gratia, within the sinusoids.

lumped-parameter - adjective used to describe a compartment in a PBPK model
wherein it is assumed that the drug concentration is homogeneous and the
transport process is only time dependent.

macroconastant - in classical multicompartment analysis, the constants of the sum of
exponentials that fit the data, 4; and g;, of equation (1.10) that are functions of
the microconstants, V; and £;, of the
multicompartmental model.

mammillary system - a classical linear pharmacokinetic multicompartmental model
designed with a central compartment on which drug concentration
measurements are made, to which the drug is assumed to be administered,
from which the drug is assumed to be eliminated, and with which secondary
compartments exchange drug in parallel by first-order processes.
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Matisse, Henri - (1869-1954) French painter and sculptor; studied under Moreau;
influenced by Post-Impressionism; became a leader among the Fauvists;
resident chiefly at Nice; probably knew very little about Pharmacokinetics.

matrix - a mass by which something is enclosed or in which something is
embedded; a rectangular array of numbers or functions.

mean residence time - the average total time the drug molecules spend in the
systemic circulation.

merit function - see figure-of-merit function.

metabolism - the totality of the chemical reactions and physical processes
undergone by a drug in a living organism.

metabolite - any substance, such as a drug, that is formed or changed by metabolism.

metric space - is a pair (X, d) where X is a set and d is a function, which V xy,z € X,

satisfies: 1) dix,y]#0. 2)dix,y]=0 & x=y. 3)dix,y]=dly.x] (symmetry).
4) dixz] <dlx,y) + dly, ] (triangle law), where d is called a metric for X and
dixz] is the distance from x to .

Michaelis-Menten kinetics - a model to explain the kinetics of a saturable enzyme.

microvascular - relating to the part of the circulatory system made up of minute
vessels that average less than 0.3 mm in diameter.

microvillus - a microscopic projection of tissue, especially any of the finger-like
outward projections of some cell surfaces.

model - a conceptual representation of a particular phenomenon, system, or set of
experimental observations as an aid to understanding and as an object for test
or for further experimentation.

model system - any biological or biochemical system (exempli grata a dog) that is
used for study because it is considered to be representative of one or more
other (often more complex) systems in which similar phenomena occur or are
believed to occur.

nadir - the lowest point.

neighborhood - letc€R A £>0, then an open &-neighborhood of a point x* eRM
is defined as the open ball

Bix']:={xeRM: lIx - x*|| < g}

centered at x* with radius &.
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noncompartmental - a class of pharmacokinetic models of data with generally
simple assumptions providing efficient accurate empirical interpretations of
data for clinical pharmacokinetics.

notional - speculative; existing in the mind only.
obfuscate - darken; to make obscure; confuse.

open cover - for a set £ in a metric space (X, d), a collection {G,} of open subsets of
Xisacover if Ec {J, G,.

open set - for a metric space (X,d), a subset Uc Xisopenin XifVxe U, 3£>0 3
Bix;e]c U.

ordinate - Cartesian coordinate obtained by measuring parallel to the y-axis.
ostensible - being such in appearance; plausible rather than demonstrably true or real.

paradigm - a philosophical and theoretical framework of a scientific school or
discipline within which theories, laws, and generalizations and the
experiments performed in support of them are formulated.

parsimony - economy in the use of means to an end.

partition coefficient - the ratio of the equilibrium concentrations of a pure substance
dissolved in two phases that are in contact.

PBPK Models - Physiologically Based PharmacoK inetic Models.
pedantic - ostentatiously learned; making a show of knowledge.
penultimate - next to the last.

per - according to.

peri - near, around; enclosing; surrounding.

pharmacodynamics - the branch of pharmacology dealing with the effects of drugs
on the body, id est, with the physiological, therapeutic, and toxicological
responses to drugs with particular regard to the extent and time course of such
effects; "power of drugs"

pharmacokinetics - the branch of pharmacology dealing quantitatively with the
movement of drugs within the body, id est with the absorption, distribution,
metabolism, and elimination of drugs; "movement of drugs"

pharmacology - the science or study of drugs - their origin, characteristics,
identification, biological effects, and modes of action.
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phenomenological - known through the senses rather than intuition; concerned with
phenomena rather than hypotheses.

physical chemistry - the branch of chemistry concerned with the relationship
between the physical properties of substances and their chemical properties,
reactions, and structures.

physics - the science concerned with the properties of matter and of energy, and with
the interactions and interconversions between matter and energy .

physiology - the science of dealing with the functioning of cells, tissues, organs, and
organisms, and with the chemical and physical phenomena concerned.

plasma - the proteinaceous fluid in which the cells of blood are suspended and
unbound drug is dissolved; plasma = serum + fibrin + fibrinogen.

plexus - a network of interlacing blood vessels.

portal vein - a large vein that is formed by fusion of other veins, that terminates in a
capillary network, and that delivers blood to some area of the body other than
the heart. Hepatic portal vein: a portal vein carrying blood from the capillaries
of the stomach, intestine, spleen, and pancreas to the sinusoids of the liver.

posit - to purpose as an explanation.

precept - a principal intended as a general rule of action.

preem - a preliminary comment.

proffer - to put before a person for acceptance.

puissance - strength; power.

recalcitrant - difficult to manage; not responsive to treatment; resistant; unruly.

reductionism - a procedure or theory that reduces complex data or phenomena to
simple terms; the attempt to explain all biological processes by the same
explanations (as by physical laws) that chemists and physicists use to interpret
inanimate matter.

reductionist fallacy - when relationships between variables measured at the level of
individuals are assumed to apply at the group level.

renal - pertaining to, or of, the kidney.
replete - to fully or abundantly provide or fill; opposite of deplete.

residual - absolute difference between a measured value and a calculated value.
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rubric - name; title; something under which a thing is classified: category.
secondary - immediately derived from something original, primary, or basic.

second order reaction - the rate of change in drug concentration or amount of drug,
is proportional to the drug concentration and the concentration of another
reactant, such that dC/dt « [CJ{E}.

self similarity - the common characteristic of fractals, whereby in statistical or
qualitative terms, smaller parts of a fractal are related to larger parts.

sequester - separation, isolation.
serum - the watery portion of an animal fluid after coagulation.

simulation - a description of the experimental observations in a form concise or
more evident, but neutral as to the causes involved.

singularity - the point at which the derivative of a given function does not exist but
every neighborhood of which contains points for which the derivative exists.

sinusoid - a2 minute endothelium-lined space or passage for blood in the tissues of
the liver.

solute - a dissolved substance (drug) in a solvent composing a solution.

spline function - a function used to specify a specific function on an interval
consisting of pieces that are defined on subintervals, usually as polynomial or
some other simple form.

steady state - a situation of unchanging drug concentration in a biological model
system achieved when the rate of drug administration is equal to the rate of
drug elimination.

substrate - a substance that is acted upon, especially by an enzyme.
sundry - various or diverse.
superfluous - exceeding what is sufficient or necessary.

systemic - concerning the whole of the body of an animal rather than an individual
part.

tenet - a principal, belief, or doctrine generally held to be true.

topological dimension - This dimension is defined on local properties for all points
in F, and corresponds to the intuitive notion of dimension 4=0 for points,
d=1 for lines and smooth curves, d=2 for surfaces, etcetera, without regard of
how F is embedded in a higher dimensional space. A recursive definition can
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be given, such that (a) dr =0 if F is not connected (exempli gratia, points), and
(b)dr =k, k> 1 if any pe F has arbitrarily small neighborhoods Bp] whose
boundary has dimension dr =&-1 and the intuitive notion follows, because for
k=1, all neighborhoods of points in a smooth curve is just an interval whose
boundary consist of two points with dimension dr =k-1=0. A closed curve
may be the boundary of a point on a surface, and a closed surface defines a
solid, etcetera. The topological dimension is preserved when an
homeomorphism deforms the object.

topology - a branch of mathematics concerned with those properties of geometric
configurations which are unaltered by elastic deformations that are
homeomorphisms; configuration.

unctuous - revealing or marked by smug, exaggerated, assumed, or superficial
eamestness or spirituality.

unit impulse response - the systemic drug concentration time-course resulting from
the instantaneous input of a small unit of drug.

upshot - the gist as of an argument or thesis; final issue; end.

vascular - of or relating to a channel for the conveyance of a body fluid or to a
system of such channels.

veracious - marked by conformity with truth or accuracy.
visceral - relating to the viscera- plural of viscus.
viscus - an internal organ of the body.

volume of distribution - the apparent volume required to account for all the drug in
the body if it were present throughout the body in the same concentration as in
the sample obtained from the plasma.

xenobiotic - of, or relating to, substances that are foreign to living systems.

zero order rate - a rate of change in drug concentration or amount of drug, that is
independent of drug concentration, as is the case with a constant I. V. infusion,
such that dC/dt = constant.



