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ABSTRACT 

Objective: Neurocognitive phenotypes observed in aging have been linked to select 

combinations of candidate genetic polymorphisms and modifiable risk factors. In this 

dissertation, I test multiple methods and approaches to examine three modifiable risk domains 

(i.e., demographic, health, lifestyle) and six single nucleotide polymorphisms (SNPs) (i.e., 

Apolipoprotein E [APOE] Catechol-O-methyltransferase [COMT; rs4680], Brain-derived 

neurotrophic factor [BDNF; rs6265], Complement receptor 1 [CR1; rs6656401], Clusterin 

[CLU; rs11136000], and Phosphatidylinositol-binding clathrin assembly protein [PICALM; 

rs3851179]) on concurrent and longitudinal neurocognitive performance in non-demented aging 

and Mild Cognitive Impairment (MCI). This dissertation includes three studies. Study 1 tested 

SNPs, demographic, health, and lifestyle risk factors to build, compare, and validate a multi-

domain risk score to predict episodic memory (EM) performance and 9-year change. Study 2 

tested independent, interactive, and additive associations of two normal aging SNPs (COMT, 

BDNF), and as stratified by AD-related SNP (APOE) on EF performance in normal aging. Study 

3 examined independent and additive associations of (a) COMT, BDNF, and APOE, (b) COMT 

and BDNF as separated by APOE risk, and (c) as moderated by age and lifestyle activities groups 

on EF performance and 9-year change. Method: This dissertation uses data from normal aging 

older adults and adults classified as MCI from the Victoria Longitudinal Study (VLS): Study 1 

(normal aging: n = 568, mean age at baseline = 68.32 years; MCI: n = 69, mean age at baseline = 

73.36 years), Study 2 and Study 3 (normal aging: n = 634, mean age = 70.58 years). Study 1 was 

longitudinal, Study 2 was cross-sectional, and Study 3 followed an accelerated longitudinal 

design. I used appropriate combinations of confirmatory factor analysis, longitudinal invariance 

testing, parallel process latent growth models, and receiver operating characteristic curves to test 
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research questions in all three studies. Results: In Study 1, first, I observed that higher risk 

scores on demographic, health, and lifestyle risk factors predicted worse EM performance at age 

75 years and steeper 9-year decline. Second, higher risk scores on independent and additive risk 

for demographic, health, lifestyle, and genetic factors predicted worse EM performance at 

baseline and time point 3. Third, independent risk score for demographic and health risk domains 

distinguished non-demented older adults from those with MCI. In Study 2, I observed that older 

adults with a high-risk allelic (COMT allelic risk + BDNF allelic risk) combination performed 

differentially worse on EF compared to their non-risk counterparts (COMT no allelic risk + 

BDNF no allelic risk). In Study 3, I observed that APOE risk carriers showed a magnified COMT 

+ BDNF risk panel effect on EF performance at age 75 years but this effect was not present in 

the high lifestyle activities group. Discussion: I used methods and approaches to building a pre-

clinical risk score with multiple domains (genetic, demographic, health, and lifestyle risk factors) 

that were selected to detect cognitive decline in normal aging at a point prior to dementia onset. 

In addition, select additive versus interactive mechanisms for cognitive aging genes may provide 

insight into the complex underlying mechanisms and pathways that influence neurocognitive 

performance in non-demented older adults. Future studies can investigate and address the 

applicability of our synergistic methods using select risk factors to develop theoretical concepts 

and identify genetic and modifiable risk factors to inform dementia prevention strategies. Such 

approaches also have the potential to help identify complex neurobiological and neurogenetic 

underpinnings of polygenic phenotypes observed in normal aging. 
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CHAPTER 1: GENERAL INTRODUCTION 

 In recent decades, high life expectancy rates in developed countries have led to an 

exponential growth in dementia incidence and prevalence. Dementia researchers have shifted 

focus from finding a cure to identifying risk factors that may inform prevention strategies. The 

assumption is that targeting modifiable factors can lead to early detection of risk and thus 

intervention strategies that may delay cognitive decline and dementia onset in older adults 

(Anstey, 2014; Barnes et al., 2009; Kaffashian et al., 2013; Williams & Kemper, 2010). 

Currently, a variety of designs and strategies are being developed to promote optimal cognitive 

development and to reduce cognitive decline. For example, Anstey (2014) introduced the 

Cognitive Health Environment Life Course Model (CHELM). The model represents 

environmental, demographic, lifestyle, and genetic factors as independent variables that may 

influence cognitive decline. CHELM is based on the integration of six important concepts 

underlying cognitive development and change throughout the life course. These six interrelated 

concepts are differential development, intra-individual dynamics, cascades, biological 

mechanisms, reserve capacity, and plasticity. In addition to theoretical concepts for optimal 

cognitive development, reports on risk factors and dementia association studies have provided 

much insight. A recent review (Barnes & Yaffe, 2011) identified diabetes, midlife hypertension, 

midlife obesity, smoking, depression, cognitive inactivity, and physical inactivity as modifiable 

risk factors for the most common form of dementia, Alzheimer’s disease (AD). AD, however, is 

multiply determined; therefore, much recent attention has focused on select combinations 

(composites, indices) of risk factors (Anstey, 2014; Barnes et al., 2009). In conjunction with 

independent risk factor identification, the development of risk indices to measure cumulative risk 

for at-risk adults is quickly growing. The concept of a risk index (higher score represents 
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increased risk) can be easily explained and justified, for both scientific and public health reasons. 

Risk assessment can be used to advise older adults on daily habits, dietary patterns, and health 

behaviors that may reduce overall risk for dementia.  

Risk for dementia is also produced by non-modifiable sources, including genetic 

polymorphisms. Research or neurogenetics of neurodegenerative disease and aging largely 

focuses on candidate genetic polymorphisms and genome-wide association comparisons of AD 

patients and non-demented older adults. Recent research with candidate single nucleotide 

polymorphisms (SNPs) includes independent, interactive, and additive associations with 

cognitive decline (Harris & Deary, 2011; Nagel et al., 2008; Sapkota, Vergote, Westaway, 

Jhamandas, & Dixon, 2015; Wishart et al., 2011). Several genetic polymorphisms have been 

identified as risk factors for dementia. The most commonly studied, and consistently linked, 

genetic risk factor for AD is the Apolipoprotein E (APOE; rs7412, rs429358) polymorphism. The 

ε4 allele of the APOE gene is associated with cognitive impairment and increased risk of AD-

related dementia (Brainerd, Reyna, Petersen, Smith, & Taub, 2011), whereas the APOE ε2 and 

ε3 alleles are potentially protective and neutral, respectively (Corder et al., 1994; de-Almada et 

al., 2012; Panza et al., 2000). Other SNPs associated with Alzheimer’s dementia and normal 

cognitive decline include Complement receptor 1(CR1; rs6656401), Clusterin (CLU; 

rs11136000), and Phosphatidylinositol-binding clathrin assembly protein (PICALM; rs3851179) 

(Chibnik et al., 2011; Harold et al., 2009; Lambert et al., 2009). For example, PICALM 

rs3851179 allelic risk carriers (G/G, G/A) had a faster rate of episodic memory decline (Barral et 

al., 2012). Memory decline was observed among CLU allelic risk carriers (C/C, C/T) who 

eventually converted to Mild Cognitive Impairment (MCI) or AD (Thambisetty et al., 2013). 

Normal aging (NA) adults (n = 1666), from the Religious Orders Study and Rush Memory and 
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Aging Project, with CR1 rs6656401 allelic risk (A/A, A/G) showed steeper decline on measures 

of global cognition, episodic and semantic memory, perceptual, and visuospatial speed (Chibnik 

et al., 2011).  

 Cognitive deficits observed in NA and non-demented older adults have been linked to 

genetic polymorphisms that modulate the effects of dopamine (DA) levels and neurotrophic 

factors (Bäckman, Lindenberger, Li, & Nyberg, 2010; Erickson et al., 2008). Two SNPs 

involving DA and neurotrophic levels are Catechol-O-methyltransferase (COMT; rs4680) and 

Brain-derived neurotrophic factor (BDNF; rs6265), respectively (Raz, Rodrigue, Kennedy, & 

Land, 2009; Savitz, Solms, & Ramesar, 2006; Starr, Fox, Harris, Deary, & Whalley, 2007; 

Wishart et al., 2011). COMT homozygotes and carriers of the risk allele (G/G, G/A) have lower 

levels of DA in the prefrontal cortex (Bilder, Volavka, Lachman, & Grace, 2004). In addition, 

BDNF homozygotes and carriers of the risk allele (A/A, A/G) secrete lower levels of 

neurotrophic factors, particularly in the hippocampus (Savitz et al., 2006). These two 

polymorphisms have been shown to play a crucial and magnifying role in the extent of 

neurocognitive deficits observed among groups of non-demented older adults (Harris & Deary, 

2011; Mandelman & Grigorenko, 2012; Nagel et al., 2008; Sapkota et al., 2015). 

Overview of Current Studies 

 These issues are further described in the next chapter. At this point, I summarize the 

present studies comprising this dissertation. In the following three studies, I examine risk factors 

associated with cognitive aging and dementia to test for differences in episodic memory and 

executive function (EF) performance using non-modifiable (up to six candidate genetic 

polymorphisms) and modifiable risk factors (from lifestyle, health, and demographic domains). 

In Study 1, I apply two different approaches to build a risk composite for cognitive impairment 
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in aging. In Study 1a, I build risk factor composites for demographic and health factors, latent 

constructs for lifestyle and the episodic memory factor (Anstey, Cherbuin, & Herath, 2013; 

Barnes et al., 2009; Jessen et al., 2011; Kivipelto et al., 2006; Reitz et al., 2010), and 

subsequently predict episodic memory performance and decline in (NA) older adults. In Study 

1b, I categorize each risk factor based on the literature (Anstey et al., 2013; Anstey, 

Eramudugolla, & Dixon, 2014) to build a simple risk score of overall risk to predict episodic 

memory performance and decline in NA adults and validate whether this risk composite 

differentiates between NA and MCI groups. In Study 2, I selectively examine two genetic 

polymorphisms commonly tested with cognitive performance in NA, namely, COMT and BDNF. 

I test whether the additive or interactive approach best predicts EF performance at baseline and 

as modified by the more frequently associated genetic risk factor for dementia, APOE. In Study 

3, I extend Study 2 and use the additive model for COMT, BDNF, and APOE to test for EF 

performance over 9-year period as moderated by age group and lifestyle risk factors.  

Organization of the Dissertation 

 Chapters 1 to 3 provide the framework for the three studies in this dissertation. The 

present chapter, Chapter 1, is a general introduction. Chapter 2 gives a general literature review. 

Chapter 3 provides a general methods section pertaining to all three studies. Additional detailed 

introduction and method sections relevant to each study are included in the chapters for all three 

studies. Chapter 4 (Study 1) is titled “Multi-domain risk index for cognitive aging: Testing 

demographic, health, lifestyle, and genetic risk effects on episodic memory performance and 

change in non-demented aging and mild cognitive impairment”. It explores multiple approaches 

to building a risk index for episodic memory performance and decline in non-demented older 

adults and MCI. Chapter 5 (Study 2) is titled “Synergistic associations of Catechol-O-
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methyltransferase and Brain-dervied neurotrophic factor with executive function in aging are 

selective and modified by Apolipoprotein E”. It tests independent, interactive, and additive 

associations of three genetic polymorphisms on EF performance in non-demented older adults. 

Study 2 has been published in a peer-reviewed journal (Neurobiology of Aging). Chapter 6 

(Study 3), “In non-demented aging, executive function performance and change is predicted by 

Apolipoprotein E, intensified by Catechol-O-methyltransferase and Brain-derived neurotrophic 

factor, and moderated by age and lifestyle” investigates independent and additive associations of 

COMT, BDNF, and APOE allelic risk as separated by age and lifestyle risk on EF performance 

and change in non-demented older adults. Each study is self-contained and has its own 

introduction, methods, results, discussion, and reference sections. The last chapter, Chapter 7, is 

the general discussion and conclusion for all three studies, which summarizes all the results and 

discusses the potential clinical applications for the three studies.
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CHAPTER 2: GENERAL LITERATURE REVIEW 

  Alzheimer’s disease (AD) is the most prevalent cause of dementia with 60-80% of 

dementia cases worldwide (Barnes & Yaffe, 2011). By 2050, it has been estimated that 

approximately 1 in 85 adults will be living with AD, for an estimated prevalence of 106.8 

million. Notably, delaying onset by one year may lead to 9 million fewer cases in 2050 

(Brookmeyer, Johnson, Ziegler-Graham, & Arrighi, 2007). The principal phenotypic 

characteristic of AD is the gradual decline in cognitive functions. Primary clinical characteristics 

include memory loss, decline in global cognition, and early impairments in delayed recall, 

recognition, and executive function (EF). Education, family history of AD, gender, coexisting 

health factors (e.g., diabetes), and duration of AD have also been linked with the development 

and progression of AD (Muir et al., 2012; Schmidt, Wolff, von Ahsen, & Zerr, 2012).  

Regarding memory problems and dementia risk, different types of facilities have been 

established to address rising questions and concerns from middle-aged and older adults (i.e., 

Alzheimer’s Risk Assessment Clinic established at the Jewish General Hospital (Montreal) in 

2009; see Schipper et al., 2011). Many self-assessment tools (i.e., Australian National University 

Alzheimer’s Disease Risk Index (ANU-ADRI; Anstey, Cherbuin, & Herath, 2013)) have also 

been developed for researchers as well as concerned adults to examine AD risk profiles. 

Discovering risk and protective factors associated with memory decline will allow researchers to 

identify adults at a higher dementia risk. Prevention and intervention strategies for high-risk 

groups may reduce overall dementia incidence and delay onset.   

 Healthy Cognitive Aging. Currently, aging and dementia researchers are organizing 

theoretical concepts to identify factors associated with normal, healthy, and exceptional 

cognitive development and aging (Dixon & de Frias, 2014; Fiocco & Yaffe, 2010). Many 
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different theoretical concepts and views have been reported in the literature (e.g., cognitive 

reserve, see Stern, 2009). One prominent example is the Cognitive Health Environment Life 

Course Model (CHELM; Anstey, 2014). The CHELM provides an integrated view on enhancing 

and optimizing cognitive aging through risk assessment and management, as well as 

individualized interventions and broad policy applications. The model accounts for six 

theoretical concepts underlying lifespan cognitive development and change. First, differential 

development focuses on trajectories of change for various cognitive abilities. Differences may 

arise in trajectories of cognitive change due to variations in nutrition, lifestyle, gender, marital 

status, education, and cognitively stimulating environments. For example, previous studies have 

reported that married couples with greater social engagement and support perform better on 

cognitive tasks and show less decline with age than their unmarried counterparts (Seeman et al., 

2001). Furthermore, differential cognitive performance has been associated with sex, where 

higher risk has been associated with poorer cognitive performance for women APOE ε4+ carriers 

than men (Altman et al., 2014; Bartrés-Faz et al., 2002). Second, intra-individual dynamics 

incorporates differences in cognitive performance between and within individuals. 

Interindividual variation are differences in performance between persons and intraindividual 

variation are within-person differences in performance over multiple assessments (e.g., day-to-

day or year-to-year). Third, the concept of cascade seeks to describe how the decline in one 

system can lead to decline to another and then failure of several systems together. For example, 

the amyloid cascade hypothesis states that the neurofibrillary tangles, cell loss, and dementia 

observed in AD are a result of amyloid plaque accumulation (Hardy, 2006; Jack et al., 2010). 

Fourth, biological mechanisms incorporate known risk factors (i.e., age, APOE) to depict 

pathways that lead from normal brain and cognitive decline to accelerated decline and dementia. 
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Fifth, reserve capacity refers to the incongruous relationship between neurological damage and 

cognitive function. Two types of reserve capacities have been proposed in the literature (Stern, 

2009), brain reserve and cognitive reserve. Brain reserve (considered a passive process) is the 

brain’s ability to sustain a certain level of neurological damage before cognitive function 

becomes impaired. Cognitive reserve (considered an active process) is the brain’s ability to 

compensate for neurological damage via recruitment of compensatory mechanisms. Reserve 

capacity may be influenced by multiple factors, including education, verbal ability, and brain 

size. Sixth, plasticity is the brain’s ability to adapt to changes. These include neural 

reorganization and learning (Lövden, Bäckman, Lindenberger, Schaefer, & Schmiedek, 2010; 

Runge, Small, McFall, & Dixon, 2014). In the present study, I represent Anstey’s (2014) three 

potential mechanisms underlying risk and protective factors that may lead to differences in 

episodic memory outcomes in non-demented older adults (see Figure 2-1). The figure shows the 

pathway from risk and protective factors to episodic memory performance outcomes and the 

potential mechanisms involved. I represent three potential mechanisms, namely biological 

mechanisms, reserve capacity, and plasticity. The three mechanisms encompass a broad range of 

concepts and ideas that may direct us to smaller independent processes involved. Biological 

mechanisms, reserve capacity, and plasticity may act as potential mechanisms underlying 

differential associations with risk and protective factors on cognitive (episodic memory, EF) 

performance and decline in aging.  

 Dementia Risk Indices. In the last decade, dementia research has shifted attention to 

developing risk indices that reflect more than one factor. This area examines the accumulation of 

major risk factors to quantitatively differentiate adults with high versus low risk profiles. In a 

recent review, Barnes & Yaffee (2011) identified seven risk factors potentially responsible for 
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50% of AD cases in the world. The seven risk factors were diabetes, midlife hypertension, 

midlife obesity, smoking, depression, lower education levels, and physical inactivity. Next, they 

calculated the incidence of a risk factor and its association with AD. They estimated that a 10-

25% reduction in all seven risk factors could prevent up to 1.1 to 3.0 million AD cases 

worldwide. In the future, interventions targeting risk and protective factors may significantly 

change the projected increase in dementia incidence (Anstey et al., 2013). I now review the five 

prominent dementia risk indices reported in the literature.  

First, research in the Cardiovascular Risk Factors, Aging and Dementia (CAIDE) study 

used risk factors associated with dementia and cognitive decline in middle aged adults to develop 

the dementia risk score (Kivipelto et al., 2006). Specifically, vascular risk and other risk factors 

were used in logistic regression models to predict the development of dementia within a 20-year 

period. The risk factors used in the model were age, education, gender, systolic blood pressure, 

body-mass index, total cholesterol, and physical activity. Next, significant beta coefficients from 

the model were rounded to compute whole integers and create a sum representing the total risk 

score. An additional risk model was examined with the inclusion of APOE ε4 status. Both 

models predicted dementia incidence 20 years later. Receiver operating characteristic (ROC) 

curve analyses between the two models revealed that the dementia risk score predictions were 

similar (Kivipelto et al., 2006).   

Second, research from the Cardiovascular Health Cognition Study (CVHS) (Barnes et al., 

2009) used logistic regression models to predict dementia incidence six years later and to create 

a late-life dementia risk index for older adults (N = 3,375; average age = 76 years). The variables 

comprising the index were demographic (e.g., age, years of education), cognitive function (e.g., 

Digit Symbol Substitution Test), medical conditions (e.g., diabetes, hypertension), physical 
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function (e.g., ability to prepare meals, manage money), physical performance (e.g., 15-foot 

walk), lifestyle factors (e.g., current alcohol consumption, body mass index), psychosocial 

variables (e.g., depression score on the Center for Epidemiologic Studies-Depression Scale), 

prescribed medication, cerebral MRI measures, carotid artery ultrasound, APOE ε4 status, 

electrocardiogram measures, and serum measures. Significant estimates for dementia were added 

to the logistic regression model. Beta coefficients less than or equal to 0.75 were coded as 1 and 

those greater than 0.75 were coded as 2 for the dementia risk index calculation. Next, adults were 

divided into low, moderate, and high risk for developing dementia as predicted by the risk index. 

More than half of the adults in the high-risk group developed dementia six years later (Barnes et 

al., 2009).  

Third, older adults (greater than 65 years old) enrolled in a large community-based 

longitudinal study of Medicare recipients in northern Manhattan were used to identify vascular 

risk factors associated with dementia (Reitz et al., 2010). Risk factors used in the final risk score 

calculation were age, sex, education, ethnicity, APOE ε4 status, history of diabetes, hypertension, 

smoking, high density lipoprotein cholesterol, and waist-to-hip ratio. Beta coefficients from Cox 

proportional hazards models were used to determine a score for each risk factor. The sum of all 

risk factor scores was used as the total risk score to predict AD. Subsequently, total risk scores 

were categorized into quintiles (low to high risk). Higher vascular risk scores were positively 

correlated with an increased probability of AD risk. Specifically, adults in the fifth quintile with 

28 or higher total risk score (out of 60) had a 20.5-fold greater chance of developing AD. In 

contrast, adults in the first quintile with less than 14 as the total risk score had 1.0-fold chance of 

developing AD (Reitz et al., 2010).   
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Fourth, older adults from the Aging, Cognition, and Dementia (AgeCoDe) study, a 

longitudinal study with three measurement occasions at 18-month intervals, were used to build 

an AD risk score (Jessen et al., 2011). The sample was randomly divided into two equal cohorts. 

The risk score was developed using adults in the first cohort (greater than 75 years old). 

Neuropsychological assessments (i.e., subjective memory, delayed verbal recall, verbal fluency, 

Mini-Mental State Exam [MMSE]), age, and activities of daily living were dichotomized into 

low and high to include in the final risk score. A composite of all the variables predicted AD 

with c statistic of 0.84 in the first cohort. The second cohort was used to validate the 

predictability of AD using the risk score developed in the first cohort. Although the c statistic 

was 0.79 in the second cohort, one major limitation is that neuropsychological assessments used 

for clinical diagnosis were included as predictors in the overall risk score. This means that the 

risk index is targeted at adults who already have some form of cognitive impairment (i.e., mild 

cognitive impairment), which limits its use in the general population (i.e., non-demented older 

adults). 

 Fifth, Anstey and colleagues (2013) conducted a systematic literature search to identify 

the top risk and protective factors associated with dementia and AD. There were four steps to 

this procedure (Anstey et al., 2013). First, a list of possible risk factors were assembled using the 

Alzheimer’s Disease and Cognitive Decline report (Williams & Kemper, 2010) and a systematic 

review of the literature (see Anstey, von Sanden, Salim, & O'Kearney, 2007; Anstey, Lipnicki, & 

Low, 2008; Anstey, Mack, & Cherbuin, 2009; Anstey, Cherbuin, Budge, & Young, 2011). 

Second, risk factors significantly associated with AD were determined. Third, odds ratios were 

derived for all factors. Fourth, definitions were finalized for variables to be used in the ANU-

ADRI. Eleven risk factors (age, sex, low education, BMI, diabetes, traumatic brain injury, 
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cholesterol, depressive symptoms, smoking, low social networks, pesticide exposure) and four 

protective factors (cognitively stimulating activities, alcohol consumption, physical activity, fish 

intake) were identified and used to develop the ANU-ADRI. Subsequently, the ANU-ADRI was 

compared with dementia risk index developed in the CAIDE study (Anstey et al., 2014; 

Kivipelto et al., 2006). Prior to comparison, three validation samples were examined with at least 

nine or more matching risk/protective factors in the ANU-ADRI. The validation samples were 

from (a) Cardiovascular Health Cognition Study (CVHS), (b) Rush Memory and Aging Project 

(MAP), and (c) Kungsholmen Project (KP). The c-statistic, which indicates the probability that 

the prediction outcome is better than chance, for all three validation samples were moderate for 

the ANU-ADRI (c-statistic > 0.70 is considered acceptable). The overall c-statistics for 

predicting dementia for each sample were: (a) for the CVHS the c = 0.73 (95% CI: 0.701-0.754), 

(b) for the MAP the c = 0.72 (95% CI: 0.678-0.764), and (c) for the KP the c = 0.65 (95% CI: 

0.616-0.691). Next, the overall c-statistic for predicting dementia using the CAIDE risk index 

resulted in a low c-statistic (< 0.70) for all three samples: (a) for the CVHS the c = 0.57 (95% CI: 

0.541-0.600), (b) for the MAP the c = 0.49 (95% CI: 0.426-0.549), and (c) for the KP the c = 

0.54 (95% CI: 0.496-0.579). One explanation for low c-statistic values with the CAIDE risk 

score is that the CAIDE risk score was developed using risk factors from middle aged adults and 

the three validation samples (CVHS, MAP, KP) all consisted of older adults. This suggests that 

the CAIDE risk score may only be applicable to middle aged adults and not reflective of risk 

associated with adults in older cohorts. The ANU-ADRI, which had c-statistic closer to the 

acceptable range, is more tailored towards older adult risk assessment and widely available to the 

public. However, two important limitations remain. First, it is based on self-reports, and may not 

be as precise and generalizable to the general population. Second, it does not include any 
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biomarkers. The authors concluded that future risk index studies may benefit from the inclusion 

of additional risk factors (i.e., MRI measures, genetic data, history of coronary artery disease, 

cognitive assessments) and longitudinal datasets (Anstey et al., 2014). 

In addition to these five formal risk assessment indices, there is also growing literature 

specifically on the effect of vascular risk factors on dementia (Debette et al., 2011). A recent 

study compared the Framingham stroke risk score (Elias et al., 2004), the Framingham 

cardiovascular risk score (D'Agostino et al., 2008), and the CAIDE dementia risk score 

(Kivipelto et al., 2006) in  predicting 10-year cognitive decline (Kaffashian et al., 2013). Middle 

age adults (mean age: 55.6 years) from a British longitudinal study, Whitehall II study, were 

tested on reasoning, memory, verbal fluency, vocabulary, and global cognition at three occasions 

over a 10-year period. The Framingham stroke (mean score = 12.4) and cardiovascular (mean 

score = 4.5) risk scores were superior to the CAIDE dementia risk score (mean score = 6.8) in 

predicting global cognition. Overall, this review indicates that risk scores predicting dementia 

(i.e., AD) need to be improved and expanded to predict pre-clinical measures (i.e., cognitive 

decline) in normal aging. One goal in this dissertation is to develop a risk score that improves the 

accuracy of predicting non-demented cognitive performance and change.  

Genetic Polymorphisms and Cognition in Aging and Dementia. The risk associated 

with genetic polymorphisms and cognition in normal aging older adults has been extensively 

reported in the literature (Harris & Deary, 2011; McFall et al., 2014; Nagel et al., 2008; Sapkota, 

Vergote, Westaway, Jhamandas, & Dixon, 2015; Wishart et al., 2011). To date, however, there 

are no reports on multifactorial risk scores including genetic polymorphism for cognitive 

impairment in normal aging. Current studies have explored dementia risk indices with multiple 

factors (Barnes et al., 2009; Jessen et al., 2011; Kivipelto et al., 2006; Reitz et al., 2010). Among 
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the five dementia risk indices, only three include APOE (ε4+) status (Barnes et al., 2009; 

Kivipelto et al., 2006; Reitz et al., 2010). Two recent genetic risk scores have examined the 

effect of cumulative genetic risk on the probability of developing dementia or changes in 

cognition. In the first study, a genetic risk score (GRS) was generated by adding the number of 

risk alleles (range: 0-16) to predict MCI to AD progression. Each allele was weighted by an odds 

ratio (Rodriguez-Rodriguez et al., 2013). The following SNPs were used: ABCA7 rs3764650, 

B1N1 rs744373, CD2AP rs9296559, CLU rs113600, CR1 rs1408077, MS4A4E rs670139, and 

PICALM rs3851179. Adults with six or more risk alleles had a two-fold greater chance of 

converting to AD then those with less than six risk alleles. The second study generated a GRS 

using 11 SNPs (APOE, CLU, PICALM, BIN1, CR1, ABCA7, MS4A6A, MS4A4E, CD2AP, 

EPHA1, CD33) commonly identified with AD risk. This GRS was used to assess cognitive 

function in non-demented adults enrolled in the Rotterdam Study (Verhaaren et al., 2013). This 

GRS was primarily associated with performance on the memory domain. However, the effect 

was only marginal after the APOE SNP was removed. This implied that APOE risk may be 

playing a dominant role whereas the remaining 10 SNPs made smaller contributions towards the 

cumulative GRS. In addition to modifiable risk factors, it is important to take into account 

synergistic effects that genetic polymorphisms may have on cognitive decline (Lindenberger et 

al., 2008; Sapkota et al., 2015) and dementia onset (Barral et al., 2012; Thambisetty et al., 2013). 

I turn now to a brief review of the genetic polymorphisms examined in this dissertation research. 

In the present dissertation, I examine six genetic polymorphisms associated with 

memory, EF, or global cognitive decline and dementia risk. The polymorphisms APOE, CLU, 

CR1, and PICALM are associated with episodic memory performance in normal aging and AD 

(Barral et al., 2012). The polymorphisms COMT and BDNF have been associated with cognitive 
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performance (i.e., EF) and decline in non-demented adults (Nagel et al., 2008; Papenberg et al., 

2014; Sapkota et al., 2015; Wishart et al., 2011). In Study 1, I test for differences and decline in 

episodic memory performance. In Study 2 and 3, I test for differences and decline in EF 

performance. Below, I briefly review the six single nucleotide polymorphisms (SNPs) and their 

reported cognitive implications.  

 APOE. The APOE rs7412, rs429358 polymorphism is involved in central nervous system 

repair and function, and is differentiated by three alleles: ε2, ε3, and ε4. APOE is known to be 

isoform dependent with ε4 having higher risk for MCI and AD than ε3 and ε2 (Brainerd, Reyna, 

Petersen, Smith, & Taub, 2011; Corder et al., 1994; de-Almada et al., 2012; Dixon et al., 2014; 

Panza et al., 2000). The mechanism is assumed to be that the APOE lipoproteins bind to different 

cell-surface receptors to transport lipids and to hydrophobic amyloid-β (Aβ) peptides. This can 

lead to decreased synaptic function, Aβ clearance, cholesterol metabolism and mitochondrial 

function (Liu, Kanekiyo, Xu, & Bu, 2013). APOE also exerts influence on normal cognitive 

changes with aging through a variety of health, lifestyle, and biological factors (Runge et al., 

2014; Sachs-Ericsson, Sawyer, Corsentino, Collins, & Blazer, 2010). For example, in a recent 

study, I observed an APOE effect modification on the synergistic effects of normal aging genetic 

polymorphisms on EF performance (Sapkota et al., 2015). Another study reported that the APOE 

genotype interacted with vascular health factors (i.e., pulse pressure) to moderate episodic 

memory performance (McFall et al., 2015). In both cases, the ε4+ group showed poorer EF 

performance with increasing normal aging genetic risk (Sapkota et al., 2015), and poorer 

episodic memory performance with higher pulse pressure levels (McFall et al., 2015). 

 CLU. CLU rs11136000 polymorphism is involved in amyloid clearance, apoptosis, brain 

atrophy, and disease progression in AD patients. A recent study examined CLU genotype and 
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memory performance (Thambisetty et al., 2013). The study used non-demented older adults (age 

= 56-86 years old) from the Baltimore Longitudinal Study, who were followed for an average of 

7.5 years. Neuropsychological testing measures included six different domains: mental status, 

memory, world knowledge, verbal ability, verbal fluency, attention, working memory, and EF. 

Overall, memory decline was observed only among CLU risk carriers (C+) who went on to 

develop MCI or AD (Thambisetty et al., 2013). With regard to CLU and dementia, a recent study 

reported that healthy young adults with CLU allelic risk had lower white matter integrity than 

their counterparts (Braskie et al., 2011). The authors concluded that this presented an increased 

risk for developing dementia in old age. 

 PICALM. Recent genome-wide association studies (GWAS) have identified the PICALM 

rs541458 polymorphism as a risk factor for AD (Harold et al., 2009). PICALM is involved in the 

production of Aβ peptide and linked to the formation of amyloid plaques (Xiao et al., 2012). A 

recent study replicated the GWAS findings with 2816 AD and 2706 control subjects in a 

European population (Lambert et al., 2011). The T allele was associated with AD risk. Another 

study reported results with cerebrospinal fluid (CSF) Aβ-42 levels and PICALM allelic status 

(Schjeide et al., 2011). In this study, AD allelic risk (T/T) was associated with decreased CSF 

Aβ-42 levels and therefore increased Aβ-42 levels in the brain. To my knowledge, the only 

report with PICALM rs541458 polymorphism using T as the risk allele and cognitive functioning 

is by Ferencz and colleagues (2014) from the Swedish National Study on Aging and Care-

Kungsholmen. They examined a genetic risk score using PICALM (T+), B1N1, and CLU on 

cognitive performance in non-demented older adults (n = 2,480; age range = 60-100 years). Then 

they tested whether physical activity influenced the association between genetic risk score and 

cognitive performance. High genetic risk scores were associated with poor episodic memory 
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performance. Specifically, high physical activity levels mitigated the negative effects of high 

genetic risk score on episodic memory performance (Ferencz et al., 2014). Based on the 

foregoing literature, I will test PICALM T+ carriers as associated with risk for episodic memory 

decline. 

 CR1. The CR1 rs6656401 polymorphism is located on chromosome 1 at the locus 1q32. 

CR1 is a multifunctional glycoprotein expressed on many cells including dendritic cells (Khera 

& Das, 2009). The protein is involved in a number of functions including regulation of the 

complement cascade and clearance of immune complexes. In relation to AD, CR1 acts as a 

receptor for the Aβ-42 peptide removal from the brain and the circulatory system (Lambert et al., 

2009). Thus, the CR1 SNP may be responsible for modifying the rate of Aβ-42 clearance in AD 

patients (Crehan et al., 2012). In a recent combined dataset from the Religious Orders Study and 

Rush Memory and Aging Project, CR1 allelic risk (A+) carriers showed a faster decline on 

global cognition as measured by the MMSE compared to their non-risk counterparts (Chibnik et 

al., 2011).  

 COMT. The COMT rs4680 polymorphism increases COMT enzymatic activity that in 

turn decreases DA levels primarily in the prefrontal cortex (Chen et al., 2004; Gennatas et al., 

2012). This frequently studied COMT polymorphism is located at codon 158 on chromosome 

22q11. COMT homozygotes for the A allele (Met allele) have greater DA levels compared to the 

G allele homozygotes (Val/Val homozygotes). Thus, carriers of the G allele may be at higher 

risk for cognitive deficits including episodic memory and EF than homozygotes for the A allele 

(Nagel et al., 2008; Papenberg et al., 2014). A recent study also implicated COMT in predicting 

early cognitive impairment (Dixon et al., 2014).  
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BDNF. The BDNF rs6265 polymorphism at nucleotide 196 (G/A) is located at 11p13 and 

leads to a Val to Met amino acid substitution at codon 66 (Egan et al., 2003; Mandelman & 

Grigorenko, 2012). BDNF is a secretory protein that regulates synaptic functions including (a) 

synaptic plasticity and transmission, (b) long-term potentiation (LTP), and (c) synaptic growth 

through regulation of spine density and protein expression (Dodds et al., 2013). The protein is 

sorted into a regulated pathway that secretes BDNF based on neuronal activation. The BDNF 

polymorphism leads to poor dendritic trafficking and activity-dependent BDNF secretion. BDNF 

is mostly present in the hippocampus and prefrontal cortex. Due to its association with LTP, 

BDNF has also been known to play an important role in memory (i.e., verbal episodic and spatial 

memory) and learning (Chen et al., 2005; Dodds et al., 2013; Egan et al., 2003). However, the 

BDNF genotype has been inconsistently linked with various neurocognitive phenotypes. These 

include EF performance (Mandelman & Grigorenko, 2012; Nagel et al., 2008) and memory 

performance (Egan et al., 2003) in normal aging older adults. One recent study reported a 

discrepancy between BDNF allelic status and BDNF protein levels among 116 AD and 77 

control subjects (Lee et al., 2005). In another report, there was no association between brain 

activation and episodic memory encoding with BDNF genotypes. However, BDNF Met carriers 

(A+) showed an increased activation during successful retrieval in the right hippocampus (Dodds 

et al., 2013), suggesting the use of possible compensatory mechanisms for this risk group. 

Summary. With the global dementia epidemic, optimal cognitive aging throughout the 

life course has become a priority. Many risk assessment tools and facilities have been developed 

to address the rise in dementia incidence. Previous literature has incorporated different risk 

factors and developed dementia and genetic risk indices to predict both dementia risk and non-

demented or normal cognitive performance and change with aging. The five notable dementia 
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risk scores and indices described in this literature review were (a) CAIDE risk index, (b) CVHS 

risk index, (c) northern Manhattan risk score, (d) AgeCoDe risk score, and (e) ANU-ADRI. 

Regarding genetic polymorphisms, I reviewed (a) the commonly studied APOE gene, (b) three 

polymorphisms recently identified in GWAS studies on AD risk (CLU, CR1, PICALM), and (c) 

two genetic polymorphisms associated with cognitive performance in normal aging (COMT, 

BDNF). On the basis of this review, I propose to examine both candidate genetic polymorphisms 

and modifiable risk factors (i.e., demographic, health, and lifestyle) to predict cognitive 

performance and change in non-demented older adults. In the investigations, I contrast different 

approaches to building risk indices for non-demented cognitive performance. I also compare 

selected methods by which synergistic associations (interactive and additive) of genetic 

polymorphisms differ in the level at which they predict cognitive performance in aging, as well 

as the extent to which these prediction patterns are modified across age and levels of other risk 

factors (including lifestyle activities). An overarching aim is to advance our understanding of the 

possible independent and interactive biological mechanisms, as they relate to modifiable risk 

factors, of cognitive aging. A premise is that we can better interpret the potential neurobiological 

mechanisms of non-demented cognitive aging by studying combinations of risk and genetic 

markers that may operate to moderate and modify differential cognitive trajectories in normal 

aging. Improved knowledge of the factors that combine or interact to predict non-demented 

cognitive trajectories may be useful in identifying early markers and mechanisms associated with 

eventual dementia outcomes.  
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Figure 2- 1. The flow chart illustrates that biological mechanisms, reserve capacity, and plasticity may act as potential mechanisms 

underlying differential associations with risk and protective factors on episodic memory outcomes. 

Adapted from Anstey, 2014; Anstey, Eramudugolla & Dixon, 2014
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CHAPTER 3: GENERAL METHODS 

 The purpose of this chapter is to provide a general overview of the methods for 

participants, genotyping, neurocognitive measures, and risk factors, used in studies 1-3 in this 

dissertation. Precise detailed methodology and statistical analyses pertinent to the three studies 

are presented in the methods section for each one.  

Participants 

 I use volunteer participants from the Victoria Longitudinal Study (VLS). The VLS is an 

ongoing large-scale and multifaceted longitudinal sequential study on biomedical, health, and 

neurocognitive aspects of aging (Dixon & de Frias, 2004). It was started in the late 1980s and 

expanded to a longitudinal sequential design with the addition of a second sample in the early 

1990s and a third sample in the early 2000s. Baseline age range for all three samples is 55-85 

years and all participants are re-tested at 3- to 4-year intervals. To minimize fatigue, participants 

are tested at four separate occasions over a period of one month for a total of 12-14 hours of 

testing (Dixon & de Frias, 2004; Dixon et al., 2014; Dolcos, MacDonald, Braslavsky, Camicioli, 

& Dixon, 2012). 

 All participants in the present study were community-dwelling adults and originally 

enrolled through advertisements. They received a small honorarium for their participation at each 

wave. Written informed consent was obtained from all participants. All VLS data are collected 

with current approval from institutional research ethics guidelines for human research. The 

recently collected (2009-2011) genetic sample (N = 697) is the source sample for this 

dissertation. 

 DNA Extraction and Genotyping. Saliva was collected according to standard 

procedures from Oragene-DNA stored at room temperature in the Oragene® disks until DNA 
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extraction. DNA was manually extracted from 0.8 ml of saliva sample mix using the 

manufacturer's protocol with adjusted reagent volumes. Briefly, samples were incubated for 2.5 

hours at 50°C after inversion. Samples were transferred to a centrifuge tube and mixed with 

Oragene® purifier, incubated on ice for 10 min, then centrifuged at 15,000g for 5 min to pellet 

the denatured protein. The supernatant was transferred to a new tube and DNA was precipitated 

by adding an equal volume of 100% ethanol. The DNA pellet was washed with 70% ethanol, 

dried, and resuspended with 10 mM Tris, pH 8.0; 1 mM EDTA buffer. DNA was incubated at 

50°C for 1 hour with occasional vortexing followed by incubation at 4°C overnight to ensure 

complete rehydration before quantification using a NanoDrop® ND-1000 Spectrophotometer 

(Wilmington, DE). 

 Genotyping was carried out by using a polymerase chain reaction-restriction fragment 

length polymorphism (PCR-RFLP) strategy to analyze the allele status for APOE (determined by 

the combination of the SNPs rs429358 and rs7412), BDNF (rs6265), COMT (rs4680), CLU 

(rs11136000), CR1 (rs6656401), and PICALM (rs541458). Briefly, SNP-containing PCR 

fragments were amplified in 25 ul of 1X PCR reaction mix containing 25 ng genomic DNA, 12.5 

pmol of each specific primers, 6.25 nmol of each dNTP, 1.25U Taq DNA polymerase (NEB), 1.5 

mM MgCl2 and 10% DMSO. Reactions were setup in 96-well plates using the QIAgility robotic 

system (QIAgen) and specific amplicons were amplified using a program consisting of: 

denaturation step at 95°C for 2 min; 40 cycles at 94°C for 30 sec, 56°C for 30 sec and 72°C for 1 

min before a final extension at 72°C for 7 min.  

Restriction fragment length polymorphism (RFLP) analysis was performed after 

digestion of the PCR amplicons with restriction enzymes (all from NEB) as follows: APOE: 16 

hours at 37°C with HhaI; BDNF: 16 hours at 37°C with NlaIII; COMT: 16 hours at 37°C with 
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NlaIII; CLU: 4 hours at 65°C with Tsp509I; CR1: 7 hours at 37°C with Hpy99I; PICALM: 2 

hours at 37°C with HpyCH4IV. RFLP analysis was then performed on a high resolution DNA 

screening cartridge on a QIAxcel capillary electrophoresis system (QIAgen) using the protocol 

OL700. The analysis was confirmed upon migration of the restriction fragments on 10 or 15% 

acrylamide gels for each SNP. 

Neurocognitive Measures and Risk Factors 

 I now list the neurocognitive measures and risk factors examined throughout this 

dissertation. The purpose is to provide an overview of the operations used to measure each 

variable. First, the neurocognitive measures, which include episodic and semantic memory and 

executive function (EF) performance, are described. Second, modifiable (demographic, health 

and lifestyle) and non-modifiable (genetic polymorphisms) risk factors are presented.  

Episodic and Semantic Memory Measures 

Four measures of episodic (REY List A6; REY List B1; Word List Free Recall 1 and 2) 

and three measures of semantic (Vocabulary; Fact Recall Test 1; Fact Recall Test 2) memory 

were examined for the episodic and semantic memory factors.   

Word List Free Recall (Word Recall). From a total of six lists, two different but 

comparable lists of 30 English words (i.e., five taxonomic categories for six words) (Dixon et al., 

2004) were used for word recall task measuring episodic memory. There were 6 words from each 

of the five taxonomic categories (e.g., spices, relationships, fabrics, insects, furniture) presented 

on a single page. Participants were given 2 minutes to study the list and 5 minutes to write as 

many words as they could recall. Participants did not see the same list more than once during 

their three waves of testing. The total numbers of words correctly recalled from each list were 

used. 
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Rey Auditory Verbal Learning Test (REY). 15 nouns (List A) were read aloud to 

participants, followed by free recall (List A1). This was repeated for five trials (List A1-A5) with 

List A being read aloud before each free recall. Then a second interference list (List B) with 15 

different nouns was read aloud, followed by free recall (List B1). Finally, participants were 

asked to recall the first list (List A6) (Vakil & Blachstein, 1993). The total number of nouns 

recalled in List A6 and List B1 were used to measure retention and free recall, respectively 

(McFall et al., 2015). 

Vocabulary. 54 multiple-choice vocabulary questions from the Educational Testing 

Service kit (Ekstrom, French, Harman, & Dermen, 1976) were used to measure vocabulary or 

semantic memory. Participants were given 15 minutes to answer all questions. The total number 

of correct answers constituted the final score. 

 Fact Recall. Two versions of a general information test (40-items each) taken from a 

normed battery (Nelson & Narens, 1980) were administered. General information questions 

focused on a variety of topics including history, sports, entertainment, and geography (e.g., What 

is the last name of the author of the book “1984”?). The questions were in booklets and the 

participants had to write their answers on a blank line below the question. Both versions of the 

test were self-paced. The total numbers of facts correctly recalled from each version (Fact Recall 

1) and (Fact Recall 2) were used. 

Executive Function Measures 

Two dimensions of EF (inhibition, shifting) were each measured by two standard and 

frequently used tests for both behavioral and clinical studies in older adults (de Frias, Dixon, & 

Strauss, 2006; McFall et al., 2014; McFall et al., 2013; Sapkota et al., 2015).  
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Hayling Sentence Completion (Hayling; Inhibition). This test (Burgess & Shallice, 1997) 

consists of two sections, each comprising fifteen sentences. In the first section, participants must 

state the last word that correctly completes the sentence. In the second section, the participants 

must say a word that is not at all related to the sentence. The standardized scores are based on an 

error score from the second section and the speed of each response from both sections, which are 

then combined to obtain the final score (1 = impaired to 10 = superior). 

Stroop (Inhibition). This test (Taylor, Kornblum, Lauber, Minoshima, & Koeppe, 1997) 

consists of three parts. In part A, participants are asked to name four different colors that appear 

as 24 dots in six different rows. In part B, the same colors appear but are printed as common 

words. In part C, each different color is represented as a textual representation in different 

colored ink. The participants are measured based on latencies. The final score is the standardized 

Stroop interference index ([Part C- Part A]/ Part A), with a lower index reflecting better 

performance.  

Brixton Spatial Anticipation (Brixton; Shifting). This test (Burgess & Shallice, 1997) 

consists of 10 different circles; one being blue while the rest are colorless. The circles appear in a 

56-page booklet. The blue colored circle shifts position with some logical pattern after each 

page. This test measures the mechanism of shifting by asking participants to guess where the 

blue colored circle will appear on the next page. The total number of incorrect guesses are 

measured and the final scores are calculated (1 = impaired to 10 = superior). 

Color Trails (Shifting). This test (D'Elia, Satz, Uchiyama, & White, 1996) comprises two 

different tasks in which participants connect different attributes, such as numbered and colored 

circles. In the first section, participants connect numbers from 1–25 within circles that are 

randomly organized on a page. In the second section, they connect the numbers in order but 
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alternating between pink and yellow circles. Errors and latency scores are then computed to 

obtain the standard overall score. 

Risk Factors 

Demographic. The VLS personal data sheet was used to determine type and level of 

demographic risk score. Based on previously reported literature on demographic risk factors and 

cognitive performance, I included education  (Springer, McIntosh, Winocur, & Grady, 2005), 

marital status (Seeman, Lusignolo, Albert, & Berkman, 2001), age (Bäckman et al., 2000) and 

gender (Bartrés-Faz et al., 2002) for this domain. Education was calculated by adding the total 

number of school years completed including any high school, college, graduate, vocational or 

technical school. Education was used as both a continuous variable and categorical variable. For 

the categorical variable, education greater than 14 years was coded 0 (indicating no risk), 12-14 

years was coded 1 (low risk), and less than 12 years was coded 2 (high risk). For marital status, 

participants were asked to state whether they were (a) married, (b) single, (c) widowed, (d) 

divorced, or (e) separated. For the purpose of the present studies, I categorized participants into 

married (no risk = 0) and not married (risk = 1). For gender, participants indicated whether they 

were male or female. I coded male as 0 (no risk) and female as 1 (risk). Age was computed by 

subtracting birth year from the testing year. I used age as both continuous and categorical 

variable. For the categorical variable, age less than 65 years was coded 0 (no risk), 65-75 years 

was coded 1 (low risk), 76-85 years was coded 2 (intermediate risk), and greater than 85 years 

were coded 3 (high risk). All continuous measures were reversed coded to indicate higher risk 

with increasing score. The demographic composite was used in Study 1. It was calculated by 

adding the risk composites for both the categorical and continuous measures as described in 

Study 1. Higher scores indicated greater demographic risk. 
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Health. The VLS personal data sheet was used to report health conditions. In this 

dissertation, nine conditions were used to represent health risk contributions: diabetes (McFall et 

al., 2013), depression (Lichtenberg, Ross, Millis, & Manning, 1995), heart disease (Dardiotis et 

al., 2012), stroke (Kalaria & Ballard, 2001), hypertension (Kilander, Nyman, Boberg, Hansson, 

& Lithell, 1998), hardening of the arteries (Zheng et al., 2012), alcohol dependence (Hoang, 

Byers, Barnes, & Yaffe, 2014), tobacco dependence (Sabia et al., 2012), and any history of 

traumatic brain injury (Anstey, Cherbuin, & Herath, 2013). Participants were asked to self-rate 

each condition ranging from no (0) to yes, very serious (3). Ratings for all nine conditions were 

added and used as the final health risk composite score. Higher scores indicated greater health 

risk.  

Lifestyle. The VLS Activity Lifestyle Questionnaire (VLS-ALQ) with 67-items was used 

to determine the level of activity for the following four domains: (a) social activity measured 

with 7-items, such as volunteering or visiting friends; (b) physical activity measured with 4-

items, such as jogging or gardening (Bherer, Erickson, & Liu-Ambrose, 2013); (c) integrative 

information processing measured with 12-items, such as playing a musical instrument or 

household repairs; and (d) novel information processing measured with 27-items, such as 

completing jigsaw puzzles or reading the newspaper. The frequency of participation is rated on a 

9-point scale with never (0), less than once a year (1), about once a year (2), 2 or 3 times a year 

(3), about once a month (4), 2 or 3 times a month (5), about once a week (6), 2 or 3 times a week 

(7), and daily (8). All the items were summed for each domain with higher scores representing 

greater frequency of activity (Hultsch, Hertzog, Small, & Dixon, 1999; Small, Dixon, McArdle, 

& Grimm, 2012). The lifestyle activities factor was examined in Study 1 and Study 3. In Study 1, 

lifestyle activities factor was computed as a latent variable and a composite factor. In Study 3, 
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the lifestyle activities factor was computed as a composite by adding the frequency for social, 

physical, integrative information processing, and novel information processing domains.  

Genetic. Six SNPs were examined in Study 1: COMT, BDNF, APOE, CLU, PICALM, 

and CR1; and three SNPs in Study 2 and Study 3: COMT, BDNF, and APOE. In Study 1, all six 

SNPs were coded based on each allelic status: COMT (A/A; A/G; G/G), BDNF (G/G; G/A; 

A/A), CLU (C/C; C/T; T/T), PICALM (C/C; C/T; T/T), and CR1 (G/G; G/A; A/A) was coded 0 

(no risk homozygotes), 1 (heterozygotes), and 2 (risk homozygotes) for each of the three allelic 

contributions. APOE (ε2/ε2; ε2/ε3; ε2/ε4; ε3/ε3; ε3/ε4; ε4/ε4) was coded from 0 (no risk) to 4 

(high risk) for each allelic status with the higher number indicating greater risk. ε2/ε4 alleles 

were all coded as missing based on previously reported analyses (McFall et al., 2015). In Study 2 

and Study 3, COMT (A/A; A/G; G/G) and BDNF (G/G; G/A; A/A) were coded 1 (no risk 

homozygotes), 2 (heterozygotes), and 3 (risk homozygotes), and APOE was dichotomized into 1 

(ε4- = no risk) and 2 (ε4+ = risk). 
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CHAPTER 4: STUDY 1 

Multi-domain risk index for cognitive aging: Testing demographic, health, lifestyle, and 

genetic risk effects on episodic memory performance and change in non-demented aging 

and mild cognitive impairment  
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Introduction 

 Dementia is the leading cause of disability among older adults. Dementia symptoms 

include decline in memory, thinking, and activities of daily living. With the population aging and 

increased life expectancy, dementia cases have increased exponentially with older age (Qiu, De 

Ronchi, & Fratiglioni, 2007). Although dementia symptoms occur primarily in old age, pre-

clinical manifestations of cognitive impairment occur decades before clinical symptoms appear 

(Bidzan et al., 2008). With a multifactorial etiology, primary and secondary prevention of 

dementia or cognitive impairment in older adults is concerned with delaying its onset by 

identifying risk and protective factors (Qiu et al., 2007). Consistently identified non-modifiable 

risk factors are old age and various genetic polymorphisms (i.e., Apolipoprotien E [APOE; 

rs7412, rs429358]). Regarding modifiable risk factors, vascular and psychosocial factors have 

been examined in recent studies (Anstey, Cherbuin, & Herath, 2013; Deckers et al., 2015; Qiu et 

al., 2007). We can aim preventive measures to the general population by identifying adults with a 

combination of risk factors that potentially places them at a high risk of dementia or cognitive 

impairment (Olanrewaju, Clare, Barnes, & Brayne, 2015). Recent studies have developed the 

concept of dementia risk scores or indices, whereby high scores on multiple risk factors indicate 

greater risk of cognitive decline or dementia onset.  

 The first dementia risk index was introduced by Kivipelto and colleagues (2006) in the 

Cardiovascular Risk Factors, Aging, and Dementia (CAIDE) study. Scores for middle-aged 

adults on eight risk factors linked to dementia (age, education, gender, systolic blood pressure, 

body mass index, total cholesterol, physical activity, APOE) were used to create the index. 

Logistic regression models were tested on 20-year follow-ups for dementia diagnosis. Beta 

coefficients from the model were summed to build the overall dementia risk index. The risk 
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index was then categorized into low risk, intermediate risk, and high-risk profiles. As expected, 

the probability of dementia increased from the low-risk to the high-risk profile.  

Several other studies (Anstey et al., 2013; Barnes et al., 2009; Jessen et al., 2011; Reitz et 

al., 2010) have developed risk indices using similar risk factors assessed in two groups, usually 

adults with and without dementia diagnosis. A recently developed self-assessment tool, the 

Australian National University Alzheimer’s Disease Risk Index (ANU-ADRI) calculates risk 

scores using both risk and protective factors. The ANU-ADRI includes eleven risk factors (age, 

education, gender, diabetes, depression, BMI, brain injury, smoking, alcohol intake, cholesterol, 

pesticide exposure) and four protective factors (physical activity, cognitive activity, social 

engagement, fish intake) that were identified through a systematic review of the Alzheimer’s 

disease (AD) literature. The tool was developed for large populations of older adults at various 

levels of dementia risk. The goal was to inform possible broad-based prevention strategies in the 

future. The ANU-ADRI has the advantage of being translatable across multiple data archives and 

clinical settings. One corresponding limitation is that it does not include biological or genetic 

risk factors and markers. Incorporating unavoidable and non-modifiable risk factors (i.e., genetic 

markers) with modifiable risk factors may produce a more comprehensive dementia risk score 

(Barnes et al., 2009; Kivipelto et al., 2006; Reitz et al., 2010).  

 Despite advances in this area (Anstey et al., 2013; Barnes et al., 2009; Jessen et al., 2011; 

Kivipelto et al., 2006; Reitz et al., 2010), the inclusion of both dementia-related single nucleotide 

polymorphisms (SNPs) and modifiable lifestyle factors in the same dementia risk index is fairly 

new. To our knowledge, only APOE has been included in such indices, and then only as a 

categorical variable (ε4+ versus ε4-) (Reitz et al., 2010). APOE ε2 and ε3 alleles are considered 

to be protective or neutral and the ε4 is considered to be the risk allele (de-Almada et al., 2012; 
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Liu, Kanekiyo, Xu, & Bu, 2013). APOE is known to be isoform dependent with ε4 having higher 

risk for Mild Cognitive Impairment (MCI) and AD than ε3 and ε2. Typically, this research has 

been cross-sectional (Anstey et al., 2013) and, when longitudinal, only two time points have been 

reported (Barnes et al., 2009; Kivipelto et al., 2006). Several independent risk score calculation 

techniques were applied in the five dementia risk indices that have been reported in the literature 

(Anstey et al., 2013; Barnes et al., 2009; Jessen et al., 2011; Kivipelto et al., 2006; Reitz et al., 

2010). These techniques include logistic regression models (Anstey et al., 2013; Kivipelto et al., 

2006), point system based on logistic coefficients using forward and backward stepwise selection 

procedures and receiver operating characteristic curves (Barnes et al., 2009), cox proportional 

hazards models (Reitz et al., 2010), and sum of categorized risk factors (Jessen et al., 2011). 

Varying risk score calculations and the inclusion of specific risk factors makes each risk score 

dependent on the calculation method and risk factors examined.  

 We build upon the foundation of preceding dementia risk indices to develop and test an 

index for normal cognitive decline in aging. We focus on episodic memory, which is most 

commonly impaired in dementia patients and non-demented older adults. We incorporate a range 

of risk factors, both non-modifiable and modifiable, across a broad age span (40 years). We 

examine several different techniques to determine the best method to develop a risk score that 

would (a) accurately predict episodic memory performance and change and (b) differentiate non-

demented older adults from those with MCI.  

 We extend and expand upon the development of risk indices for cognitive impairment 

and dementia in several key directions. In the first direction, we test whether the risk score 

predicts episodic memory performance and decline, which is considered a cardinal behavioral 

maker of preclinical dementia, and has not been previously reported. We also test whether the 
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risk score distinguishes two clinical groups (non-demented older adults versus a clinically 

classified MCI group). In the second direction, we estimate a latent factor for episodic memory, 

which accounts for limitations associated with single test approaches by estimating the shared 

variance in multiple standardized tests to define the latent construct rather than using single 

predictor outcomes. 

 In the third direction, we examine four genetic polymorphisms (APOE, Clusterin [CLU; 

rs11136000], Complement receptor 1 [CR1; rs6656401], Phosphatidylinositol-binding clathrin 

assembly protein [PICALM; rs3851179]) associated with AD risk and cognitive decline (Barral 

et al., 2012; Harold et al., 2009; Jun, Naj, Beecham, & et al., 2010; Lambert et al., 2009; McFall, 

Wiebe, Vergote, Westaway, et al., 2015; Thambisetty et al., 2013) and two genetic 

polymorphisms (Catechol-O-methyltransferase [COMT; rs4680], Brain-derived neurotrophic 

factor [BDNF; rs6265]) associated with cognitive decline in non-demented older adults (Nagel et 

al., 2008; Papenberg et al., 2014; Sapkota, Vergote, Westaway, Jhamandas, & Dixon, 2015; 

Wishart et al., 2011). We test genetic risk with two techniques. First, we compute a standard 

genetic risk score, in which we add the number of risk alleles for each SNP for every individual 

to create (a) a risk index for 6 genes linked to cognitive changes in older adults (APOE, CLU, 

CR1, PICALM, COMT, BDNF), (b) a risk index with 4 genes associated with AD risk (APOE, 

CLU, CR1, PICALM), and (c) an independent APOE risk score. This standard sum of allelic risk 

technique has been used by several groups  to specifically examine AD risk genes (APOE, CLU, 

CR1, PICALM) (Ferencz et al., 2014; McFall, Wiebe, Vergote, Anstey, & Dixon, 2015). It has 

the advantage of being independent of memory performance, simple to apply, and 

straightforward to interpret. Second, we compute a formative latent genetic risk factor, in which 

(a) all 6 genes and (b) 4 AD risk genes are included as causal indicators with two reflective 
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indicators, namely, episodic and semantic memory. The formative genetic risk score represents 

the association between genes and which then predicts the reflective factors (episodic and 

semantic memory) (see Figure 4-1) (Bollen, 2011). A formative score can only be calculated 

when the indicators are specified as predictors for the latent composite and regression 

coefficients are estimated to explain variances in the formative score (Kline, 2013). The 

individual genotypes are modeled as causal indicators, which are assumed to have perfect score 

reliabilities, in the model. The regression coefficients estimate the proportions of explained 

variances in the latent composite (Kline, 2013). Although used previously in business and 

economic research (Diamantopoulos & Winklhofer, 2001; Kline, 2013), it is novel in the field of 

cognitive aging and dementia research. We explore and test its potential value as a means to 

calculate a formative genetic risk score. Overall, we compare the effectiveness of these two 

approaches in predicting memory performance and change, and MCI discrimination. In the 

fourth direction, we use statistical parallel process models to analyze a longitudinal dataset 

measured at three time points. These models allow us to examine whether change in risk factor 

over 9 years predicts episodic memory performance and decline.  

Research Goals 

 Our overarching goal is to build, compare, and validate a multi-domain risk index for 

cognitive impairment in aging using demographic, health, lifestyle, and genetic risk factors. 

These indices will be tested and compared to find the best risk index for predicting episodic 

memory performance and 9-year change and for differentiating between non-demented and MCI 

clinical status. We explore various strategies and techniques to explore our goal. Due to well-

defined differences in the methods and statistical calculations employed, we divide this study 

into Study 1a and Study 1b.  
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 Specifically, the methodology for Studies 1a and 1b differs in the following ways. Study 

1a examines 9-year change with modifiable risk factors and uses data in its continuous form to 

avoid typically examined group comparisons. Notably, Study 1a uses education and age as 

continuous variables and a latent lifestyle risk factor, as estimated with four lifestyle indicators: 

social activities, physical activities, novel information processing, and integrative information 

processing. Study 1b follows the established criteria in the literature (Anstey et al., 2013; Barnes 

et al., 2009; Jessen et al., 2011; Kivipelto et al., 2006; Reitz et al., 2010) to build risk scores 

through categorization and group cutoff points for each modifiable risk factor (demographic, 

health, and lifestyle). To this already established method (Anstey et al., 2014), we add a genetic 

risk score component. We examine whether it enhances or changes risk score composite 

calculations in predicting episodic memory performance and change, and differentiating clinical 

statuses (i.e., non-demented versus MCI status). First, we examine a standard genetic risk score 

with (a) 6 genes associated with AD risk and cognitive aging, (b) 4 AD risk genes, and (c) APOE 

risk. Second, we examine a formative composite genetic risk score with (a) 6 genes associated 

with AD and cognitive aging and (b) 4 AD risk genes. The risk indices for both Study 1a and 

Study 1b use the same demographic, health, lifestyle risk predictors, and are designed to predict 

episodic memory performance and change. However, Study 1a only examines modifiable risk 

factors (demographic, health, and lifestyle) with the available data in continuous form. Study 1b 

examines genetic risk factors (APOE, CLU, CR1, PICALM, COMT, BDNF) in addition to 

modifiable risk factors (demographic, health, lifestyle) to examine how different genetic risk 

indices (AD genes versus non-AD genes) and techniques (standard versus formative) supplement 

or enhance the prediction ability of the index compared to only modifiable factors.   
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 It is important to explore the different techniques employed in Studies 1a and 1b because 

varying methodologies can impact the same risk factors differently and lead to contradictory 

outcomes. With Study 1a and 1b, we not only meet our overall goal of building a multi-domain 

risk index but also systematically testing and comparing modifiable and non-modifiable (genetic) 

risk factors, independently and cumulatively to determine the best possible and most sensitive 

combination in terms of (a) predicting episodic memory decline and (b) differentiating between 

clinical statuses.  

Study 1a: 

We examine three research goals in Study 1a.  

Research Goal 1. There are two parts to research goal 1. First, we use confirmatory 

factor analysis to estimate a two-factor episodic and semantic memory latent variable and a latent 

lifestyle risk construct. Second, we build risk factors scores for the demographic and health risk 

variables with a standard technique (i.e., sum of all risk variables coded from no risk to high risk) 

(Anstey et al., 2014).  

Research Goal 2. We establish longitudinal invariance for each time-varying latent 

construct (i.e., episodic and semantic memory, lifestyle risk). We expect each construct to be 

invariant at least at the configural and metric level across all three measurement occasions.   

Research Goal 3. There are two parts to research goal 3. First, we determine the best 

fitting latent growth model for episodic memory and lifestyle latent variables. We chose not to 

examine the semantic memory latent construct because previous literature shows that semantic 

memory does not always decline with increasing age and increased risk (McFall, Wiebe, 

Vergote, Westaway, et al., 2015; Nyberg et al., 2003; Small, Dixon, & McArdle, 2011). Second, 

we determine how episodic memory performance and change in non-demented older adults is 
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affected by each of the modifiable risk factors (demographic, health, and latent lifestyle) alone 

and cumulatively. We expect to observe that higher risk scores on all three risk factors are 

associated with poorer episodic memory performance and steeper decline. 

Study 1b: 

We examine four research goals in Study 1b. 

Research Goal 1. We categorize and compute five risk factor composites (from no risk to 

very high risk) using prior literature (Anstey et al., 2013; Barnes et al., 2009; Jessen et al., 2011; 

Kivipelto et al., 2006; Reitz et al., 2010). The five components are (a) demographic, (b) lifestyle, 

(c) health, (d) standard genetic (6 genes, 4 AD risk genes, and APOE), and (e) formative genetic 

(6 genes and 4 AD risk genes). Only the causal indicators (6 genes and 4 AD genes) contribute 

towards the latent genetic risk factor and the reflective indicators (in this case episodic and 

semantic memory factors) do not contribute towards this risk (see Bollen, 2011). We expect to 

observe good model fit statistics for the 4 AD risk (APOE, CLU, CR1, PICALM) formative 

genetic model.  

Research Goal 2. We determine how well the score for each risk factor at baseline and 

time point 3 predicts episodic memory performance and change. We examine each risk factor 

alone (demographic, health, lifestyle, standard genetic [6 genes, 4 AD genes, APOE], formative 

genetic [6 genes, 4 AD genes]) and different combinations of risk factor composites 

(demographic + health, demographic + health + lifestyle, demographic + health + lifestyle + 

standard genetic [6 genes, 4 AD genes, APOE], demographic + health + lifestyle + formative 

genetic [6 genes, 4 AD genes]). 

Research Goal 3. We determine whether change in each risk factor score from time 1 to 

time 3 predicts longitudinal change in episodic memory. We apply two methods to test 
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longitudinal change because we want to detect any significant changes and test which would be 

more sensitive to predict memory performance. Specifically, we examine (a) change score for 

each risk factor and (b) a latent growth model of change. In both cases, our prediction is that 

greater change in risk score will be associated with steeper episodic memory decline.  

Research Goal 4. We determine whether each of the four risk factors alone 

(demographic, health, lifestyle, standard genetic [6 genes, 4 AD genes, APOE]) or cumulatively 

(demographic + health, demographic + health + lifestyle, demographic + health + lifestyle + 

standard genetic [6 genes, 4 AD genes, APOE]) discriminates between NA versus MCI status. 

We expect all four independent risk factors to significantly discriminate NA adults from MCI 

adults. However, we also expect that the overall cumulative risk score will be a better predictor 

than any independent risk variable.  

Method 

Participants 

 All participants were community-dwelling adults and originally enrolled through 

advertisements in the Victoria Longitudinal Study (VLS). They received a small honorarium for 

their participation at each wave. Written informed consent was obtained from all participants. All 

VLS data are collected with current approval from institutional research ethics guidelines for 

human research. The recently collected (2009-2011) genetic sample (N = 697) is the source 

sample for the present study. In the present study, we used the three main VLS cohorts (Samples 

1-3) as represented in the source sample. We included Sample 1: Waves 5-7, Sample 2: Waves 

3-5, and Sample 3: Waves 1-3. The longitudinal period included approximately 9 years (three 

waves). In this study, (a) Wave 1 refers to Sample 1 (Wave 5), Sample 2 (Wave 3), and Sample 3 

(Wave 1), (b) Wave 2 refers to Sample 1 (Wave 6), Sample 2 (Wave 4), and Sample 3 (Wave 2), 
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and (c) Wave 3 refers to Sample 1 (Wave 7), Sample 2 (Wave 5), and Sample 3 (Wave 3). The 

average interval between each waves were 4.7 years between Waves 1 and 2, and 4.3 years 

between Waves 2 and 3. 

MCI Classification. Using the recently collected genetic sample, we used an objective 

classification system as applied independently in two consecutive longitudinal waves to create 

the MCI group. This classification has been applied in past VLS studies (Dixon et al., 2014; 

Dolcos, MacDonald, Braslavsky, Camicioli, & Dixon, 2012). All MCI participants in this study 

were validated in status at a second wave (i.e., that they were stable in their original 

classification over a 4-year period). The cognitive status classification procedure requires strict 

implementation of an established four-step procedure, as applied in previous VLS studies and 

consistent with other research and observations (Albert et al., 2011; de Frias, Dixon, & Strauss, 

2009; Dixon et al., 2014; Dixon et al., 2007; Ritchie, Artero, & Touchon, 2001; Winblad et al., 

2004). First, adults were stratified into two age (64-73 years and 74-95 years) and education (0-

12 years or 13+ years) groups. Second, adults were placed into their matching age and education 

group based on four age x education group combinations. Third, the mean performances for all 

four groups were calculated on five cognitive domains: perceptual speed, inductive reasoning, 

episodic memory, verbal fluency, and semantic memory. Fourth, the scores for each participant 

were compared against their corresponding age x education groups. The previously established 

criterion to detect early signs of cognitive impairment (de Frias et al., 2009; Dixon et al., 2007; 

Dolcos et al., 2012; Ritchie et al., 2001) stipulated that adults who scored one standard deviation 

(or below) on any one or more cognitive domain were classified as MCI. This process was 

repeated exactly and independently at a second wave (4 years later) and only stable MCI cases 

for the same cognitive domains were eligible for this study. The final stable MCI group over two 
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consecutive waves included n = 69 adults (mean age = 73.36 years, gender: 56.5% female, mean 

education: 14.26 (3.01) years; see Table 4-1) from VLS Sample 1 (Waves 5-6) and Sample 2 

(Waves 3-4) (Dixon et al., 2014). 

Normal Aging Classification. For the normal aging group, we applied the following 

exclusionary criteria to the main source sample (N = 697): (a) diagnosis or history of dementia, 

(b) anti-psychotic medication, (c) Mini Mental State Exam Scores < 24, (d) insulin-controlled 

diabetes, (e) uncontrolled hypertension, and (f) history of serious head injury (e.g., hospitalized) 

in Sample 1 (Wave 6), Sample 2 (Wave 4), and Sample 3 (Wave 1). Next, we excluded any 

individuals who were classified as stable MCI over a 4-year period. Accordingly, we included n 

= 562 normal aging older adults (mean age = 68.32 years, gender: 67.4% female, mean 

education: 15.40 (2.94) years) at baseline (see Table 4-1).  

 DNA Extraction and Genotyping. Saliva was collected according to standard 

procedures from Oragene-DNA stored at room temperature in the Oragene® disks until DNA 

extraction. DNA was manually extracted from 0.8 ml of saliva sample mix using the 

manufacturer's protocol with adjusted reagent volumes. Specific details outlining the genotyping 

procedure are provided in Chapter 3 (General Methods).  

 Based on previous literature, we test the allelic groups as risk homozygotes, 

heterozygotes, and no risk homozygotes for all six SNPs: APOE (risk: ε4/ε4, ε4/ε3, 

heterozygotes: ε3/ε3, no risk: ε2/ε2, ε2/ε3) (McFall et al., 2015); COMT (risk: G/G, 

heterozygotes: G/A, no risk: A/A); BDNF (risk: A/A, heterozygotes: A/G, no risk: G/G); CR1 

(risk: A/A, heterozygotes: A/G, no risk: G/G); PICALM (risk: T/T, heterozygotes: T/C, no risk: 

C/C) (Ferencz et al., 2014); and CLU (risk: C/C, heterozygotes: C/T, no risk: T/T). Adults with 
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APOE ε2/ε4 allelic combination were deleted (McFall, Wiebe, Vergote, Anstey, et al., 2015; 

Sapkota et al., 2015). 

Episodic Memory. CFA models at all three time points were represented by two-factor 

episodic (REY List A6; REY List B1; Word List Free Recall) and semantic (Vocabulary; Fact 

Recall Test 1; Fact Recall Test 2) memory models. Although we include semantic memory in the 

two-factor model, we only examine the episodic memory domain.  

Word List Free Recall (Word Recall). From a total of six lists, two different but 

comparable lists of 30 English words (i.e., five taxonomic categories for six words) (Dixon et al., 

2004) were used for measuring episodic memory. The total numbers of words correctly recalled 

from each list was used as the final score for list 1 and list 2. 

Rey Auditory Verbal Learning Test (REY). 15 nouns (List A) are read aloud to 

participants, followed by free recall for five trails (List A1-A5). Then a second interference list 

(List B) with 15 different nouns is read aloud, followed by free recall (List B1). Finally, 

participants had to recall the first list (List A6) (Vakil & Blachstein, 1993). The total number of 

nouns recalled in List A6 and List B1 were used to measure retention and free recall, 

respectively (McFall, Wiebe, Vergote, Westaway, et al., 2015) 

Vocabulary. The total number of correct answers from the Educational Testing Service 

kit (Ekstrom, French, Harman, & Dermen, 1976) with 54 multiple-choice vocabulary questions 

was obtained for a final score. 

Fact Recall. Two versions of general information (e.g., arts) test (40-items each) taken 

from a normed battery (Nelson & Narens, 1980) were administered. The total numbers of facts 

correctly recalled from each version (Fact Recall 1) and (Fact Recall 2) were used.  
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 Risk Factors. Below we list indicators from the VLS database used to measure each risk 

factor. In Table 4-2 we list relevant literature sources for categorizing groups and direction for 

variables as risk. All measures are coded with higher scores representing greater risk based on 

literature.   

Demographic. The VLS personal data inventory was used to determine type and level of 

demographic risk. Based on previously reported literature on demographic risk factors and 

cognitive performance, we included education  (Springer, McIntosh, Winocur, & Grady, 2005), 

marital status (Seeman, Lusignolo, Albert, & Berkman, 2001), age (Bäckman et al., 2000) and 

gender (Bartres-Faz et al., 2002) for this domain. Education was calculated by adding the total 

number of school years completed including any high school, college, graduate, vocational or 

technical school. We categorized participants into married (no risk = 0) and not married (risk = 

1). For gender, participants indicated whether they were male or female. We coded male as 0 (no 

risk) and female as 1 (risk). Age was coded in years.  

Health. The VLS personal data inventory was used to report health conditions. Nine 

conditions were used to represent health risk contributions: diabetes (McFall et al., 2013), 

depression (Lichtenberg, Ross, Millis, & Manning, 1995), heart disease (Dardiotis et al., 2012), 

stroke (Kalaria & Ballard, 2001), high blood pressure (Kilander, Nyman, Boberg, Hansson, & 

Lithell, 1998), hardening of the arteries (Zheng et al., 2012), alcohol dependence (Hoang, Byers, 

Barnes, & Yaffe, 2014), tobacco dependence (Sabia et al., 2012), and any history of traumatic 

brain injury (Anstey et al., 2013). Participants were asked to self-rate each condition ranging 

from no (0) to yes, very serious (3). Rating on all nine conditions were summed and used as the 

final health risk composite score where higher scores indicated greater health risk.  
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Lifestyle. The VLS Activity Lifestyle Questionnaire (VLS-ALQ) with 67-items was used 

to determine the level of activity for the following four domains: (a) social activity measured 

with 7-items, such as volunteering or visiting friends; (b) physical activity measured with 4-

items, such as jogging or gardening (Bherer, Erickson, & Liu-Ambrose, 2013); (c) integrative 

information processing measured with 12-items, such as playing a musical instrument or 

household repairs; and (d) novel information processing measured with 27-items, such as 

completing jigsaw puzzles or reading the newspaper. The frequency of participation is rated on a 

9-point scale with never (0), less than once a year (1), about once a year (2), 2 or 3 times a year 

(3), about once a month (4), 2 or 3 times a month (5), about once a week (6), 2 or 3 times a week 

(7), and daily (8). All the items were summed for each domain with higher scores representing 

greater frequency of activity (Hultsch, Hertzog, Small, & Dixon, 1999; Small, Dixon, McArdle, 

& Grimm, 2012). 

Genetic. All six SNPs were coded based on each allelic status: COMT (A/A; A/G; G/G), 

BDNF (G/G; G/A; A/A), CLU (C/C; C/T; T/T), PICALM (C/C; C/T; T/T), and CR1 (G/G; G/A; 

A/A) was coded 0 (no risk homozygotes), 1 (heterozygotes), and 2 (risk homozygotes) for each 

of the three allelic status. APOE (ε2/ε2; ε2/ε3; ε2/ε4; ε3/ε3; ε3/ε4; ε4/ε4) was coded from 0 (no 

risk) to 5 (high risk) for each allelic status with higher number indicating greater risk. ε2/ε4 

alleles were all coded as missing based on previously reported analyses (McFall, Wiebe, 

Vergote, Westaway, et al., 2015). 
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Study 1a 

Statistical Analysis 

Structural equation modeling (SEM) was used to analyze all research goals with Mplus 7 

(Muthén & Muthén, 1998-2015). Descriptive statistics were calculated using SPSS 22 for 

Windows (SPSS Inc., Chicago, IL, USA) (see Table 4-1, 4-3 4-4). Any missing predictor values 

were estimated using multiple imputations in Mplus 7. Total of 50 imputations were generated 

and pooled for analyses (Enders, 2011; McFall, Wiebe, Vergote, Westaway, et al., 2015; Muthén 

& Muthén, 1998-2015). The three research goals were analyzed as follows: 

Research Goal 1. We created risk composites or latent factors for all variables and the 

episodic and semantic memory domain. First, we used confirmatory factor analysis (CFA) 

models to examine loadings of all manifest variables for two-factor episodic (REY List A6, REY 

List B1, and Word Recall List 1 and Word Recall List 2) and semantic (Fact Recall 1, Fact 

Recall 2, and Vocabulary) memory construct and the lifestyle risk construct. The best CFA 

model was determined separately for all three measurement occasions. CFA models were tested 

at each of the three waves for a total of three models for the lifestyle risk and three models for 

the two-factor episodic and semantic memory. Each model fit was determined by examining 

several fit statistics. The chi-square test of model fit using the -2 log-likelihood (-2LL; 𝜒2; p > 

.05) allows for an overall indication of good model fit. Additional absolute/comparative fit 

indices were also examined to determine a good model fit to the data (Kline, 2011) with the root 

mean square error of approximation (RMSEA ≤ .05), comparative fit index (CFI ≥ .95), and the 

standardized root mean square residual (SRMR ≤ .08). Second, we built a standard risk 

composite for the demographic and health factor with four demographic and nine health 
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variables with simple addition. We note that age and education were included as continuous 

variables in the demographic composite.  

Research Goal 2. We established longitudinal invariance from Time 1-3 (~9 years) for 

the best-fitting two factor episodic and semantic memory and the lifestyle model. We tested four 

levels of invariance for the lifestyle risk factor and the episodic and semantic memory factor. 

First, we tested configural invariance by setting the factor structure to be equal across all three 

time points. Second, metric invariance was established by allowing the factor loadings to be 

equal across all three occasions. Third, scalar invariance fixed intercepts to be equal at all three 

time points. Fourth, residual invariance set the residual variances to be equal at all three time 

points. A total of 12 longitudinal invariance models were tested. We considered each successive 

level of invariance and partial invariance obtained. The best-fit model with at least metric level 

invariance was used in the final risk score composite. Next, we computed factor scores for all 

three latent constructs (episodic memory, semantic memory, and lifestyle risk). Subsequently, 

multiple imputations were performed at this step to take into account any missing predictor 

values. As is the standard procedure in the VLS (McFall, Wiebe, Vergote, Westaway, et al., 

2015), 50 datasets were imputed and pooled to analyze in all subsequent models.  

 Research Goal 3. Using Mplus 7 to compute a latent growth model, we examined the 

effect of time-varying lifestyle risk factors, and the health and demographic risk composites, on 

the episodic memory factor. Thus, parallel process models were appropriate for these analyses, 

as they permit assessment of differences in change for the predictors on episodic memory 

performance. Age was centered at 75 years in all the analyses. This is important because we want 

to identify any change in the predictor that may affect interindividual differences in 

intraindividual variability for episodic memory. Factor scores were computed for the lifestyle 
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risk factor and the episodic memory factor. The best latent growth model was determined for the 

episodic and lifestyle constructs. By using factor scores, we were able to use a simplified model 

without all the indicators. This avoided any problems with model non-convergence in Mplus. In 

the parallel process model, episodic memory intercept and slope were regressed on all three risk 

factors. First, episodic memory intercept was regressed on lifestyle intercept, health, and 

demographic risk composite. Second, episodic memory slope was regressed on lifestyle intercept 

and slope, health and demographic risk composite.  

Results 

 Below we report results for each research goal. 

Research Goal 1. The two-factor episodic and semantic memory (AIC = 1549.42; BIC = 

155566.36; χ2(df) = 4.79 (2), p = .009; RMSEA (90% CI) = .050 (.000-.109); CFI = 0.985; 

SRMR = 0.019) and lifestyle risk construct (AIC = 19950.74; BIC = 20054.69; χ2(df) = 43.85 

(11), p < .001; RMSEA (90% CI) = .073 (.051-.096); CFI = 0.974; SRMR = 0.038) provided 

good or adequate fit to the data at baseline. For subsequent time points two and three, we 

obtained good or adequate fit for both constructs. The model fit indices are listed in Table 4-5.  

Research Goal 2. We obtained longitudinal invariance across all three time points at the 

configural, metric, and partial scalar level for latent factors representing episodic memory (AIC 

= 27334.71; BIC = 27531.42; χ2(df) = 155.76 (47), p < .001; RMSEA (90% CI) = .064 (.053-

.075); CFI = .959; SRMR = .058), semantic memory (AIC = 26642.85; BIC = 26786.14; χ2(df) = 

116.91 (21), p < .001; RMSEA (90% CI) = .090 (.074-.106); CFI = .976; SRMR = .057), and 

lifestyle factors (AIC = 38156.49; BIC = 38343.20; χ2(df) = 103.46 (47), p < .001; RMSEA (90% 

CI) = .046 (.034-.058); CFI = .984; SRMR = .040) (see Table 4-6). To obtain partial scalar 

longitudinal invariance, the intercepts for social activity, word recall list 2, and vocabulary were 
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constrained to be equal across all three points for the lifestyle, episodic memory, and semantic 

memory factors, respectively. Since we did not obtain full scalar invariance, we did not test for 

residual invariance.  

Research Goal 3. We determined how each latent factor changed across time by testing latent 

growth models for the episodic memory and lifestyle constructs. We used factor scores for each 

construct and age at each wave as the metric of change. First, for lifestyle, the best fit was 

obtained with the random intercept, random slope model (-2LL = 1573.37; AIC = 1589.37; BIC 

= 1624.11) (see Table 4-7). This means that the lifestyle risk factor score is different between 

older adults in these groups and the frequency of lifestyle activities is changing across age. 

Second, for episodic memory, the best fit was obtained with the random intercept, random slope 

model (-2LL = 1119.49; AIC = 1135.48.37; BIC = 1170.22). This means that the older adults 

showed interindividual differences and intraindividual change across age on episodic memory. 

Next, we tested the lifestyle latent risk factor and the demographic and health risk 

composite in a parallel process model for predicting episodic memory performance at age 75 and 

9-year decline. Lifestyle risk intercept, health risk composite and demographic risk composite 

significantly predicted episodic memory intercept. Specifically, higher risk on lifestyle intercept 

(β = -0.272; SE = 0.055; p < .001), health (β = -0.061; SE = 0.027; p =.024), and demographic 

risk (β = -0.034; SE = 0.016; p = .034) were associated with worse episodic memory 

performance at the centering age 75 (see Table 4-8). Lifestyle slope, health, and demographic 

composites significantly predicted 9-year episodic memory decline. Specifically, higher risk on 

lifestyle slope (β = -0.448; SE = 0.150; p = .003), health (β = -0.002; SE = 0.001; p =.003), and 

demographic risk (β = -0.001; SE = 0.001; p = .034) were associated with steeper 9-year episodic 

memory decline (see Table 4-8).  
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Predicted growth curves based on the parallel process models are graphed for 

demographic risk (see Figure 4-2), health risk (see Figure 4-3), and lifestyle risk (see Figure 4-4) 

as they predict episodic memory performance at age 75 and 9-year decline. All three risk factors 

in non-demented older adults predicted poor episodic memory performance at 75 years old and 

steeper 9-year decline with higher risk scores. As expected, the predicted growth curves for 

cumulative effect of high demographic + health risk and high demographic + health + lifestyle 

risk showed poor episodic memory performance and steep 9-year decline. Graphically, 

synergistic effects of demographic and health risk appeared more deleterious on episodic 

memory performance and change than demographic or health risk alone. Similarly, the 

cumulative risk of demographic, health, and lifestyle had the worst episodic memory 

performance and decline compared to a high score on each risk factor alone. The cumulative 

effects of demographic + health risk and demographic + health + lifestyle risk are represented in 

Figures 4-5 and 4-6, respectively.   

Discussion 

 Our overall goal in Study 1a was to build a multi-domain risk index using relatively 

modifiable demographic, health, and lifestyle risk factors to predict episodic memory 

performance and change in non-demented older adults over 9 years. The technique for building 

the general risk score was to use all of the available raw data for each of the predictors in its 

original form. In this way, the combined risk score retained and reflected the distinct properties 

for each risk factor. Prior reports have examined similar modifiable and non-modifiable risk 

factors using a categorical approach to build their risk scores (Anstey et al., 2014). Three key 

findings of the present study are as follows. First, we estimated a two-factor episodic and 

semantic memory CFA model, and a one-factor latent lifestyle risk factor. Each latent factor was 
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invariant across time at the configural, metric, and partial scalar invariance level. Second, as 

expected higher risk scores predicted worse episodic memory performance at age 75 years and 

steeper 9-year decline for all three risk factors (demographic, health, lifestyle) in our random 

intercept and random slope growth model. Third, we observed that the synergistic effect of high 

risk score (demographic + health and demographic + health + lifestyle) resulted in increased 

spreading or “fanning” of slope effect on episodic memory performance and 9-year change than 

a high score on independent risk factors. We discuss each point in turn.  

 First, we established a two-factor model for declarative memory as represented by 

episodic and semantic memory factors and a one-factor model for lifestyle. The two-factor 

episodic and semantic memory model best represented the data at all three waves (see Table 4-

5). Our result confirms previous findings that have reported a similar model for the declarative 

memory structure (Eichenbaum, 1997; McFall, Wiebe, Vergote, Westaway, et al., 2015), 

whereby episodic and semantic memory are related but stand as two separate domains at the 

latent variable level. This may partially explain the differential results between the two factors in 

older adult declarative memory performance (Nyberg, Lövden, Riklund, Lindenberger, & 

Bäckman, 2012; Nyberg et al., 2003). For the present analyses, we tested the episodic memory 

factor because it has been shown to decline with increasing age (Salthouse, 2009) and 

differentially so in the presence of risk factors (Anstey et al., 2014). The lifestyle indicators 

(social activities, physical activities, integrative information processing, novel information 

processing) were best represented in a one-factor model. Our estimated latent lifestyle factor 

allowed us to study the shared variance between all four observed lifestyle indicators in one 

underlying construct. For both models, we established longitudinal invariance across all three 

waves at the configural, metric, and partial scalar level. This allowed us to examine factor scores 
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for each latent variable across 9 years. Partial scalar longitudinal invariance is the minimum level 

of invariance required to examine differences in factor scores because the intercept for at least 

one of indicators has to be fixed across all three waves. In our models, for the episodic memory 

factor, word recall list 2 was fixed, and for the lifestyle factor, social activity variable was fixed 

across all three waves.  

 Second, higher risk scores on the demographic (see Figure 4-2), health (see Figure 4-3), 

and lifestyle (see Figure 4-4) factors predicted worse episodic memory performance at 75 years 

and steeper 9-year decline. We estimated a random intercept and random slope growth model for 

episodic memory and lifestyle factors. This allowed us to examine differences at the centering 

age of 75 years and change across a 9-year period. Several studies have used an overall risk score 

composite with similar variables to discriminate NA older adults from those who go on to 

develop dementia (Anstey et al., 2013; Anstey et al., 2014). However, we report a novel feature 

of calculating and examining risk scores (i.e., a lifestyle latent risk factor and risk score) to 

predict episodic memory performance and change in non-demented older adults. Our latent 

factor and growth modeling approach takes into account the shared variance in more than one 

lifestyle variable to create a latent construct. In addition, we use four demographic and nine 

health variables to create an overall demographic and health risk score. We examined three 

highly influential constructs rather than individual risk variables. This allowed us to examine 

shared risk across many variables rather than single risk variables examined in recent dementia 

risk score studies (Anstey et al., 2013; Barnes et al., 2009; Jessen et al., 2011; Kivipelto et al., 

2006; Reitz et al., 2010).  

We incorporate a broad range of risk factors and longitudinal data ranging in age from 

53-95 years old. In the future, our technique can be (a) used in a variety of large population-
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based settings in which a large number of risk factors need to be examined, (b) expanded by 

adding more risk factors as they become identified in the field, and (c) used to identify 

individuals who are at a high risk for decline and probable dementia in the pre-clinical phase and 

could benefit through enrollment in intervention programs. In the area of risk assessment tools, 

our novel technique provides a more robust way to assess large numbers of risk variables by 

grouping them into select set of risk factors (or constructs) to predict the likelihood of dementia 

onset (Anstey et al., 2013; Jessen et al., 2013; Kivipelto et al., 2006) and other pre-clinical 

cognitive markers (i.e., episodic memory trajectories). Previous studies have shown that increase 

in demographic, health, and lifestyle risk factors with increasing age is associated with poor 

cognitive performance in older adults (Fratiglioni, Paillard-Borg, & Winblad, 2004; Valenzuela, 

Brayne, Sachdev, & Wilcock, 2011). We extend previous studies by calculating risk scores for 

each risk factor and using the robust risk scores to predict cognitive outcome over time. 

 We now summarize several potential biological mechanisms for the three risk factors 

(demographic, health, lifestyle) included in our episodic memory parallel process growth model.  

Demographic. The demographic risk score, comprised of the cumulative effects of age, 

education, gender, and marital status, predicted episodic memory performance and 9-year 

change. As expected, we observed that age played a major role in our demographic risk score to 

predict cognitive decline (Salthouse, 2009). Common age-related physical changes in the brain 

that lead to cognitive deficits (i.e., episodic memory impairment) include neuronal cell death 

resulting in gray matter shrinkage, decrease in dendritic sprouting and synaptic plasticity, white 

matter lesions, and increased brain volume reduction rate (Peters, 2006). Similarly, we accounted 

for any gender differences in our demographic risk score. Previous studies show that age-related 

brain changes may differ between gender, where men show greater loss in the frontal and 
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temporal lobes and women show increased atrophy in the hippocampus and parietal lobes 

(Murphy et al., 1996). In addition to age and gender, education levels also played a role in our 

risk composite. Previous studies have shown that low education levels may be a risk factor for 

dementia (Caamano-Isorna, Corral, Montes-Martinez, & Takkouche, 2006; Valenzuela et al., 

2011). Higher education may contribute towards building cognitive reserve. Higher cognitive 

reserve may help delay pre-clinical symptoms such as memory impairment, with the same level 

of neuropathological brain damage (Stern, 2002; 2009) associated with a specific age group and 

gender. In addition, marital status is known to be an important social factor and associated with 

better health status compared to single older adults (Mousavi-Nasab, Kormi-Nouri, Sundström, 

& Nilsson, 2012). Thus, higher education levels and being married may provide a protective 

layer to the deleterious effects associated with age and gender. Although we are unaware of the 

specific contribution of each risk variable to our overall demographic risk score, we examined 

each risk variable to take into account any risk associated with each variable.  

Health. The health risk score is comprised of the additive effects of diabetes, depression, 

heart disease, stroke, high blood pressure, hardening of the arteries, alcohol dependence, tobacco 

dependence, and traumatic brain injury. All health-related questions were based on self-report 

questionnaire at baseline. We note that objective measures were available for depressive affect 

(Center for Epidemiological Studies-Depression Scale), blood pressure (systolic and diastolic 

measures), and alcohol and tobacco intake (quantity per month). Future studies should consider 

using both objective and self-reported measures for both validating and supplementing the 

present approach. Approximately 33% of older adults (see Table 4-3) indicated that they had 

“yes, not serious” to “yes, very serious” high blood pressure. Prior reports have shown that high 

blood pressure in mid-life increases the chance of cognitive impairment and dementia in late 
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adulthood (Kivipelto et al., 2006; Whitmer, Sidney, Selby, Johnston, & Yaffe, 2005). High blood 

pressure changes the overall vascular integrity of the blood-brain barrier through rarefaction of 

small vessels (Levy, Ambrosio, Pries, & Struijker-Boudier, 2001) and formation of atheromatous 

plaques (Kennelly, Lawlor, & Kenny, 2009), ultimately leading to brain tissue damage (Deane, 

Wu, & Zlokovic, 2004; Reitz & Mayeux, 2014) and hippocampal atrophy. Importantly, the 

hippocampus plays an important in episodic memory retrieval and storage (Glodzik et al., 2014). 

Older adults in our study also indicated that they had diabetes, which is a risk factor for stroke, 

high blood pressure, heart trouble, stroke, and hardening of the arteries (Reitz & Mayeux, 2014; 

Sacco et al., 1997), all included in our health risk score.  

In addition, other variables in the health risk factor included depression, alcohol 

dependence, tobacco dependence, and head injury. Possible mechanism associated with 

depression and cognitive impairment may be through increased cortisol levels. High cortisol 

levels can lead to hippocampal atrophy, and MRI reports have shown positive correlation 

between depression and atrophy (Cole, Costafreda, McGuffin, & Fu, 2011). Post mortem 

analyses also showed that AD patients with a history of major depression have higher amyloid 

plaques and neurofibrillary tangles than AD patients with no history of depression (Ganguli, 

2009). Although the percentage of adults in our study with alcohol dependence, tobacco 

dependence and some form of head injury was less than 18%, we included all three conditions to 

account for any changes in episodic memory performance. Previous studies report a U-shaped 

curve for alcohol dependence, where moderate consumption may contribute the least to cognitive 

impairment risk (Peters, 2012). Both smoking (Peters, 2012) and head injury (Moretti et al., 

2012; Schretlen & Shapiro, 2003) have been associated with brain atrophy and poor vascular 

health resulting in increased dementia and cognitive impairment risk. Thus, in the present study, 
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the cumulative effect of a high score on vascular conditions (i.e., high blood pressure, stroke), 

depression, substance use, and head injury added to the risk associated with individual health 

conditions and predicted poor episodic memory performance and steeper decline.  

Lifestyle. The latent lifestyle risk factor included the shared variance from social 

activities, physical activities, integrative information processing, and novel information 

processing. The VLS Activities Lifestyle Questionnaire has been previously validated (e.g., 

Hultsch et al., 1999). We note that some related objective measures were available for the 

domain of physical activities (i.e., timed-walk speed, hand grip strength) and future studies may 

consider using both objective and self-reported measures. All four lifestyle predictors have been 

associated with cognitive impairment in the literature. First, recent report on integrative and 

novel cognitive information processing showed that adults who engage in high levels of novel 

cognitive activities are less prone to develop cognitive impairment and dementia (Reitz & 

Mayeux, 2014). Second, another study found that higher level of education and social 

engagement in midlife or late-life was a protective factor for cognitive impairment (Valenzuela 

et al., 2011). Third, physical activities, such as walking have been associated with greater gray 

matter volume and fewer cognitive deficits (Erickson, Miller, & Roecklein, 2012).  

In the present study, a high latent lifestyle risk score predicted poorer episodic memory 

performance and steeper decline. A possible mechanism that connects all four lifestyle risk 

predictors to memory decline is stress (Fratiglioni et al., 2004; Wilson et al., 2003). Stress has 

been associated with loss of hippocampal neurons (Bremner, 1999) resulting in learning and 

memory deficits. A low lifestyle risk score would mean high levels of physical and social 

activities, and integrative and novel information processing. Past studies have reported that 

adults with high levels of physical activity are more inclined to engage in novel and integrative 
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activities and have a greater chance of maintaining larger social networks and events (Menec, 

2003). Also, a combined low lifestyle risk leads to positive state of mind and lower stress levels 

(Fratiglioni et al., 2004). However, our latent lifestyle risk score approach reduces the number of 

risk score variables examined compared to previous studies that include separate scores for each 

variable. Our approach provides a simpler way to account for risk associated with the lifestyle 

construct through the use of CFA and latent growth modeling.  

 Third, the synergistic effects of demographic + health risk (Figure 4- 5) and demographic 

+ health + lifestyle risk scores (Figure 4-6) in our latent growth model showed an increased 

fanning effect on intercept and slope resulting in poorer episodic memory performance and 

steeper decline. We observed that a combined high risk score on all three risk factors showed the 

greatest fanning effect for episodic memory performance and decline compared to independent 

effect of the three risk factors. Our result provides a novel way of linking the three risk factors 

through synergistic effect of low, intermediate, or high risk score rather than an overall risk score 

(Anstey et al., 2013). Common underlying mechanisms linking all three risk factors can be a 

result of many different pathways. For example, regular physical activity may promote vascular 

health by lowering blood pressure (Warburton, Nicol, & Bredin, 2006) and generating new 

neurons in the hippocampus (Van Praag, Kempermann, & Gage, 1999). Increased activity and 

better health may lead to higher engagement in novel and integrative processing activities which 

can preserve or enhance cognitive abilities in old age through increased brain reserve (Wang, 

Karp, Winblad, & Fratiglioni, 2002). Although we examined a low, intermediate, and high-risk 

combination for all three risk factors in our latent growth model, we are not clear on whether the 

synergistic effect is simply additive or interactive. We were not able to test additive or interactive 

effects in our model because we explored low, intermediate, and high combination graphs based 
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on the results with all three risk factor scores. Therefore, to fully understand the neurobiological 

underpinnings of synergistic risk factor influence on episodic memory trajectories, future studies 

may benefit from testing specific additive and interactive associations in non-demented older 

adults. 

 We now list several strengths and limitations of the present study. For our limitations, 

first, all the variables included in each of the three risk domains did not receive the same amount 

of weight in the overall risk score. For example, some variables were added as continuous or 

categorical, and one risk domain was a latent factor. This limits the generalizability of our 

overall risk score across multiple domains with equal weightings. However, this does not affect 

how each risk factor predicts episodic memory in our study because all three risk factors were 

included in the same latent growth model. Second, although genetic risk factors are known to 

play a major role in episodic memory performance and change (McFall, Wiebe, Vergote, 

Westaway, et al., 2015), we only examined modifiable risk factors in the present study. Future 

studies should examine both genetic and non-genetic risk factors to provide a more 

comprehensive risk assessment for differential memory change in aging.  

Regarding strengths, first, the VLS is a large-scale longitudinal sequential study. Thus, 

we had a large sample of non-demented older adults (n = 562) spanning a 40-year age band (53-

95 years) from three cohorts. The large longitudinal sample size allowed us to examine 

intraindividual trends, stability, and variability. Second, we estimated a two-factor declarative 

memory and a one-factor lifestyle latent variable using six standard neuropsychological variables 

and four common activities of daily living, respectively. Third, we did not lose any participants 

as a result of missing data because all missing variables were accounted through multiple 

imputations.  
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 In sum, this study built a multi-domain risk index of relatively modifiable factors to 

predict episodic memory performance and change in non-demented older adults. The risk index 

included demographic risk factor with four variables, health risk factor with nine variables, and 

latent lifestyle risk factor with four variables. High risk score for demographic, health, and 

lifestyle factors all predicted worse episodic memory at centering age 75 years and steeper 9-year 

decline. This risk score contributes to the growing literature on delaying cognitive decline in NA 

by providing a novel approach to calculate risk scores specifically for modifiable risk factors 

using latent growth modeling. Our study also implies that a synergistic effect of high-risk score 

on all three risk factors (demographic, health, lifestyle) may magnify the deleterious effect of 

independent risk factor on episodic memory decline.  
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Study 1b 

Statistical Analysis 

SEM was used to analyze all research goals with Mplus 7 (Muthén & Muthén, 1998-

2015). All missing values were assumed to be missing at random and handled using maximum 

likelihood. Any missing predictor values were estimated using multiple imputations in Mplus 7. 

A total of 50 imputations were generated and pooled for analyses (Enders, 2011; McFall, Wiebe, 

Vergote, Westaway, et al., 2015; Muthén & Muthén, 1998-2015). The research goals were 

analyzed as follows. 

Research Goal 1. We categorized all variables and created risk factors ranging from no 

risk (0) up to very high risk (4) for demographic (0-3), health (0-3), lifestyle (0-2), and genetic 

risk (0-4) factors. First, for the demographic risk composite, education (years; 0 = 14-24; 1 = 12-

14; 2 = 6-12), marital status (yes = 0; no = 1), age (years; 0 < 65 years; 1 = 65-75 years; 2 = 76-

85 years; 3 = 85-87 years) and gender (male = 0; female = 1) at baseline were all added to create 

a final score. Second, the health risk score was computed with the addition of all nine variables 

(diabetes, depression, heart trouble, stroke, hypertension, hardening of arteries, alcohol 

dependence, tobacco dependence, head injury) with higher scores representing greater risk (from 

no [0] to yes, very serious [3]). Third, lifestyle scores were categorized into three groups based 

on minimum and maximum score in the scale. The minimum score was 43 and the maximum 

score was 216. The risk calculation was based on this scale. The maximum score was divided by 

three and score at baseline was categorized as follows: 0 = 144-216; 1 = 72-144; 2 = 43-71. 

Higher scores represented greater risk. Fourth, formative composite genetic risk factor (Figure 4-

1) and standard genetic risk score were built using different combinations of six SNPs: COMT, 

BDNF, APOE, CLU, PICALM, and CR1. For the standard genetic risk score, we created a 
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composite genetic risk score by simply adding the number of risk alleles for (a) 6 risk genes 

(COMT, BDNF, APOE, CLU, PICALM, CR1), (b) 4 AD risk genes (APOE, CLU, PICALM, 

CR1), and (c) APOE (benchmark). Similarly, the formative genetic risk score was computed 

using the two-factor episodic and semantic memory model for (a) 6 risk genes (COMT, BDNF, 

APOE, CR1, CLU, PICALM) and (b) 4 AD risk genes (APOE, CR1, CLU, PICALM) (see Figure 

4-1). The formative genetic risk score model was built in Mplus using syntax for formative and 

CFA models. Although we only examine episodic memory in the present study, we include 

semantic memory because at least two factors need to be directly regressed on the composite risk 

score to build a formative genetic risk score (Bollen & Davis, 2009a). This rule is known as the 

2+ emitted path rule (Bollen & Davis, 2009b), which states that at least two endogenous 

variables are required to have an identified formative composite model (Bollen & Lennox, 1991; 

Bollen & Bauldry, 2011; Kline, 2011, 2013; MacCallum & Browne, 1993). An under-identified 

model in structural equation modeling will not run a latent composite with a single direct effect. 

Past reports have examined latent risk in a variety of different context from business research to 

testing hypotheses in psychology. For example, a latent risk model included socioeconomic 

status, parental psychiatric behaviors, and teen verbal IQ as causal indicators, and achievement 

and classroom adjustment as two direct reflective factors (Worland, Weeks, Janes, & Strock, 

1984). As shown in our conceptual model (Figure 4-1), 6 risk genes and 4 AD risk genes are 

included as causal indicators to build a formative genetic risk score. We expected to observe 

good model fit statistics and significant beta coefficients for the 6 gene causal indicator model 

and the 4 AD risk gene causal indicator model. We used continuous factor scores for the 

formative genetic risk to predict episodic memory performance and change. We tested model fit 

with several fit statistics including -2LL; 𝜒2; p > .05, RMSEA ≤ .05, CFI ≥ .95, and SRMR ≤ 
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.08. Then we used the factor scores (as continuous) from the formative genetic risk score model 

to add as the genetic risk component. See Table 4-9 for details on categorization of each variable 

for the five risk factors.  

Research Goal 2. We used the random intercept and random slope episodic memory 

growth model with partial scalar longitudinal invariance from Study 1a to test for differences in 

episodic memory performance and change. Age was centered at 75 years. All five risk factors 

(and all combinations) of risk factors were regressed on the episodic memory factor at baseline 

and at the last time point. Fifteen different combinations of risk scores were tested using the 

baseline risk score and final time point 3 (Wave 3) risk score as follows: (a) demographic, (b) 

health, (c) lifestyle, (d) demographic + health, (e) demographic + health + lifestyle, (f) standard 

genetic (6 genes), (g) AD standard genetic (4 AD genes) (h) APOE (benchmark), (i) formative 

genetic (6 genes), (j) AD formative genetic (4 AD genes), (k) demographic + health + lifestyle + 

standard genetic (6 genes), (l) demographic + health + lifestyle + AD standard genetic (4 AD 

genes), (m) demographic + health + lifestyle + APOE, (n) demographic + health + lifestyle + 

formative genetic risk score (6 genes), (o) demographic + health + lifestyle + AD formative 

genetic risk score (4 AD genes).  

Research Goal 3. We examined two different methods to test risk score change on 

episodic memory change. First, risk score at baseline was subtracted from risk score at time point 

3. The difference score was regressed on episodic memory intercept and slope for six 

combinations of risk factors: (a) demographic, (b) health, (c) lifestyle and (d) demographic + 

health + lifestyle + standard genetic (6 genes), (e) demographic + health + lifestyle + AD 

standard genetic (4 AD genes), (f) demographic + health + lifestyle + APOE. Second, growth 
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models were tested for risk score change to determine the best latent growth model to test 

parallel process model for each risk factor and episodic memory change.  

Research Goal 4. We examined eleven risk factor combinations to test whether the risk 

factors discriminated NA older adults from MCI adults. We used receiver operating 

characteristic (ROC) curve analyses using SPPS 22 for Windows (SPSS Inc., Chicago, IL, USA) 

for the following risk factors: (a) demographic, (b) health, (c) lifestyle, (d) demographic + health, 

(e) demographic + health + lifestyle, (f) standard genetic (6 genes), (g) AD standard genetic (4 

AD genes) (h) APOE, (i) demographic + health + lifestyle + standard genetic (6 genes), (j) 

demographic + health + lifestyle + AD standard genetic (4 AD genes), and (k) demographic + 

health + lifestyle + APOE. The area under the curve (AUC) for all ROC analyses determined 

which risk score significantly discriminated clinical status (NA versus MCI).  

Results 

 Research Goal 1. Based on the existing literature, we categorized all variables and 

created risk scores ranging from no risk (0) up to very high risk (4) for the combination of 

demographic, health, and lifestyle risk factors. See Table 4-9 for complete detail on 

categorization of each variable in the five risk factors. For the genetic risk factor, we created a 

standard composite genetic risk score and a formative genetic risk score using 6 genes, 4 AD 

genes, and APOE. For the formative model, we used (a) 6 genes and (b) 4 AD genes as formative 

indicators and two-factor episodic and semantic memory latent constructs as reflective 

indicators. This model did not converge. Second, we tested a formative genetic risk model with 

(a) 6 genes and (b) 4 AD genes as causal indicators and episodic memory latent factor from time 

point 1 to 3 as reflective indicators. This model also did not result in convergence. Third, we 

tested a formative genetic risk model with (a) 6 genes and (b) 4 AD genes as causal indicators 
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and four episodic memory measures (Word Recall 1, Word Recall 2, REY list A6, REY list B1) 

as separate reflective indicators. This model resulted in good model fit statistics for (a) 6 genes 

(AIC = 9407.04; BIC = 9484.09; χ2(df) = 47.21 (20), p = .001; RMSEA (90% CI) = .050 (.032-

.069); CFI = .926; and SRMR = .035) (see Table 4-10; Figure 4-7) and (b) 4 AD genes (AIC = 

9405.37; BIC = 9473.86; χ2(df) = 43.80 (14), p < .001; RMSEA (90% CI) = .063 (.043-.085); CFI 

= .919; and SRMR = .041) (see Table 4-10). Factor scores were computed for (a) 6 genes and (b) 

4 AD genes to use as the final formative genetic risk score for each adult. 

 Research Goal 2. Twelve of fifteen different combinations of baseline or time point 3 

risk scores significantly predicted episodic memory intercept and/or slope. The following three 

independent risk scores were significant predictors: (a) demographic (baseline slope: β = -0.005; 

SE = 0.002; p = 0.004; time point 3 slope: β = -0.005; SE = 0.002; p = 0.001), (b) health 

(baseline intercept: β = -0.069; SE = 0.034; p = 0.042; baseline slope: β = -0.004; SE = 0.001; p 

= 0.000; time point 3 intercept: β = -0.071; SE = 0.026; p = 0.006; time point 3 slope: β = -0.003; 

SE = 0.001; p = 0.006), and (c) lifestyle (baseline intercept: β = -0.252; SE = 0.111; p = 0.023; 

time point 3 slope: β = -0.014; SE = 0.005; p = 0.006).  

 The following combined risk scores were significant predictors: (d) demographic + health 

(baseline intercept: β = -0.055; SE = 0.027; p = 0.041; baseline slope: β = -0.003; SE = 0.001; p 

= 0.000; time point 3 intercept: β = -0.059; SE = 0.021; p = 0.005; time point 3 slope: β = -0.003; 

SE = 0.001; p = 0.000) and (e) demographic + health + lifestyle (baseline intercept: β = -0.059; 

SE = 0.026; p = 0.024; baseline slope: β = -0.003; SE = 0.001; p = 0.000; time point 3 intercept: 

β = -0.060; SE = 0.020; p = 0.003; time point 3 slope: β = -0.003; SE = 0.001; p = 0.000). 

 The following genetic-related predictors were significant: (f) formative genetic (6 genes) 

(intercept: β = 1.139; SE = 0.039; p = 0.000; slope: β = 0.022; SE = 0.003; p = 0.000), (g) AD 
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formative genetic (4 AD genes) (slope: β = 0.005; SE = 0.002; p = 0.021); (h) demographic + 

health + lifestyle + standard genetic (6 genes) (baseline slope: β = -0.002 ; SE = 0.001; p = 

0.003; time point 3 intercept: β = -0.044; SE = 0.018; p = 0.015; time point 3 slope: β = -0.002; 

SE = 0.001; p = 0.001), (i) demographic + health + lifestyle + AD standard genetic (4 AD genes) 

(baseline slope: β = -0.002; SE = 0.001; p = 0.006; time point 3 intercept: β = -0.043; SE = 

0.020; p = 0.028; time point 3 slope: β = -0.002; SE = 0.001; p = 0.001), (j) demographic + 

health + lifestyle + APOE (baseline slope: β = -0.003; SE = 0.001; p = 0.001; time point 3 

intercept: β = -0.053; SE = 0.021; p = 0.011; time point 3 slope: β = -0.003; SE = 0.001; p = 

0.001), (k) demographic + health + lifestyle + formative genetic (6 genes) (baseline intercept: β 

= 0.090; SE = 0.023; p = 0.000; time point 3 intercept: β = 0.055; SE = 0.023; p = 0.016), (l) 

demographic + health + lifestyle + AD formative genetic (4 AD genes) (baseline slope: β = -

0.002; SE = 0.001; p = 0.003; time point 3 slope: β = -0.002; SE = 0.001; p = 0.008) (see Table 

4-11). With one exception, higher risk scores were associated with poorer episodic memory 

performance and steeper decline. The exception was the formative genetic risk score with six 

genes. Unexpectedly, higher formative genetic risk scores were associated with better episodic 

memory performance at age 75 years and an increase in performance with age. However, higher 

AD formative genetic risk score with 4 AD-related genes was associated with steeper episodic 

memory decline. We did not observe significant differences on episodic memory intercept or 

slope with the standard genetic risk predictor with 6 genes, 4 AD genes, or APOE.  

 Research Goal 3. Two different methods were applied to test risk score change on 

episodic memory change. First, risk score at baseline was subtracted from risk score at time point 

3. The risk score difference did not significantly predict episodic memory performance at age 75 

or change for any of the six combinations of risk scores (see Table 4-12). Second, the random 
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intercept and fixed slope was the best growth model for all nine risk score combinations. With no 

change in slope, we did not examine parallel process growth models for risk score and episodic 

memory associations.   

 Research Goal 4. Demographic and health risk scores significantly discriminated the NA 

group from the MCI group. As expected, the MCI group had higher demographic risk scores as 

compared to NA older adults (AUC = 0.622; p = 0.001). However, higher health risk scores were 

observed in the NA group than in the MCI group (AUC = 0.368; p = 0.003). No other risk score 

combinations significantly discriminated NA group from the MCI group (see Table 4-13). 

Discussion 

 In Study 1b, our main goals were (a) to build a multi-domain risk index using 

demographic, health, lifestyle and select genetic polymorphisms to (b) predict episodic memory 

performance and change and (c) distinguish NA older adults from those with MCI. We used the 

previously confirmed partial scalar, and random intercept and random slope episodic memory 

latent growth model from Study 1a. We applied a recently used technique to categorize and build 

demographic, health, lifestyle, and standard genetic risk scores (Anstey et al., 2014; Barnes et al., 

2009; Jessen et al., 2011; Kivipelto et al., 2006). In addition, we used several different novel 

techniques to advance the growing field of dementia and cognitive aging risk score calculation to 

predict cognitive impairment and dementia. First, we generated a standard genetic risk score by 

adding the number of risk alleles for 6 genes (APOE, COMT, BDNF, CLU, CRI, and PICALM) 

commonly associated with cognitive decline and dementia, 4 AD genes (APOE, CLU, CRI, and 

PICALM), and APOE (Bartres-Faz et al., 2002; Dixon et al., 2014; Ghisletta et al., 2014; Harold 

et al., 2009; McFall et al., 2013; Papenberg et al., 2014; Wishart et al., 2011). Second, we 

explored the effects of a novel formative genetic risk score with all 6 genes (APOE, COMT, 
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BDNF, CLU, CRI, and PICALM) and 4 AD genes (APOE, CLU, CRI, and PICALM) as 

formative indicators and episodic memory indicators (Word Recall 1, Word Recall 2, REY list 

A6, REY list B1) as reflective indicators (see Figure 4-7). Third, we tested both independent and 

cumulative (additive) effects of all five risk scores to predict episodic memory performance at 

baseline and time point 3. Fourth, we calculated change in risk score to predict change in 

episodic memory performance over 9 years. Fifth, we applied different combinations of additive 

risk scores to test which combination is the most sensitive to distinguish NA versus MCI status.  

 This is the first study to examine three modifiable risk factors (demographic, health, 

lifestyle) and six genetic risk polymorphisms (APOE, COMT, BDNF, CLU, CR1, PICALM) to 

test episodic memory performance at age 75 years and 9-year change in non-demented older 

adults. In addition, we tested three variables to distinguish two clinical groups (NA versus MCI). 

Three key findings of the present study are as follows. First, we predicted episodic memory 

performance and change at two time points using both independent and cumulative (additive) 

risk score for demographic, health, lifestyle, and genetic risk factors. Second, we calculated 9-

year difference in risk score, but this did not predict episodic memory change in our sample. 

Third, we observed that demographic and health risk scores significantly distinguished NA group 

from the MCI group. We now discuss research goals 1-4.  

 Research Goal 1. We created risk scores for all five risk factors (demographic, health, 

lifestyle, standard genetic, formative genetic) and the novel formative genetic risk score with 

four episodic memory indicators provided good model fit statistics. Specifically for standard and 

formative genetic risk scores, we examined six genetic polymorphisms in three different 

combinations: (a) an overall additive effect of six genes (APOE, CLU, CR1, PICALM, COMT, 

BDNF), (b) AD risk genes (APOE, CLU, CR1, PICALM) to examine an overall AD genetic risk 
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score (McFall et al., 2015), and (c) independent effect of APOE based on the literature with 

APOE and dementia risk score (Kivipelto et al., 2006).  

Research Goal 2. We examined independent and additive models for all risk factors to 

predict episodic memory performance and 9-year change at baseline and time point 3. Higher 

risk scores at baseline and time point 3 were associated with poorer episodic memory 

performance at 75 years and steeper 9-year decline for (a) independent risk factors 

(demographic, health, lifestyle), (b) cumulative risk factors (demographic + health, demographic 

+ health + lifestyle), and (c) cumulative genetic and non-genetic risk factors (demographic + 

health + lifestyle + standard genetic, demographic + health + lifestyle + AD standard genetic, 

demographic + health + lifestyle + APOE) (see Table 4-11). This suggests that the mechanism 

through which genetic risk factors and modifiable risk factors influence cognitive decline may be 

dependent on the aggregate of each risk factor than risk associated with single variables. 

Previous studies have only examined the APOE gene with modifiable risk factors (Barnes et al., 

2009; Kivipelto et al., 2006; Reitz et al., 2010). We examined cumulative risk scores with five 

additional genetic polymorphisms and three modifiable risk factor scores over 9 years. The 

present cumulative risk score provides a novel approach to combine a multitude of both 

modifiable (demographic, health, and lifestyle) and non-modifiable (genes) risk variables to test 

the overall risk associated with each risk domain independently and synergistically.  

As expected, we observed that higher AD formative genetic risk score was associated 

with steeper 9-year episodic memory decline. Although, we did not observe all favorable 

independent results, both standard and formative genetic risk scores contributed to the overall 

risk associated with modifiable risk scores. This result suggests that examining specific 

combinations of genes (i.e., only AD risk genes) may advance cognitive aging risk prediction 
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through the use of formative genetic risk models. Future studies should consider examining 

different combination of genes to calculate genetic risk scores rather than single candidate gene 

association studies to predict cognitive performance, which may provide additional insight on the 

specific combinations of genes associated with cognitive decline.  

As predicted, our risk score differentiated between adults who had poor episodic memory 

performance and steep decline based on their risk factor profiles. We observed that there were no 

significant differences for episodic memory performance at age 75 years and 9-year change 

whether the baseline or time point 3 risk scores were used. This implies that (a) there were no 

significant changes in risk score over 9 years or (b) adults in our sample did not change much in 

their health and lifestyle risk factors between baseline and time point 3. Although we did not 

have a younger sample, our finding supports previous results which show that changes or habits 

at an earlier age are a strong predictor of later-life cognitive performance. For example, studies 

have observed that midlife blood pressure predicts cognitive decline and brain atrophy in later 

life (Swan et al., 1998), midlife cardiovascular risk factors increase the chance of late-life 

dementia onset (Whitmer et al., 2005), midlife vascular risk factors play a role in MCI 

development (Kivipelto et al., 2001), and midlife hypertension, diabetes, smoking, and obesity 

levels may predict vascular brain injury, hippocampal atrophy and executive function (EF) 

decline 10 years later (Debette et al., 2011). Overall changes in health and lifestyle factors did 

not contribute to the overall risk score. Future large randomized controlled trials may benefit 

from closely monitoring modifiable risk factors starting from a young age to identify adults with 

significant health and lifestyle changes.  

 Research Goal 3. We used two different techniques to calculate change in risk score and 

predict episodic memory change by (a) estimating a latent growth model for risk scores and (b) 
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calculating a change score between time point 1 and 3. We used the latent growth model because 

it allows us to examine interindividual differences in change over time and test both time varying 

and time-invariant predictors in one model (Kline, 2013). We used change or difference scores 

because it is a simple and quick method that can be used in most situations with single predictor 

variables. However, raw score differences cannot be compared across predictors with different 

scales. For the latent growth model, we estimated a random intercept and fixed slope growth 

model for all nine risk score combinations. This means that older adults in our sample all had the 

same rate of risk score change over time. For the calculated change risk scores, we observed no 

significant changes in episodic memory over 9 years. This result implies that (a) NA adults in 

our sample did not have significant changes in their risk score profiles in the three risk domains 

(demographic, health, lifestyle) between baseline and time point 3 and (b) adults with high risk 

scores at baseline also had a high risk score at time point 3, which predicted episodic memory 

decline. We only examined non-demented older adults in our analyses and significant changes in 

risk factor profiles (i.e., deteriorating vascular health and decreased physical activity) may occur 

in adults who go on to develop severe memory impairment. Previous studies have only examined 

risk factors to predict cognitive changes (Anstey & Christensen, 2000) or that cognitive changes 

may account for the differences observed in late life activities (Hultsch, Hertzog, Small, & 

Dixon, 1999). Thus, future studies should consider examining changes in risk scores to identify 

those who go from low to a high risk score and also show increased rate of cognitive decline.  

 Research Goal 4.  Demographic and health risk scores distinguished the NA and MCI 

groups. As expected, we observed that the MCI group had higher demographic risk scores. This 

suggests and supports past findings that adults in the MCI group are more likely to be female, not 

married, older, and have lower education levels (Dolcos et al., 2012; Tervo et al., 2004). 
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However, for the health risk score, we observed that higher health risk score was present in the 

NA group. Based on previous reports (Tervo et al., 2004; Zou et al., 2014), we expected poorer 

overall health in the MCI group. Although the specific neural underpinnings for each variable are 

still unclear, we explore some potential mechanisms associated with the demographic and health 

risk factors. For demographic, higher education levels and marital status in old age may provide 

greater social engagement, and a cognitively stimulating and active lifestyle resulting in higher 

cognitive reserve (Stern, 2009). High cognitive reserve is associated with greater and efficient 

recruitment of brain networks and compensation strategies to account for memory decline 

associated with aging. For health, vascular risk factors such as lower blood pressure in old age 

may accelerate episodic memory decline through decreased cerebral blood flow (Henry-Fugeas, 

2008). A recent meta-analysis showed that diabetes incidence is associated with increased risk 

for MCI (Cheng, Huang, Deng, & Wang, 2012). Specifically, white matter hyperintensities, 

brain infarcts, hyperinsulinemia, and advanced products of glycosilation are commonly 

associated underlying processes and conditions linking diabetes to cognitive impairment and AD 

(Luchsinger, 2012).  

 We now list several strengths and limitations of the present study. For our limitations, 

first, we used list-wise deletion for any missing predictor variables. This reduced our overall 

sample size in both the NA group and the MCI group, but we still had an overall large sample 

size n = 562 in the NA group and n = 69 in the MCI group at baseline. Second, although we 

included a large sample size for our NA group, our MCI sample size was considerably smaller 

compared to the NA group. A similar sample size would have reduced the confidence interval 

differences (Lasko, Bhagwat, Zou, & Ohno-Machado, 2005) and resulted in a more precise ROC 

estimate. Third, the contribution of the episodic memory variables in the formative genetic risk 
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score is not clear, but we know that the overall risk score accounted for each person’s genetic 

risk which was then used to take into account the episodic memory indicators (Bollen, 2011). As 

we observed that higher formative genetic risk score with 6 genes and lower AD formative 

genetic risk score with 4 AD risk genes was associated with better episodic memory performance 

at age 75 years and increase in performance with age, we decided not to test this overall risk to 

differentiate between NA and MCI status. It is important to note that we tested a novel method of 

examining genetic risk factors that should be examined in future genetic and cognitive 

association studies to explore potential underlying mechanisms through which genetics and 

cognitive performance influences dementia onset and development.  

 For our strengths, first, we included a large sample of NA older adults (n = 562) spanning 

a 40-year age band (53-95 years), a large number of variables for demographic, health, and 

lifestyle risk domains and six genetic polymorphisms. Previous studies (e.g., Anstey et al., 2014; 

Kivipelto et al., 2006) have not examined such a large dataset with a broad range of risk 

predictors in one study. Second, all the variables included in each of the four risk factors (except 

for the formative genetic risk factor) received equal weights in the overall risk score ranging 

from 0 to 3. This allowed us to compare risk scores between domains, including standard genetic 

risk. Third, we used a latent growth model for our dependent variable, episodic memory 

performance and change, which accounted for measurement errors associated with single 

predictor variables commonly represented in the literature.  

 In sum, we focused on the traditionally represented categorical method for dementia risk 

indices in the literature to expand and explore different techniques (i.e., latent growth modeling, 

change scores, formative composite genetic risk score) to predict episodic memory performance 

and distinguish between NA versus MCI clinical status. Regarding risk factors, we included a 
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large and broad range of risk factors than previously reported in the literature. Our overall risk 

index included genetic, demographic, health, and lifestyle risk factors. The different techniques 

applied in our risk score calculation and prediction allows us to conclude that: (a) change in risk 

score does not always predict change in cognitive performance, (b) addition of formative genetic 

and standard genetic risk scores may contribute to the overall modifiable risk score, and (c) 

differentiating between clinical statuses may be more successful with independent risk factors 

and not always through additive effects of risk factors. Specifically, the underlying mechanisms 

may differ between those who go on to develop MCI and those who show normal trajectories of 

cognitive decline.  
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Conclusion  

 Recent single factor epidemiological studies report inconsistent findings with modifiable 

and non-modifiable risk factors associated with cognitive impairment. It has become imperative 

to take a multimodal approach to examine complex cognitive aging trajectories to delay 

cognitive decline and dementia incidence (Olanrewaju et al., 2015). We examined a large dataset 

with comprehensive set of demographic, health, lifestyle, and genetic variables to build a 

multidimensional risk index to predict episodic memory performance and decline, and 

discriminate NA group from MCI. Study 1a examined modifiable risk factors to focus on risk 

factors that may be used in future dementia prevention trials and intervention program. This is 

the first study to use latent constructs and ~9 years of longitudinal data (three time points) with 

risk scores to test change in episodic memory, a pre-clinical marker for dementia. Risk scores 

were based on a broad range of risk factors which may help target individual-specific dementia 

prevention strategies. Study 1b examined both modifiable and non-modifiable (genetic) risk 

factors to examine overall risk on episodic memory trajectories and discriminate two clinical 

groups (NA versus MCI). Study 1b examined six genetic polymorphisms to identify genetic 

factors that may have small effects independently but in synergy make a significant difference on 

cognitive aging trajectories. In addition, we used advanced statistical modeling to introduce the 

concept of novel formative latent risk scores. Taken together, both Studies 1a and 1b contribute 

to the growing literature on cognitive aging and advance the dementia risk score field through (a) 

novel and advanced statistical methods for calculating risk scores, (b) inclusion of both genetic 

and modifiable risk factors in one risk score, and (c) broad range of risk variables examined 

across a 9-year period. Future studies can take our approach to identify those at high risk for 

cognitive decline or dementia (i.e., examining decline in episodic memory trajectories) and target 
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intervention programs through a multi-domain and individually tailored approach to older adults. 

Future studies should also consider examining other risk factors not included in this study (i.e., 

nutrition information, pesticide exposure) and different statistical approaches (i.e., interactive) 

that may provide further insight into the potential mechanisms associated with risk scores.  
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Table 4-1  

Mean (standard deviation) demographics and genotype by time point for normal aging group and mild cognitive impairment group 

Normal Aging T1 T2 T3 

n  562 505 477 

Gender (% female) 68.00 -- -- 

Age (years) 68.32 (7.68) 73.02 (7.69) 77.08 (7.39) 

       Range (years) 53-87 57-91 62-95 

Education (years) 15.40 (2.94) 15.51 (2.88) 15.42 (3.06) 

Mini-Mental State Exam 28.86 (1.12) 28.66 (1.17) 28.37 (2.03) 

Marital Status (% married) 63.00 51.10 42.30 

COMT (A/A; A/G; G/G) 132/304/132 -- -- 

BDNF (G/G; G/A; A/A) 375/169/24 -- -- 

APOE (ε2/ε2; ε2/ε3; ε3/ε3; ε3/ε4; ε4/ε4) 36/36/340/117/11 -- -- 

CLU (T/T; T/C; C/C) 95/286/187 -- -- 

CR1(G/G; G/A; A/A) 194/297/77 -- -- 

PICALM (C/C; C/T; T/T) 134/216/217 -- -- 

Mild Cognitive Impairment    

n  69 69 -- 

Gender (% female) 56.5 -- -- 

Age (years) 73.36 (5.47) 78.09 (5.37) -- 

       Range (years) 64-91 68-95 -- 

Education (years) 14.26 (3.01) -- -- 

Mini-Mental State Exam 28.38 (1.30) -- -- 

Marital Status (% married) 72.1 -- -- 

COMT (A/A; A/G; G/G) 15/35/19 -- -- 

BDNF (G/G; G/A; A/A) 46/20/3 -- -- 

APOE (ε2/ε2; ε2/ε3; ε3/ε3; ε3/ε4; ε4/ε4) 2/6/38/20/1 -- -- 

CLU (T/T; T/C; C/C) 10/31/27 -- -- 
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CR1(G/G; G/A; A/A) 23/36/9 -- -- 

PICALM (C/C; C/T; T/T) 17/21/30 -- -- 

Note. T = Time point. COMT = Catechol-O-methyltransferase; BDNF = Brain-derived neurotrophic factor; APOE = Apolipoprotein 

E; CLU = Clusterin; CR1 = Complement receptor 1; PICALM = Phosphatidylinositol-binding clathrin assembly protein.  
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Table 4-2  

Literature sources for risk factors 

Risk Factors Indicators Literature Direction in Present Study 

Demographic  - Education 

- Marital Status 

- Springer et al., 2005 

- Seeman et al., 2001 

Higher = Less risk 

Married = Less risk 

 - Age 

- Gender 

- Bäckman et al., 2000 

- Bartrés-Faz et al., 2002 

Older = More risk 

Female = More risk 

Active lifestyle - Social Activities 

- Physical Activities 

- Integrative Information  

- Novel Information  

- Small et al., 2012 

- Bherer et al., 2013; Small et al., 2012 

- Hultsch et al., 1999; Small et al., 2012 

- Hultsch et al., 1999; Small et al., 2012 

Higher activities = Less risk 

Higher activities = Less risk 

Higher activities = Less risk 

Higher activities = Less risk 

Health - Diabetes 

- Depression 

- Heart Disease 

- Stroke 

- High Blood Pressure 

- Hardening of the Arteries 

- McFall et al., 2013 

- Lichtenberg et al., 1995 

- Dardiotis et al., 2012 

- Kalaria & Balldard, 2001 

- Kilander et al., 1997 

- Hanon et al., 2005 

Diabetic = More risk 

Depression = More risk 

Heart disease = More risk 

Stroke = More risk 

High Blood Pressure = More 

risk 

Hardening of the Arteries = 

More risk 

 - Alcohol Dependence 

- Tobacco Dependence 

- Hoang et al., 2014 

- Sabia et al., 2012 

Dependent = More risk 

Dependent = More risk 

Genetic - COMT 

- BDNF 

- APOE 

- CLU 

- CR1 

- PICALM 

- Wishart et al., 2011 

- Nagel et al, 2008 

- Brainerd et al., 2011 

- Thambisetty et al., 2013 

- Chibnik et al., 2011 

- Ferencz et al., 2014 

Risk allele: G+ 

Risk allele: A+ 

Risk allele: ε4+ 

Risk allele: C+ 

Risk allele: A+ 

Risk allele: T+ 

Note. COMT = Catechol-O-methyltransferase; BDNF = Brain-derived neurotrophic factor; APOE = Apolipoprotein E; CLU = 

Clusterin; CR1 = Complement receptor 1; PICALM = Phosphatidylinositol-binding clathrin assembly protein.
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Table 4-3  

Mean (standard deviation) for risk factors by time point for normal aging older adults 

 T1 T2 T3 

Demographic    

Age (years) 68.32 (7.68) 73.02 (7.69) 77.08 (7.39) 

Gender (% female) 68.00   

Education (years) 15.40 (2.94) 15.51 (2.88) 15.42 (3.06) 

Marital Status (% married)  63.00 51.10 42.30 

Health     

Diabetes (a/b/c/d) 527/20/12/0 462/25/16/0 395/27/15/1 

Stroke (a/b/c/d) 543/14/3/0 487/9/6/0 418/11/8/1 

Depression (a/b/c/d) 443/69/39/9 394/75/29/5 351/60/23/3 

Head Injury (a/b/c/d) 471/42/13/0 432/49/22/0 378/44/15/1 

Heart Trouble (a/b/c/d) 459/61/23/16 384/57/40/22 324/47/49/18 

High Blood Pressure (a/b/c/d) 374/122/61/3 270/152/79/2 219/146/69/4 

Hardening of Arteries (a/b/c/d) 525/18/12/2 460/23/14/5 391/28/16/3 

Alcohol Dependence (a/b/c/d) 541/12/3/3 483/11/7/2 420/12/2/3 

Tobacco Dependence (a/b/c/d) 553/5/2/0 494/4/5/0 431/6/0/0 

Active Lifestyle    

Physical Activities 15.93 (4.98) 15.23 (5.05) 14.16 (5.19) 

Social Activities 22.68 (6.64) 22.39 (6.67) 21.22 (6.92) 

Integrative Information Processing 19.92 (9.14) 18.47 (9.05) 17.28 (8.82) 

Novel Information Processing 77.76 (16.42) 76.12 (16.03) 73.85 (16.01) 

Note. T = Time point; a = No; b = Yes, not serious; c = Yes, moderately serious; d = Yes, very serious.
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Table 4-4  

Mean (standard deviation) for episodic and semantic memory measures by time point 

 T1 T2 T3 

Episodic Memory    

Word Recall List 1 17.71 (4.58) 17.71 (4.58) 16.32 (4.73) 

Word Recall List 2 19.23 (4.64) 18.77 (4.66) 17.67 (4.98) 

REY List A6 10.65 (7.01) 9.36 (3.24) 8.68 (3.20) 

REY List B1 6.70 (6.84) 5.60 (1.75) 5.04 (1.65) 

Semantic Memory    

Vocabulary 43.69 (5.99) 44.17 (5.27) 38.52 (15.12) 

Fact Recall 1 21.71 (6.37) 21.56 (6.58) 19.93 (6.90) 

Fact Recall 2 21.22 (6.25) 21.18 (6.43) 19.87 (6.74) 

Note. T = Time point; REY = Rey Auditory Verbal Learning Test. 
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Table 4-5  

Study 1a (Research goal 1): Confirmatory factor analysis model fit statistics for lifestyle risk, and two-factor episodic and semantic 

memory constructs from time point 1 to 3 

Model AIC BIC 𝝌𝑴
𝟐 (𝒅𝒇𝑴) RMSEA (90% CI) CFI SRMR 

Lifestyle        

T1 15492.419 15566.355 4.790 (2); p = 0.091 0.050 (0.000-0.109) 0.985 0.019 

T2 13923.429 13974.004 3.895 (2); p = 0.143 0.044 (0.000-0.108) 0.992 0.016 

T3 11641.704 11690.101 3.192 (2); p = 0.203 0.038 (0.000-0.111) 0.995 0.017 

Two-factor EM and SM       

T1 19950.737 20054.693 43.847 (11); p = 0.000 0.073 (0.051-0.096) 0.974 0.038 

T2 18884.312 18985.749 22.342 (11); p = 0.022 0.045 (0.017-0.072) 0.992 0.029 

T3 17557.839 17658.554 29.837 (11); p = 0.002 0.059 (0.034-0.085) 0.986 0.059 

Note. AIC = Akaike Information Criteria; BIC = Bayesian Information Criteria; 𝜒𝑀
2  = Chi-square test of model fit; 𝑑𝑓𝑀 = Degrees of 

freedom for model fit; RMSEA = Root Mean Square Error of Approximation; CI = Confidence Interval; CFI = Comparative Fit 

Index; SRMR = Standardized Root Mean Square Residual; T = Time point; EM = Episodic Memory; SM = Semantic Memory. 
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Table 4-6  

Study 1a (Research goal 2): Longitudinal measurement invariance model fit statistics and chi-square difference test for lifestyle and 

episodic and semantic memory constructs from time point 1 to 3 

Model AIC BIC 𝝌𝑴
𝟐 (𝒅𝒇𝑴) RMSEA (90% CI) CFI SRMR 𝝌𝑫

𝟐  (𝒅𝒇𝑫) 

Active lifestyle         

Configural 38121.770 38242.219 52.736 (39); p = 0.070 0.025 (0.000-0.041) 0.996 0.025 -- 

Metric 38122.356 38137.752 65.321 (45); p = 0.025 0.028 (0.000-0.042) 0.994 0.034 12.585 (6)* 

Scalar 38287.315 38447.974 246.280 (53); p = 0.000 0.080 (0.070-0.090) 0.947 0.0062 180.959 (8)** 

Partial scalara  38156.490 38343.201 103.455 (47); p = 0.000 0.046 (0.034-0.058) 0.984 0.040 38.134 (2)** 

EM        

Configural 27275.517 27496.966 70.567 (39); p = 0.002 0.038 (0.023-0.052) 0.988 0.036 -- 

Metric 27269.506 27464.902 76.555 (45); p = 0.002 0.035 (0.021-0.048) 0.988 0.045 5.998 (6) 

Scalar 27559.996 27720.654 383.045 (53); p = 0.000 0.105 (0.095-0.115) 0.875 0.104 306.49 (8)** 

Partial scalarb  27344.710 27531.421 155.759 (47); p = 0.000 0.064 (0.053-0.075) 0.959 0.058 79.204 (2)** 

SM        

Configural 26576.305 26745.648 38.370 (15); p = 0.001 0.052 (0.032-0.073) 0.994 0.014 -- 

Metric 26576.930 26728.904 46.994 (19); p = 0.000 0.051 (0.033-0.069) 0.993 0.040 8.624 (4) 

Scalar 26744.864 2680.785 226.928 (25); p = 0.000 0.119 (0.105-0.134) 0.949 0.080 179.934 (6)** 

Partial scalarb  26642.845 26786.135 116.909 (21); p = 0.000 0.090 (0.074-0.106) 0.976 0.057 69.915 (2)** 

Note. AIC = Akaike Information Criteria; BIC = Bayesian Information Criteria; 𝜒𝑀
2  = Chi-square test of model fit; 𝑑𝑓𝑀 = Degrees of 

freedom for model fit; RMSEA = Root Mean Square Error of Approximation; CI = Confidence Interval; CFI = Comparative Fit 

Index; SRMR = Standardized Root Mean Square Residual; 𝑋𝐷
2 = Chi-square test of difference; 𝑑𝑓𝐷 = Degrees of freedom for 

difference in model fit; EM = Episodic Memory; SM = Semantic Memory. 
aPartial scalar, where the intercept for social activity is constrained to be equal across all three time points. 
bPartial scalar, where the intercept for word recall list 2 is constrained to be equal across all three time points. 
cPartial scalar, where the intercept for vocabulary is constrained to be equal across all three time points.  

*p<.05; **p<.001. 
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Table 4-7  

Study 1a (Research goal 3): Latent growth model fit statistics and chi-square difference test for lifestyle and episodic memory 

constructs by age 

Model H0 value Free 

Parameters 

-2LL AIC BIC D (𝒅𝒇𝑫) 

Lifestyle       

Fixed Intercept -2171.699 4 4343.398 4351.399 4368.767 -- 

Random Intercept -818.402 5 1636.804 1646.804 1668.514 2706.594 (1) 

Random Intercept, Fixed Slope -808.475 6 1616.95 1628.475 1628.949 19.854 (1)** 

Random Intercept, Random Slope -786.685 8 1573.370 1589.369 1624.106 43.58 (2)** 

Random Intercept, Random Slope, Fixed 

Quadratic 

-1246.261 9 2492.522 2510.522 2549.601 -919.152 (1) 

EM       

Fixed Intercept -2494.624 4 4989.248 4997.248 5014.617 -- 

Random Intercept -930.576 5 1861.152 1871.152 1892.862 3128.096 (1) 

Random Intercept, Fixed Slope -891.486 6 1782.972 1794.973 1821.025 78.18 (1)** 

Random Intercept, Random Slope -559.743 8 1119.486 1135.485 1170.222 663.486 (2)** 

Random Intercept, Random Slope, Fixed 

Quadratic 

-1235.473 9 2470.946 2488.945 2528.024 -1351.46 (1) 

Note. H0 = Log Likelihood; -2LL = -2 Log Likelihood; AIC = Akaike Information Criteria; BIC = Bayesian Information Criteria; D = 

Deviance statistic; 𝑑𝑓𝐷 = Degrees of freedom for difference in deviance statistics; EM = Episodic Memory. 

*p<.05; **p<.001. 
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Table 4-8  

Study 1a (Research goal 3): Parallel process model fit statistics for lifestyle, demographic, and health risk factors regressed on 

episodic memory intercept and slope 

Model  Model Results  Model Fit Statistics 

 Est.  S.E. p H0 value Free Parameters -2LL AIC BIC 

EM Intercept: -0.338    -1303.904 23 2607.808 2653.807 2753.676 

Lifestyle intercept -0.272 0.055 0.000      

Health   -0.061 0.027 0.024      

Demographic  -0.034 0.016 0.034      

EM Slope: -0.018         

Lifestyle intercept -0.003 0.002 0.248      

Lifestyle slope -0.448 0.150 0.003      

Health -0.002 0.001 0.003      

Demographic  -0.001 0.001 0.034      

Note. Est. = Regression Estimate; SE = Standard Error; EM = Episodic Memory; H0 = Log Likelihood; -2LL = -2 Log Likelihood; 

AIC = Akaike Information Criteria; BIC = Bayesian Information Criteria. 
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Table 4-9  

Study 1b (Research goal 1): Categorizing demographic, lifestyle, health, and genetic risk factors from no risk to very high risk 

Demographic risk 

Education Gender Marital Status Age 

0 >14 0 = Male 0 = married 0 < 65 years 

1 = 12-14 1 = Female 1 = not married 1 = 65-75 years 

2 < 12   2 = 76-85 years 

   3 > 85 years 

Lifestyle factor risk 

0 > 144 

1 = 72-144 

 2 < 72 

Novel information, integrative information, social activities, and physical activities were added for a 

composite score at each wave (minimum = 43 and maximum = 216). This was then divided by 3 to  

create low, moderate, and high risk groups for the risk score. 

Health risk 

0 = No Diabetes Depression Heart trouble 

1 = Yes, not serious Stroke Hypertension Hardening of arteries 

2 = Yes, moderately 

serious 

Alcohol 

dependence 

Head Injury Tobacco dependence 

3 = Yes, very serious    

Standard genetic risk 

0 = Homozygote no risk COMT BDNF APOE (ε2/ε4 group was deleted). Coded from 0-4 – was given 

more weight based on the literature. 1 = Heterozygote  PICALM CR1 

2 = Homozygote risk CLU  

Formative genetic risk 

Continuous 

Note. COMT = Catechol-O-methyltransferase; BDNF = Brain-derived neurotrophic factor; APOE = Apolipoprotein E; CLU = 

Clusterin; CR1 = Complement receptor 1; PICALM = Phosphatidylinositol-binding clathrin assembly protein. 
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Table 4-10  

Study 1b (Research goal 1): Building the formative genetic risk composite - confirmatory factor analysis model fit statistics 

Model AIC BIC 𝝌𝑴
𝟐 (𝒅𝒇𝑴) RMSEA (90% CI) CFI SRMR 

Genetic risk (EM and SM)a No convergence 

Genetic risk (EM T1-T3)b No convergence 

Genetic risk (EM indicators)c 9407.038 9484.085 47.209 (20); p = 0.001 0.050 (0.032-0.069) 0.926 0.035 

AD genetic risk (EM and SM)d No convergence 

AD genetic risk (EM T1-T3)e No convergence 

AD genetic risk (EM indicators)f 9405.371 9473.857 43.800 (14); p < 0.001 0.063 (0.043-0.085) 0.919 0.041 

Note. AIC = Akaike Information Criteria; BIC = Bayesian Information Criteria; 𝜒𝑀
2  = Chi-square test of model fit; 𝑑𝑓𝑀 = Degrees of 

freedom for model fit; RMSEA = Root Mean Square Error of Approximation; CI = Confidence Interval; CFI = Comparative Fit 

Index; SRMR = Standardized Root Mean Square Residual; T = Time point; COMT = Catechol-O-methyltransferase; BDNF = Brain-

derived neurotrophic factor; APOE = Apolipoprotein E; CLU = Clusterin; CR1 = Complement receptor 1;  

PICALM = Phosphatidylinositol-binding clathrin assembly protein. 
aFormative genetic risk composite includes APOE, COMT, BDNF, CLU, CRI, and PICALM as formative indicators and two-factor 

episodic and semantic memory latent constructs as reflective indicators. 
bFormative genetic risk composite includes APOE, COMT, BDNF, CLU, CRI, and PICALM as formative indicators and episodic 

memory latent factor from time point 1 to 3 as reflective indicators. 
cFormative genetic risk composite includes APOE, COMT, BDNF, CLU, CRI, and PICALM as formative indicators and episodic 

memory indicators (Word Recall List 1, Word Recall List 2, REY List A6, REY List B1) as reflective indicators. 
dFormative genetic risk composite includes APOE, CLU, CRI, and PICALM as formative indicators and two-factor episodic and 

semantic memory latent constructs as reflective indicators. 
eFormative genetic risk composite includes APOE, CLU, CRI, and PICALM as formative indicators and episodic memory latent factor 

from time point 1 to 3 as reflective indicators. 
fFormative genetic risk composite includes APOE, CLU, CRI, and PICALM as formative indicators and episodic memory indicators 

(Word Recall List 1, Word Recall List 2, REY List A6, REY List B1) as reflective indicators. 
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Table 4-11  

Study 1b (Research goal 2): Baseline and time point 3 risk scores regressed on episodic memory intercept and slope 

Risk Score Model Results Model Fit Statistic  

 Est.  S.E. p H0 value Free 

Parameters 

-2LL AIC BIC 

Demographic (Baseline)    -462.16 10 924.32 944.326 984.633 

Intercept -0.056 0.049 0.250      

Slope -0.005 0.002 0.004      

Demographic (T3)    -454.382 10 908.764 928.764 969.070 

Intercept -0.058 0.046 0.210      

Slope -0.005 0.002 0.001      

Health (Baseline)    -436.258 10 872.516 892.516 932.048 

Intercept -0.069 0.034 0.042      

Slope -0.004 0.001 0.000      

Health (T3)    -459.547 10 919.094 939.094 979.377 

Intercept -0.071 0.026 0.006      

Slope -0.003 0.001 0.006      

Lifestyle (Baseline)    -451.680 10 903.36 923.361 963.250 

Intercept -0.252 0.111 0.023      

Slope -0.006 0.004 0.101      

Lifestyle (T3)    -439.773 10 879.546 899.547 939.411 

Intercept -0.243 0.130 0.061      

Slope -0.014 0.005 0.006      

Demographic + Health (Baseline)    -1794.123 14 3588.246 3616.245 3671.591 

Intercept -0.055 0.027 0.041      

Slope -0.003 0.001 0.000      

Demographic + Health (T3)    -2033.306 14 4066.612 4094.613 4151.009 

Intercept -0.059 0.021 0.005      

Slope -0.003 0.001 0.000      

Demographic + Health + Lifestyle 

(Baseline) 

   -2015.605 16 4031.21 4063.209 4125.997 
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Intercept -0.059 0.026 0.024      

Slope -0.003 0.001 0.000      

Demographic + Health + Lifestyle 

(T3) 

   -2181.492 16 4362.984 4394.983 4458.726 

Intercept -0.060 0.020 0.003      

Slope -0.003 0.001 0.000      

Standard Genetic     -438.497 10 876.994 896.994 936.858 

Intercept -0.016 0.034 0.633      

Slope -0.001 0.001 0.456      

AD Standard Genetic     -438.639 10 877.278 897.277 937.142 

Intercept 0.005 0.041 0.896      

Slope 0.000 0.001 0.814      

APOE     -438.889 10 877.778 895.777 935.667 

Intercept 0.135 0.129 0.297      

Slope 0.001 0.004 0.885      

Formative Genetic    -139.259 10 278.518 298.518 338.382 

Intercept 1.139 0.039 0.000      

Slope 0.022 0.003 0.000      

AD Formative Genetic     -440.968 10 881.936 901.937 941.675 

Intercept 0.117 0.063 0.064      

Slope 0.005 0.002 0.021      

Demographic + Health + Lifestyle + 

Standard Genetic (Baseline) 

   -398.512 10 797.024 817.024 855.717 

Intercept -0.040 0.022 0.072      

Slope -0.002 0.001 0.003      

Demographic + Health + Lifestyle + 

Standard Genetic (T3) 

   -408.300 10 816.600 836.599 875.948 

Intercept -0.044 0.018 0.015      

Slope -0.002 0.001 0.001      

Demographic + Health + Lifestyle + 

AD Standard Genetic (Baseline) 

   -398.966 10 797.932 817.931 856.624 

Intercept -0.036 0.024 0.133      

Slope -0.002 0.001 0.006      
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Demographic + Health + Lifestyle + 

AD Standard Genetic (T3) 

   -408.812 10 817.624 837.623 876.972 

Intercept -0.043 0.020 0.028      

Slope -0.002 0.001 0.001      

Demographic + Health + Lifestyle + 

APOE (Baseline) 

   -397.010 10 794.02 814.019 852.740 

Intercept -0.048 0.027 0.076      

Slope -0.003 0.001 0.001      

Demographic + Health + Lifestyle + 

APOE (T3) 

   -407.884 10 815.768 835.768 875.143 

Intercept -0.053 0.021 0.001      

Slope -0.003 0.001 0.001      

Demographic + Health + Lifestyle + 

Formative Genetic (Baseline) 

   -386.776 10 773.552 793.552 832.245 

Intercept 0.090 0.023 0.000      

Slope 0.000 0.001 0.865      

Demographic + Health + Lifestyle + 

Formative Genetic (T3) 

   -403.017 10 806.034 826.034 865.383 

Intercept 0.055 0.023 0.016      

Slope 0.000 0.001 0.389      

Demographic + Health + Lifestyle + 

AD Formative Genetic (Baseline) 

   -404.335 10 808.670 828.670 867.221 

Intercept -0.039 0.023 0.088      

Slope -0.002 0.001 0.003      

Demographic + Health + Lifestyle + 

AD Formative Genetic (T3) 

   -415.351 10 830.702 850.702 889.891 

Intercept -0.035 0.019 0.058      

Slope -0.002 0.001 0.008      

Note. T3 = Time point 3; Est. = Regression Estimate; SE = Standard Error; H0 = Log Likelihood; -2LL = -2 Log Likelihood; AIC = 

Akaike Information Criteria; BIC = Bayesian Information Criteria; ; APOE = Apolipoprotein; CLU = Clusterin; CR1 = Complement 

receptor 1; PICALM = Phosphatidylinositol-binding clathrin assembly protein; AD genetic risk includes APOE, CLU, CR1, PICALM.  
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Table 4-12  

Study 1b (Research goal 3): Change in demographic, health, lifestyle, demographic + health + lifestyle + standard genetic, 

demographic + health + lifestyle + formative genetic risk scores from time point 1 to 3 on episodic memory performance and change 

Risk Score Model Results Model Fit Statistic  

 Est.  S.E. p H0 value Free 

Parameters 

-2LL AIC BIC 

Demographic (n = 414)    -460.199 10 920.398 940.398 980.656 

Intercept -0.036 0.078 0.645      

Slope -0.005 0.003 0.092      

Health (n = 382)    -434.061 10 868.122 888.121 927.576 

Intercept -0.029 0.037 0.432      

Slope 0.001 0.001 0.598      

Lifestyle (n = 380)    -428.807 10 857.614 877.614 917.015 

Intercept 0.027 0.134 0.840      

Slope -0.006 0.004 0.129      

Demographic + Health + Lifestyle + 

Standard Genetic (n = 335) 

   -380.805 10 761.610 781.610 819.752 

Intercept -0.037 0.036 0.303      

Slope -0.001 0.001 0.406      

Demographic + Health + Lifestyle + 

AD Standard Genetic (n = 335) 

   -380.805 10 761.610 781.610 819.752 

Intercept -0.037 0.036 0.303      

Slope -0.001 0.001 0.406      

Demographic + Health + Lifestyle + 

APOE (n = 336) 

   -381.000 10 762.000 782.001 820.172 

Intercept -0.038 0.036 0.291      

Slope -0.001 0.001 0.397      

Note. Est. = Regression Estimate; SE = Standard Error; H0 = Log Likelihood; -2LL = -2 Log Likelihood; AIC = Akaike Information 

Criteria; BIC = Bayesian Information Criteria; APOE = Apolipoprotein; CLU = Clusterin; CR1 = Complement receptor 1; PICALM = 

Phosphatidylinositol-binding clathrin assembly protein; AD = Alzheimer’s disease; AD standard genetic risk includes APOE, CLU, 

CR1, PICALM.   
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Table 4-13  

Study 1b (Research goal 4): Area under the curve values for NA versus MCI status for independent and additive risk scores 

Risk Index AUC Standard 

Error 

Asymptotic Significance 95% CI 

Interval 

Demographic 0.622* 0.035 0.001 0.554-0.690 

Health 0.368* 0.037 0.003 0.295-0.441 

Lifestyle 0.574 0.038 0.058 0.500-0.648 

Standard genetic  0.566 0.040 0.080 0.488-0.643 

AD Standard genetic 0.556 0.039 0.137 0.479-0.633 

APOE 0.538 0.038 0.307 0.463-0.613 

Demographic + Health 0.490 0.039 0.825 0.414-0.566 

Demographic + Health + Lifestyle 0.558 0.045 0.193 0.471-0.646 

Demographic + Health + Lifestyle + Standard genetic  0.512 0.046 0.812 0.421-0.603 

Demographic + Health + Lifestyle + AD standard genetic 0.510 0.044 0.842 0.424-0.596 

Demographic + Health + Lifestyle + APOE 0.520 0.045 0.671 0.433-0.608 

Note. NA = Normal Aging; MCI = Mild Cognitive Impairment; AUC = Area Under Curve; CI = Confidence Interval; AD = 

Alzheimer’s disease; APOE = Apolipoprotein E. 

*p<.05 
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Figure 4-1. Conceptual model for formative composite genetic risk score using all six genetic polymorphisms. The model depicts the 

genetic risk factor score computed using two-factor episodic and semantic memory model. 
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Figure 4-2. Predicted growth curve for episodic memory factor score using demographic risk score as a predictor with age centered at 

75 years. High demographic risk score significantly predicted lower episodic memory at age 75 (p = .034) and steeper episodic 

memory decline (p = .034). 
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Figure 4-3. Predicted growth curve for episodic memory factor score using health risk score as a predictor with age centered at 75 

years. High health risk score significantly predicted lower episodic memory at age 75 (p = .024) and steeper episodic memory decline 

(p = .003). 
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Figure 4-4. Predicted growth curve for episodic memory factor score using lifestyle risk score as a predictor with age centered at 75 

years. High lifestyle risk score at age 75 years significantly predicted lower episodic memory at age 75 (p < .001) and change in 

lifestyle slope predicted steeper episodic memory decline (p = .003). 
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Figure 4-5. Predicted growth curve for episodic memory factor score using demographic + health risk score as a predictor with age 

centered at 75 years. Cumulative demographic + health risk score predicted lower episodic memory at age 75 and steeper decline. 
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Figure 4-6. Predicted growth curve for episodic memory factor score using demographic + health + lifestyle risk score as a predictor 

with age centered at 75 years. Cumulative demographic + health + lifestyle risk score predicted lower episodic memory at age 75 and 

steeper decline. 
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Figure 4-7. Final formative composite genetic risk score using all six genetic polymorphisms. The model depicts the genetic risk 

factor score computed using all four episodic memory indicators (Rey List A6, Rey List B1, Word Recall 1, Word Recall 2). 
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CHAPTER 5: STUDY 2 

Synergistic associations of Catechol-O-methyltransferase and Brain-derived neurotrophic 

factor with executive function in aging are selective and modified by Apolipoprotein E 
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1. Introduction 

Genetic associations in complex and multifaceted neurocognitive phenotypes are known 

to be detectable but relatively small in magnitude. Such associations are likely to be polygenic, 

interactive, or combinatorial in influence. They operate through relevant neurobiological 

mechanisms, and vary in influence according to the match between endogenous factors and 

neurocognitive domain or clinical outcome status (Deary et al., 2004; Goldberg and Weinberger, 

2004; Gomar et al., 2011; Green et al., 2008; McClearn, 2006). Recent advances in 

understanding relevant molecular genetics, neurophysiological mechanisms, and key structural 

and functional aspects of specific cognitive phenotypes have led to increasing attention to 

potential associations among dopaminergic and neurotrophic related genes expressed in the 

prefrontal cortex and influencing aging changes in executive functions (Bäckman et al., 2006; 

Harris and Deary, 2011; Savitz et al., 2006). Two polymorphisms have received sustained 

attention for their potential contributions to aging-related individual differences in executive 

function (EF): Catechol-O-methyl transferase (COMT; rs4680) and Brain-derived neurotrophic 

factor (BDNF; rs6265) (Bilder et al., 2004; Miyajima et al., 2008; Payton, 2009; Starr et al., 

2007). The third polymorphism we consider is Apolipoprotein E (APOE; rs7412, rs429358). 

APOE has received considerable attention for both predictive and modifying roles in normal 

cognitive aging, Mild Cognitive Impairment (MCI), and Alzheimer’s disease (AD) (Brainerd et 

al., 2011; Farlow et al., 2004; Harris and Deary, 2011; Kantarci et al., 2012; Saunders et al., 

1993). In this study we examined both the independent, interactive, and additive effects of the 

first two polymorphisms on EF as well a subsequent potential vulnerability conveyed with effect 

modification by APOE-related cognitive risk.  



129 
 

EF is a complex neurocognitive phenotype that may vary with aging in terms of both 

latent structure and performance on manifest variables (Luszcz, 2011). Quantitative modeling 

and empirical results with younger adults, normal older adults, and clinical populations have 

confirmed that unidimensional (single-factor) solutions are typically observed in normal and 

clinical (impaired) aging (de Frias et al., 2009; McFall et al., 2013). We assembled two common 

markers (each) of EF inhibition (Hayling Sentence Completion, Stroop) and EF shifting (Brixton 

Spatial Anticipation, Color Trails). In order to avoid multiple significance tests and enhance the 

construct and measurement characteristics of these four manifest variables, we performed 

confirmatory factor analyses on the performance data, resulting in a replicated and validated 

latent variable representation of EF for non-demented older adults (de Frias et al., 2006).  

Biological-to-neurocognitive rationales for exploring the COMT and BDNF SNPs in the 

context of EF are available (e.g., Erickson et al., 2008; Miyajima et al., 2008; Savitz et al., 2006; 

Starr et al., 2007). We summarize the most pertinent aspects of the proposed neural mechanisms 

as they are currently related to non-demented aging. The Val158Met COMT rs4680 

polymorphism at codon 158 on chromosome 22q11 increases COMT enzymatic activity that in 

turn decreases dopamine levels particularly in the prefrontal cortex (Chen et al., 2004). This 

results in COMT homozygotes for the Met allele having greater dopamine levels than the Val 

allele homozygotes. Thus, non-demented older adults with any Val allele (Val-Val, Val-Met) 

may be at higher risk for EF impairment than those with the Met-Met combination (Nagel et al., 

2008; Wishart et al., 2011). However, a variety of phenotypic associations have been observed 

for this polymorphism, with such characteristics linked to the tonic-phasic dopamine hypothesis 

(Bilder et al., 2004; Egan et al., 2001). Regarding BDNF, this factor is mainly present in the 

hippocampus and prefrontal cortex, and it may play a role in such phenotypes as episodic 
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memory, global cognitive functioning, and EF, perhaps interactively, additively, or differentially 

by age and gender (Komulainen et al., 2008; Raz et al., 2009; Savitz et al., 2006). Although not 

quite to the extent as COMT, this polymorphism has produced multiple phenotypic associations, 

likely due to variations in endogenous and environmental factors in the context of other relevant 

genes and measures of neurocognitive performance (Mandelman and Grigorenko, 2012).   

Informed by overlapping neurobiological mechanisms and EF phenotypic expressions, 

but in the absence of a specific theory regarding the mechanisms of their potential synergistic 

associations, we recruited related theoretical perspectives linking them with non-demented aging. 

Specifically, an aging magnification or dynamic vulnerability perspective (e.g., Belsky et al., 

2009; Fotuhi et al., 2009; Lindenberger et al., 2008) suggests that a combination of risk alleles 

from BDNF and COMT could effectively intensify the deleterious effects of brain aging on select 

neurocognitive phenotypes. We examined two ways of representing vulnerability effects in this 

study (Gomar et al., 2011; Harris et al., in press; McClearn, 2006). First, we examined interactive 

or multiplicative (e.g., gene x gene interactions, ending with gene x gene x age interactions) 

models to test moderating biological relationship between COMT, BDNF, and age. The genotype 

of each polymorphism was coded from 1-3 (3 = highest risk) and age was evaluated as a 

continuous variable. We reasoned that, if the interactive model would hold, adults with relatively 

non-risk (or even protective) alleles for either COMT or BDNF (or younger age) would be at a 

lower risk for cognitive decrements. Conceivably, removing even one risk factor could reduce 

some risk associated with either COMT or BDNF risk alleles, because at least one factor is 

moderating the others to produce the deleterious effect on EF. Second, as an alternative 

representation of genetic-plus-aging vulnerability, we performed parallel tests of additive effects. 

This additive model of genetic risk included subsets and the full following calculation, COMT + 
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BDNF + age. The additive model represents the notion that panels or combinations of risk 

biomarkers will influence cognitive phenotypic performance in normal aging and in early 

cognitive impairment (e.g., Gomar et al., 2011), even in the absence of independent or 

multiplicative associations. An additive model (Purcell et al., 2009; Harris et al., in press; 

Verhaaren et al., 2013) could indicate that a non-risk (or protective) allele for BDNF or COMT or 

younger age would effectively only eliminate the risk for one of the risk factors, but the risk 

associated with the other factors could still be present and influential. For convenience, we refer 

to both interactive and additive effects as synergistic associations with EF throughout the paper. 

For both biological and cognitive reasons, BDNF and COMT have been studied independently 

(rarely in addition or interaction) in the prefrontal cortex in non-demented older adults. For 

example, BDNF may interact with COMT levels in the prefrontal cortex through basal ganglia-

thalamocortical loops (e.g., Alexander et al., 1986). Conceivably, decreases in the secretion of 

BDNF may be associated with normal cognitive decline and additional COMT effects may 

further regulate the effects of cognitive deficits. In the BDNF Val66Met polymorphism, BDNF 

Met homozygotes may be expected to produce selective cognitive deficits, as compared to BDNF 

Val homozygotes.  

To our knowledge, the present additive effects model has not been reported for these two 

SNPs in neurocognitive aging (for other examples see Bertolino et al., 2006; Canli et al., 2008; 

McIntosh et al., 2013; Purcell et al., 2009; Verhaaren et al., 2013). However, independent and 

interaction effects of COMT, BDNF, and age have indicated suggestive results. For example, 

Wishart and colleagues (2011) examined a single EF test (Trail Making Test) and found COMT-

EF effects in the expected direction and no BDNF x COMT interaction effect. However, in a 

follow-up analysis, adults with the combined risk alleles for COMT and ANKK1 (Ankyrin Repeat 
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and Kinase domain containing 1) performed worst on the EF task. Regarding genetic 

vulnerability and aging, Nagel and colleagues (2008) examined the performance of younger and 

older groups on the Wisconsin Card Sorting Test (EF measure) as magnified by gene x gene 

interactions. For a younger group and an older group the deleterious effects of COMT Val 

carriers were visible in the older group of adults, and this was modulated by whether individuals 

were carriers of the BDNF Met allele. Other examples are appearing in related literatures (e.g., 

Gomar et al., 2011; McFall et al., 2014; Deshmukh et al., 2009). 

The presence or absence of COMT and BDNF interactive and additive associations may 

be due to the moderating role of other unmeasured genetic variants. Therefore, to investigate 

whether an additional neurogenetic indicator of cognitive health and vulnerability might 

modulate the synergistic effect for EF performance, we examined effect modification by 

stratifying the groups by allelic risk for APOE, the most widely studied neurocognitive 

vulnerability gene in aging (Harris and Deary, 2011; Verghese et al., 2011). There are many 

studies with APOE risk and cognitive impairment (Small et al., 2004). The APOE genotype is 

involved in central nervous system repair and function, and is differentiated by three alleles: ε2, 

ε3, and ε4. The ε4 allele (both homozygosity and heterozygosity) is consistently linked to risk 

factors for cognitive aging decline, impairment, and dementia (Brainerd et al., 2011; Elias-

Sonnenschein et al., 2011; Wisdom et al., 2011) in comparison to the ε2 allele, which has been 

found to be protective in numerous studies (Corder et al., 1994; de-Almada et al., 2011; Panza et 

al., 2000). The APOE gene has been reported to have an antagonistic pleiotropy effect, whereby 

the presence or absence of the ε4 allele may moderate the appearance of age differences 

(Jochemsen et al., 2012), as well as other grouping and modification effects (Edland et al., 2003; 

Niti et al., 2008; Risacher et al., 2013; Woodard et al., 2012). We investigated genetic and aging 



133 
 

effects as stratified by APOE allelic risk (i.e., the commonly implemented dichotomous 

comparison between risk (ε4+) group and no risk (ε4-) group) for a large sample of older adults.  

We extend previous research by including a larger heterogeneous sample of well-

characterized older adults, a wide band (40 years) of age within the sample, and an informative 

battery of four EF measures, including two tests each of shifting and inhibition, as represented by 

a quantitatively derived EF latent variable. Specifically, we tested independent, interactive, and 

additive effects pertaining to whether those with COMT risk alleles, BDNF risk alleles, and older 

age vulnerability performed worse on EF. Subsequently, we tested the effect modification by 

APOE allelic risk. Therefore, four research questions were examined. First, do carriers of the risk 

allele for COMT (Val+) and BDNF (Met+) perform worse on EF? Second, do either interactive 

(gene x gene) or additive (gene + gene) effects demonstrate synergistic associations, such that 

adults with combined risk alleles perform worse? Third, does age have an interactive or additive 

effect with COMT, BDNF, or both COMT and BDNF, such that older age magnifies the 

deleterious effect for genetic risk carriers? Fourth, do adults in APOE risk (ε4+) group perform 

more poorly than adults in the reduced APOE (ε4-) risk group for additive or interactive 

associations of COMT, BDNF, and age?  

2. Method  

2.1. Participants 

This study uses recent data from the Victoria Longitudinal Study (VLS), a long-term 

project examining biomedical, health, and neurocognitive aspects of aging. General information 

on recruitment, methodological, and VLS characteristics are available elsewhere (e.g., Dixon and 

de Frias, 2004; Dolcos et al., 2012). All volunteers in the VLS were initially healthy, enrolled 

through advertisements, and received a small honorarium for their participation. The VLS and all 
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present data collection procedures are in full and certified compliance with prevailing 

human/institutional research ethics guidelines. Written informed consent was obtained from all 

participants. All participants were Caucasian with complete access to Canadian national health 

care. The present sample reflects the implementation of exclusionary criteria affecting 

individuals with (a) diagnosis or history of dementia, (b) anti-psychotic medication, (c) Mini 

Mental State Exam scores less than 24, (d) uncontrolled hypertension, (e) insulin-controlled 

diabetes, and (f) history of serious head injury (e.g., hospitalized). Accordingly, n = 634 

participants (age range = 53-95, mean age = 70.58 (SD = 8.65)) including 423 females and 211 

males with genetic data were included.  

2.2. DNA Extraction and Genotyping 

Saliva was collected according to standard procedures from Oragene DNA Genotek and 

stored at room temperature in Oragene® disks until DNA extraction. DNA was manually 

extracted from 0.8 ml of saliva sample mix using the manufacturer’s protocol with adjusted 

reagent volumes. Genotyping was carried out by using a PCR-RFLP strategy to analyze the 

allele status for BDNF (rs6265), COMT (rs4680), and (APOE; rs7412, rs429358). Genotyping 

was successful for the targeted SNPs for all present participants. Table 5-1 presents participant 

characteristics and allele frequency by genotype for BDNF, COMT, and APOE. The genotype 

frequencies for the three examined genotypes did not differ significantly from Hardy-Weinberg 

equilibrium: BDNF rs6265 (χ² = 0.837, p = 0.36), COMT rs4680 (χ² = 2.786, p = 0.10), and 

APOE rs7412, rs429358 (χ² = 0.545, p = 0.909) or among any baseline characteristics. For 

purposes of analyses we included all three allelic combinations for COMT and BDNF (Met/Met, 

Met/Val, and Val/Val). For evaluating modification by APOE, we deleted all ε2/ε4 carriers and 

then compared patterns between ε4+ carriers and ε4- carriers.  
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2.3. Executive Function Measures 

Two dimensions of EF (inhibition, shifting) were each measured by two standard and 

frequently used tests for both behavioral and clinical studies in older adults (for details see: de 

Frias et al., 2006, 2009; McFall et al., 2013, 2014). 

2.3.1. Hayling Sentence Completion (Hayling; Inhibition) 

The test consists of two sections, each comprising fifteen sentences. In the first section, 

participants must state the last word that correctly completes the sentence. In the second section, 

the participants must say a word that is not at all related to the sentence. The standardized scores 

are based on an error score from the first section and the speed of each response from both 

sections, which are then combined to obtain the final score (1 = impaired to 10 = superior). 

 2.3.2. Stroop (Inhibition) 

The test consists of three parts. In part A, participants are asked to name four different 

colors that appear as 24 dots in six different rows. In part B, the same colors appear but are 

printed as common words. In part C, each color is represented as a textual representation with 

different colored ink. The participants are measured based on latencies. The final score is the 

standardized Stroop interference index ([Part C- Part A]/ Part A), with a lower index reflecting 

better performance.  

 2.3.3. Brixton Spatial Anticipation (Brixton; Shifting) 

The test consists of 10 different circles; one being blue while the rest are colorless. The 

circles appear in a 56-page booklet. The blue colored circle shifts position with some logical 

pattern after each page. This test measures the mechanism of shifting by asking participants to 

guess where the blue colored circle will appear on the next page. The total number of incorrect 

guesses are measured and the final scores are calculated (1 = impaired to 10 = superior). 
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 2.3.4. Color Trails (Shifting) 

This test comprises two different tasks in which participants connect different attributes, 

such as numbered and colored circles. In the first section, participants connect numbers from 1–

25 within circles that are randomly organized on a page. In the second section, they connect the 

numbers in order but alternating between pink and yellow circles. Errors and latency scores are 

then computed to obtain the standard overall score. 

2.4. Statistical Analysis 

 Structural equation modeling (SEM) was used to analyze all research questions (i.e., 

Mplus 7; Muthén & Muthén, 1998-2012). All missing values for cognitive measures were 

assumed to be missing at random and handled using maximum likelihood. Missing predictor 

values were handled using list-wise deletion in Mplus. Only two participants with missing 

measures on all four EF tasks were lost due to list-wise deletion.   

 To test and establish a latent variable for EF, we used confirmatory factor analysis (CFA) 

to examine loadings of all four manifest variables (Stroop, Hayling, Brixton, and Color trails) on 

the predicted latent variable. The first model tested all observed variables on one latent EF 

factor. The best fitting model was determined by examining several fit statistics. The chi-square 

test of model (χ²; p > .05) allowed for an overall indication of good model fit. Additional 

absolute/comparative fit indices were also examined to determine a good model fit to the data 

(Kline, 2011): the root mean square error of approximation (RMSEA ≤ .05), comparative fix 

index (CFI ≥ .95), and the standardized root mean square residual (SRMR ≤ .08). The one-factor 

parsimonious model provided good fit to the data and was used as the final CFA model for EF. 

Unstandardized regression coefficients for the expected EF latent variable were examined to 

determine higher or lower performance. 
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 For each research question, we used multiple linear regression models (within Mplus 7). 

Our specific analyses are described below in the following convention. EF was regressed on all 

predictors simultaneously for all models. The interaction terms were calculated as product 

variables (gene x gene and gene x gene x age). The additive terms were calculated as sums of 

risk by adding the allelic risk (coded from 1-3 with three being the highest risk) and 

chronological age. Higher score represented higher genetic risk and older age. When testing for 

additive effects, only predictors absent from the additive term were added to covary for any 

remaining independent effects. For interactive effects, all three predictors (COMT, BDNF, and 

age) were always entered in the interactive model to covary for any independent effects. On the 

basis of two preliminary analyses, we did not include gender as a covariate. First, our tests of 

gender effects in allelic distributions for all three genotypes (APOE, BDNF, COMT) were not 

significant (see Table 5-1). Second, our test of gender differences in EF performance both overall 

and by each allelic group (within the three SNPs) also produced non-significant effects. We 

constrained our analysis plan to include the essential 13 models. By using the EF latent variable 

and testing only specific hypotheses, we set statistical significance threshold at p < .05.  

 For research question one, EF was regressed on COMT, BDNF, and age. Two models 

were tested for interaction and additive effects for research question two. Specifically, EF was 

simultaneously regressed on (a) COMT x BDNF, COMT, BDNF, age, and (b) COMT + BDNF, 

age. For research question three, six models were tested for interactive and additive effects with 

age. For interactive associations, EF was simultaneously regressed on (a) COMT, BDNF, age, 

COMT x age, (b) COMT, BDNF, age, BDNF x age, and (c) COMT, BDNF, age, COMT x BDNF 

x age. For additive effects, EF was regressed on (a) BDNF, COMT + age, (b) COMT, BDNF + 

age, (c) COMT + BDNF + age. For research question four, we first deleted all ε2/ε4 carriers (n = 
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30) and then stratified the groups by APOE risk (ε4+) versus reduced risk (ε4-) subgroups. Four 

models were then examined for interactive and additive effects by each subgroup, where EF was 

simultaneously regressed on (a) COMT, BDNF, age, COMT x BDNF x age and (b) COMT + 

BDNF + age.  

3. Results 

Descriptive characteristics by COMT, BDNF, and APOE alleles are displayed in Table 5-

1. The best CFA model for EF was obtained with the one factor latent variable, which provided 

the best fit for all four EF tasks (χ² (df) = 3.011 (2), p = 0.222; RMSEA (confidence interval) = 

0.028 (0.000-0.089); CFI = 0.993; SRMR = 0.015). This latent variable was used in the analyses 

for all four research questions. Regarding the first research question, we observed that neither 

COMT (β = 0.114; standard error (SE) = 0.103; p = 0.271) nor BDNF (β = 0.101; SE = 0.124; p 

= 0.415) significantly predicted EF performance. However, as expected, a one-unit increase in 

age was associated with a significant decrease (β = -0.134; SE = 0.016; p < .001) on EF 

performance.  

Regarding the second research question, neither the COMT x BDNF interaction (β = 

0.046; SE = 0.178; p = 0.795) nor the COMT + BDNF (β = 0.109; SE = 0.079; p = 0.169) 

additive effects model significantly predicted EF performance. Regarding the third research 

question, only age significantly predicted poorer EF performance in all three interactive models 

(see Table 5-2, rows 4, 8, 12 under research question three (interactive)). However, all three 

models examining additive effects with age significantly predicted EF performance in the 

expected direction. Specifically, a one-unit increase for additive effects of both COMT + age (β = 

-0.132; SE = 0.015; p < .001) and BDNF + age (β = -0.132; SE = 0.015; p < .001) predicted 

poorer EF performance (see Table 5-2, rows 1-4 under research question three (additive)). 
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Moreover, the three-way model produced a one-unit increase in the additive effect, for which 

COMT + BDNF + age significantly predicted lower EF performance (β = -0.129; SE = 0.015; p 

< .001) (see Table 5-2, row 5 under research question three [additive]). 

Regarding the fourth research question, the COMT x BDNF x age interactive effect did 

not significantly predict EF performance as stratified by APOE allelic risk (ε4+) group (β = 

0.005; SE = 0.005; p = .285) and reduced risk (ε4-) group (β = -0.004; SE = 0.003; p = .173). 

However, the corresponding three-way COMT + BDNF + age additive effect model significantly 

predicted EF performance as stratified by APOE groups. Although the difference between the 

APOE risk and reduced risk group was not significantly different (β = -0.039; SE = 0.165; p 

= .811), we observed slightly lower EF performance in the APOE risk (ε4+) group (β = -0.136; 

SE = 0.024; p < .001) than in the reduced APOE risk (ε4-) group (β = -0.131; SE = 0.020; p 

< .001).  

We then conducted a post hoc analysis to check the extent to which the age variable 

influenced the 3-way additive effect on EF. We dichotomized the sample into young-old (YO) (< 

70 years old; n = 296) and old-old (OO) (≥ 70 years old; n = 338) groups. Arguably, if age was 

driving this effect on EF then we should expect to see similar patterns in both groups. Instead, 

we observed different patterns.  Whereas in the YO group, the COMT + BDNF + age effect on 

EF was not significant (β = 0.013.; SE = 0.008; p = .089), in the OO group the additive model 

was significant and in the expected direction (adults with additive allelic risk plus old age 

showed poorer performance) (β = -0.151; SE = 0.026; p < .001). The additive synergistic effects 

appear across a 40-year band of aging and are especially magnified with aging. 
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4. Discussion 

We tested independent, interactive, and additive associations of COMT and BDNF risk 

alleles, along with age and effect modification by APOE allelic risk, in executive functioning for 

a large sample of normal older adults. Previous studies have reported results supportive of an 

interactive (Nagel et al., 2008) and additive (McIntosh et al., 2013 with schizophrenia related 

polymorphisms and cognition) aging-related magnification or intensification hypotheses (Fotuhi 

et al., 2009; Lindenberger et al., 2008; McClearn, 2006). It was unknown how model-specific 

(interactive or additive) or generalizable these effects would be across samples, ages, and 

dimensions of executive functioning. For the present study, results consistent with this general 

hypothesis would be produced through interactive or additive gene risk (with synergistic effects 

of risk alleles associated with poorer performance) or age plus gene risk (with older age 

differences in genetic-cognition associations).  

We observed a consistent age effect for a latent variable representing EF performance, as 

would be expected in the literature (de Frias et al., 2006; Luszcz, 2011). Although expected, this 

established at the outset the important precondition for age-specific genetic vulnerability 

hypotheses. Our sample featured a continuous 40-year band of older adults, thus testing genetic 

vulnerability for COMT, BDNF, and APOE within older adulthood and complementing the 

typically examined extreme group comparisons of young and old adults. In addition, the 

confirmed EF latent variable offers a more robust representation of EF than is typically available 

in single-indicator studies (Wishart et al., 2011), most of which employ different and single EF 

tests. The latent variable approach reduces the number of models tested and groups the shared 

variance among all EF tests. In addition, relatively few examples of genetic association studies 

have been conducted with multiple indicator latent variable representations (McFall et al., 2014). 
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Given that age confers some vulnerability in EF, the next issue was whether the two 

polymorphisms were associated with EF. Notably, however, no corresponding independent 

associations with EF were observed for either the BDNF or COMT polymorphisms for our first 

research question. Therefore, we continued to test the two key aspects of this study, examining 

the two renditions of genetic and age risk that could convey cognitive vulnerability in normal 

older adults. Regarding the second research question, we found no interactive or additive 

associations with COMT and BDNF risk alleles on EF performance. From this perspective, there 

was no evidence of magnification effects of either genetic risk factor.  

For our third research question, we observed systematically different results for the 

interactive versus additive models. Notably, only the additive model produced significant 

vulnerability associations with EF performance. Specifically, the additive associations with EF 

for COMT + age, BDNF + age, and COMT + BDNF + age were all significant. In contrast, the 

corresponding interactive models were not significant. The main evidence favoring the additive 

version of risk vulnerability and its potential for demonstrating associations with cognitive 

phenotypes in non-demented older adults was the three-way synergistic effect. This result 

showed exacerbated deficits for the vulnerability components of the allelic combinations, as they 

operated in a complementary and additive way that was associated with poorer EF performance. 

Arguably, this result pertains to general magnification or intensification hypotheses, extending 

earlier research with different polymorphisms and cognition (e.g., McIntosh et al., 2013; 

Verhaaren et al., 2013). In contrast to the not significant interaction effects, the small but 

significant additive effects remain neurobiologically interesting. Arguably, not significant 

traditional interaction effects may mask different mechanisms through which synergies can be 

transmitted (e.g., additive pathways and vulnerabilities of biomarker influence where eliminating 
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one risk factor will not reduce the risk associated with other risk factors). Both models of 

synergistic biomarker effects should continue to be studied. In addition, we note that the present 

study included adults along a continuous 40-year age range. This suggests that even within older 

adulthood, advancing chronological age may be an index along which researchers could detect 

evidence of increasing modulation of genetic, neurobiological, and environmental associations 

with neurocognitive functioning. The post hoc age-comparative analyses clarified these results.  

Whereas we observed no 3-way additive effect in the young-old group, the full significant 

additive effect was observed in the old-old group. Notably, the additive allelic risk for COMT 

and BDNF with very old age was associated with poorer EF performance. This implies that even 

within older adulthood chronological age is important and substantial in its influence on EF 

performance, but additive synergistic associations may be further magnified in very old adults. In 

terms of mechanisms, the additive model suggests that having only one protective factor (e.g., 

COMT; Met/Met allele) only reduces the risk associated with COMT, but does not affect the risk 

associated with BDNF risk allele or biological aging. In contrast, interactive effects (not 

observed here) may suggest that the moderation of BDNF risk allele factor on EF by COMT 

protective factor may dilute the risk associated with BDNF allelic risk. These results and the 

extant literature, however, do not yet provide specific guidance regarding the neurobiological 

underpinnings of these complex magnification effects (Harris et al., in press; Lindenberger et al., 

2008; Savitz et al., 2006).  

The role of aging in presumed aging-genetic magnification of neurocognitive deficits and 

impairment deserves further attention. Clearly, chronological age (and especially age groups) is 

not a causal factor but instead a proxy for to-be-determined underlying biological changes 

indexed by, but not tantamount to, age (MacDonald et al., 2011; Nakumura and Miyao, 2007). 
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As theoretical and measurement advances continue, such concepts as biological vitality or 

biological age (e.g., Anstey, 2008; MacDonald et al., 2004) may enhance future efforts to 

examine aging-related vulnerability and magnification effects in the context of genetic 

polymorphisms, about which the underlying molecular mechanisms are becoming better 

understood. Systematic but unmeasured biological or health influences—indexed imperfectly by 

chronological aging—may be among the reasons that inconsistent associations have been 

observed for single candidate-gene links (including BDNF and COMT) with various cognitive 

phenotypes in older adults (Deary et al., 2004; Fotuhi et al., 2009; Mandelman and Grigorenko, 

2012). Relatively recent literature reporting early tests of polygenic effects is small (but growing) 

and promising (but not yet strong)—and this too may benefit from stronger representation of 

biological aging. The present study is the first to examine additive effect models for genetic 

polymorphism associated with cognitive decline and impairment and it may therefore serve as a 

model for future studies testing additive effects. The approach and initial results have substantial 

promise for the development of panels of biomarker influences in non-demented aging. 

For our fourth research question, we analyzed the APOE risk (ε4+) and reduced risk (ε4-) 

groups separately, with the expectation that we would observe a version of an antagonistic 

pleiotropy effect. Although not significant, we observed slightly lower EF performance for 

APOE risk (ε4+) group than the reduced risk (ε4-) group for additive effects of COMT, BDNF, 

and age. The potential magnification of COMT and BDNF allelic risk may be especially 

detectable and active in the context of older adults who are carriers of the most prominent 

neurogenetic risk factor for cognitive decline. In the context of the powerful APOE (ε4+) risk 

factor among non-demented older adults, the additional risk provided by COMT and BDNF risk 

alleles may be more easily or differentially detectable. We note that older adults in the absence 
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of the APOE (ε4+) risk factor may also be at risk for cognitive impairment from other risk 

factors in old age (e.g., stress, physical activity; see Fotuhi et al., 2009). In addition, individuals 

with allelic risk may not develop cognitive decline in old age (Henderson et al., 1995) or their 

allelic risk may be exacerbated in combination with other diseases or factors (i.e., cardiovascular 

disease; see Kang et al., 2005). As a follow-up, we tested the effect of APOE alone without 

separating the ε4+ and ε4- groups. The significant effect modification showed an effect size of -

0.007. This implies that although the effect modification between the groups are not significantly 

different in value, the risk and reduced risk groups must be separated to observe the large effect 

modification present in an additive vulnerability model for genetic and age on EF. Future 

research may investigate the magnification hypothesis not only among genetic variants with 

known neurobiological underpinnings for specific cognitive phenotypes, but also in the context 

of prominent neurodegenerative-related or vulnerability genetic variants (especially APOE) with 

larger samples of ε4+ carriers. However, other neurobiological factors and genetic variants 

related to age are emerging in the literature. These include the afore-mentioned ANKK1 (Wishart 

et al., 2011), several dopaminergic-related genes (e.g., Bellander et al., 2011), and insulin-related 

genes (e.g., McFall et al., 2013), as well as markers of aging-related brain resources (e.g., 

Lindenberger et al., 2008), emerging neurodegenerative conditions (e.g., MCI or Alzheimer’s 

disease; Brainerd et al., 2011; Dixon et al., 2014; Dolcos et al., 2012), or aging-related health 

conditions with less proximal neurological implications (e.g., diabetes; Seaquist et al., 2012). In 

all cases, however, advances will be made with both substantial cross-sectional studies and 

emerging longitudinal or epidemiological studies. 

Several strengths and limitations of the present study should be mentioned. First, 

although this study had no younger adult comparison group, it did feature a large sample of older 



145 
 

adults representing a broad (40-year) band of age (from age 53-95 years). Given the 

heterogeneity of typical aging, this characteristic provided a unique opportunity to investigate a 

within-age genetic risk intensification hypothesis. This provided a conservative and unique test 

of the application of the phenomenon with this wide age range. Second, the tests used to measure 

EF phenotypes were four standard neuropsychological measures that contributed to a latent 

variable. The latent variable approach provides protection for shortcomings of single-test 

approaches and is preferred over typical composite variable formulations, thus extending 

knowledge of genetic associations with EF. Third, given some emerging research, other genetic 

variants, gender differences (e.g., Altmann et al., 2014), and neurobiological sources of 

vulnerability (e.g., vascular risk factors such as hypertension) should be considered in the future. 

Although this study investigated a range of EF phenotypes, further research could include 

additional domains such as neurocognitive speed and memory. For example, given the BDNF-

hippocampus link and APOE and memory/AD risk, future research may examine BDNF allelic 

risk and APOE effect modification hypothesis for at least episodic memory, if not semantic and 

working memory (Mandelman and Grigorenko, 2012). Fourth, cross-sectional studies have well-

known limitations in interpreting mechanisms and differences. Although these limitations apply 

to the present study, the wide age range offers new and valuable information. Certainly, 

longitudinal studies of these phenomena are encouraged. Fifth, in our effort to explore the aging 

magnification hypothesis, we examined 13 regression models because of our clear and specific 

vulnerability hypotheses and our approach of using an EF latent variable, we set the statistical 

significance standard to p < .05. Our decision was informed by the expectation of subtle 

magnification effects within age (as compared with group designs) and specific interest in 

comparing two versions of vulnerability models. 
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In sum, genetic associations with complex cognitive phenotypes may confer exacerbated 

risk in selective polygenic (interactive and additive) combinations. We examined independent, 

additive, and interactive effects of COMT and BDNF alone and as stratified by APOE groups. 

Consistent with the specific expectations, we observed a synergistic effect (BDNF + COMT + 

Age) for EF performance, but selectively for the additive models. We note as an issue for future 

research that the overall and cognitive health of the present sample may be partly responsible for 

the systematically differential results between the two representations of magnified genetic-aging 

vulnerability. Future research can investigate the applicability of the interactive model for 

different phenotypes and samples (e.g., cognitively impaired). Nevertheless, as noted by recent 

observers, approaching the neurogenetics of normal aging from the perspective that incorporates 

independent, synergistic, and modifying risk (or protection) factors may yield further 

understanding of the cognitive neurobiology of aging.  
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Table 5- 1  

Participant characteristics by genotype 

COMT  BDNF APOE 

Characteristics Met/Met Met/Val Val/Val pa Met/Met Met/Val Val/Val pa ε4- ε4+ pa 

n 146 338 150 -- 27 189 418 -- 455 149 -- 

Age (years) 70.15 

(8.86) 

70.85 

(8.68) 

70.40 

(8.439 

0.69 68.54 

(6.32) 

71.45 

(8.52) 

70.32 

(8.81) 

0.15 70.90 

(8.83) 

69.86 

(8.27) 

0.20 

Gender (F/M) 101/45 226/112 96/54 0.64 18/9 128/61 277/141 0.94 305/150 93/56 0.30 

Education 

(years) 

14.92 

(3.11) 

15.35 

(2.80) 

15.36 

(3.15) 

0.30 15.72 

(2.70) 

15.13 

(2.99) 

15.28 

(2.96) 

0.59 15.19 

(2.95) 

15.55 

(3.07) 

0.20 

MMSE 28.72 

(1.20) 

28.72 

(1.20) 

28.56 

(1.32) 

0.40 29.15 

(0.77) 

28.74 

(1.15) 

28.62 

(1.28) 

0.07 28.66 

(1.24) 

28.68 

(1.25) 

0.89 

Absolute Health 1.87 

(0.74) 

1.83 

(0.74) 

1.77 

(0.77) 

0.47 1.89 

(0.80) 

1.84 

(0.72) 

1.82 

(0.75) 

0.86 1.88 

(0.73) 

1.68 

(0.77) 

0.01 

Relative Health 1.60 

(0.66) 

1.62 

(0.72) 

1.53 

(0.71) 

0.42 1.41 

(0.69) 

1.64 

(0.69) 

1.59 

(0.71) 

0.26 1.61 

(0.70) 

1.56 

(0.73) 

0.43 

BP (mmHg) 

(S/D) 

128.45/ 

75.83 

127.47/ 

75.57 

125.03/ 

74.76 

0.38/ 

0.88 

128.68/ 

78.93 

127.29/ 

74.11 

126.93/ 

75.79 

0.91/ 

0.40 

127.10/ 

75.52 

127.08/ 

75.48 

0.99/ 

0.98 

Bradburn Scale 3.05 

(1.88) 

3.26 

(1.71) 

3.23 

(1.82) 

0.47 3.44 

(1.12) 

3.06 

(1.92) 

3.26 

(1.74) 

0.37 3.21 

(1.79) 

3.26 

(1.81) 

0.76 

Physical 

activities 

15.26 

(5.07) 

15.90 

(5.19) 

15.93 

(5.09) 

0.41 16.37 

(4.18) 

15.73 

(5.20) 

15.73 

(5.18) 

0.82 15.60 

(5.20) 

16.13 

(5.15) 

0.28 

Social activities 22.62 

(6.67) 

22.59 

(6.78) 

22.26 

(6.84) 

0.87 22.26 

(7.32) 

22.95 

(6.72) 

22.33 

(6.75) 

0.57 22.76 

(6.61) 

21.85 

(7.16) 

0.16 

Integrative 19.70 18.87 18.78 0.59 19.00 17.72 19.64 0.05 18.71 20.20 0.08 
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Information (9.77) (8.38) (9.26) (6.45) (8.54) (9.18) (8.56) (9.25) 

Key: APOE, Apolipoprotein E; BDNF, Brain-derived neurotrophic factor; BP, Blood pressure; Bradburn scale, Bradburn affect 

balance scale; COMT, Catechol-O-methyl transferase; MMSE, Mini-mental State Exam; n, total number; S/D, Systolic/Diastolic. 

Standard deviations are in parentheses. Absolute health represents self-rating to a perfect state of health, and relative health is rated 

with respect to others ones’ own age, both based on a 1-5 scale (1 = very good, 5 = very poor). For the analyses involving the APOE 

genotypes, the ε2/ε4 carriers (n = 30) were deleted from the sample. 
ap < .0
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Table 5- 2  

Unstandardized regression coefficients and model fit indices by research question for all models examined on executive function 

   Model Fit Indicators 

Models β SE p χ²M(dfM) CFI RMSEA (90% CI) SRMR 

Research question one        

(a) COMT 0.114 0.103 0.271 20.83 (11); p = 0.035 0.974 0.038 (0.010-0.062) 0.026 

BDNF 0.101 0.124 0.415     

Age -0.134 0.016 0.000     

Research question two        

(a) COMT + BDNF 0.109 0.079 0.169 20.08 (8); p = 0.010 0.968 0.049 (0.022-0.076) 0.029 

Age -0.134 0.016 0.000     

(b) COMT x BDNF 0.046 0.178 0.795 25.04 (14); p = 0.034 0.970 0.035 (0.010-0.057) 0.030 

COMT 0.049 0.268 0.854     

BDNF 0.007 0.381 0.985     

Age -0.134 0.016 0.000     

Research question three        

Interactive        

(a) COMT x age 0.006 0.012 0.593 22.00 (14); p = 0.079 0.978 0.030 (0.000-0.053) 0.028 

BDNF 0.102 0.124 0.412     

COMT -0.333 0.843 0.693     

Age -0.147 0.029 0.000     

(b) BDNF x age -0.016 0.016 0.319 24.62 (14); p = 0.039 0.971 0.035 (0.008-0.057) 0.026 

COMT 0.112 0.104 0.281     

BDNF 1.193 1.103 0.279     

Age -0.114 0.025 0.000     

(c) COMT x BDNF x age 0.000 0.002 0.909 26.03 (14); p = 0.026  0.968 0.037 (0.013-0.059) 0.030 

COMT 0.140 0.249 0.575     

BDNF 0.139 0.353 0.694     

Age -0.134 0.017 0.000     

Additive        

(a) COMT + age -0.132 0.015 0.000 12.54 (8); p = 0.129  0.987 0.030 (0.000-0.060) 0.023 
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BDNF 0.105 0.123 0.396     

(b) BDNF + age -0.132 0.015 0.000 17.66 (8); p = 0.024 0.974 0.044 (0.015-0.072) 0.027 

COMT 0.116 0.103 0.259     

(c) COMT + BDNF + age -0.129 0.015 0.000 9.24 (5); p = 0.100 0.988 0.037 (0.000-0.073) 0.022 

Research question four        

APOEc (ε4+)        

(a) COMT x BDNF x age 0.005 0.005 0.285 53.98 (31); p = 0.007 0.939 0.050 (0.026-0.071) 0.046 

COMT -0.474 0.502 0.346     

BDNF -0.628 0.675 0.352     

Age -0.154 0.030 0.000     

(b) COMT + BDNF + age -0.136 0.024 0.000 18.54 (13); p = 0.138  0.984 0.038 (0.000-0.073) 0.044 

APOEc (ε4-)        

(i) COMT x BDNF x age -0.004 0.003 0.173 53.98 (31); p = 0.007 0.939 0.050 (0.026-0.071) 0.046 

COMT 0.554 0.318 0.081     

BDNF 0.671 0.453 0.139     

Age -0.127 0.022 0.000     

(ii) COMT + BDNF + age -0.131 0.020 0.000 18.54 (13); p = 0.138  0.984 0.038 (0.000-0.073) 0.044 

Key: APOE: Apolipoprotein E; β, regression coefficient; SE, standard error; χ²M, chi-square test of model fit; dfM, degrees of freedom 

for model fit; RMSEA, root mean square error of approximation; CI, confidence interval; CFI, comparative fix index; SRMR, 

standardized root mean square residual. COMT, Catechol-O-methyltransferase; BDNF, Brain-derived neurotrophic factor. 
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CHAPTER 6: STUDY 3 

In non-demented aging, executive function performance and change is predicted by 

Apolipoprotein E, intensified by Catechol-O-methyltransferase and Brain-derived 

neurotrophic factor, and moderated by age and lifestyle  
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Introduction 

 Genetic associations with neurocognitive phenotypes may be magnified as brain 

resources decline with aging (Belsky et al., 2009; Lindenberger et al., 2008). Single candidate 

gene association studies have produced encouraging but inconsistent associations with 

neurocognitive phenotypes in non-demented aging (Harris & Deary, 2011; Laukka et al., 2013; 

Sapkota, Vergote, Westaway, Jhamandas, & Dixon, 2015). Such single gene-related individual 

differences in cognitive ability appear to be present, if not increase, in aging (Das et al., 2014; 

Deary, Penke, & Johnson, 2010). Therefore, recent research has been designed to identify 

neurobiological mechanisms that may be associated with both maintenance (Nyberg, Lövden, 

Riklund, Lindenberger, & Bäckman, 2012) and decline (Raz, Rodrigue, Kennedy, & Land, 2009) 

in a variety of cognitive phenotypes relevant to aging (Harris & Deary, 2011; Raz & Lustig, 

2014). This effort has led researchers to pursue even more complex designs, such as those 

examining (a) interactions among concordant genetic variants and even non-genetic biological 

and environmental risk factors as they predict (b) longitudinal variations in cognitive 

performance trajectories (Thambisetty et al., 2013; Thibeau, McFall, Wiebe, Anstey, & Dixon, 

2016).  

In genetic studies of neurocognitive aging, the most commonly considered polymorphism 

is Apolipoprotein E (APOE; rs7412; rs429358). The APOE ε4 has been consistently linked to 

normal cognitive decline (Caselli et al., 2001; Laukka et al., 2013; Luciano et al., 2009; Wisdom, 

Callahan, & Hawkins, 2011), mild cognitive impairment (Brainerd, Reyna, Petersen, Smith, & 

Taub, 2011; Dixon et al., 2014), and dementia (i.e., Alzheimer’s disease [AD]) (Barral et al., 

2012). Although always a promising variant for predicting aging-related cognitive decline, the 

effects of APOE may be moderated by other variants for select cognitive domains. In the present 
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study, we examine a domain representing everyday goal-oriented performance, namely, 

executive function (EF). Recent EF research in non-demented aging has concentrated on two 

commonly studied dopaminergic and neurotrophic related genetic variants (Das et al., 2014; 

Harris et al., 2006; Nagel et al., 2008; Sapkota et al., 2015) that may interact through basal 

ganglia-thalamocortical loops (Alexander, DeLong, & Strick, 1986). The single nucleotide 

polymorphisms (SNPs) identified for dopaminergic and neurotrophic-related factors include 

Catechol-O-methyltransferase (COMT; rs4680) (Papenberg et al., 2014; G. Papenberg et al., 

2015; Wishart et al., 2011) and Brain-derived neurotrophic factor (BDNF; rs6265), respectively 

(Ghisletta et al., 2014; Nagel et al., 2008). In an earlier cross-sectional study, we examined these 

three polymorphisms and their associations with EF (Sapkota et al., 2015). We observed 

provisional evidence for synergistic associations. In the present study, we include new 

longitudinal data to test specific potential dynamic synergies that shed light on the phenomenon 

and mechanisms associated with EF change in aging (de Frias, Dixon, & Strauss, 2009; Luszcz, 

2011). Specifically, we examine independent, additive, and effect modifications of APOE, 

COMT, and BDNF. Moreover, we adapt contemporary theoretical perspectives that merge neuro-

epidemiological and neurobiological evidence to guide our research. According to the brain 

resource modulation hypothesis (Lindenberger et al., 2008), genetic effects may be magnified in 

later old age, as compared with younger old adults. Therefore, we examine our dynamic 

synergistic analyses both for the overall sample and as stratified by age group. Furthermore, 

some research has shown that lifestyle engagement (especially, physical, cognitive, and social 

activities) can be related to mechanisms that affect EF performance (Erickson, et al., 2008). For 

this reason, we test the moderating effects of lifestyle activities on the synergistic associations of 
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specific genetic variants and potential magnification by chronological age on longitudinal 

trajectories of EF performance in a 40-year band of non-demented aging.  

 Our approach to predicting EF performance and change includes systematically 

examining independent and additive associations for APOE, COMT, and BDNF genetic risk as 

moderated by age and lifestyle risk factors. The additive (gene + gene) model tests panels of risk, 

whereby an additional allelic risk may amplify the vulnerability already present with one risk 

allele (Sapkota et al., 2015; Verhaaren et al., 2013). APOE ε4+ allele is present in 40% of 

dementia cases (Liu, Kanekiyo, Xu, & Bu, 2013), and we may observe an indirect effect of 

APOE ε4+ allele vulnerability in non-demented samples of older adults. Thus, we also examine 

APOE risk status to test effect modification for COMT and BDNF synergistic associations. The 

four main steps of approach are as follows. First, we examine independent effects of COMT, 

BDNF, and APOE and as moderated by age group and a lifestyle activities factor. Second, we 

test APOE moderation for COMT and BDNF on EF performance and 9-year change. Third, we 

test whether a set of additive effects (i.e., COMT + BDNF, COMT + APOE, BDNF + APOE) 

separately and as moderated by age group and lifestyle activities changes EF performance and 

decline in non-demented aging. Fourth, we test whether an additive effect for COMT + BDNF is 

modified by APOE. We now summarize the three SNPs as related to cognitive changes in non-

demented aging.  

APOE is the most commonly studied genetic risk factor for AD and Mild Cognitive 

Impairment (MCI) (Brainerd et al., 2011; Dixon et al., 2014; Verghese, Castellano, & Holtzman, 

2011). It is differentiated by three isoforms: ε2, ε3, and ε4. Carriers of the ε4 allele have been 

associated with a higher risk of AD development (Wisdom et al., 2011). In contrast, the ε2 allele 

has been found to be potentially protective in numerous studies (Corder et al., 1994; de-Almada 
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et al., 2012; McFall et al., 2015; Panza et al., 2000). The APOE gene has been reported to have 

an antagonistic pleiotropy effect, whereby the gene may be beneficial at a younger age but 

harmful with increasing age (Jochemsen, Muller, van der Graaf, & Geerlings, 2012). Thus, most 

studies focus on older adult groups to investigate APOE-cognition associations both concurrently 

and varying longitudinal periods. APOE is involved in transporting cholesterol to neurons, which 

is crucial for synaptic formation and axonal growth important in learning, memory, and injury 

repair. In addition, the APOE genotype presents an allelic dosage effect whereby the ε4/ε4 allele 

is associated with the highest risk followed by ε3/ε3 and ε2/ε2 (Liu et al., 2013). APOE ε4 allelic 

risk is related to dendritic spine density in the hippocampus and neuroinflammation (Fotuhi, 

Hachinski, & Whitehouse, 2009; Liu et al., 2013), but not all evidence is supportive (Bunce et 

al., 2012). Current reports focus on synergistic associations of APOE in normal aging with other 

biological (i.e., genetic polymorphisms; (Das et al., 2014; Sapkota et al., 2015)) and vascular-

health (i.e., pulse pressure; (McFall et al., 2015)) risk factors.  

The COMT (rs4680) Val158Met polymorphism increases COMT enzyme activity that in 

turn decreases dopamine (DA) levels primarily in the prefrontal cortex (Bilder, Volavka, 

Lachman, & Grace, 2004; Chen et al., 2004; Papenberg et al., 2014). The prefrontal cortex has 

significantly greater numbers of dopaminergic pathways (Raz et al., 2009), which have been 

associated with EF processes (Bäckman, Lindenberger, Li, & Nyberg, 2010). The COMT 

polymorphism at codon 158 on chromosome 22q11 results in the COMT homozygotes for the 

Met allele having greater DA levels compared to the Val allele homozygotes. Thus COMT Met 

homozygotes have higher levels and longer period of DA levels at synapses, which excites 

prefrontal neurons and allows for better information processing (Das et al., 2014; Egan et al., 

2003). Carriers of the Val allele may be at higher risk for brain and cognitive deficits, including 
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executive functioning (Das et al., 2014; Nagel et al., 2008; Sapkota et al., 2015; Wishart et al., 

2011) and reduced white matter integrity (Papenberg et al., 2015). 

The BDNF (rs6265) Val66Met polymorphism located at 11p13 (Houlihan et al., 2009) is 

involved in decreased BDNF secretion and may be associated with normal cognitive decline 

(Egan et al., 2003) and impairment leading to AD-related dementia (Komulainen et al., 2008; 

Raz et al., 2009). BDNF is mostly present in hippocampus and prefrontal cortex, and plays an 

important role in memory, EF (Nagel et al., 2008; Sapkota et al., 2015), and cognitive plasticity 

(Poo, 2001). The BDNF Met allele is considered to be the risk allele as it leads to lower levels of 

BDNF in the hippocampus and pre-frontal cortex. BDNF-cognition association studies have 

reported an inconsistent pattern of results. For example, a recent meta-analysis examined 23 

publications with a combined total of 7095 individuals and did not observe significant 

associations with all of the five most commonly studied phenotypes: general cognition, memory, 

EF, visual processing, and verbal fluency (Mandelman & Grigorenko, 2012).  

 Our research approach reflects a magnification perspective whereby more than one copy 

of a risk allele, even across genotypes, may intensify the deleterious effects of genetic risk, 

especially in older and/or less active adults. We examine independent and additive synergistic 

associations to investigate the underlying mechanisms associated with genetic risk and aging 

over a 9-year period of EF change, covering a 40-year band of aging. As noted, the present study 

is a major extension of an earlier and promising cross-sectional study which focused on 

determining the optimal operations for combining these variants (additive or multiplicative) in 

terms of examining synergistic effects of COMT and BDNF on EF in non-demented older adults 

(Sapkota et al., 2015). The present study adopts the additive operation combined with tests of 

moderation by APOE and potential magnification by chronological age and lifestyle activities. In 
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addition, using a procedure established earlier (McFall et al., 2014), we measure EF as a single 

latent variable indicated by four standardized neuropsychological manifest tests. Finally, as is 

necessary in longitudinal work, we also tested and established longitudinal invariance of the EF 

factor.  

Research Questions 

We examined two general research questions, each containing two parts. In research 

question 1, we tested independent associations of COMT, BDNF, and APOE. In research 

question 2, we tested additive associations of COMT + BDNF, COMT + APOE, BDNF + APOE 

on EF performance and 9-year change as separated by age groups and lifestyle activity level. 

Both research questions were divided into two parts. In parts 1a and 2a we examined all three 

genotypes. In part 1b, we tested APOE moderation effect of COMT and BDNF (research 

question 1b) as separated by age group and lifestyle activity level. In part 2b, we tested APOE 

effect modification for COMT + BDNF (research question 2b) as separated by age group and 

lifestyle activity level. Based on our previous cross-sectional study, we expected to observe 

APOE moderation and effect modification for COMT and BDNF genotypes on EF performance 

and change.  

 Research question 1a (RQ1a): Do allelic risk carriers for COMT (Val/Val; Val/Met), 

BDNF (Met/Met; Met/Val), and APOE (ε4+) show poorer performance and steeper decline in EF 

than their non-risk counterparts? We test this question independently, by age group (<70 years 

old versus ≥ 70 years old), and by lifestyle activities (high versus low activities)? We expected 

allelic risk carriers to have poorer EF performance and steeper decline overall. We also expected 

worse performance and decline in the older group or the low lifestyle activities group than in the 

younger or the high lifestyle activities groups. 
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 Research question 1b (RQ1b): Does APOE status (ε4+ versus ε4-) moderate EF 

performance for COMT and BDNF allelic risk carriers such that COMT and BDNF allelic risk 

carriers in the APOE ε4+ group have poorer EF performance and steeper decline than those in 

the APOE ε4- group? Second, we examined whether this effect was exacerbated in the older or 

low lifestyle activities groups compared to the younger or high lifestyle activities group. 

 Research question 2a (RQ2a): Does the additive (gene + gene) risk effect for each 

combination (i.e., COMT + BDNF, COMT + APOE, BDNF + APOE) exacerbate EF performance 

or decline? Is this exacerbation overall, by age group (younger versus older), or by lifestyle 

activities (high versus low activities)? We expected that the cumulative effect of higher allelic 

risk would produce poorer EF performance and steeper decline than would the non-risk 

combinations, especially in the older age and low lifestyle activities group. 

 Research question 2b (RQ2b): Do APOE ε4+ carriers have poorer EF performance and 

steeper decline with increasing allelic risk in the COMT + BDNF risk panel compared to the 

APOE ε4- group. Is this expected effect more deleterious in the older group than the younger 

group or in the low lifestyle activities group than in the high lifestyle activities group? We 

expected APOE ε4+ carriers in the older group and in the low lifestyle activities group to have 

poorer EF performance and steeper decline with increasing risk in the COMT + BDNF risk panel 

compared to older adults in APOE ε4- group.  

Method 

Participants 

 This study uses data from the Victoria Longitudinal Study (VLS), a large scale, 

longitudinal sequential study examining biomedical, health, genetic, and neurocognitive aspects 

of aging. General information on recruitment, methodological, and VLS characteristics are 
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available elsewhere (Dixon & de Frias, 2004; Dolcos, MacDonald, Braslavsky, Camicioli, & 

Dixon, 2012). All volunteers in the VLS were initially healthy, enrolled through advertisements, 

and received a small honorarium for their participation. The VLS and all present data collection 

procedures are in full and certified compliance with prevailing human/institutional research 

ethics guidelines. Written informed consent was obtained from all participants. All participants 

were Caucasian with complete access to Canadian national health care. The present sample 

reflects the implementation of exclusionary criteria affecting individuals with (a) diagnosis or 

history of dementia, (b) anti-psychotic medication, (c) Mini Mental State Exam (MMSE) scores 

less than 24, (d) uncontrolled hypertension, (e) insulin-controlled diabetes, and (f) history of 

serious head injury (e.g., hospitalized). Accordingly, n = 634 participants (age range = 53-95 

years, mean age = 70.58, SD = 8.65) including 423 females and 211 males with genetic data 

were included at baseline (see Table 6-1; Table 6-2). We followed an accelerated longitudinal 

design by assembling three samples from the VLS. The present Wave 1 (W1) and Wave 2 (W2) 

included participants from all three samples and Wave 3 (W3) included participants from Sample 

3. We had (a) Sample 1 (S1) Waves 6 and 7, (b) Sample 2 (S2) Waves 4 and 5, and (c) Sample 3 

(S3) Waves 1, 2, and 3. Throughout this report, (a) W1 (n = 634) refers to S1W6, S2W4, and 

S3W1, (b) W2 (n = 518) refers to S1W7, S2W5, S3W2, and (c) for W3 (n = 294) refers to S3W3 

(see Table 6-1). We note that age and MMSE scores for BDNF genotype were significantly 

different between the three allelic risk groups at W2 (Table 6-1). The average interval between 

each waves were 4.4 years between W1 and W2, and 4.5 years between W2 and W3. W1 and 

W2 included participants from S1-S3 and W3 had participants from only S3. The retention rate 

for each wave interval for (a) S1: W1-W2 is 83%, (b) S2: W1-W2 is 77%, (c) S3: W1-W2 is 

84%, (d) S3 W2-W3 is 88%, and (e) S3 W1-W3 is 74% . 
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DNA Extraction and Genotyping 

Saliva was collected according to standard procedures from Oragene DNA Genotek and 

stored at room temperature in Oragene® disks until DNA extraction. DNA was manually 

extracted from 0.8 ml of saliva sample mix using the manufacturer’s protocol with adjusted 

reagent volumes. Genotyping was carried out by using a PCR-RFLP strategy to analyze the 

allele status for BDNF (rs6265), COMT (rs4680), and APOE (rs7412, rs429358). Genotyping 

was successful for the targeted SNPs for all present participants. Table 6-1 shows participant 

characteristics by genotype for BDNF, COMT, and APOE. The genotype frequencies for the 

three examined genotypes did not differ significantly from Hardy-Weinberg equilibrium at 

baseline: BDNF rs6265 (χ² = 0.837, p = 0.36), COMT rs4680 (χ² = 2.786, p = 0.10), and APOE 

rs7412, rs429358 (χ² = 0.545, p = 0.909). For purposes of analyses we included all three allelic 

combinations for COMT and BDNF (Met/Met, Met/Val, and Val/Val). Both SNPs were coded 

from 1 to 3 (3 = highest risk). For evaluating moderation and effect modification by APOE, we 

deleted all ε2/ε4 carriers (n = 30) and then compared patterns between ε4+ carriers and ε4- 

group. APOE ε4- group was coded as 1 (no risk) and APOE ε4+ group as 2 (risk). 

Executive Function Measures 

Two dimensions of EF (inhibition, shifting) were each measured by two standard and 

frequently used tests for both behavioral and clinical studies in older adults (de Frias et al., 2006; 

McFall et al., 2014; McFall et al., 2013; Sapkota et al., 2015). 

Hayling Sentence Completion (Hayling; Inhibition). This test (Burgess & Shallice, 

1997) consists of two sections, each comprising 15 sentences. In the first section, participants 

must state the last word that correctly completes the sentence. In the second section, the 

participants must say a word that is not at all related to the sentence. The standardized scores are 



171 

 

based on an error score from the second section and the speed of each response from both 

sections, which are then combined to obtain the final score (1 = impaired to 10 = superior). 

Stroop (Inhibition). This test (Taylor, Kornblum, Lauber, Minoshima, & Koeppe, 1997) 

consists of three parts. In part A, participants are asked to name four different colors that appear 

as 24 dots in six different rows. In part B, the same colors appear but are printed as common 

words. In part C, each different color is represented as a textual representation, with the text 

being the name of its corresponding color. The participants are measured based on latencies. The 

final score is the standardized Stroop interference index ([Part C- Part A]/ Part A), with a lower 

index reflecting better performance.  

Brixton Spatial Anticipation (Brixton; Shifting). This test (Burgess & Shallice, 1997) 

consists of 10 different circles; one being blue while the rest are colorless. The circles appear in a 

56-page booklet. The blue colored circle shifts position with some logical pattern after each 

page. This test measures the mechanism of shifting by asking participants to guess where the 

blue colored circle will appear on the next page. The total number of incorrect guesses are 

measured and the final scores are calculated (1 = impaired to 10 = superior). 

Color Trails (Shifting). This test (D'Elia, Satz, Uchiyama, & White, 1996) comprises of 

two different tasks in which participants connect different attributes, such as numbered and 

colored circles. In the first section, participants connect numbers from 1–25 within circles that 

are randomly organized on a page. In the second section, they connect the numbers in order but 

alternating between pink and yellow circles. Latency scores in the second section were computed 

and used in the final analyses. Lower scores reflected better performance. 

Lifestyle activities composite  
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The VLS Activity Lifestyle Questionnaire (VLS-ALQ) with 67-items was used to 

determine the level of activity for the following four domains: (a) social, such as visiting friends 

(7 items); (b) physical activity, such as gardening (4 items); (c) integrative information 

processing, such playing a musical instrument (12 items); and (d) novel information processing, 

such as completing jigsaw puzzles (27 items). The frequency of participation is rated on a 9-

point scale (never, less than once a year to two or three times a week, and daily). All the items 

within each domain were summed, with higher scores representing greater frequency of activity 

(Hultsch, Hertzog, Small, & Dixon, 1999; Small, Dixon, McArdle, & Grimm, 2012). Lifestyle 

activities composite was calculated by summing the scores across all four domains.  

Statistical Analysis 

 Structural equation modeling (SEM) was used to analyze both parts of the two research 

questions with Mplus Version 7 (Muthén & Muthén, 1998-2015). All missing values for 

cognitive measures were assumed to be missing at random and handled using maximum 

likelihood. Missing predictor values were handled using list-wise deletion in Mplus. Only two 

participants with missing measures on all four EF tasks were lost due to list-wise deletion.  

 Preliminary factor analyses for EF latent variable. In the first preliminary analysis, we 

tested and confirmed a previously established one-factor EF latent variable (Sapkota et al., 

2015). Specifically, CFA was used to examine loadings of all four manifest variables (Stroop, 

Hayling, Brixton, and Color trails) on the predicted latent variable. The first model tested all 

observed variables on one latent EF factor and the second model tested a two-factor shifting and 

inhibition model. The best fitting model was determined by examining several fit statistics. The 

chi-square test of model (χ²; p > .05) allowed for an overall indication of good model fit. 

Additional absolute/comparative fit indices were also examined to determine a good model fit to 
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the data (Kline, 2011). These included the root mean square error of approximation (RMSEA ≤ 

.05), comparative fix index (CFI ≥ .95), and the standardized root mean square residual (SRMR 

≤ .08).  

In the second preliminary analysis, we established longitudinal invariance across all three 

waves for the best factor. We started with configural invariance, which establishes that all four 

indicators load on to the same factor. Second, metric invariance tests whether the unstandardized 

factor loadings at Waves 1-3 can be constrained and set to be equal to each other. Third, scalar 

invariance examines whether the four EF indicator intercepts can be constrained to be equal 

across all waves. Fourth, equal residuals invariance examines whether the EF factor can explain 

the same amount of variability across the three waves. We obtained partial scalar longitudinal 

invariance across all three waves (see Table 6-3). Age was centered at 75 years and EF factor 

scores were computed to test both research questions.  

 In the third preliminary analysis, we determined the best latent growth model for our one 

factor EF latent variable. We adopted a model building approach and started with a simple (null) 

model, and added parameters at each step to arrive at a baseline model of change. The null model 

assumes that there is no change over five waves, followed by the addition of fixed intercepts, 

random intercepts, fixed slope, random slope, and fixed quadratic. First, in the null model, the 

variances for the intercepts were fixed across adults to 0. Second, in the random intercepts 

model, individuals were allowed to vary in intercept variance by removing the fixed intercept at 

0. Third, a fixed linear slope was added to the baseline model by fixing the slope to 0 across all 

adults. The fixed linear slope assumed that all participants were changing in performance at the 

same rate. Fourth, adults were allowed to vary in their slope performance by removing the fixed 

linear slope constraint, and adding a random intercept and random linear slope model of change. 
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Fifth, a fixed quadratic was added to the random intercept and random linear slope model, where 

both the intercepts and the slope were allowed to vary across individuals, but the curvilinear 

change was fixed across all participants. Following the examination of model fit, the 

𝜒2difference statistic was calculated to detect any improvement in fit with the addition of free 

parameters at each step. The random intercept and random slope model was the best fit for our 

one-factor EF latent variable (see Table 4) and was used in all subsequent analyses.  

Analyses for research questions. Older adults who were age 70 years and older were in 

the old-old (OO) group and those below 70 years were in the young-old (YO) group. In the YO 

group, age was centered at 63 years and in the OO group, age was centered at 77 years, based on 

the mean age in each group. The lifestyle activities composite was split into low and high 

activities at the overall mean lifestyle activities score of 133. Older adults below 133 were in the 

low activities group and adults with at least a score of 133 or above were in the high lifestyle 

activities group. Although we used the three waves to organize the demographic information 

(Table 6-1), it is important to note that wave was not used as the metric of longitudinal change in 

the analyses. Specifically, age was used as the metric of change. Statistically, using age in this 

manner permits us to account for variability associated with age as well or better than if it is used 

as a covariate in the statistical models. Gender and education (continuous) were used as covariate 

in all analyses. For model fit statistics and significant results, we examined the regression 

estimate and p < .05, and -2 log likelihood (-2LL), Akaike information criteria (AIC), and 

Bayesian information criteria (BIC) values with lower values indicating better model fit (see 

Table 5). We now turn to analyses for each research question.  

For RQ1a, EF was regressed on APOE, COMT, and BDNF independently, and as 

separated by age group (YO and OO) and lifestyle activities composite (low and high activities).   
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For RQ1b, EF was regressed on COMT and BDNF as separated by APOE status (ε4+ 

versus ε4-). Next, we tested this regression model as further separated by age group (YO and 

OO) and lifestyle activities composite (low and high).  

For RQ2a, EF was regressed separately on all additive genetic combinations. 

Specifically, for the additive models we tested (a) COMT + BDNF; (b) COMT + APOE; and (c) 

BDNF + APOE. We tested all three models independently, and as separated by age group (YO 

and OO) and lifestyle activities composite (low and high activities).  

For RQ2b, EF was regressed on COMT + BDNF additive model as separated by APOE 

status (ε4+ versus ε4-). Next, we tested this regression model as further separated by age group 

(YO and OO) and lifestyle activities composite (low and high).  

Results 

 In our preliminary analyses, we established that the one-factor parsimonious model of EF 

provided the best fit to the data and was used as the final CFA model. Unstandardized regression 

coefficients for the expected EF latent variable were examined to determine differences and 

change in performance. For longitudinal invariance, we obtained partial scalar longitudinal 

invariance across all three waves (χ2(df) = 84.60 (49), p = .001; RMSEA (90% CI) = .034 (.021-

.044); CFI = .977; and SRMR = .084) (Table 6-3). Next, we computed EF factor scores, which 

were used in all succeeding models for RQ1 and RQ2. The best latent growth model was 

obtained with the random intercept and random slope model (Table 6-4).    

 For RQ1a, we observed four significant independent effects of APOE on EF performance 

and change. First, overall, APOE risk carriers (ε4+) performed worse than their non-risk (ε4-) 

counterparts at age 75 (β = -0.206; SE = 0.098; p = .036) (Table 6-5; Figure 6-1a). We did not 

observe significant differential decline between the APOE ε4+ and ε4- group. Second, in the YO 
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group, APOE ε4+ carriers performed worse on EF than their ε4- counterparts at age 63 (β = -

0.210; SE = 0.100; p = .036) and had steeper decline over the 9-year period (β = -0.015; SE = 

0.007; p = .020). Third, in the OO group, APOE ε4+ carriers had steeper decline on EF with age 

than their non-risk (ε4-) counterparts (β = -0.029; SE = 0.011; p = .007) (Figure 6-2). Levels of 

lifestyle activities did not significantly moderate APOE genotype on EF performance or change. 

We did not observe significant independent effects for COMT or BDNF allelic risk on EF 

performance or change independently (Figure 6-1b and 6-1c), or as separated by age (Figure 6-3 

and 6-4) or lifestyle activities group.  

 For RQ1b, we observed three significant associations. First, in the overall group, there 

was a significant moderation effect for BDNF genotype by APOE status (ε4- versus ε4+). 

Specially, BDNF Met/Met homozygotes in the APOE ε4+ group had the worst EF performance 

at age 75 years compared to the BDNF Val/Met or Val/Val genotype (β = -0.373; SE = 0.179; p 

= .037). BDNF allelic risk carriers in the APOE ε4- group performed relatively well, as 

compared with that of the APOE ε4+ group (Figure 6-5). Regarding COMT, APOE status effects 

are consistent with an inference of protection (Figure 6-6). Second, in the YO group, BDNF 

Met/Met homozygotes in the APOE ε4+ group had the worst EF performance at age 63 years (β 

= -0.330; SE = 0.145; p = .023) and slower increase on EF (β = -0.032; SE = 0.010; p = .023) 

than the BDNF no-risk (Val/Val) homozygotes (Figure 6-7). Third, in the high lifestyle activities 

group, BDNF Met/Met homozygotes in the APOE ε4+ group had the worst EF performance at 75 

years (β = -0.525; SE = 0.252; p = .037) (Figure 6-8), but no significant difference on EF change.  

 For RQ2a, we did not observe any significant effects for (a) COMT + BDNF, (b) COMT 

+ APOE, or (c) BDNF + APOE risk independently, as separated by age (YO and OO) or lifestyle 

activities (low and high) group. 
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 For RQ2b, we observed two significant synergistic effects for the COMT + BDNF 

combination. First, APOE effect modification was observed for COMT + BDNF additive effect 

on EF performance. COMT + BDNF allelic risk showed an additive risk effect at age 75 and 

borderline decline in the APOE risk (ε4+) group. Specifically, older adults displayed poorer EF 

performance with increasing allelic risk in the COMT + BDNF risk panel at age 75 (β = -0.307; 

SE = 0.123; p = .013), and borderline 9-year decline (β = -0.012; SE = 0.006; p = .054) (Table 6-

5; Figure 6-9). Second, an increase in COMT + BDNF allelic risk was associated with a less 

steeper decline in EF performance for APOE ε4- group with high lifestyle activities (β = 0.008; 

SE = 0.004; p = .046) (Figure 6-10). We did not observe any significant effects for COMT and 

BDNF cumulative risk as divided by APOE ε4 status and age group.  

Discussion  

 We tested independent and additive associations of APOE, COMT, and BDNF allelic risk 

as separated by age and lifestyle risk on EF performance and 9-year change in non-demented 

older adults. In addition, we also tested (a) APOE moderation effect for COMT and BDNF and 

(b) APOE effect modification for additive associations of COMT + BDNF, and as separated by 

age (YO versus OO) and lifestyle activities (high versus low) groups. Some recent research has 

begun to examine independent, interactive, and additive associations for these three genetic 

variants and cognitive performance in older adults (McFall et al., 2015; Nagel et al., 2008; 

Papenberg et al., 2014; Sapkota et al., 2015; Wishart et al., 2011). To our knowledge this is the 

first study to examine independent and additive associations with EF performance and change as 

separated by age group and lifestyle activities for these three variants in a longitudinal sample of 

non-demented older adults. Key results include the following. First, we observed that APOE ε4+ 

carriers were at higher risk for poor EF performance and steeper decline overall. Second, APOE 
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ε4+ carriers moderated BDNF genotype in that BDNF allelic risk carriers were at an increased 

risk especially in the younger age and high lifestyle activities group. Third, APOE ε4+ carriers 

magnified the COMT + BDNF panel effect on EF but this effect was not present in the high 

lifestyle activities group. We now discuss each of our main findings.  

 First, we observed independent effects of APOE on EF performance overall and as 

separated by age group. As expected, APOE risk carriers (ε4+) performed worse than their non-

risk (ε4-) counterparts at age 75 years in the overall group, at age 63 years in the YO group, and 

had steeper EF decline in the OO group. Although some previous research and meta-analyses on 

APOE and cognitive associations have reported similar findings in non-demented older adults, 

observers have also concluded that the associations may be specific to cognitive domain 

(Marioni et al., 2015; Raz et al., 2009; Small, Rosnick, Fratiglioni, & Bäckman, 2004). We did 

not observe COMT and BDNF allelic risk differences in EF predictions, but we found an 

expected age magnification effect whereby adults in the OO group were declining more in EF 

performance than their YO counterparts (Figure 6-3 and 6-4). Notably, for low versus high 

lifestyle activities, we observed a similar pattern of results. Specifically, there were no 

independent effects of APOE, COMT, and BDNF in the two groups but adults with high lifestyle 

activities showed less decline in EF performance compared to those with low lifestyle activities. 

 Second, we observed an APOE moderation effect for BDNF genotype on EF performance 

in the overall group, in the YO group, and in the group with high lifestyle activities. BDNF 

Met/Met homozygotes showed the worst EF performance only in the presence of APOE ε4+ 

allelic risk, and this effect was magnified when examined with potential protective factors, such 

as younger age and higher lifestyle activities. A similar APOE and BDNF interactive effect was 

reported for episodic memory performance (Ward et al., 2014). This study found that BDNF 
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Met+ carriers with APOE ε4 allele had poorer performance compared to BDNF Met+ carriers 

with the APOE ε2 allele. They hypothesized a potential biological interaction between BDNF 

and APOE encoded proteins may influence cognitive function. Another recent study examined 

amyloid beta deposition in cognitively normal older adults (Adamczuk et al., 2013) suggesting a 

possible biological mechanism between APOE ε4 status and BDNF Met carriers. Specifically, 

APOE ε4+ carriers with BDNF Met+ genotype had higher amyloid load than BDNF Met- 

genotype in the precuneus, orbitofrontal cortex, gyrus rectus, and lateral prefrontal cortex. They 

suggest that the lipid metabolism pathway influenced with the APOE genotype and the role of 

BDNF on neuronal survival may be linked in way that results in lower or higher amyloid-

deposition. In the present study, BDNF Met carriers are only at disadvantage if APOE ε4 risk is 

moderating the association on EF performance. We also observed that this moderation effect was 

magnified in YO adults and in those with higher lifestyle activities. YO adults are shown to be 

more physically active than OO adults (Evenson, Buchner, & Morland, 2012) and those with 

high lifestyle activities are highly engaged in physical, social, and cognitive processing activities 

than their low lifestyle activities counterparts (Runge, Small, McFall, & Dixon, 2014). Physical 

activity has been shown to increase BDNF expression in the brain, and this can result in both 

greater synaptic plasticity (Cotman & Berchtold, 2002) and reduced memory impairment 

(Erickson, Miller, & Roecklein, 2012). The BDNF gene controls BDNF levels. BDNF Met 

carriers have a lower expression of BDNF (Mata, Thompson, & Gotlib, 2010), which has been 

associated with poor cognitive functioning (Savitz, Solms, & Ramesar, 2006). However, 

increasing BDNF levels through activities (i.e., exercise) may mediate memory impairment in 

BDNF Met carriers (Erickson et al., 2012). Thus, BDNF genotype differences for APOE ε4+ 

carriers in the YO group and with high lifestyle activities may be selectively magnified through 
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increased BDNF expression for those at high genetic risk for cognitive impairment. We also 

observed an age and lifestyle activities effect where older age and low lifestyle activities resulted 

in EF decline despite BDNF and COMT allelic risk differences for both APOE ε4+ carriers and 

non-carriers. The APOE moderation effect on BDNF in our study implies that the (a) BDNF 

Met/Met risk may only be detrimental for EF performance in the presence of APOE ε4+ risk, and 

(b) younger age and high lifestyle activities may mitigate some of the risk associated with BDNF 

Met/Met homozygotes perhaps by increasing BDNF expression.  

 Third, we observed an APOE effect modification for COMT + BDNF additive association 

on EF performance. APOE ε4+ carriers displayed poorer EF performance with increasing allelic 

risk in the COMT + BDNF risk panel at age 75 and borderline 9-year decline. An additional 

allelic risk for either COMT or BDNF gene in APOE ε4+ carriers resulted in poorer EF 

performance whereas, APOE non-risk carriers (ε4-) were protected from the deleterious effect of 

COMT + BDNF allelic risk. Previous studies have reported lower prefrontal DA levels and poor 

cognitive processing in COMT Val/Val homozygotes (Papenberg et al., 2014), with age altering 

this relationship (Bäckman et al., 2010; Lindenberger et al., 2008). Although we did not observe 

differential patterns in our YO versus OO age groups, we informally note a borderline aging 

magnification of COMT + BDNF genetic effects across a 40-year continuum from 55 to 95 years. 

Recent studies have reported the aging related magnification of genetic effects (Papenberg, 

Lindenberger, & Bäckman, 2015) for COMT. An inverted U-shaped curve has been proposed to 

describe this relationship, whereby COMT Met/Met homozygotes with higher DA levels are 

associated with better cognitive performance. However, this association deteriorates as brain 

resources begin to decline with aging (Lindenberger et al., 2008). As for BDNF Val/Val 

homozygotes, they have higher levels of neurotrophic factors (Marosi & Mattson, 2014), which 
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has been associated with better cognitive performance (Nagel et al., 2008). In our additive 

association, we observed that an absence of COMT Val+ or BDNF Met + allelic risk does not 

eliminate the risk present with either COMT or BDNF genotype for APOE ε4+ carriers on EF 

performance. As expected, older APOE ε4+ carriers with the highest cumulative genetic risk for 

COMT (Val/Val homozygotes) in addition to BDNF (Met/Met homozygotes) had the worst EF 

performance. However, this APOE effect modification was not present in APOE ε4+ carriers 

with high lifestyle activities. Some past studies show that varying life experiences including high 

leisure and mental activities may be protective against dementia onset (Scarmeas, Levy, Tang, 

Manly, & Stern, 2001; Valenzuela, Brayne, Sachdev, & Wilcock, 2011) or supporting non-

demented cognitive maintenance (Erickson et al., 2008; Thibeau et al., 2016). The proposed 

mechanisms are activity-or exercise-related increases in synaptic density and cognitive reserve, 

which may delay clinical symptoms (Scarmeas et al., 2001) and promote maintenance of brain 

reserve in old age (Wang, Karp, Winblad, & Fratiglioni, 2002). Thus, high lifestyle activities 

may counteract the negative effects and be most beneficial to adults with the highest combination 

of genetic risk (i.e., COMT + BDNF allelic risk for APOE ε4+ carriers than non-carriers). We 

also observed that the very high-risk group for COMT + BDNF in the APOE ε4- group showed 

the least decline in EF performance over 9 years (Figure 9). Our results support the “differential 

susceptibility” model (Belsky et al., 2009; Ferencz et al., 2014), which suggests that adults with 

the highest allelic risk show the greatest amount of plasticity.  

 Although the risk associated with one variant was still present, we expected to observe 

that a protective allele in the overall group, and especially in the YO age group or high lifestyle 

activities group, would reduce the risk associated with other SNP (Harris et al., 2014; Purcell et 

al., 2009; Sapkota et al., 2015; Verhaaren et al., 2013). Such a process could result in 
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significantly less detrimental effects on EF performance and change. Accordingly, this supports 

one main finding of the present study. The APOE genotype does not appear to play a cumulative 

role with COMT and BDNF but rather moderates BDNF genotype and presents an effect 

modification of the COMT + BDNF additive effects on EF performance and change. 

Furthermore, this association is magnified through differences in chronological age group and 

supportive lifestyle activity levels. Thus, we propose that the potential biological mechanism is 

associated with APOE ε4 positivity and is selectively intensified through COMT and BDNF 

allelic risk, as further determined by age and level of lifestyle activities.  

 We now note several strengths and limitations of the present study. For our strengths, 

first, we included a large sample of older adults (n = 634) tested across a 40-year band of aging 

(age range = 53-95 years) from the VLS project. The design allowed us to examine age 

magnification over 40 years and test difference between two age groups (YO and OO) split at 70 

years old. Second, we used an accelerated longitudinal design with age as the metric of change 

thereby incorporating chronological age into our analyses. This advanced latent growth modeling 

technique accounts for any missing waves for participants and maximizes the use of our 

longitudinal data to accurately test our research goals. Third, we used four standard 

neuropsychological tests contributing to a one-factor EF latent variable. Previous studies usually 

only report the use of single manifest variables (e.g., Color trails) to examine candidate gene 

associations. Thus, our EF latent variable takes into account any errors associated single 

cognitive tests. For our limitations, first, we examined only one neuropsychological domain, EF. 

Future studies should consider examining other domains including neurocognitive speed and 

memory with APOE, COMT, and BDNF. Second, lifestyle activities were based on frequency 

and we did not take into account the extent of participation in all the physical, social, integrative 
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and novel information processing activities. The VLS Activities Lifestyle Questionnaire has been 

previously validated (e.g., Hultsch et al., 1999). We note that some related objective measures 

were available for the domain of physical activities (i.e., timed-walk speed, hand grip strength) 

and future studies may consider using both objective and self-reported measures. Third, because 

of ongoing data collection schedules, the longitudinal design did not include a third-wave 

opportunity for all participants. However, our results seem not to have been compromised. 

Moreover, our analyses use all data points available for all participants. In addition, we tested 

and confirmed that the EF latent variable performed with measurement invariance across all 

waves.    

 In conclusion, in aging the APOE genotype presents an (a) overall independent effect, (b) 

moderation effect on BDNF genotype, and (c) effect modification of COMT + BDNF additive 

associations on EF. In addition, both chronological age and lifestyle activities may moderate 

these associations. It is important to note that high lifestyle activities may potentially protect 

against expected cognitive decline associated with cumulative genetic risk (COMT + BDNF). 

Influential and interacting mechanisms of aging and genetic magnification effects on EF in non-

demented older adults may be detected only in the presence of APOE ε4+ carriers and enhanced 

through the protective lens of lifestyle activities. Such results may clarify the often-noted 

inconsistencies in single-gene COMT and BDNF association studies and point toward the 

importance of multi-factorial approaches to understanding neurobiological aging and influences 

on cognitive aging.
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Table 6-1  

Participant characteristics by wave and genotype 

Characteristics     

Wave 1 COMT BDNF APOE Total 

 Met/Met Met/Val Val/Val p-

value 

Met/Met Met/Val Val/Val p-

value 

ε4- ε4+ p-

value 

 

n 146 338 150 -- 27 189 418 -- 455 149 -- 634 

Age (years) 70.15 

(8.86) 

70.85 

(8.68) 

70.40 

(8.40) 

0.686 68.54 

(6.32) 

71.45 

(8.52) 

70.32 

(8.81) 

0.150 70.91 

(8.83) 

69.86 

(8.27) 

0.203 70.58 

(8.65) 

Education 

(years) 

14.92 

(3.11) 

15.35 

(2.80) 

15.36 

(3.15) 

0.303 15.72 

(2.70) 

15.13 

(2.99) 

15.28 

(2.96) 

0.590 15.19 

(2.97) 

15.55 

(3.07) 

0.201 15.25 

(2.96) 

Gender (F/M) 101/45 226/112 96/54 0.639 18/9 128/61 277/141 0.940 305/150 93/56 0.303 423/211 

MMSE 28.72 

(1.20) 

28.72 

(1.20) 

28.56 

(1.32) 

0.403 29.15 

(0.77) 

28.74 

(1.15) 

28.62 

(1.28) 

0.068 28.66 

(1.24) 

28.68 

(1.25) 

0.894 28.68 

(1.23) 

Wave 2 COMT BDNF APOE  

 Met/Met Met/Val Val/Val p-

value 

Met/Met Met/Val Val/Val p-

value 

ε4- ε4+ p-

value 

 

n 119 276 123 -- 25 158 335 -- 377 117 -- 518 

Age (years) 73.91 

(8.78) 

75.12 

(8.65) 

74.57 

(8.18) 

0.429 73.11 

(6.66) 

76.12 

(8.49) 

74.17 

(8.67) 

0.041 75.09 

(8.68) 

73.66 

(8.33) 

0.118 74.71 

(8.57) 

Education 

(years) 

15.24 

(3.09) 

15.50 

(2.72) 

15.55 

(3.03) 

0.648 15.82 

(2.79) 

15.26 

(2.99) 

15.51 

(2.84) 

0.527 15.36 

(2.88) 

15.89 

(3.00) 

0.088 15.45 

(2.88) 

Gender (F/M) 81/38 184/92 78/45 0.728 16/9 106/52 221/114 0.943 251/127 73/44 0.437  

MMSE 28.49 

(1.67) 

28.47 

(1.35) 

28.49 

(1.31) 

0.984 29.16 

(0.85) 

28.44 

(1.49) 

28.44 

(1.41) 

0.047 28.53 

(1.31) 

28.27 

(1.71) 

0.079 28.48 

(1.42) 

Wave 3 COMT BDNF APOE  
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 Met/Met Met/Val Val/Val p-

value 

Met/Met Met/Val Val/Val p-

value 

ε4- ε4+ p-

value 

 

n 64 152 78 -- 12 92 190 -- 211 67 -- 294 

Age (years) 75.29 

(7.20) 

74.38 

(7.48) 

75.99 

(6.93) 

0.270 74.21 

(6.51) 

76.06 

(7.24) 

74.54 

(7.33) 

0.242 75.33 

(7.40) 

73.98 

(6.91) 

0.189 75.01 

(7.28) 

Education 

(years) 

15.09 

(2.91) 

15.77 

(2.82) 

15.62 

(3.22) 

0.301 16.38 

(3.26) 

15.31 

(2.84) 

15.66 

(2.99) 

0.422 15.43 

(2.92) 

16.16 

(3.17) 

0.084 15.58 

(2.96) 

Gender (F/M) 44/20 104/48 51/27 0.879 9/3 62/30 128/62 0.859 144/67 43/24 0.538 28.68 

(1.41) 

MMSE 28.61 

(1.84) 

28.69 

(1.27) 

28.76 

(1.40) 

0.830 28.83 

(1.53) 

28.56 

(1.63) 

28.75 

(1.26) 

0.539 28.64 

(1.47) 

28.79 

(1.18) 

0.462 28.69 

(1.40) 

Note. n = total number; COMT = Catechol-O-methyl transferase; BDNF = Brain-derived neurotrophic factor; APOE = Apolipoprotein 

E; p < .05. MMSE = Mini-Mental State Exam. Standard deviations are in parentheses. For the analyses involving the APOE 

genotypes, the ε2/ε4 carriers (n = 30) were deleted from the sample.  
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Table 6-2  

Participant characteristics by age group and genotype 

Characteristics     

Young-Old COMT BDNF APOE Total 

 Met/Met Met/Val Val/Val p-

value 

Met/Met Met/Val Val/Val p-

value 

ε4- ε4+ p-

value 

 

n 70 152 74 -- 15 79 202 -- 201 79 -- 296 

Age (years) 62.32 

(4.47) 

62.70 

(4.58) 

63.37 

(4.39) 

0.356 64.09 

(4.63) 

63.10 

(4.24) 

62.55 

(4.60) 

0.333 62.50 

(4.52) 

63.28 

(4.44) 

0.191 62.77 

(4.51) 

Education 

(years) 

15.21 

(3.01) 

15.73 

(2.75) 

15.38 

(3.25) 

0.418 15.77 

(2.97) 

15.15 

(3.09) 

15.65 

(2.88) 

0.425 15.44 

(2.97) 

15.81 

(3.02) 

0.345 15.52 

(2.95) 

Gender (F/M) 54/16 105/47 52/22 0.458 12/3 58/21 141/61 0.625 149/52 49/30 0.045  

MMSE 29.04 

(0.92) 

28.99 

(1.05) 

28.76 

(1.29) 

0.215 29.07 

(0.80) 

29.05 

(0.95) 

28.90 

(1.16) 

0.513 28.87 

(1.16) 

29.09 

(0.95) 

0.129 28.95 

(1.09) 

Old-Old COMT BDNF APOE  

 Met/Met Met/Val Val/Val p-

value 

Met/Met Met/Val Val/Val p-

value 

ε4- ε4+ p-

value 

 

n 76 186 76 -- 12 110 214 -- 252 70 -- 338 

Age (years) 77.37 

(4.82) 

77.51 

(4.55) 

77.23 

(5.01) 

0.904 74.09 

(2.59) 

77.44 

(5.05) 

77.59 

(4.56) 

0.043 77.55 

(4.81) 

77.28 

(4.35) 

0.665 77.42 

(4.71) 

Education 

(years) 

14.66 

(3.20) 

15.03 

(2.81) 

15.34 

(3.06) 

0.361 15.67 

(2.46) 

15.12 

(2.93) 

14.94 

(3.00) 

0.658 14.99 

(2.96) 

15.25 

(3.13) 

0.518 15.02 

(2.96) 

Gender (F/M) 47/29 120/64 44/32 0.547 6/6 70/40 135/79 0.648 155/97 44/26 0.827  

MMSE 28.42 

(1.35) 

28.49 

(1.27) 

28.36 

(1.32) 

0.780 29.25 

(0.75) 

28.52 

(1.23) 

28.36 

(1.34) 

0.053 28.50 

(1.27) 

28.20 

(1.39) 

0.098 28.44 

(1.30) 
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Note. n = total number; COMT = Catechol-O-methyl transferase; BDNF = Brain-derived neurotrophic factor; APOE = Apolipoprotein 

E; p < .05. MMSE = Mini-Mental State Exam. Standard deviations are in parentheses. For the analyses involving the APOE 

genotypes, the ε2/ε4 carriers (n = 30) were deleted from the sample.   
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Table 6-3  

Confirmatory factor analysis and longitudinal invariance model fit statistics and chi-square difference test for executive function 

factor by time point 1 to 3 

 AIC BIC 𝝌𝑴
𝟐 (𝒅𝒇𝑴) RMSEA (90% CI) CFI SRMR 𝝌𝑫

𝟐  (𝒅𝒇𝑫) 

Confirmatory Factor Analysis 

T1 12263.880 12417.267 3.011 (2); p = 0.222 0.028 (0.00-0.089) 0.993 0.015 -- 

T2 10624.309 10675.332 0.239 (2); p = 0.887 0.000 (0.000-0.041) 1.000 0.004 -- 

T3 5738.166 5782.450 2.901 (2); p = 0.235 0.039 (0.000-0.129) 0.991 0.021 -- 

Longitudinal Invariance 

Configural 27666.008 27884.004 65.528 (41); p = 0.009 0.031 (0.016-0.044) 0.984 0.077 -- 

Metric 27661.656 27852.958 73.176 (47); p = 0.009 0.030 (0.015-0.042) 0.983 0.079 7.648 (6) 

Scalar 27775.311 27939.920 198.832 (53); p = 0.000 0.066 (0.056-0.076) 0.906 0.104 125.656 (6)** 

Partial scalara  27669.082 27851.487 84.602 (49); p = 0.001 0.034 (0.021-0.046) 0.977 0.084 11.426 (2)* 

Note. AIC = Akaike Information Criteria; BIC = Bayesian Information Criteria; 𝜒𝑀
2  = Chi-square test of model fit; 𝑑𝑓𝑀 = Degrees of 

freedom for model fit; RMSEA = Root Mean Square Error of Approximation; CI = Confidence Interval; CFI = Comparative Fit 

Index; SRMR = Standardized Root Mean Square Residual; 𝑋𝐷
2 = Chi-square test of difference; 𝑑𝑓𝐷 = Degrees of freedom for 

difference in model fit; T = Time point. 

*p<.05; **p<.001. 
aPartial scalar, where the intercept for Hayling and Stroop were constrained to be equal across all three time points. 
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Table 6-4  

Latent growth model fit statistics and chi-square difference test for executive function by age 

Model H0 value Free 

Parameters 

-2LL AIC BIC D (𝒅𝒇𝑫) 

Fixed Intercept -2067.192 4 4134.384 4142.384 4160.180 -- 

Random Intercept -1248.233 5 2496.466 2506.467 2528.711 1637.918 (1) 

Random Intercept, Fixed Slope -1229.368 6 2458.736 2470.736 2497.429 37.73 (1)** 

Random Intercept, Random Slope -868.207 8 1736.414 1752.413 1788.004 722.322 (2)** 

Random Intercept, Random Slope, Fixed 

Quadratic 

1263.880 9 2527.760 2545.760 2585.800 -791.346 (1) 

Note. H0 = Log Likelihood; -2LL = -2 Log Likelihood; AIC = Akaike Information Criteria; BIC = Bayesian Information Criteria; D = 

Deviance statistic; 𝑑𝑓𝐷 = Degrees of freedom for difference in deviance statistics. 

*p<.05; **p<.001. 
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Table 6-5  

 

Regression coefficients and model fit indices by research question for all models examined at baseline and 9-year change on executive 

function 

 Intercept Slope Model Fit Statistics 

Models β SE p β SE p H0 

value 

Free 

Parameters 

-2LL AIC BIC 

Research question 1a            

Independent            

(a) COMT (n = 632) 0.015 0.063 0.816 0.002 0.003 0.496 -862.090 14 1724.18 1752.181 1814.465 

(b) BDNF(n = 632) -0.055 0.075 0.464 -

0.003 

0.004 0.469 -862.319 14 1724.638 1752.638 1814.923 

(c) APOE (n = 602) -0.206 0.098 0.036 -

0.007 

0.005 0.156 -827.278 14 1654.556 1682.557 1744.160 

Age (YO versus OO)            

YO            

(a) COMT (n = 296) -0.002 0.061 0.972 0.002 0.004 0.690 -542.049 28 1084.098 1140.099 1264.668 

(b) BDNF (n = 296) -0.045 0.073 0.541 -

0.003 

0.005 0.588 -541.309 28 1082.618 1138.617 1263.186 

(c) APOE (n = 280) -0.210 0.100 0.036 -

0.015 

0.007 0.020 -514.220 28 1028.44 1084.441 1207.648 

OO            

(a) COMT (n = 336) -0.023 0.073 0.753 -

0.002 

0.007 0.755 -542.050 28 1084.1 1140.099 1264.668 

(b) BDNF (n = 336) -0.020 0.092 0.830 0.003 0.009 0.699 -541.308 28 1082.616 1138.617 1263.185 

(c) APOE (n = 322) -0.197 0.116 0.089 -

0.029 

0.011 0.007 -514.220 28 1028.44 1084.440 1207.647 

Lifestyle activities (Low 

versus High) 

           

High activities            

(a) COMT (n = 292) 0.080 0.098 0.412 0.006 0.004 0.175 -784.476 28 1568.952 1624.952 1749.164 

(b) BDNF (n = 292) -0.039 0.125 0.753 -

0.002 

0.005 0.705 -786.489 28 1572.978 1628.977 1753.189 
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Models β SE p β SE p H0 

value 

Free 

Parameters 

-2LL AIC BIC 

(c) APOE (n = 279) -0.215 0.144 0.134 -

0.005 

0.006 0.462 -751.822 28 1503.644 1559.644 1682.524 

Low activities            

(a) COMT (n = 332) -0.046 0.078 0.552 -

0.004 

0.005 0.444 -784.476 28 1568.952 1624.952 1749.164 

(b) BDNF (n = 332) -0.034 0.090 0.703 0.000 0.007 0.964 -786.489 28 1572.978 1628.977 1753.189 

(c) APOE (n = 316) -0.236 0.133 0.075 -

0.011 

0.009 0.205 -751.822 28 1503.644 1559.644 1682.524 

Research question 1b            

APOE (ε4+)            

(a) COMT (n = 149) -0.177 0.152 0.243 -

0.006 

0.007 0.388 -815.111 28 1630.222 1686.222 1809.429 

(b) BDNF (n = 453) -0.373 0.179 0.037 -

0.015 

0.009 0.101 -814.361 28 1628.722 1684.721 1807.929 

YO            

(a) COMT (n = 79) -0.073 0.153 0.635 0.000 0.011 0.992 -113.884 28 227.768 283.768 385.543 

(b) BDNF (n = 79) -0.330 0.145 0.023 -

0.032 

0.010 0.002 -110.808 28 221.616 277.615 379.389 

OO            

(a) COMT (n = 70) -0.417 0.219 0.057 -

0.030 

0.024 0.197 -365.306 28 730.612 786.611 892.299 

(b) BDNF (n = 70) 0.103 0.098 0.751 0.002 0.035 0.948 -364.416 28 728.832 784.831 890.519 

High activities            

(a) COMT (n = 75) -0.144 0.259 0.578 -

0.001 

0.012 0.951 -211.983 28 423.966 479.972 563.894 

(b) BDNF (n = 75) -0.525 0.252 0.037 -

0.022 

0.012 0.066 -211.659 28 423.318 479.318 563.240 

Low activities            

(a) COMT (n = 73) -0.200 0.235 0.394 -

0.019 

0.010 0.051 -211.983 28 423.966 479.972 563.894 

(b) BDNF (n = 73) -0.209 0.341 0.541 0.001 0.017 0.967 -211.659 28 423.318 479.318 563.240 

APOE (ε4-)            

(a) COMT (n = 453) 0.0603 0.071 0.371 0.004 0.004 0.208 -815.111 28 1630.222 1686.222 1809.429 

(b) BDNF (n = 453) 0.052 0.085 0.537 0.002 0.004 0.639 -814.361 28 1628.722 1684.721 1807.929 
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Models β SE p β SE p H0 

value 

Free 

Parameters 

-2LL AIC BIC 

YO            

(a) COMT (n = 201) 0.033 0.069 0.636 0.005 0.004 0.230 -113.884 28 227.768 283.768 385.543 

(b) BDNF (n = 201) 0.074 0.094 0.434 0.008 0.006 0.195 -110.808 28 221.616 277.615 379.389 

OO            

(a) COMT (n = 252) 0.057 0.082 0.487 0.003 0.008 0.705 -365.306 28 730.612 786.611 892.299 

(b) BDNF (n = 252) -0.054 0.098 0.581 0.006 0.009 0.546 -364.416 28 728.832 784.831 890.519 

High activities            

(a) COMT (n = 243) 0.141 0.102 0.167 0.008 0.004 0.084 -514.825 28 1029.65 1085.650 1200.521 

(b) BDNF (n = 243) 0.118 0.136 0.389 0.005 0.006 0.345 -515.885 28 1031.77 1087.770 1202.642 

Low activities            

(a) COMT (n = 204) -0.013 0.089 0.882 -

0.001 

0.006 0.932 -514.825 28 1029.65 1085.650 1200.521 

(b) BDNF (n = 204) 0.037 0.094 0.692 0.000 0.008 0.965 -515.885 28 1031.77 1087.770 1202.642 

Research question 2a            

Additive            

(a) COMT + BDNF (n = 632) -0.014 0.048 0.774 0.000 0.002 0.976 -862.379 14 1724.758 1752.758 1815.042 

(b) COMT + APOE (n = 602) -0.051 0.056 0.362 -

0.001 

0.003 0.830 -828.486 14 1656.972 1684.972 1746.575 

(c) BDNF + APOE (n = 602) -0.106 0.057 0.063 -

0.004 

0.003 0.170 -828.153 14 1656.306 1684.307 1745.910 

Age (YO versus OO)            

YO            

(a) COMT + BDNF (n = 296) -0.018 0.046 0.690 0.000 0.003 0.976 -541.708 28 1083.416 1136.417 1263.986 

(b) COMT + APOE (n = 280) -0.058 0.056 0.302 -

0.003 

0.004 0.464 -518.897 28 1037.794 1093.794 1217.001 

(c) BDNF + APOE (n = 280) -0.102 0.057 0.074 -

0.007 

0.004 0.070 -518.641 28 1037.282 1093.282 1216.489 

OO            

(a) COMT + BDNF (n = 336) -0.022 0.062 0.719 0.000 0.006 0.971 -541.709 28 1083.418 1136.417 1263.986 

(b) COMT + APOE (n = 322) -0.078 0.064 0.224 -

0.010 

0.006 0.103 -518.897 28 1037.794 1093.794 1217.001 

(c) BDNF + APOE (n = 332) -0.087 0.069 0.205 -

0.007 

0.006 0.292 -518.641 28 1037.282 1093.282 1216.489 
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Models β SE p β SE p H0 

value 

Free 

Parameters 

-2LL AIC BIC 

Lifestyle activities (Low 

versus High) 

           

High activities            

(a) COMT + BDNF (n = 292) 0.034 0.081 0.671 0.003 0.004 0.421 -785.597 28 1571.194 1627.193 1751.193 

(b) COMT + APOE (n = 279) -0.013 0.082 0.870 0.002 0.004 0.492 -752.085 28 1504.17 1560.171 1683.051 

(c) BDNF + APOE (n = 279) -0.116 0.088 0.190 -

0.003 

0.004 0.389 -753.875 28 1507.75 1563.750 1686.630 

Low activities            

(a) COMT + BDNF (n = 332) -0.038 0.054 0.484 -

0.002 

0.004 0.610 -785.597 28 1571.194 1627.193 1751.193 

(b) COMT + APOE (n = 316) -0.105 0.074 0.156 -

0.007 

0.005 0.135 -752.085 28 1504.17 1560.171 1683.051 

(c) BDNF + APOE (n = 316) -0.093 0.075 0.213 -

0.003 

0.005 0.549 -753.875 28 1507.75 1563.750 1686.630 

Research question 2b            

APOE (ε4+)            

COMT + BDNF  (n = 149) -0.307 0.123 0.013 -

0.012 

0.006 0.054 -812.822 28 1625.644 1681.643 1804.850 

YO            

COMT + BDNF (n = 

79) 

-0.187 0.120 0.120 -

0.013 

0.009 0.146 -111.958 28 223.916 279.915 381.689 

OO            

COMT + BDNF (n = 

70) 

-0.299 0.235 0.203 -

0.025 

0.023 0.280 -366.376 28 732.752 788.753 894.440 

High activities            

COMT + BDNF (n = 

75) 

-0.322 0.224 0.150 -

0.010 

0.010 0.347 -212.266 28 424.532 480.531 564.453 

Low activities            

COMT + BDNF (n = 

73) 

-0.283 0.214 0.186 -

0.015 

0.009 0.110 -212.266 28 424.532 480.531 564.453 

APOE (ε4-)            

COMT + BDNF (n = 453)  0.056 0.051 0.275 0.003 0.003 0.221 -812.822 28 1625.644 1681.643 1804.850 

YO            
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Note. YO = Young-old; OO = Old-old; Low activities = Low lifestyle activities; High activities = High lifestyle activities; Est. = 

Regression Estimate; SE = Standard Error; H0 = Log Likelihood; -2LL = -2 Log Likelihood; AIC = Akaike Information Criteria; BIC 

= Bayesian Information Criteria. COMT = Catechol-O-methyltransferase; BDNF = Brain-derived neurotrophic factor; APOE = 

Apolipoprotein E.  

  

Models β SE p β SE p H0 

value 

Free 

Parameters 

-2LL AIC BIC 

COMT + BDNF (n = 

201) 

0.046 0.051 0.365 0.006 0.003 0.080 -111.958 28 223.916 279.915 381.689 

OO            

COMT + BDNF (n = 

252) 

0.010 0.066 0.881 0.004 0.006 0.491 -366.376 28 732.752 788.753 894.440 

High activities            

COMT + BDNF (n = 

204) 

0.149 0.083 0.072 0.008 0.004 0.046 -514.224 28 1028.448 1084.448 1199.320 

Low activities            

COMT + BDNF (n = 

243) 

0.007 0.056 0.896 0.000 0.004 0.978 -514.224 28 1028.448 1084.448 1199.320 
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 (a)         (b) 

         
(c) 

   
Figure 6-1. (a) APOE ε4+ carriers performed worse than their non-risk counterparts (ε4-) at age 75 on EF. EF decline (slope) was not 

significantly different between the two groups (ε4+ versus ε4-). Independent effects were not observed with the (b) COMT or (c) 

BDNF allelic risk on EF performance or change. 
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Figure 6-2. In the young-old (YO) group, APOE ε4+ carriers performed worse than their non-risk (ε4-) counterparts at age 63 years 

and had steeper 9-year decline in EF performance than their non-risk counterparts (ε4-). In the old-old (OO) group, APOE ε4+ carriers 

showed steeper 9-year decline on EF than their non-risk counterparts.  
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Figure 6-3. COMT genotype did not significantly influence EF performance or change in the young-old (YO) group or the old-old 

(OO) group. However, adults in the OO group showed EF decline compared to adults in the YO group, showing an overall age effect. 
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Figure 6-4. BDNF genotype did not significantly influence EF performance or change in the young-old (YO) group or the old-old 

(OO) group. However, adults in the OO group showed EF decline compared to adults in the YO group, showing an overall age effect. 
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Figure 6-5. In the APOE ε4+ group, BDNF Met/Met homozygotes had the worst EF performance compared to their non-risk 

counterparts (Val/Val homozygotes) at age 75 years. In contrast, in the APOE ε4- group, BDNF genotype did not show difference in 

EF performance. 
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Figure 6-6. COMT genotype did not significantly influence EF performance or change in the APOE ε4- or ε4+ group. However, adults 

in the APOE ε4+ group showed an overall EF decline compared to adults in the APOE ε4- group regardless of COMT genotype. 
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Figure 6-7. First, a significant BDNF genotype effect was observed in the APOE ε4+ group for young-old (YO) adults. Specifically, 

BDNF no risk (Val/Val) homozygotes had the best EF performance at age 75 and less steep decline compared with their risk 

counterparts (Met + carriers). Second, there was no significant BDNF genotype difference in the old-old (OO) groups or the APOE ε4- 

group for EF performance or change. Third, an overall age effect was observed, where OO adults were declining in EF performance 

compared to the YO adults. 
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Figure 6-8. First, a significant BDNF genotype effect was observed in the APOE ε4+ group for adults in the high lifestyle activities 

group. Specifically, BDNF risk (Met/Met) homozygotes had the worst EF performance at age 75 compared with their non-risk 

counterparts (Val/Val homozygotes). Second, there was no significant BDNF genotype difference in the low lifestyle activities groups 

or the APOE ε4- group. Third, an overall lifestyle effect was observed, where adults in the low lifestyle activities group were declining 

in EF performance compared to the adults in the high lifestyle activities group.   
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Figure 6-9. APOE effect modification was observed for COMT + BDNF additive effect on EF performance. APOE ε4+ carriers had 

poorer EF performance with increasing allelic risk in the COMT + BDNF risk panel at age 75 years and borderline 9-year decline. In 

contrast, APOE ε4- group was protected from the deleterious effect on EF performance and decline with increasing allelic risk in the 

COMT + BDNF risk panel.  
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Figure 6-10. First, in the APOE ε4- group, adults with high lifestyle activities were protected from the decline associated with 

increasing allelic risk in the COMT + BDNF risk panel with age on EF performance. In contrast, those with low lifestyle activities 

showed an overall decline in EF performance. Second, there was no significant difference in EF performance and change with 

increasing allelic risk in the COMT + BDNF risk panel for APOE ε4+ carriers with high or low lifestyle activities.  
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CHAPTER 7: GENERAL DISCUSSION AND CONCLUSION 

 The overall purpose of this dissertation was to examine associations of both non-

modifiable (i.e., genetic) and modifiable (i.e., demographic, health, lifestyle) risk factors on 

concurrent and longitudinal neurocognitive performance (i.e., executive function [EF], episodic 

memory [EM]) and clinical status (Mild Cognitive Impairment [MCI]). Two specific and related 

goals were pursued. First, I intended to develop a sensitive and simple index that used multi-

domain information to calculate risk scores for predicting EM performance and change over a 

40-year band of aging. As a corollary and further test of my approach to risk score calculation, I 

evaluated the extent to which these risk scores distinguished non-demented (normal aging) older 

adults from those with MCI. Second, I sought to test selective gene interactive versus additive 

associations to examine potential underlying mechanisms of genetic influences on EF 

performance and change in non-demented older adults. To address these goals, I divided the 

dissertation work into three related studies. I turn now to a critical review of each of these studies 

in terms of the approach, main results, significance, and pertinence to the goals.  

 The first goal was operationalized with Study 1 (see Chapter 4). Study 1 examined 

genetic, demographic, health, and lifestyle risk factors to build, compare, and validate a multi-

domain risk index for cognitive impairment in aging. Several novel statistical analyses were 

applied in Study 1 including latent growth models (LGM) and formative genetic risk models. 

LGM uses independent and dependent variables concurrently in the same model to determine 

developmental trajectories, and individual differences and change (Duncan & Duncan, 2009). A 

formative model represents indicators as predictors for the latent composite and regression 

coefficients are estimated to explain variances in the composite score (Kline, 2013). Study 1 was 

divided into two parts, Study 1a and Study 1b, to account for differences in statistical analyses 
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and the methods applied to build the multi-domain risk score. The main difference was that 

Study 1a used modifiable risk factor scores in a LGM and Study 1b used both non-modifiable 

and modifiable risk factor scores to predict EM performance and change. In addition, Study 1b 

tested how well the risk score distinguished clinical status (non-demented versus MCI). I now 

describe both parts of Study 1 and their significance.  

Study 1a examined modifiable risk factors to predict EM performance and 9-year change. 

Demographic (i.e., age, gender, education, marital status) and health (i.e., diabetes, depression, 

heart disease, stroke, hypertension, hardening of arteries, alcohol dependence, tobacco 

dependence, traumatic brain injury) composites, and latent lifestyle factor (i.e., physical and 

social activities, novel and integrative information processing) were included in a parallel 

process LGM. As expected, higher risk scores on all three independent risk factors predicted 

worse EM performance at age 75 years and steeper 9-year decline. A combined high risk score 

on all three risk factors showed the greatest fanning effect between low, intermediate, and high 

risk scores at age 75 years and across the 40-year age band. The fanning effect (see Figure 4-6) 

showed that a combined risk score from all three risk factors resulted in a larger effect on EM 

performance and change because the distribution between combined low, intermediate, and high 

risk scores were much greater (i.e., greatest fanning effect) than any independent (i.e., 

demographic, health, lifestyle) low, intermediate, and high risk score. This means that all three 

risk factor scores in synergy had the largest impact on EM performance and change. As 

expected, the difference between low, intermediate, and high risk score is greater for a combined 

risk score than an independent risk score. For example, an adult with a combined low risk score 

would have a higher EM performance at age 75 years and less 9-year decline compared to an 

adult who has a low risk score on only two out of the three risk factors (see Figure 4-5). If only 
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one modifiable risk factor is managed at a low risk score, then the deleterious association with 

EM performance would be significantly reduced compared to a combined high risk score on all 

three risk domains.  

I now move to the second part of this study, Study 1b, which takes into account non-

modifiable risk factors. Study 1b used categorical groupings to develop an overall risk score that 

examined two cognitive aging (i.e., COMT, BDNF) and four AD-related (i.e., APOE, CLU, CR1, 

PICALM) genes as well as demographic, health, and lifestyle factors. First, independent and 

different combination of risk scores were examined to predict EM performance and 9-year 

change. Higher risk scores on independent and cumulative (additive) risk for demographic, 

health, lifestyle, and genetic factors predicted worse EM performance at baseline and time point 

3. I did not observe a more deleterious effect on EM performance and decline with additive risk 

scores (as expected) compared to independent risk scores. Although categorical groupings and 

additive approach may be a simple and easy to apply in large datasets, the synergistic effect of 

multiple risk domains (i.e., genetic and modifiable risk factors) may not be through simple 

cumulative mechanisms. None of the five variations of genetic risk scores examined (6 gene 

standard, 4 AD gene standard, APOE, 6 gene formative, 4 AD gene formative) were associated 

with EM performance or decline. This means that the 6 gene and 4 AD gene risk scores do not 

function via additive mechanisms, but may work through other pathways. My findings imply that 

the underpinnings of both genetic and modifiable risk factors on EM performance and change 

may not be simple additive effects in typically normal aging older adults. Past studies have 

reported acceptable c-statistics for dementia prediction in clinical settings (Kivipelto et al., 2006) 

with additive scores. This is the first study to show that complex neurobiological mechanisms 

associated with cognitive impairment may be more multiplex in the pre-clinical stages and not as 



220 

 

straight forward as in the later dementia stages (Anstey et al., 2014). In addition, I observed that 

risk factor trajectories over the 9-year period did not predict EM change. This finding implies 

that the length of exposure to risk factors may not be as important for older adult groups as 

exposure to independent risk factors alone. This means that risk reduction overall may be an 

appropriate and suitable method for older adults with no signs of cognitive impairment than 

focusing on the length of exposure.  

Second, both independent and additive risk scores were used to distinguish non-demented 

older adults from those classified as MCI. Despite my expectations, c-statistics for additive risk 

scores were in the unacceptable range (close to 0.50), but independent risk score for 

demographic (c = 0.62) and health (c = 0.37) risk domains significantly distinguished non-

demented older adults from MCI adults. Specifically, higher demographic and lower health risk 

scores were present in the MCI group. Although I expected to observe higher health risk scores 

in the MCI group, my findings show that health factors in old age may work through other 

pathways that were not addressed in this study. For example, MCI older adults may have lower 

blood pressure levels (health predictor) which may act via decreased cerebral blood flow with 

increasing age.  

I addressed one important aspect of synergistic risk scores (i.e., additive associations). 

Although past studies have used additive risk scores to predict dementia status (i.e., AD) (Anstey 

et al., 2014; Kivipelto et al., 2006), my results suggest that predicting EM decline in normal 

aging may not be through the same underlying mechanisms of influence. Past studies may also 

have been vulnerable to elevated effect of risk scores because the population was derived from 

clinical settings with higher dementia prevalence (Kivipelto et al., 2006). Overall, it is imperative 

to reduce (a) disease burden (i.e., health risk), (b) lifestyle risk, and (c) modifiable demographic 
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risk predictors, as early as possible (in the pre-clinical phase) to decrease EM decline and 

ultimately delay or prevent dementia onset. Until risk factors are validated in this field through 

randomized control trials and animal models to build risk assessment tools that target synergistic 

mechanisms of risk factors, increasing protective factors and reducing risk factors across 

multiple domains in typically normal aging adults may be the most sensible and effective method 

to the address the global dementia epidemic. 

 The second goal was operationalized with Study 2 (see Chapter 5) and Study 3 (see 

Chapter 6). Study 2 examined independent, interactive, and additive associations of COMT and 

BDNF, and as stratified by APOE risk (ε4+) on EF performance in normal aging. Selective 

additive effects of COMT, BDNF, and age produced significant results. As expected, older adults 

with a high-risk allelic (COMT [Val/Val] + BDNF [Met/Met]) combination performed 

differentially worse on EF compared to their non-risk counterparts (COMT [Met/Met] + BDNF 

[Val/Val]). My findings support magnification of genetic (i.e., COMT + BDNF) effects on EF 

performance in old age. Previous studies have shown varying and inconsistent results with 

genetic magnification hypothesis for interactive effects. For example, a recent study showed that 

dopamine levels modulate NMDA receptor activity to influence EM in old age (Papenburg et al., 

2014). My findings expand upon previous studies (Nagel et al., 2008; Wishart et al., 2010) and 

show that the underlying mechanism for COMT and BDNF synergistic associations on EF may 

not be through interactive effects. Specifically, there may be two separate COMT and BDNF 

pathways that influences EF performance. Increased allelic risk may only add towards the overall 

risk but the two pathways do not moderate or interact with dopamine or neurotrophic levels. 

Furthermore, only the COMT and BDNF additive effect was modified by APOE ε4. Specifically, 

adults with ε4 allele were at an increased EF performance vulnerability. This finding implies that 
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COMT + BDNF panel effect on EF may further be as a result of APOE ε4 effect modification. 

This leads to Study 3, which focused on independent and additive associations of COMT, BDNF, 

and APOE as moderated by age (young-old [YO] versus old-old [OO]) and lifestyle activities 

(high versus low) groups on EF performance and 9-year change. Findings in Study 3 provided 

additional support for COMT + BDNF additive associations and APOE ε4 effect modification. I 

observed that APOE ε4+ carriers magnified COMT + BDNF panel effect on EF performance at 

age 75 years but this effect was not present in the high lifestyle activities group. This suggests 

that APOE ε4 carriers with increasing COMT + BDNF allelic risk panel effect on EF 

performance may be intensified through lower lifestyle activities. Non-demented older adults 

with high genetic risk may benefit the most from risk moderating activities such as a high level 

of lifestyle activities. Taken together (COMT and BDNF) in Study 3, I replicated that reducing 

risk for one does not change or influence the risk associated with the other COMT or BDNF 

genetic allelic risk for APOE ε4+ carriers. Although only borderline significant, I also observed 

that this risk panel effect influences EF decline over 9 years.  

 In sum, there were four key findings in this dissertation. First, targeting adults in the 

combined high risk score group (from Study 1a) may be a useful strategy to use in randomized 

control trials aimed at modifiable risk factors for cognitive decline. Study 1a applied a LGM 

approach, which takes large numbers of risk predictors and a complex dataset to represent a 

simplified latent factor. This analysis accounts for growth and change in both predictors (i.e., 

lifestyle latent factor) and EM performance. This approach can identify adults at low, 

intermediate, and high risk for EM decline with increasing age as determined by independent or 

multiple risk domains. As EM impairment may be a cardinal pre-clinical marker for dementia 

(i.e., Alzheimer’s disease [AD]) (Bäckman, Jones, Berger, Laukka, & Small, 2004), a low risk 
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score on all three modifiable risk factors should be a paramount objective for older adults with 

poor EM performance and decline.  

 Second, the multi-domain risk score in Study 1b expands the growing literature on 

dementia risk indices to include genetic risk factors and pre-clinical cognitive markers (i.e., EM 

decline). I examined multiple domains simultaneously to test synergistic (i.e., additive) 

associations on EM performance and decline. By adopting this method, researchers and 

clinicians can conduct an overall risk profile assessment at the pre-clinical stage. Such an 

assessment may be an essential and empirical approach to delaying cognitive impairment (or 

dementia onset) in typical aging older adults and developing efficacious clinical guidelines for 

risk reduction and dementia prevention in the future. The more cognizant older adults are about 

their health and lifestyle activities, the more likely they will adopt changes to reduce risk factors. 

Although multiple domains were included in the overall risk score, to expand this to clinical 

practice, future research needs to focus on quantity or amount required to reduce risk factors or 

increase protective factors in intervention studies.  

 Third, in Study 2 and Study 3, I systematically separated the synergistic associations of 

COMT, BDNF, and APOE (second goal) on a polygenic cognitive phenotype. Specifically, that 

(a) COMT and BDNF may influence EF performance via additive but not interactive effects and 

(b) APOE ε4 effect modification may only be present in COMT + BDNF additive associations. 

Regarding the possible mechanisms with independent, interactive, and additive associations for 

COMT and BDNF allelic risk influence on neurocognitive performance in normal aging (Nagel 

et al., 2008; Wishart et al., 2011), only high allelic risk for COMT + BDNF was associated with 

poorer EF performance at baseline. Study 2 is the first study to investigate interactive versus 

additive associations of COMT and BDNF, and APOE effect modification. My findings provide 
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a novel approach to examine synergistic associations of COMT and BDNF in relation to APOE. 

Overall, this research expanded the field of single candidate gene studies by examining the 

synergistic associations of genes, which may increase prediction accuracy of older adults at a 

high risk for EF impairment.  

 Fourth, in Study 3, I observed that older APOE ε4+ carriers who maintain a high level of 

everyday lifestyle activities may be protected from the deleterious effects of COMT + BDNF on 

EF performance. Regarding possible neurobiological underpinnings (second goal) for COMT, 

BDNF, and APOE in non-demented older adults, APOE ε4+ carriers with one protective allele 

for COMT or BDNF may only reduce the risk associated with that gene but may not change the 

allelic risk associated with the other COMT or BDNF gene. This research supports both a brain 

resource modulation (Lindenberger et al., 2008) and genetic aging magnification (Nagel et al., 

2008) hypothesis and highlights a potential mechanism through which dopamine (COMT) and 

neurotrophic (BDNF) levels may be modified in APOE ε4+ carriers to simultaneously influence 

EF performance in old age. More importantly, my research shows that this cumulative and effect 

modification pathway can be moderated through lifestyle activities. Healthy lifestyle that 

includes high levels of social and physical activities, and novel and integrative information 

processing tasks may ameliorate and produce more favorable cognitive phenotypes for those 

with a high genetic allelic risk combination.  

 I now turn to future directions for the research and findings in this dissertation. First, 

applying a multi-domain approach to build and validate risk assessment tools for healthy aging 

older adults may help identify adults at a high cognitive impairment risk in the pre-clinical phase. 

Earlier identification and intervention programs will provide older adults the opportunity to make 

significant life changes towards a healthier lifestyle. The current risk score predicted a cardinal 
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marker of dementia, EM performance. Other neurocognitive domains may be associated with 

both genetic and non-modifiable risk factors. These include neurocognitive speed, which has 

been previously associated with genetic (McFall et al., 2015) and health (i.e., Type 2 diabetes; 

see Yeung, Fisher, & Dixon, 2009) risk factors in non-demented adults. Future dementia risk 

prevention trials may benefit from examining a multi-domain and individually tailored risk score 

approach (Olanrewaju, Clare, Barnes, & Brayne, 2015) to identify older adults at a high risk for 

cognitive impairment and delay dementia onset. An important question regarding the possible 

mechanisms for how all risk domains concurrently impact each adult differentially still remains 

to be investigated and answered.  

Second, to be most useful in delaying dementia onset, future studies need to assemble 

risk assessment tools that target synergistic or cascading effect of risk factors to identify older 

adults with small and subtle signs of cognitive decline. This includes applying different statistical 

methods to maximize identification and prediction for those at a high risk is important. The 

formative genetic risk model introduced in this dissertation should be applied in future studies 

with other genotypes to examine formative versus standard genetic risk scores in cognitive aging. 

Although, I only tested the formative model with EM performance, future studies may find more 

favorable and expected results with other neurocognitive domains or risk factors.  

Third, future studies should examine COMT + BDNF additive risk associations in non-

demented older adults in the presence of (a) other cognitive aging genes, (b) modifiable risk 

factors, and (c) synergistic associations of dementia-related genes. My COMT + BDNF finding 

as modified by APOE genotype, allows researchers to build upon and examine the influence of 

other dementia-related genes to further develop the potential mechanisms of normal cognitive 

aging trajectories. This will give researchers the opportunity to identify adults at a high risk for 
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MCI or dementia much earlier. This will also provide risk assessment tools to examine specific 

risk factors and their synergistic associations to differentiate the underlying mechanisms that 

predicts normal decline versus impairment or dementia in the future. For example, AD genetic 

polymorphisms identified in genome wide association studies (i.e., Clusterin, Complement 

receptor 1, Phosphatidylinositol binding clathrin assembly protein; see Harold et al., 2009) may 

influence each other through select combination of synergistic associations (additive, interactive, 

and modification effects). AD-related genes may also influence dopaminergic and neurotrophic 

related genes to alter cognitive aging trajectories in non-demented older adults.  

Fourth, replicating the findings in this research with diverse populations including (a) 

younger (20-40 years old) or middle aged (41-50 years old) adults and (b) those at high risk for 

dementia, is an important next step. Although I included a 40-year band of aging, validating the 

findings in younger populations may allow researchers to predict cognitive decline 20-30 years 

earlier. In addition, by identifying common risk factors between those at a high risk for dementia 

and younger non-demented older adults may depict the underlying changes that occur with 

aging. Furthermore, informing young and middle aged adults of the most common and highly 

influential risk factors will give them the opportunity to reduce these risk factors and delay 

possible dementia onset.  

 In conclusion, non-demented older adults in this sample showed that (a) a combined risk 

score for genetic, demographic, health, and lifestyle factors was associated with EM performance 

and change, (b) select normal aging genetic polymorphisms (COMT and BDNF) show additive 

but not interactive synergistic influence on EF performance, and (c) COMT + BDNF additive 

synergistic effect is modified by APOE ε4+ allelic risk and further moderated by everyday 

lifestyle activities. This research establishes the need to examine specific synergistic associations 
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and combinations of select risk factors to understand the neurobiological mechanisms for 

neurocognitive performance in non-demented older adults.  
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