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ABSTRACT

Pituitary growth hormone (GH) is an endocrine regulator of growth and 

development. However, due to the late ontogenetic appearance of the pituitary gland, 

and the late detection o f GH in fetal circulation, pituitary GH cannot be involved in 

fetal or embryonic growth. This paradox may reflect the recent discovery that the 

GH gene is widely expressed in many extrapituitary tissues during organogenesis, in 

which it is thought to have local autocrine or paracrine actions that stimulate tissue 

proliferation and differentiation. Since the lung has been shown to express GH 

receptors (GHRs) prior to the ontogeny of pituitary somatotrophs, the possibility that 

the lung may be a site o f GH production and action during early lung development 

has been examined.

Expression of GH mRNA was first evaluated in the developing chick lung. 

GH mRNA and protein were found to be expressed in mesenchymal and epithelial 

cells throughout embryonic development, declining near hatch, with the onset of 

pituitary GH secretion. GHR mRNA and protein were also found in the chick lung 

during the same period and in the same tissues, suggesting autocrine/paracrine roles 

o f GH during lung development. The rat lung was also found to similarly express 

GH during the saccular and alveolar stages of development, when GHRs are also 

expressed. The possibility that lung GH may have autocrine/paracrine actions in the 

lung during during perinatal development was therefore examined, using protein 

expression and a proteomics approach as a marker o f GH action.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Altered GH signaling in the lung during the alveolarization period was 

achieved using intratracheal antisense oligodeoxynucleotides, to specifically 

downregulate lung GH expression, and by aerosolized GH transfected adenoviruses, 

to specifically overexpress the GH gene. Neonatal GHR knockout mice were also 

used as a model o f GH deficiency. Changes in lung proteins, determined by 2D gel 

electophoresis and mass spectrometry, revealed roles o f GH in the regulation of 

proliferative, metabolic, oxidative stress, and surfactant-related proteins in the lung 

during alveolarization.

These studies demonstrate the novel expression and action o f GH in the 

developing lung and support the possibility that GH has important autocrine or 

endocrine roles in lung development.
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CHAPTER 1 

LITERATURE REVIEW
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1.1 Review of Selected Literature

1.1.1 Pituitary growth hormone (GH), insulin-like growth factor (IG F)-l, IGF-2 

and growth

1.1.1.1 Pituitary GH and growth

Endocrine GH is produced and secreted into circulation by somatotroph cells in the 

anterior pituitary gland, and stimulates the growth and differentiation o f distant target 

cells, tissues, and organs. GH has general roles in metabolism that promote growth of 

the individual. In particular, these include metabolism of protein (Moller and 

Norrelund, 2003; Hammarqvist et al., 2001; O’Leary et al., 2002; Bush et a l, 2003), 

fat (Louveau and Gondret, 2004; Takahashi and Satozawa, 2002), glucose (Van der 

Lely, 2004), and bone (Ueland 2004; Guler et al.,1988). Given these general 

metabolic roles of GH, it follows that GH is critical for normal growth. For example, 

growth is impaired in hypopituitarism and hyposomatotropism (Gluckman et al.,

1981; Cheng et al., 1983). These roles o f GH in metabolism were once thought to be 

mediated by insulin-like growth factors (IGFs), which were originally named 

somatomedins.

The original version o f the somatomedin hypothesis was that GH was an 

endocrine that stimulated the liver to produce IGF-1 and release it into the circulation, 

whereby IGF-1 in turn acted as an endocrine to promote somatic growth throughout 

the body (Le Roith et al., 2001b). In the current version of the somatomedin 

hypothesis (reviewed by Le Roith et al., 2001a), GH acts on tissues to stimulate local 

production of IGF-1, which leads to tissue growth. When GH is given to 

hypophysectomized animals, IGF-1 expression is detected in liver, pancreas, muscle,

2
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intestine, kidney, brain, and adipose tissue (Roberts et al., 1987). This has led 

researchers to conclude that local tissue production and function o f IGF-1 is strictly 

dependent on GH. However, recent evidence has shown that IGF-1 can also have 

functions on growth that are independent o f GH.

1.1.1.2 GH-independent effects of IGF-1 on Growth

Genetic evidence has suggested that GH may not affect prenatal development, 

whereas IGF-1 plays a major role (Le Roith et al., 2001a). IGF-1 knockout (KO) 

mice are bom small in size, few survive, and those that do survive grow poorly during 

postnatal development (Liu et al., 1998, Powell-Braxton et al., 1993, Liu et al., 1993). 

This implies that there may be other molecules controlling IGF-1 action other than 

GH.

IGF-1 expression is also regulated by other factors. These factors include: 

estrogen in the uterus, follicle-stimulating hormone in the ovary, parathyroid hormone 

and estrogen in bone, and thyroid hormone in the heart (Murphy et al., 1987, Hatey et 

al., 1992, Kupfer and Rubin, 1992). The plurality o f IGF-1 (and the structurally 

similar IGF-2) regulators may be important in specific growth phases, particularly in 

the prenatal period, during which pituitary GH secretion is lacking until late in 

development.

1.1.1.3 IGF-1 and IGF-2 in Embryonic/Fetal Growth

To date, there is a considerable consensus that IGF-2 is an important 

systemic/paracrine factor in embryonic growth (Le Roith et al., 2001a, Haig and

3
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Graham, 1991). IGF-2 exerts its actions through binding to the IGF-1 receptor (R), 

whereas the IGF-2R functions as a clearance receptor (Gluckman and Pinal, 2003). 

IGF-2 overexpression or IGF-2R KO leads to embryonic overgrowth, whereas IGF-2 

KO leads to poor embryonic growth (Gluckman and Pinal, 2003).

The primary IGF in embryonic growth is thought to be IGF-2, and the primary 

IGF in fetal growth is IGF-1 (D’Ercole et al., 1980). Some researchers consider IGF- 

1 production in the fetus is not regulated by GH, since GHRs are only expressed at 

low levels in fetal tissues (Gluckman 1986, Gluckman et al., 1992, Klempt et al., 

1993). In fact, fetal insulin has been proposed as the regulator o f circulating fetal 

IGF-1 (Oliver et al., 1996). The importance placed on IGF-1 and 2 in development 

has led many to conclude the absence o f a role for GH in prenatal growth. Although 

the potential prenatal roles o f GH in growth are controversial (and will be discussed 

later), the role o f GH in postnatal growth has been well documented.

1.I.1.4 Pituitary GH deficiency and growth

Postnatally, the major role o f GH is to promote longitudinal bone growth (Boot 2003). 

GH deficiency results in a decreased height (Di Cesare et al., 2005), as defined by 

greater than 2 standard deviation (SD) units below the population mean. Upon 

administration o f recombinant GH, children experience substantial catch-up growth 

(Carel et al., 2003). As discussed previously, GH has metabolic roles. GH deficiency 

is associated with increased fat mass and decreased lean body mass (Boot et al., 1997; 

Degerblad et al., 1992). Furthermore, lumbar spine bone mineral density is decreased 

in GH deficient children (Boot 2003). As studies have shown that pituitary GH

4
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deficiency produces delayed normal growth, pituitary GH excess manifests instead as 

expedited growth.

1.1.1.5 Pituitary GH excess and growth

GH excess causes gigantism in juveniles and acromegaly in adults, which are 

disorders characterized by overgrowth of some tissues and abnormalities in 

metabolism (Battezzati and Bertoli, 2005, Drimmie et al., 2000) usually caused by a 

benign GH-producing tumour o f the pituitary (Ferone et al., 2004). Acromegaly 

induces a decrease in body fat, and an increase in both bone density and water 

retention (Battezzati and Bertoli, 2005). When considered in light of the studies on 

GH deficiency, GH serum levels are directly related to bone mineral density and lean 

body mass, and inversely related to fat mass. These pathological conditions o f GH 

deficiency and excess have been modeled in transgenic mice, with comparable results.

1.1.1.6 Ablated GH action in GHR knockout transgenic mice

Compared to controls, GHR knockout mice have decreased body weight, fasting 

serum glucose and insulin levels, and IGF-1 levels, and have an extended life span 

(Coschigano et al., 2003). In fact, GHR KO mice only reach a maximum body 

weight o f approximately 40% o f that o f control mice (List et al., 2001). These mice 

have decreased bone growth, as demonstrated by shorter total body length and shorter 

femur length (Sjogren et al., 2000). Furthermore, the weights o f several organs were 

decreased, including the lungs, liver, thymus, kidney, heart, and spleen (Zhou et al.,
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1997). Many o f the deficiencies found in the GHR KO mice are similar in GH 

antagonist mice, and manifest as excesses in the transgenic mice that overexpress GH.

1.1.1.7 GH antagonist transgenic mice

GH antagonist (GHA) mice are those that lack GH bioactivity, since they overexpress 

a GH antagonist which competes with GH for binding to GHR (Li et al., 2003). GHA 

mice are bom with a smaller body weight and a decreased body length (Li et al.,

2003), comparable to GHR KO mice. However, unlike GHR KO mice, GHA mice 

catch-up to their normal littermates in body weight (Li et al., 2003). The body 

lengths do not catch up, so adult GHA mice are not as long as their normal littermates. 

The differences between the GHA and the GHR KO mice are not completely 

understood, and require further clarification. GH deficient mice provide further 

support for roles o f GH in growth.

1.1.1.8 GH deficient mice

GH “knockout” mice have been generated through expression o f diphtheria toxin 

specifically in somatotrophs (Behringer et al., 1988). These mice have nearly 

complete ablation of somatotrophs in the pituitary, and thus do not have detectable 

circulating levels o f GH. These transgenic mice are much smaller than their normal 

littermates, and cease growth at 10-15g body weight at 6 weeks o f age (Behringer et 

al., 1988). This effect on body growth is thought to be caused by pituitary GH, since 

it is endocrine GH that is “knocked out” in this model. Lungs weights are also

6
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decreased in these transgenic mice, proportionally to overall body weight (Behringer 

et al., 1990).

Ames mice are another model of GH-deficiency. These mice have a recessive 

loss o f function mutation in Prop-1, a molecule essential for the pituitary-specific 

transcription factor that leads to GH expression, Pit-1 (Dutour 1997). Since Pit-1 is 

absent, GH is not expressed in the pituitary gland. These mice have reduced levels of 

IGF-1, thyroid hormones, insulin, and glucose, and have reduced body weight 

(Somson et al., 1996; Bartke 2000). This supports the role of pituitary GH in growth 

and metabolism.

Snell dwarf mice are also GH-deficient. Whereas Ames mice have a mutation in 

Prop-1, Snell dwarf mice have a mutation in Pit-1 (Dutour 1997). Snell dwarfs also 

have decreased body weight (Flurkey et al., 2001), and decreased IGF-1 and insulin 

levels (Hsieh et al., 2002; Bartke et al., 2003). All o f these models of GH-deficiency 

highlight the role o f GH in body growth and metabolism. GH excess transgenic mice 

reveal opposite results to those obtained in the GHR KO mice and GH deficient mice.

1.1.1.9 GH excess in transgenic mice

In comparison to control mice, GH excess transgenic mice had increased total body 

weight, nose-rump length, and bone mineral content (in whole carcass, femur, tibia, 

humerus, and spine) (Eckstein et al., 2002). Prolonged exposure to GH excess causes 

overgrowth o f many tissues. For example, chronic GH excess in transgenic mice 

causes adrenal cortical enlargement, through both hypertrophy and hyperplasia of 

zona fasciculata cells (Hoeflich et al., 2002). Furthermore, chronic GH elevation
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causes increased serum cholesterol, IGF-1, and insulin, whereas it causes decreased 

serum glucose, free fatty acids, and triglycerides (Frick et al., 2001).

In summary, these studies reveal that GH is a potent regulator o f postnatal growth. 

Currently, dogma in the literature states that IGF-1/-2 are much more important than 

GH in prenatal growth and development, and that they may not be regulated by GH. 

These theories have been prevalent in the literature for a long time, and have only 

been challenged recently with newer studies on prenatal roles o f GH.

1.1.2 GH in development

1.1.2.1 Historical Perspective

The development literature has widely concluded that growth hormone (GH) has no 

role in development, since much of development occurs prior to the appearance of 

pituitary somatotrophs. Somatotrophs appear at embryonic day (ED) 19 of the 21 day 

gestation period in rats (Frawley et al., 1985; Hemming et al., 1986) and at ED 16 of 

21 day incubation period in chicks (Harvey et al., 1998). For this reason, fetal 

development has been referred to as a “growth without growth hormone 

syndrome”(Geffner 1996). This theory is supported by the normal development of 

decapitated chick embryos (decapitated at ED 1.5) until ED 14.5, at which time the 

embryos were found to grow more slowly, an effect reversed through pituitary GH 

replacement (Thommes et al., 1992). Similarly, anencephalic human fetuses (Chard

1989) and hypophysectomised fetuses (Gluckman et al., 1981) grow at approximately 

normal rates without detectable circulating pituitary GH. Pituitary GH cannot 

therefore, participate in early embryonic or fetal growth. The pituitary is, however,

8
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not the only tissue that expresses the GH gene (Table 1.1). Extrapituitary GH, 

therefore, may be acting as a local paracrine/autocrine growth and differentiation 

factor in early development, considering its cytokine-like functions (Harvey et al., 

1998, Waters et al., 1999). Since GH is expressed locally in these tissues, it may be 

equally or even more important than pituitary GH in signaling through the GH 

receptors (GHR) that are found in these tissues.

GHR mRNA and protein are expressed in preimplantation mouse embryos and 

embryonic stem cells (Ohlsson et al., 1993, Pantaleon et al., 1997), with protein 

detected from the two cell stage by immunohistochemistry. The role o f these GHR is 

proposed to be in glucose transport and protein synthesis (Pantaleon et al., 1997), as 

well as in decreased apoptosis (Kolle et al., 2003).

GHR has widespread distribution in the mid to late gestation fetal rat (Garcia- 

Aragon et al., 1992). Walker et al. (1992) have found that GHR transcripts declined 

from ED 19 to postnatal day (PD) 7 in kidney, lung, and ileum, whereas GHR 

expression in the liver increased during this same period. A similar decline has also 

been reported in the rat brain (Lobie et al., 1993). These studies demonstrate that 

GHR has tissue-specific regulation. Unexpectedly, GHR and IGF-1 mRNA 

expression mostly do not overlap histologically, with GHR expression primarily 

expressed in epithelial layers and IGF-1 expressed in connective tissue (Edmonstone 

et al., 1995). Only in some connective tissues o f the dermis, lung, and gut were GHR 

and IGF-1 coexpressed (Edmonstone et al., 1995). This reflects, once again, the 

theory that GH and IGF-1 can function independently in the fetus. Although local
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GH made in the embryo/fetus may have roles in prenatal growth through GHR, 

maternal GH may also be important.

1.1.2.2 Maternal GH and growth

GH is an important determinant o f litter size and birth length (Waters and Kaye,

2002) that acts during all stages o f development to promote successful fetal 

development. In fact, maternal administration o f GH in pigs and cattle increases 

embryo survival and growth (Gluckman and Pinal, 2002), and implies that one of the 

roles o f GH in early embryogenesis may be to improve placental efficiency (Hill 

1992, Rehfeldt et al., 2004). GH has also been shown to act directly on the early 

embryo (Waters and Kaye, 2002) through improvement o f the reliability of cleavage 

and blastocyst formation in cattle (Izadyar et al., 1998) and mice (Fukaya et al., 1998). 

GH is known to have a stimulatory effect on oocyte maturation in vitro in cows 

(Izadyar et al., 1996), rats (Apa et al., 1994), pigs (Hagen and Graboski, 1990), 

rabbits (Yoshimura et al., 1993), and humans (Hassan et al., 2001). This could be a 

GH action mediated by local IGF-1, since GHR is expressed in germinal vesicle and 

metaphase II oocytes (Izadyar et al., 2000), and IGF-1 antisera blocks this effect (Apa 

et al., 1994). GH has practical roles in in vitro fertilization (IVF), as IVF rates in 

humans are more than doubled with prior GH administration to the mother (Hassan et 

al., 2001). These studies demonstrate that circulating GH from the mother is involved 

in embryonic/fetal growth. However, the placenta and the fetal pituitary may also be 

important sources o f endocrine GH.

10
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1.1.23 Placental GH roles in growth

In humans, placental GH (GH-V) is secreted from placental syncytiotrophoblasts in 

large quantities into maternal circulation, which regulates maternal metabolism 

(Waters and Kaye, 2002). Unlike in the human, the ovine placental GH enters fetal 

circulation, and may have roles in placental growth (Lacroix et al., 1999). Although 

placental GH appears to be important in fetal growth, many GH disorders result from 

disruptions in signaling o f pituitary GH.

1.1.2.4 Fetal pituitary GH roles in growth

In several species (human, cow, sheep, pig), the pituitary begins to produce GH from 

the end of the first trimester, whereas in rodents pituitary GH does not appear until 

the final quarter o f gestation (Waters and Kaye, 2002). For those species that 

demonstrate early pituitary GH, endocrine GH potentially has a role in fetal 

physiology.

Endocrine GH has several direct actions on fetal development. Laron dwarfs 

(which have inactivating GHR mutations) are bom 2 standard deviation units (SD) 

shorter than normal (Laron et al., 1993), GH deficient babies are shorter but with 

normal birthweights (Gluckman et al., 1992), and GH deficient dwarf rats are 

proportionately reduced in size (Kim et al., 1993). The role o f GH in these disease 

states is supported by in vitro and in vivo studies of the effects o f GH on the fetus.

In vitro, GH has been shown to have actions on fetal tissues. These include: 

increased release o f insulin from human and rat pancreatic islets (Formby 1985), 

increased alkaline phosphatase and IGF-1 release from rat fetal tibia (Stracke et al.,

1 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1984), increased proliferation o f human hepatocytes (Strain et a l ,  1987), and 

increased myelin basic protein synthesis in fetal rat brain (Almazan et al., 1985). As 

well, several in vivo responses to GH have been established in the fetus. Some 

examples are inhibition o f lipogenesis in the subcutaneous adipose deposits of 

hypophysectomized fetal sheep (Stevens and Alexander, 1986) and fetal pigs 

(Hausman et al., 1999), and stimulation o f angiogenesis in the chick chorioallantoic 

membrane (Struman et al., 1999).

This summary has focused on general roles of GH in prenatal growth. However, 

a more detailed discussion of how GH acts at the subcellular (in the control o f DNA 

synthesis) and the cellular levels is needed to understand how GH promotes prenatal 

growth and development.

1.1.2.5 GH and DNA synthesis

GH has general roles in regulating growth through stimulation o f DNA synthesis. 

Hypophysectomised rats demonstrated decreased DNA synthesis in all tissues 

examined, and DNA synthesis was restored upon administration o f exogenous GH 

(Goldspink and Goldberg, 1975). This is a function o f endocrine pituitary GH, but 

GH also stimulates DNA synthesis in cell culture. This implies that GH may also act 

as an autocrine and/or paracrine in stimulating DNA synthesis. Supporting this, GH 

has been found to promote DNA synthesis in a wide range o f cultured cell types, 

including hepatocytes (Strain et al., 1987), osteoblasts (Slootweg et al., 1988), 

pancreatic islet of Langerhans cells (Swenne and Hill, 1989), and chondrocytes 

(Ohlsson et al., 1992). As DNA synthesis is crucial to normal passage through the
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cell cycle and replication of the genome, stimulation o f DNA synthesis is a key role 

for GH in cell proliferation.

1.1.2.6 GH and cell proliferation/differentiation

GH is a stimulant o f cell proliferation during development, acting as early as the 

oocyte (Kolle et al., 2003) and the blastocyst (Markham and Kaye, 2003) stages. In 

the blastocyst, GH regulates the number o f cells in the trophectoderm independent of 

IGF-1. However, IGF-1 regulates the proliferation o f the inner cell mass, possibly in 

concert with GH (Markham and Kaye, 2003). GH may also stimulate muscle cell 

proliferation in the chick later in development (Goddard et al., 1996, Halevy et al.,

1996).

These effects o f GH on proliferation may be through phosphatidylinositol 3- 

kinase intracellular signaling pathways (Jeay et al., 2001) and through p38 MAP 

kinase (Zhu and Lobie, 2000). The proliferative effects o f GH and IGF-1 are 

mediated through distinct intracellular signaling pathways, at least in the Ba/F3 cell 

line (Baixeras et al., 2001). Intracellular signaling o f GH will be discussed in more 

detail later in this chapter. The important point here is that these GH roles constitute 

the basis of GH control of proliferation and differentiation o f tissues at the cellular 

level.

1.1.2.7 GH and tissue proliferation/differentiation

Given the ability o f GH to stimulate such basic processes as DNA synthesis and 

cellular proliferation, it follows that GH would have key roles in regulating tissue
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growth. The following are selected tissues chosen as examples to elucidate this 

assertion.

1.1.2.7.1 Neurogenesis and gliogenesis

GH is a promoter o f neurogenesis and gliogenesis in developing rat cerebral cortical 

cells (Ajo et al., 2003). GH may also negatively regulate neuronal differentiation in 

some neuronal populations, through its regulation by suppressor o f cytokine signaling 

2 (SOCS2), suppresses intracellular cytokine signaling (Tumley et al., 2002). These 

seemingly conflicting findings await reconciliation, and may reflect different actions 

o f GH in different cell populations.

1.1.2.7.2 Adipogenesis

GH levels may also affect adipogenesis (Gevers et al., 2002). GH directly 

upregulates the expression of several development regulatory molecules in 

preadipocytes and adipocytes, such as c-fos and c-jun (Sumantran et al., 1992), and 

members of the STAT family (Shang et al., 2002). GH is a stimulator o f 

adipogenesis in 3T3-F442A fibroblasts (Guller et al., 1988), whereas GH appears to 

inhibit differentiation of bone stromal cells into adipocytes (Appiagyei-Dankah et al., 

2003). Therefore, the role of GH in adipogenesis appears to be tissue specific and 

awaits further clarification.
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1.1.2.73 Chondrogenesis

In cultured chick embryonic chondrocytes, GH stimulates chondrogenesis through 

increases in sulfation o f chondroitin sulfate (Meier and Solursh, 1972). The role of 

GH is in promotion o f cartilage differentiation and extracellular mineralization (Maor 

et al., 1989). In addition, epiphyseal plate chondrocytes express GHR that is capable 

o f GH-binding (Monsonego et al., 1993), supporting a GH-GHR loop in embryonic 

chondrocytes. GH is therefore an important molecule in chondrogenesis.

In addition to direct tissue-specific roles of GH in proliferation, GH also supports 

tissue growth indirectly through establishment of tissue vasculature.

1.1.2.8 GH and Angiogenesis

Growth o f tissues requires a supply o f nutrients from the bloodstream. GH is 

important in the establishment of blood vessels within tissues.

GH is angiogenetic in the chorioalantoic membrane of the chick embryo (Gould et 

al., 1995), even though the GH molecule is composed of both angiogenic and 

antiangiogenic portions (Struman et al., 1999). As well, in transgenic mice 

overexpressing GH, angiogenesis is increased in wounds during wound healing 

(Thorey et al., 2004). Although the precise mechanism o f GH-induced angiogenesis 

is not understood, this action of GH may be through an influence on endothelin- 

induced migration of endothelial cells (Ikeo et al., 2001). The function o f GH in the 

promotion o f angiogenesis is another mechanism by which GH leads to tissue 

proliferation. In addition to angiogenesis-mediated growth, GH directly controls the 

survival o f cells within tissues.
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1.1.2.9 GH and Cell Survival

If  differentiating cells are not exposed to anti-apoptotic survival factors from 

neighbouring cells, apoptosis may ensue (Raff et al., 1994). GH has been shown 

extensively to be an anti-apoptotic survival factor in vivo and in vitro (Mylonas et al., 

2000; Segard et a l ., 2003; Gonzalez-Juanatey et al., 2004). Anti-apoptotic roles in 

development are seen from the oocyte stage (Kolle et al., 2003).

GH may promote cell survival through effects on the cytoskeleton and cell 

adhesion, as cell adhesion loss can lead to death o f the cell (Frisch and Screaton, 

2001), known as anoikis. GH can initiate both actin (Goh et al., 1997, Herrington et 

al., 2000) and microtubule (Goh et al., 1998) cytoskeletal reorganization, and can 

increase the expression o f the cell adhesion molecule V-CAM (Hansen et al., 2004).

Most o f the studies on anti-apoptotic roles o f GH in development have focused on 

the neonate. GH has been shown to be neuroprotective in the neonatal rat brain (Shin 

et al., 2004), and has an in vitro protective effect on cardiac myocytes of the 1 day 

postnatal rat (Gu et al., 2001). These anti-apoptotic roles o f GH may serve important 

functions in the development of these organs.

The potential o f GH in anti-apoptotic actions presents the possibility that it may 

be an important survival factor in specific cell types o f the developing lung, an organ 

that is heavily dependent on the balance o f proliferation, differentiation, and 

apoptosis (Del Riccio et al., 2004).

The previous discussion has revealed many mechanisms through which GH 

regulates growth. However, for GH to have roles within a given tissue, the presence 

o f functional GHR is required.
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1.1.3 GH Receptor (GHR)

1.13.1 GHR in Fetal Development

The GH Receptor (GHR) has been localized during fetal development in the human, 

cow, rat, rabbit, and chicken (egs. Burnside and Cogbum, 1992, Hill et al., 1992,

Scott et a l , 1992, Ymer and Herrington, 1992, Batchelor et al., 1998). Furthermore, 

GHRs are present very early in development, from ED2 in the chick (Harvey et al., 

2000), from early cleavage in the mouse (Terada et al., 1996, Panteleon et al., 1997), 

and from ED2 in the bovine embryo (Izadyar et al., 2000, Kolle et al., 2001). Since 

these studies have demonstrated GHRs prior to the differentiation of the pituitary 

gland, this raises the possibility that these GHRs may not be for endocrine pathways, 

but for the actions of GH produced locally that may function through an autocrine 

and/or a paracrine mechanism.

The importance o f GHRs in fetal development has been shown by studies with 

GHR homozygous knockout (KO) mice. Among GHR KO homozygous matings, 

litter sizes are reduced to nearly 25% of wildtype matings. This may reflect 

decreased embryo survival and/or a decrease in the fertility o f the dam (Danilovich et 

al., 1999). Furthermore, GHR KO mice display decreased plasma IGF-I, and a dwarf 

phenotype, as a result of reduced growth (Bartke et al., 1999). These findings reflect 

notable deficits in development due to the absence of functional GHRs.

Although GH is traditionally considered to be an endocrine molecule, it is in fact 

a member o f the cytokine family, a group of molecules that are mainly considered to 

function as autocrines and/or paracrines. GHR is a cytokine receptor, of the receptor 

associated tyrosine kinase type.
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1.13.2 GHR as a Member of the Family of Cytokine Receptors

The GHR was the first member o f the class 1 cytokine receptors to be cloned (Leung 

et al., 1987). All o f the receptors in this family possess the following five features: (i) 

they are single membrane pass receptors that function either as homodimers (GHR), 

or as heterodimer/oligomeric complexes with limited extracellular domain homology; 

(ii) the extracellular domains are made up of two or more fibronectin III modules 

(GHR - two fibronectin beta sandwich domains); (iii) there are two cysteine pairs and 

a conserved tryptophan adjacent to the cysteine in the N-terminal; (iv) there is a 

WSXWS or equivalent m otif (GHR -  equivalent YGEFS motif) found in the C- 

terminal; and (v) there are two conserved proximal membrane sequences in the 

cytoplasmic domain, which are referred to as boxes 1 (proline-rich and important for 

signaling) and 2 (Waters et al., 1999). GH, like the other ligands for class 1 cytokine 

receptors, forms a four alpha helical bundle (Abdel-Meguid et al., 1987). As GHR is 

structurally similar to other class 1 cytokine receptors, it also has functional 

similarities.

1 .1 3 3  GHR as a Receptor-Associated Tyrosine Kinase

The GHR functions analogously to the tyrosine kinase receptors, except that the 

cytoplasmic domain o f GHR does not have intrinsic tyrosine kinase activity. As such, 

the GHR dimer has two bound janus kinase (JAK) 2 molecules, one bound to each of 

the box 1 sequence (ie. one per each molecule o f GHR) (Waters et al., 1999). Upon 

ligand binding, the two JAK2 molecules are juxtapositioned (Liu et al., 1998) and 

proceed to /ra/w-phosphorylate each other, leading to JAK2 activation (Waters et al.,
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1999), which gives kinase activity to the complex, commencing the intracellular 

signaling cascade.

1.1.3.4 GHR Intracellular Signaling

Upon JAK2 activation, JAK2 proceeds to phosphorylate the GHR, which then signal 

through signal transducers and activators o f transcription (STAT) (particularly 

STAT5) that control transcription o f GH-response genes, adaptor proteins such as 

insulin-receptor substrate (IRS) 1 and 2 that control glucose uptake, She that leads to 

ras and then mitogen activated protein (MAP) kinase pathway activation, and 

phospholipase C that leads to the control of calcium influx (Waters et al., 1999). The 

GHR also controls other intracellular signaling, reviewed elsewhere (eg. Postel-Vinay 

and Kelly, 1996, Waters et al., 1999). Through these pathways o f intracellular 

signaling, GH regulates the expression of several genes.

1.1.4 GH Induction of Genes

GH is known to induce the expression of several genes. Traditionally recognized 

response genes to GH are: IGF-1 (Matthews et al., 1986), IGF binding protein 

(IGFBP)-3 (Lemmey et al., 1997), acid labile subunit (ALS) (Ooi et al., 1997), fatty 

acid binding protein (FABP) (Berry et al., 1993), epidermal growth factor (EGF) 

receptor (Ekberg et al., 1989), interferon response factor (IRF)-l (Le Stunff and 

Rotwein, 1998), and hepatocyte nuclear factor (HNF)-6 (Lahuna et al., 1997).

Upon preadipocyte stimulation with GH, several transcription factors are 

upregulated, most notably c-fos and egr-1 (Chen et al., 1995). Analysis of the
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promoter regions o f these transcription factors reveals that GH uses STATs and 

multiple serum response factor, respectively, to activate their expression (Waters et 

al., 1999).

O f considerable interest is the ability o f GH to induce expression o f the 

suppressors o f cytokine signaling (SOCS) (Adams et al., 1998). These proteins form 

a feedback loop that makes the tissue refractory to further stimulation by cytokines 

for hours.

Using microarray technology, GH was shown to induce expression of several 

genes in the liver. These were found to be fibrinogen beta, glycoprotein (gp) 130, 

STAT3, p38MAPK, growth arrest and DNA damage inducible protein 45 (GADD45), 

apurinic endonuclease (APEN), membrane-type 1 matrix metalloproteinase (MT1- 

MMP) and monocarboxylate transporter 1 (MCT1) (Thompson et al., 2000). O f these, 

gpl30, STAT3, and p38MAPK are all transducers o f cytokine and/or growth factor 

signaling; GADD45 and APEN control DNA damage in response to stress (Hollander 

et al., 1999, Ramana et al., 1998); MT1-MMP is a protein capable o f degradation of 

extracellular matrix proteins (Nagase and Woessner, 1999); and MCT1 functions in 

lactate transport (Poole and Halestrap, 1993).

Other GH-responsive genes include proto-oncogenes (Yoon et al., 1990, Triest et 

al., 1995), protease inhibitors (Yoon et al., 1987, Warren et al., 1993), and steroid 

hydroxylases (Wells et al., 1994, Subramanian et al., 1995). As well, a new GH- 

response gene has been identified in chickens (Harvey et al., 2001).

Since GH can induce the expression o f several genes (via GHR), many of which 

are transducers o f cytokine signaling, GH may behave as a local cytokine. The local
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expression of GH in many tissues other than the pituitary suggests that this is a 

possibility.

1.1.5 Extrapituitary Expression of GH

Since the pituitary gland does not secrete GH until late in rat gestation, pituitary GH 

is not thought to be involved in most o f development. Therefore, given the 

widespread localization of GHR within embryonic and fetal tissues, perhaps GH is 

locally produced within extrapituitary tissues. In fact, the abundant and widespread 

production of GH in peripheral tissues of early embryonic chicks (Harvey et al.,

1998) and mice (Pantaleon et al., 1997) suggests GH involvement in early 

development through autocrine or paracrine mechanisms (Harvey and Hull, 1997). 

Table 1 lists tissues expressing GH mRNA and/or GH-like proteins (modified from 

Harvey and Hull, 1997). The extrapituitary expression o f GH suggests that GH may 

function as a cytokine, through autocrine and/or paracrine mechanisms.

1.1.6 GH as an autocrine/paracrine

1.1.6.1 Autocrine/paracrine actions of GH mediated through insulin-like growth 

factor 1 (IGF-1)

GH has been shown to act as an autocrine/paracrine through IGF-1. For example, GH 

stimulated human thymocytes display a marked increase in synthesis o f IGF-1 

(Sabharwal and Verma, 1996). This study also demonstrated that antisera to IGF-1 

(polyclonal and monoclonal) inhibited the GH-stimulated proliferation o f human 

primary thymic epithelial cell cultures. This is only one example of
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autocrine/paracrine GH acting through IGF-1. However, it is important to note that 

IGF-1 is not always involved as a mediator of autocrine/paracrine GH.

1.1.6.2 Autocrine/paracrine actions of GH independent of IGF-1

As is true for endocrine GH, autocrine/paracrine GH is also subject to the dogma that 

IGF-1 is its major (and perhaps sole) mediator. Studies have found this not to be the 

case. For example, GH has been shown to be involved in the process o f tooth 

development (Zhang et al., 1997). GH, GHR, IGF-1, and IGF-1 receptor (IGF-1R) 

immunoreactivity have been shown in the tooth throughout development (Zhang et al., 

1992, Joseph et al., 1994, Zhang et al., 1997). O f interest in these studies is that GH 

has been shown in vitro and in vivo to increase the synthesis o f bone morphogenetic 

proteins (BMP) 2 and 4 in pulpal fibroblasts (Li et al., 1998). As such, this 

demonstrates that autocrine/paracrine actions of GH may also be mediated by factors 

other than IGF-1, even though IGF-1 is present. In fact, many other local factors may 

also be induced by autocrine/paracrine GH. GH stimulates proliferation o f avian 

growth plate chondrocytes by increasing the sensitivity o f these cells to epidermal 

growth factor (Monsonego et al., 1995). As well, GH in human mammary carcinoma 

cells promotes cell proliferation through a down-regulation of transforming growth 

factor production (Graichen et al., 2001).

GH is also thought to have IGF-1 independent neuroprotective roles in 

neurogenesis (Harvey et al., 2003). Administration o f exogenous GH reduces 

neuronal necrosis induced by local hypoxic-ischemic injury (Scheepens et al., 1999, 

2000,2001). GH immunoreactivity is increased in the cortical pyramidal neurons in
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hemispheres that have suffered hypoxic-ischemic injury and is more pronounced in 

regions that normally express GHR (Scheepens et al., 1999, 2001). This appears to 

be an IGF-1 independent mechanism, since it occurs before IGF-1 expression is 

induced and in regions o f the brain that have low IGF-1 tissue levels (Harvey et al.,

2003).

Other IGF-1 independent effects of GH include expansion of the growth-plate 

germinal zone, since this still occurs in IGF-1 KO mice (Wang et al., 1999), and 

hepatomegaly in response to GH treatment in IGF-1 KO (Liu and Le Roith, 1999). 

Futhermore, treatment o f normal humans and animals with GH increases lipolysis and 

serum free fatty acids, whereas this effect is not observed upon treatment with IGF-1 

(Le Roith et al., 2001). Chronic elevations in GH lead to insulin resistance (Kopchick 

et al., 1999, Dominici et al., 1999), but similar increases in systemic IGF-1 increase 

insulin sensitivity (Froesch et al., 1996).

O f importance is that GH can act locally as an autocrine/paracrine, whether 

through IGF-1 or not. As such, both endocrine and autocrine/paracrine GH may have 

roles in our tissue o f study, the lung.

1.1.7 GH and the lungs

1.1.7.1 Pituitary GH excess (acromegaly) and lung function

It has been observed that large lungs (Bartlett, 1971), upper airflow obstruction 

(Trotman-Dickenson et al., 1991), and narrowing o f the small airways (Harrison et al., 

1978) are present in GH excess (acromegalic) patients. Furthermore, respiratory 

disorders are common complications in acromegaly. Sleep apnea (a breathing
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disturbance related sleep disorder), for example, affects 60-70% of acromegalics 

(Fatti et al., 2001). Overall mortality rate for acromegalics from lung disease is 2-3 

times higher than it is in the general population (Orme et al., 1998). Persistent 

congestion o f the nasal mucosa and nasal polyps are also common (Lund 1994, 

Petruson et al., 1988). It is believed that the hypertrophy of the nasal mucosa, due to 

elevated GH and IGF-1 levels, is responsible for these nasal characteristics in 

acromegalics (Hansson et al., 1991). As well, acromegaly results in pneumomegaly, 

which is an increase in proliferation in the lung and thus an increase in alveolar 

number (Brody et al., 1970). This produces an increase in lung capacity by 81% in 

males, and by 56% in females. These effects are due to excess pituitary GH, as 

opposed to locally produced lung GH, but they nonetheless demonstrate potential 

roles for GH in pulmonary function.

1.1.7.2 Pituitary GH deficiency and lung function

GH deficiency, on the other hand, displays a decrease in respiratory muscle strength, 

and a reduction in the maximum inspiratory and expiratory pressures (Merola et al. 

1996, Merola et al. 1995). As well, total lung capacity and vital capacity are reduced 

in GH deficiency (Sofia et a l , 1995). Again, this is pituitary GH, but implies more 

potential roles for GH in the lung. Furthermore, in Laron syndrome (GH- 

insensitivity) peak exercise 02-uptake is reduced (Ben-Dov et al., 2003). This is 

another example o f impaired lung function when GH signaling is reduced. Since GH 

excess and GH deficiency result in abnormal lung sequelae, the lung may be a GH 

target site.
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1.1.73 The Lung as a Possible GH Target Site?

The possibility that the lung is a target site for pituitary GH action is indicated by the 

GH-induced production o f superoxide by alveolar macrophages (Edwards et al.,

1992), the GH-induced increase in circulating lung neutrophil activation during sepsis, 

and the accompanying increase in microvascular injury (Liu et al., 2002a).

Exogenous GH also induces NFkB activation in the lung (Liu et al., 2002b), increases 

phosphorylase A activity (Jost et al., 1979) and stimulates the tyrosine 

phosphorylation o f specific proteins in fetal lung epithelial cells (Batchelor et al.,

1998). Considered in the context of the pathophysiological changes induced by 

pituitary GH excess and deficiency, and the active GHR in fetal lung epithelium 

(Batchelor et al., 1998), we believe the lung to be a GH target site, particularly during 

development.

1.1.8 Lung Development

1.1.8.1 Lung Development in Avian Species

Early in development (ED3), the primitive gut tube (consisting of endoderm and 

visceral mesoderm) is subdivided along the anteroposterior (AP) axis into distinct 

domains that each give rise to an organ primordium (Grapin-Botton and Melton, 2000, 

Roberts 2000). Organ-specific morphogenesis is then controlled by epithelial- 

mesenchymal interactions, and by interactions between adjacent primordia (Smith et 

al., 2000, Yasugi 1993), the latter establish borders between organs.

The lung originates from the ventral wall of the esophagus-respiratory region of 

the foregut, which is positioned between the pharynx and the stomach (Sakiyama et
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al., 2003). First, the primordium in the ventral wall swells, then bifurcates into a pair 

o f primary lung buds by ED3.5 (Figure 3), and then each lung bud undergoes 

repeated budding and branching (Sakiyama et al., 2003), which forms the bronchial 

tree. The resultant lung consists o f the bronchial tree, which functions in gas 

exchange, and the air sacs, which control air movement (Sakiyama et al., 2000).

1.1.8.2 Lung Development in Mammals

The process o f lung development in mammals has been divided into five consecutive 

overlapping stages: embryonic, pseudoglandular, canalicular, saccular, and alveolar 

(Fig. 4).

1.1.8.2.1 Embryonic Stage

The embryonic stage o f development is the period during which the primitive lung 

forms as an outpocket on the ventral side o f the foregut, which lasts from gestational 

days (GD) 0-13 (Burri 1997) in the rat. As this stage continues, the lung bud 

bifurcates into two branches that extend distally into the surrounding mesenchyme 

(Burri and Moschopulos, 1992). These two branches are the early bronchi, which 

will continue to grow and branch as they form the conducting airways of the lungs 

(Copland and Post, 2004).

1.1.8.2.2 Pseudoglandular Stage

The pseudoglandular stage takes place between GD 13-18 (Burri 1997), a stage 

characterized by rapid branching of the bronchi to form the bronchial tree, and finally,
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the terminal bronchioles. The lung resembles an acinar gland throughout this period, 

which gives it its name (Burri 1984). Developing alongside the branching bronchial 

tree is a branching pulmonary vasculature tree (Stenmark and Abman, 2005). At this 

stage the primitive airway epithelium begins to differentiate, and it is the stage when 

neuroendocrine, ciliated, and goblet cells appear, and when mesenchymal cells begin 

to form cartilage and smooth muscle cells (Jeffery 1998). Throughout the 

development o f the airways, there is a mass o f undifferentiated cells that are found at 

the ends o f the developing airways, and as the airways branch these cells accompany 

the new branches (Burri 1984). These cells are the precursor cells to the alveolar 

epithelium (Burri 1997). As well, fetal breathing movements can first be identified 

during the pseudoglandular stage (de Vries et al., 1982). This stage terminates with 

the formation of the acini and the onset o f the canalicular stage.

1.1.8.23 Canalicular Stage

The canalicular stage occurs between GD 18-20, the stage in which the airways 

branching pattern is completed, but that is predominantly characterized by extensive 

vascular growth (Burri 1997) and the beginnings o f the gas exchange region (Copland 

and Post, 2004, Burri 1997). This period is when the respiratory bronchioli appear, 

the interstitial tissue thins, peripheral mesenchyme vascularisation increases, and the 

differentiation of cuboidal epithelium into type 1 and type 2 cells leads to the 

beginning of surfactant production (DiFiore and Wilson, 1994). At the end of this 

stage (GD20), the acini have subdivided into saccules, which gives the lung a spongy 

appearance (Burri 1997).
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1.1.8.2.4 Saccular Stage

The saccular stage takes place from GD21 to postnatal day (PD) 4. This is the stage 

during which extensive branching and widening of the airspaces in the lung periphery 

occurs (Burri 1984, 1997). This stage comprises the growth o f the pulmonary 

parenchyma, connective tissue thinning between airspaces, and maturation of the 

surfactant system (Copland and Post, 2004). The lung is functional for air breathing 

at this stage, even though the alveoli are practically absent.

1.1.8.2.5 Alveolar Stage

The alveolar stage is primarily between PD4-14 (Burri 1997), during which time the 

saccules septate and the alveoli form. This stage is composed of two separate, but 

likely interrelated, processes. These are alveogenesis and angiogenesis.

Alveogenesis is the growth of the lung and the development o f alveoli, whereas 

angiogenesis is development o f the pulmonary vasculature (Bhatt et al., 2001). The 

alveolar stage is characterized by the formation o f buds (secondary septa) from along 

the walls o f the terminal sac (primary septa) (Burri 1997). Following budding, the 

secondary septa elongate, eventually dividing the saccules (Bhatt et al., 2001). The 

division of the saccules occurs through coordinated actions with the surrounding 

capilliaries. Two capillaries (one along each side o f the septal bud), which are 

separated by insterstitium, fuse upon elongation of the bud to form a single capilliary 

layer, thereby ending growth of the secondary septa (Figure 5; Burri et al., 1997).

The overall result o f this process is a substantial increase in the surface area of the 

lung, thereby increasing efficiency of gas-exchange. Upon completion of the alveolar
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stage, the lung is composed o f non-parenchymal (bronchi, vessels, pleura) and 

parenchymal (airspace and septa) tissue, with airspaces representing over 80% of the 

parenchymal tissue (Burri 1984).

1.1.8.3 Regulators o f Mammalian Lung Development

1.1.8.3.1 Local Regulators

1.1.8.3.1.1 Fibroblast Growth Factors

The Fibroblast Growth Factors (FGF) have important roles in the development of 

many organs, including the development o f the lungs. The FGF literature is quite 

extensive, so as such it will only be addressed here selectively.

FGF-10 and FGF Receptor (FGFR)-2 are involved in the regulation o f airway 

branching (Cardoso 2001). The respiratory tract epithelium expresses FGFR-2 

(Peters et al., 1992) from early lung development through branching morphogenesis. 

The mesenchyme expresses FGF-10 in close association with distal epithelial tubules 

in a dynamic fashion; FGF-10 expression precedes distal bud formation, and 

expression is down-regulated once the bud has formed (Bellusci et al., 1997). The 

importance o f FGF-10 in lung development is demonstrated by the FGF-10 -/- KO 

mice. In FGF-10 KO mice, the lungs do not form, and the mice have a blunt-ended 

tracheal tube (Min et al., 1998, Sekine et al., 1999).

FGF-1 and FGF-7 also bind to FGFR-2 (Szebenyi and Fallon, 1999), so they 

could have similar effects to FGF-10. However, studies have shown that only FGF-1 

can mimic the effect o f FGF-10 (Bellusci et al., 1997a, Nogawa and Ito, 1995, Park et 

al., 1998), although it does not have the same chemotactic effects as FGF-10. FGF-7
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appears to be more generally involved in epithelial cell proliferation (Cardoso et al.,

1997). As well, FGF-7 and FGF-1 can induce type II cell differentiation, but only 

together (Shannon et al., 1999). Finally, FGF-2 has been shown to be an inducer o f 

Surfactant Protein (SP)-A, -B, and -C (Matsui et al., 1999).

1.1.83.1.2 Sonic Hedgehog

Sonic Hedgehog (Shh) is expressed in the developing lung epithelium in a gradient 

fashion, with levels highest in cells at the tips (Cardoso 2001), and its receptor, Ptcl, 

is found in the mesenchyme (Bellusci et al., 1997a). Shh is a key protein in lung 

branching morphogenesis, as witnessed by the failure of the epithelial tubules of Shh 

-/- KO mice to branch properly, which is thought to involve increased mesenchymal 

cell death and decreased cell proliferation (Litingtung et al., 1998, Pepicelli et al.,

1998). O f greater importance is the regulation of FGF-10 by Shh. The model 

proposed by Bellusci et al., (1997b) has the growing epithelial bud expressing high 

levels o f Shh, which interact with the chemotactic source (FGF-10) in the distal 

mesenchyme to inhibit its local production of FGF-10 and thereby decrease its 

chemotactic effect.

1.1.8.3.1.3 Bone Morphogenetic Proteins (BMPs)

At least three members o f the BMP family have been found in the developing lung 

(Bellusci et al., 1996), BMP-4, -5, and -7. BMP-4 is a key regulator o f epithelial 

proliferation and proximal-distal cell fate during lung development (Cardoso 2001). 

BMP-4 is expressed dynamically in the distal epithelium o f the branching airways,
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with expression beginning after bud initiation, and levels increasing at the tips during 

bud extension (Weaver et al., 2000). This implies that BMP-4 does not have roles in 

bud induction. In mice expressing a dominant negative BMP receptor or the BMP-4 

inhibitor Xnoggin, proximal cell types (such as ciliated cells) are seen in the distal 

lung (Weaver et al., 1999), highlighting the role o f BMP-4 in regulating proximal- 

distal cell differentiation. FGF-10 in the mesenchyme up-regulates expression of 

BMP-4 in the distal epithelium (Lebeche et al., 1999), the BMP-4 then inhibits 

epithelial cell proliferation and prevents budding, and as such acts as an antagonist to 

FGF-10 (Weaver et al., 2000).

1.1.8.3.1.4 Transforming Growth Factor (3-1

Transforming Growth Factor (TGF) (3-1 is primarily involved in inhibition of 

epithelial branching in lung development (Zhao J et al., 1996, Serra and Moses, 1995). 

TGFJ3-1 controls lung branching by three major mechanisms: limiting the 

proliferation o f epithelial buds (Serra and Moses, 1995), inhibiting FGF-10 

expression and thus inhibiting chemoattraction (Lebeche et al., 1999), and by 

synthesizing extracellular matrix components that promote cleft stability (Heine et al.,

1990).

1.1.8.3.1.5 Retinoic Acid

Retinoic Acid (RA) is thought to be involved in lung development, although its role is 

not clearly understood. Vitamin A (from which RA is synthesized in the body) 

deprivation in pregnant dams results in blunt-ended tracheae and lung agenesis
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(Dickman et al., 1997). Retinaldehyde dehydrogenase-2 (RALDH-2) is the main 

enzyme in RA generation (Niederreither et al., 1997, Niederreither et al., 1999, Ulven 

et al., 2000, Zhao D et al., 1996), and acts to synthesize RA in the mesenchyme when 

the primary lung buds are forming (Malpel et al., 2000), implicating RA in lung bud 

initiation. After lung bud initiation, RA does not appear to be important in branching 

morphogenesis, as it is down-regulated during this period o f lung development 

(Cardoso 2001).

RA is also thought to be involved in alveolarization. Low plasma Vitamin A 

levels have been found in neonates who develop bronchopulmonary dysplasia (Shenai 

et al., 1985), which is a condition that involves impaired alveolarization.

Furthermore, treatment o f neonatal rats during alveolarization with RA increases the 

number o f alveoli (Massaro and Massaro, 1996). Finally, RA can reverse the 

anatomical features o f emphysema induced by elastase (Massaro and Massaro, 1997), 

a condition in which alveolar walls have been destroyed.

1.1.83.1.6 Insulin-like Growth Factor 1

IGF-1 mRNA is abundantly localized within fetal mesenchymal lung cells, especially 

those surrounding airway epithelium (Retsch-Bogart et al., 1996), although it is also 

present in airway epithelial cells (Wallen and Han, 1994). As the expression of IGF-1 

in the developing lung was correlated with cellular proliferation and the maturation of 

connective tissue (Lallemand et al., 1995), it is possible that these actions reflect the 

upstream expression o f GH in the same tissues and cells. The increased production of 

IGF-1 in the lungs o f GH-treated rats (D’Ercole et al., 1984) supports this possibility.
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As support for the role o f IGF-1 in lung development, IGF-1 Receptor (IGF-1R) KO 

mice die at birth of respiratory failure (Liu et al., 1993).

Recently, a new role for IGF-1 in lung development has been proposed, that being 

as a mediator o f vasculogenesis/angiogenesis. Upon inactivation o f IGF-1 R with a 

neutralizing antibody in human fetal lung explants, the developing lung displayed a 

loss o f endothelial cells, changes in lung explant morphology, and apoptosis of 

numerous mesenchymal cells (Han et al., 2003).

1.1.83.1.7 Vascular Endothelial Growth Factor

Vascular Endothelial Growth Factor (VEGF) has been generally found to be involved 

in the development o f lung vasculature. The epithelial expression of VEGF-A during 

the pseudoglandular stage of development has been proposed to establish a 

morphological gradient that mediates interactions between the epithelial tubules and 

the vascular net (Ng et al., 2001; Park et al., 1993).

1.1.83.1.8 Calcyclin

Calcyclin, along with its binding protein Calcyclin Binding Protein (CacyBP) are 

expressed within the lung (Breen et al., 1999; Jastrzebska et al., 2000). The 

interaction between Calcyclin and CacyBP, however, is not yet understood.

Calcyclin has been implicated in growth o f the lungs due to mechanical stretch 

(Breen et al., 1999). CacyBP has been proposed in RA induced differentiation, but 

only in other tissues (Wu et al., 2003).
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1.1.83.1.9 Epidermal Growth Factor

Epidermal Growth Factor (EGF) has been localized to both the mesenchyme and 

epithelium o f the embryonic lung (Snead et al., 1989), although its expression seems 

to be localized to the mesenchyme (Ruocco et al., 1996). EGF is thought to have 

roles in lung maturation (Sundell et al., 1980), type II cell differentiation (Plopper et 

al., 1992), and in surfactant synthesis (Higuchi et al., 1989).

1.1.83.2 Endocrine Factors

1.1.83.2.1 Glucocorticoids

Glucocorticoids have been found to be important in lung development. They have 

roles in regulation o f pulmonary surfactant (Ballard 1989), and in regulation of 

surfactant proteins (Weaver and Whitsett, 1991).

1.1.83.3 Mechanical Factors

During lung development, Fetal Breathing Movements (FBM) alternate with 

“apnoeic” periods in which FBM are absent. FBM oppose lung recoil, and thereby 

provide the amount o f stretch necessary to promote normal lung growth and 

maturation (Harding 1997). During apnoeic periods, active laryngeal constriction 

prevents lung liquid from escaping, thereby preserving the stretch o f the lungs 

(Harding 1997).
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1.1.9 Relevant Distal Lung Cell Types

1.1.9.1 Type I Epithelial Cells

Alveolar type I epithelial cells (AE1 Cells) cover most o f the alveolar surface area, 

and constitute the alveolar part o f the extremely thin gaseous diffusion barrier (Young 

and Heath, 2000). These are the cell type in the alveoli that the respiratory gases pass 

through going into and out o f the surrounding capillaries.

1.1.9.2 Type II Epithelial Cells

Alveolar type II epithelial cells (AE2 Cells) have two major functions: as a source of 

alveolar surfactant, and as the stem cell o f the alveolar epithelium (Fehrenbach 2001). 

The surfactant produced by these cells functions to regulate surface tension and 

alveolar fluid balance, as well as to function in host defense. As a stem cell, AE2 

cells function to produce new cells to replace damaged/aged AE2 and AE1 cells.

1.1.93. Mesenchymal Cells

Mesenchymal Cells surround the epithelial tubules early in development, and will 

eventually form the vasculature o f the lung (Cardoso 2001). As well, the 

mesenchymal cells will also form cartilage and smooth muscle cells (Jeffery 1998).

1.1.9.4 Alveolar Macrophages

Alveolar macrophages (AM) are part o f the lung’s defense against inspired particles 

and pathogens. AM are large phagocytic cells found both in the alveolar wall and 

free in the alveolar space that engulf small particles and microorganisms (Young and
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Heath, 2000). After the AM has engulfed foreign material, it migrates into the 

airways, is carried up the mucociliary escalator, and is then disposed of by coughing 

and swallowing.

1.1.9.5 Endothelial Cells

The endothelial cells o f the lung form the capillaries and are the part o f the 

pulmonary vasculature which gases diffuse through going into and out o f the alveoli 

(Burri 1984).

1.2 Animal Models Used in these Studies

1.2.1 Chick

The chick is physically very large during the embryonic period (relative to rodents), 

and as such permits analysis o f tissue at much earlier stages of development.

Relevant to the aim of these studies, the lung bud can be visualized at ED4, which is 

just twelve hours after first appearance o f  the lung bud in the chick embryo at ED3.5 

(Sakiyama et al., 2000). As such, the ED4 lung bud could be examined by both in 

situ hybridization (ISH) and immunohistochemistry (IHC). The avian lung does not 

use a diaphragm (Scheid and Piiper, 1989), has air sacs, has parabronchi instead of 

alveoli (Lopez et al., 1992), and it begins air breathing one day before hatch (Menna 

and Mortola, 2002). Furthermore, the chick is a well established model o f 

embryogenesis, one that permits manipulations that are not possible in early 

mammalian development (reviewed in Mozdziak and Petitte, 2004). This model
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therefore provides a unique opportunity to compare and contrast similarities and 

differences to mammalian lungs.

1.2.2 R at

The studies in rats were, in contrast to those on the chick, focused on understanding 

late fetal and early postnatal development o f  the lung, especially the period of 

alveolarization from PD4-14 (Gomi et al., 1994). Since, unlike most other 

mammalian species, rats go through the stage of alveolarization postnatally and not in 

utero, this is a useful model to study alveolarization, as in utero manipulations are 

much more difficult and problematic.

1.3 R ational for these Studies

As noted, GH has been found to be expressed locally in many tissues. Studies on GH 

in the lung (Kyle et al., 1981, Costa et al., 1993, Allen et al., 2000) support the 

possibility that GH may be expressed locally in the lungs, particularly during 

development.

Since GH and GH mRNA are widespread in peripheral tissues o f chick embryos 

(Harvey and Hull, 1997), and as GH is ubiquitous in preimplantation rodents 

(Pantaleon et al., 1997), we hypothesized that GH mRNA and protein are found 

within the chick throughout embryonic development and within the rat in fetal and 

early postnatal development. The first specific aim was to analyze embryonic chicks 

by Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) and ISH for 

presence and cellular localization of GH mRNA, and by Western blotting and IHC for
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presence and cellular localization o f GH protein. The second specific aim  was to 

analyze rats from the pseudoglandular through to the end of the alveolar stage by RT- 

PCR and ISH for presence and cellular localization o f GH mRNA, and by Western 

blotting and IHC for presence and cellular localization o f GH protein.

The results o f these two specific aims are documented in Chapters 2 and 3, 

respectively. Upon successful completion o f these descriptive studies, the next step 

was to examine if GH had a role in lung development. We hypothesized that GH 

acts as a local autocrine/paracrine in the lung during the period o f alveolarization.

The th ird  specific aim was to down-regulate expression of GH mRNA in the lung 

during the period of alveolarization using antisense oligodeoxynucleotides to rat GH. 

Following this treatment, lungs were to be examined by molecular biological 

techniques to determine changes in signaling pathways and potential roles for local 

GH. The results of this specific aim are found in Chapter 4. The fourth specific aim 

was to up-regulate expression of GH in the lung using a mouse GH adenovirus 

expressed during the period o f alveolarization. Following this treatment, lungs were 

to be examined by molecular biological techniques to determine changes in signaling 

pathways. These results are in Chapter 5. The fifth specific aim was to compare 

GHR knockout (-/-) mice to normal control GHR (+/+) mice using 2-dimensional gel 

electrophoresis to examine changes in protein regulation in the lung in the absence of 

normal GH-signaling. These results are presented in Chapter 6.

The significance o f these studies will be a documentation o f the expression o f GH 

in the lung during development and an understanding o f some of the important

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



mediators o f GH action in lung development, specifically in the process o f 

alveolarization.
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1.4 Table

Table 1.1 -  Tissue Distribution of GH-Like Proteins and mRNA in Extrapituitary 
Sites in Human, Rat and Chicken, (modified from Harvey and Hull 1997).

Tissue Species GH GH mRNA

Posterior pituitary Rat (Lechan et al. 1983)
Brain Rat (Hojvat e ta l.  1982) (Martinoli e ta l .  1991)

Chicken (Render e ta l. 1995) (Render et al. 1995)
Spinal Cord Rat (Lechan e ta l.  1981)
Neural Retina Chicken (Harvey et a l.2004) (Harvey et al. 2004)
Placenta Human (Cooke and Liebhaber 1997) (Cooke and Liebhaber 15

Rat (O gilvie e ta l.  1990)
Am nion Chicken (Harvey et al.2000)
Mammary Gland Human (M o le / al. 1995)
W olffian Duct Rat (Nguyen et al. 1996)

Chicken (Harvey et al.2000)
Mullerian Duct Chicken (Harvey et al.2000),

(W ang 1989)
Testis Human (Untergasser et al. 1996)
Kidney Rat (K yle e ta l. 1981)
Heart Chicken (Harvey et al.2000)
Lung Rat (K yle e ta l. 1981) (A llen et al.2000)
Liver Chicken (Harvey et a l.2000)
Gastrointestinal Tract Rat (K yle et a/. 1981)
Stomach Chicken (Harvey et al.2000)
Spleen Human (Wu e t  a/. 1996)

Chicken (Render et al. 1995) (R enders/ al. 1995)
Thymus Human (Sabanval and Varma 1996) (Wu et  a/. 1996)
Lym phocytes Human (Varma e ta l.  1993) (Wu e t al. 1996)

Rat (Hattori e ta l.  1994)
Tonsils Human (Wu et a/. 1996)
Lymph Node Human (Wu e /a / .  1996)
Limb bud Chicken (Harvey et al.2000)
Skin Human (Slominski e t al.2000)
M uscle Human (K yle e ta l. 1981) (Wu et al. 1996)
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1.5 Figuresft1

Figure 1.1 -  Chicken GH mRNA and Protein Sequence. From Lamb et a/.(1988).
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Figure 1.2 -  Rat GH Gene, mRNA and Protein Sequence. From Page et al. (1981).
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g q g g a ttg g g a g a g a ttg g tcc ttg c tccca g ccto r to ctg to c tcc tg tc tc tctttc ta q  fC  TCT 

450 480
-2 0  -10  

Gin Ttir Pro Trp Leu Leu Thr Phe Ser Leu Leu Cys Leu Leu Trp Pro Gin Glu
CAG ACT OOC TOG CTC CTG AOC TTC AGC CTG CTC TOC CTG CTC TOG OCT CAA GAG

510 540
-1  1 10 

A la Gly A la Phe Pro Ala Met Pro Leu Ser Ser Leu Ih e Ala Asn Ala V al Leu
OCT QGT GCT TIC CCT GCC ATC CCC TTC TCC ACT CTC TIT GOC AAT GCT GTC CTC

570
20 30

Arg A la Gin H is Leu H is Gin Leu A la A la Asp Thr Tyr Lys Glu Phe 
CCA OOC CAG CAC CTC CAC CAG CTG GCT GCT CAC AOC T3C AAA GAG TTC g ta a g t 
600 630

tceteaqtgttgggtq cctgactgtggaagcaggaaaggggcacgatcceaccetogcoccgaatccctgc  
660 690 720

ccocaqqaaqtcataggaggaaactatgocgttagatgagcagaaaaagaatgggtogtccataagcagta
750 780

atqacaqaqagggctqgagagatggctcagtggt taagagcaccogactgctcttocaaaggtcctgagtt 
8 i0  840

870 900 930
♦

gaagacagctacaqb^tzcttatataataaacaaataaatctttaaaaaaaaajVKVuvwwggggctgga 
960 990

gagatggctcagoggttaagaqcgocogactgctcttccagaggtcatgagttcaattoccagcaaceaca  
1020 1050 1

080 1110 1140
%
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1170 1200

t  Glu Arg Ala Tyr l i e  Pro Glu
gagtcacaagctggtooctcagtgactaoctttcctccag  GAG CCT GOC TAC ATT OOC GAG

1230 1260
40 50

Gly Gin Arg Tyr Ser H e Gin Asn A la Gin Ala Ala Phe Cys Phe Ser Glu Thr
GGA CAG CGC TAT TOC ATT QG AAT GCC CAG GCT GCG TIC TGC TTC TCA GAG ACC

1290 1320
60 70

l i e  Pro A la Pro Thr Gly Lys Glu Glu Ala Gin Gin Arg Thr
ATC OCA GOC OOC ACC GGC AAG (3G GAG GOC CAG CAG AGA ACT gtgagtaggcccag

1350 1380

q ccttg tctq tacagatectcttttetteocaagcagccctaactgcagtecaggccagggaeeagctctt 
1410 1440

occtgaggctgaggtaacctgggagtcccaggcagaggtcactagctaatgcacagcrxscttttttccctc
1470 1500 1530

Asp Met Glu Leu Leu Arg Phe Ser
w

Leu Leu Leu l i e  Gin Ser Trp Leu Gly
ag GAC ATS GAA TTG CTT CGC TTC TCG CTG CTG CTC ATC CAG TCA TGG CTG GGG

1560
90 100

Pro Val Gin Phe Leu Ser Arg l i e Phe Thr Asn Ser Leu Met Phe Gly Thr Ser
OOC GIG CAG TTT CIC AGC AGG ATC TTT AOC AAC AGC CTG ATG TTT GCT AOC TOG

1590 1620
110 120

Asp Arg Val Tyr Glu Lys Leu Lys Asp Leu Glu Glu G ly l i e Gin Ala Leu Met
GAC CGC CTC TAT GAG AAA CTG AAG GAC CTG GAA GAG GGC ATC CAG GCT CTG ATG

1650 1680

Gin
CAG gtcaggatqgaoogggggcgctagoctgaggttatactgaoctttgcctctgcttggagoctagct 

1710 1740

q ggq ggctcactgagctctg tttaooggtcagaocttaaaccttq agaaggcttcctactcactttccctt 
1770 1800 1830

atq aagcctocaggcctttctctaggttctggagttggggagggcacggctctgagttcttctttcocaca
1860 1890

130 140
Glu Leu Glu Asp Gly Ser Pro Arg l i e  Gly Gin l i e  Leu Lys Gin Thr

acaq GAG CTG GAA GAC GGC AOC OOC CGT ATT G3G CAG ATC CIC AAG CAA AOC
1920 1950

150 160
Tyr Asp Lys th e Asp Al a Asn Met Arq Ser Asp Asp A la Leu Leu Lys .Asn Tyr
TAT ®C AAG TTT GAC GOC AAC ATG CGC AGO GAT GAC GOT CTO CTC AAA AAC TAT

1980 2010
170

Gly Leu Leu Ser Cys Phe Lys Lys Asp Leu H is Lys A la Glu Thr Tyr Leu Arg
GOG CDS CTC TOC TGC TTC AAG AAG GAC CTG CAC AAG GCA fflG ACC TAC CTG COG

2040

180 19^ 192
Veil Met Lys Cys Arg Arg Phe Ala Glu Ser Ser Cys Ala Phe AM
GTC ATG AAG TGT CGC OX TTT GCC GAA AGC AGC TCT GCT TTC TAG qcacacactn

2CT70 2100

a a a t ta a q a tq c a tc a ta tc a c tc tg c ta a a c a tc t t t t t t t t t t t tg a a g g c
2220 2243
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Figure 1.3 -  Chick Lung Development. From Sakiyama et al.(2000).
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Figure 1.4 -  Lung development in mammalian species based on timeframe in weeks 
for human development (Modified from Zeltner and Burri 1987).
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CHAPTER 2: GROWTH HORMONE (GH) AND GH RECEPTOR EXPRESSION 
IN THE LUNGS OF EMBRYONIC CHICKS1

2.1 INTRODUCTION

The lung is a postnatal site o f growth hormone (GH) action, as reflected by its activation 

o f lung NFkB (Liu et al., 2002a), induction o f phosphorylase A activity (Jost et al., 1979), 

phosphorylation o f lung epithelial proteins (Batchelor et al., 1998), activation o f alveolar 

macrophages (Edwards et al., 1992), and accumulation o f lung neutrophils (Liu et al., 

2000b). A pathological excess o f GH secretion is, moreover, associated with large lungs 

(Barlett et al., 1971), upper airflow obstruction (Trotman-Dickenson et al., 1991) and a 

narrowing of the small airways (Harrison et al., 1978). A deficiency o f GH is, 

conversely, associated with a decrease in respiratory muscle strength and a decrease in 

the maximum inspiratory and expiratory pressure (Merola et al., 1995; Merola et al.,

1996). These actions likely reflect the endocrine actions o f  pituitary GH on pulmonary 

GH receptors (GHRs) (Tiong et al., 1989; Garcia-Aragon et al., 1992; Batchelor et al., 

1998). These receptors are, however, present in fetal lungs before the ontogenic 

differentiation of pituitary somatotrophs. Early lung development therefore occurs in the 

absence o f pituitary GH, although it may not be GH-independent.

Although somatotrophs are not present in embryonic chicks until embryonic day 

(ED) 16 o f the 21-day incubation period (Porter 1997), and GH is not present in 

peripheral plasma until ED 17 (Harvey et al., 1979), a specific GH-response gene

1A version of this chapter has been accepted for publication: Beyea, J.A., Olson, D.M., 
Vandergriend, R.A., and Harvey, S. Cell Tissue Res
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(GHRG) is widely expressed in the lung buds of ED7 embryos (Harvey et al., 2002). As 

GHRG-1 is a marker o f GH action in chickens, its expression in the embryonic lung 

supports the possibility that extrapituitary GH participates in early pulmonary function. 

Indeed, GH gene expression is now known to be widespread in many extrapituitary 

tissues o f the chick embryo (Harvey and Hull, 1997; Harvey et al., 2000), although its 

occurrence in the lung has yet to be determined. GH mRNA has, however, previously 

been found in alveolar macrophages in adult rats (Allen et al., 2000) and trace amounts of 

GH-immunoreactivity are present in whole lung extracts o f fetal and adult mammals 

(Kyle et al., 1981; Costa et al., 1993). The possible presence of GH and GH mRNA in the 

lungs of embryonic chicks has therefore been investigated in the present study.

2.2 MATERIALS AND METHODS

Animals/Tissues

Fertile White Leghorn eggs from the University of Alberta Poultry Unit were incubated 

at 37.5°C in a humid Hova-Bator™ Incubator (Miller Hatcheries, Edmonton, Alberta). 

Eggs were turned one-quarter of a revolution each day o f incubation. The parabronchi of 

the chick lungs differentiate at ED8 (Sakiyama et al., 2000) and lung breathing 

commences at ED20 (Chiba et al., 2002). Chick lungs were therefore collected before (at 

ED7) and after (at EDI 1, ED 13, ED 15 and ED 18) parabronchial development, and at the 

onset o f lung breathing (at ED20). For comparison, the heart was collected from ED7 

embryos, since it is known to possess GH immunoreactivity (Harvey et al., 2000; Murphy 

et al., 2002) and pituitary glands from the heads o f adult slaughter-house fowl provided a
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positive control. Pituitary glands were not used from embryonic chicks, as they do not 

express GH until late in fetal development.

For RT-PCR and Western Blotting, lungs were excised in PBS and immediately 

frozen in liquid nitrogen and RNA and protein extraction, respectively. For in situ 

hybridization (ISH) and immunohistochemistry (IHC), lungs were excised in PBS, then 

immediately transferred to freshly-prepared 4% paraformaldehyde in PBS. Lungs were 

fixed overnight in 4% paraformaldehyde at 4°C. The following day, lungs were 

dehydrated and cleared [PBS for 15 min x 2, 50% EtOH for 15 min, 70% EtOH for 15 

min, 95% EtOH for 30 min, 100% EtOH for 30 min x 2, Citri-Solve (Fisher Scientific, 

Edmonton, Alberta, Canada) for 30 min x 2], Lungs were then placed in paraffin wax at 

60°C overnight, and embedded in paraffin wax the next morning. 8pm sections were 

made with a microtome, flattened on 42°C 0.1% DEPC (Sigma, Mississauga, Ontario,

Canada) treated water, and mounted on Fisher Superfrost®/Plus slides (Fisher).

RT-PCR

Total RNA was extracted from frozen tissues using TRIzol® Reagent (Invitrogen

Canada Inc., Burlington, Ontario, Canada; lOOmg/ml). Reverse transcription (RT) was

performed with Thermoscript® RNase H' reverse transcriptase (Invitrogen). The reaction

was carried out in a 20pl volume containing 3pg total RNA, 2.5pM Oligo (dT)?o, ImM 

each dNTP, 12 x Invitrogen cDNA Synthesis Buffer, 2U/:1 RNase OUT® (Invitrogen),
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5mM DTT, and 0.75U/pl Thermoscript® RNase H' reverse transcriptase. Oligo (dT)io,

RNA, and dNTPs were mixed and made up to 12pl volume with 0.1% (DEPC) (Sigma) 

treated water. To denature the RNA and olgio (dT)io, the 12p.l mix was incubated at 65°C 

for 5 min, then placed on ice. The remaining components o f the reaction were then added 

to make a final volume o f 20pl. Samples were transferred to a Techgene thermal cycler 

(Techne Ltd., Duxford, Cambridge, UK) preheated to 59°C. The reaction was incubated 

at 59°C for 60 min, then terminated by incubation at 85°C for 5 min, then transferred to 

ice.

2pl o f the reaction product, 2mM M g S 0 4 ,1 x High Fidelity (Invitrogen) PCR Buffer, 

0.2mM of each dNTP, IU of Platinum® Taq DNA Polymerase High Fidelity

(Invitrogen), and 0.2uM of sense and antisense oligonucleotide primers designed to 

amplify a 690 bp cDNA of the full-length chicken pituitary GH cDNA (Render et al. 

1995). The forward primer (cCLRl;5’-

CGTTCAAGCAACACCTGAGCAACTCTCCCG-3’) and the reverse primer (cCLR2; 

5’-GCCTCAGATGGTGCAGTTGCTCTC TCCGAA-3’) were combined and the final 

reaction volume o f 50jul was achieved using DEPC treated water. Touchdown PCR was 

performed as follows: 95°C for 1 min; then 5 cycles o f 95°C for 30 min and 72°C for 2 

min; then 35 cycles of 95°C for 30 sec and 65.6°C for 2 min; then 68°C for 10 min. Ten 

microlitres o f each PCR product was visualized by ethidium bromide staining on a 1.5% 

agarose gel.
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Sequencing

PCR products were purified by the High Pure® PCR Product Purification Kit (Roche 

Diagnostics Canada, Laval, Quebec, Canada), then sequenced by the DNA Core Lab, 

Department o f Biochemistry, University o f Alberta. Sequences were analyzed by 

BLAST and compared with sequences in the NCBI database.

In Situ Hybridization

ISH was performed using full-length (690 bp) cGH antisense probes, with full-length 

(690 bp) cGH sense probes as a negative control. cCLRl and cCLR2 primers were used 

to generate a 690bp cDNA, which was inserted into a pCR®II-TOPO Vector (Invitrogen) 

plasmid. The plasmid was transfected into One Shot TOP 10 chemically competent cells 

(Invitrogen) and cultured. Plasmids were restriction digested with either SacJ or Notl (to 

make antisense or sense probes, respectively), then antisense or sense probes were 

transcribed with T7 or SP6 enzymes (Invitrogen), respectively in the presence o f  DIG 

RNA Labeling Mix (Roche). cGHR antisense and sense probes were made in an 

analogous fashion, using a 500bp cDNA generated from the extracellular portion of 

cGHR with khu9 (5’ -  CCTCGATTTGGATACCATATTGTGTTAAGC - 3’) and khulO 

(5’ -  CTG TTA CGG CCA GCC CAC ACA CTC CGA AG - 3’) primers (Hull et a l, 

1995).

8 pm 4% paraformaldehyde-fixed sections were deparaffinized and rehydrated 

(Citri-Solve [Fisher] for 5 min x 2, 100% EtOH for 2 min, 95% EtOH for 2 min, 70%
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EtOH for 2 min, 0.1% DEPC water for 2 min, 0.1% DEPC-Phosphate Buffered Saline 

(PBS) for 5 min x 2). Slides were post-fixed in 4%  formaldehyde in 0.1% DEPC-PBS 

for 10 min. RNase treatment was performed in 0.1% DEPC-PBS (DEPC added just 

before use) for 15 min x 2. Sections were treated in Proteinase K (Invitrogen) solution 

(lm g Proteinase K, 0.02M Tris, 0.01M NaiEDTA, in 0.1% DEPC water) at 37°C for 1 

min. Slides were equilibrated in 5 x SSC for 10 min x 2. Slides were prehybridized for 2 

hours at 65°C with 120pl prehybridization solution (50% formamide, 5 x SSC, 0.5mg/ml 

salmon testes DNA (Sigma), in 0.1% DEPC water) under a cover slip, on an elevated 

platform in a sealed container with 75% formamide at the bottom of the container. Slides 

were hybridized for 16 hr at 65°C with 120pl of hybridization solution [prehybridization 

solution diluted 1:8 with either the antisense or sense digoxigenin (DIG)-labeled cGH 

riboprobes or with the antisense or sense DIG-labeled cGHR probes (for the mRNA 

sequences coding for the intracellular domain of the GHR). After hybridization, the 

slides were washed in 2 x SSC for 30 min at room temperature, in 2 x SSC for 60 min at 

65°C, then finally in 0.1 x SSC for 60 min at 65°C. The slides were then washed for 5 

min x 2 in Buffer One (0.01M Tris, 0.15M NaCI, pH 7.5), then incubated with anti- 

digoxigenin (Roche, at a final concentration of 1:2000) in 1% (w/v) blocking reagent 

(Roche) (1% w/v blocking reagent in 0.1 M maleic acid, 0.15M NaCI, pH 7.5) for 2 

hours. The slides were then washed for 15 min x 2 in Buffer One, then for 5 min in 

Buffer Two (0.1M Tris, 0.1M NaCI, 0.05M MgCHpH 9.5) and developed in a 

commercial NBT/BCIP substrate [1:50 dilution ofNBT/BCIP Stock Solution (Roche) in 

Buffer Two] for 30 min at 37°C. Color development was stopped by immersion in TE 

buffer for 5 min x 2. Sections were counterstained for 2 min with 0.5% (w/v) methyl
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green in 3M NaOAc (pH 4.0), rinsed thrice in 0.1% DEPC water, rehydrated (35% EtOH 

for 2 min, 50% EtOH for 2 min, 75% EtOH for 2 min, 95% EtOH for 2 min, 100% EtOH 

for 2 min, Citri-Solve for 2 min x 2), then mounted with DPX (Fluka-Sigma). Digital 

images were collected using a SPOT Digital Microscope camera (Carsen Group,

Markam, Ontario, Canada) mounted on an Olympus B x 40 microscope.

Western Blotting

Tissue samples were homogenized, protein content was estimated using a commercial 

assay (BioRad) and Western Immunoblotting was performed as described in Hosford et 

al., (2003), except that a 15% polyacrylamide gel was used. Immunoreactivity was 

detected using a specific rabbit antibody raised against chicken GH (aG H l, as described 

in Harvey et al., 2000).

Immunohi stochemistry

Immunocytochemical staining was performed using the avidin-biotin-peroxidase (ABC) 

method, as described by Harvey et al., (2001), using aG H l antibody, or with an antisera 

raised in rabbits against a synthetic fragment (CHI 7) o f the extracellular domain o f the 

chicken GHR (Hull et al., 1999). The staining of somatotrophs in the caudal lobe of adult 

chicken pituitary glands provided a positive control for the GH antisera, and the 

specificity of GH staining was demonstrated by its blockade following its preabsorption 

with recombinant cGH (Amgen, Thousand Oaks, California, USA) (1 mg/ml for 2 hours)
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and by the absence o f staining in the cephalic lobe. The specificity o f GHR staining was 

demonstrated using normal rabbit serum (NRS) as a negative control. Digital images 

were collected using a SPOT Digital Microscope camera (Carsen Group, Markam, 

Ontario, Canada) mounted on an Olympus B x 40 microscope.

2.3 RESULTS

RT-PCR

As expected (Render et al., 1995), a 690 bp cDNA was amplified from reverse- 

transcribed pituitary mRNA in the presence o f oligonucleotide primers CLR1 and CLR2 

(Fig. 2.1). With the same primers, cDNA fragments o f identical size were also generated 

by the RT-PCR o f mRNA from the lungs o f EDI 1 and ED18 chick embryos (Fig. 2.1).

In contrast, no cDNA fragments were generated in the negative controls in the absence of 

the reverse transcriptase (Fig. 2.1).

cDNA Sequencing

Nucleotide sequencing of the 690 bp cDNA amplified from EDI 1 lung mRNA 

demonstrated complete (100%) homology with the 690 bp cDNA amplified from adult 

chicken pituitary (data not shown). Both cDNA’s were also >99.5% homologous to the 

sequence published by Tanaka et al., (1996) for chicken GH cDNA, differing only in a
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base-pair substitution at position 588. This substitution would not, however, change the 

amino acid o f the coded apoprotein.

Western Blotting

As expected (Aramburo et al., 2000) GH-immunoreactivity in the pituitary glands of 

adult chickens was primarily associated with a protein o f 26 kDa (Fig. 2.2). GH- 

immunoreactive proteins o f similar size were also present in the lungs of EDI 1-ED 18 

chickens (Fig. 2.2). A smaller protein o f 15 kDa was additionally present in the lungs of 

ED 13, ED 15 and ED 18 chicks, in which it was more abundant that the 26 kDa monomer. 

An immunoreactive protein o f approximately 29 kDa was also present in the lungs of 

ED 15 embryos, but only in trace amounts (Fig. 2.2).

GH In Situ Hybridization

Intense hybridization of the antisense probe to somatotrophs in the caudal lobe of the 

adult chicken pituitary gland was shown as a positive control (Fig. 2.3a,b). No 

hybridization was seen in the cephalic lobe and no hybridization to caudal lobe cells 

occurred in the negative controls in the presence o f the sense probe (Fig. 2.3c).

Intense hybridization of the antisense probe was also seen in sections o f the ED7 lung 

(Fig. 2.4a). Staining for GH mRNA was widespread and in most cells in the 

mesenchyme (Fig. 2.4b; Fig. 2.4d) and in the epithelia surrounding the developing
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bronchi (Fig. 2.4c). In marked contrast, no specific staining was seen in ED7 controls in 

the presence o f the sense probe (Fig. 2.4e-g). GH mRNA was similarly ubiquitous in the 

lungs o f EDI 1 (Fig. 2.5a-c) and ED15 (Fig. 2.6a-c) embryos, but most intense in the 

epithelia lining the parabronchi (Fig. 2.5c; Fig. 2.6b) and in the endothelial cells o f blood 

vessels surrounding the parabronchi (Fig. 2.5b; Fig. 2.6a). GH mRNA was, however, 

only barely detectable in the lungs of ED20 embryos, in which labeling with the sense 

(Fig. 2.7c) and antisense (Fig. 2.7a,b) probes was comparable. The specificity of the 

hybridization o f the antisense probe to lung cells in the ED7, EDI 1 and ED 15 embryos is 

also indicated by the lack o f staining in blood cells that were present in the heart of ED7 

embryos, within which strong hybridization was seen in cardiac muscle (Fig. 2.8a).

GHR In Situ Hybridization

Like GH mRNA, GHR mRNA was widespread in the E D 7,11, and 15 chick lung (Fig.

2.9,2.10,2.11). GHR mRNA staining was detected in the ED7 mesenchyme (Fig. 2.9b; 

Fig. 2.9d), and in the epithelia of the bronchi (Fig. 2.9c). GHR mRNA was also 

ubiquitous in the ED11 (Fig. 2.10a-c) and ED15 (Fig. 2.1 la-c) lungs, particularly in the 

undifferentiated mesenchyme (Fig. 2.10c, 2.1 lb) and in the epithelium of the parabronchi 

(Fig. 2.10b, 2.1 lc). In marked contrast, no staining was observed using the GHR sense 

probe (Fig. 2.9e-g; Fig. 2.10d-e; Fig. 2.1 ld-e).
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GH Immunocytochemistry

As expected, the cytoplasm of large cells clumped in the caudal lobe of the adult chicken 

pituitary gland were intensely labeled by the primary GH antiserum (Fig. 2.3d,e), and the 

specificity o f this staining to somatotrophs was shown by its absence following the 

preabsorption of the antibody with excess recombinant GH (Fig. 2.3f) and by the absence 

o f staining in the cephalic lobe (Fig. 2.3d).

GH-immunoreactivity was present in most cells in the ED7 lung (Fig. 2.4h), although 

GH staining was greatest in the mesenchymal cells (Fig. 2.4i, k) and epithelial cells (Fig. 

2.4j) surrounding the bronchi and in the single layer o f cells bordering the pleural cavity 

(Fig. 2.4h). GH staining was similarly widespread and abundant in the lungs of EDI 1 

(Fig. 2.5f) and ED15 (Fig. 2.6f) embryos. In particular, staining was intense in the 

mesenchymal cells (Fig. 2.5h, Fig. 2.6g), the epithelial cells o f the parabronchi (Fig. 2.5g, 

Fig. 2.6h), the endothelia o f blood vessels (Fig. 2.5f), and in the smooth muscle cells 

surrounding the parabronchi (Fig. 2.6h). GH immunoreactivity was also present in some 

epithelial and mesenchymal lung cells o f ED20 embryos (Fig. 2.7b), although the number 

of immunoreactive cells was less than that in earlier embryos. The specificity o f the GH 

staining was shown by its blockade following the preabsorption o f the GH antibody with 

recombinant GH (Fig. 2.41-n; Fig. 2.5i-j; Fig. 2.6i-j; Fig. 2.7i-j) and by the absence o f GH 

staining in the blood cells o f ED7 embryos (Fig. 2.8b).
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GHR Immunocytochemistry

Like GH, GHR immunoreactivity was widespread in the E D 7 ,11, and 15 chick lung (Fig.

2.9,2.10,2.11). GHR staining was detected in the ED7 mesenchyme (Fig. 2.9i; Fig.

2.9k), and in the epithelia o f the bronchi (Fig. 2.9j). GHR was also ubiquitous in the 

EDI 1 (Fig. 2.10f-h) and ED 15 (Fig. 2.1 lf-h) lungs, particularly in the mesenchyme (Fig. 

2.10h, 2.10g) and in the epithelium of the parabronchi (Fig. 2.10g, 2.1 lh). Staining was 

absent upon replacement of the GHR antibody with normal rabbit serum (Fig. 2.91-n; Fig. 

2.10i-j; Fig. 2.11i-j).

2.4 DISCUSSION

These results clearly show, for the first time, the presence o f GH and GH mRNA in the 

lungs o f embryonic chicks, in which GHR and GHR mRNA are also present. These 

results therefore suggest the embryonic lung is a site of GH production and action.

The distribution o f GH immunoreactivity and the DIG-labeled staining o f  GH mRNA 

in the embryonic lung were widespread and almost ubiquitous. The detection o f GH and 

GH mRNA in the lung was not, however, due to methodological artifacts, since both 

cytochemical techniques similarly labeled somatotrophs in the caudal (but not cephalic) 

lobes o f adult pituitary glands and because lung GH was not detected using preabsorbed 

GH-antisera and lung GH mRNA was not detected using a sense riboprobe. Moreover, 

GH and GH mRNA were not detected in all lung cells, nor in ED7 blood cells, further
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indicating the specificity o f the widespread GH and GH mRNA staining in chick 

embryos.

Within the embryonic chick lung, GH immunoreactivity was intense in the 

undifferentiated mesenchymal cells and in the bronchial and parabronchial epithelial 

cells, as well as in the smooth muscle cells surrounding the bronchi and the parabronchi, 

and in the endothelial cells lining the blood vessels that provide the vasculature o f the 

lung. GH is similarly present and abundant in these cell-types in other embryonic tissues 

of early chicken embryos (Harvey et al., 2000; Murphy et al., 2003). The presence of GH 

immunoreactivity in the smooth muscle o f rat blood vessels was similarly reported by 

Recher et al., (2001) and GH-immunoreactivity has also been found in the myocytes 

surrounding the seminiferous tubules of adult chickens (Luna et al., 2004), and is present 

in homogenates of the human colon (Kyle et al., 1981).

The GH immunoreactivity in the lung is likely to be derived from the local expression 

of GH mRNA, which was similarly widely distributed throughout the embryonic lung. 

Indeed, GH immunoreactivity in early embryos cannot be derived from the pituitary, 

since somatotroph differentiation does not occur until approximately ED12-ED14 (Porter 

1997). Furthermore, as GH secretion does not occur until approximately ED 16 (Porter

1997) and as GH is not present in peripheral plasma until ED 17 (Harvey et al., 1979), its 

presence in the lung cannot reflect the sequestration o f pituitary or plasma GH. The GH 

immunoreactivity in the embryonic lung is, moreover, mostly associated with a 15 kDa 

protein rather than the 26 kDa monomer that is most abundant in the pituitary gland. The 

15 kDa GH variant is produced from monomer GH by proteolytic degradation (Aramburo 

et al., 2000). As the transcript for the full-length (26kDa) GH monomer is present in the
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lungs o f embryonic chicks, the abundance o f the 15kDa GH variant in the lungs indicates 

tissue-specific differences exist in the processing or degradation o f the full-length protein. 

The 15kDa GH variant is also present in the pituitary glands o f perinatal embryos, in 

which its abundance (although far less than the monomer) is much greater than that in the 

pituitary glands o f adult chickens (Aramburo et al., 2000). Its production may therefore 

be developmentally regulated. This, however, remains to be determined.

Whilst the factors regulating GH gene expression in extrapituitary tissues are 

largely unknown (Harvey and Hull, 1997), it was apparent that GH mRNA was barely 

detectable in the lungs of ED20 embryos. However, as pituitary GH secretion is 

autoregulated (Agoustsson and Bjomddon, 2000; Asa et al., 2000), it is possible that this 

reflects downregulation by the ontogenetic appearance o f GH in peripheral plasma, at ED 

17 (Harvey et al., 1979). The continued presence of moderate GH immunoreactivity in 

the ED20 lung may reflect the greater stability of protein, in comparison with mRNA, or 

the sequestration o f circulating GH by lung GHRs. Indeed, homogenates o f adult human 

and rodent lungs contain trace amounts o f GH immunoreactivity (Kyle et al., 1981: Costa 

et al., 1993) and the GH immunoreactivity in some adult tissues (eg the choroid plexus) is 

thought to be GHR bound (Nyberg 2000). This developmental loss o f lung GH 

expression is also consistent with the loss o f GH immunoreactivity in the liver of 

embryonic chicks between the first and second trimesters o f incubation (Harvey et al., 

2000), and suggests tissue-specific patterns in GH gene downregulation or extinction.

The finding of widespread GHR immunoreactivity and GHR mRNA in the 

embryonic lung suggests it is a target site for GH action. The widespread presence of 

GHRG-1, a GH-response gene that is a marker of GH action in birds (Radecki et al.,
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1977) in the lungs o f ED7 embryos (Harvey et al., 2002) supports this view. The 

presence of GHRs in the cytoplasm and nucleus of lung cells may also account for the 

accumulation o f GH in these intracellular sites. Indeed, it is now well known that GHRs 

are predominately in nuclear locations o f GH-target tissues (Fraser and Harvey, 1992: 

Lobie et al., 1994a, 1994b; Lincoln et al., 1998; Mertani et al., 2003). Moreover, GHR 

mRNA is also present in the nucleus o f some GH target sites ( Mertani et al., 1994; 

Kajimura et al., 2004), as in the lungs of embryonic chicks (eg. Fig. 1 lc), which may 

indicate a high level o f GHR gene transcriptional activity (Morel et al., 1989).

The expression of the GHR gene occurs before the presence o f GH in peripheral 

plasma, during late embryogenesis (Harvey et al., 1979). The local production o f GH in 

the lung may thus have autocrine or paracrine roles in lung development or in pulmonary 

function. It is now well established that GH has local actions in many tissues (Harvey 

and Hull, 1997; Pantaleon et al., 1997; Waters and Kaye, 2002), which may or may not 

be mediated through an array o f other growth factors (Waters et al., 1998; Sanders and 

Harvey, 2004). It may, therefore, be pertinent that insulin-like growth factor (IGF) is 

abundantly present in the lungs o f embryonic chicks (Tanaka et al., 1996) in which 

transforming growth factor (TGF)-|3-4 (Jakowlew et al., 1992), TGF-p-2 (Maina et al., 

2003; Calvitti et al., 2004) and interleukin-1 (Calvitti et al., 2004) are also widely 

expressed and are thought to participate in lung development. Putative actions of 

pulmonaiy GH in lung development are, however, unlikely to be mediated via IGF-1, 

since IGF-1 expression in the embryonic lung is GH-independent and present in GHR 

deficient dwarf chicks (Tanaka et al., 1996).
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It is also now well established that GH has functional actions in neonatal, juvenile 

and adult lungs o f mammals, and is a target site for pituitary GH action (Bartlett et 

al.,1971; Harrison et al., 1978; Jost et al., 1979; Trotman-Dickenson et al., 1991;

Edwards et al., 1992; Merola et al., 1995; Merola et al., 1996; Batchelor et al., 1998; Liu 

et al., 2002a; Liu et al., 2002b). It is therefore possible that pituitary GH also participates 

in lung development in perinatal chick embryos, following the ontogeny of pituitary GH 

secretion (Harvey et al., 1979; Porter 1997). This possibility is supported by the marked 

impairment in lung growth in hypophysectomized ED16-ED18 embryos (Marin et al., 

1978; Hylka and Doneen, 1983), at a time when Type II pneomocytes normally 

differentiate (Sakiyama et al., 2000; Chiba et al., 2002) and when GH normally appears 

in peripheral plasma (Harvey et al., 1979). Furthermore, the ability o f ectopic pituitary 

transplants to reverse the biochemical and morphological defects o f the lung that 

accompany hypophysectomy provides evidence for pituitary hormone involvement in the 

maturation o f the respiratory epithelium in perinatal chick embryos (Dameron and Marin, 

1978; Marin et al., 1978; Hylka and Doneen, 1983).

In summary, these results show that prior to lung breathing, the embryonic chick lung 

is an extrapituitary site o f GH production and GH action, which may involve hitherto 

unsuspected autocrine, paracrine and endocrine roles o f  lung GH in lung development or 

pulmonary function.
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Figure 2.1. RT-PCR o f reverse-transcribed mRNA from the lungs o f embryonic day (ED) 

11 and ED 18 chicks (lanes 2 and 3, respectively) in comparison with reverse-transcribed 

mRNA from the pituitary glands (methodological control) o f adult chickens (lane 1), 

using oligonucleotide primers designed to generate a 690bp chicken GH cDNA. Control 

reactions with mRNA (in the absence o f reverse transcriptase) are shown in lanes 4 (for 

adult pituitary (pit) mRNA), 5 (for EDI 1 lung mRNA), and 6 (for ED 18 lung mRNA). 

The data are representative o f at least three RT-PCRs using different tissue extracts.
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Figure 2.2. Western blotting of GH-immunoreactive proteins in the lungs o f embryonic 

day (ED) 11, ED13, ED15, and ED18 chicks (lanes 2-5) in comparison with the pituitary 

glands of adult chickens (lane 1). Representative o f at least two similar blots using 

different tissue extracts. 2 5 jig of protein was loaded into lanes 2-5 (EDI 1, ED13, ED15, 

ED 18), whereas 2pg of protein was loaded in lane 1.
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Figure 2.3. GH mRNA and GH-immunoreactivity in adult chicken pituitary glands. (a,b) 

In situ hybridization o f GH mRNA using a 690bp DIG-labeled S a d  antisense probe for 

chicken GH mRNA. Specific hybridization is shown in the cytoplasm of large rounded 

cells (somatotrophs) in the caudal lobe (Ca), but not in the cephalic lobe (Ce) o f the 

pituitary gland, nor (c) when using the 690bp DIG-labeled Not! sense probe for chicken 

GH mRNA. (d,e) Immunocytochemical staining o f GH cells in the caudal lobe (Ca, but 

not in the cephalic lobe, Ce) o f adult chicken pituitary glands using a specific antibody 

raised in rabbits against native chicken pituitary GH. (f) Preabsorption o f the primary 

antibody with excess recombinant chicken GH completely abolished pituitary staining. 

Magnifications are indicated by the bars (bar=10pm). Representative o f at least three 

pituitary glands.
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Figure 2.4. GH mRNA (a-g) and GH-immunoreactivity (h-n) in the lungs o f embryonic 

day (ED) 7 chicks, (a) In situ hybridization of GH mRNA using a 690bp DIG-labeled 

S a d  antisense probe for chicken GH mRNA. Specific hybridization is shown in the 

mesenchymal (me) and epithelial (ep) cells upon use o f 690bp DIG-labeled S a d  

antisense probe for chicken GH mRNA (a-d), but not (e-g) when using the 690bp DIG- 

labeled N otl sense probe for chicken GH mRNA. (h-k) Immunocytochemical staining of 

GH in mesenchymal and epithelial cells using a specific antibody raised in rabbits against 

native chicken pituitary GH. (1-n) Preabsorption of the primary antibody with excess 

recombinant chicken GH completely abolished all staining. Magnifications are indicated 

by the bars (a and h: bar=100pm, other bars=25pm). Representative o f at least 4 

embryos. Air sacs (as) and bronchioles (br) are indicated.
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£ § € 3fv «LrS!TTii
ED7 GH mRNA

j. ••.-'•••.'- ‘-r’*. ‘- I- 
rV.-v y .\'> .’/ ;  vs.; . im c

ep

me

me/►

>.. * • . <

‘•:J\ . j-A . ■ - • ■/ \ \
, br v 1 ; • v X  \

L" a ' • ' vfl
ep

/*

m
as

\  ' •. 
X’̂ V —

•V.

 •.*■•
i ' K S .  n

ED7 GH •v-! ,.„a s
X r '^ v .

i . . . y \ /
- ' }•? • '■ WC• \* I . - - ' ? »4 ,  —T •'

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117



Figure 2.5. GH mRNA (a-e) and GH-immunoreactivity (f-j) in the lungs of embryonic 

day (ED) 11 chicks, (a) In situ hybridization o f GH mRNA using a 690bp DIG-labeled 

S a d  antisense probe for chicken GH mRNA. Specific hybridization is shown in the 

mesenchymal (me) and epithelial (ep) cells, and in the blood vessels (bv) upon use of 

690bp DIG-labeled S a d  antisense probe for chicken GH mRNA (a-c), but not (d-e) 

when using the 690bp DIG-labeled N otl sense probe for chicken GH mRNA. (f-h) 

Immunocytochemical staining o f GH in mesenchymal and epithelial cells using a specific 

antibody raised in rabbits against native chicken pituitary GH. (i-j) Preabsoiption of the 

primary antibody with excess recombinant chicken GH completely abolished all staining. 

Magnifications are indicated by the bars (a and f: bar=25pm, all others: bar=20|im). 

Representative o f at least 4 embryos.
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Figure 2.6. GH mRNA (a-e) and GH-immunoreactivity (f-j) in the lungs o f embryonic 

day (ED) 15 chicks, (a) In situ hybridization o f GH mRNA using a 690bp DIG-labeled 

S a d  antisense probe for chicken GH mRNA. Specific hybridization is shown in the 

mesenchymal (me) and epithelial (ep) cells upon use o f 690bp DIG-labeled S a d  

antisense probe for chicken GH mRNA (a-c), but not (d-e) when using the 690bp DIG- 

labeled N otl sense probe for chicken GH mRNA. (f-h) Immunocytochemical staining of 

GH in mesenchymal, smooth muscle (sm), and epithelial cells using a specific antibody 

raised in rabbits against native chicken pituitary GH. (i-j) Preabsorption o f the primary 

antibody with excess recombinant chicken GH completely abolished all staining. 

Magnifications are indicated by the bars (a and f: bar=25pm, all others: bar=20um). 

Representative o f at least 4 embryos.
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Figure 2.7. GH mRNA (a-e) and GH-immunoreactivity (f-j) in the lungs o f embryonic 

day (ED) 20 chicks, (a) In situ hybridization o f GH mRNA using a 690bp DIG-labeled 

S a d  antisense probe for chicken GH mRNA. Specific hybridization is barely detectable 

in the mesenchymal (me) and epithelial (ep) cells upon use o f 690bp DIG-labeled S a d  

antisense probe for chicken GH mRNA (a-c). (d-e) Non-specific hybridization is shown 

when using the 690bp DIG-labeled N otl sense probe for chicken GH mRNA. (f-h) 

Immunocytochemical staining of GH in some mesenchymal, and epithelial cells using a 

specific antibody raised in rabbits against native chicken pituitary GH. Preabsorption of 

the primary antibody with excess recombinant chicken GH completely abolished all 

staining (i j) . Magnifications are indicated by the bars (a and f: bar=25pm, all others: 

bar=20pm). Representative of at least 4 embryos.
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Figure 2.8. GH mRNA (a) and GH-immunoreactivity (b) in the heart o f embryonic day 

(ED) 7 chicks, (a) In situ hybridization o f GH mRNA using a 690bp DIG-labeled S a d  

antisense probe for chicken GH mRNA. Specific hybridization is shown in the cardiac 

muscle (cm) upon use o f 690bp DIG-labeled S a d  antisense probe for chicken GH 

m R N A , but not in the red blood cells (rbc’s). (b) Immunocytochemical staining o f GH in 

the cardiac muscle but not red blood cells when using a specific antibody raised in rabbits 

against native chicken pituitary GH. Magnifications are indicated by the bars (a and f: 

bar=25pm, all others: bar=20pm). Representative o f at least 4 embryos.
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Figure 2.9. ED7 GHR mRNA (a-g) and GHR-immunoreactivity (h-n) in the lungs of 

embryonic day (ED) 7 chicks, (a) In situ hybridization o f GHR mRNA using a 500bp 

DIG-labeled S a d  antisense probe for chicken GHR mRNA. Specific hybridization is 

shown in the mesenchymal (me) and epithelial (ep) cells upon use o f 500bp DIG-labeled 

S a d  antisense probe for chicken GHR mRNA (a-d), but not (e-g) when using the 500bp 

DIG-labeled Notl sense probe for chicken GHR mRNA. (h-k) Immunocytochemical 

staining of GHR in mesenchymal and epithelial cells using an antibody raised in rabbits 

against a synthetic fragment (CHI 7) o f the extracellular domain o f the chicken GHR. (1- 

n) Replacement o f the primary antibody with normal rabbit serum completely abolished 

all staining. Magnifications are indicated by the bars (a and h: bar= 100pm, other 

bars=25pm). Representative o f at least 4 embryos. Air sacs (as) and bronchioles (br) are 

denoted.
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Figure 2.10. EDI 1 GHR mRNA (a-e) and GHR-immunoreactivity (f-j) in the lungs of 

embryonic day (ED) 11 chicks, (a) In situ hybridization of GHR mRNA using a 500bp 

DIG-labeled S a d  antisense probe for chicken GHR mRNA. Specific hybridization is 

shown in the mesenchymal (me) and epithelial (ep) cells upon use o f 500bp DIG-labeled 

S a d  antisense probe for chicken GHR mRNA (a-c), but not (d-e) when using the 500bp 

DIG-labeled N otl sense probe for chicken GHR mRNA. (f-h) Immunocytochemical 

staining of GHR in mesenchymal and epithelial cells using an antibody raised in rabbits 

against a synthetic fragment (CH17) of the extracellular domain o f the chicken GHR. (i- 

j)  Replacement o f the primary antibody with normal rabbit serum completely abolished 

all staining. Magnifications are indicated by the bars (a and f: bar=25pm, all others: 

bar=20pm). Representative of at least 4 embryos.
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Figure 2.11. ED 15 GHR mRNA (a-e) and GHR-immunoreactivity (f-j) in the lungs of 

embryonic day (ED) 15 chicks, (a) In situ hybridization o f GHR mRNA using a 500bp 

DIG-labeled S a d  antisense probe for chicken GHR mRNA. Specific hybridization is 

shown in the mesenchymal (me) and epithelial (ep) cells upon use o f 500bp DIG-labeled 

S a d  antisense probe for chicken GHR mRNA (a-c), but not (d-e) when using the 500bp 

DIG-labeled N otl sense probe for chicken GHR mRNA. (f-h) Immunocytochemical 

staining o f GHR in mesenchymal and epithelial cells using an antibody raised in rabbits 

against a synthetic fragment (CHI 7) o f the extracellular domain of the chicken GHR. (i-j) 

Replacement o f the primary antibody with normal rabbit serum completely abolished all 

staining. M ayvujjixaxtova are indicated by the bars (a and f: bar=25|im, all others: 

bar=20jim). Representative of at least 4 embryos.
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CHAPTER 3: GROWTH HORMONE EXPRESSION IN THE PERINATAL 

AND POSTNATAL RAT LUNG1

3.1 INTRODUCTION

A role for growth hormone (GH) in pulmonary function is indicated by the 

physiological and anatomical changes in the lung in pathophysiological states o f  GH 

excess and deficiency. For instance, large lungs (Bartlett, 1971), upper airflow 

obstruction (Trotman-Dickenson et al., 1991), and narrowing o f the small airways 

(Harrison et al., 1978) accompany GH excess, whereas a decrease in muscle strength 

and reduction in the maximum inspiratory and expiratory pressure (Merola et al.,

1996; Merola et al., 1995) is associated with GH deficiency. The possibility that the 

lung is a target site for GH action is also indicated by the GH-induced production o f 

superoxide by alveolar macrophages (Edwards et al., 1992), the GH-induced increase 

in circulating lung neutrophil activation during sepsis and the accompanying increase 

in microvascular injury (Liu et al., 2002a). Exogenous GH also induces NFkB 

activation in the lung (Liu et al., 2002b), increases phosphorylase A activity (Jost et 

al., 1979) and stimulates the tyrosine phosphorylation of specific proteins in lung 

epithelial cells (Batchelor et al., 1998). The GH receptor (GHR) gene is also 

expressed in pulmonary tissues (eg. Batchelor et al., 1998; Garcia-Aragon et al.,

1992; Tiong et al., 1989). Pituitary GH is thus likely to be an endocrine regulator of 

lung growth and function in juvenile development and in adulthood. It is, however, 

unlikely to be a regulator o f pulmonary function in the early fetus.

1 A version of this chapter has been published. Beyea, J.A., Olson, D.M., and Harvey, 
S. 2005. Dev Dyn 232:1037-46.
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In many species, lung growth and differentiation occurs during ontogeny prior 

to the appearance o f  the pituitary gland and the differentiation of GH-secreting 

somatotrophs. For instance, lung buds appear at embryonic day (ED) 10 in fetal rats 

(with a 21d gestation period) (Young et al., 2002) and at ED3.5 (with a 21d 

incubation period) in developing chicks (Sakiyama et al., 2000), both o f which occur 

before the presence of pituitary somatotrophs at ED 19 in rats (Chatelain et al., 1979; 

Frawley et al., 1985; Hemming et al., 1986) and at ED16 in chicks (Harvey et al., 

1998). The expression of GH receptors in pulmonary tissues also occurs before the 

appearance o f GH in peripheral plasma at ED 19 (Strosser and Mialhe, 1975) in rats 

and at ED17 in chicks (Harvey et al., 1998). Early fetal development is therefore 

thought to be a growth-without-GH-syndrome (Geffner, 1996), independent of 

pituitary GH. The abundant and widespread production o f GH in peripheral tissues of 

early embryonic chicks (Harvey et al., 1998) and mice (Pantaleon et al., 1997) 

nevertheless suggests GH involvement in early development through autocrine or 

paracrine mechanisms (Harvey and Hull, 1997). The presence of GH, GHR, and a 

GH-specific response gene (GH response gene-1) in the lungs o f early chick embryos 

(Harvey et al., 2000, Harvey et al., 2001) supports this possibility, although the 

presence of GH in extrapituitary organs o f the mammalian fetus is poorly 

documented. GH may, however, act as a local growth or differentiation factor in the 

mammalian lung, since GH mRNA, detected by RT-PCR, is present in the alveolar 

macrophages of adults (Allen et al., 2000) and trace amounts of GH immunoreactivity 

are present in whole lung extracts of fetal and adult lungs (Kyle et al., 1981; Costa et 

al., 1993). The possibility that GH production occurs in the rat lung during perinatal

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and neonatal periods o f lung development, therefore, has been determined in the 

present study.

3.2 MATERIALS AND METHODS

Animals/Tissues

Sprague-Dawley albino rat pups (Charles River Laboratories, St. Constant, Quebec, 

Canada) o f both sexes were used. The pregnant dams were housed in the Health 

Sciences Laboratory Animal Service Department o f the University o f Alberta under 

veterinary supervision. Dams were maintained on regular rodent pellets and water ad 

libitum and were kept on a 12:12-h light-dark cycle. Dams were killed (when pups 

were at ED 15, 17, 19, and 21) with an overdose of pentobarbital sodium injected 

intraperitoneally. Pups (n=4) were similarly sacrificed at ages day (D)2, D6, D9, and 

D14. These five ages were chosen to represent rat lung during the pseudoglandular 

(ED 17), saccular (D2), and alveolarization (D6, D9, D14) periods o f lung 

development (Gomi et al., 1994). The animal protocol was approved by the 

University o f Alberta’s Animal Policy and Welfare Committee.

For RT-PCR, lungs were excised in phosphate buffered saline (PBS) and 

immediately frozen in liquid nitrogen for RNA and protein extraction, respectively. 

For comparative purposes, samples o f the pectoralis muscle were also collected.

For ISH and immunohistochemistry, pups were decapitated, torsos were 

rinsed in PBS, then immediately transferred to freshly-prepared 4% 

paraformaldehyde (Fisher Scientific, Edmonton, Alberta, Canada) in PBS. Torsos 

were fixed overnight in 4% paraformaldehyde at 4°C. The following day, torsos were
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dehydrated and cleared [PBS for 15min x 2, 50% EtOH for 15min, 70% EtOH for 

15min, 95% EtOH for 30min, 100% EtOH for 30min x 2, Citri-Solve (Fisher 

Scientific) for 30min x 2]. Torsos were then placed in paraffin wax at 60°C 

overnight, and embedded in paraffin wax the next morning. Postnatal lungs were 

perfused with 4%  paraformaldehyde in PBS, at 20cm H2O pressure for 5min. The 

tracheae were then tied closed and the lungs placed in 4% paraformaldehyde in PBS 

at 4°C overnight. The following day, the trachea were untied, the left and right lung 

lobes separated, and the lungs placed in tissue cassettes (Fisher Scientific). Lungs 

were washed for 3x 30min in cold PBS, and then left in 0.1 M glycine (Fisher) in PBS 

at 4°C overnight. The next day, lungs were washed, for an hour each, in the 

following ethanol solutions: 70%, 80%, 90%, 95%, 100%, 100%, 100%, then cleared 

in xylene (Fisher Scientific) for lhour. The next morning, lungs were embedded in 

paraffin wax. Tissue sections (8pm) were cut with a microtome, flattened on 42°C 

0.1% DEPC (Sigma, Mississauga, Ontario, Canada) treated water, and mounted on 

Fisher Superffost®/Plus slides (Fisher Scientific). For comparative purposes, ISH 

was similarly conducted with skeletal muscle (tongue) tissue sections.

RT-PCR

Total RNA extraction o f liquid nitrogen-frozen whole lungs was performed using 

lOOmg of tissue in 1ml TRIzol® Reagent (Invitrogen Canada Inc., Burlington, 

Ontario, Canada), using the manufacturer’s instructions. Reverse transcription was 

performed using 3pg RNA with Thermoscript™ RNase H 'Reverse Transcriptase 

(Invitrogen). The reaction was carried out according to the manufacturer’s

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



instructions in a Techgene thermal cycler (Techne Ltd., Duxford, Cambridge, UK), 

using an extension temperature o f 59°C. Following the reaction, cDNA products 

were transferred to ice.

After reverse transcription, the cDNA’s were amplified by the polymerase 

chain reaction using 1U o f Platinum® Taq DNA Polymerase High Fidelity 

(Invitrogen) per reaction, according to the manufacturer’s instructions, in the presence 

of 0.2pM o f oligonucleotide primers designed to generate a 693bp rat (r) GH cDNA 

(Seeburg et al., 1977) (forward primer: JAB1: 5’-  TGG AC A GAT CAC TGA GTG 

GCG - 3 ’; and reverse primer: JAB2: 5 ’-  CGC AGA GAC ACC AGT GTG TGC -  

3’). Touchdown PCR was performed as follows: 95°C for lmin; then 5 cycles of 

95°C for 30s and 65°C for 2min; then 35 cycles o f 95°C for 30s and 56.2°C for 2min; 

followed by 68°C for lOmin. Ten microliters o f each PCR product was visualized by 

ethidium bromide staining in a 1.4% agarose gel. mRNA from adult rat pituitary 

glands was used as a positive control: negative controls utilized mRNA rather than 

cDNA.

Sequencing

PCR products were purified by the High Pure™ PCR Product Purification Kit (Roche 

Diagnostics Canada, Laval, Quebec, Canada), then sequenced by the DNA Core lab, 

Department o f Biochemistry, University of Alberta. Sequences were analyzed by 

BLAST and compared with sequences in the NCBI database.
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In Situ Hybridization 

Probes

In situ hybridization (ISH) was performed using a full-length rGH antisense probe, 

with a full-length rGH sense probe as a negative control. Both rGH probes were 

693bp and spanned bases -21 to 672 of the GH mRNA (Seeburg et al., 1977), and 

were made from a PCR product generated from adult rat pituitary with JAB1 and 

JAB2. For RNA probe synthesis, PCR products were then cloned into pCR7 II- 

TOPO vectors (Invitrogen). The vectors were linearized with restriction 

endonucleases BamHI and N otl (for rGH, antisense and sense probes, respectively). 

Digoxigenin-labeled antisense and sense riboprobes were synthesized by in vitro 

transcription with T7 and SP6 RNA polymerase, respectively, and DIG RNA labeling 

mix (Roche), according to the manufacturer’s instructions. Probe concentrations 

were determined by dilution and dot blot analysis.

Procedure

Briefly, 8pm 4% paraformaldehyde-fixed sections were deparafflnized in Citri-Solve 

(Fisher Scientific), and hydrated in a graded ethanol series. The sections were then 

washed in 0.1%DEPC water for 2min, and then washed in 0.1%DEPC-phosphate 

buffered saline (PBS) for 5min x 2. Slides were post-fixed in 4% formaldehyde in 

0.1%DEPC-PBS for lOmin. RNase treatment was performed by placing slides in 

fresh 0.1% DEPC-PBS (DEPC added just before use) for 15min x 2. Sections were 

treated in Proteinase K (Invitrogen) solution (lm g Proteinase K, 0.02M Tris, 0.01M 

NaiEDTA, in 0.1%DEPC water) at 37°C for lmin. Slides were then equilibrated in
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5X SSC for lOmin x 2. The sections were then prehybridized for 2 hours at 65°C 

with 120uL prehybridization solution (50% formamide, 5X SSC, 0.5mg/ml salmon 

testes DNA [Sigma], in 0.1% DEPC water) under a cover slip, on an elevated 

platform in a sealed container with 75% formamide at the bottom o f the container. 

Slides were then hybridized for 16h at 65°C with 120pL of hybridization solution 

[prehybridization solution with 1:8 diluted o f either antisense digoxigenin (DIG)- 

labeled rGH probe, or with 1:8 diluted sense Digoxigenin-labeled rGH probe], under 

prehybridization conditions.

Slides were then washed in 2X SSC for 30min at room temperature, in 2X 

SSC for 60min at 65°C, then finally in 0.1 X SSC for 60min at 65°C. Slides were 

washed for 5min x 2 in Buffer One (0.01M Tris, 0.15M NaCl, pH7.5), then 

transferred to antibody solution [1:2000 dilution of anti-digoxigenin, fab fragments 

(Roche) in 1% (w/v) blocking reagent (Roche) (1% w/v blocking reagent in 0.1 M 

maleic acid, 0.15M NaCl, pH7.5) ] for 2h. Slides were then washed for 15min x 2 in 

Buffer One, then for 5min in Buffer Two (0.1M Tris, 0.1M NaCl, 0.05M MgCF, 

pH9.5), and developed in NBT/BCIP solution [1:50 dilution o f NBT/BCIP Stock 

Solution (Roche) in Buffer Two] for 30min at 37°C. Colour development was 

stopped by immersion in TE buffer for 5min x 2. Sections were counterstained for 

2min with 0.5% (w/v) methyl green (Sigma) in 3M NaOAc (pH4.0), rinsed three 

times in 0.1% DEPC water, rehydrated in graded ethanol, then cleared in Citri-Solve 

for 2min x 2), then mounted with DPX Mounting Medium (Fluka - Sigma). Staining 

specificity was demonstrated using the adult rat anterior pituitary as a positive control 

(Figure 2A, B) in which intense cytoplasmic staining was clearly evident, in some but
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not all, pituitary cells, whereas staining was not observed using the sense probe 

(Figure 2C). Digital images were collected using a SPOT Digital Microscope camera 

(Carsen Group, Markam, Ont., Canada) mounted on an Olympus Bx40 microscope.

Immunohistochemistry

Immunocytochemical staining was performed using the avidin-biotin-peroxidase 

(ABC) method, as described in Harvey et al.(2000), and 1:500 diluted goat anti

human GH antibody. The specific goat antibody was raised against the amino 

terminus o f human GH (lot#A091, Santa Cruz Biotechnology, Santa Cruz, California, 

USA), and has been shown by the manufacturer to cross react with both rat and 

mouse GH. The lack of sequence homology between the peptide to which the 

antibody was raised and the sequence of rat prolactin precludes cross-reactivity of the 

antibody with rat prolactin.

For immunocytochemistry, the slides were deparaffinized in Citri-Solve 

(Fisher) and hydrated in a graded ethanol series. Slides were then incubated for 

30min in a 50%methanol/l% hydrogen peroxide solution. Slides were washed 

3x5min in PBS, blocked in 10% normal goat serum (NGS) (Sigma) for one hour, then 

incubated overnight with the primary antibodies in 1% NGS. The following morning, 

slides were washed (as before) in PBS, and incubated for lh  in 1:500 diluted biotin- 

SP-conjugated donkey anti-goat (Lot#56255; Jackson ImmunoResearch Laboratories, 

Inc., West Grove, PA, USA), and then washed again in PBS. ABC reagent (Vector 

Laboratories, Burlingame, CA, USA) was prepared, and incubated on slides for lh, 

followed by PBS washes. Staining was visualized using the chromogenic substrate,
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diaminobenzidine tetrahydrochloride (DAB) (Sigma), which resulted in a brown 

precipitate. The adult rat anterior pituitary was used as a positive control for GH 

staining (Figure 2D, E) in which intense cytoplasmic staining was clearly evident, in 

some but not all, pituitary cells. The specificity o f the staining was also established 

by preabsorption (2h, with shaking at room temperature) of the primary antibodies 

with GH blocking peptide (the sequence used for antisera generation; Santa Cruz 

Biotechnology), at final concentration of 80ug/mL, for 2h (pituitary control -  Figure 

2F). Digital images were collected using a SPOT Digital Microscope camera (Carsen 

Group, Markam, Ont., Canada) mounted on an Olympus B*40 microscope.

Western Blotting

Protein samples were homogenized, and protein content was estimated using Bio-Rad 

Protein Assay (Bio-Rad Life Sciences, Mississauga, Ontario, Canada). A total o f 

25pg o f protein was loaded in each lane (except pituitary, for which 2pg o f protein 

was loaded). Samples were run on a 15% polyacrylamide gel, transferred to a 

nitrocellulose membrane, and blocked with 5% skim milk powder in 0.1% T-TBS. 

Blots were incubated overnight with the same commercial antibody used for 

immunohistochemistry and also at a dilution o f 1:500. The blots were then incubated 

with peroxidase-conjugated anti-goat antibody (Jackson Immunoresearch 

Laboratories, West Grove, PA), at a dilution o f 1:500. Immunoreactive bands were 

visualized by using ECL Western Blotting Detection Reagents (Amersham 

Biosciences, Baie d’Urfe, Quebec, Canada). Pituitary was used as a positive control,
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and heart, skeletal muscle, and liver from adult rats were used for comparative 

purposes.

3.3 RESULTS

GH mRNA

As expected, full-length GH (693bp) cDNA was detected in pituitary mRNA, 

following RT-PCR with the GH oligonucleotide primers (Fig. 3.1 A, lane 1). cDNA 

moieties o f identical size were similarly generated with mRNA from ED 15 (Figure 

1A, lane 2), ED 17 (lane 3), ED 19 (lane 4), and ED21 (lane 5) lungs. These moieties 

were not generated in the negative controls (lanes 7-11, respectively), nor in reverse 

transcribed skeletal muscle mRNA (Fig. 3 .IB, lane 2).

Fetal Rat Lung cDNA Sequence

All of the fetal rat lung GH cDNA moieties were sequenced, and all were found to be 

99.9% homologous with the published rat pituitary GH sequence (Accession 

#V01237 - 46). The only exception to the published sequence (for Norway Rat) was 

a substitution at base 81 (a C rather than A), which would result in Phe rather than 

Lys as the coded amino acid. This substitution was also present in the GH cDNA 

amplified from pituitary mRNA (data not shown) and hence was not specific to the 

lung.
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In Situ Hybridization

Staining for rGH mRNA in the rat pituitary was demonstrated as a positive control 

(Fig. 3.2A, B). Intense cytoplasmic staining was clearly evident in some, but not all, 

pituitary cells, whereas staining was not observed using the rGH sense probe (Fig. 

3.2C) nor in muscle sections (Fig. 3.2G,H). Staining for GH mRNA was also 

detected in the perinatal rat lung during the pseudoglandular stage (ED 17; Fig. 3.3), 

in which intense staining is visible within mesenchymal (m), epithelial (ep), and 

smooth muscle (sm) cells (Fig. 3.3A-C). The specificity of the staining is indicated 

by the lack o f staining in these cell types when using the sense probe (Fig. 3.3D, E). 

rGH mRNA staining was similarly intense and widespread within the postnatal day 2 

(D2) lung during the saccular stage (Fig. 3.4A, B), and during early (D6; Fig. 3.5A, 

B), mid (D9; Fig. 3.6A, B), and late (D14; Fig. 3.7A, B) alveolarization. At each 

stage, rGH mRNA was localized to morphologically identified type I and II epithelial 

cells, pulmonary tissue macrophages, and alveolar macrophages.

Immunohistochemistry

As a positive control, GH immunoreactivity was demonstrated in the rat pituitary 

gland (Fig. 3.2D, E). The staining was confined to the cytoplasm (Fig. 3.2E) and was 

specific, being completely abolished upon preabsorption with the blocking peptide 

(Fig. 3.2F). In contrast, no staining was seen in muscle, as a negative control (Fig. 

3.21, J). Staining for GH was also seen in the pseudoglandular E D I7 lung (Fig. 3.3F- 

H), and was most intense in the mesenchymal (m), epithelial (ep), and smooth muscle 

(sm) cells (Fig. 3.3G, H). The specificity o f staining is indicated by the lack of
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staining in these cells types when the antibody is preabsorbed with blocking peptide 

(Fig. 3.31, J). Widespread staining was also present in the newborn in the first 2 

weeks o f postnatal development, during the saccular period (D2; Fig. 3.4D, E), and 

during early (D6; Fig. 3.5D, E), mid (D9; Fig. 3.6D, E), and late (D14; Fig. 3.7D, E) 

alveolarization. rGH was again localized to type I and II epithelial cells, and to 

pulmonary tissue macrophages and alveolar macrophages, similar to the rGH mRNA 

localization. The staining for GH in these tissues was completely lost after the 

preabsorption o f the GH antibody with the blocking peptide (Fig. 3.4-3.7F).

Western Blotting

As expected, the GH immunoreactivity in the pituitary gland was associated with a 

22kDa protein (Fig. 3.8, lane 1). This same protein was present in the postnatal day 

14 lung (Fig. 3.8, lanes 2-4), and in the heart (lane 5), in which an additional protein 

o f 15kDa was also present. In contrast, no GH immunoreactivity was present in 

extracts o f skeletal muscle (lane 6) and liver (lane 7).

3.4 DISCUSSION

These results clearly demonstrate, for the first time, GH gene expression in the lungs 

o f perinatal and neonatal rats. The GH mRNA in the fetal and neonatal rat lung was 

identical to that expressed in the adult pituitary gland o f these rats. The GH transcript 

in immune (Rohn and Weigent, 1995) and neural (Baudet et al., 2003) tissues o f the 

rat is also homologous to pituitary GH mRNA. In contrast, tissue-specific GH 

transcripts are present in central (neural retina) and peripheral (heart) tissues o f
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perinatal chickens that differ from pituitary GH mRNA (Takeuchi et al., 2001). The 

GH mRNA sequence in the pituitary glands and lungs o f our (Sprague-Dawley) rats 

differed from the published sequence for the Norway rat (Seeburg et al., 1977), but 

this may reflect the presence of polymorphisms in the GH gene (eg. Malveiro et al., 

2001; Sorensen et al., 2002).

GH gene expression has previously been demonstrated in adult human lungs 

(Allen et al., 2000), although this was only in isolated activated alveolar macrophages 

and was only characterized by RT-PCR. The present study is therefore the first to 

localize GH mRNA within lung epithelia, smooth muscle, mesenchyme and Type I 

and II cells.

The presence o f GH mRNA in the lung provides strong evidence for its 

synthesis within this tissue during development. The presence o f GH-releasing 

hormone (GHRH) (Shibasaki et al., 1984; Allen et al., 2000) and ghrelin 

(Gnanapavan et al., 2002; Volante et al., 2002) in the lung may indicate the 

involvement o f  these GH secretagogues in the expression o f the lung GH gene, as in 

the pituitary gland.

Within the lung, GH mRNA was present from ED 15, prior to its ontogenetic 

appearance in the pituitary gland at ED19 (Chatelain et al., 1979; Frawley et al.,

1985; Hemming et al., 1986). The widespread presence o f GH in the ED 17 lung is 

thus unlikely to be o f pituitary origin, especially as the circulating GH concentration 

is not detectable at this age (Strosser and Mialhe, 1975). The abundance and 

localization o f GH-immunoreactivity in the mesenchymal, epithelial, and smooth
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muscle cells o f the fetal lung is also unlikely to reflect its sequestration from GH- 

producing macrophages or monocytes in the alveoli or airways of the developing lung 

(Allen et al., 2000). Although GH can pass from bronchial airways into the lung 

interstitium and retain its biological activity (Patton et al., 1989), the GH 

immunoreactivity in the interstitial cells o f the perinatal and neonatal lung is far more 

abundant than in the cells of the bronchial associated lymphoid tissue inside the 

airway lumen. Indeed, the GH immunoreactivity in pulmonary macrophages reflect 

its uptake and degradation (Patton et al., 1989), suggesting GH release from lung 

airway epithelial cells might contribute to the GH found in airway macrophages. 

Alveolar macrophages are therefore unlikely to be the source of the GH 

immunoreactivity in the perinatal and neonatal lung.

Our finding of GH immunoreactivity in the lung is in agreement with earlier 

studies that measured radioimmunoassayable GH in whole-lung extracts in the adult 

lungs (Kyle et al., 1981) and in the fetal lungs (Costa et al., 1993) o f humans. In the 

latter study, the concentration of immunoreactive GH in the fetal lung was >5 fold 

higher than in adults, suggesting its presence was ontogenetically regulated and 

possibly linked to lung growth and development.

It is now well established that the lung is a target site for GH action. Indeed, 

radioligand binding sites for GH have been demonstrated in adult and fetal rabbit 

lungs (Amit et al., 1987; Labbe et al., 1992). Northern blotting has also demonstrated 

the presence of GHR mRNA in the lungs o f fetal rats (Walker et al., 1992) and rabbits 

(Tiong et al., 1989). GHR mRNA is also expressed in the human lung from the first 

trimester of gestation (Zogopoulos et al., 1996). Immunocytochemistry and in situ
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hybridization have also localized GHR and GHR mRNA within fetal rat lung 

epithelial cells (Garcia-Aragon et al., 1992; Edmondson et al., 1995) and GHRs have 

also been identified by Western blotting in fetal (Walker et al., 1992) and adult (Frick 

et al., 1998) rat lungs. Batchelor et al., (1998) also found that the GHR mRNA was 

present in the rat lung from ED 16-21, corresponding to part o f the pseudoglandular, 

the canalicular, and part of the saccular stages o f rat lung development, and found that 

it was 50% more abundant than in the liver, which is a recognized GH target site 

(Baumbach et al., 1989). Moreover, these authors showed that GH stimulation o f the 

receptor induced tyrosine kinase activity, indicating that fetal rat lung GHR is 

functional. Shoba et al., (1999) similarly correlated GHR abundance in the rat lung 

with the activity o f proteins involved in GHR signaling (STAT-1, -3, -5 and JAK 2) 

and Lu et al., (2001) found a GH-regulated gene (Grtpl) was also present in the rat 

lung. The presence o f GH and GHR in the developing lungs of perinatal and neonatal 

rats therefore suggests GH actions in lung development or in pulmonary function.

Actions of exogenous GH in promoting lung development have been shown in 

neonatal rats (Dubreuil and Morisset, 1986) and hypophysectomized mice 

(Sondergaard et al., 2003). Pathological pituitary GH excess in acromegaly is 

similarly correlated with lung hypertrophy (Trotman-Dickenson et a l ,  1991), 

particularly in alveolar size and alveolar surface area (Donnelly et al., 1995), whereas 

a decrease in lung size is a characteristic o f pituitary GH deficiency (De Troyer et al., 

1980). Exogenous GH also increases respiratory muscle strength (Felbinger et al., 

1999) in GH Deficiency patients. Other actions o f GH within the rat lung include an 

increase in the activity of pulmonary guanylate cyclase (Vesely, 1981), increased
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activities o f the antioxidant glutathione (Youn et al., 1998) and a decrease in lung 

lipid peroxidation (Weigent et al., 1992). Whereas roles for lung GH in lung 

development are currently unknown, it may participate in its vascularization, as GH 

stimulates angiogenesis in other tissues (Struman et al., 1999; Corbacho et al., 2002). 

It may also participate in cellular differentiation (Sanders and Harvey, 2004) or 

regulate immune function within the lung (Batchelor et al., 1998; Waters et al., 1999; 

Allen et al., 2000).

The abundance and widespread distribution o f GH and GH mRNA in the 

perinatal and neonatal lung suggests GH action during development is of 

physiological significance. Moreover, as GH expression occurs in the lung before its 

appearance in the pituitaiy gland at ED 19, (Chatelain et al., 1979; Frawley et al.,

1985; Hemming et al., 1986) and the presence o f  GH in systemic circulation at ED 19 

(Strosser and Mialhe, 1975), actions o f GH in the developing lung are likely to result 

from local autocrine or paracrine actions, at least in the late pseudoglandular stage. 

Local actions o f GH within immune (van Garderen et al., 1997), mammary (Zhang et 

al., 1997), and orthodontic tissues (Mertani et al., 2001) and GH-expressing cell lines 

(eg. Kaulsay et al., 1999) are now well established and a similar local mechanism 

may be operative in the lung during development. Such actions, however, may be 

indirect and mediated by an array of growth mediators (Sanders and Harvey, 2004), 

including insulin-like growth factors (IGFs).

The possibility that actions o f GH within the developing lung might be 

mediated by an IGF-I dependent mechanism is supported by the distribution of IGF-I 

mRNA in the fetal rat lung, since it is comparable to our findings o f GH and GH
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mRNA localization. IGF-I mRNA is abundantly localized within fetal mesenchymal 

lung cells, especially those surrounding airway epithelium (Retsch-Bogart et al., 

1996), although it is also present in airway epithelial cells (Wallen and Han, 1994). 

As the expression o f IGF-I in the developing lung was correlated with cellular 

proliferation and the maturation of connective tissue (Lallemand et al., 1995), it is 

possible that these actions reflect the upstream expression of GH in the same tissues 

and cells. The increased production of IGF-I in the lungs of GH-treated rats 

(D’Ercole et al., 1984) supports this possibility.

In summary, these results demonstrate the expression o f GH mRNA, and GH- 

immunoreactivity, within the lungs o f perinatal and neonatal rats and suggest 

autocrine/paracrine actions o f pulmonary GH are involved in the pseudoglandular 

through the alveolarization stages of development o f this tissue.
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Figure 3.1. A. RT-PCR of full-length rat growth hormone (rGH) mRNA in prenatal 

rat lungs. Positives (lanes 1-5), lOObp ladder (lanes 6), and negatives (no reverse 

transcriptase) (lanes 7-11) are shown. Samples are pituitary control (lanes 1 and 7), 

ED 15 lung (lanes 2 and 8), ED 17 lung (lanes 3 and 9), ED 19 lung (lanes 4 and 10), 

ED21 lung (lanes 5 and 11). B. RT-PCR of full-length rat growth hormone mRNA in 

pectoralis muscle. Positives (lanes 1,2), lOObp ladder (lane 3), and negative (no 

reverse transcriptase (lanes 4, 5) are shown. Samples are pituitary positive control 

(lanes 1 and 4), and pectoralis muscle negative control (lanes 2 and 5). Each gel is 

representative o f at least 5 similar gels.
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Figure 3.2. In situ hybridization o f rGH mRNA in the pituitary glands (A-C) and 

skeletal muscle (G, H) o f adult rats using full-length rGH RNA probes. Staining for 

rGH mRNA with the full-length antisense rGH probe is present in the pituitary 

somatotrophs (A, and arrow B), and absent upon use o f the full-length rGH sense 

probe (arrow C). Staining is also absent in skeletal muscle using both the antisense 

(G) and sense (H) rGH probes. Immunohistochemistry o f rGH in the pituitary glands 

(D-F) and skeletal muscle (I-J) of adult rats using a specific antibody against rGH. 

Cytoplasmic staining for rGH is present in the pituitary somatotrophs (D, and arrow

E), and absent upon preabsorption of the antibody with the specific blocking peptide 

(arrow F). Staining is also absent in skeletal muscle with anti-GH antibody (I) and 

preabsorbed anti-GH antibody (J). All sections are representative o f at least 4 adult 

rats.
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Figure 3.3. In situ hybridization (A-E) of rGH mRNA in pseudoglandular (ED 17) rat 

lung using full-length rGH RNA probes. Using the full-length rGH antisense probe, 

staining is present in the ED 17 fetal lung (A), specifically in the epithelial (ep), 

mesenchymal (m) (B), and smooth muscle (sm) cells (C). Staining in these cell types 

is absent (D, E) upon use o f the full-length rGH sense probe. Immunohistochemistry 

(F-J) o f rGH in pseudoglandular (ED 17) rat lung using a specific antibody against 

rGH. Staining is present in the ED 17 fetal lung (F), specifically in the smooth muscle 

(sm), mesenchymal (m) (G), and epithelial cells (ep) (H). Staining in these cell types 

is absent (I, J) upon preabsorption o f the antibody with the specific blocking peptide. 

Representative sections are shown from at least 4 pups.
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Figure 3.4. In situ hybridization (A-C) o f rGH mRNA in saccular (D2) rat lung using 

full-length rGH RNA probes. Using the full-length rGH antisense probe, staining is 

present in the D2 postnatal lung (A), specifically in the type I (I), type II (II), and 

pulmonary tissue macrophage (p) cells (B). Staining in these cell types is absent (C) 

upon use o f  the full-length rGH sense probe. Immunohistochemistry (D-F) o f rGH in 

saccular (D2) rat lung using a specific antibody against rGH. Staining is present in 

the D2 postnatal lung (D), specifically in the type I (I), type II (II), and pulmonary 

tissue macrophage (p) cells (E). Staining is lost (F) upon preabsorption o f the 

antibody with the specific blocking peptide. Representative sections are shown o f at 

least 4 pups.
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Figure 3.5. In situ hybridization (A-C) of rGH mRNA in early-alveolariztion (D6) rat 

lung using full-length rGH RNA probes. Using the full-length rGH antisense probe, 

staining is present in the D6 postnatal lung (A), specifically in the type I (I), and type 

II (II) cells (B). Staining in these cell types is absent (C) upon use o f the full-length 

rGH sense probe. Immunohistochemistiy (D-F) o f rGH in early-alveolarization (D6) 

rat lung using a specific antibody against rGH. Staining is present in the D6 postnatal 

lung (D), specifically in the type I (I), type II (II), and alveolar macrophage (a) cells 

(E). Staining is lost (F) upon preabsorption o f the antibody with the specific blocking 

peptide. Representative sections are shown from at least 4 pups.
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Figure 3.6. In situ hybridization (A-C) o f rGH mRNA in mid-alveolarization (D9) rat 

lung using full-length rGH RNA probes. Using the full-length rGH antisense probe, 

staining is present in the D9 postnatal lung (A), specifically in the type I (I) and type 

II (II) cells (B). Staining in these cell types is absent (C) upon use o f the full-length 

rGH sense probe. Immunohistochemistry (D-F) o f rGH in mid-alveolarization (D9) 

rat lung using a specific antibody against rGH. Staining is present in the D9 postnatal 

lung (D), specifically in the type I (I), type II (II), and alveolar macrophage (a) cells 

(E). Staining is lost (F) upon preabsorption o f the antibody with the specific blocking 

peptide. Representative sections are shown from at least 4 pups.
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Figure 3.7. In situ hybridization (A-C) of rGH mRNA in late-alveolarization (D14) 

rat lung using full-length rGH RNA probes. Using the full-length rGH antisense 

probe, staining is present in the D 14 postnatal lung (A), specifically in the type I (I), 

type II (II), and alveolar macrophage (a) cells (B). Staining in these cell types is 

absent (C) upon use o f the full-length rGH sense probe. Immunohistochemistry (D-

F) o f rGH in late-alveolarization (D14) rat lung using a specific antibody against 

rGH. Staining is present in the D 14 postnatal lung (D), specifically in the type I (I), 

type II (II), and alveolar macrophage (a) cells (E). Staining is lost (F) upon 

preabsorption o f the antibody with the specific blocking peptide. Representative 

sections are shown from at least 4 pups.
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Figure 3.8. Western blotting for rat GH-immunoreactivity. An immunoreactive band 

o f 22kDa is seen in the adult pituitary (lane 1), postnatal day 14 lung (lanes 2-4), and 

in adult heart (lane 5), in which an additional immunoreactive 15 kDa protein is also 

present. In contrast, no immunoreactivity is seen in adult skeletal muscle (lane 6), or 

adult liver (lane7). Representative o f at least 5 gels.
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CHAPTER 4: PROTEIN CHANGES IN THE RAT LUNG FOLLOWING 

ANTISENSE SUPPRESSION OF LUNG GROWTH HORMONE

4.1 INTRODUCTION

Growth hormone (GH) is principally produced in the pituitary gland, although GH 

mRNA has been demonstrated in numerous extrapituitary sites, in which it may exert 

autocrine or paracrine actions (Harvey and Hull, 1997; Waters et al., 1999). For 

instance, in recent years the lung has been identified as a site o f GH production, since 

GH and GH mRNA have been detected in alveolar macrophages (Allen et al., 2000; 

Beyea et al., 2005), in Type I and Type II epithelial cells and in mesenchymal cells 

(Beyea et al., 2005) during the period of lung alveolarization. As GH receptor (GHR) 

and GHR mRNA are also expressed in these cells (Garcia-Aragon et al., 1992), GH may 

act as an autocrine or paracrine during lung development, especially as exogenous GH 

has been shown to induce lung function (Batchelor et al., 1998; Liu et al., 2002a; Liu et 

al., 2002b). This possibility was therefore examined in the present study in which 

antisense GH oligodeoxynucleotides (ODNs) were used to knock down GH gene 

expression in the lung and a proteomic approach was used to determine changes in lung 

function.

4.2 MATERIALS AND METHODS

Animals

Sprague-Dawley albino rat pups (Charles river Laboratories, St. Constant, Quebec, 

Canada) o f both sexes were used. The pregnant dams were housed in the Health
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Sciences Laboratory Animal Service Department of the University o f the Alberta under 

veterinary supervision. Dams were maintained on regular rodent pellets and water ad 

libitum and were kept on a 12:12-h light-dark cycle. Pups were sacrificed by 

pentobarbital overdose through intraperitoneal injection at postnatal day (D) 14, at the 

end of the alveolarization period, after dynamic changes in lung structure and function 

have occurred. We chose the period o f lung alveolarization to administer the antisense 

GH because it is the period o f lung maturation (Copland and Post, 2004), that involves 

rapid structural, functional, and biochemical development. During such a critical time 

the likelihood of altering the expression of lung proteins should be optimal. The animal 

protocol was approved by the University o f Alberta’s Animal Policy and Welfare 

Committee in accordance with guidelines o f the Canadian Council o f Animal Care.

Reagents

Anti-rat GH and control scrambled ODN’s were prepared by Sigma Genosys (Sigma- 

Genosys, The Woodlands, Texas, USA). 1,2-Dioleoyl-3 trimethylammonium-propane 

(DOTAP) and dioleoylphosphatidyl-ethanol-amine (DOPE) phospholipids were 

purchased from Avanti Polar Lipids (Avanti Polar Lipids, Alabaster, Alabama, USA). 

Culture media (F12K Nutrient Mixture (Kaighn’s Modification, IX), fetal bovine serum 

(FBS) and antibiotic/antimycotic (100X) reagents were purchased from Gibco 

(Invitrogen Canada Inc., Burlington, Ontario, Canada). Rat lung epithelial L2 cells 

(Type II Epithelial Cells) (ATCC Number CCL-149) were purchased from American 

Type Culture Collection (ATCC, Manassas, Virginia, USA). Oligonucleotide primers 

were synthesized by the DNA COR Laboratory, Department o f Biochemistry,
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University o f Alberta. Platinum Taq DNA polymerase was purchased from Invitrogen. 

SYBR Green PCR Master Mix was purchased from Applied Biosystems (Foster City, 

California, USA). OCTEIA Rat/Mouse IGF-1 ELISA Kit was purchased from GroPep 

(GroPep Limited, Thebarton, South Australia, Australia). All reagents for 2- 

dimensional gel electrophoresis were purchased from Bio-Rad (Life Science Research 

Division, Bio-Rad Laboratories (Canada) Ltd., Mississauga, Ontario, Canada). Vector 

Hematoxylin QS stain was purchased from Vector (Vector Laboratories, Burlingame, 

California, USA).

Antisense Rat GH and Scrambled ODN’s

20mer phosphorothioate ODN’s were designed according to specifications of Agrawal 

(1999). The antisense directed against the rat GH mRNA (5’- 

GAGAGTCTGCAGCCATCGCC-3’, and the scrambled ODN control (5’- 

AAGGATACCTAGGACCCGCC-3’) were synthesized from phosphorothioate bases to 

prolong their half life in vivo.

Preparation o f Liposomes

Liposomes used in this study were prepared using a protocol modified from Legendre 

and Szoka (1992). One milligram DOTAP and one milligram DOPE (both in 

chloroform) were mixed, and the chloroform evaporated. Two milliliters o f sterile 

saline was added to the DOTAP/DOPE phospholipids, to achieve a solution that was 

1 mg/ml (0.5mg DOTAP/ml and 0.5mg DOPE/ml). The liposomes were dispersed in an 

ultrasonic bath (for approximately 10 min) until they were approximately 200nm in
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diameter. Liposome diameters were determined by dynamic light scattering using a 

Brookhaven (B190) particle sizer (Brookhaven Instruments, Holtsville, New York, 

U.S.A).

ODN/Liposome Co-Incubation

The DOTAP/DOPE liposomes are cationic, since DOTAP phospholipids have cationic 

heads. This positive charge permits a complex between the cationic liposomes and the 

anionic ODN (Stenton et al., 2000). These complexes were formed through incubation 

of a 2.5:1 ratio o f liposome (2.5mg) to ODN (lm g) (Anti-rat GH or scrambled) for 45 

min at room temperature in sterile saline (Stenton et al., 2000). For cell culture, these 

complexes were diluted in F12K Nutrient Mixture to a final ODN concentration of 

lfiM, consistent with ODN concentrations used in other studies (Baker et al., 2001).

For in vivo aerosolization, the complexes were diluted in sterile saline to a final 

concentration of 0.05mg/ml in a final volume of 18ml, comparable with the dosage o f an 

aerosolized anti-Syk kinase ODN used by Stenton et al., (2000).

Antisense GH-ODN in vitro

The effectiveness o f the antisense GH-ODN in inhibiting GH gene expression was first 

determined in the rat lung epithelial L2 cell line that constitutively expresses the GH 

gene (Fig. 1). L2 cells were grown in 90% F12K Nutrient Mixture and 10% FBS; 

supplemented with antibiotic-antimycotic (100U penicillin/ml, 100:g streptomycin/ml 

and 25pg amphotericin B/ml), at 37°C in 5% CO2. Cells were grown in 75cm2 flasks, 

then 1 x 106 cells were seeded in each well of a 6-well plate. Twenty-four hours later,
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the media were removed and the cells rinsed with PBS. The cells were then starved for 

24h in media lacking FBS. Control (scrambled) and GH-antisense ODN/liposome 

complexes were then added so that the concentration o f ODN was lpM  in the 2ml of 

media in each well. RNA was extracted from cells using Trizol (Invitrogen) 0, 3, 6,12,

18 and 24h after the ODN/liposome complexes were added.

Antisense GH-ODN in vivo

Fourteen rat pups were evenly spaced in a sealed plastic container for the duration of the 

aerosolization. The liposome/ODN mixtures (18ml in both cases) were nebulized for 45 

min (using a Nebulizer model 8901, Salter Labs, Vital Aire, Mississauga, Ontario, 

Canada) into sealed plastic containers that the rat pups. This aerosolization treatment 

was performed once daily, starting on postnatal day 4 and ending on postnatal day 13.

Tissue Preparation

On postnatal day 14 the pups were euthanized with an intraperitoneal injection (0.15ml) 

o f pentobarbital sodium (Euthanyl, Bimeda-Mtc Animal Health Inc., Cambridge, ON). 

The lungs were removed and frozen in liquid nitrogen. RNA was extracted from frozen 

lungs with Trizol (Invitrogen). For protein determination the frozen lungs were 

homogenized in Rehydration Buffer (Bio-Rad), and quantified by Bio-Rad assay.

Validation of Liposome/ODN Delivery

To confirm delivery of the liposome/ODN complexes to the lower airways, a 

DOTAP/DOPE combination that contained fluorescent transfection reagent (Avanti
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Polar Lipids, Alabaster, Alabama, U.S.A.) was aerosolized under identical conditions to 

visualize the localization o f the aerosolized liposome/ODN complexes. The animals 

were sacrificed 6h after aerosolization, the lungs collected in liquid nitrogen, and 8pm 

frozen sections were subsequently obtained using a cryostat.

RT-PCR for Rat GH in L2 Cells

Total RNA was extracted from duplicate wells (in six-well plates) o f L2 cells using 1ml 

TRIzol® Reagent (Invitrogen) using the manufacturer’s instructions. Reverse 

transcription was performed using 3 jug RNA with Superscript II® RNase H'Reverse 

Transcriptase (Invitrogen). The reaction was carried out according to the 

manufacturer’s instructions. Following reverse transcription, the cDNA products were 

transferred to ice and the cDNAs were amplified by the polymerase chain reaction, 

using 1U o f Platinum® Taq DNA Polymerase (Invitrogen) in the presence of 0.2:m of 

oligonucleotide primers designed to generate a 693 bp rat GH cDNA (Seeburg et al., 

1977) (forward primer: JAB1: 5’-TGG ACA GAT CAC TGA GTG GCG-3’ and reverse 

primer: JAB2: 5’-CGC AGA GAC ACC AGT GTG TGC-3’). PCR was performed as 

follows: 94°C for 1 min; then 35 cycles o f 94°C for 30 sec, 55°C for 30 sec, and 72°C 

for 1 min; followed by 72°C for 10 min. Ten microlitres o f each PCR product was 

visualized by ethidium bromide staining in a 1.0% agarose gel.

2-Dimensional Gel Electrophoresis

Lung proteins were separated by 2-dimensional gel electrophoresis, as detailed by 

Sawicki et al., (2003). Protein (200pg) was applied to each 11cm IPG (linear pH
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gradient range 3-10) strip (5 samples on 5 separate strips for each treatment group) (Bio- 

Rad), with rehydration, for 16-18h at 20°C. For isoelectric focusing, the Bio-Rad 

Protean IEF Cell was used with the following conditions at 20°C, using fast-voltage 

ramping: step 1 - 1 5  min with an ending voltage o f 250V, step 2 - 1 5 0  min with an 

ending voltage o f 8,000V, and step 3 -  35,000Vh (approximately 240 min). Strips were 

equilibrated according to the Bio-Rad protocol. The second dimension was performed 

with Criterion precast gels (8-16%)(Bio-Rad) in a Criterion Dodeca Cell (Bio-Rad). 

Upon completion o f the second dimension, the proteins were stained with Coomassie 

blue. In order to minimize variation in staining between gels, all 10 gels were stained 

simultaneously in the same bath. The reproducibility of the protein resolution using this 

protocol is very high (intra-assay and inter-assay coefficients o f variation o f 

approximately 5 and 10%, respectively), as detailed previously (Sawicki et al., 2003; 

Sawicki and Jugdutt, 2004). In our laboratory, the intensity o f staining for a single 

protein when run on separate gels differs by <5% and the correlation coefficient (r2) for 

the staining intensities of multiple protein samples measured on different gels is >0.97 

(Sawicki et al., 2003). This procedure therefore obviates the need for replicate 

determinations, as previously established (Sawicki et al., 2003; Sawicki and Jugdutt, 

2004; Jugdutt and Sawicki, 2004; Sawicki et al., 2004). Developed gels were scanned 

with a GS-800 calibrated densitometer (Bio-Rad). Image analysis and mass 

spectrometry were performed according to Sawicki and Jugdutt, (2004). Mass 

spectrometry and identification o f protein spots was performed by the Institute for 

Biomolecular Design, University o f Alberta.

195

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



IGF-1 ELISA

IGF-1 levels were evaluated, since IGF-1 is a measure o f GH action (Le Roith et al., 

2001) and its turnover is less dynamic than that of GH itself (Veldhuis et al., 1993; 

Gillespi et al., 1996). A rat/mouse IGF-1 ELISA kit (GroPep Limited, Adelaide, South 

Australia, Australia) was used to determine immunoreactive IGF-1 concentrations in the 

protein extracts. Samples (n=4) were run in duplicate using 300p.g protein/sample, 

according to manufacturer’s instructions. Briefly, samples were diluted in dilution 

buffer. 25 pi o f diluted sample was added to the plate, then lOOp.1 o f anti-rat IGF-1 

Biotin was added to each well o f the plate. The plate was then incubated at room 

temperature for 2h while shaking, washed and 200pl o f  Enzyme Conjugate was then 

added to each well. The plate was then incubated at room temperature for 30 min, 

washed and 200pl o f TMB substrate was then added to each well. The plates were then 

incubated for 20 min at room temperature, after which lOOpl o f stop solution was added 

to each well. The plates were then read at 450nm (with reference at 650nm).

4.3 RESULTS

Antisense GH ODN in Rat Lung Epithelial L2 Cells

Upon incubation of rat lung epithelial L2 Cells with the antisense GH ODN, expression 

o f the rGH gene was completely eliminated within 12h, and remained suppressed at 24h 

(Fig. 4.1), whereas expression o f rGH in the control (scrambled ODN) group did not 

change over the course of the experiment.
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Validation of Liposome/ODN Delivery

6h after the aerosolization o f the liposome/ODN complex, the fluorescent transfection 

reagent was widespread within lung alveolar cells. Representative sections from upper, 

middle and lower sections o f the caudal lobe are shown in Fig. 4.2. This confirms 

results obtained using aerosolized methylene blue in adult rats by Stenton et al., (2000).

2-Dimensional Gel Electrophoresis

Representative gels are shown in Fig. 4.3A, B. Analysis o f the 2D gels showed that 45 

proteins in the lungs of the antisense GH-ODN treated rats changed in concentration 

(P<0.05) relative to the corresponding proteins in the control group (35 proteins were 

increased, 10 proteins were decreased in concentration). Eleven of these proteins had 

highly significant (PO .O l) increases in relative content and, o f these, eight were present 

at intensities on the gels that permitted their identification by mass spectrophotometry. 

These proteins were the alpha and beta subunits of ATP synthase and electron transfer 

flavoprotein, albumin, calcyclin binding, protein, superoxide dismutase 2, and RNA 

binding protein m otif 3. Relative quantities of these proteins are given in Table 4.1.

IGF-1 ELISA

24h after the final antisense GH ODN administration, immunoreactive IGF-1 levels in 

the lung were decreased (P<0.05) by >50% (Fig. 4.4).
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4.4 DISCUSSION

The results o f this study demonstrate actions o f endogenous GH in the rat lung that 

suggest it has functional autocrine and paracrine roles during the alveolarization period. 

The local production of GH in the nervous system (Harvey and Hull, 2003), immune 

system (Weigent et al., 1991; Sabharwal and Varma, 1996; Arnold and Weigent 2004), 

reproductive system (Hull and Harvey, 2000; Luna et al., 2004), mammary glands (van 

Garderen et al., 1997) and teeth (Zhang et al., 1997) is similarly thought to induce 

paracrine or autocrine actions involved in tissue development or differentiation.

It is now well established that the lung is a target site for the GH action, since 

GHR expression occurs in fetal and adult lungs (Garcia-Aragon et al., 1992; Batchelor 

et al., 1998; Tiong et al., 1989). Moreover, a role for GH in pulmonary function is 

indicated by physiological and anatomical changes in the lung in pathophysiological 

states o f pituitary GH excess and deficiency. For instance, large lungs (Bartlett 1971), 

upper airflow obstruction (Trotman-Dickenson et al., 1991) and narrowing o f the small 

airways (Harrison et al., 1978) accompany GH excess, whereas a decrease in muscle 

strength and a reduction in the maximum inspiratory and expiratory pressure (Merola et 

al., 1995; Merola et al., 1996) is associated with pituitary GH deficiency. Exogenous 

GH has also been shown to induce superoxide production by alveolar macrophages 

(Edwards et al., 1992), to activate lung neutrophils during sepsis (Liu et al., 2002a), to 

induce NFkB activation (Liu et al., 2002b) and to increase phosphorylase A 

phosphorylation o f specific (but unidentified) proteins in lung epithelial cells (Batchelor 

et al., 1998). Exogenous GH also increases the production of IGF-binding protein (IGF- 

BP)-2 mRNA and the binding o f IGF-1 to IGF-BP-2 lung epithelial cells (Batchelor et

198

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



al., 1998). It is therefore possible that these actions also reflect local actions o f GH 

produced in the lung.

The presence o f GH, in trace amounts, in the mammalian lung was first 

demonstrated by Kyle et al. (1981) and subsequently confirmed by Costa et al. (1993).

It has also been detected in the chicken lung (Harvey et al., 2000). More recent studies 

have localized GH and GH mRNA within most epithelial and mesenchymal cells of 

neonatal rat lungs during the period o f alveolarization (Beyea et al., 2005). The 

expression of the GH gene in the rat lung was confirmed in the present study, in which 

GH expression was also demonstrated in a rat lung epithelial cell line (L2 cells). As 

GHRs are also present in rat lung epithelial and mesenchymal cells (Garcia-Aragon et 

al., 1992), GH may act as an autocrine or paracrine factor during lung alveolarization. 

This possibility is supported in the present study by the biochemical consequences 

following the inhalation of an aerosolized GH ODN.

Antisense GH transgenic expression is an effective approach to block pituitary 

GH production and to induce dwarfism (Matsumoto et al., 1995; Shimokawa et al., 

2003). Antisense deoxynucleotides to GH have also been shown to inhibit the 

production o f GH by rat lymphocytes in vitro and to block autocrine or paracrine actions 

o f lymphocyte GH on cell proliferation (Weigent et al., 1991) and cell survival (Arnold 

and Weigent, 2004). The results of the present study show that GH expression by rat 

lung epithelial cells in vitro is completely blocked by an antisense GH ODN. The same 

antisense GH ODN was aerosolized and inhaled by neonatal rats. This provides a 

unique experimental model to assess putative autocrine/paracrine actions o f GH in the
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lung. Stenton et al., (2000) used a similar experimental approach to down-regulate 

expression of Syk kinase in the alveolar macrophages o f the lung.

At least 45 proteins (out o f more than 200 detected by 2D gel electrophoresis) 

in the lungs o f the rats treated with the aerosolized antisense GH ODN had altered 

concentrations at the end of the treatment period. This suggests the transcription or 

translation of the genes coding for these proteins are normally under GH-inhibition or 

GH-stimulation.

GH responsive genes have been identified (Flores-Morales et al., 2001), 

including genes involved in the regulation o f metabolism, signal transduction, 

transcription, protein turnover, transport, detoxification, cell structure or replication. 

Numerous other GH-responsive genes have also been identified in the rat liver 

(Thompson et al., 2000), including proto-oncogenes (Triest et al., 1995; Yoon et al., 

1990), protease inhibitors (Yoon et al., 1997; Warren et al., 1993) and steroid 

hydroxylases (Wells et al., 1994; Subramanian et al., 1995). O f these, it is o f interest 

that the genes for ATP synthase (Flores-Morales et al., 2001; Tollet-Egnell et al., 2000) 

and albumin (Flores-Morales et al., 2001) were found to be GH- regulated, since ATP 

synthase and albumin levels were similarly increased in the lungs o f our antisense GH- 

ODN treated rats.

In addition to these proteins, electron transfer flavoprotein (a metabolic 

enzyme), calcyclin binding protein (possibly involved in cell cycle regulation), 

manganese superoxide dismutase 2 (involved in free radical destruction) and RNA 

binding protein motif 3 (involved in gene transcription) were also upregulated in the 

lung by antisense GH ODN administration. The significance of these findings is
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uncertain, since they have not previously been identified as GH-responsive proteins. 

Calcyclin binding protein mRNA has, however, been detected in the lung (Jastrzebska et 

al., 2000) and calcyclin, a protein associated with cell differentiation, is a regulator of 

the cell cycle in lung fibroblasts (Breen et al., 1999). It is therefore possible that GH 

participates in cell cycle regulation in the lung.

In contrast to the proteins upregulated by antisense GH-ODN administration, 

the lung concentration o f IGF-1 was reduced. This result was expected, since IGF-1 is a 

well established GH-response gene (Le Roith et al., 2001). As IGF-1 is thought to have 

roles in angiogenesis and vasculogenesis in the lung (Han et al., 2003), lung GH may be 

therefore be an upstream regulator o f these processes during development.

Autocrine or paracrine actions of GH upregulating or downregulating numerous 

genes have also been demonstrated in mammary carcinoma cells stably transfected with 

the GH gene, in which GHR blockade abrogates GH-induced transcriptional activation 

or suppression and autocrine/paracrine actions o f GH inducing cell proliferation, 

differentiation and cell spreading (Kaulsay et al., 1999; Kaulsay et al., 2000; Liu et al., 

1997; Graichen et al., 2002; Mertani et al., 2001). The immunoneutralization of 

endogenous GH has similarly established autocrine/paracrine actions o f GH in mouse 

blastocysts (Markham and Kaye, 2003), in thymic epithelial cells (Sabharwal and 

Varma, 1996), and in the Wolffian duct during fetal development (Nguyen et al., 1996). 

Autocrine or paracrine actions o f GH in many tissues are therefore well established.

In summary, these results demonstrate biochemical changes in the rat lung during 

alveolarization following antisense-ODN administration. Furthermore, they support the 

use o f the Stenton et al., (2000) model for downregulation o f lung gene expression, and
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propose 2D gel electrophoresis as a means for detection o f changes in multiple lun 

proteins in response to a given treatment. These results suggest that autocrine or 

paracrine actions o f GH are involved in early lung development.
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Table 4.1 -  Lung Proteins Responsive to Treatment with Anti-rGH Antisense Oligodeoxynucleotides 
(ODN’s ) .

Proteins3 Scrambled ODN Anti-rGH ODN

1. ATP Synthase (P-subunit) |1 00.00+9.09 *145.45±9.09

2. Albumin 100.00+22.88 *211.54±24.51

3. Calcyclin Binding Protein 100.00±10.46 *202.70±22.52

4. Electron Transfer Flavoprotein (p-subunit) 100.00±17.50 *157.14±14.29

5. ATP Synthase (a-subunit) 100.00±14.71 *201.73±35.30

6. Manganese Superoxide Dismutase 2 100.00±4.00 *132.5±6.05

7. RNA Binding Protein Motif 3 100.00±9.42 ’ 184.62+22.43

8. Electron Transfer Flavoprotein (a-subunit) 100.00±9.54 *160.70±27.64

“ Identified by 2D gel electrophoresis and mass spectrophotometry.

fAII values are given as percent of control (Scrambled ODN). Meantstandard error; n=5 for each of the two 
treatment groups.

'Significantly different from control at p<0.01 (Student's t-test).
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Figure 4.1. Detection of cDNA from rGH mRNA by RT-PCR in L2 epithelial type II cell 

culture at 12 (A), 18 (B), and 24 (C) hours following treatment with scrambled or anti-rat 

GH ODN. rGH mRNA (band=693bp) expression is unaltered by treatment with 

scrambled ODN (lanes 1-5 of A, B, and C). rGH mRNA expression is absent in anti-rGH 

ODN treated cells (lanes 7-11 of A, B, and C). lOObp ladder is shown on all gels (lane 6 

o f A, B, and C).
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Figure 4.2. Detection of fluorescent labeled liposomes 6hr after aerosolization. 

Liposomes only (A) are shown on a slide. These liposomes are detected in the upper (B), 

mid (C) and lower (D) caudal lobe. Selected alveoli (alv) are denoted.
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Figure 4.3. Representative 2D gel electrophoresis o f whole lung homogenate for 

scrambled control treated (A) and anti-rGH treated (B) rats at postnatal day fourteen. 

Numbers (B) indicate proteins whose levels have changed in the anti-rGH group relative 

to the control. These numbers correspond to the numbers o f the eight proteins in Table 

4.1.
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Figure 4.4. IGF-1 absolute levels (A) and percent control (B) in scrambled and anti-rGH 

treated postnatal day 14 lungs. Asterisks indicate statistical differences (p<0.05, 

student’s t-test) between groups. Means ± SEM’s (n=4).
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CHAPTER 5: GROWTH HORMONE (GH) ACTION IN THE DEVELOPING 

LUNG: CHANGES IN LUNG PROTEINS FOLLOWING ADENOVIRAL GH 

OVEREXPRESSION1

5.1 INTRODUCTION

The lung is a target site o f growth hormone (GH) action. GH receptors (GHRs) are 

present in the lung (Tiong et al., 1989; Garcia-Aragon et al., 1992; Batchelor et al., 1998) 

and exogenous GH induces the production of superoxide (Edwards et al., 1982), 

increases the activity of NFkB (Liu et al., 2002b) and phosphorylase A (lost et al., 1979) 

and stimulates the tyrosine phosphorylation o f specific, but unidentified, proteins in lung 

epithelial cells (Batchelor et al., 1998). Pathological changes in pituitary GH secretion 

also result in changes in lung function, since large lungs (Bartlett 1971), upper airflow 

obstruction (Trotman-Dickenson et al., 1991) and small airway narrowing (Harrison et 

al., 1978) accompany acromegaly, whilst a decrease in muscle strength and a reduction in 

maximum inspiratory and expiratory pressure accompany GH deficiency (Merola et al., 

1995,1996). The pituitary gland is not, however, the only site o f GH gene expression 

and the lung may not only be responsive to GH in peripheral cir’culation, but to GH 

produced locally as well.

It is now well established that GH is produced in many tissues in which it may have 

local autocrine/paracrine actions rather than endocrine roles (Harvey and Hull, 1997; 

Fukaya et al., 1998; Waters et al., 1999). Indeed, GH and GH mRNA are present in most 

mesenchymal and epithelial cells of the neonatal rat lung during the period of

'A  version of this chapter has been accepted for publication: Beyea, J.A., Olson, D.M., 
and Harvey, S. Dev Dyn
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alveolarization (days 4-14; Beyea et al., 2005). The possible functional importance of 

lung GH in lung function has therefore been further assessed in the present study, in 

which overexpression o f GH in the neonatal lung during the alveolarization period has 

been induced by the administration o f an aerosolized GH-expressing adenovirus. If  GH 

has local roles in lung function, we hypothesized that overexpression of GH in the lung 

would alter the production of GH-responsive proteins in this tissue.

5.2 MATERIALS AND METHODS

Animals

Sprague-Dawley albino rat pups (Charles River Laboratories, St. Constant, Quebec, 

Canada) o f both sexes were used. The pregnant dams were housed in the Health Sciences 

Laboratory Animal Service Department o f the University o f Alberta under veterinary 

supervision. Dams were maintained on regular rodent pellets and water ad libitum and 

were kept on a 12:12-h light-dark cycle. Pups were sacrificed by pentobarbital overdose 

through intraperitoneal injection at postnatal day (D) 14. The animal protocol was 

approved by the University of Alberta’s Animal Policy and Welfare Committee in 

accordance with guidelines of the Canadian Council o f Animal Care.

Mouse GH Adenovirus

The mouse GH adenovirus (AdV) which was used in these studies was generously 

provided by Dr. Bruce J. Baum (National Institute o f Dental and Craniofacial Research, 

NIH, Bethesda, Maryland). This vector (AdCMVmGH) contains the cytomegalovirus 

(CMV) promoter-enhancer and is replication deficient. It is well established that this 

vector is expressed translated and biologically active in rat epithelial cells in vitro and in
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vivo in rats and mice (Marmary et al., 1999). An adenovirus expressing Green 

Fluorescent Protein (AdGFP) (Sambandam et al., 2004) was used as a control.

Expression o f  Mouse GH AdV in Rat Lung Epithelial L2 Cells in Vitro 

In preliminary studies, the expression of the mouse GH AdV was determined in vitro in 

the rat lung epithelial Type IIL2 cell line (American Type Culture Collection, Manassas, 

Virginia, USA). L2 cells were grown in 90% F12K Nutrient Mixture (Gibco, 

Mississauga, Ontario, Canada) with 10% FBS (fetal bovine serum, Gibco) and antibiotic- 

antimycotic (Gibco; 100U penicillin/ml, lOOpg streptomycin/ml, and 0.25 pg 

amphotericin B/ml), at 37°C in 5% CCb. Cells were grown in 75cm2 flasks, then 1.67 x 

106 cells were seeded in each well o f a 6-well plate. Twenty-four hours later, the media 

was removed and the cells rinsed with PBS. The cells were then starved o f FBS for 24h 

prior to infection with the mGH Adv or its control, expressing green fluorescent protein. 

Infection was achieved with 30 copies o f the viruses (2.5 x 107 pfii/ml in 2ml media) per 

cell. RNA was then extracted from the cells using Trizol (Invitrogen Canada Inc., 

Burlington, Ontario, Canada) before, 24,48 and 72h after the mouse GH AdV was added, 

to ensure its stable expression.

Expression o f  Mouse GH AdV In Vivo

Under halothane anaesthesia, 4d-old rat pups (at the beginning of the alveolarization 

period) were injected intratrachealy (using a 22 gauge needle) with 25ul of 1.8 x 1010 

pfii/ml o f the mGH adenovirus or its GFP control. This procedure has been shown to 

effectively restrict adenoviral gene expression to the lungs (Kanaan et al., 2002; Pozeg et 

al., 2003; Chicoine et al., 2004). The rats were sutured with 3-0 Dexon II suture, and
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then were allowed to recover under a lamp. No adverse effects were experienced and 

once the rats had regained consciousness, they were returned to their mothers.

Adenoviral delivery o f genes directly to the lungs by this technique has been shown not 

to affect mortality, lung toxicity or inflammation of the lungs (Kanaan et al., 2002; Pozeg 

et al., 2003). The pups were sacrificed when they were 14 days o f age, at the end of the 

alveolarization period, at a time when the lung expresses GH in Type I and Type II 

epithelial cells (Beyea et al., 2005). The lungs were removed from the rats and frozen in 

liquid nitrogen. For protein determination, some of the lung tissue was homogenized in 

Rehydrated Buffer (Bio-Rad Life Science Research Division, Bio-Rad Laboratories 

(Canada) Ltd., Mississauga, Ontario, Canada), and quantified by Bio-Rad protein assay. 

For GFP immunofluorescence studies, the 14 day-old pups were euthanized with an 

intraperitoneal injection of 150ul o f  pentobarbital sodium (Euthanyl, Bimeda-Mtc Inc, 

Cambridge, ON). A midline laparotomy was performed in the upper abdomen and the 

internal organs were moved to reveal the diaphragm, which was punctured to create a 

bilateral pneumothorax. An incision was made to expose the trachea; a slit was made on 

its ventral side, and a small catheter was inserted and tied to allow 4%  paraformaldehyde 

to perfuse the tissue for 5 min at 20 cm H2O. Perfusions were made to a closed chest so 

the lungs would inflate to a natural state. After 5 min the catheter was removed, the 

trachea was tied off, the rib cage was carefully opened, and the lungs removed, fixed with 

paraformaldehyde, and processed as in Beyea et al., (2005). Slides were examined for 

GFP fluorescence. Green fluorescence was viewed using a blue exciter filter BP 460 - 

490 and a bandpass barrier filter BA 515 -  550. Images were captured using an Olympus 

Microscope System (Model BX40) (Olympus America Inc., Melville, NY, USA). Lung 

mass (wet weight) was determined in separate tissues by similarly removing them en bloc
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from the control and experimental animals and blotting them dry. The lungs were then 

put into a slow-oven and dried until constant weight. The ratio o f dry weight to wet 

weight was then determined.

RT-PCR for Mouse GH mRNA

Total RNA was extracted from frozen whole lungs using Trizol Reagent (Invitrogen 

Canada Inc., Burlington, Ontario, Canada; lOOmg/ml), according to the manufacturer’s 

protocol. Reverse transcription was performed using 3pg RNA with Superscript II 

RNase H ' Reverse Transcriptase (Invitrogen), and the cDNA products were transferred to 

ice. The cDNAs were then amplified by the polymerase chain reaction using 1U of 

Platinum7 Taq DNA Polymerase (Invitrogen) per reaction, in the presence of 0.2pM o f

oligonucleotide primers designed to generate a 651 bp mouse GH cDNA (Linzer and 

Talamantes, 1985) (forward primer: JAB3: 5’-ATG GCT ACA GAC TCT CGG ACC-3’; 

and reverse primer: JAB4: 5’-CTA GAA GGC ACA GCT GCT TTC-3’). These 

oligonucleotides are completely specific for mouse GH cDNA and do not amplify cDNA 

moieties in the presence o f rat mRNA. PCR was performed as follows: 94°C for 1 min; 

then 35 cycles o f 94°C for 30 sec, 55°C for 30 sec, and 72°C for 1 min; followed by 72°C 

for 10 min. Ten microlitres o f each PCR product was visualized by ethidium bromide 

staining in a 1.0% agarose gel.

Real-Time PCR for Mouse GH in L2 Cells

Total RNA in L2 cells in duplicate wells o f the 6-well plates was extracted by the 

TRIzol7 Reagent (Invitrogen). Reverse transcription was performed using 3pg RNA
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with Superscript II RNase H' Reverse Transcriptase (Invitrogen) and the cDNA products 

were transferred to ice. Real-Time PCR (n=6) was performed using 2X SYBR7 Green 

PCR Master Mix (Applied Biosystems, Foster City, California, U.S.A.). Primers used 

were JAB3 and JAB4. Cycling was as follows: 10 min at 95°C; 40 cycles of 95°C for 30 

sec, 55°C for 30 sec, and 72°C for 1 min; 95°C for 1 min; 55°C for 1 min; 40 cycles o f 

temperature ramp at +0.5°C/12 sec. Threshold cycle values were compared against those 

obtained from a standard cDNA curve o f a GFP control sample (made form 3,000ng, 

l,000ng, 500ng, 200ng, 20ng o f RNA). PCR products were purified by the High Pure7

PCR Product Purification Kit (Roche Diagnostics Canada, Laval, Quebec, Canada), then 

sequenced by the DNA Core Lab, Department o f Biochemistry, University o f Alberta. 

Sequences were analyzed by BLAST and compared with sequences in the NCBI 

database.

2-Dimensional Gel Electrophoresis

Lung proteins were separated by 2-dimensional gel electrophoresis, as detailed by 

Sawicki et al., (2003). Protein (200pg) was applied to 11cm IPG (linear pH gradient 

range 3-10) strips (6 samples on 6 separate strips for each treatment group) (Bio-Rad), 

with rehydration, for 16-18h at 20EC. For isoelectric focusing, the Bio-Rad protean IEF 

Cell was used with the following conditions at 20°C, using fast-voltage ramping: step 1 - 

15 min with an ending voltage o f 250V, step 2-150 min with an ending voltage of 

8,000V, and step 3 -35,000Vh (approximately 250 min). The strips were equilibrated 

according to the Bio-Rad protocol. The second dimension was performed with Criterion 

precise gel (8-16%) (Bio-Rad) in a Criterion Dodeca Cell (Bio-Rad). Upon completion 

o f the second dimension, the proteins were stained with Coomassie Blue. In order to
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minimize variation in staining between gels, all 12 gels were stained simultaneously in 

the same bath. Reproducibility o f the protein resolution using this protocol is very high 

(intra-assay and inter-assay coefficients of variation o f approximately 5 and 10%, 

respectively). Developed gels were scanned with a GH-800 calibrated densitometer 

(Bio-Rad). Image analysis and mass spectrometry were performed according to Sawicki 

and Jugdutt, (2004).

Mass spectrometry

Mass spectrometry was performed according to Sawicki and Jugdutt, (2004) in the 

Institute for Biomolecular Design at the University o f Alberta. Electrophoretically- 

separated proteins from the spots that demonstrated statistically significant changes in 

intensity and were consistent in all experiments were excised from the gel and pooled. 

In-Gel digestion was performed on a MassPrep Station (MicroMass, UK), using the 

method supplied by the manufacturer. Excised gel pieces were destained, reduced with 

DTT, cysteine residues reacted with iodoacetamide, digested with trypsin (Promega 

sequencing grade) and extracted. The extract was analyzed via LC/MS/MS. LC was 

performed on a Waters CapLC (Milford, MA), using a water/acetonitrile (0.2% formic 

acid) gradient, on a PicoFrit capillary column (New Objectives, Woburn, MA) (BioBasis 

C l8, 5 micron particle size, 10 cm x 75 micron ID, 15 micron tip). The eluted peptides 

were then electropsprayed and analyzed on a MicroMass Q-ToF 2 using automated data 

dependent MS to MS/MS switching. The resultant MS/MS data were searched against 

NCBInr and Swiss Prot databases for identification o f the protein. A mass deviation o f 

0.2 was tolerated and 0 missed cleavage sites were allowed in the searches. The Mascot 

(www.matrixscience.com) search engine was then utilized to analyze the NBCInr protein
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database for protein identification. The Mousse scoring algorithm (Perkins et al., 1999) 

was used for justification of accuracy of protein identification and is incorporated in the 

Mascot search engine.

5.3 RESULTS

Expression o f Mouse GH AdV in Rat Lung Epithelial L2 Cells

Mouse GH mRNA was not detectable in the L2 cells before infection with the mouse GH 

adenovirus (Fig. 5.1). However, in lung epithelial cells infected with the mouse GH Adv, 

mouse GH mRNA was, as expected (Marmary et al., 1999), readily detected after 24h 

and for at least another 48h thereafter. In marked contrast, mouse GH mRNA was not 

seen in the Green Fluorescent Protein (GFP) expressing controls (Fig. 5.1).

Expression o f Mouse GH Transgene in the Lungs

Expression o f the mouse GH adenovirus in the lungs of six 14 day-old rats was clearly 

demonstrated 10 days after intratracheal administration (on day 4), indicating a relatively 

stable transfection of lung cells (Fig. 5.2; lanes 1-6). In each case, a single 651 bp cDNA 

was readily detectable after RT-PCR with the JAB3/JAB4 primer set, whereas this 

transcript was not present in mRNA extracted from the GFP expressing controls (Fig.

5.2; lanes 7-12). Sequencing of these cDNA moieties confirmed that they had 100% 

identity with mouse GH cDNA.

The widespread localization of GFP in the air-exchange parenchyma of the lung on 

day 14 confirmed the uptake and expression of the adenovirus in the lung (Fig. 5.3). The 

absence o f GFP fluorescence in surrounding extra pulmonary tissues (data not shown)
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indicates, as expected (Pozeg et al., 2003; Chicoine et al., 2004), that adenoviral 

expression after intratracheal administration was restricted to the lung. There were also 

no overt indications o f  pulmonary inflammation, such as increased levels o f  alveolar 

macrophages in bronchioalveolar lavage, nor in the dry weight/wet weight ratios of the 

lungs, which did not differ between the mouse GH Adv and control groups (data not 

shown).

2-Dimensional Gel Electrophoresis

Numerous proteins (>200) were resolved following 2D-gel electrophoresis o f the proteins 

extracted from the lungs o f the control and mouse GH Adv treated rats (representative 

gels are shown in Fig. 5.4). O f these proteins, the concentration o f 13 in the lungs of rats 

overexpressing mGH were significantly different (P <0.05, by approximately -50 to 

+175%) from the GFP controls and 11 of these proteins had intensities sufficiently high 

enough for identification by mass spectrophometry (Table 1). Raw spot intensity data is 

shown (Fig. 5.5) and relative protein quantities are listed as percent o f GFP control for 

each protein (Table 5.2).

Infection o f the lung with the mouse GH AdV increased (P<0.05) the relative 

concentration o f at least nine proteins (Table 5.2; Fig. 5.5). These proteins included 

enzymes (nucleotide diphosphate kinase B, Cu/Zn superoxide dismutase, glutathiones s- 

transferase and aldehyde reductase 1) and structural proteins (beta-5 tubulin), as well as 

proteins involved in signal transduction (G-protein beta subunit and nucleoside 

diphosphate kinase B) and cell proliferation (retinoblastoma binding protein 4, major 

acute phase protein and calponin 2). In contrast, infection of the lung with the mouse GH 

AdV reduced (P<0.05) the relative concentration of haptoglobin and major acute phase 

alpha-1 protein (Table 5.2; Fig. 5.5).
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5.4 DISCUSSION

The results o f this study therefore clearly show the transgenic expression of the mouse 

GH gene in the rat lung. The amount o f mouse GH expressed was not quantified, but 

mouse GH cDNA was readily amplified by RT-PCR and Marmary et al., (1999) 

reported a 10 fold increase in circulating GH concentrations in rats 4 days after the 

intravenous administration of the same mouse GH- expressing adenovirus, although these 

authors could not distinguish between mouse and rat GH immunoreactivity in peripheral 

plasma.

The localized expression of the mouse GH gene in the rat lung demonstrates that 

this is an effective method for inducing targeted GH overexpression (Jayasankar et al., 

2004). Indeed, Pozeg et al., (2003) and Chicoine et al., (2004) used a similar 

experimental approach to specifically induce the expression of other genes in the lung, 

between 1 and 13 days after the intratracheal administration of the adenoviruses. Kanaan 

et al., (2002) also found that intratracheal administration was the best experimental 

approach for the lung-specific overexpression of adenoviral encoded genes, with 

negligible effects (if any) on gene expression in other organs or on the serum 

concentration o f the coded proteins. This experimental approach has also been shown to 

induce gene expression in all the cell types forming lung airway epithelia (Mastrangeli et 

al., 1993), with little (if any) inflammation (Waszak et al., 2002; Kanaan et al., 2002; 

Pozeg et al., 2003). Our model o f adenoviral gene delivery is therefore a useful tool to 

study the role of GH gene expression in lung development, particularly in the postnatal 

alveolarization stage.

GH is similarly known to induce or repress the activity of numerous genes 

(particularly in the liver), including genes involved in regulating metabolism,
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transcription, signal transduction, protein turnover, transport, detoxification, cell structure 

or replication (Flores-Morales et al., 2001). Other GH-responsive genes in the rat liver 

include proto-oncogene (Triest et al., 1995; Yoon et al., 1990), protease inhibitors (Yoon 

et al., 1987; Warren et a l ., 1993) and steroid hydroxylases (Wells et al., 1994; 

Subramanian et al., 1995). Changes in protein content in the neonatal lung therefore 

provide a marker for GH action in this tissue.

O f the GH responsive proteins in lung, aldehyde reductase 1 (involved in glucose 

metabolism) was increased over two-fold in response to mouse GH adenoviral expression 

This is consistent with its induction in the livers o f transgenic mice overexpressing the 

bovine GH gene (Olsson et al., 2003). It may, therefore, be pertinent that this enzyme 

(also known as aldose reductase) is also induced by basic fibroblast growth factor (bFGF) 

(Laeng et al., 1995), as bFGF is induced by GH (Izumi et al., 1995) and GH and bFGF 

act together to promote growth (Edmondson et al., 1999; Waters et al., 1999). In addition 

to aldose reductase, glutathione-S-transferase was also increased almost two fold by 

mouse GH adenoviral expression, consistent with the responsiveness o f the enzyme in rat 

livers to exogenous GH treatment (Tollet-Egnell et al., 2000). The increased 

concentrations of G-protein subunit in the lungs o f the rats expressing the mouse GH 

adenovirus are also in agreement with increased G-protein subunit levels in human 

somatotrophic pituitary tumors (Hamacher et al., 1998). However, none of the other 8 

proteins that were GH-responsive in the rats expressing the mouse GH adenovirus have 

previously been identified as markers o f GH action.

Retinoblastoma binding protein 4 (also known as chromatin assembly factor 1 subunit 

C or CAF-1 subunit C) was found to be doubled in response to mouse GH overexpression 

in the rat lung. CAF-1 is a marker o f proliferating cells (Polo et al., 2004) and subunit C
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is a subunit o f  the histone deacetylase complex (Taunton et al., 1996). GH may thus be 

involved cell proliferation during alveolarization. This possibility is supported by the 

decreased levels o f major acute phase protein (also known as T-kininogen) following 

mouse GH adenoviral expression, as this protein inhibits cell proliferation, especially in 

fibroblasts (Torres et al., 2001). Similarly the increase in calponin 2 concentrations 

might be expected to promote cellular proliferation, since it regulates the actin 

cytoskeleton in proliferating cells (Hossain et al., 2003). Although we did not assess 

cellular proliferation in the lungs o f the control and experimental rats, it is o f interest that 

GH is thought to promote lung growth in acromegalics and in GH-treated rats through an 

increase in cell hypertrophy rather than increased cell hyperplasia (Barlett 1971; Brody 

and Buhain, 1972; Garcia-Rio et al., 2001).

Adenoviral expression of mouse GH in the developing rat lung was also associated 

with increased concentrations of two proteins involved in intracellular signaling: 

Nucleoside diphosphate kinase B (NDPK B) and G-protein beta subunit, with which it 

complexes (Cuello et al., 2003). The upregulation o f these two proteins could, therefore, 

provide a novel pathway through which GH could increase signaling through G-protein 

coupled pathways. Indeed, GH has similarly been found to increase the activity of 

guanylate cyclase in the lung (Vesely 1981).

Fetuin A concentrations in the neonatal lung were also found to be increased by 

mouse GH adenoviral expression. Fetuin A is an inhibitor o f the insulin-receptor tyrosine 

kinase (Rauth et al., 1992) and is involved in some types of insulin resistance (Kalabay et 

al., 2002), which is classically induced by GH overexpression (eg. Dominici et al., 1998, 

Takano et al., 2001). While fetuin A is often considered a serum protein, its expression 

has previously been demonstrated in the developing mouse lung (Yang et al., 1992).
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Cu-Zn superoxide dismutase (Cu-Zn SOD) is also known to be expressed in the 

human lung during development (Strange et a l 1988), in which it is an important 

antioxidant (Peskin 1997). Indeed, Cu-Zn SOD expression and enzymatic activity rise 

late in gestation and are important for degradation of superoxide upon transition to air 

breathing and for oxygen scavenging in rats postnatally (Clerch et al., 1992; Nozik- 

Grayck et al., 2000). The increased Cu-Zn SOD in the lungs of rats expressing the mouse 

GH adenovirus therefore suggests that GH may normally promote this perinatal oxygen- 

scavenging mechanism during the transition of the lung to air breathing. GH is a well 

established regulator o f superoxide production (Edwards et al., 1992) and its effect on 

Cu-Zn SOD in the developing lung is consistent with its role in tissue protection and 

immune regulation (Arnold and Weigent, 2003; Arnold and Weigent, 2004).

In contrast with these GH-responsive proteins, haptoglobin concentrations were 

decreased in the lungs of the mouse GH-expressing rats. This protein is known to be 

locally expressed within the fetal lung and is believed to be produced in alveolar Type II 

epithelial cells in response to infection (Yang et al., 1995). It is therefore pertinent that 

GH and has cytokine actions (Waters et al., 1999) and is also produced in Type II 

epithelial cells (Beyea et al., 2005). An inhibitory effect o f GH on haptoglobin 

production is also indicated by the decrease in serum haptoglobin levels in response to 

recombinant human GH treatment in bum-victim rats (Jeschke et al., 1999).

The expression o f the mouse GH adenovirus in the rat lung would thus appear to have 

biological activity, since changes in gene expression and tissue protein concentrations are 

well established markers o f GH action (eg. Thompson et al., 2000; Flores-Morales et al., 

2001). As the expression of the adenovirus was confined to the lung, its overexpression 

is likely to reflect the actions o f endogenous GH produced in the lung. These results
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therefore support the possibility (Beyea et al., 2005) that GH expression during 

alveolarization promotes autocrine/paracrine actions involved in lung function.
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5.5 TABLES

Table 5.1 -  Growth hormone responsive lung proteins 

P r o b a b i l i t y  B a s e d  M o u s e  S c o r e * *

S p o t

N u m b e r T h r e s h o l d

( P < 0 . 0 5 )

O b s e r v e d

S c o r e

* P r o t e i n

I d e n t i t y

# 1 7 5 4 0 2 N u c l e o s i d e  D i p h o s p h a t e  K i n a s e  B

# 2 7 7 2 3 0 C u / Z n  S u p e r o x i d e  D i s m u t a s e

# 3 7 7 1 1 8 H a p t o g l o b i n

# 4 7 7 4 2 3 G l u t a t h i o n e  S - T r a n s f e r a s e

# 5 7 7 2 4 6 G - P r o t e i n  ( B e t a  s u b u n i t )

# 6 7 7 1 0 5 C a l p o n i n  2

# 7 7 7 1 8 6 A l d e h y d e  R e d u c t a s e  1

# 8 7 7 1 2 4 B e t a - 5  T u b u l i n

# 9 7 7 1 1 3 R e t i n o b l a s t o m a  B i n d i n g  P r o t e i n  4

# 1 0 7 7 1 8 3 F e t u i n  A

# 1 1 7 7 3 5 8 M a j o r  A c u t e  P h a s e  a l p h a - 1  P r o t e i n

iden tified  by mass spectrophotometry and Mascot search engine.

**-10 log(P) where P is the probability that the observed match is a random event 
(P<0.05). Individual scores >75 indicate identity or extensive homology.
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Table 5.2 -  Relative quantities of Proteins Responsive to GH Overexpression in the 
Lung.

Protein1 GFP AdV M ouse GH AdV

1. Nucleoside Diphosphate Kinase B fl0 0 .0 ± 1 3 .8 *168.2±23.0

2. Cu/Zn Superoxide Dismutase 100.0±3.3 *126.9±11.1

3. Haptoglobin 100.0±12.4 *51.19±11.2

4. Glutathione S-Transferase 100.0±17.0 *178.1±21.2

5. G-Protein (Beta subunit) 100.0±14.6 *172.3±26.2

6. Calponin 2 100.0±7.1 *147.4±14.6

7. Aldehyde Reductase 1 100.0±28.8 *265.4±67.0

8. Beta-5 Tubulin 100.0±36.6 *276.6±30.9

9. Retinoblastoma Binding Protein 4 100.0±21.5 *212.3±40.7

10. Fetuin A 100.0±13.1 *157.9±25.8

11. Major Acute Phase alpha-1 Protein 100.0±12.7 *61.4=8.5

2 Identified by 2D gel electrophoresis and mass spectrophotometry.

fA ll values are given as percent o f  control (GFP Control). Meanistandard error, n=6 for each o f  the two treatment 
groups.

‘ Significantly different from control, p<0.05 (Student’s t-test.)
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Figure 5.1. Real-time PCR for mouse GH in rat lung epithelial L2 cells. Quantities 

are shown at Ohours, 24hours, 48hours, and 72hours for both GFP infected (control) 

and mouse GH infected (GH) cells. Mouse GH is not detected in the GFP control 

group throughout the time course. Expression of mouse GH mRNA is detected at 

24hours post-infection, and continues to increase through 48 and 72hours. Different 

letters mean that the group is significantly different (P<0.05) from all other groups by 

ANOVA.
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Figure 5.2. Postnatal day 14 expression of mouse GH adenovirus in lungs. A 651bp 

transcript is amplified in all six mouse GH adenovirus treated lungs (lanes 1-6), and is 

absent from all six GFP adenovirus treated lungs (lanes 8-13). A lOObp ladder is 

shown for comparison (lane 7).
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Figure 5.3. Representative sections from upper (A), middle (B) and lower (C) 

portions o f the caudal lobe o f postnatal day 14 GFP control, demonstrating 

widespread localization of the GFP protein.
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Figure 5.4. Representative 2D gel electrophoresis o f whole lung homogenate for GFP 

adenovirus control treated (A) and mouse GH adenovirus treated (B) rats at postnatal 

day 14. Numbers indicate proteins whose levels have changed in the mouse GH 

adenovirus group relative to the GFP control. These numbers correspond to the 

numbers of the eleven proteins in Table 1.
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Figure 5.5. Spot intensity of proteins identified in Table 1 for GFP adenovirus and 

mouse GH adenovirus treatment groups. Intensities are given as arbitrary units 

provided by the PDQuest7 software. Abbreviations for proteins are NDK B

(Nucleoside diphosphate kinase B), Cu/Zn SOD (Cu/Zn superoxide dismutase), G S- 

T (glutathione s-transferase), ALD 1 (aldehyde reductase 1), RBP-4 (retinoblastoma 

binding protein 4), and Major AP alpha-1 (major acute phase alpha-1 protein). Mean 

spot intensities for all mouse GH adenovirus treated lungs are significantly different 

than mean spot intensities of GFP control adenovirus treated lungs (*P<0.05).
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CHAPTER 6: GROWTH HORMONE (GH) RECEPTOR KNOCKOUT MICE 

REVEAL ACTIONS OF GH IN LUNG DEVELOPMENT1

6.1 INTRODUCTION

The lung is a target site for growth hormone (GH) action, since the GH receptor 

(GHR) gene is expressed in pulmonary tissues (Tiong et ah, 1989; Garcia-Aragon et 

ah, 1992; Batchelor et ah, 1998). Indeed, a role for GH in pulmonary function is 

indicated by the anatomical and biophysical changes in the lung in pathological states 

of pituitary GH excess and deficiency. For instance, in acromegaly (see Colao et ah, 

2004 for review) the lungs are large (Bartlett 1971), upper airflow is obstructed 

(Trotman-Dickenson et ah, 1991) and the small airways are narrowed (Harrison et ah, 

1978). In contrast a decrease in respiratory muscle strength (Merola et ah, 1996) and 

a reduction in the maximum inspiratory and expiratory pressure (Merola et ah, 1995) 

accompanies GH deficiency. Moreover, exogenous GH induces the production of 

superoxide by alveolar macrophages (Edwards et ah, 1992), activates lung neutrophils 

(Liu et ah, 2002a), induces NFkB production (Liu et ah, 2002b), increases lung 

phosphorylase A activity (Jost et ah, 1979) and stimulates the tyrosine 

phosphorylation o f specific but unidentified proteins in lung epithelial cells (Batchelor 

et ah, 1998). The physiological importance o f endogenous GH in lung development 

is, however, unknown.

'A  version o f this chapter has been accepted for publication: Beyea, J.A., Sawicki, G., 

Olson, D.M., Kopchick, J.J., and Harvey, S. Proteomics. GS provided training in 2D gels 

and mass spectrometry. JJK provided the transgenic GHR knockout mice.
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Lung development involves cell proliferation, differentiation and survival and 

the process o f  alveolarization, in particular, involves airway branching and widening 

and angiogenesis o f the pulmonary vasculature (Copland and Post, 2004). Numerous 

local growth factors, including fibroblast growth factors, sonic hedgehog, and retinoic 

acid (Cardoso 2001) have established roles in lung development and in alveolarization 

in particular (Shenai et al., 1985; Massaro and Massaro, 1996,1997). Since the GH 

gene is widely expressed in Type I and Type II epithelial cells o f the rat lung during 

the period o f  alveolarization (Beyea et al., 2005), it may also participate in lung 

development, especially as local GH expression has autocrine/paracrine roles rather 

than endocrine actions in other tissues (Waters et al., 1999; Sanders and Harvey,

2004). The possibility that pituitary and/or pulmonary GH have physiological roles in 

lung development has therefore been investigated in GHR knockout mice (List et al., 

2001), using a proteomic approach to determine if  an absence o f GH-signaling 

affected the proteome of the developing lung. Actions o f GH in skeletal muscle 

(Chrysis et al., 2002) have similarly been determined using a proteomic approach, as 

have the actions o f GH in the livers o f mice with deficient GH-signaling (Dozmorov 

et al., 2001; Dozmorov et al., 2002; Miller et al., 2002; Murakami et al., 2003; 

Boylston et al., 2004).

6.2 M ATERIALS AND METHODS

Animals

The mice used in these studies were females, housed in the transgenic facility at the 

Edison Biotechnology Institute and have been described previously (Zhou et al.,
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1997). GHR-knockout KO) mice and their controls (+/+) were obtained from the 

inbreeding o f GHR (+/-) mice. Genotypes were confirmed by RT-PCR o f total RNA 

from the tails o f mice collected at autopsy (Chandrachekar et al., 1999). Animals 

were housed in a room with a controlled photoperiod of 12 hr light: 12 hr darkness 

(lights on from 0600 to 1800 hr) and a temperature 22-23°C. Mice were given free 

access to a nutritionally balanced diet (Lab Diet: PM1 Feeds, St. Louis, MO, USA) 

and tap water. All experiments were approved by the University Animal Care and 

Utilization Committee, and were conducted in accordance with NIH Animal Care 

guidelines.

Tissues

GHR-KO (-/-) (n=5) and GHR (+/+) (n=6) mice were sacrificed on postnatal day 14, 

late in the alveolarization period (Goncalves et al., 2001). Lungs were excised and 

flash frozen in liquid nitrogen. Protein samples for 2-dimensional electrophoresis (2- 

DE) were prepared by mixing the powdered lungs with rehydration buffer (8M urea, 

4% CHAPS, 10 mM dithiothreitol (DTT), 0.2% Bio-Lytes 3/10, Bio Rad,

Mississauga, Ontario, Canada), which was sonicated twice for 5 seconds and 

centrifuged for 10 minutes at 15,000 rpm at room temperature, to remove any 

insoluble particles.

2-Dimensional Polyacrylamide Gel Electrophoresis

The protein content o f lung samples in rehydration buffer was measured using the 

BioRad protein assay after suitable dilution of the samples. 0.2 mg protein was
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applied to 11 cm immobilized pH gradient (IPG) strips, which had a linear pH 

gradient from 3-10 (BioRad). For isoelectric focusing (IEF) the BioRad protean IEF 

cell was used at 20°C with fast voltage ramping: step 1:15 min with an end voltage o f 

250 V; step 2: 150 min with an end voltage o f 8,000 V; step 3: 35,000 V hr 

(approximately 260 min). After IEF, the strips were equilibrated according to the 

BioRad protocol. The second dimension of 2DE was carried out using Criterion 

precast gets (8-16%) (BioRad) in a Criterion Dodeca Cell (BioRad). After separation, 

the proteins were detected using Commassie Brilliant Blue R-250 (BioRad). To 

minimize variation in staining, all gels were stained in the same bath. The 

reproducibility o f protein resolution using this 2-DE technique and staining procedure 

is very high, as detailed previously (Sawicki et al., 2003; Sawicki and Jugdutt, 2004). 

In our laboratory, the intensity of staining for a single protein when run on separate 

gels differs by <5% and the correlation coefficient (r2) for the staining intensities of 

multiple protein samples measured on different gels is >0.97 (Sawicki et al., 2003). 

This procedure therefore obviates the need for replicate determinations, as previously 

established (Sawicki et al., 2003; Sawicki and Jugdutt, 2004; Jugdutt and Sawicki, 

2004; Sawicki et al., 2004).

Image Analysis

Developed gels were scanned using a GS-800 calibrated densitometer (BioRad). 

Quantitative analysis o f spot intensity was performed using PDQuest 7.1 software 

(BioRad). The protein spot sensitivity threshold was used to determine significant 

changes in protein spot size and density. This was based on 4 parameters: minimum
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peak volume sensitivity, smallest spot area, largest spot area and the noise filter level. 

Only spots with relative intensities between 2-200 arbitrary units were considered for 

mass spectrometry analysis.

Mass Spectrometry

Electrophoretically-separated proteins from the spots that demonstrated statistically 

significant changes in intensity (at the P<0.02 level) were excised from the gels and 

separately pooled. In-Gel digestion was performed on a MassPrep Station 

(Micromass, Manchester, UK), using the method supplied by the manufacturer. 

Excised gel pieces were destained, reduced with DTT and the cysteine residues 

reacted with iodoacetamide, before digestion with trypsin (Promega sequencing 

grade) and extraction. The extract was then analyzed via LC/MS/MS. Liquid 

chromatography was performed on a Waters CapLC (Milford, MA), using a 

water/acetonitrile (0.2% formic acid) gradient, on a PicoFrit Capillary column (New 

Objectives, Woburn, MA) (BioBasic C l8, 5 micron particle size, 10 cm x 75 micron 

ID, 15 micron tip). The eluted peptides were then electrosprayed and analyzed on a 

MicroMass Q-ToF 2, using automated data- dependent MS to MS/MS switching 

(Sawicki and Jugdutt, 2004). The resultant MS/MS data were searched against 

NCBInr and Swiss Prot databases for identification o f the protein. A mass deviation 

o f 0.2 was tolerated and 0 missed cleavage sites were allowed in the searches. The 

Mascot (www.matrixscience.com) search engine was used to search the NCBInr 

protein database for protein identification. The Mowse scoring algorithm (Perkins et
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al., 1999) was used for justification of accuracy of protein identification and is 

incorporated in the Mascot search engine.

6.3 RESULTS

Representative electrophoregrams for proteins in the lungs o f GHR (+/+) and GHR (- 

/-) mice are shown in Fig. 6.1. 2-DE gel analysis detected >600 proteins, of which 39 

spots (approximately 7%) differed significantly in protein content at the P<0.05 level 

(6 were o f higher abundance in the GHR (-/-) group, 33 were o f lower abundance). O f 

these proteins, the abundance of 17 were significantly different at the P<0.02 level (5 

o f higher abundance in the GHR (-/-) group, 12 o f lower abundance). These spots 

were excised from the gels for mass spectrometry analysis. O f these 17 spots, 14 were 

sufficiently resolved on the gels to permit accurate excision and 7 could be 

definitively identified by MS. The protein identity, the accuracy of protein 

identification (Mowse score), and the number of matched peptides for these proteins 

are summarized in Table 6.1. Mean spot intensities o f proteins from GHR (+/+) and 

GHR-KO (-/-) lungs are displayed for vimentin (Fig. 6.2, lung content reduced by 

75.0% in the GHR (-/-) group), SH3 domain-binding glutamic acid-rich-like protein 

(Fig. 6.2, lung content reduced by 88.3%), proteasome 26S ATPase subunit 4 (Fig. 

6.2, lung content reduced by 69.2%), apolipoprotein A IV(Apoa4) (Fig. 6.2, lung 

content reduced by 72.7%), peroxiredoxin 6 (Prdx6) (Fig. 6.3, lung content reduced 

by 81.0%), isocitrate dehydrogenase 1 (Fig. 6.3, lung content reduced by 69.6%), and 

electron transfer flavoprotein alpha subunit (Fig. 6.3, lung content reduced by 48.6%), 

along with representative spots from the GHR (+/+) and GHR-KO (-/-) 2D gels.
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6.4 DISCUSSION

This study demonstrates, for the first time, differences between normal and GHR-KO 

mice in tissue proteome content, in particular differences in the abundance o f lung 

proteins. Since significant differences were seen in the abundance of approximately 

7% of the detected proteins, these results suggest that GH signaling is o f physiological 

importance in lung development.

The 7 proteins that were definitively identified in this study include proteins 

involved in growth (vimentin), proteins involved in oxidative stress (SH3 domain- 

binding glutamic acid-rich-like protein, Prdx6 and isocitrate dehydrogenase 1), 

proteins involved in lipid metabolism (Apoa4 and Prdx6), and proteins involved in 

general metabolism/cell function (electron transfer flavoprotein alpha subunit and 

proteasome 26S ATPase subunit 4). The decreased content o f these proteins in the 

lungs o f GHR-KO (-/-) mice suggests their synthesis is normally dependent upon GH 

stimulation through the lung GHR.

These proteins were definitively identified by mass spectrometry, obviating 

the need to identify them by immunoblotting techniques, which are less sensitive and 

precise. Indeed, immunoblotting is dependent on the detection o f specific epitopes of 

the proteins, which may undergo different post-translational modifications in different 

genetic or treatment groups. Actin and myosin light chain 1 (Sawicki et al., 2003) 

measurements in mice are, for instance, are discrepant when determined by mass 

spectrometry and Western blotting.

O f the proteins identified, vimentin is an intermediate filament expressed in 

fibroblasts, mesenchymal cells and endothelial cells (Wang and Stamenovic, 2002),
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including those that are responsive to GH action (Tseng et al., 1997). It is thought to 

have roles in development, since it promotes cell migration and proliferation (Wang 

and Stamenovic, 2002; Pelosi et al., 2003). Although null mutation o f the vimentin 

gene results in mice without any obvious phenotypic defect (Colucci-Guyon et al., 

1994), this may reflect the redundancy of growth factors involved in cytoplasmic 

filament function and the induction of compensatory mechanisms. In the lung, 

vimentin expression occurs in Type I and Type II epithelial cells (Kasper et al., 1993; 

Koslowski et al., 2004) and in the endothelia o f arteries and veins (Kaarteenaaho- 

Wiik et al., 2004). The amount o f vimentin in the lung proteome is reduced by 

disease (Walburg et al., 2004), whereas vimentin expression is increased in lung 

repair following injury (Kasper et al., 1993). Vimentin is thus thought to be involved 

in lung growth. The reduced vimentin levels in the lungs o f GHR-KO mice would 

thus suggest that they have poorly developed lungs, although this has yet to be 

determined. This possibility is, however, supported by the reduced amounts of 

antioxidant proteins in the lungs of GHR-KO mice, since deficient antioxidative 

proteins occur in the proteome of diseased, poorly functioning lung cells (Waldburg et 

al., 2004). This is the first report to indicate a role for GH in vimentin regulation in 

the lung, although GH is thought to be involved in lung growth and repair (Fitzgerald 

et al., 1998) and the autocrine production of GH in human mammary carcinoma cells 

is accompanied by an induction of vimentin expression (Mukhina et al., 2004).

Oxidative stress is particularly important in the lung and the postnatal period 

is when the lung acquires its ability to deal with this stress (Land and Wilson, 2005). 

One of the antioxidant proteins in the lung is the SH3 domain-binding, glutamic acid-
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rich-like protein, a member of the SH3BGR family that belongs to the thioredoxin 

super-family (Mazzocco et al., 2002). Thioredoxin is a vital component o f the lung 

antioxidant machinery and in vivo delivery of recombinant thioredoxin has been 

proposed as a therapeutic approach for treating oxidative stress-associated lung 

disorders (Nakamura et al., 2005). The reduced amount o f SH3 domain-binding 

glutamic acid-rich-like protein in the lungs of the GHR-KO mice therefore suggests 

they would have reduced antioxidant activity. This possibility is also supported by 

the reduced content o f Prdx6 (also known as acidic calcium-independent 

phospholipase A2), an enzyme involved in oxidative defense against reactive oxygen 

species (Wang et al., 2004). Prdx6 is found predominantly in the lung, specifically 

within alveolar Type II cells, alveolar macrophages and in bronchiolar epithelium 

(Kim et al., 1998). Its anti oxidant role is indicated by the protection against 

hyperoxic injury that occurs in mouse lungs following the adenoviral overexpression 

of Prdx6 (Wang et al., 2004). Furthermore, antisense oligonucleotide suppression of 

Prdx6 expression in lung L2 epithelia cells results in increased oxidant sensitivity and 

apoptosis (Pak et al., 2002) and Prdx6 (-/-) KO mice show increased lung injury and 

mortality in hyperoxia (Wang et al., 2004).

Isocitrate dehydrogenase 1 is another antioxidant that was reduced in content 

in the lungs o f GHR-KO mice. This enzyme produces reduced NADP, which is then 

used to regenerate reduced glutathione (Murakami and Yoshino, 2004), which 

protects the lungs from oxidative stress (Rahman 1999). GH has previously been 

shown to interact with the glutathione-antioxidant system, by inducing glutathione 

synthesis and by modulating glutathione degradation (Brown-Borg et al., 2004;
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Brown-Borg et al., 2005). In addition, cells genetically engineered to produce human 

GH were found to overproduce glutathione (Cherbonnier et al., 2003). The activity of 

this enzyme has also been shown to be increased by exogenous GH in the liver of 

chickens (Roseborough et al., 1991). The reduced content o f isocitrate dehydrogenase 

1 in the lungs o f GHR-KO mice is consistent with the reduced levels o f SH3BGR and 

Prdx6 proteins and a hitherto unknown role for GH in oxidative protection of the 

developing lung.

In marked contrast, it is generally thought that the longevity o f dwarf mice 

with deficient GH signaling (Ames and Snell mice) reflects increased antioxidant 

defense and reduced oxidative stress (Hauck and Bartke, 2001). However, while 

catalase activity in these dwarf mice is greatly increased in numerous tissues (Brown- 

Borg et al., 1999; Brown-Borg and Rakoczy, 2000; Hauck and Bartke, 2000), 

glutathione levels are actively decreased in the livers o f dwarf mice (Brown-Borg et 

al., 1999). Indeed, in these mutant mice, the glutathione level is increased in the liver, 

brain and muscle following exogenous GH treatment (Brown-Borg and Rakoczy,

2003). Tissue levels o f antioxidant proteins in dwarf mice and their response to 

exogenous GH are therefore protein specific and possibly also tissue-specific and 

modified by age (Brown-Borg and Rakoczy, 2004; Brown-Borg and Rakoczy, 2005; 

Hauck and Bartke, 2001). Moreover, in contrast with Ames and Snell mice, catalase 

activity in the liver and kidneys of GHR-KO mice is decreased rather than increased 

(Hauck et al., 2002). The longevity in these mice (Coschigano et al., 2000) is 

therefore not a result o f increased free radical scavenging. Similarly, GH-resistance 

in the Hnf-1 alpha knockout “Laron” mouse (Lee et al., 1998) is also associated with
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reduced catalase and glutathione peroxidase activity in the liver and other tissues 

(Muppala et al., 2000). These findings are therefore consistent with our 

demonstration o f reduced antioxidant protein levels in the lungs o f GHR (-/-) mice. 

There is, however, no evidence of lung dysfunction in GHR-KO mice, which live 

40% longer than their wild-type siblings (Zhou et al., 1997; Bartke and Brown-Borg,

2004). The physiological consequences o f having decreased lung proteins involved in 

antioxidant defense are thus not life-threatening. Indeed, without information on the 

activity o f these antioxidative enzymes, the level o f antioxidative defense in the lungs 

o f the GHR-KO mice is uncertain. In the absence of lung dysfunction, it is thus likely 

that there is a redundancy o f antioxidative defense systems and compensatory 

mechanisms.

In addition to its role as an antioxidant, Prdx6 is also involved in lung 

surfactant production. Dipalmitoylphosphatidylcholine (DPPC) is the major 

phospholipid constituent o f lung surfactant, with 50% of DPPC synthesized through a 

phosphatidylcholine (PC) remodeling pathway in Type II pneumocytes that is largely 

regulated by Prdx6 (Fisher and Dodia, 1997). Lipid metabolism and the production of 

surfactant is o f major importance in the lung (Griese et al., 1999) and GH may 

therefore be involved in this process, especially as the lung content o f Apoa4 was also 

reduced in the GHR-KO mice. Apoa4 is primarily involved in the metabolism of 

triglycerides and high-density lipoproteins (Bai et al., 1996) and Apoa4 is expressed 

in the rabbit (Lenich et al., 1988) and mouse (Srivastava et al., 1991) lung. The 

decreased Apoa4 content in GHR-KO mice suggests its production is normally 

dependent upon GH-signaling, a possibility supported by the decreased Apoa4
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expression in the liver o f GH-deficient Snell dwarf mice (Boylston et al., 2004). 

Indeed, o f 50 hepatic genes in Snell mice that differ from normal mice in 

transcriptional amount, Apoa4 is the most affected by the lack o f GH signaling 

(Boylston et al., 2004). The expression of apolipoprotein E is similarly increased by 

exogenous GH in rat skeletal muscle (Tollet-Egnell et al., 2004).

In the absence o f GHR-mediated GH signaling, the lung contents of 

26SATPase subunit 4 and electron transfer flavoprotein alpha subunit were also 

reduced, indicating that their production is normally GH-dependent. The 26S 

proteasome complex plays a major role in the ubiquitin-proteasome pathway that 

mediates the non-lysosmal degradation of intracellular proteins (Mason et al., 1998; 

Naujokat and Hoffmann, 2002). ATPase subunit 4 is part o f the 19S regulatory 

subunit o f the 26S proteasome and this promotes substrate unfolding and translocation 

(Braun et al., 1999). Proteasome 26S ATPase 4 is widely employed as a 

‘housekeeper’ gene (Szabo et al., 2004), although exogenous GH has previously been 

found to increase proteasome subunit mRNAs (C-2, C-3, C-5, C-6, C-8 and C-9) in 

rat skeletal muscle (Chrysis et al., 2002) and in rat liver (for C-2, C-3 and C-8) 

(Chrysis et al., 2002). Proteosomal ATPase has also been identified as a GH-response 

gene in the rat liver (Tollet-Egnell et al., 2000). Electron transfer flavoprotein alpha 

subunit transfers electrons between several mitochondrial dehydrogenases and the 

main respiratory chain (Purevjav et al., 2002). It has not previously been thought to 

be GH-regulated.

In summary, the results o f this study identify proteins in the lungs of neonatal 

GHR-KO mice that are less abundant than in their normal controls. These results
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therefore suggest that these proteins are normally dependent upon GH-signaling and 

that GH is normally involved in promoting vimentin-induced lung growth, increasing 

SH3BGH, Prdx6 and isocitrate dehydrogenase-induced antioxidant protection, 

increasing Prdx6 and Apoa4 lipid metabolism and increasing lung proteasomal 

activity. These actions may reflect endocrine actions o f pituitary GH and/or local 

autocrine/paracrine actions of GH produced within the lung (Beyea et al., 2005).
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6.5 TABLE

Table 6.1 -  Identification of lung proteins.

Spot N um ber Probability’ Based Moyvse Score* 
T hreshold  O bserved Score

Peptides
M atched

Protein  
Identity (n)

1 29 517 16 Vimentin

2 29 88 2 SH3 domain-binding glutamic 
acid-rich-like protein

3 30 160 7 Proteasome 26S ATPase 
subunit 4

4 31 338 9 Apolipoprotein A-IV

5 30 75 2 Peroxiredoxin 6

6 29 139 4 Isocitrate dehydrogenase 1

7 30 86 2 Electron transfer flavoprotein 
alpha subunit

-10 log(P) where P is the probability that the observed match is a random event. 
Individual scores >29, >30, or >31 indicate identity or extensive homology (P<0.02).
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Figure 6.1. Representative 2D gel electrophoresis o f proteins extracted from the lungs 

o f GHR normal (+/+) (A) and GHR-KO (-/-) (B) mice at postnatal day 14. Numbers 

indicate the seven identified proteins (listed in Table 1) that differed in abundance.
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Figure 6.2. (A, C, E, G) Spot intensity (arbitrary units) for identified proteins in the 

lungs o f GHR normal (+/+) (n=6) and GHR-KO (-/-) mice (n=5) (Means +/- SEM, 

asterisks indicate significant differences between the groups, P<0.02) and (B, D, F,H) 

representative 2D gel electrophoresis highlighting individual protein spots (1-4). 

(Protein 1 = vimentin (A,B), Protein 2 = SH3 domain-binding glutamic acid-rich-like 

protein (C,D), Protein 3 = proteosome 26S ATPase subunit 4 (E,F), Protein 4 = 

apolipoprotein A-IV (G,H)).
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Figure 6.3. (A, C, E) Spot intensity (arbitrary units) for identified proteins in the lungs 

o f GHR normal (+/+) (n=6) and GHR-KO (-/-) mice (n=5) (Means +/- SEM, asterisks 

indicate significant differences between the groups, P<0.02) and (B, D, F) 

representative 2D gel electrophoresis highlighting individual protein spots (5-7). 

(Protein 5 = peroxiredoxin 6 (A, B), Protein 6 = isocitrate dehydrogenase (C, D), 

Protein 7 = electron transfer flavoprotein alpha subunit (E, F)).
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CHAPTER 7: CONCLUSION

7.1 Overall Summary

These studies addressed the hypotheses that (7.1.1) the developing lung is an 

extrapituitary site o f GH expression, and that (7.1.2) altered local GH signaling 

through GHR changes the expression of important lung proteins during the 

development of the lung.

7.1.1 GH in the lung: descriptive studies

GH has been demonstrated in many extrapituitary tissues (reviewed in Harvey and 

Hull, 1997) o f the chick. In chapter 2, our studies expanded these tissues to include 

the developing chick lung. Our data demonstrate that GH mRNA and protein are 

expressed in the chick lung from ED7 to ED 15, and decline before hatch, at ED20.

GH mRNA and protein were localized to mesenchymal, epithelial, and smooth 

muscle cells, and were also found in blood vessels. The full-length 690bp mRNA 

transcript was detected, with a sequence identical to the pituitary GH transcript. GH- 

immunoreactivity was associated primarily with a smaller 15kDa GH-moiety; 

however, the larger 22kDa isoform was also present. This study clearly demonstrated 

that the embryonic chick lung is an extrapituitary site o f GH expression, and implies 

potential roles for local GH in chick lung development.

As extrapituitary GH expression in the lung may be species-specific given the 

notable structural and physiological differences between the avian and the 

mammalian lung, we chose next to examine the developing rat lung for extrapituitary
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GH. Chapter 3 documents GH mRNA and protein within the developing rat lung 

from ED 17 to postnatal day 14. Prenatally, GH mRNA and protein was localized to 

airway epithelial, smooth muscle, and mesenchymal cells. Postnatally, GH mRNA 

and protein was detected in Type I and II epithelial cells, and in pulmonary tissue 

macrophages and alveolar macrophages. The lung GH mRNA sequence was the full 

length 693bp transcript, with an identical nucleotide sequence to that of pituitary GH 

mRNA. GH-immunoreactivity was solely with a 22kDa moiety, the same isoform as 

is found in adult rat pituitary. This study was the first demonstration in the literature 

o f GH expression locally within the developing lung. To date, only GH 

immunoreactivity from adult and fetal lung extracts has been shown (Kyle et al.,

1981; Costa et al., 1993). GH mRNA has been demonstrated in the alveolar 

macrophages o f adult rats. These past studies demonstrated only trace quantities of 

GH immunoreactive protein and GH mRNA, and only the Allen et al. (2000) study 

elucidated the source o f the GH.

These two descriptive studies on extrapituitary lung GH (chapters 2 and 3) 

have documented the lung as a GH-producing tissue, and lay the framework for the 

functional studies o f chapters 4-6.

7.1.2 GH in the lung: functional studies

To reveal potential roles for local GH in the lung, we used two models o f altered GH 

expression (antisense oligodeoxynucleotide downregulation of GH expression, and 

adenovirus-mediated overexpression o f GH), and one model of altered GH signaling 

(GHR knockout mice). We chose the period of alveolarization, the final stage of lung
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development, as the time to examine these roles, as it is most conducive to 

experimental manipulations. These models were examined using a proteomics 

approach followed by mass spectrometry to determine changes in lung proteins.

Antisense oligodeoxynucleotides to rat GH were used to examine changes 

resultant from decreased local expression o f GH in the lung during the period of 

alveolarization. This experimental procedure revealed that 45 proteins were changed 

in relative abundance upon GH-underexpression. Of these, eight proteins were 

sequenced and found to be metabolic proteins (ATP synthase a  and P subunits, 

electron transfer flavoprotein a  and P subunits), a regulator o f the cell cycle 

(calcyclin binding protein), an enzyme for free radical distruction (superoxide 

dismutase 2), a gene transcription protein (RNA binding protein 3), and albumin. As 

well, IGF-1 levels were found to be decreased by ELISA. IGF-1 is thought to have 

roles in angiogenesis and vasculogenesis. These proteins demonstrate potential GH 

actions in the lung

A mouse GH adenovirus, generously provided by Dr. Bruce J. Baum 

(Marmary et al., 1999), was used to overexpress full-length mouse GH in the lungs of 

day 4 postnatal rat lungs. This resulted in altered expression o f thirteen lung proteins. 

These proteins included enzymes (nucleotide diphosphate kinase B, Cu/Zn 

superoxide dismutase, glutathione s-transferase and aldehyde reductase 1) and 

structural proteins (beta-5 tubulin), as well as proteins involved in signal transduction 

(G-protein beta subunit and nucleoside diphosphate kinase B), cell proliferation 

(retinoblastoma binding protein 4, major acute phase protein and calponin 2), immune 

regulation (major acute phase alpha-1 protein), and heme scavenging (haptoglobin).
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These results support the possibility that GH expression during alveolarization 

promotes autocrine/paracrine actions involved in lung function.

Finally, we analyzed a GHR knockout mouse, obtained through a 

collaboration with Dr. John J. Kopchick (Zhou et al., 1997). This mouse has a 

homozygous disrupted GHR gene. As GHR is the only GH receptor, absence of 

GHR ablates GH signaling (Zhou et al., 1997). Thirty-nine lung proteins were altered 

in abundance in this experiment. O f these, seven proteins were sufficiently resolved 

on the gels and were conducive to mass spectrometry. These were proteins involved 

in growth (vimentin), proteins involved in oxidative stress (SH3 domain-binding 

glutamic acid-rich-like protein, Prdx6 and isocitrate dehydrogenase 1), proteins 

involved in lipid metabolism (Apoa4 and Prdx6), and proteins involved in general 

metabolism/cell function (electron transfer flavoprotein alpha subunit and proteasome 

26S ATPase subunit 4). This study suggests that these proteins are involved in 

normal signaling o f GH through GHR in the lung.

These three functional studies reveal potential metabolic, oxidative stress, and 

surfactant roles of GH in the developing lung. As locally expressed GH has not been 

previously suggested in the literature, the descriptive and functional studies reported 

here form the basis for further investigation into local GH in the lung.

7.1.3 Limitations o f these studies

The descriptive studies present a foundation for further understanding o f the pattern 

o f GH expression in the developing lung. However, these studies are not 

comprehensive. They do not examine the earliest stages o f lung development (from
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the onset o f lung budding from the primitive foregut). This means that the original 

cells to express GH and the stage o f development at which GH expression begins is 

unknown. Analogously, it is not known when (or if) GH expression is turned off, as 

the latest stage to be examined is late embryonic development in the chick and two 

weeks postnatally in the rat. An understanding of GH in adult chicks and rats was not 

sought in these studies, and as such it is unclear whether or not GH has roles in the 

lung other than during development.

GHR is still poorly understood during lung development. Although GHR 

mRNA and protein have been shown in the chick lung (chapter 2) and previously in 

the rat lung (Garcia-Aragon et al., 1992; Batchelor et al., 1998), it is unclear if  GHR 

is inserted into the membrane, and if  this GHR binds GH. Induction o f proteins 

following GH administration to fetal rat lungs has been shown (Batchelor et al.,

1998). This suggests a functional GHR in the late fetal rat lung, but further GH-GHR 

binding studies in the lung are required.

As liposomes only have the potential to merge with the membrane of one cell 

and the mouse GH adenovirus is replication deficient, changes in proteins in chapters 

4 and 5 likely reflect effects only on the type I and II epithelial cells of the lung.

Given that GH is widely expressed in the rat lung (chapter 3), new models need to be 

designed that can alter GH expression in all parts of the lung. This is especially true 

for the mesenchymal cells, as much o f the lung (including the pulmonary vasculature) 

develops from these GH expressing cells.

The GHR knockout mouse model has non-functional GHR in all tissues, not 

specifically the lung. However, GH expression is not altered. The results obtained in
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Chapter 6 may be a summation of effects o f both pituitary GH and local lung GH on 

lung GHR. To confirm that the changes in protein levels in the lung are due solely to 

lung GH, a lung-specific ablation o f GHR must be designed.

7.2 O verall Discussion

7.2.1 Extrapituitary GH

Expression of GH in sites other than the pituitary gland has been demonstrated in 

many tissues in the chick (Harvey and Hull, 1997; Harvey et al., 2000). Expression 

o f GH mRNA is detected in the chick brain (Render et al., 1995), neural retina 

(Harvey et al., 2004), and spleen (Render et al., 1995). Extrapituitary GH in these 

tissues is thought to act through autocrine/paracrine mechanisms (Harvey et al.,

2000). Data presented in Chapter 2 supports a similar mechanism for chick lung GH. 

As GH is expressed in mesenchymal, epithelial, and smooth muscle cells throughout 

embryonic development, it follows that locally expressed GH is involved in chick 

lung development. The theory of autocrine/paracrine actions for extrapituitary GH is 

less well developed in the rat.

GH mRNA in the rat has been detected in the brain (Martinoli et al., 1991), 

mononuclear leukocytes (Weigent et al., 1992), thymus, liver, spleen, ileum, smooth 

muscle and endothelial cells o f blood vessels (Recher et al., 2001), and in resident 

alveolar macrophages (Allen et al., 2000). As such, our data (Chapter 3) demonstrate 

the first instance o f GH mRNA expression within the lungs. However, presence of 

GH mRNA and protein in the developing rat lung do not imply action. To examine if 

local GH in the rat lung has actions, we designed three functional studies (Chapters 4-
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6). We proposed that extrapituitary GH in the developing rat lung acts as an 

autocrine/paracrine.

7.2.2 GH as an autocrine/paracrine in the lung

GH has been suggested as an autocrine/paracrine in many tissues. The local 

production o f GH in the nervous system (Harvey and Hull, 2003), immune system 

(Weigent et al., 1991; Sabharwal and Varma, 1996; Arnold and Weigent 2004), 

reproductive system (Hull and Harvey, 2000; Luna et al., 2004), mammary glands 

(van Garderen et al., 1997) and teeth (Zhang et al., 1997) is thought to induce 

autocrine or paracrine actions involved in tissue development or differentiation.

Some studies have directly demonstrated autocrine/paracrine actions of local 

GH. Human thymocytes produce and secrete GH (Sabharwal and Varma, 1996). 

Upon use o f a GH polyclonal antibody in human thymocyte cell culture, thymocyte 

proliferation was markedly inhibited (Sabharwal and Varma, 1996). This is a 

demonstration of the GH-GHR autocrine/paracrine loop, since the antibody-GH 

interaction prevents GH binding to the GHR in the same and neighbouring cells. 

Similar results have been found through the use o f anti-GH antibodies in cultured 

myoblasts (Segard et al., 2003). This study, however, involved overexpression of 

GHR. Myoblasts treated with GH did not proliferate, whereas those that 

overexpressed GHR proliferated in response to GH. This effect was ablated on use of 

anti-GH antibodies. Since the importance of GHR has been demonstrated in this 

model, this study supports autocrine/paracrine actions o f GH.
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Local GH expression in the rat lung (chapter 3) has led us to propose a similar 

role for lung GH. Since GH mRNA expression and GH-immunoreactivity are 

widespread in the late fetal and early postnatal rat lung, it appears that GH is 

important in many cell types, and not specific to either the mesoderm or the 

endoderm. This is in contrast to many molecules in lung development, such as FGF- 

10 and Shh, which are specifically expressed in the mesoderm (Bellusci et al., 1997a) 

and endoderm (Cardoso 2001), respectively. The role of GH may in fact be more 

akin to that o f EGF, which like GH, is expressed throughout the developing lung, in 

the mesoderm and the endoderm (Snead et al., 1989). EGF is also believed to have 

roles in lung maturation (Sundell et al., 1980) and surfactant synthesis (Higuchi et al., 

1989). Given the distribution o f GH in the developing lung, it is likely that GH 

behaves as a growth and differentiation factor like EGF, rather than a 

signaling/patterning molecule like FGF-10 and Shh. Regardless o f the resultant roles 

of GH, the mechanism of action is likely autocrine and/or paracrine.

Functional studies (Chapters 4-6) designed to test the hypothesis that GH acts 

as an autocrine/paracrine in the developing lung resulted in the elucidation o f many 

proteins which are GH regulated. The alteration of lung proteins involved in such 

essential lung functions as anti-oxidant defense and surfactant metabolism establish 

local GH as an intricate part o f the development o f the functional rat lung.

7.2.3 Local GH in the development o f the rat lung

Lung development is currently thought to be mainly regulated by fibroblast growth 

factors (Bellusci et al., 1997b; Cardoso 2001), sonic hedgehog (Litingtung et al.,
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1998; Pepicelli et al., 1998), bone morphogenetic proteins (Bellusci et al., 1996), 

transforming growth factor beta (Serra and Moses, 1995; Zhao J et al., 1996), retinoic 

acid (Dickman et al., 1997), insulin-like growth factors (Lallemand et al., 1995), 

vascular endothelial growth factor (Park et al., 1993; Ng et al., 2001), and epidermal 

growth factor (Sundell et al., 1980). Since prenatal growth is considered by many to 

be a “growth without growth hormone” syndrome (Geffner 1996), potential roles for 

GH early in development o f organs have been widely ignored. With the 

documentation o f local GH expression in the developing lungs, combined with the 

recognition of the ability of GH to act as a local cytokine (Waters et al., 1999), GH 

should now be considered a molecule with roles in lung development. O f the several 

roles o f GH in lung development which we propose through our functional studies, 

the discussion here will be limited to those which I believe to be the most important: 

response to oxidative stress, lipid/surfactant metabolism, and general 

metabolism/growth.

Oxidative stress is particularly important in the normal functioning of the 

lung. During the postnatal period, the lung acquires its ability to deal with this stress 

(Land and Wilson, 2005). Our studies have shown that Cu/Zn superoxide dismutase 

(SOD), SH3 domain-binding glutamic acid-rich-like protein, peroxiredoxin 6 and 

isocitrate dehydrogenase to all be controlled by lung GH. These proteins are essential 

components of the lung’s protection against oxidative stress. Cu-Zn SOD expression 

and enzymatic activity have been shown to rise late in gestation, and are important for 

degradation of superoxide upon transition to air breathing and for oxygen scavenging 

in rats postnatally (Clerch et al., 1992; Nozik-Grayck et al., 2000). Studies on the
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prenatal and postnatal rat (Chapter 3) have demonstrated GH expression during this 

time frame, supporting a role for GH in control o f Cu/Zn SOD expression in the lung. 

SH3 domain-binding glutamic acid-rich-like protein is a member o f the thioredoxin 

superfamily, which is a major component o f the lung anti-oxidant machinery 

Nakamura et al., 2005). Peroxiredoxin 6 is an enzyme that is involved in oxidative 

defense against reactive oxygen species (Wang et al., 2004). It is found 

predominantly in the lung, specifically within alveolar Type II cells, alveolar 

macrophages and in bronchiolar epithelium (Kim et al., 1998), cell types that we have 

shown to express the GH gene (Chapter 3). Finally, isocitrate dehydrogenase was 

also GH controlled. Isocitrate dehydrogenase generates reduced glutathione 

(Murakami and Yoshino, 2004), which protects the lungs from oxidative stress 

(Rahman 1999). Through the actions of all o f these GH-regulated proteins, it is 

evident that GH has important roles in the development o f the lung’s ability to deal 

with oxidative stress. Although the above proteins have been identified by our 

studies, conclusions drawn here are likely simplistic. GH is also known to activate 

macrophages to produce reactive oxygen species (Edwards et al., 1992). As alveolar 

macrophages are resident in the alveoli, and since they have been shown to contain 

GH (Chapter 3) they may also be involved. Perhaps GH can both activate alveolar 

macrophages to produce reactive oxygen species that destroy invading 

microorganisms, and control the production of enzymes that degrade reactive oxygen 

species and thereby protect the epithelium from damage. The lung is very prone to 

infection. GH may constitute part of the lung’s defense against foreign microbes.
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Lipid metabolism and surfactant production are essential to the maintenance 

o f alveolar stability and o f efficient gas exchange (Berhard et al., 2001). The GHR 

knockout mouse revealed that peroxiredoxin 6 (Prdx6) and apolipoprotein A 

IV(Apoa4) are controlled by GH signaling in the developing lung. In addition to the 

roles o f Prdx6 in the control o f lung defenses against reactive oxygen species, it is 

also a potent regulator o f phosphatidylcholine synthesis, a precursor of lung 

surfactant (Fisher and Dodia, 1997). Through its action on Prdx6, GH may be an 

upstream regulator of phospholipid synthesis in the developing rat lungs. Another 

stage at which GH may control surfactant is indirectly through lipid metabolism. 

Apoa4 was found to be GH-responsive, and is primarily involved in the metabolism 

o f triglycerides and high-density lipoproteins (Bai et al., 1996). Through its control 

o f lipid metabolism and synthesis of surfactant precursors, GH may have important 

roles in development o f the lung surfactant system.

Finally, the models o f altered GH signaling that have been described in our 

studies have revealed proteins with general metabolic and growth roles that are 

controlled by local GH in lung development. These include aldehyde reductase 1, 

chromatin assembly factor 1 (CAF1), major acute phase protein 1, and vimentin. 

Aldehyde reductase 1 is an enzyme that is induced by basic fibroblast growth factor 

(bFGF) (Laeng et al., 1995). bFGF is induced by GH (Izumi et al., 1995) and GH and 

bFGF act together to promote growth (Edmondson et al., 1999; Waters et al., 1999). 

Through this GH-bFGF-aldehyde reductase 1 pathway, we believe that GH promotes 

lung growth. This needs to be further elucidated with studies on bFGF. CAF-1 is a 

marker o f proliferating cells (Polo et al., 2004). GH may thus be involved cell
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proliferation during alveolarization. Major acute phase protein 1 was found to 

decrease in response to GH overexpression. This protein normally inhibits cell 

proliferation, especially in fibroblasts (Torres et al., 2001). The downregulation of 

this protein in response to elevated GH may be an indirect mechanism through which 

GH promotes cell proliferation. Vimentin is an intermediate filament expressed in 

fibroblasts, mesenchymal cells and endothelial cells (Wang and Stamenovic, 2002), 

including those that are responsive to GH action (Tseng et al., 1997). Vimentin 

promotes cell migration and proliferation (Wang and Stamenovic, 2002; Pelosi et al., 

2003). Expression of vimentin has been localized to Type I and Type II epithelial 

cells (Kasper et al., 1993; Koslowski et al., 2004), cells that we have shown to 

express GH (chapter 3). Through GH-control o f the expression o f these four proteins, 

GH is important in the control of lung growth through effects on metabolism and cell 

proliferation. GH has been shown numerous times, and in many tissues to be a potent 

regulator o f metabolism and growth. The lung is likely not an exception. The 

widespread distribution of GH in the lung implies that it has more general growth 

and/or metabolic roles that are important to all cells in the developing lung. In 

addition to the specific roles for GH previously discussed, these general roles may be 

just as important.

Our studies form the foundation for understanding potential roles for local GH 

in the developing lung and will guide future research in this field. I will close with a 

brief discussion o f potential future clinical applications and studies that I believe are 

logical next steps in an understanding o f the role o f local GH in lung development.
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7.2.4 Future clinical applications

The identification of a novel molecule involved in the growth o f a particular tissue 

invokes interesting possibilities for clinical applications. Many disorders o f the lung 

have been recognized, from those that are known to involve altered GH levels 

(acromegalics, growth hormone deficiency), to many other disorders that may 

indirectly involve GH but have not yet been recognized as such. Our functional 

studies have documented two methods to alter gene expression in the lung (antisense 

oligodeoxynucleotide mediated gene downregulation, and adenoviral mediated 

transgene delivery). These are potential ways to alter GH expression clinically in the 

lung. However, these methods are limited in scope in that they are designed for short 

term experimental manipulations, not for the long term treatment o f  chronic disease. 

Thus, other methodology may be more amenable to clinical practice.

Selective overexpression of GH has been used previously to alter 

physiological parameters. Selective cerebral overexpression o f GH alters cardiac 

function, morphology, and energy metabolism (Bohlooly-Y et al., 2005). Although it 

is unclear the particular mechanism by which overexpression o f GH in the brain 

controls heart function, this study demonstrated that experimentally altered GH 

expression has definitive physiological consequences. Perhaps in an analogous 

manner, overexpression o f GH in the medulla (which controls breathing rate) may 

have distinct consequences in pulmonary function. More relevant to 

autocrine/paracrine lung GH, altered GH expression in the lung may be useful in 

treating disorders in lung function. The lung is a major gene therapy target for the 

treatment o f chronic disorders that are both genetically inherited and those that have
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been acquired through lifestyle (Gill et al., 2001). The problem with most gene 

therapy in the lung is that viral and non-viral expression vectors are short-lived, 

which makes them ideal for experimental manipulations but insufficient for the 

treatment time frame of years for chronic diseases. Due to this limitation, researchers 

have designed plasmid vectors that link transgenes to promoters o f  genes that are 

constitutively expressed in the lung, such as ubiquitin C (Gill et al., 2001). Strategies 

such as this have resulted in more stable transgene expression over time. This could 

be employed with GH. For disorders that result as from insufficient GH, GH could 

be linked to this promoter and transfected into the lung. For disorders that are caused 

by excess GH (eg. Acromegaly), a GH-antagonist could be linked to this promoter. 

These models could be used to control GH levels in the lung, and perhaps provide 

therapy for clinical conditions that are resultant from local GH imbalance. For 

instance, decreased/normalized GH expression in acromegalics may be used to 

prevent upper airflow obstruction and narrowing of the small airways. As GH-levels 

are probably closely regulated in the lung, mastery o f gene therapy techniques to 

achieve predictable and constant levels o f GH requires extensive experimentation. 

This type o f approach may not be feasible for some years to come, and would rely on 

a much deeper understanding o f the role o f GH in the lung during development, and 

throughout life. Further experimentation on the basic physiology o f  GH in the lung 

may provide these answers.
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7.2.5 Suggested future studies

Studies presented here (Chapters 2-6) have revealed both the expression of GH in the 

developing lungs, and potential roles for local GH in lung development. As this topic 

is novel, there are many aspects of this system that are currently unanswered. Further 

experimentation with clarify the part that local GH plays in lung development.

In addition to the experimental manipulations that we have performed, there 

are many other possibilities. Other models include Ames and Snell dwarf mice, GH 

antagonist mice, and targeted gene therapy (described above). These models can be 

assessed through a proteomics approach, as we have used, as well as the analysis o f 

many other endpoints.

Our studies did not provide information on tissue growth of the lungs. The 

lung weights and lung to body weight ratios o f these models need to be assessed to 

suggest general roles o f GH in lung growth. Furthermore, lung architecture and 

maturity can be assessed through histological and morphological studies. These 

would reveal if GH expression levels were related to lung maturation. In addition to 

these studies, data is required regarding pulmonary function.

Pulmonary function endpoints will provide distinct physiological clues as to 

the potential results that therapeutic treatment o f chronic disorders could provide. 

Endpoints such as vital capacity, tidal volume, and forced expiratory volume are 

clinically relevant measures o f lung function. As well, surfactant production should 

be measured in altered GH states to confirm our theory regarding GH and surfactant 

synthesis. These studies represent only first steps in an understanding o f lung GH.
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The results provided by these experiments will guide further research and 

understanding in this field.
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