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Abstract 

A bacterial colony constitutes a complex microcosm which is equipped with a wide range of 

defensive adaptations that allow the colony to survive adverse environmental conditions and 

predation. The extreme resilience of bacteria in colonies has been a subject of continued research for 

nearly two centuries. Although many aspects of bacterial dynamics have been well studied, several 

features of bacterial growth and dispersion inside colonies remain unexplored. In this thesis, I 

present my research on the interaction between two bacterial colonies. When two bacterial colonies 

interact with each other the interaction may be mutually beneficial or inhibitory in nature. It has 

been found that two Bacillus subtilis colonies growing adjacent to each other on a nutrient rich agar 

plate exhibit two distinct types of interactions: they either coalesce as they grow or form a distinct 

interface at the colony fronts without complete coalescence. The nature of interaction depends on 

the agar concentration in the growth medium and the initial separation between the colonies. When 

the agar concentration was lower than 1%, two sibling colonies were found to coalesce. At 1% or 

higher concentrations, colonies formed an interface when the separation between the colonies was 

20 mm or higher. Interactions of a colony with solid structures and liquid drops have indicated that 

biochemical rather than presence of physical barriers are responsible for the interface formation. 

Based on the experimental findings, a reaction diffusion model has been formulated to numerically 

simulate the two interaction patterns. The model predicts if two sibling colonies will form an 

interface under the given combination of agar concentration and separation between the colonies. 

The model prediction agrees well with experimental findings and generates a dimensionless phase 

diagram containing coalescence and separation domains. The dimensionless critical separation *d  

which demarcates the two interaction regimes was found to follow a simple power law in terms of 

the ratio of the diffusion coefficients D  of the colony to the nutrients : * nd Dα= .  



iii 
 

Preface 
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Chapter 1 
Introduction 
 

Bacterial colonies are excellent examples of active soft matter, where individual cells interact with 

each other as well as the external environment through physical and biochemical stimuli [1-4]. Inside 

these colonies bacterial cells can interact with each other using mechanisms that operate over several 

different length and time scales [5], such as by means of intercellular signaling [6-11], such as 

quorum sensing [12-14] as well as by production of biofilms and other extracellular materials [15-17]. 

Intercellular coordination in a colony allows bacteria to swarm on agar plates to derive nutrition 

from growth medium [18-22], produce fruiting bodies and sporulation [23, 24], and ensure their 

survival against external threats and adverse environmental conditions [25-27]. Bacterial colonies are 

equipped with a myriad of intricate defense strategies to protect themselves from predators, 

compete for limited resources, and adapt and respond to outside stimuli [25, 28]. Interestingly, cues 

from the external environment can bring about measurable changes in the growth of bacterial 

colonies; changes in bacterial colonies due to such factors comprise an important domain of 

biophysical research [5].  

When multiple bacterial colonies grow in close proximity, they interact with each other to 

compete for limited resources present in the growth medium. By means of biochemical sensing, 

bacteria can identify the neighbor colonies as enemy or family [1, 29-31], and this identification can 

affect their biophysical responses such as growth pattern, growth rates and the way they interact 

with the neighbor. Patra et al. and Chakraborty et al. reported the formation of an interface between 

two different species of bacteria interacting with each other on an agar plate [32, 33]. When colonies 

of the same species (i.e. sibling colonies) interact, one may observe either inhibition by cell death 
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forming an interface or complete coalescence. For instance, sibling colonies of identical strain of 

Proteus mirabilis coalesce when they interact but inhibition occurs between different strains of the P. 

mirabilis [29]. Paenibacillus dendritiformis has been found to form interfaces even between sibling 

colonies of identical strains [4]. Matsushita and coworkers reported that sibling Bacillus subtilis 

colonies exhibit both interaction patterns under different nutrient conditions: interfaces form on 

nutrient deficient agar plates [34], while coalescence occurs in nutrient rich environments [35].  

The nature of interaction between two bacterial colonies may be governed by a number of 

biochemical and physical factors. Biochemical factors include the substrate which acts as the 

nutrient source, the species of bacteria taking part and the mutation in these species. These factors 

influence the growth of bacterial colonies and are, thereby, expected to affect their interactions. On 

the other hand, spreading of bacterial colonies has been found to be dictated by physical factors 

such as osmotic pressure [36-38], surface tension [15, 39-42], permeability and viscous drag of the 

growth medium [43]; these may be influenced by the concentration of agar and nutrients, and the 

bacterial strain used. To understand the dynamics of inter-colony interactions, it is necessary to 

study the role of these physical and biochemical factors. Studies on colony interactions by Be'er et al. 

[4, 28, 44, 45] and Chakraborty et al. [32] found that certain biochemical inhibition factors produced 

by the interacting colonies are responsible for cell death, leading to interface formation as a means 

of surviving the competition for limited resources. The investigation by Be’er et al. further showed 

that in P. dendritiformis, the concentration of agar and initial separation between inoculated colonies 

influence the front propagation of the sibling colonies [4], but the exact role of these physical factors 

were not studied in detail. Investigating the role of physical factors in the interaction of multiple 

bacterial colonies can be expected to yield insights into the spreading dynamics of bacterial soft 

matter. In fact, physical parameters such as agar concentration and colony separation can be 
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expected to impact bacterial colony dynamics, and yet an exhaustive understanding of the role of 

these factors remains largely unexplored.  

To address these scientific lacunae, the influence of agar concentration and initial separation 

between two sibling B. subtilis colonies on the nature of interaction between them has been studied. 

B. subtilis is known to possess swimming and swarming motility which enable the bacteria to move 

quickly through semi-solid agar media [46]. Agar concentration controls the radial spreading of each 

colony whereas the initial separation between the colonies signifies their maturity when they start 

interacting. Systematic experiments are performed in nutrient-rich growth media by varying the agar 

concentration and initial colony separation. To complement the experimental study, a reaction-

diffusion model is established to predict the interaction patterns: coalescence and interface 

formation. Good agreement between the mathematical model and experiments facilitates the 

generation of a phase diagram that quantitatively describes the coalescence and interface regimes of 

the B. subtilis colony interactions. 
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Chapter 2 
Literature Review 
 

 

 

2.1 Overview of Bacteria 

Bacteria are one of the most primitive organisms on this planet. They are extremely resilient and are 

capable of surviving extreme environmental conditions. This has made bacteria a subject of 

extensive research for the past two centuries. First discovered by Antony Van Leeuwenhoek [47] in 

1676, bacteria have been studied for their salubrious as well as pernicious effects on health.  Today, 

bacteriological research finds applications in almost all walks of life including but not limited to 

medical sciences, food industry, and oil and gas industry.  

Bacteria are unicellular organisms which may be rod shaped, spherical or even helical. Bacterial 

cells typically vary from 0.5 µ m to 5 µ m in size. Each bacterial cell consists of a cell wall which 

may be classified as Gram-positive as in Bacillus subtilis, or Gram negative, e.g., Escherichia coli. The 

cell wall encloses a cytoplasm where the bacterial DNA is present. Most bacteria contain certain 

extra-cellular structures of which the most important are the flagella. Flagella are the primary 

locomotory organelles in bacteria. These are long whip-like filaments extruding from the cell walls 

and attached to biological motors which cause the structures to rotate both in clockwise (CW) and 

counter clockwise (CCW) directions with angular velocities as high as 100,000 rpm [48]. The number 

and location of flagella on a bacterium varies with the species and the strain. Peritrichous bacteria 

such as E. coli and B. subtilis contain multiple flagella. Such bacteria are generally highly motile [49]. A 

typical bacterial cell is depicted in Figure 2.1. 
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Fig. 2.1. A typical peritrichous bacterial cell showing important cell structures. 

 

Flagella allow bacteria to execute three primary modes of locomotion: 

• Swimming: Swimming is the flagellar motility causing translation of the bacterial cells through 

a liquid medium. It is brought about by synchronized rotation of the flagella in the same 

direction. In E. coli, the CCW rotation of the flagella helps the bacterium to generate thrust 

pushing the cell forward. The CCW rotation occurs intermittently which produces a 

translation in random directions. Swimming motility can produce speeds from 20 µ m/s to 

as high as 60 µ m/s [49]. 

• Tumbling: Tumbling motility is caused by the CW rotation of the flagella. This causes the 

bacteria to reorient rapidly. Therefore, tumbling motility produces a steering effect, which is 

not possible in swimming. Swimming and tumbling, in tandem, helps bacteria navigate 

through liquid media [49, 50] (see Figure 2.2). 
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Fig. 2.2. Swimming and tumbling motilities help bacterial cells move forward and change directions in liquid media. 

Swimming occurs by CCW rotation of bundled flagella and tumbling occurs when flagella spread out and rotate in CW 

direction. Reprinted from International review of cell and molecular biology , Vol 270, H. Terashima, S. Kojima, M. Homma, 

“Flagellar motility in bacteria: structure and function of flagellar motor”, pp 39-85, Copyright (2008), with permission 

from Elsevier. 

 

• Swarming: Swarming is a rapid collective motion of bacterial cells on surfaces of semi-solid 

media which is brought about by flagellar rotation reaching speeds of the order of several 

centimeters per hour [19]. Swarming is often accompanied by production of biosurfactants, 

such as surfactin in B. subtilis [40]. Spreading of bacterial colonies on agar plates is brought 

about by swarming of bacteria on the surface of agar medium. It is to be noted that at very 

low agar concentrations, the pore size of the semi-solid medium is large enough so that 

bacteria can swim freely throughout the bulk medium. Only at high concentrations when the 
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pores are small that bacteria resort to coordinated swarming on the surface of the semi-solid 

medium [19, 51].    

Movement of bacteria is caused by external stimuli such as presence of nutrients and biochemicals 

(chemotaxis), temperature (thermotaxis), light (phototaxis), gravity (gravitaxis) among others. 

Bacteria are equipped with different sensory systems [52-54] which allow them to detect any change 

in external environment and move accordingly to ensure its survival.  

 Bacterial cells proliferate by means of cell division and the rate at which the population 

grows is controlled by the external environment. Factors such as temperature, pH, and availability of 

nutrients control the rate of cell division. In adverse conditions, instead of dividing, certain bacteria 

collectively produce spores (usually in Gram-positive bacteria) and fruiting bodies which are 

resistant to harsh conditions [24, 55]. Under appropriate conditions of temperature, pH and 

nutrients, bacterial culture in a liquid medium exhibits four distinct stages of growth: 

• Lag phase: In this phase, bacteria exhibit minimum activity and population growth is almost 

non-existent. During this phase, bacteria familiarize themselves with the environment and 

prepare for cell division. 

• Log phase: In this phase, bacteria consume the available nutrients and grow in population. In 

this phase, bacteria are at their most active stage. Bacteria used in microbiological studies are 

generally procured when the culture is in the log phase. 

• Saturation phase: As the bacteria continue to consume nutrients from the solution, the 

medium gradually gets nutrient depleted. In this stage, competition for the limited nutrients 

causes the bacterial population to stabilize to a saturation value. This stage is known as the 

saturation phase. 
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• Death phase: As the medium becomes severely depleted of nutrients, bacterial cells start dying. 

Consequently, after a long time post incubation, bacterial population declines. This is the 

death phase. 

A schematic of a typical growth curve is shown in Figure 2.3.  

 

Fig. 2.3. A typical bacterial growth curve showing the four stages of growth. 

 

 Instead of a liquid medium, if bacteria are allowed to grow on semi-solid surfaces, colonies 

are formed. The semi-solid growth medium is generally prepared by heating a solution of agar and 

nutrients to prepare a hydrogel. Colonies are grown on the surfaces of these agar-based growth 

media. Within a colony, bacteria feed on nutrients and divide by binary fission and as the population 

grows, they spread out in different directions in search of nutrients, forming complex and diverse 

colony morphologies. Figure 2.4 shows the different colony morphologies observed in B. subtilis at 

different agar and nutrient concentrations.  



9 
 

 

Fig. 2.4. B. subtilis exhibits different morphologies depending on the nutrient and agar concentrations in the growth 

medium. Image reproduced from [35] © (1994) the Physical Society of Japan. 

 

As the colony matures, the individual cells produce an extracellular matrix which envelopes 

the colony. The spreading of colonies on agar plates is influenced by both biochemical and physical 

factors. The composition of the source of nutrients, the bacterial species as well as the mutations in 

the bacteria are some of the biochemical factors which affect the colony spreading and morphology. 

The nutrient source is generally composed of different components and the relative amount of each 

component may influence the characteristics of the colony. Each species of bacteria is unique in 

terms of their biochemical activities. For instance, production of surfactin by B. subtilis allows the 

colony to spread much faster than E. coli which does not produce biosurfactants. Again, certain 

mutations of B. subtilis which do not produce biosurfactants have different colony spreading 

characteristics compared to their counterparts which do [39]. Apart from biochemical factors, 

physical factors such as osmotic pressure [36-38], surface tension [15, 39-42, 56] as well as viscosity 



10 
 

and permeability of the growth medium [43] affect the spreading characteristics of colonies. 

Seminara et al. found that in B. subtilis, osmotic pressure imbalance between growth medium and 

colony created by nutrient uptake causes the extra-cellular matrix of the colony to expand, which 

drives colony spreading [36]. Friction between the cell bodies of the bacteria and the surface of the 

semi-solid growth media makes it difficult for bacteria to navigate the surface and derive nutrition. 

Certain bacteria secrete biosurfactants which increases surface wetting and promote swarming 

motility on agar surfaces, and thereby influences both colony spreading and morphology [15, 57]. 

Recently, Yang et al. found that in Pseudomonas aeruginosa colonies, reduced permeability of the 

growth medium has an adverse effect on the swarming motility. They also showed that by increasing 

the viscosity of the agar medium, the swarming motility of the bacteria reduces [43]. These physical 

factors are controlled by the concentrations of nutrient and agar in the growth medium [58]. 

Production of biosurfactants by certain bacteria alters the wetting properties of the colony and 

therefore, the species and the mutation of bacteria also influence the aforementioned physical 

factors [15, 39]. 

2.2 Multicellularity of Bacteria 

Prior to 1970, it was commonly believed that bacteria, being unicellular, are asocial and 

individualistic in nature, unlike multicellular organisms. However, bacteria are known to execute 

complex activities such as distinguishing between different species and strains, execute coordinated 

locomotion. Such complex activities are characteristics of multicellular organisms, unlikely to be 

performed by a group of individual asocial cells [1]. In 1970, Nealson and co-workers found one of 

the first evidences to communications between bacterial cells [59]. For their study, they used Vibrio 

fischeri, a species of marine bacterium known to have bioluminescent properties. They performed 

two sets of experiments. In the first experiment, they grew V. fischeri in a standard liquid growth 

medium and found that V. fischeri produced strong bioluminescence when the density of cells in the 
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growth culture is higher than a critical value. Below this critical cell density, bioluminescence is 

negligible. In the second set of experiments, they grew the bacteria in a conditioned medium. To 

prepare the conditioned medium, Nealson and co-workers prepared a culture of a mutant strain of 

V. fischeri in a standard liquid growth medium up to a particular cell density. Then they removed the 

cells from the culture medium and sterilized the medium. This sterile culture medium was used in 

the second set of experiments as the conditioned medium. Interestingly, when V. fischeri cells were 

grown in the conditioned medium, they were able to induce luminescence at much lower cell 

densities [60]. The phenomenon of bioluminescence in V. fischeri is explained in terms of certain 

signalling biomolecules produced by cells of both strains of V. fischeri, known as “autoinducers”. 

When the concentration of the autoinducers reaches a critical concentration, it triggers 

luminescence. This explains why luminescence occurs only when the density of the cells is high and 

is suppressed below a critical density in the first set of experiments. The conditioned medium used 

in the second set of experiments already contains autoinducers, secreted by the mutant strain of V. 

fischeri. Hence, when the bacteria are grown in the conditioned medium, luminescence is observed 

even at a low density of V. fischeri. The experiments of Nealson and co-workers demonstrated that 

bacteria communicate with each other by means of biochemical signals. This type of primitive 

biochemical communication is broadly termed as “quorum sensing” [10, 12-14, 61, 62]. Bacterial 

cells produce a wide range of biomolecules as chemical signals which activate receptors on bacteria. 

These receptors are extremely specific and can be activated only by certain molecules.  Intercellular 

signalling by means of quorum sensing renders multicellularity in bacteria allowing them to exhibit 

high degrees of coordination with each other inside colonies. Intercellular signalling and 

multicellularity are essential for the survival of bacterial colonies and are manifested in the form of 

kin recognition [31, 63-65], swarming motility [19, 30, 57], chemotaxis to derive nutrition, spore and 

fruiting body formation [23, 55], biofilm formation [66], biosurfactant production [15, 67] as well as 
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interaction with the external environment to survive predation and adverse environmental 

conditions .  

2.3 Interactions Between Bacterial Colonies 

Biochemical signals generated by bacteria are unique to the species as well as the strain of the 

bacteria. This allows the bacteria to distinguish between identical and alien strains. This process of 

identification is termed as “kin recognition”. By means of kin recognition, bacteria are able to 

employ different strategies to interact with the foreign cells. Such interaction may either be violent 

or symbiotic in nature. The nature of interaction depends on the ambient conditions of the growth 

medium as well as the interacting species. In general, when two different species of bacteria interact 

with each other, growth of the cells is inhibited due to cell death brought about by the competing 

species. An example of such interaction is observed between two adjacent colonies of Myxococcus 

xanthus and Proteus mirabilis where an interface forms between the two growing colonies which 

prevents the two colonies from coalescing [33]. When bacteria from the same species interact with 

each other, one may observe either inhibition or cooperation. Matsushita and co-workers found that 

when two colonies of B. subtilis interact with each other, if the growth medium is nutrient deficient, 

an interface forms [34], but they coalesce in rich nutrient environments [35]. Two colonies of P. 

mirabilis forms an interface between them if the colonies belong to different strains, but they 

coalesce if the strains are identical [29]. Identical strains of interacting Paenibacillus dendritiformis 

colonies may either form an interface or may coalesce depending on the morphotype [28]. Other 

examples of inhibitory interactions within identical or similar bacterial species include cannibalism 

(sporulating B. subtilis), suicide (Staphylococcus aureus) and fratricide (Streptococcus pneumoniae) [27, 55, 

68]. 
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2.4 Modelling Bacterial Colonies 

The complex living nature of bacteria makes it challenging to accurately capture all the features 

pertaining to the growth and locomotion of the bacteria. Therefore, there exist numerous 

mathematical models each of which aims to capture certain aspects of bacterial growth. In liquid 

culture medium, the spatial distribution of bacterial cells is homogenous and the population count of 

the cells is more relevant to describe the kinetics of metabolic activities. In semi-solid growth media, 

however, the spatial distribution of cells constituting various colony morphologies is important. In 

this section, the different prominent models related to bacterial growth in liquid and on semi-solid 

media are described.   

2.4.1 Bacterial Growth in Liquid Media 

Bacteria divide by binary fission. In this reproductive process, a mother cell divides into two 

daughter cells. Therefore, in a nutrient-rich favourable environment where no adversities are 

present, the population of the bacteria would grow as a geometric sequence at each generation. 

Mathematically, if nX  is the population of the bacteria after the nth generation, then: 

 1 2n nX X+ =   (2.1) 

After a large number of cell cycles, the growth rate of the bacteria can be defined as: 

 1n nX XdX
dt t

+ −
=   (2.2) 

where t is the generation time or the doubling time which is the duration in which the population 

doubles. For E. coli, under favourable conditions, 20t ≈ min. Combining (2.1) and (2.2), the final 

ordinary differential equation governing the demography of bacteria can be stated as: 
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 1n nX XdX rX
dt t

+ −
= =   (2.3) 

with a constant specific growth rate 1r t= . This is the well-known Malthusian demographic model 

proposed by Thomas Robert Malthus in the eighteenth century [69-71]. According to Malthusian 

demographics, in a favourable environment, population of bacteria would grow exponentially, 

( ) 0
rtX t X e=  , where 0X  is the bacterial population at 0t = . The Malthusian model assumes that 

the resources available to a species in the ecosystem are unlimited. This, along with absence of 

diseases, predators or any environmental deterrence, allows bacteria to grow unrestrained, resulting 

in exponential population explosion.  

However, unrestrained population growth is physically unrealistic. Environmental factors 

and availability of resources have very important roles in determining the population dynamics of a 

system. In any environment, the amount of resources available to the growing population is limited 

and would deplete as the population continues to grow. Thus, in a limited environment, a 

population cannot grow freely. This is one of the outcomes of Darwin’s theory of evolution. 

Darwinism dictates that in an environment with limited resources, the members will struggle for 

existence and only the fittest would be chosen by natural selection [72]. Limited resources would 

consequently lead to competition to survive. This indicates that the environment has a finite carrying 

capacity. As the population size increases, there is an increasing stress on the availability of resources 

and the ensuing struggle is instrumental in keeping the population growth in check. As a result, the 

specific growth rate r  is a combination of the specific birth ( )a  and the mortality ( )b  rates, 

r a b= − . In a limited resource environment, the specific mortality rate will be governed by the 

population size; the larger the population, the greater the competition, and consequently, more 



15 
 

fatality. Considering the specific mortality to be a linear function of the population, ( ) 0b X b X= , 

the specific growth rate ( )r X  can be expressed as:  

 ( ) 0r X a b X= −   (2.4) 

The specific birth rate ( )a  of the system is considered to be a constant. While the specific death rate 

is affected by intra and interspecific competition, the specific birth rate is not, which justifies why it 

can be assumed to be a constant.  Hence, the population dynamics is given by:  

 1L
dX Xr X
dt K

 = − 
 

  (2.5) 

This is the well-known logistic demographic equation proposed by Pierre Verhulst in the 19th 

century. Lr  is the modified specific growth rate for the logistic model and K  is the carrying capacity 

of the ecosystem which signifies the maximum population size that the ecosystem can sustain [73-

75]. In terms of the specific birth and death rates, Lr a=  and 0K a b= . Equation (2.5) shows that 

when resources are plentiful, or in other words, 1X K  , the logistic equation reduces to the 

Malthusian demographics. However, after long periods of time, the growth rate 0dX
dt

→  and the 

population saturates. 

 The logistic (also known as Verhulst) model, although physically realistic, does not explicitly 

consider resource/nutrient depletion due to population growth. This may be important in cases 

where one would like to study the biodegradation of substrates by the bacteria. In 1949, Jacques 

Monod proposed an empirical function governing the nutrient limited specific growth rate ( )Mr c  

[76, 77]: 
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 ( ) 0M
cr c r

k c
=

+
  (2.6) 

where c  is the nutrient concentration, k  is the half saturation constant and 0r  is the maximum 

specific growth which signifies the specific growth rate when c →∞ . In Monod’s nutrient depletion 

model, the population growth, therefore, is given by: 

 ( )M
dX r c X
dt

=   (2.7) 

The nutrient depletion is governed by the yield γ  which denotes the amount of nutrient consumed 

per unit generation of bacterial biomass: 

 
dc dX
dt dt

γ= −   (2.8) 

It is easy to note that when nutrients are abundant, i.e., c →∞ , the Monod’s model reduces to the 

Malthusian model with specific growth rate 0r . In nutrient limited conditions, ( ) 0Mr c →  and the 

population saturates. The saturation population according to Monod’s model is 

( ) 0
0

cX t X
γ

→∞ = +  where 0c  and 0X  are the initial nutrient concentration and population size 

respectively.     

 Figure 2.5 compares the population growth predicted by the Malthusian, logistic and the 

Monod’s models for the same specific growth rate, 0Lr r r= = =  3/h. The carrying capacity for the 

logistic curve 0.964K = . The Monod’s parameter 16γ = g/L is chosen such that both sigmoid 

curves have identical saturation populations. The half saturation constant 10k = g/L. The sigmoidal 

Verhulst and Monod’s models are able to replicate the growth curve of a bacterial culture over long 

times (Figure 2.3). Hence, these models are generally used for describing bacterial growth. Malthus’ 
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model, although the simplest among the three, finds limited use because of its unrealistic 

assumptions. It, however, is useful in the log phase of the growth curve when the bacteria are most 

active. Therefore, the Malthusian model provides a simple way for estimating the log phase 

dynamics. Between the logistic and the Monod’s models, the former has the advantage that it is a 

simple model which captures bacterial growth quite well. If one is only interested in the bacterial 

demographics rather than the nutrient consumption, the logistic equation is an ideal choice. But 

when the substrate depletion is a primary concern, Monod’s model is usually used. In general, 

nutrient concentration governs several features associated with bacterial growth such as motility, 

sporulation, fruiting body formation. As a result, Monod’s model finds wider applications when it 

comes to modelling bacterial growth.  It is to be noted that none of the three models capture the 

death phase of the bacterial growth curve. 

 

Fig. 2.5. Comparison between the Malthusian, Verhulst and the Monod models 
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2.4.2 Bacterial Colony Modelling 

On a solid surface such as an agar plate, as bacteria grow by binary fission, they spread out in 

different directions in search of nutrients from the growth medium. The complex network of 

spreading bacteria forms the colony. Depending on the utility and focus of study, mathematical 

models of bacterial colonies can be classified into three broad categories: 

• Hydrodynamic models 

• Reaction-diffusion models 

• Communicating walkers model 

Hydrodynamic models 

A bacterial colony can be regarded as a thin film of a complex active fluid spreading across the 

surface of a semi-solid growth medium. The multiphase fluid constituting the colony is viscoelastic 

in nature and contains bacterial cells dispersed in a liquid phase [37]. Hydrodynamic models typically 

consider three mechanisms: i) the growth of bacterial biomass in the complex thin film, ii) the 

osmotic influx of nutrient and water from the growth medium into the thin film, and (iii) the 

expansion of the thin film. Growth of bacterial population by binary fission increases the mass 

fraction of bacterial biomass in the complex film. As bacterial population increases, nutrient and 

water are consumed and this creates an imbalance of osmotic pressure between the colony and the 

growth medium. Consequently, more nutrient and water and drawn into the colony. Bacterial 

growth also increases the production of extracellular polymeric matrix inside the colony. The 

expansion of the thin film is driven by the combined effect of imbalance in osmotic pressure and 

bacterial growth. The expansion of the colony is often described by the Darcy’s law and the Young-

Laplace equation accounts for the wetting characteristic of the thin film [36, 37, 39, 42, 58, 78, 79]. 

Hydrodynamic models have been successful in reproducing the complicated morphologies exhibited 



19 
 

by bacterial colonies. Giverso et al. were able to generate the branching instabilities exhibited by 

colonies through their hydrodynamic model [58, 78, 79] as shown in Figure 2.6. 

 
Fig. 2.6. Reproduction of experimentally observed bacterial colony morphologies (a, b and c) with numerically 

generated morphologies using hydrodynamic models (d, e and f) by Giverso et al [78]. Republished with permission of 

Copyright Clearance Center, from “Branching instability in expanding bacterial colonies”, C. Giverso, M. Verani, P. 

Ciarletta, vol 12, issue 104, Copyright © 2015; permission conveyed through Copyright Clearance Center, Inc. 

 

  Hydrodynamic models are particularly useful when it comes to studying the influence of 

physical factors such as osmotic pressure, surface tension, viscosity and permeability of the growth 

medium.  Seminara et al. incorporated the effect of osmotic pressure imbalance caused by nutrient 

uptake in a hydrodynamic model and quantitatively proved that osmotic spreading is controlled by 

extracellular matrix production [36].  Trinschek et al. used an evolution equation for thin films to 

study the effects of surface tension on osmotic colony spreading [37, 39, 42].  
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Reaction Diffusion Models 

Bacterial colonies can be treated at as a dense network of cells which are continuously proliferating 

while at the same time navigating the surface of the growth medium in search of nutrition. As the 

bacterial cells moves outward radially, the colony spreads. Proliferation and spreading are often 

modelled using reaction diffusion (RD) models. It is assumed that bacterial proliferation occurs at 

the same rate as that in aqueous solution at the same temperature and pH. This assumption finds 

merit considering the fact that the semi-solid agar surface on which the colony spreads is wet and 

contains a thin layer of water. Hence, the growth models described in the preceding section can be 

used to model bacterial proliferation. This, in general, constitutes the reaction term. In some 

variations of the RD models, additional terms such as mortality, are introduced as a part of the 

reaction term. The diffusion term in the model accounts for the locomotion of the cells. Flagellar 

locomotion executed by bacterial cells is random in nature and resembles a Brownian type motion 

[80]. Such motion is driven by external stimuli such as chemotaxis, thermotaxis and phototaxis. 

Because of this randomness in motion, it is suitable to model the locomotion using a diffusion term. 

A typical RD equation is as follows:  

 [ ]b
dX rX D X
dt

= + ⋅∇ ∇   (2.9) 

Here r  is the specific growth rate of the bacteria and bD  is the diffusion coefficient governing 

colony spreading. The parameter r  can be defined differently depending on the growth model. For 

Malthusian growth, r  is a constant and for logistic growth model, 1L
Xr r
K

 = − 
 

. For nutrient 

limited growth, ( )Mr r c=  according to the Monod’s model. In this case, an additional equation is 

necessary to account for transport of nutrients from the growth medium towards the colony where 

it is consumed, as shown below:   
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 ( ) [ ]M c
dc r c X D c
dt

γ= − + ⋅∇ ∇   (2.10) 

 

where cD  is the diffusion coefficient of the nutrients. The coupled set of equations (2.9) and (2.10) 

are useful in estimating the biodegradation of the nutrient. In the case of enzyme mediated 

degradation of substrates which are not metabolized by the bacteria for energy, Michaelis-Menten 

kinetics is invoked instead of Monod’s nutrient depletion model as in (2.10) [81].  

 The spreading characteristics of the colonies are quite complicated to model mathematically 

as bacterial motility is very sensitive to environmental conditions such as temperature and pH, 

rheology of the growth medium, type and availability of the nutrient source, as well as presence of 

predators and alien colonies. These factors not only influence the morphology of the colony, but 

also the rate of spreading. To incorporate the effect of these factors, the diffusion coefficient of the 

colony bD  is treated as a function of these factors. In fact, a constant bD  alone cannot numerically 

produce the branching instabilities associated with some colony morphologies. By using variable bD

, and/or accompanied by a mortality term, one can successfully reproduce complex colony 

morphologies using RD models [82] as evident from Figure 2.7.  



22 
 

 

Fig. 2.7. Reproduction of experimentally observed bacterial colony morphologies (A, B and C) with numerically 

generated morphologies using RD models (D, E and F). Reprinted from Physica A-Statistical Mechanics and Its 

Applications, Vol 260, no. 3-4, I. Golding, Y. Kozlovsky, I. Cohen, E. Ben-Jacob, “Studies of bacterial branching growth 

using reaction-diffusion models for colonial development”, pp. 510-554, Copyright © 1998, with permission from 

Elsevier. 

 

 The advantage of RD models over hydrodynamic models is that RD models are quite simple 

and easy to solve numerically. However, unlike hydrodynamic models it is not trivial to incorporate 

the effects of other factors such as osmotic pressure and surface tension. Also, these models often 

use empirical relations for the mortality and diffusion coefficients to explain specific characteristics 

of the colony [82]. Therefore, these models are not suitable for depicting colonies from a physical 

viewpoint. But because of their simplicity, RD models are a popular choice when it comes to 

modelling bacterial colonies.  
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Communicating walkers model 

The communicating walkers (CW) model was developed by Ben-Jacob and co-workers in the 1990s 

[80, 83, 84]. Like the RD models, the CW model is based on the premise that bacteria execute 

random motion driven by chemotaxis to derive nutrition. As the bacteria spread, they proliferate 

thereby growing in population. Unlike the RD models, the CW model considers the cooperation 

between cells to survive in adverse growth conditions. The CW model is a discrete model which 

considers coarse graining of cooperating bacterial clusters (termed as “walkers”). These walkers 

communicate with each other as they move. The CW model is particularly useful in studying the 

behaviour of bacteria in nutrient deficient environments when locomotion is heavily restricted. In 

such situations, the CW model produces diffusion limited aggregates which agree with experimental 

observations very well. In nutrient rich environments, CW model generates compact morphologies 

as is observed experimentally [80]. Figure 2.8 demonstrates the utility of the CW model. Figures 2.8a 

and 2.8b show branching morphologies in B. subtilis colonies on 2% agar plates containing 0.5 g/L 

and 0.25 g/L of peptone (nutrient source) respectively. Denser branches occur at lower peptone 

concentration due to enhanced chemotactic signalling. Figures 2.8c and 2.8d are able to replicate 

these morphologies very accurately. Figure 2.8c is generated without incorporating chemotactic 

signalling into the CW model. But on turning on chemotactic signals between walkers, the branches 

become denser (Figure 2.8d), thereby agreeing with the experimental observation.  



24 
 

 

Fig. 2.8. Reproduction of experimentally observed bacterial colony morphologies (A, B and C) with numerically 

generated morphologies using CW models (D, E and F). Reprinted by permission from Springer Customer Service 

Centre GmbH: Nature [80], Copyright © 1994. 

 

2.5 Knowledge Gap 

Interaction patterns between different bacterial colonies are ubiquitous in nature. However, very 

limited scientific literature exists on the study of inter-colony interactions in bacteria. The most 

prominent work on this topic was performed by Be’er and co-workers. They studied the interface 

formation between Paenibacillus dendritiformis colonies in a low nutrient environment. Their study 

showed that the interface formation between colonies is brought about by production of certain 

biochemical inhibitors by each sibling colony in response to the other [4]. These inhibitors diffuse 

through the growth medium and cause cell death at the approaching colony fronts. They were able 
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to isolate the inhibitor molecules and found that inhibition occurred only when the concentration of 

these inhibitor exceeds a certain lethal concentration. This is shown in Figure 2.9.  

 

Fig. 2.9. Biochemical inhibition in  P. dendritiformis colony due to presence of inhibitors [4]. The region a has normal 

growth where the concentration of the inhibitor is lower than the lethal concentration. The region b shows inhibited 

growth where high concentration of inhibitors is present. Region c is the transition zone.  

 

By varying the nutrient, agar concentrations and the separation between the colonies they 

found that these parameters affect the progression of the colony fronts as the two colonies interacts. 

However, the exact roles of these parameters were not investigated. They also found that even at 

very small separations between the colonies, an interface always formed and coalescence was not 

reported. Later, Be’er at al. identified the protein molecules which cause inhibition [44]. The 

molecular weights of these biomolecules were found out to be of the order of 410  g/mol. Based on 

the diffusion of these inhibition factors, they proposed a mathematical model to simulate the 

interface formation. Chakraborty et al. echoed the findings of Be’er et al. They found that two 

different bacterial species (Bacillus cereus and Pseudomonas sp.) exchange biochemical signals to form a 

zone of inhibition between the two colonies [32]. They also proposed a mathematical model to 
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numerically simulate the inhibitory interaction. The models proposed by Be’er et al. and Chakraborty 

et al. incorporated the diffusion of inhibition factors through the growth medium which cause 

biochemical inhibition. Due to lack of sufficient understanding of inter-colony interactions, 

mathematical models of the phenomenon are scarce and specific to the problem being studied. 

Other than the above models, Wakita et al. reproduced the coalescence in B. subtilis colonies using 

their RD model [35]. Their model did not include an interaction term but instead consider 

independent growth and coalescence of the two colonies. Patra et al. introduced a mortality term in 

their RD model to study the interface formation between colonies of two different bacterial species 

specifically, Myxococcus xanthus and Proteus mirabilis [33]. Unlike Be’er et al., they did not explicitly 

account for diffusion of inhibition factors in their model. Although Wakita et al. reported 

coalescence in B. subtilis colonies in nutrient rich environments, they did not investigate the 

interactions experimentally in detail. 

Till date, most of the studies pertaining to interactions between colonies have been limited 

to investigation of biochemical factors which influence interface formation. As stated earlier, 

physical factors also play important roles in determining the spreading characteristics of colonies. 

For better understanding of the biophysics of interacting bacterial soft matter, it is essential to study 

the influence of physical processes on the nature of interaction between colonies. However, this area 

remains largely unexplored and forms the motivation for this thesis. Recognizing that the 

concentration of agar in the growth medium indirectly modulates the governing physical processes, 

it has been chosen as one of the experimental parameters for the study. To understand the influence 

of colony maturity, the center-to-center separation between the colonies has been adopted as the 

second parameter. The bacterial species of choice is Bacillus subtilis because of its swimming and 

swarming motility over semi-solid agar media and its wide applications in bacteriological studies. The 

experimental component of the thesis involves a detailed parametric study of the inter-colony 
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interaction dynamics in B. subtilis. This is supplemented by experiments aimed at understanding how 

agar influences colony spreading in single B. subtilis colonies. Finally, a third set of experiments have 

been performed to determine how a B. subtilis colony interacts with a physical impediment. In this 

study, oil drops and solid walls/discs have been used as physical simulacra of the second colony. 

The mathematical modelling component of the thesis complements the experimental results. 

Although there are models capable of reproducing interfaces and coalescence between colonies, 

none of the existing models capture both interactions in the same model, i.e. the models either 

simulate an interface or coalescence. The existing models fail to reproduce the experimental 

observations where both interaction patterns have been found to occur under different combination 

of the experimental parameters. In thesis, a model has been proposed which numerically simulates 

both patterns and enables one to predict the nature of interactions based on the values of the 

parameters.  
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Chapter 3 
Experimental Materials and Methods 
 

 

Chapter 3 describes in detail the conditions, materials and species of bacteria used in the 

experiments. The different experiments performed in the present study are tabulated in an 

experimental matrix. Techniques used for analysis of experimental data are also mentioned.  

3.1 Materials and Micro-organisms 

Miller’s Luria Broth (LB) base (Bector, Dickinson and Company, 241420, containing 10 g/L 

pancreatic digest of casein, 5 g/L yeast extract and 0.5 g/L sodium chloride) was purchased from 

Fisher Scientific, Canada. Bacteriological agar was purchased from Sigma-Aldrich (A5306-250G, 

Canada). Bacterial strains Bacillus subtilis (ATCC© 6633) and Escherichia coli (ATCC© 25922) were 

purchased from American Type Culture Collection (ATCC©), Manassas, USA. Another bacterial 

species Pseudomonas fluorescens (CHA0) was generously given by Dr. Howard Ceri, Biofilm Research 

Group, Department of Biological Sciences, University of Calgary.   

Polydimethylsiloxane (PDMS, Sylgard 184, Dow Corning, NY, USA) and Polypropylene 

(PP, cut out from Thermo Fisher Scientific Centrifuge Tubes) were used to fabricate cuboid and 

circular discs as substitutes for one of the colonies. The dimensions of the PDMS cuboid structures 

were 24 mm x 6 mm x 3 mm, and for PP, they were 30 mm x 5 mm x 1 mm. The diameter of the 

PDMS discs was 10 mm and height was 3 mm. For the PP discs, the diameter and height were 10 

mm and 5 mm respectively. Commercial castor oil was used as a liquid substitute for a bacterial 

colony. Castor oil is highly viscous and has a molecular weight of 927 g/mol. Therefore, there is 

negligible diffusion of a sessile castor oil droplet on agar medium and can be used as a liquid 
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substitute for a bacterial colony. 1 µ L of castor oil droplets were drop casted on the surface of agar 

on petri-dishes. 

3.2 Preparation of Growth Medium 

Miller’s Luria Broth (LB) base was mixed with bacteriological agar to prepared solid nutrient rich 

medium for B. subtilis colony growth. Throughout the study, the concentration of LB in the growth 

medium was held constant (1.5%) while the concentration of agar was varied from 0.5% to 5% 

(w/v). The LB-agar solution was then autoclaved to prepare a sterile homogenous growth medium. 

The mixture was then poured to petri-dish (diameter 90 mm) and cooled down to room temperature 

before bacterial inoculation.  

3.3 Bacterial Culture Preparation 

For each experiment, a fresh pre-culture of the B. subtilis was prepared in 1.5% LB broth and 

incubated for 16 hours. The incubation temperature was maintained at 37°C for B. subtilis and E. coli 

cultures, while 30°C for P. fluorescens. Each bacterial colony was then prepared on an LB-agar plate 

by drop casting of 1 µ L of bacterial culture, and incubated at corresponding incubation 

temperatures. To maintain the bacterial cell density, the inoculum size was controlled by cell count. 

Every 16-hour pre-culture contains 1.4×106 viable cells/ml with an optical density (at 600 nm) of 0.6 

± 0.02. The experimental deviation on cell count is calculated to be 0.4 ×106 /ml which represents 

~28% uncertainty in repeatability of bacterial cell count. It can be assumed that the experimental 

inoculum (1µ L) contain around 1×103 viable cells. 

3.4 Experimental Design 

Three different sets of experiments were performed to study radial growth pattern with B. subtilis 

during - i) two sibling colony interaction; ii) no interaction (single colony radial growth pattern) and 

iii) interaction with physical material such as PDMS and castor oil. The first involved inoculating 
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two sibling B. subtilis colonies on an agar plate. The concentration of agar in the growth medium was 

varied from 0.5% to 5% (w/v). During inoculation of the colonies by drop casting, the distance 

between the centers of the drops was varied in steps of 10 mm from 10 mm to 30 mm. This initial 

separation between the colonies and the concentration of agar in the growth medium were chosen 

as two parameters for the experiments. In the second set of experiments, a single colony was used to 

study the radial growth rate of B. subtilis colonies as a way to determine the diffusion coefficient of B. 

subtilis on agar when physical and biological interaction is absent. The concentration of agar was also 

varied between 0.5 and 5% (w/v). To collect data at equal intervals of time, two parallel sets of 

experiments were conducted, which were inoculated 12 hours apart. The third set of experiments 

was performed to study the interaction of B. subtilis colonies with physical objects. A sessile castor 

oil droplet as a liquid substitute, and PDMS and PP walls and discs as solid substitutes were used for 

replacing one of the sibling colonies. A B. subtilis colony was inoculated at a distance of 10 mm from 

the nearest edge of the sessile oil drop or PDMS/PP wall or disc. In these experiments, agar 

concentration was fixed at 1.5% (w/v). In all three sets of experiments, the nutrient concentration in 

the growth media was held constant at 1.5% (w/v) (or 15 g/L).  

Experimental observations were found to be sensitive to the changes in experimental conditions but 

under identical protocols they were reasonably repeatable. The uncertainty of bacterial cell count 

resulted into the effective colony diameter deviation between 5% and 36% recorded on 1% agar 

over a period of 36 hours post inoculation. For higher concentration of agar media, the deviation 

was considerably smaller. For 1.5% agar, the deviation was between 15 - 23% and for 2, 3 and 5% 

agar media these were between 3-22%, 1-5%, and 2-22%, respectively. 
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Table 2.1 summarizes the experimental matrix for the present study. 

Table 2.1. Experimental Matrix 

Experiment Objective Bacterial Species Parameter Range 

Single Colony 
Study role of agar, 
Estimate parameters 

B. subtilis Agar: 0.5 – 5.0% 

Single Colony 
with Obstacles 

Influence of physical 
barriers on interactions 

B. subtilis 
Agar: 1.5% 

Separation: 10 mm 

Two Colonies 
Nature of inter-colony 
interactions 

B. subtilis, 
E. coli, 

P. fluorescens 

Agar: 0.5 – 5% 
Separation: 10 – 30 mm 

 

3.5 Data Collection and Analysis 

The growing bacterial colonies were recorded using a Nikon D3400 digital single-lens reflex (DSLR) 

camera with an 18-55 mm lens mounted on a tripod stand. The background illumination was 

provided using intensity adjustable 4” x 4” white LED backlight (Edmund Optics, Stock# 88-504). 

The petri-dishes were monitored at regular intervals of time to generate a uniform set of data. 

Microscopic images of the growing colonies were taken using a Nikon Eclipse Ti inverted 

microscope. The images were processed in MATLAB® (MathWorks®), using the inbuilt image 

processing toolbox, to obtain the size of the colonies. 

The diffusion coefficient of the nutrient, a parameter required in the theoretical model, was 

estimated using Coomassie blue dye which has a molecular weight of 826 g/mol. 1µ L of the dye 

was allowed to spread on the surface of the growth medium on a petri-dish. Since the thickness of 

the agar in the petri-dish is insignificant compared to the diameter of the petri-dish (~4%), the dye 
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diffusion is assumed to occur only on the agar surface. The intensity of color of the spreading dye 

was used as the indicator of dye concentration in the image processing. For estimating the growth 

parameters of B. subtilis, Origin® (OriginLab®) was used to fit the experimental growth curve for a 

single colony with the theoretical model. This will be discussed in the next chapter. 
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Chapter 4 
Growth of Single Bacterial Colonies 
 

 

In this chapter, results from single B. subtilis experiments are described. A mathematical framework 

for single colonies is formulated, and the role of agar of growth of colonies is elucidated from a 

quantitative level. Relevant model parameters pertaining to single colony experiments are estimated.  

4.1 Role of Agar in Colony Spreading 

Colony spreading is controlled by physical factors such as osmotic pressure [36-38], surface tension 

[15, 39, 40, 42, 56], viscous drag and permeability of growth medium [43]. All of these physical 

factors are affected by the agar concentration in the growth medium. Agar is a mixture of 

biopolymers derived from the cell walls of red algae. It is widely used in microbiological studies for 

preparing bacterial cultures. Solution of bacteriological agar and a source of nutrients, when 

autoclaved at around 120ºC produces a hydrogel on which bacterial colonies can grow. Agar gel 

consists of a network of pores which allows the transport of water and nutrients and is ideal for 

growing bacterial colonies. The concentration of agar in the hydrogel determines the pore size and 

therefore, significantly alters the rheological properties of the gels. At low concentrations, the agar 

gel is highly porous with large pores. As the concentration increases, the pore size drastically reduces 

[51], and the hardness of the agar gel increases. This change affects bacterial motility and thereby 

influences the rate of colony spreading on agar plates. The soft and wet surface of agar at low 

concentrations is favourable for bacterial locomotion, whereas the hard and dry agar surface at high 

concentrations presents an unfavourable environment for bacterial locomotion. To quantify the 

rheological change in agar gels, the Young’s moduli of agar gel samples were measured in an 
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ElectroForce® 3200 Series III compression testing machine for different agar concentrations 

between 1% and 5%. The samples of agar gel were prepared by autoclaving a solution of 1.5% LB 

and the requisite amount of agar and made into 15 mm cubes. The cubic samples were subjected to 

small compressions (linear strain 0.067l l∆ < ) under loads ranging from 50 mN for 1% agar 

samples up to 2.5 N for 5% samples. To ensure the statistical reliability of the compression tests, 

each sample was tested thrice. As the deformations of the samples were small, the compressive 

stress on the samples could be approximated as F Aσ ≈  where F  is the compressive load on the 

sample and A  is the cross-sectional area of the undeformed sample. Similarly, the strain can be 

approximated as l lε ≈ ∆  where l∆  is the displacement and l  is the height of the uncompressed 

sample. Therefore, the Young’s modulus can be defined as the slope of the σ ε−  curve: 

( )E Fl A lσ ε≈ = ∆ . To estimate the Young’s modulus of the samples, the experimental load-

displacement curves are fitted with a straight line in Origin® and the slope of this line m  is 

calculated, and E ml A= . It is to be noted that as the samples are not perfectly elastic, the F l−∆  

curves are non-linear at the beginning of the compression. Hence, the slope of the curve is 

computed between points where the curve is roughly linear. Figure 4.1 shows an experimental 

F l−∆  curve for one of the 5% agar samples. The red line is the best fit straight line whose slope is 

related to the Young’s modulus of the sample.  
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Fig. 4.1. Load vs displacement curve obtained experimentally for 5% agar sample is fitted with a straight line to estimate 

the Young’s modulus for the sample. 

 

The Young’s modulus estimated was found to increase monotonically with agar 

concentration as shown in Figure 4.2. The standard deviation in estimation of the Young’s modulus 

lies between 3% and 12% and is within acceptable range of accuracy.  
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Fig. 4.2. Variation of the Young’s modulus of agar gels at different concentrations. 

 

Agar concentration influences the colony growth and morphologies as discussed in chapter 

2. To elucidate the role of agar on colony spreading, single colonies of B. subtilis were grown on agar 

plates with 1.5% nutrient. The agar concentration was varied from 0.5% to 5%. The standard 

concentration in bacteriological experiments is 1.5% or less. By changing the agar concentration, the 

rate of spreading of the colonies was found to vary quite significantly. Figure 4.3 shows the growth 

and spreading of single colonies over time at 0.5%, 2% and 5%.  
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Fig. 4.3. Spreading of B. subtilis colonies on agar plates over time on (A) 0.5% agar, (B) 2% agar and (C) 5% agar. 

 

To compare the radial spreading of the colonies, an effective diameter of the colony effd  has 

been defined based on the area A  covered by the colony as 4effd A π= .  In Figure 4.4, the 

effective colony diameter has been plotted at different agar concentrations at various time points 

post inoculation.  
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Fig. 4.4. Effect of agar concentration of the rate of radial spreading of B. subtilis colonies on the surface of agar plates. 

 

Figure 4.4 shows that at 6 hours, the colonies have similar diameters. But over time, the 

colonies growing on 0.5% agar spread much faster than those growing on higher agar 

concentrations. The rate of spreading decreases on increasing agar concentration from 0.5% till 2%. 

Beyond 2%, again there is an increase again in the rate of spreading at 3% and 5% agar 

concentration. Increase in the colony spreading rate at very high agar concentrations (3% and 5% 

agar) may be because of increased production of surfactin which is a biosurfactant unique to B. 

subtilis.   

The experiments with single colonies confirm that agar plays an important role in the 

spreading of the colonies and shows that low agar concentration environments favour bacterial 

motility and colonies spread faster as compared to high agar concentration environments. In terms 

of mathematics, the effect of agar can be incorporated into the diffusion coefficient of the colonies. 
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To study the effect of agar on a quantitative level, a reaction-diffusion model has been used to 

numerically simulate the colony spreading which is described in the following section. 

4.2 Mathematical Model 

The spreading of single Bacillus subtilis colonies on agar plates is modelled using nutrient dependent 

reaction-diffusion equations as described in chapter 2. The growth of population of bacteria inside 

the colony is described by Monod’s nutrient depletion model. The spreading of the colony on the 

surface of the growth medium is described by a two-dimensional diffusion term with a diffusion 

coefficient bD  defined for the colony. The nutrient transport is governed by the consumption inside 

the colony which creates a spatial concentration gradient that drives the nutrient towards the colony. 

As the colony grows, the consumption of nutrients creates a depletion zone around the bacterial 

colony. The depletion of nutrients attenuates bacterial metabolism which hampers energy 

production in the cells and thereby reduces the motility of the bacteria inside the colony [80]. In 

terms of mathematics, the diffusion coefficient of the colony is a function of the nutrient 

concentration ( ), ,c t R θ  ( ,R θ  are polar coordinates). Patra et al. suggested a simple augmentation 

to the diffusion term in the generalized RD equation (2.9) by the use of a step function for 

describing the nutrient concentration dependence of the diffusion coefficient. The modified 

diffusion coefficient ( )*
bD c   is expressed as [33]: 

 ( )* *[ ]b bD c D c c= −H   (4.1) 

Here [ ]xH  is the Heaviside step function. Physically, equation (4.1) signifies that where the nutrient 

concentration falls below a critical concentration *c , bacterial motility will be arrested. bD  on the 

right side of equation (4.1) is a constant for a given agar plate, and will henceforth be addressed as 
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the diffusion coefficient of the colony.  The coupled set of equations describing the colony 

spreading and nutrient transport is, thus, given by: 

 
( ) ( )
( ) ( )

*
b

c

X r c X D c c X
t
c r c X D c
t

γ

∂  = + ⋅ − ∂
∂

= − + ⋅
∂

∇ ∇

∇ ∇

H
  (4.2) 

Here, ( ), ,X t R θ  is the bacterial population density. ( ) 0
cr c r

k c
=

+
 is the nutrient dependent 

specific growth rate according to Monod’s model, with 0 ,r k  and γ  being the growth parameters as 

described in chapter 2. cD  is the diffusion coefficient for the nutrient transport. For the single 

colony model, it is assumed that the Monod growth parameters are identical to that of bacteria 

growing in a liquid culture medium. Hence, these model parameters will be estimated from growth 

curves generated in liquid culture of B. subtilis in 1.5% LB growth medium.  To take advantage of the 

radial symmetry of the problem, a polar coordinate system is chosen with the origin defined at the 

center of the bacterial colony, and the angular dependences of c  and X  are omitted. The bacterial 

colony is inoculated in the form of a drop casting on the surface of the agar plate, and initially, the 

nutrient is homogenously distributed in the growth medium. The initial conditions, therefore, can be 

formulated as: 

 
( )
( )

0

0

0,

0, .

X t R X

c t R c

ρ= ≤ =

= =    
  (4.3) 

Here, ρ  is the radius of the drop cast. The domain of simulation is a circle of radius pρ  (to 

simulate a circular petri-dish) ( )pρ ρ  with the origin of the polar coordinate frame fixed at the 

center of the domain as shown in Figure 4.5. At the boundary (Γ ) of the simulation domain, no-flux 
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boundary condition is enforced for the bacterial population density and the concentration of 

nutrients is a constant: 

 
0

ˆ 0X

c c
Γ

Γ

⋅ =

=   

n∇
  (4.4) 

 

 

Fig. 4.5. Schematic showing the domain of numerical simulation at t = 0. The bacterial colony is inoculated in the form 

of sessile drops of radius ρ (in grey) with initial bacterial population 0X . The initial nutrient concentration in the 

growth medium is uniform. 

 

4.3 Numerical Results 

In order to quantitatively describe the role of agar on the rate of colony spreading, it is necessary to 

determine the dependence of the colony diffusion coefficient on the agar concentration. This is 

done by comparing the results obtained from the single colony experiments with the single colony 
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model (eqns. (4.2)) to estimate the parameter bD . In order to solve eqns. (4.2), the growth 

parameters and nutrient diffusion coefficients are first required to be estimated. In this section all 

relevant model parameters are estimated. The growth parameters and the diffusion coefficients of 

the colony and nutrients will be necessary in solving the two-colony model which will be formulated 

in the next chapter.    

4.3.1 Growth Parameters 

The three parameters related to growth of bacterial population ( )0r ,k ,γ  are estimated by comparing 

the experimental growth curve of a bacterial population with the theoretical model proposed by 

Monod. To do that a culture of B. subtilis is prepared in 1.5% LB solution and the population density 

of bacteria in the solution is recorded in terms of its optical density (OD) at 600 nm wavelength. 

The growth curve obtained from the experiments is shown in Figure 4.6. The experiment is repeated 

3 times and the standard deviation in the measurement of the population density is less than 10% at 

all times 3t ≥ h post inoculation. Large errors exist earlier than 3 hours which can be attributed to 

the small values of the population density recorded at those time points. The yield γ  is obtained 

from the relation described in chapter 2 from the saturation population density: 

( )
( ) ( )

0
0

c t
X t X t

γ
=

=
→∞ − =

. The initial nutrient concentration ( )0c t =  = 15 g/L. The initial and 

saturation bacterial populations are obtained from the experimental growth curve. The remaining 

two parameters 0r  and k  are consequently estimated by fitting the growth curve with the numerical 

solution of the Monod’s model. In this regard, an approximate estimate of 0r  can be obtained from 

the log phase of the experimental curve. The 
( )

( )
log

0
X t

X t
 
  = 

 vs t  curve is approximately linear in 

the log phase of the growth curve, and the slope of the linear region gives an estimate of 0r . The 
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final estimate of 0r  and k  are obtained from the numerical solution which best fits the experimental 

curve. In this case, the quality of the fit calculated in terms of the coefficient of determination 

2 90R %≈ . Figure 4.6 shows experimental B. subtilis growth curve fitted with the numerical solution. 

 

Fig. 4.6. Experimental growth curve of B. subtilis in 1.5% LB solution is fitted with the Monod’s model to estimate the 

growth parameters. 

 

It is assumed that the bacterial population growth on agar surfaces will be identical to that in 

culture solution. This enables the use of the estimated growth parameters in the formulated single 

colony model. The reason for this accommodation is that it is very difficult to estimate the growth 

parameters directly from growing colonies with reasonable degree of accuracy. 
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4.3.2 Nutrient Diffusion Coefficient 

The nutrient source (LB) that is used in the experiments consists of a range of different molecules, 

starting from simple molecules as NaCl to large polymeric protein chains. The molecular weights of 

the component chemicals vary from 58.5 g/mol to around 2000 g/mol. Based on their molecular 

weights, each molecule diffuses at different rates. Smaller molecules diffuse faster than large 

polymers. In a nutrient rich medium such as in the present study, the dynamics of the nutrients will 

be governed by the slower large molecules. Hence, the effective diffusion coefficient of the nutrient 

will correspond to that of the massive protein molecules which diffuse very slowly through the 

growth medium. To estimate the order of magnitude of the effective diffusion coefficient of the 

nutrient source, Coomassie blue dye (molecular weight 826 g/mol) has been used and rate of 

spreading of the dye over the surface of the growth medium is measured. This was carried out in 

different growth media by varying the agar concentration from 0.5% to 5%. Figure 4.7 shows the 

spreading of the dye over time on 3% agar medium.  

 

Fig. 4.7. Diffusion of Coomassie blue dye on 3% agar, 1.5% LB growth medium. 

 

Figure 4.7 shows that at t = 0, the sessile dye drop is homogenous, but at t = 2 d, a ring 

forms with a high concentration of the dye present at the edge of the ring and the concentration of 
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the dye decreases towards to the center (“coffee ring” effect) [85]. Over time, the dye particles 

diffuse into the agar and the ring disappears beyond t = 5 d. The formation of the ring can be 

explained by considering the disparity in the transport of water and dye molecules through the agar 

medium. Water (mol. wt. 18 g/mol) is considerably lighter than the dye molecules, and as a result, 

the water molecules in the sessile drop (at t = 0) diffuses much faster than the dye molecules. In 

fact, the water in the sessile drop diffuses completely through the agar medium in less than 3 hours. 

The diffusion of the water molecules takes place from the edge of the sessile drop and leaves behind 

the dye molecules at the edge of the drop, thereby forming the ring that is seen at t = 3 d. Finally, 

the heavy dye molecules diffuse over a period of days.    

The dye intensity has been correlated to the dye concentration in MATLAB® to determine 

the spatial distribution of the dye on the agar plate. It is assumed that the concentration of dye is 

uniform at t = 0, which means that the dye intensity at t = 0 in the sessile drop is constant, say 0I . 

Subsequently, the dye concentration at later times is generated by obtaining a spatial distribution of 

the dye intensity ( )I R , and expressing it in terms of a normalized intensity distribution, ( ) 0I R I .  

Figure 4.8 shows the distribution of the normalized intensity corresponding to the images in Figure 

4.7. The dye concentration appears to be nearly constant inside the sessile drop at t = 0. The sharp 

peak corresponding to t = 2 d is indicative of the ring formation with dye molecules accumulating at 

a narrow radial location. In fact, the radial location of the peak can be taken as the radius of the dye 

ring which is very similar to the initial radius of the sessile drop. Finally, at t = 5 d, there is diffusion 

of dye into medium as was observed in Figure 4.7. 
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Fig. 4.8. Normalized pixel intensity distributions at three instants of time for the spreading Coomassie blue dye on 3% 

agar plate. 

 

As the thickness of the agar in the petri-dish is insignificant compared to the diameter of the 

petri-dish (~4%), it is assumed that the dye diffusion occurs mainly on the agar surface and diffusion 

through the depth is comparatively negligible. Then the transport equation governing the dye 

diffusion can be expressed as in polar coordinates (assuming radial symmetry of spreading): 

 
2

2

C CD
t R

∂ ∂
=

∂ ∂
  (4.5) 

where ( ),C t R  is the dye concentration and D  is the diffusion coefficient of the dye (equivalent to 

the nutrient diffusion coefficient). The ring formation phenomenon makes it difficult to prescribe 

well-defined initial condition. The boundary conditions, on the other hand, are trivial (symmetry 

condition at 0R =  and no flux at pR ρ= ). The initial condition is obtained by choosing a 
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mathematical function to match the dye intensity profile corresponding to the ring at, say, 2t =  d. 

The solution of the diffusion equation with this initial condition is then compared to subsequent dye 

intensity distributions to estimate D  (and in extension, cD ). Interestingly, the estimated nutrient 

diffusion coefficient was found to stay nearly constant over the range of the agar concentration. 

4.3.3 Colony Diffusion Coefficient 

Using the estimates of the growth parameters and the nutrient diffusion coefficient, the single 

colony equations which were formulated in section 4.2 were solved. To estimate the diffusion 

coefficient of the bacterial colonies, the numerical solution of the single colony model is compared 

with the results from single B. subtilis colony experiments. The initial bacterial population density is 

chosen as 3
0 10X −=  based on the initial optical density of bacterial culture in aqueous medium. The 

initial nutrient concentration is 0 15c =  g/L which is the initial concentration of LB in the growth 

medium. The value of the threshold nutrient concentration *c does not have any notable numerical 

consequence. In Figure 4.9, the numerical solutions for the population density X  at 30t = h for 

20 04 mm / hbD .  =  are compared for different values of *c . The solutions are found to change 

insignificantly over three orders of magnitude of *c . Therefore, the value of *c  is chosen as 10% of 

0c , * 1.5c =  g/L, as was used by Patra et al. [33].  
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Fig. 4.9. Influence of *c  on the numerical solution of the single colony model. The solutions for the population density 

( )30 hX R,t  = are compared for different values of *c . 

 

The radius of the circular domain of simulation is that of a petri-dish used in the 

experiments, 46pρ =  mm. The colony is inoculated at the origin in the form of a drop of radius 

2.5ρ =  mm. As the reaction-diffusion models are essentially continuous models, it is necessary to 

define a reference bacterial population density eX  to demarcate the edge of the colony. This was 

done by matching the numerical and experimental colony diameters at t = 6 h (post incubation). As 

the colony diameters are nearly identical on different agar concentrations at 6 hours (Figure 4.4), 

consequently so is the estimate of eX . The value of eX  was found to lie within 0.1 and 0.3. The 

coupled equations are spatially discretized using a second order central difference scheme. The time 

derivative is discretized using the Forward and Backward Euler schemes for the nutrient 

concentration and population density respectively. Because of radial symmetry, the governing 
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equations essentially reduce to an ordinary differential equation in terms of the radial coordinate R . 

The simulation domain is decomposed into 461 grid points, with a grid resolution of R∆ =  0.1 mm. 

Numerical solution is obtained between t = 0 and t = 40 hours, in steps of t∆ =  36 sec (i.e., 4001 

time steps).  The time step and grid resolutions were chosen after establishing grid and time step 

independence by comparing the numerical solution of the governing equations for different time 

steps and grid resolutions. Figure 4.10 illustrates the grid and time step independence of the 

numerical solution for the population density X  at 30t = h. For performing the independence tests, 

the following time steps and grid resolutions were chosen: t∆ = 36 sec, 18 sec and 3.6 sec, and 

R∆ = 0.25 mm, 0.1 mm and 0.05 mm. The colony diffusion coefficient for the simulation is 0.04 

mm2/h. 

 

Fig. 4.10. (A) Grid and (B) Time step independence tests comparing the numerical solution for the population density 

( )30 hX r,t  = for three different grid and time step resolutions.  
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Finally, the diffusion coefficient of the colony for the given agar concentration was 

estimated based on the numerical curve which best fits the experimental data. In Figure 4.11, the 

numerically fitted curves have been compared with the experimental data for 0.5%, 2% and 5% agar.  

 

Fig. 4.11. Numerical solution of single colony model is fitted with single colony experimental data corresponding to 

0.5%, 2% and 5% agar to estimate the diffusion coefficient of the colony.  

 

By estimating bD  for different agar concentrations, the dependence of the diffusion 

coefficient with the agar concentration is determined which is shown in Figure 4.12. The diffusion 

coefficient at 0.5% agar is nearly one order of magnitude higher than the lowest estimated value 

which occurs at 2% agar. The diffusion coefficient decreases on increasing the agar concentration 

from 0.5% till 2%. Beyond 2%, interestingly, for 3% and 5% agar, there is an increase in bD , which 

may be caused by excessive production of surfactin by the B. subtilis colony. The estimated data are 
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fitted with a polynomial function to mathematically express the correlation between bD  and the 

reciprocal of the agar concentration ( )a : 2 10 05 0 0188bD . a . a−= +  . The quality of the fit measured 

in terms of the coefficient of determination is 2 98R %≈ . 

 

Fig. 4.12. Estimated diffusion coefficients of the colony at different agar concentrations. The insets of colonies at 0.5%, 

2% and 5% agar correspond to 24 hours post inoculation.  
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The parameters estimated from the Monod’s model and the single colony model are 

summarized in Table 4.1. 

Table 4.1. Estimates of Model Parameters 

Parameters Estimate 

Bacterial Growth 
0r  14 h −   
γ  16 g/L 

k   42.5 g/L 

Nutrient Diffusion cD  310− mm2/h  

Colony Dispersion bD   0.04 – 0.21 mm2/h 
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Chapter 5 
Interactions Between Sibling Bacterial 
Colonies 
 

 

Chapter 5 describes the occurrence of dual interaction patterns in B. subtilis colonies. The influence 

of physical factors on these interaction patterns is studied experimentally. A mathematical model is 

proposed to complement the experimental observations. 

5.1 Experimental Results 

5.1.1 Two Interaction Patterns in B. subtilis 

Figure 5.1 shows examples of the two distinct interaction patterns observed under different 

conditions. When the concentration of agar was increased from 0.5% to 5% while keeping the 

separation between two sibling colonies at 20 mm, the sibling colonies change from coalescing into a 

single colony (Figures 5.1a), to forming an interface between the advancing colony fronts (Figure 

5.1b). Similar observations were made by holding the agar concentration constant while varying the 

initial separation. At low agar concentrations ( 1%< ), coalescence was observed in all cases when 

the separation d  was increased from 10 mm to 30 mm. At higher agar concentrations ( 1%≥ ), both 

coalescence and interface formation were observed, with the former occurring at small colony 

separation (Figure 5.1c) and the latter at large colony separation (Figure 5.1b). It is interesting to 

note that the morphology of the colonies vary as the concentration of agar is increased from 0.5% to 

5%. The colonies growing on 0.5% are nearly circular and the boundaries of the colony appear to be 

smooth. This is distinctly different from the colonies on 2% and 5% agar where the edges of the 

colonies are jagged assuming a viscous fingering like appearance after a long post-inoculation time. 
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The colonies are also found to develop wrinkles over time. The variation in the morphology can be 

attributed to both genetic as well as environmental factors. Inside the colony, bacterial cells are 

continuously undergoing genetic mutations, which allow cells in each generation to take on 

characteristics slightly different from its parents [86, 87]. Over multiple cycles of proliferation, these 

differences may become quite distinct from the original cells. One of such differences is that of 

flagellar motility. In certain conditions cells in different parts of the colony mutate and acquire 

different flagellar motilities. Hence, the colony boundaries progress at different rates at different 

locations, giving rise to a viscous fingering like appearance. The colony growing on 0.5% agar 

spreads very fast and as a result, it is difficult to spot the changes in flagellar motility brought about 

by mutations. This, however, is clearly visible on 2% and 5% agar, where colonies progress slowly. 

The wrinkling in colonies, on the other hand, is brought about by environmental factors as an 

adaptive feature which enables bacteria to survive in nutrient deficient environments [88]. As the 

colonies grow, the central regions of the colonies are deprived of water and nutrients as bulk of 

these resources are consumed by cells at the periphery. In order to supply nutrition deep inside the 

colony, narrow micro-channels are formed which run radially from the centre of the colony towards 

the periphery. Water and nutrients are transported through these veins from the periphery towards 

the center. These micro-irrigation channels cause the colony to appear wrinkled [88]. On 0.5% agar, 

bacterial colonies spread rapidly and cells are able to procure nutrition easily compared to colonies 

growing on 2% and 5% agar. Hence, wrinkles do not appear on 0.5% agar, but this feature is 

abundant on colonies growing in more unfavourable environments such as on 2% and 5% agar.      
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Fig. 5.1. Time lapse images of interacting B. subtilis colonies. (A) Colonies separated by 20 mm growing on 0.5% agar 

growth medium coalesce without forming an interface. (B) With the same initial separation, on 2% agar, the colonies are 

seen to form a distinct interface. (C) When the colonies are brought closer at d =  10 mm on 2% agar, no interface is 

observed. 

 

By systematically varying the agar concentration and the colony separation, a phase diagram 

is generated to document the conditions in which each of the two interactions occurs. Figure 5.2 

shows the phase diagram depicting the interaction regimes in B. subtilis. The phase diagram shows 

the existence of two distinct domains depending on the agar concentration and the separation 

between the colonies. 
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Fig. 5.2. Experimentally obtained phase diagram showing the two interaction regimes in B. subtilis: Coalescence (red) 

and Interface formation (blue). 

 

5.1.2 Interaction with Physical Objects 

  The advancing fronts of sibling colonies are physical obstacles in the progression of the 

colonies. It is possible that the sibling colonies act as mutual physical deterrence and prevent 

coalescence in high agar concentrations and/or when the colonies are relatively far apart. To see if 

interface formation is induced by the presence of physical barriers, one of the colonies was 

simulated with a physical object (liquid: castor oil droplet or a solid structure: PDMS and PP walls 

and discs) and let a B. subtilis colony grow adjacent to the physical object. PDMS and PP are 

commonly used solid substrates in bacteriological studies and are known to be compatible with 

bacterial growth [89-93]. The solid PDMS and PP structures were created in the form of a flat wall 

(to simulate a flat interface formed between sibling colonies as in Figure 5.1b) and a circular disc (to 

represent a growing colony). Figure 5.3 shows how the B. subtilis colonies interact with these physical 
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obstacles. In all cases, it is observed that the colonies growing along the edge of the physical 

structures showing no signs of interface formation. The separations between the colonies and the 

physical barriers have been so chosen that at these separations, interface formation has been 

observed in two colony experiments but is absent here. The experiments clearly show that the 

presence of a physical deterrence may not, by itself, lead to an interface being formed. Only when a 

sibling colony is present in the vicinity does an interface form under the appropriate combination of 

agar concentration and separation. This suggests that interface formation is not primarily dictated by 

physical factors, but rather by biochemical inhibition due to the presence of a sibling colony. 

 

Fig. 5.3. Interaction of B. subtilis colonies with liquid and solid substrates produces no interfaces under similar 

conditions. (a) Colony interacting with sessile castor oil droplet. The colony grows around the oil droplet without any 

interface formation. Image corresponds to 78 hours post inoculation. (b) Approaching sibling colony front is simulated 

with a solid PDMS wall. The colony grows till the edge of the solid wall but do not form any interface near the flat solid 

surface of the wall. Image was taken 48 hours after inoculation. (c) A PDMS disc is used as a simulacrum for a sibling 

colony. In this case also, the colony does not form an interface but grows around the solid disc. Image was taken 48 
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hours after inoculation. (d) Like the PDMS disc, the colony reaches and grows around a PP disc. Image was taken 28 

hours after inoculation.  All four experiments were performed on 1.5% agar media. 

 

5.2  Mathematical Model 

A two-colony model is formulated as an extension of the single colony model and a mortality term is 

incorporated which accounts for the interaction between the sibling colonies. Mathematically, the 

two-colony model is expressed as: 
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In this model, the two colonies are assumed to be identical to each other, and hence the same model 

parameters, including Monod’s growth parameters and diffusion coefficients will be used for both 

colonies. Furthermore, it is also assumed that these parameters will be the same as those for a single 

colony, i.e., growth characteristics are unaffected because of inter-colony interactions. Unlike the 

single colony model, the two-colony model is defined in the Cartesian coordinate system as radial 

symmetry is absent in this case. ( )1X t,x, y  and ( )2X t,x, y  are the population densities of the two 

colonies, ( )m t  is the mortality rate. 1 2X X X= +  is the net population density. The two colonies 

are inoculated symmetrically on each side of the origin on the x axis in the form of sessile drops as 

described in chapter 4. Figure 5.4 shows the domain of simulation at 0t = . All other variables and 

parameters have been previously defined. In order to fully describe the two-colony system, the 

mortality rate must be formulated based on experimental results.  



59 
 

 The biochemical inhibition has been shown to cause cell death at the advancing fronts of the 

sibling colonies thereby being responsible for the interface formation. To model this cell mortality, 

the mortality rate ( )m t  has been assumed to be proportional to the population densities of each of 

the sibling colonies, i.e., ( ) 1 2m t X Xµ= , where the mortality coefficient µ  is the constant of 

proportionality.  Defining ( )m t  in this fashion is advantageous in some ways. At the initial stages of 

the colony spreading, ( )m t  is zero everywhere and the colonies grow independently without any 

inhibition. This is consistent with experiments. As the colony starts interacting with each other,

( )m t  becomes active near the advancing fronts of the two colonies. Elsewhere, it is zero. By using 

this definition of ( )m t  one can numerically generate an interface between the colonies, as has been 

demonstrated by Patra et al. [33]. But the drawback of this formulation is that the mortality term 

always produces an interface and the colonies cannot coalesce, which is not consistent with the 

experimental results. To address this issue, the transport of inhibition factors which are produced by 

the sibling colonies in response to the advancing colony was examined. The investigation of Be’er et 

al. showed that these inhibition factors have high molecular weight (on the order of 410  g/mol) and 

they inhibit colony spreading only when the concentration is higher than a lethal value.  Owing to 

the high molecular mass of these factors, they diffuse through the agar medium very slowly and 

cause inhibition only after some critical time. Experiments in this work have shown that when two 

colonies exhibit coalescence, the two colonies start merging with each other at around 20 hours post 

inoculation (or earlier). On the other hand, when there is an interface formation, the two colonies 

start interacting at around 24 hours. It is therefore assumed that the effect of the biochemical 

inhibition occurs sometime after 20 hours. Based on this assumption, the effect of the inhibition 

factors has been incorporated by defining a critical time *t . For *t t<  inter-colony inhibition is 
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absent, i.e., ( ) 0m t = and for *t t> , a non-zero ( )m t  leads to interface formation. This is done by 

using the Heaviside step function to augment ( )m t , i.e. ( ) 1 2
*m t X X t tµ  = − H . Based on 

experimental observations, 20*t = h is chosen, although physical meaning of this value is yet to be 

investigated. The new mortality function can produce coalescence and interface depending on the 

values of d  and bD . But the coalescence in this case is unstable and the coalesced colonies separate 

again for *t t>  when ( )m t  becomes active. This is not physically observed in experiments. Instead, 

the colonies which coalesce continue to grow together as a single unit henceforth. This may be 

because after colonies coalesce, mutual inhibition is arrested, and two colonies become part of a 

single community. This condition has been imposed by introducing a second Heaviside step 

function which ensures that the mortality rate remains inactive after colonies coalesce. The final 

form of the mortality rate ( )m t  is expressed as follows: 

 ( ) ( )*
1 2 , 0, 0em t X X t t X X t x yµ  = − − = =   H H   (5.2) 

( ), 0, 0X t x y= =  is the net population density midway between the centers of two colonies located 

at the coordinates 0, 0x y= = (see Figure 5.4). eX  is a cut-off population density which demarcates 

the edge of each colony.  It is to be noted that the mortality rate is a function of both time and space 

coordinates. Spatially, its effect is felt only at the midway between the two colonies where the 

interface forms, while the temporal dependence of the function is of key importance. Hence, for the 

sake of simpler notation, the space dependence has been omitted and the mortality rate is denoted 

simply by ( )m t .  
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Fig. 5.4. Schematic showing the domain of numerical simulation at t = 0. The bacterial colonies are inoculated in the 

form of sessile drops of radius ρ  (in grey) with initial bacterial population 0X . The initial nutrient concentration 0c  in 

the growth medium is uniform. The separation between the inoculated colonies is d . 

 

 The established RD equations, equation (5.1) along with (5.2), are solved with appropriate 

initial and boundary conditions. At t = 0, when the nutrient concentration in the medium is 

homogenous and the colonies are inoculated as sessile droplets of radius ρ  at y = 0 symmetrically 

about the origin with a center-to-center separation of d (Figure 5.4), i.e.,   

 

( )

2 2
2 2 2 2

1 2 0

0

0, 0,
2 2

0, , .

d dX t x y X t x y X

c t x y c

ρ ρ
      = − + ≤ = = + + ≤ =               

= =                                   

  (5.3) 

The simulation domain is a 2 2p pρ ρ× square ( pρ  is the radius of petri-dish). At the boundary ( )Γ  

of the domain, no flux boundary condition is enforced for the population densities and a constant 

nutrient concentration 0c  is assumed as in the case of the single colony model: 
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 1 2

0

ˆ ˆ 0X X

c c
Γ Γ

Γ

⋅ = ⋅ =

=           

n n∇ ∇
  (5.4) 

 The equations and corresponding initial and boundary conditions is non-dimensionalized so 

that the results can be applicable to a broader range of bacterial systems. For non-

dimensionalization, 1
0r
−  and 0cD r  are used as the time and length scales in the non-

dimensionalization and the corresponding dimensionless variables are defined as follows: 

 * *
0 0,r t r tt t= =   (5.5) 

 0 0 0 0
0 0

0

c
p p

c c c c

r D r r r, , , ,d d
D r D D D

ρ ρ ρ ρ ρ ρ= ∇ = ∇ = = =   (5.6) 

The dependent variables and parameters related to the population density and the nutrient 

concentrations are non-dimensionalized in terms of the initial condition as follows: 

 0 01 2
1 2

0 0 0 0 0 0 0

*
* X XX X c c kX ,X ,c ,c ,k , ,

X X c c c c r
γ γ µ µ= = = = = = =   (5.7) 

The normalized diffusion coefficient D  is defined as b cD D D= . 

 The dimensionless set of governing equations with initial and boundary conditions are as 

follows: 
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Governing equations 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )
( ) ( )

*1
1 1

*2
2 2

*
1 2 , 0, 0

X r c X D c c X m

X r c X D c c X m

c r c X c

m X X X X x y

t
t

t
t

γ
t

t µ t t tΓ

∂  = + ⋅ − − ∂
∂  = + ⋅ − − ∂

∂
= − + ⋅

∂
   = − − = =   

   

   

              

∇ ∇

∇ ∇

∇ ∇

H

H

H H

  (5.8) 

Initial conditions 

 

( )

2 2
2 2 2 2

1 20 0 1
2 2

0 1

d dX , x y X , x y

                                            c ,x , y

t ρ t ρ

t

      
   = − + ≤ = = + + ≤ =            

= =

  (5.9) 

Boundary conditions 

 1 2ˆ ˆ 0

1

X X

c
Γ Γ

Γ

⋅ = ⋅ =

=           

n n∇ ∇
  (5.10) 

5.3 Numerical Results and Comparison with Experiments 

The growth parameters, the diffusion coefficients and the reference time *t  depend on the bacterial 

species, composition of the nutrient and the experimental conditions which include the agar 

concentration and the bacterial biomass in the inoculum. As a result, these parameters are to be 

determined experimentally to be used in the mathematical model. The other model parameters are 

chosen on the basis of experimental design and numerical stability within bounds of tenable physical 

significance. In chapter 4, the growth parameters and the diffusion coefficients of the nutrient and 

the colony have been estimated which are used in solving the two-colony model. The variation of 

bD  with agar (Figure 4.12) is necessary to study how agar influences colony interactions from a 
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numerical viewpoint. The initial conditions for the population density of each colony and the 

nutrient are identical to the single colony model, 3
0 010 15X ,c−= = g/L. Based on experimental 

observation, 20*t = h. The reference population eX  is chosen based on experimental results 

discussed in chapter 4 as 0 3eX .= . The coefficient of mortality µ  is a theoretical parameter defined 

in order to numerically generate a stable interface by incorporating the inhibitory interaction 

between colonies. As there is no direct way of estimating the value of µ  experimentally, a 

parametric analysis of µ  was conducted numerically. In Figure 5.5 the numerical solutions for the 

population density X  at 30t = h taken along the x axis ( 0y = ) are compared for 

( )34/h 10µ µ −= = ,  ( )240/h 10µ µ −= =  and ( )1400/h 10µ µ −= = . For the simulation, 

20 04 mm / hbD .  =  and the colony boundary is demarcated by the threshold population density 

0.3eX = . For very small values of µ , e.g., ( )34/h 10µ µ −= = , the numerical solution demonstrates 

that there is no interface generated because the mortality term is negligible. At larger values of µ , 

( ) ( )2 110 10O Oµ− −≤ ≤ , interfaces can be observed and the results are insensitive to the specific 

values of µ . Very large values of µ , on the other hand, makes the solution numerically unstable. 

From the results of the parametric study, µ  is chosen to be 40/hµ = .     
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Fig. 5.5. Influence of µ  on the numerical solution. The solutions for the population density ( )30 h 0X t  ,x, y= = are 

compared for different values of µ . 

 

Other model parameters including *c ,ρ  and the domain size are identical to those used in 

the single colony model. The coupled equations are solved using the second order Forward-Time 

Central-Space (FTCS) scheme. The rectangular simulation domain is decomposed into 369 x 369 

grid points, with a grid resolution of x y∆ = ∆ =  0.25 mm. Numerical solution is obtained between t 

= 0 and t = 48 hours, in steps of t∆ =  34 sec (i.e., 5001 time steps).  The time step and grid 

resolutions were chosen after establishing   grid and time step independence by comparing the 

numerical solution of the governing equations for different time steps and grid resolutions. Figure 

5.6 illustrates the grid and time step independence of the numerical solution for the population 

density X  at 30t = h along the x axis ( )0y = . The colony separation is 20 mm and colony 

diffusion coefficient is 0.04 mm2/h. For performing the independence tests, the following time steps 
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and grid resolutions were chosen: t∆ = 68 sec, 34 sec and 17 sec, and x y∆ = ∆ = 0.25 mm, 0.1 mm 

and 0.05 mm.  

 

Fig. 5.6. Independence tests on numerical solution: (A) Grid and (B) Time step independence tests comparing the 

numerical solution for the population density ( )30 h 0X t  ,x, y= =  for three different grid and time step resolutions.  

 

 The numerically simulated colony interactions are shown in Figure 5.7 for different values of 

the diffusion coefficient bD  and the initial separation d . The morphology of the numerically 

generated colony is defined by the reference population eX  which is predefined. Hence, the 

numerical solution objectively determines coalescence or interface formation. Figure 5.7a shows that 
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colonies coalesce when the diffusion coefficient is 0.21 mm2/h and the initial separation is 20 mm. 

The diffusion coefficient, in this case, is large and corresponds to very low agar concentrations 

(~0.5%) when bacteria are highly motile and the colonies spread rapidly. Experimentally, the 

conditions represent those in Figure 5.1a. When the diffusion coefficient is reduced by almost one 

order of magnitude to 0.04 mm2/h without changing the initial separation (Figure 5.7b), an interface 

forms. This case depicts Figure 5.1b at 48 h. Finally, in Figure 5.7c, the initial separation is reduced 

to 10 mm while keeping the diffusion coefficient constant. Here, the colonies coalesce completely 

without any interface formation, as seen in Figure 5.1c. Therefore, there is a good qualitative 

agreement between the experiments and the proposed mathematical model.  

 

Fig. 5.7. Numerical simulation of B. subtilis colonies. (A) No interface is formed when the diffusion coefficient is large. 

Here 20.21 mm /hbD =  and initial separation d = 20 mm. (B) Interface forms when the diffusion coefficient is 

reduced to 20 04 mm / h.   while holding d constant. (C) If, however, d is lowered to 10 mm without changing the 

diffusion coefficient, coalescence occurs. 

 

Figure 5.8a shows a dimensionless phase diagram in the d D−  space where two distinct 

regimes underline the generalized conditions for whether two colonies would form an interface or 

coalesce. To determine whether the colonies coalesce or form an interface numerically, the total 
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population density midway between the centers of two colonies is checked at an instant when *t t> . 

If ( )0 0*
eX t t ,x , y X> = = ≥ , there is a coalescence, else an interface forms. For each value of D , 

there exists a critical separation *d , where the nature of interaction changes from coalescence to 

interface. ( )*d f D=  determines the boundary between the coalescence and interface regimes in 

the phase diagram. The function f can be well approximated as a power law relation * nd Dα= , 

where α  and n  are numerical constants. α  and n  has been found numerically as: 

276.55, 0.377nα = = . From this simple empirical expression, it is possible to predict, with an 

acceptable degree of accuracy, the outcome of interaction between two sibling colonies given the 

initial separation and the diffusion coefficient (in extension, the agar concentration). Using the 

estimated parameter values, the corresponding dimensional phase diagram is plotted in Figure 5.8b, 

which shows that when the separation is sufficiently small e.g., 10d ≤ mm, the sibling colonies 

would coalesce irrespective of the value of the agar concentration. The model also predicts that 

when the agar concentration is very low, the colonies coalesce even when the separation is as high as 

30 mm. These predictions are in good agreement with the experimental findings. In Figure 5.8, the 

phase boundary demarcates the regions where the behavior of colonies changes from being “family” 

to “enemy”. Therefore, we will refer to the phase boundary denoted by the power law relation as the 

“Laxman Line” (based on the Laxman Rekha described in the Indian epic, the Ramayana).  
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Fig. 5.8. Numerical phase plots for interface formation in B. subtilis colonies. (A) Phase plot showing interface formation 

in a dimensionless variable space. (B) Experimental phase diagram superposed on the dimensional numerical phase plot 

for estimated parameters 0r = 4/h and cD  = 0.001 mm2/h. 

 

The exponent n  in the empirical relation * nd Dα=  has some interesting implications. 

Figure 5.9 plots *d  against D  for different values of the exponent, while keeping the coefficient 

276 55.α =  as constant. On increasing the value of n  from 0.377 to 0.5, the boundary line 

separating the two phases becomes steeper and *d increases for the same D . This means that the 

sibling colonies would be more susceptible to coalescence. On the other hand, on decreasing n  

from 0.377 to 0.2, the boundary line becomes flatter and shifts downwards, which signifies that the 

colonies would tend to form interfaces. Physically, one can expect n  to be large in bacterial species 

which are known to coalesce such as identical strains of P. mirabilis. Bacterial species such as P. 

dendritiformis tend to form an interface between sibling colonies when they interact. For such species, 

one can expect the exponent n  to be small.   
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Fig. 5.9. Effect of the empirical index n  on the critical dimensionless separation *d . 0 377n .=  represents the 

numerical estimate. On the dimensionless phase diagram, for higher n , inter-colony interaction is dominated by 

coalescence, whereas for lower values, the interaction is interface dominated. 

 

5.4 Discussions 

The present experiments have shown that the concentration of agar influences the rate of spreading 

of B. subtilis colonies. In chapter 4, it has been shown that at low concentrations ( 1%< ), bacteria 

can swarm rapidly on the surface and derive nutrition from the growth medium. As the 

concentration of agar is increased, colonies spread slowly. On 0.5% agar, due to rapid swarming, the 

colonies experience less competition in procuring nutrient and consequently are found to coalesce 

with sibling colonies even when the initial separation is as large as 30 mm. This is, however, not true 

for higher agar concentrations. The unfavourable condition of the growth medium may trigger 
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biochemical inhibition as a defense mechanism and thereby lead to interface formation when the 

separation is 20 mm or higher.  

The duality of interface and coalescence is not specific to B. subtilis. While B. subtilis is a 

Gram-positive bacterium, experiments with Gram-negative Pseudomonas fluorescens showed that this 

phenomenon is a general one exhibited by multiple species of bacteria (see Figures 5.10a for 

examples). Figure 5.10 also helps depict that the formation of interface between sibling bacterial 

colonies is not confined to the previously or currently reported species, but most likely a very 

generic biophysical phenomenon.  

Several comments are made regarding the underlying assumptions and the limitation of the 

proposed mathematical model. The RD model proposed in this work is based on the assumption 

that biochemical inhibition is brought about by inhibitor factors which have very large molecular 

mass (on the order of 104 g/mol). Because of their high molecular mass, these factors diffuse very 

slowly through the agar medium and cause cell death in the approaching colony when a lethal 

concentration is reached. The present work did not investigate the presence of these inhibition 

factors or explicitly account for their diffusion. Instead, their effect has been incorporated by using a 

reference time *t  in the model. This limitation can be removed by explicitly solving the transport 

equation of the biochemical inhibition factors. An attempt has been made to formulate a generalized 

mathematical model to describe the dual interaction patterns that may be applicable to multiple 

species of bacteria (e.g. P. fluorescens). For this reason, no comments have been made on the 

underlying biochemical processes that lead to interface formation specific to B. subtilis (e.g. 

sporulation). An order of magnitude estimate of the nutrient diffusion coefficient has been used and 

assumed it to be constant. In reality, however, the diffusion coefficient of the nutrient can be 

expected to vary with agar concentration.  
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Fig. 5.10. Interaction patterns in P. fluorescens (A and B) and E. coli (C and D) on 1.5% and 0.5% agar media respectively. 

(A) Coalescence occurs in P. fluorescens when the d  =  5 mm. (B) Interface forms when d  =  10 mm. (C) In E. coli an 

interface forms when d =  5 mm. (D) An interface also forms when d  =  10 mm. But in this case the gap between the 

interacting colony fronts is significant. All images are taken 7 days post incubation.  
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Chapter 6 
Conclusions and Future Work 
 

 

In this thesis, the influence of physical factors in the inter-colony interactions in B. subtilis has been 

investigated by varying the agar concentration in nutrient rich growth media and the initial 

separation between the colonies. Depending on the combination of these parameters, the colonies 

either coalesce or form an interface. To the best of our knowledge, this is the first evidence of two 

sibling colonies forming two distinct interaction patterns regulated by the agar concentration and the 

separation between colonies. From interactions in sibling P. fluorescens colonies, it has been found 

that these dual interaction patterns constitute a general behavior in certain bacteria. A B. subtilis 

colony has been found to form an interface only when an adjacent sibling colony is present, and not 

when a physical obstacle is present in the vicinity of the colony. This indicates that the interface 

formation is brought about by biochemical inhibition due to the colonies and is not influenced by 

presence of any physical deterrence. But the biochemical inhibition between sibling colonies have 

been found to be governed by the agar concentration which affects the radial spreading of the 

colonies, and the separation between the colonies which qualitatively indicates the maturity of the 

interacting colonies.  

Based on the experimental observations, a reaction-diffusion model has been formulated to 

reproduce the interaction patterns in B. subtilis. Monod’s nutrient depletion model has been used to 

describe the transport and consumption of nutrients. A time dependent mortality rate has been 

defined which can numerically generate both interactions: coalescence and interface formation using 

the same model, possibly the only existing mathematical model to do so. The effect of agar has been 
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incorporated into the model in terms of the diffusion coefficient of the bacterial colony. The model 

implicitly considers the diffusion of inhibition factors as a part of the mortality term. The uniqueness 

of the model lies in the dimensionless solution of the governing equations which makes the solution 

versatile and can be extended to different bacterial systems. The model generates a numerical phase 

diagram which separates the two interaction regimes in terms of the dimensionless separation d  

and the ratio of diffusion coefficients D . The numerical and experimental phase diagrams have 

been found to be in good agreement. The dimensionless critical separation *d  which demarcates the 

two regimes follows a simple power law relation, * nd Dα=  which allows one to predict the nature 

of interaction for a given combination of the parameters. The exponent n is physically significant. 

On the dimensionless phase diagram large values of n correspond to bacterial species which tend to 

coalesce when they interact, for instance in identical strains of P. mirabilis, and for smaller values of n 

the bacterial colonies form interface when they interact as in P. dendritiformis and E. coli. 

The interaction between multiple bacterial colonies is a poorly understood phenomenon 

with a dearth of scientific literature on this topic, especially from a biophysical standpoint. Hence, 

there exists a lot of open questions which need to be addressed. To further our understanding of the 

physical processes that influence this phenomenon, it is necessary to investigate the individual 

effects of osmotic pressure and presence of biosurfactants which are known to influence growth and 

spreading of bacterial colonies. The role of osmotic pressure could be illustrated by comparing the 

interaction phase diagram of a matrix forming strain of B. subtilis (such as the one used in the present 

study) with a non-matrix producing strain of the same bacteria. In addition, the concentration of 

nutrients could be used as a parameter to modulate the osmotic pressure between the bacterial soft 

matter and the growth medium. To test the influence of surface tension on the nature of colony 

interactions, one might consider using two different strains of B. subtilis: one which naturally 

produces the biosurfactant surfactin, and the other a mutant strain which is incapable of producing 
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surfactin. The objective will be to find out how inter-colony interaction dynamics is altered for each 

of these strains. An artificial surfactant such as Tween 20 may also be used to further elucidate the 

role of surface tension. In terms of mathematical modelling, there do not exist any hydrodynamic 

models to numerically simulate the two interaction patterns. It would be an interesting exercise to 

model the biochemical inhibition between two bacterial colonies, and subsequently reproduce the 

experimental results numerically. Further, to quantitatively study the effects of osmotic pressure and 

surface tension, a hydrodynamic model will be essential as RD models would have limited use in 

such applications.      

 In conclusion, the current experimental study reports a general inter-colony 

interaction phenomenon where sibling colonies exhibit both coalescence and interface formation 

depending on certain physical factors. The proposed mathematical model provides a good 

qualitative and quantitative representation of the phenomenon. The experimental study and the 

mathematical model provide useful insights into the dynamics of colony interactions and show that 

both biochemical and physical factors together control inter-colony interactions. Many features of 

multi-colony interaction remain ill-understood. A few directions for future research have been 

suggested both from an experimental and a numerical point of view which will enhance the 

understanding of different biophysical processes that dictate how colonies interact with each other.  
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Appendix 
 

Benchmarking MATLAB® Codes 

MATLAB® codes for the reaction diffusion equations used in this thesis have been benchmarked 

against analytical solution obtained from one dimensional diffusion equation for a semi-infinite 

domain.  

Benchmarking Problem 
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Initial and Boundary Conditions 
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The schematic in Figure A.1 shows the domain of simulation with the initial and boundary 

conditions. 

 

                 

Fig. A.1. Domain for the benchmarking problem showing initial and boundary conditions 

 

For the one dimensional diffusion equation (A.1), with initial and boundary conditions as prescribed 

by (A.2), the analytical solution is given by: 
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T T xerf
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  (A.3) 

The parameters chosen for the benchmarking are as follows:  2 210  m /sD −= , 0 1T =  and 1 0T = . 

The MATLAB® code for the two-colony model is modified and compared with the analytical 

solution as shown in Figure A.1. The analytical solution is found to match well with the analytical 

solution. 

 
Fig. A.2. Benchmarking of numerical solution with analytical solution. 
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MATLAB® Codes 

Solution of Single Colony Model 

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% This code calculates the numerical solution of the single-colony model. % 
% Dimensional parameters  used  for  non-dimensionalization are: specific %  
% growth rate r0 = 4/h, nutrient diffusion coefficient D_c = 1e-3 mm^2/h, % 
% initial nutrient concentration c0 = 15 g/L, initial population  density % 
% X0 = 1e-3, yield  gamma = 16 g/L, half saturation constant k = 42.5 g/L,% 
% threshold nutrient concentration c* = 1.5 g/L, critical time  t* = 20h, % 
% Domain size 2*R = 92 mm.  Dimensional simulation variables are: space x % 
% and y, time t, population density X1, X2, X = X1 + X2, nutrient conc. c.% 
% The  colony  diffusion  coefficient  D_b  is  estimated in terms of the % 
% normalized diffusion coefficient D_bar = D_b/D_c.Simulation is performed% 
% in the polar coordinate system. The single-colony model consisting of a % 
% pair  of  coupled  ODEs is solved in terms of non-dimensional variables %  
% using two nested loops.  The outer loop updates the time, the inner loop%  
% corresponds to the r coordinate.  The  solution  for c_bar is evaluated % 
% using an explicit scheme. For X_bar, an implicit scheme is used for the % 
% solution, A*X=b where A is a square matrix and b is a column matrix.    %                                              
% % % % % % % % % % %  % %  % % % % % % % % % % % % % % %  % % % %  % % % % 
  
clear  
close all 
clc 
  
%% Dimensional Parameters 
r0=4;           % Specific growth rate 
k=42.5;         % Half saturation constant 
gamma=16;       % Yield 
D_c=1e-3;       % Nutrient Diffusion coefficient 
X_e=0.08;       % Population at Colony Edge 
c0=15;          % Initial nutrient concentration 
X0=1e-3;        % Initial Population density 
R_p=46;         % Radius of Petri-dish 
rho=2.5;        % Radius of drop cast          
  
%% Dimensionless Parameters 
D_bar=40;               % Normalized Diffusion coefficient 
k_bar=k/c0;             % Half saturation constant 
gamma_bar=gamma*X0/c0;  % Yield 
alpha=0.1;              % Threshold Nutrient Concentration 
X_e_bar=X_e/X0;         % Population at Colony Edge 
  
%% Definition of Simulation Domain and Grid Generation 
  
dr=1e-1;                % Dimensional grid size  
dt=1e-3;                % Dimensional time step 
r=0:dr:R_p;             % Dimensional Radial coordinate 
t=0:1e-3:40;            % Dimensional Time 
  
tau=t*r0;               % Dimensionless Time 
r_bar=r*sqrt(r0/D_c);   % Dimensionless Radial coordinate 
dtau=mean(diff(tau));   % Dimensionless time step   
dr_bar=mean(diff(r_bar));% Dimensionless grid size 
  
%% Initial conditions 
  
% Dimensionless Nutrient concentration 
c_bar=ones(size(r_bar));    % Initializing c_bar = 1 
c_bar_n=c_bar;              % Updated nutrient conc. 
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X_bar=zeros(size(r_bar));   % Population density 
A=zeros(length(r_bar));     % Coefficient matrix  
b=zeros(length(r_bar),1);   % Column matrix 
R=zeros(size(tau));         % Colony Radius 
  
X_bar(1:rho/dr+1)=1;        % Initializing X_bar, X_bar = 1 inside drop cast 
                            %                           = 0 elsewhere 
  
A(1,1:2)=[1,-1];            % Boundary condition for X_bar 
A(end,end-1:end)=[1,-1];    % 
  
  
% Numerical Solution of Coupled ODEs 
for nt=2:length(tau)    % Time loop 
     
    % Solution of c_bar  
    for i=2:length(r_bar)-1 % r_bar loop 
         
        % Explicit scheme is used for c_bar 
        c_bar_n(i)=c_bar(i+1)*(dtau/dr_bar^2+dtau/(2*r_bar(i)*dr_bar))... 
            +c_bar(i)*(1-dtau*gamma_bar*X_bar(i)/(k_bar+c_bar(i))-2*dtau/dr_bar^2)... 
            +c_bar(i-1)*(dtau/dr_bar^2-dtau/(2*r_bar(i)*dr_bar)); 
     end 
     
    % Boundary condition for c_bar 
    c_bar_n(1)=c_bar_n(2); 
     
    % Solution of X_bar 
    for i=2:length(r_bar)-1 % r_bar loop 
         
        % Implicit scheme is used for X_bar 
        D_bar=D_bar*(c_bar(i)>alpha); 
         
        % Evaluating the coefficient matrix A 
        A(i,i-1:i+1)=[D_bar*(-dtau/dr_bar^2+dtau/(2*r_bar(i)*dr_bar)),... 
        1-dtau*c_bar(i)/(k_bar+c_bar(i))+2*dtau*D_bar/dr_bar^2,... 
        D_bar*(-dtau/dr_bar^2-dtau/(2*r_bar(i)*dr_bar))]; 
    end 
     
    % Evaluating column matrix b 
    b(2:end-1)=X_bar(2:end-1)'; 
     
     
    X_bar=A\b;      % Solution of X_bar 
     
    % Colony radius 
    R(nt)=r(sum((X_bar-X_e_bar>0))+1); % Edge of the colony is defined 
     
    % Updating solution at the end of each time step 
    c_bar=c_bar_n; 
     
end % End of Time loop     
  
%% Plotting Results 
plot(t, 2*R,'b-','LineWidth', 2.0); 
xlabel('Time (hours)'); 
ylabel('Colony Diameter (mm)'); 
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Solution of Two-Colony Model  

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% This code calculates the numerical solution of the two-colony model.The % 
% dimensional parameters  used  for  non-dimensionalization are: specific %  
% growth rate r0 = 4/h, nutrient diffusion coefficient D_c = 1e-3 mm^2/h, % 
% initial nutrient concentration c0 = 15 g/L, initial population  density % 
% X0 = 1e-3, mortality coefficient mu = 30/h, yield  gamma = 16 g/L, half % 
% saturation constant k = 42.5 g/L, threshold nutrient concentration c* = % 
% 1.5 g/L, critical time  t* = 20h, Domain size 2*R = 92 mm.  Dimensional % 
% simulation variables are: space x and y, time t, population density X1, % 
% X2, X = X1 + X2, nutrient concentration c.  The  range of dimensionless % 
% parameters defining the phase space are: colony separation 12.5 mm < d <% 
% 30 mm,  and  colony diffusion coefficient 0.04 < D_b < 0.3 (in mm^2/h). % 
% Simulation is performed in  Cartesian coordinate system. The two-colony % 
% model is solved using FTCS scheme using three nested loops.  The  outer % 
% loop updates the time, the two inner loop correspond to x and y coordi- % 
% nates. For each time step, the  solutions for X1_bar, X2_bar and c_bar  %  
% are updated and boundary conditions are enforced.                       % 
% % % % % % % % % % %  % %  % % % % % % % % % % % % % % %  % % % %  % % % % 
  
clc; 
close all; 
clear; 
  
  
%% Relevant Dimensional Parameters 
  
d=10;                       % Separation between colonies (mm) 
  
r0=4;                       % Specific Growth Rate, r0 (/h) 
D_c=0.001;                  % Nutrient Diffusion Coefficient, D_c (mm^2/h) 
X0=1e-3;                    % Initial Population density, X0  
X_edge=0.3;                 % Reference Population denoting colony boundary 
r_pet=46;                   % Domain size (mm) 
R=2.5;                      % Radius of Drop Cast (mm) 
T=30;                       % Observation (simulation) time (hours) 
  
%% Dimensionless Parameters 
  
D_bar=40;                   % Normalized Diffusion coefficient 
  
gamma_bar=0.00107;          % Yield, gamma_bar=gamma*X0/c0 
alpha=0.1;                  % Threshold nutrient concentration, alpha=c*/c0 
k_bar=2.83;                 % Half saturation constant, k_bar=k/c0 
mu_bar=1e-2;                % Mortality coefficient, mu_bar=mu*X0/r0 
tau0=80;                    % Critical time tau0=r0*(t*) 
X_edge_bar=X_edge/X0;       % Reference Population denoting colony boundary 
  
%% Definition of Simulation Domain and Grid Generation 
  
% Dimensional variables 
dx=0.25;                    % Grid resolution in x, dx 
dy=dx;                      % Grid resolution in y, dy 
  
x=-r_pet:dx:r_pet;          % Location of grid points in x direction 
y=-r_pet:dy:r_pet;          % Location of grid points in y direction 
n_c=r_pet/dx+1;             % Index location of the origin 
  
nt=1+5e3;                   % Number of time steps 
t=linspace(0,T,nt);         % Time points 
  
% Dimensionless variables 
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x_bar=x*sqrt(r0/D_c);       % Location of grid points in x direction 
y_bar=y*sqrt(r0/D_c);       % Location of grid points in y direction 
dx_bar=mean(diff(x_bar));   % Grid resolution in x, dx_bar 
dy_bar=mean(diff(y_bar));   % Grid resolution in y, dy_bar 
           
tau=r0*t;                   % Time points, tau=t*r0                 
dtau=mean(diff(tau));       % Time step 
  
  
%% Initial Conditions 
  
% Initializing Nutrient concentration 
c_bar=ones(length(x),length(y));        % Initial Nutrient concentration, c_bar = 1  
  
% Initializing Population densities 
X1_bar=zeros(length(x),length(y));      % Population density of colony 1, X1_bar 
X2_bar=zeros(length(x),length(y));      % Population density of colony 2, X2_bar 
  
for i=1:length(x) 
    for j=1:length(y) 
         
        % Initializing X1_bar 
        if (x(i)-d/2)^2+y(j)^2<=R^2     % Equation of drop cast 1 
            X1_bar(i,j)=1;              % X1_bar = 1 inside drop cast,  
                                        %          0 elsewhere  
                                         
        % Initializing X2_bar                                 
        elseif (x(i)+d/2)^2+y(j)^2<=R^2 % Equation of drop cast 2 
            X2_bar(i,j)=1;              % X1_bar = 1 inside drop cast,  
                                        %          0 elsewhere  
        end 
    end 
end 
  
  
X1_bar_n=X1_bar;        % Updated X1_bar, X1_bar_n 
X2_bar_n=X2_bar;        % Updated X2_bar, X2_bar_n 
c_bar_n=c_bar;          % Updated c_bar, c_bar_n 
  
  
X=X1_bar+X2_bar;        % Total Population density         
  
  
%% Numerical Solution 
  
for n=1:nt                      % Time loop 
    for i=2:length(x)-1         % x loop 
        for j=2:length(y)-1     % y loop 
             
            % Solution for X1_bar 
            X1_bar_n(i,j)=D_bar*(c_bar(i,j)>=alpha)*dtau/dx_bar^2*... 

   (X1_bar(i+1,j)+X1_bar(i-1,j))+...      
D_bar*(c_bar(i,j)>=alpha)*dtau/dy_bar^2*... 

                (X1_bar(i,j+1)+X1_bar(i,j-1))+(1-(2*dtau*D_bar/dx_bar^2 ... 
                +2*dtau*D_bar/dy_bar^2)*(c_bar(i,j)>=alpha)+dtau*c_bar(i,j)/... 
                (c_bar(i,j)+k_bar))*X1_bar(i,j)-dtau*mu_bar*X1_bar(i,j)... 
                *X2_bar(i,j)*(tau(n)>r0*20)*(X(n_c,n_c)<=X_edge/X0); 
             
            % Solution for X2_bar 
            X2_bar_n(i,j)=D_bar*(c_bar(i,j)>=alpha)*dtau/dx_bar^2*... 
                (X2_bar(i+1,j)+X2_bar(i-1,j))+... 

   D_bar*(c_bar(i,j)>=alpha)*dtau/dy_bar^2*... 
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                (X2_bar(i,j+1)+X2_bar(i,j-1))+(1-(2*dtau*D_bar/dx_bar^2 ... 
                +2*dtau*D_bar/dy_bar^2)*(c_bar(i,j)>=alpha)+dtau*c_bar(i,j)/... 
                (c_bar(i,j)+k_bar))*X2_bar(i,j)-dtau*mu_bar*X2_bar(i,j)... 
                *X1_bar(i,j)*(tau(n)>r0*20)*(X(n_c,n_c)<=X_edge/X0); 
             
            % Solution for c_bar 
            c_bar_n(i,j)=dtau/dx_bar^2*(c_bar(i+1,j)+c_bar(i-1,j))... 
                +dtau/dy_bar^2*(c_bar(i,j+1)+c_bar(i,j-1))+(1-2*dtau/dx_bar^2 ... 
                -2*dtau/dy_bar^2-gamma_bar*dtau*(X1_bar(i,j)+X2_bar(i,j))... 
                /(c_bar(i,j)+k_bar))*c_bar(i,j); 
        end 
    end 
     
    % Enforcing Boundary Conditions 
    X1_bar_n(1,:)=X1_bar_n(2,:); 
    X2_bar_n(1,:)=X2_bar_n(2,:); 
    X1_bar_n(end,:)=X1_bar_n(end-1,:); 
    X2_bar_n(end,:)=X2_bar_n(end-1,:); 
    X1_bar_n(:,1)=X1_bar_n(:,2); 
    X2_bar_n(:,1)=X2_bar_n(:,2); 
    X1_bar_n(:,end)=X1_bar_n(:,end-1); 
    X2_bar_n(:,end)=X2_bar_n(:,end-1); 
     
    % Solutions are updated at the end of each time step 
    X1_bar=X1_bar_n; 
    X2_bar=X2_bar_n; 
    c_bar=c_bar_n; 
    X=X1_bar+X2_bar; 
     
    % Generating Contour Plot of Numerical Solution of X 
    if mod(n,1000)==1   % Solution is plotted every 1000th time step 
    contourf(x,y,X'*X0,100,'LineColor','none','LevelList',[0 X_edge]); 
    title(['t = ',num2str((n-1)*dtau/r0),' h']); 
    xlabel ('x (mm)') 
    ylabel ('y (mm)') 
    axis equal; 
    colormap 'jet'; 
    colorbar; 
    caxis([0 0.5]); 
    drawnow(); 
    end 
     
end  % End of time loop 
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Dimensionless Phase Diagram Generation 

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% This code calculates the critical separation demarcating the coalescence% 
% and interface phases in the phase-space consisting of the dimensionless %  
% separation (d_bar) and  normalized  diffusion  coeffcient (D_bar).  All % 
% parameters described in this code are in their dimensionless forms. The % 
% dimensional parameters  used  for  non-dimensionalization are: specific %  
% growth rate r0 = 4/h, nutrient diffusion coefficient D_c = 1e-3 mm^2/h, % 
% initial nutrient concentration c0 = 15 g/L, initial population  density % 
% X0 = 1e-3, mortality coefficient mu = 30/h, yield  gamma = 16 g/L, half % 
% saturation constant k = 42.5 g/L, threshold nutrient concentration c* = % 
% 1.5 g/L, critical time  t* = 20h, Domain size 2*R = 92 mm.  Dimensional % 
% simulation variables are: space x and y, time t, population density X1, % 
% X2, X = X1 + X2, nutrient concentration c.  The  range of dimensionless % 
% parameters defining the phase space are: colony separation 12.5 mm < d <% 
% 30 mm,  and  colony diffusion coefficient 0.04 < D_b < 0.3 (in mm^2/h). % 
% Simulation is performed in  Cartesian coordinate system.                % 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 
  
clc; 
close all; 
clear; 
  
%% Dimensionless Parameters 
  
gamma_bar=0.00107;          % Yield, gamma_bar=gamma*X0/c0 
alpha=0.1;                  % Threshold nutrient concentration, alpha=c*/c0 
k_bar=2.83;                 % Half saturation constant, k_bar=k/c0 
mu_bar=1e-2;                % Mortality coefficient, mu_bar=mu*X0/r0 
tau0=80;                    % Critical time tau0=r0*(t*) 
X_edge_bar=3e2;             % Reference Population denoting colony boundary 
  
%% Definition of Simulation Domain and Grid Generation 
  
R_bar=3000;                 % Domain size 2R_bar x 2R_bar, R_bar= R*sqrt(r0/D_c) 
r_bar=158;                  % Radius of drop cast, r=R*sqrt(r0/D_c) 
  
dx_bar=25;                  % Grid resolution in x, dx_bar 
dy_bar=dx_bar;              % Grid resolution in y, dy_bar 
  
x_bar=-R_bar:dx_bar:R_bar;  % Location of grid points in x direction 
y_bar=-R_bar:dy_bar:R_bar;  % Location of grid points in y direction 
n_c=R_bar/dx_bar+1;         % Index location of the origin 
  
dtau=1e-1;                  % Time step dtau 
tau=0:dtau:100;              % Time points, tau=t*r0 
  
%% Phase space Description 
  
D_bar=40:10:300;            % Normalized Diffusion coefficient, D_bar=D_b/D_c 
d_bar=700:dx_bar:3000;      % Colony separation d_bar=d*sqrt(r0/D_c) 
  
  
%% Numerical Solution 
  
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% Solution Algorithm: The critical separation d_star is determined for each % 
% value of D_bar within the chosen range. To do this, the two-colony model  % 
% is solved within two nested loops corresponding to the phase variables.   % 
% The outer loop successively increases D_bar,  while   the   inner   loop  % 
% increases  d_bar. For each solution within the inner loop,    a check is  % 
% performed which checks if the colonies separate. The value of d_bar for   % 
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% which two colonies start  forming  interface  is the critical separation  % 
% d_star.   By running through the outer loop,   we obtain a set of d_star  % 
% within the chosen range of D_bar.                                         % 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 
  
d_star=zeros(1,length(D_bar));  % Critical separation, d_star 
  
for l=1:length(D_bar)           % Outer loop: Increases D_bar 
  
  
for k=1:length(d_bar)           % Inner loop: Increases d_bar 
     
% Initial conditions 
  
% Initializing Nutrient concentration 
c_bar=ones(length(x_bar),length(y_bar));   % Initial Nutrient concentration, c_bar = 1  
  
% Initializing Population densities 
  
X1_bar=zeros(length(x_bar),length(y_bar));  % Population density of colony 1, X1_bar   
X2_bar=zeros(length(x_bar),length(y_bar));  % Population density of colony 2, X2_bar 
  
for i=1:length(x_bar) 
    for j=1:length(y_bar) 
         
        % Initializing X1_bar 
         
        if (x_bar(i)-d_bar(k)/2)^2+y_bar(j)^2<=r_bar^2      % Equation of drop cast 1 
             
            X1_bar(i,j)=1;                  % X1_bar = 1 inside drop cast,  
                                            %          0 elsewhere  
             
             
        % Initializing X2_bar 
         
        elseif (x_bar(i)+d_bar(k)/2)^2+y_bar(j)^2<=r_bar^2  % Equation fo drop cast 2 
             
            X2_bar(i,j)=1;                  % X2_bar = 1 inside drop cast,  
                                            %          0 elsewhere 
        end 
    end 
end 
  
% Solution of Two-Colony Model 
  
% % % % % % % % % % %  % %  % % % % % % % % % % % % % % %  % % % %  % % % % % 
% The two-colony model is solved using FTCS scheme using three nested loops % 
% The outer loop updates the time, the two inner loop correspond to x and y % 
% coordinates. For each time step,   the  solutions for X1_bar, X2_bar and  % 
% c_bar are updated and boundary conditions are enforced.                   % 
% % % % % % % % % % %  % %  % % % % % % % % % % % % % % %  % % % %  % % % % % 
  
X1_bar_n=X1_bar;      % Updated X1_bar, X1_bar_n 
X2_bar_n=X2_bar;      % Updated X2_bar, X2_bar_n 
c_bar_n=c_bar;        % Updated c_bar, c_bar_n 
X=X1_bar+X2_bar; 
  
for n=1:length(tau)                     % Time Loop 
    for i=2:length(x_bar)-1             % x loop 
        for j=2:length(y_bar)-1         % y loop 
             
            % Solution for X1_bar 
            X1_bar_n(i,j)=D_bar(l)*(c_bar(i,j)>=alpha)*dtau/dx_bar^2*... 
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                (X1_bar(i+1,j)+X1_bar(i-1,j))+... 
   D_bar(l)*(c_bar(i,j)>=alpha)*dtau/dy_bar^2*... 

                (X1_bar(i,j+1)+X1_bar(i,j-1))+(1-(2*dtau*D_bar(l)/dx_bar^2 ... 
                +2*dtau*D_bar(l)/dy_bar^2)*(c_bar(i,j)>=alpha)+dtau*c_bar(i,j)/... 
                (c_bar(i,j)+k_bar))*X1_bar(i,j)-dtau*mu_bar*X1_bar(i,j)... 
                
*X2_bar(i,j)*(tau(n)>tau0)*(X1_bar(n_c,n_c)+X2_bar(n_c,n_c)<=X_edge_bar); 
             
            % Solution for X2_bar 
            X2_bar_n(i,j)=D_bar(l)*(c_bar(i,j)>=alpha)*dtau/dx_bar^2*... 
                (X2_bar(i+1,j)+X2_bar(i-1,j))+... 

   D_bar(l)*(c_bar(i,j)>=alpha)*dtau/dy_bar^2*... 
                (X2_bar(i,j+1)+X2_bar(i,j-1))+(1-(2*dtau*D_bar(l)/dx_bar^2 ... 
                +2*dtau*D_bar(l)/dy_bar^2)*(c_bar(i,j)>=alpha)+dtau*c_bar(i,j)/... 
                (c_bar(i,j)+k_bar))*X2_bar(i,j)-dtau*mu_bar*X2_bar(i,j)... 
                
*X1_bar(i,j)*(tau(n)>tau0)*(X1_bar(n_c,n_c)+X2_bar(n_c,n_c)<=X_edge_bar); 
             
            % Solution for c_bar 
            c_bar_n(i,j)=dtau/dx_bar^2*(c_bar(i+1,j)+c_bar(i-1,j))... 
                +dtau/dy_bar^2*(c_bar(i,j+1)+c_bar(i,j-1))+(1-2*dtau/dx_bar^2 ... 
                -2*dtau/dy_bar^2-gamma_bar*dtau*(X1_bar(i,j)+X2_bar(i,j))... 
                /(c_bar(i,j)+k_bar))*c_bar(i,j); 
        end 
    end 
     
    % Enforcing Boundary Conditions 
    X1_bar_n(1,:)=X1_bar_n(2,:); 
    X2_bar_n(1,:)=X2_bar_n(2,:); 
    X1_bar_n(end,:)=X1_bar_n(end-1,:); 
    X2_bar_n(end,:)=X2_bar_n(end-1,:); 
    X1_bar_n(:,1)=X1_bar_n(:,2); 
    X2_bar_n(:,1)=X2_bar_n(:,2); 
    X1_bar_n(:,end)=X1_bar_n(:,end-1); 
    X2_bar_n(:,end)=X2_bar_n(:,end-1); 
     
    % Solutions are updated at the end of each time step 
    X1_bar=X1_bar_n; 
    X2_bar=X2_bar_n; 
    c_bar=c_bar_n; 
    X=X1_bar+X2_bar; 
     
end  % End of Two-Colony Model solution 
  
  
% Check for Interface formation for every d_bar 
  
if X(n_c,n_c)<X_edge_bar    % If net population density at origin is less than  
    d_star(l)=d_bar(k);     % X_edge_bar, an interface is formed.  
    break; 
end 
  
end   % End of d_bar loop  
  
% Dynamic Plotting of Phase Diagram 
  
semilogx(D_bar(1:l),d_star(1:l),'b-','LineWidth',2.0); 
xlabel ('$\mathbf{\bar{D}}$','Interpreter','latex'); 
ylabel ('d*'); 
axis([30 400 500 1700]); 
drawnow(); 
  
end   % End of D_bar loop 
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Data Processing from Single Colony Experiments: Effective Colony Diameter 

Main function 

% % % % % % % % % % %  % %  % % % % % % % % % % % % % % % % % % % % % % % % 
% This code estimates the effective diameter of a single bacterial colony % 
% at a given time point. The code inputs image collected from experiment. % 
% From the input image file, a length scale is first established using the% 
% im_scale function. Next, the code  isolates  the colony from background % 
% using the crop function and computes  the  number   of  pixels that the % 
% colony covers. This is then converted into the effective diameter using % 
% the length scale computed earlier.                                      % 
% % % % % % % % % % %  % %  % % % % % % % % % % % % % % % % % % % % % % % % 
  
clear; 
close all; 
clc;  
  
%% Read image 
  
% Navigate to folder containing saved image 
current_folder=pwd; 
  
cd ../../../'Experiments Rajorshi'/'B. subtilis radius rate experiments'/'0.5% 
Repeat'/ 
im_folder=pwd; 
  
% Select required image 
im_name='Set 2.2 22 hours.JPG'; 
  
% Read image file into MATLAB 
image=imread(im_name); 
  
cd(current_folder); 
  
%% Length Scale Estimation  
  
scale=im_scale(image);           % im_scale outputs the length scale in terms of 
                                 % size of pixel (mm/px) 
  
%% Isolate colony 
  
[~, colony]=crop(image);    % crop function returns binary image of isolated colony 
  
subplot(2,1,1),imshow(colony);  % Comparison of original and colony-isolated 
subplot(2,1,2),imshow(image);   % images. 
  
%% Colony Diameter Estimate 
  
colony_diameter=sqrt(sum(sum(colony)))*scale*sqrt(4/pi);     
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im_scale function 

function scale=im_scale(image) 
  
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% The function inputs an image file. It displays the  image  and asks the % 
% user to select two reference points on the image.  The length scale  is % 
% computed based on the coordinates of the chosen reference points and  a % 
% known length from the image.                                            % 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 
  
% Step 1: Display image 
imshow(image); 
  
% Step 2: Ask user for two reference points 
[x,y]=ginput(2); 
px_dist=diff(y); 
  
% Step 3: Prompt for entering a known length scale 
length=input('Enter length in mm: '); 
  
% Step 4: Determine the length scale in mm/px 
scale=length/px_dist; 
  
end 

 

crop function 

function [center,image_crop]=crop(image) 
  
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% The function inputs the RGB image of the colony and outputs the location% 
% of the center of the colony and a binary image of the isolated  colony. % 
% For isolating the colony, first, a mask is created around the colony by % 
% picking points around the colony.  The  mask is then translated on to a % 
% binary canvas.                                                          % 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 
  
% Create mask around colony for isolating colony 
imshow(image); 
[x,y]=ginput; 
center(1)=x(1); 
center(2)=y(1); 
x=[x; x(2)]; 
y=[y;y(2)]; 
  
crop_mask=poly2mask(x,y,size(image,1),size(image,2)); % Masked colony 
  
% Generating binary image of isolated colony 
image_bw=im2bw(image,0.58); 
image_crop=(1-image_bw).*crop_mask; 
  
end 
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