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Abstract

Herein, we consider direct Markov chain approximations to the Duncan–Mortensen–Zakai
equations for nonlinear #ltering problems on regular, bounded domains. For clarity of presenta-
tion, we restrict our attention to re(ecting di)usion signals with symmetrizable generators. Our
Markov chains are constructed by employing a wide band observation noise approximation, di-
viding the signal state space into cells, and utilizing an empirical measure process estimation.
The upshot of our approximation is an e<cient, e)ective algorithm for implementing such #lter-
ing problems. We prove that our approximations converge to the desired conditional distribution
of the signal given the observation. Moreover, we use simulations to compare computational ef-
#ciency of this new method to the previously developed branching particle #lter and interacting
particle #lter methods. This Markov chain method is demonstrated to outperform the two-particle
#lter methods on our simulated test problem, which is motivated by the #sh farming industry.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The requirement of #nding workable approximate solutions to the #ltering distribu-
tions, which are not resolved by exact methods like the Kalman #lter, is key to many
engineering disciplines. In this regard, many authors e.g. Kushner (1977, 1979) and
Di Masi and Runggaldier (1981, 1982), have utilized Markov chain approximations
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of the signal process which, when combined with Clark’s robust #lter (1978), re-
duce these approximation di<culties to solving a system of ordinary di)erential equa-
tions (ODEs) parameterized by the observation process or, when combined with the
Kallianpur–Striebel formula, provide a method of calculating a discretized approxi-
mation to the conditional distribution of the original signal given the observations.
Recently, there have been many works devoted to applying various particle methods
to construct approximate solutions to the celebrated Duncan–Mortensen–Zakai equa-
tion. Among them, we would like to mention Del Moral and collaborators’ adaptive
interacting particle (AIP) #lter (see Del Moral (1996) for one of the earlier works
and Del Moral and Miclo (2000) for an excellent and complete account) and the im-
proved re#ning interacting particle #lter (see Del Moral et al., 2001). Similarly, Crisan,
Lyons and collaborators introduced the adaptive branching particle #lter (see Crisan
and Lyons, 1997; Crisan et al., 1998, 1999), that was improved by Kouritzin and
collaborators’ re#ning branching particle (RBP) #lter (see Ballantyne et al., 2000). In
this work, we take the new method of approximating the Duncan–Mortensen–Zakai
equation directly. Our method utilizes the so-called stochastic particle Markov chain
approximation introduced in the context of ODEs by Kurtz (1971), of partial di)eren-
tial equations (PDEs) by Arnold and Theodosopulu (1980), and of stochastic partial
di)erential equations (SPDEs) by Kouritzin and Long (2002). Blount (1991, 1994)
and Kotelenez (1986, 1988) have also made fundamental contributions to the analysis
of such stochastic particle approximations.
We consider the low observable #ltering problem of detecting and tracking a tar-

get buried in high-amplitude synthetic observation noise. Motivated by #sh farming
applications, we constrain our target to live within the closure KD of a d-dimensional
rectangular region D = (0; L1) × (0; L2) × · · · × (0; Ld), undergoing re(ections at the
boundary @D of this region. Without loss of generality, we assume that Li is a posi-
tive integer for each 16 i6d. We suppose that {aij}di; j=1; 	 : KD → R are functions
satisfying the following conditions:

(i) aij(·)=aji(·)∈C3( KD), the space of three times continuously di)erentiable functions
on KD, for all 16 i; j6d. Moreover,

�−1|�|26
d∑

i; j=1

aij(x)�i�j6 �|�|2; ∀�∈Rd and x∈ KD (1.1)

for some �¿ 0 not depending on x.
(ii) 	(·)∈C3( KD) such that inf x∈ KD 	(x)¿ 0.

We denote by Hi;2(D) the (i; 2)-Sobolev space on D for i = 1; 2 and consider on
H := L2( KD; 	2 dx) the symmetric bilinear form




E(u; v) =
1
2

∫
KD
〈a(x)∇u(x);∇v(x)〉	2(x) dx; u; v∈D(E);

D(E) = H 1;2(D):
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One can check that E is a regular Dirichlet form satisfying the local property so
it is associated with a strong Markov di)usion process (C KD[0;∞); (xt)t¿0; (Px)x∈ KD),
where (xt)t¿0 is the coordinate process (cf. Fukushima et al., 1994, Theorems 7.2.1
and 7.2.2). In particular, if (pt)t¿0 and (Tt)t¿0 denote the semigroups associated with
(xt)t¿0 and E, respectively, then ptf=Ttf dx-a.e. for any f∈L∞( KD; 	2 dx) and t ¿ 0.
Let U (x) = (U1(x); : : : ; Ud(x)) be the unit inward normal at x∈ @D. We de#ne the
conormal vector #eld � by �i(x) :=

∑d
j=1 aij(x)Uj(x); x∈ @D. We denote @i = @=@xi

for 16 i6d. Then, the generator associated with E is the self-adjoint operator


Lf =
1
2	2

d∑
j=1

(
@j

d∑
i=1

	2aij@if

)
; f∈D(L);

D(L) = {f∈H 2;2(D) : 〈�;∇f〉|@D = 0}:

The Markov family ((xt)t¿0; (Px)x∈ KD) is thus governed by L inside the domain D
with re(ections at the boundary in the direction �(x). In fact, the actual “signal”
((xt)t¿0; (Px)x∈ KD) satis#es the Skorohod stochastic di)erential equation (see Freidlin,
1985, Section 1.6){

dxt = �(xt)dvt + b(xt)dt + �@D(xt)�(xt)d�t ;

x0 = x; �0 = 0;

where �∈C3( KD) satis#es �(x)�∗(x)=(aij(x)), b := a∇ ln 	+(12
∑d

j=1 @jaij); � is the
indicator function, vt is a standard d-dimensional Brownian motion, and �t is the local
time of xt , which is an increasing continuous additive functional that increases only
when xt ∈ @D.
We let (CR[0;∞); (wt)t¿0; P) be a standard Brownian motion, where (wt)t¿0 denotes

the coordinate process. For h∈C1( KD), we de#ne

yt :=
∫ t

0
h(xs) ds+ wt; t¿ 0: (1.2)

The real valued process (yt)t¿0 is a “noisy observation” of the signal (xt)t¿0. Through-
out this paper, we let T ¿ 0 be arbitrary and # := C KD[0; T ]× CR[0; T ]. We use P to
denote the measure on (#;B(#)) that gives the joint distribution of the independent
processes (xt)06t6T and (wt)06t6T with the initial condition x0 = given random vari-
able. For t ∈ [0; T ], we let N be the collection of all P null sets, Yt be the �-algebra
�{ys; 06 s6 t} ∨N, and E be the expectation with respect to P. For a real measur-
able function f on KD satisfying E|f(xt)|2¡∞ for all 06 t6T , the #ltering problem
is to evaluate

%t(f) := E[f(xt) |Yt]; t ∈ [0; T ]; (1.3)

which is the least-square estimate of f(xt) given all the observations up to time t. For
each t ∈ [0; T ], we call any version of %t(f) in (1.3) an optimal #lter.



278 M.A. Kouritzin et al. / Stochastic Processes and their Applications 110 (2004) 275–294

For t ∈ [0; T ], we de#ne &t := exp(
∫ t
0 h(xs) dys − 1

2

∫ t
0 h
2(xs) ds). It is well known

that the formula dP0=dP := &−1
T de#nes a probability measure P0 under which

(i) the distribution of {xt} is the same as under P,
(ii) {yt; t ∈ [0; T ]} is a standard Brownian motion,
(iii) {xt} and {yt} are independent.
Let E0 denote the expectation with respect to P0. Then, one has the Kallianpur–

Striebel formula

%t(f) =
E0[f(xt)&t |Yt]
E0[&t |Yt]

:=
�t(f)
�t(1)

:

For any f∈C∞( KD) satisfying the boundary condition 〈�;∇f〉|@D=0, one has the weak
form of the Duncan–Mortensen–Zakai equation (cf. Zakai, 1969)

�t(f) = �0(f) +
∫ t

0
�s(Lf) ds+

∫ t

0
�s(hf) dys a:s: P0: (1.4)

Under our ellipticity and smoothness condition, following the elegant arguments of
Pardoux (1982), one #nds that �t has a density p(t; x) on H , which is the pathwise
unique weak solution to the SPDE on H


dp(t; x) =Lp(t; x) dt + h(x)p(t; x) dyt; t ¿ 0; x∈D;

p(0; x) = p0(x); x∈ KD;

〈�(x);∇p(t; x)〉|x∈@D = 0; t ¿ 0;

where the density function p0 of the distribution of x0 is assumed to be in H .
We de#ne (Ĥ ; ‖ · ‖) := L2( KD; dx). Using the unitary map I from Ĥ to H : I ◦ f =

f=	; ∀f∈ Ĥ , we get the image Dirichlet form on Ĥ{
Ê(u; v) = E(I ◦ u; I ◦ v); u; v∈D(Ê);

D(Ê) = {u : I ◦ u∈H 1;2(D)}:

Let (T̂ t)t¿0 and L̂ denote the semigroup and generator associated with (Ê;D(Ê))
respectively, then one can check that

T̂ tf = I−1 ◦ Tt(I ◦ f) dx-a:e:; ∀f∈ Ĥ ; t ¿ 0

and 


L̂f = I−1 ◦L(I ◦ f)

=
1
2

d∑
j=1

(
@j

d∑
i=1

aij@if

)
− f
2	

d∑
j=1

(
@j

d∑
i=1

aij@i	

)
; f∈D(L̂);

D(L̂) = {f : I ◦ f∈D(L)}:
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We de#ne p̂(t; x) := 	(x)p(t; x). Then, p̂(t; x) is the pathwise unique weak solution to
the SPDE on Ĥ



dp̂(t; x) = L̂p̂(t; x) dt + h(x)p̂(t; x) dyt; t ¿ 0; x∈D;

p̂(0; x) = p̂0(x) := 	(x)p0(x); x∈ KD;〈
�(x);∇ p̂(t; x)

	(x)

〉
|x∈@D = 0; t ¿ 0:

Motivated by Kushner and Huang (1985), we let z(t) be a stationary, zero mean,
bounded and right continuous )-mixing process with )(·) satisfying ∫∞

0 )1=2(t) dt ¡∞.
Also, we let

∫∞
−∞ Ez(s)z(0) ds = 1. For n∈N, we de#ne an approximate observation

process yn by

yn
t :=

∫ t

0
(h(xs) +

√
nzns) ds; t¿ 0; (1.5)

ẏn
t := (d=dt)y

n
t , and p̂n by the pathwise unique weak solution to the random PDE

on Ĥ 


@p̂n(t; x)
@t

= L̂p̂n(t; x)− 1
2 h
2(x)p̂n(t; x) + h(x)p̂n(t; x)ẏn

t ; t ¿ 0; x∈D;

p̂n(0; x) = p̂0(x); x∈ KD;

〈�(x);∇ p̂n(t; x)
	(x)

〉|x∈@D = 0; t ¿ 0:

(1.6)

Then, similar to Kushner and Huang (1985, Theorem 2), one can show that

sup
n; t6T

E‖p̂n(t)‖2¡∞: (1.7)

Let Ĥw denote Ĥ endowed with the weak topology. For any M ∈N, we de#ne SM :=
{f∈ Ĥ : ‖f‖¡M}, let dM be the usual metric for the weak topology of SM , and set
d =

∑∞
M=1 2

−MdM . Owing to (1.7), convergence for p̂n in the metric d is actually
convergence in the weak topology. Let CĤw [0; T ] denote the Ĥw-valued continuous
functions on [0; T ]. One can prove along the lines of Kushner and Huang (1985,
Theorem 6) that {p̂n} converges to p̂ in distribution in CĤw [0; T ]. We will give a
computer workable approximation to p̂n and prove convergence for the approximation.

We denote - := (1=2	)
∑d

j=1

(
@j
∑d

i=1 aij@i	
)
, . := supx∈ KD |-(x)|, and de#ne a

semigroup (T̃ t)t¿0 on Ĥ by T̃ t := e−.t T̂ t for all t ¿ 0. Then, the generator associated
with (T̃ t)t¿0 is L̃ := L̂ − .. L̃ is the evolution generator on the unweighted space
Ĥ where we perform our analysis. Here we choose L̃, rather than L or L̂, to be the
evolution generator since it is easier to construct explicit Markov chain approximations
for L̃ (cf. (2.2) below) and employ the useful symmetric closed-form technique to
prove the convergence for the approximations. Using variation of constants, the solution
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of (1.6) can be put in the form

p̂n(t) = T̃ (t)p̂n
0 +
∫ t

0
T̃ (t − s)

((
hẏ n(s) + .− 1

2
h2
)

p̂n(s)
)
ds: (1.8)

In the sequel, we discuss Markov chain approximations to the integral equation (1.8)
for each #xed n∈N and thereby initiate analysis of a novel Markov chain #lter. To
ease notation, we omit the superscript n, understanding that all results are for p̂n

and yn.
In Section 2, we discuss the construction of Markov chain approximations to

Eq. (1.8). Then, in Section 3, we state and prove the quenched and annealed laws
of large numbers which establish the convergence of our Markov chains to the solu-
tion of (1.8) in mean squares sense. Note that although we consider the continuous
observation model (1.2) and employ the wide band observation noise approximation
(1.5) in Sections 2 and 3, similar results continue to hold if we employ some other
observation approximations, e.g. a polygonal approximation (cf. Hu et al., 2002), to
the Duncan–Mortensen–Zakai equation (1.4). Finally, in Section 4, we compare com-
putational e<ciency of this Markov chain method with the previously mentioned AIP
#lter and RBP #lter methods for the #sh tracking problem. We consider a discrete ob-
servation model (cf. (4.1) below) and use simulation results to show that this Markov
chain method outperforms the two-particle #lter methods on our test problem.

2. Construction of Markov chain

The Markov chain approximation discussed in this paper is motivated by the stochas-
tic particle models of chemical reaction with di)usion studied by Arnold and
Theodosopulu (1980), Kotelenez (1986, 1988), Blount (1991, 1994), and Kouritzin
and Long (2002). In their models, the operator L̃ is replaced by a less general oper-
ator like the Laplacian. Blount (1991, 1994), and Kouritzin and Long (2002), proved
that a sequence of Markov chain approximations converges to the solution of their mod-
els weakly (in the distribution convergence sense uniformly in time). In our model, we
employ the symmetric closed form technique to get the convergence in mean square
of Markov chain approximations for our more general class of operators.
Before de#ning the stochastic particle models, we prepare some preliminaries con-

cerning the discretization of the operator L̃. Now, for N ∈N, we let DN := {k =
(k1; : : : ; kd)∈Nd: 16 ki6LiN for each 16 i6d} and divide [0; L1) × · · · × [0; Ld)
into L1N × · · · × LdN cells of size 1=Nd:

INk :=
[
k1 − 1

N
;
k1
N

)
× · · · ×

[
kd − 1

N
;
kd
N

)
; k ∈DN :

We de#ne ĤN := RL1N×···×LdN and endow ĤN with the inner product

〈’;  〉N := 1
Nd

∑
k∈DN

’k k ; ∀’= (’k)k∈DN ;  = ( k)k∈DN ∈ ĤN :
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Then, (ĤN ; 〈·; ·〉N ) is a Hilbert space with norm denoted by ‖ · ‖N . For k ∈DN , we
de#ne aN

ij (k) := Nd
∫
INk

aij(x) dx for 16 i; j6d; -Nk := Nd
∫
INk

-(x) dx and hN
k :=

Nd
∫
INk

h(x) dx. For 16 i6d we denote ei = (0; : : : ; 0; 1; 0; : : : ; 0) with 1 in the ith
coordinate, and set Si’k := ’k+ei if k, k+ei ∈DN , and S−i’k := ’k−ei if k; k−ei ∈DN .
We consider on ĤN the symmetric closed form (ẼN ;D(ẼN ))


ẼN (u; v) =
1
Nd

∑
k∈D0N


N 2

2

d∑
i; j=1

aN
ij (k)(Si − I)uk · (Sj − I)vk + (-Nk + .)ukvk


 ;

u; v∈D(ẼN );

D(ẼN ) = ĤN ;

where D0N := {k ∈DN : 26 ki6LiN − 1 for each 16 i6d}. De#ne{
Ẽ(u; v) := Ê(u; v) + .(u; v); u; v∈D(Ẽ);

D(Ẽ) =D(Ê):

Then, ẼN can be thought as a discretized version of Ẽ. For ’ = (’k)k∈DN ∈ ĤN , we
de#ne

(L̃N’)k :=
N 2

2

d∑
i; j=1

[aN
ij (k)(Si − I)’k1k∈D0N

− (S−j(aN
ij (k)(Si − I)’k))1k∈D0N+ej ]

−(-Nk + .)’k1k∈D0N
:

Then, L̃N is a symmetric bounded linear operator on ĤN associated with ẼN .
For t¿ 0 we de#ne T̃ N

t = exp(tL̃
N ), which is a symmetric strongly continuous

semigroup of linear operators on ĤN . We introduce the projective mapping PN : Ĥ →
ĤN ; (PNf)k := Nd

∫
INk

f(x) dx; ∀f∈ Ĥ . Denote C(L) := {f∈C∞( KD): 〈�;∇f〉|@D=
0}. One can check that C(L) is a core of L by virtue of Ethier and Kurtz (1986,
Theorem 8.1.5). Denote C(L̃) := {	f :f∈C(L)} so C(L̃) is a core of L̃. Note that
‖L̃NPNf−PNL̃f‖N → 0 for each f∈C(L̃) as N → ∞. It follows by Trotter–Kato
theorem that for each f∈ Ĥ ; ‖T̃ N

t P
Nf − PN T̃ tf‖N → 0 for all t¿ 0, uniformly on

[0; T ]. Hence, supN; t6T ‖T̃ N
t ‖N ¡∞ by the principle of uniform boundedness.

Let {X k;y
+;N (t); X

k;y
−;N (t);X

k; (1;1)
+;N (t); X k; (1;1)

−;N (t); : : : ;X k; (d;d)
+;N (t); X k; (d;d)

−;N (t); k ∈DN} be in-
dependent Poisson processes on some probability space ( K#; KF; KP) for each N ∈N (for
a practical means of construction of these processes we refer the reader to Kouritzin
and Long (2002)). We de#ne from (#;F;P) and ( K#; KF; KP) the product probability
space (#0;F0;P0) = (# × K#;F ⊗ KF;P × KP). Let l = l(N ) be a function such that
l(N )→ ∞ as N → ∞ and

nN
k (0) =

⌊
lNd

∫
INk

p̂0(x) dx

⌋
: (2.1)
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Hereafter, �r� denotes the greatest integer not more than a real number r. Then, mo-
tivated by Ethier and Kurtz (1986, pp. 326–327) and Kouritzin and Long (2002), we
let

nN
k (t) = nN

k (0) + X k;y
+;N

(∫ t

0

[(
hN
k ẏs − 12(h

N
k )
2 − -Nk

)
nN
k (s)

]+
ds

)

−X k;y
−;N

(∫ t

0

[(
hN
k ẏs − 12(h

N
k )
2 − -Nk

)
nN
k (s)

]−
ds

)

+
d∑

i; j=1

[
X k; (i; j)
+;N

(∫ t

0
7k;+
i; j;N (n

N (s)) ds
)
− X k; (i; j)

−;N

(∫ t

0
7k;−
i; j;N (n

N (s)) ds
)]

−
d∑

i; j=1

[
X k−ej ; (i; j)
+;N

(∫ t

0
7k−ej ;+
i; j;N (nN (s)) ds

)

−X k−ej ; (i; j)
−;N

(∫ t

0
7k−ej ;−
i; j;N (nN (s)) ds

)]
1k∈(DN+ej); (2.2)

where 7k;+
i; j;N (n

N ); 7k;−
i; j;N (n

N ) denote, respectively, the positive, negative parts of

7k
i; j;N (n

N ) =




N 2

2
aN
ij (k)(n

N
k+ei − nN

k ); k ∈D0N ;

0; otherwise:

Eq. (2.2) provides a very explicit and powerful construction of our Markov chain
approximations to Eq. (1.8), and can be implemented directly on a computer.
By Ethier and Kurtz (1986, Appendixes, Theorem 8.1), there exists P̃ : # × KF →

[0; 1] such that for each !∈#; P̃!(·) := P̃(!; ·) is a probability measure on KF, for
each B∈ KF, ! → P̃!(B) is F-measurable, and P0(d!0)=P̃!(d K!)P(d!); !0=(!; K!).
Note that P̃! is the probability measure for the quenched results. However, to use the
quenched results within the annealed ones we need to know that ! → P̃!(B) is
measurable for each B∈ KF.
For k ∈DN , we have

nN
k (t) = nN

k (0) +
∫ t

0

(
hN
k ẏ s + .− 1

2
(hN

k )
2
)

nN
k (s) ds+

∫ t

0
L̃NnN

k (s) ds

+ZN
k;y(t) +

d∑
i; j=1

ZN
k; (i; j)(t)−

d∑
i; j=1

ZN
k−ej ;(i;j)(t)1k∈(DN+ej); (2.3)
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where

ZN
k;y(t) = X k;y

+;N

(∫ t

0

[(
hN
k ẏ s − 12(h

N
k )
2 − -Nk

)
nN
k (s)

]+
ds

)

−X k;y
−;N

(∫ t

0

[(
hN
k ẏ s − 12(h

N
k )
2 − -Nk

)
nN
k (s)

]−
ds

)

−
∫ t

0

(
hN
k ẏ s − 12(h

N
k )
2 − -Nk

)
nN
k (s) ds

and

ZN
k; (i; j)(t) = X k; (i; j)

+;N

(∫ t

0
7k;+
i; j;N (n

N (s)) ds
)
− X k; (i; j)

−;N

(∫ t

0
7k;−
i; j;N (n

N (s)) ds
)

−
∫ t

0
7k
i; j;N (n

N (s)) ds; 16 i; j6d:

To get the density in each cell, we divide nN (t) by l and, consequently, the descrip-
tion of the stochastic particle model can be given by

p̂l;N (t; x) =
∑
k∈DN

nN
k (t)
l
1Nk (x);

where 1Nk (·) is the indicator function on INk . Now, we set

Zl;N
y (t) :=

∑
k∈DN

l−1Zl;N
y (t)1Nk ;

and

Zl;N
A (t) :=

d∑
i; j=1

l−1
∑

k∈D0N∪(D0N+ej)

(ZN
k; (i; j)(t)− ZN

k−ej ;(i;j)(t))1
N
k :

Let GN
t denote the �-algebra generated by the observations up to time t, nN (0), the

time changed Poisson processes used to construct nN , and the collection of all P0 null
sets. Then, similar to Kouritzin and Long (2002, Lemma 2.5), one can show that both
Zl;N
y (t) and Zl;N

A (t) are L2-martingales with respect to GN
t under probability measure P̃

!.
To ease notation, for f∈ Ĥ and t¿ 0, we denote

L̃Nf :=
∑
k∈DN

(L̃NPNf)k1Nk ; T̃N (t)f :=
∑
k∈DN

(T̃ N (t)PNf)k1Nk :

We de#ne hN (x) :=
∑

k∈DN
hN
k 1

N
k (x). Then, it follows from (2.3) that

p̂l;N (t) = p̂l;N (0) +
∫ t

0

(
hN ẏ s + .− 1

2
(hN )2

)
p̂l;N (s) ds

+
∫ t

0
L̃N p̂l;N (s) ds+ Zl;N

y (t) + Zl;N
A (t):
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Using variation of constants, p̂l;N (t) = p̂l;N (t; !0) can be written as

p̂l;N (t) = T̃N (t)p̂l;N (0) +
∫ t

0
T̃N (t − s)

((
hN ẏ(s) + .− 1

2
(hN )2

)
p̂l;N (s)

)
ds

+
∫ t

0
T̃N (t − s) dZl;N

y (s) +
∫ t

0
T̃N (t − s) dZl;N

A (s): (2.4)

3. Law of large numbers

Following Section 2, all results in this section are stated for yn with #xed n∈N.
Throughout this section, we assume that (N; l(N )) is any sequence satisfying l(N )→
∞ as N → ∞. Then, our dependence on (l; N ) is reduced to dependence only on N
and we will write p̂N for p̂l(N );N . For f : KD → R we de#ne ‖f‖∞ := supx∈ KD |f(x)|.
Now we have the following quenched law of large numbers:

Theorem 3.1. Suppose that ‖p̂0‖∞ ¡∞. Then, for each 2xed !∈#,

sup
t6T

Ẽ!‖p̂N (t)− p̂(t)‖2 → 0 as N → ∞:

Before proving Theorem 3.1, we prepare some preliminary lemmas. For convenience,
we denote fN :=

∑
k∈DN

(PNf)k1Nk for f∈ Ĥ and N ∈N.

Lemma 3.2. For any f∈ Ĥ , we have

Ẽ![〈ZN
y (t); f〉2]6

1
Ndl

Ẽ!
∫ t

0

〈∣∣∣∣
(
hN ẏ(s)− 12(hN )2 − -N

)
p̂N (s)

∣∣∣∣ ; f2N
〉
ds;

and for some constant C ¿ 0

Ẽ![〈ZN
A (t); f〉2]6

C
Ndl

ẼN (PNfN ; PNfN )
∫ t

0
‖Ẽ!|p̂N (s)|‖∞ ds:

Proof. Inasmuch as the proofs of two parts follow the same steps, we just show the
second part. By independence, the fact [X·∧<]t=[X ]t∧< for stopping time <, the bilinear
property of quadratic variation, and the fact that 〈ZN

A (t); f〉 is an L2-martingale, we get

Ẽ!(〈ZN
A (t); f〉2)

= Ẽ!




 d∑

i; j=1

l−1


 ∑

k∈D0N∪(D0N+ej)

(ZN
k; (i; j)(t)− ZN

k−ej ;(i;j)(t))


 〈1Nk ; f〉




t




=
d∑

i; j=1

∑
k∈D0N

l−2(〈1Nk ; f〉 − 〈1Nk+ej ; f〉)2Ẽ![ZN
k; (i; j)]t
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=
d∑

i; j=1

∑
k∈D0N

l−2
N 2

2
(〈1Nk ; f〉 − 〈1Nk+ej ; f〉)2

∫ t

0
Ẽ!|aN

ij (k)(n
N
k+ei(s)− nN

k (s))| ds

6
C

Ndl
ẼN (PNfN ; PNfN )

∫ t

0
‖Ẽ!|p̂N (s)|‖∞ ds:

Next, we need to estimate the moments of p̂N (t). Similar to Kouritzin and Long
(2002, Lemma 3.4), we have the following lemma.

Lemma 3.3. Suppose that ‖p̂0‖∞ ¡∞. Then, for each 2xed !∈#,

sup
s6t

‖Ẽ!|p̂N (s)|‖∞6D(t; l; !)¡∞;

where D(·) can be chosen to be increasing in t, decreasing in l and measurable in !.

Proof. Setting p̂N (t)=
∑

k∈DN
p̂N (t; k)1Nk and �N

k =Nd=21Nk . We obtain from (2.4) that

|p̂N (t; k)|6 〈T̃N (t)p̂N (0); �N
k 〉Nd=2

+
〈∫ t

0
T̃N (t − s)

∣∣∣∣
(
hN ẏ(s) + .− 1

2
(hN )2

)
p̂N (s)

∣∣∣∣ ds; �N
k

〉
Nd=2

+
∣∣∣∣
〈∫ t

0
T̃N (t − s) dZN

y (s); �
N
k

〉∣∣∣∣Nd=2

+
∣∣∣∣
〈∫ t

0
T̃N (t − s) dZN

A (s); �
N
k

〉∣∣∣∣Nd=2:

By the symmetry and the uniform bound on (T̃N (s))s6t , one #nds that

Ẽ!〈T̃N (t)p̂N (0); �N
k 〉Nd=26D1(t)‖Ẽ!p̂N (0)‖∞ (3.1)

and

Ẽ!
〈∫ t

0
T̃N (t − s)

∣∣∣∣
(
hN ẏ(s) + .− 1

2
(hN )2

)
p̂N (s)

∣∣∣∣ ds; �N
k

〉
Nd=2

6D2(t; !)
∫ t

0
‖Ẽ!|p̂N (s)|‖∞ ds: (3.2)

Now, following the arguments in the proof of Kotelenez (1988, Lemma 3.2), for #xed
t ¿ 0 and J ∈{y; A}, we de#ne L2-martingales by

LN
J (s; k) =



〈∫ s

0
T̃N (t − v) dZN

J (v); �
N
k

〉
Nd=2; s6 t;

LN
J (t; k); s¿ t:
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Similar to Lemma 3.2, we get by independence, the bilinear property of quadratic
variation and the martingale property that

Ẽ![LN
y (·; k)]s6

1
l
Ẽ!
∫ s

0

〈∣∣∣∣
(
hN ẏ(v)−12(hN )2−-N

)
p̂N (v)

∣∣∣∣ ; (T̃N (t−v)�N
k )
2
〉
dv

(3.3)

and

Ẽ![LN
A (·; k)]s6

C
l
sup
v6s

‖Ẽ!|p̂N (v)|‖∞
∫ s

0
ẼN (T̃ N (t−v)PN�N

k ; T̃
N (t − v)PN�N

k ) dv:

(3.4)

Then, by (3.3), Jensen’s inequality and the fact supN;s6t ‖T̃ N
s ‖N ¡∞, we get

Ẽ!|LN
y (t; k)|6D3(t; !)l−1=2

(
sup
s6t

‖Ẽ!|p̂N (s)|‖∞
)1=2

: (3.5)

By (3.4), (1.1) and Jensen’s inequality, we get

Ẽ!|LN
A (t; k)|

6
(
C
l
sup
s6t

‖Ẽ!|p̂N (s)|‖∞
∫ t

0
ẼN (T̃ N (t − s)PN�N

k ; T̃
N (t − s)PN�N

k ) ds
)1=2

=
(
C
l
sup
s6t

‖Ẽ!|p̂N (s)|‖∞
∫ t

0

〈−L̃N T̃N (t − s)PN�N
k ; T̃

N (t − s)PN�N
k ) ds

〉
N

)1=2

=
(
C
l
sup
s6t

‖Ẽ!|p̂N (s)|‖∞ · ‖P
N�N

k ‖2N − ‖T̃ N (t)PN�N
k ‖2N

2

)1=2

6
(

C
2l
sup
s6t

‖Ẽ!|p̂N (s)|‖∞
)1
2
: (3.6)

Combining (3.1), (3.2), (3.5) and (3.6), one #nds that

sup
s6t

‖Ẽ!|p̂N (s)|‖∞6D4(t; !)
(
‖Ẽ!p̂N (0)‖∞ +

∫ t

0
sup
v6s

‖Ẽ!|p̂N (v)|‖∞ ds

+l−1=2
(
sup
s6t

‖Ẽ!|p̂N (s)|‖∞
)1=2)

:
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By the assumption ‖p̂0‖∞ ¡∞ and (2.1), it is easy to see that supN‖Ẽ!p̂N (0)‖∞ ¡∞.
Therefore, by Gronwall’s inequality and the inequality a1=2b1=26 1

2 (a+b), we conclude
that

sup
s6t

‖Ẽ!|p̂N (s)|‖∞6D(t; l; !)¡∞;

where D(·) can be chosen as desired.

Finally we are in a position to prove Theorem 3.1.

Proof of Theorem 3.1. For convenience, we put

VN
J (t) =

∫ t

0
T̃N (t − s) dZN

J (s); J = y; A

and #nd by variation of constants that

VN
J (t) =

∫ t

0
L̃NVN

J (s) ds+ ZN
J (t); J ∈{y; A}:

For each N ∈N, we let {(�N
p ; )

N
p )} be the eigenvalues and eigenfunctions of L̃N .

Denote 〈VN
J ; )N

p 〉 := VN
J;p and 〈ZN

J ; )N
p 〉 := ZN

J;p for J = y; A. Then, by Itô’s rule, we
get

VN
J;p(t) =

∫ t

0
�N
pV

N
J;p(s) ds+ ZN

J;p(t)

and

[VN
J;p(t)]

2 = 2�N
p

∫ t

0
[VN

J;p(s)]
2 ds+ 2

∫ t

0
VN
J;p(s−) dZN

J;p(s) + [Z
N
J;p]t : (3.7)

Using (3.7), the fact �N
p 6 0 and Lemma 3.2 with f = )N

p , we get

Ẽ![VN
y;p(t)|26

1
Ndl

Ẽ!
∫ t

0

〈∣∣∣∣
(
hN ẏ(s)− 12(hN )2 − -N

)
p̂N (s)

∣∣∣∣ ; ()N
p )
2
〉
ds

6
K1(t; !)
Ndl

∫ t

0
‖Ẽ!|p̂N (s)|‖∞ ds:

Then, Ẽ!‖VN
y (t)‖26 (K1(t; !)L1 · · ·Ld=l)

∫ t
0 ‖Ẽ!|p̂N (s)|‖∞ ds. Thus, by Lemma 3.3

and the assumption ‖p̂0‖∞ ¡∞, we conclude that

sup
t6T

Ẽ!‖VN
y (t)‖2 → 0 as N → ∞: (3.8)
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By (3.7), Lemmas 3.2 and 3.3, we get

Ẽ!|VN
A;p(t)|2

=
∫ t

0
exp{2�N

p (t − s)}dẼ![ZN
J;p]s

6
∫ t

0

C
Ndl

‖Ẽ!|p̂N (s)|‖∞ẼN (PN)N
p ; P

N)N
p )exp{2�N

p (t − s)} ds

6
C

Ndl
sup
s6t

‖Ẽ!|p̂N (s)|‖∞
∫ t

0
ẼN (T̃ N (t − s)PN)N

p ; T̃
N (t − s)PN)N

p ) ds

=
C

Ndl
sup
s6t

‖Ẽ!|p̂N (s)|‖∞
∫ t

0

〈−L̃N T̃N (t − s)PN)N
p ; T̃

N (t − s)PN)N
p

〉
N
ds

=
C

Ndl
sup
s6t

‖Ẽ!|p̂N (s)|‖∞ · ‖P
N)N

p‖2N − ‖T̃ N (t)PN)N
p‖2N

2

6
C
2Ndl

sup
s6t

‖Ẽ!|p̂N (s)|‖∞:

Then, Ẽ!‖VN
A (t)‖26 (CL1 · · ·Ld=2l) sups6t ‖Ẽ!|p̂N (s)|‖∞ and thus

sup
t6T

Ẽ!‖VN
A (t)‖2 → 0 as N → ∞: (3.9)

By (1.8) and (2.4), we get

‖p̂N (t)− p̂(t)‖26 4(‖T̃N (t)p̂N (0)− T̃ (t)p̂(0)‖2

+
∫ t

0

∥∥∥∥T̃N (t − s)
((

hN ẏ(s) + .− 1
2
(hN )2

)
p̂N (s)

)

−T̃ (t − s)
((

hẏ(s) + .− 1
2
h2
)

p̂(s)
)∥∥∥∥

2

ds

+‖VN
y (t)‖2 + ‖VN

A (t)‖2)

6 8(‖T̃N (t)[p̂N (0)− p̂(0)]‖2 + ‖[T̃N (t)− T̃ (t)]p̂(0)‖2

+
∫ t

0

∥∥∥∥T̃N (t − s)
[(

hN ẏ(s) + .− 1
2
(hN )2

)
p̂N (s)

−
(
hẏ(s) + .− 1

2
h2
)

p̂(s)
]∥∥∥∥
2

ds

+
∫ t

0

∥∥∥∥[T̃N (t−s)−T̃ (t−s)
]((

hẏ(s)+.−1
2
h2
)

p̂(s)
)∥∥∥∥

2

ds

+‖VN
y (t)‖2 + ‖VN

A (t)‖2):
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By (1.8) and Gronwall’s inequality, supt6T ‖p̂(t)‖26K2(!)¡∞ for each #xed !.
Note that for each f∈ Ĥ , T̃N (t)f → T̃ (t)f for all t¿ 0, uniformly on [0; T ], and
supN; t6T ‖T̃N (t)‖¡∞. By (3.8) and (3.9), dominated convergence theorem and
Gronwall’s inequality, we conclude that

sup
t6T

Ẽ!‖p̂N (t)− p̂(t)‖2 → 0 as N → ∞:

Using the boundedness assumption of the process z(t) and following the same
procedure as used in Theorem 3.1, we have the following annealed law of large
numbers.

Theorem 3.4. Suppose that ‖p̂0‖∞ ¡∞. Then

sup
t6T

E0‖p̂N (t)− p̂(t)‖2 → 0 as N → ∞;

where E0 is the expectation with respect to P0.

Remark 3.5. Before ending this section, we would like to point out that our approxi-
mate Dirichlet form ẼN in Section 2 yields a Markov Chain. So we are really almost
#ltering an approximate signal with an approximate observation. In this connection,
we refer the interested reader to the recent paper by Bhatt et al. (1999). In the paper,
Bhatt et al. showed that the #lter depends continuously on the law of the signal. Note
that our approximations are not #lters so their analysis would not apply. Compared
with their result, our Markov chain approximation is far more explicit and has di)erent
type of convergence.

4. Practical application: &sh tracking problem

In this section, we use simulation results to compare computational e<ciency of
our Markov chain method to the particle #lter methods. Motivated by the #sh farming
industry, the test problem is the tracking of a single #sh in a tank with boundary
re(ections. For simplicity, we choose a two-dimensional #sh motion described by the
following Skorohod SDE

dxt = @ dvt − .
(
xt − L

2

)
dt + �@D(xt)�(xt) d�t ;

where L = (L1; L2)T is the size of the tank, . and @ are parameters, and vt , � and �t

are de#ned as in Section 1. In the simulations, we take . = 0:00005; @ = 0:02 and
simplify our example by selecting L1 = L2 = 1.
The observation process consists of a discrete sequence of images arriving at obser-

vation times {tk}∞k=1, each observation being a 2-dimensional raster {y(i; j)tk }R;Ri; j=1;1. y
(i; j)
tk

is the (i; j)th component of a raster depiction of the observation. We let h(i; j)(·) be the
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Fig. 1. REST #lter initialized with 2500 particles, AIP #lter initialized with 35 000 particles, RBP #lter
initialized with 35 000 particles.

indicator function

h(i; j)(z1; z2) = 1[ z1R
L1

− 32 ;
z1R
L1
+ 32

]
×
[ z2R
L2

− 32 ;
z2R
L2
+ 32

](i; j)

representing a 3×3 pixel square image of the #sh and w(i; j)k be pixel-by-pixel standard
Gaussian noise. Then, an observation at time tk is constructed by superimposing the
square of the signal onto the raster and adding noise according to the
formula

y(i; j)tk = h(i; j)(xtk ) + w(i; j)k : (4.1)

For our simulations, the length and width of the observation rasters, R, is 256. Obser-
vations are not preprocessed, the information from the raster pixel is used directly in
the #lter algorithm.
The observations given by (4.1) are taken at discrete times which makes the prac-

tical algorithm slightly di)erent from that given in Section 2. However, we can fol-
low the similar ideas presented in Section 2 to construct Markov chain approxima-
tions to the corresponding Duncan–Mortensen–Zakai equation with discrete time ob-
servations. In the following, we apply the so called re#ning stochastic grid (REST)
#lter, developed from the Markov chain method in Section 2, to do the
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Fig. 2. REST #lter initialized with 2500 particles, AIP #lter initialized with 35 000 particles, RBP #lter
initialized with 35 000 particles.

simulations. This practical algorithm to implement our #lter is reduced to an al-
gorithm to implement a speci#c time-inhomogeneous Markov chain, which can be
done using a single Poisson process and independent sequences of Bernoulli trials.
The inhomogeneity is due to the observations themselves. The discretization of state
space results in particles representing a small mass of the conditional distribution at
particular grid points in the signal domain. These particles di)use, drift, give birth,
and die within the region. The particles contain information from the observations
through observation-dependent births and deaths. We refer the interested
readers to Ballantyne et al. (2002) for more details about this re#ning
method.
Comparison data of the REST #lter, AIP #lter and RBP #lter are presented in

Figs. 1–4. 2 500 particles are initially used for the REST #lter in Figs. 1–4. 35 000
and 20 000 particles are initially used for each particle #lter in Figs. 1–2 and Figs.
3–4, respectively, where particle means an independent copy of the signal. Graphs of
the average mean square error (MSE) in the position estimates over the simulated
time for 200 runs are provided in Figs. 1 and 3. For each run, we simulate over a
period of 50 time units with observation arriving at every 0.25 time unit. Here, MSE
at time tk denotes the Euclidean distance between the true signal position and the
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Fig. 3. REST #lter initialized with 2500 particles, AIP #lter initialized with 20 000 particles, RBP #lter
initialized with 20 000 particles.

approximated #lter at the time of each observation. From Figs. 1 and 3, we see that
it may take a longer time for the REST #lter to localize the target due to the fact
that an initial computational burst is disallowed in this #lter, but after localization, the
MSE for the REST #lter becomes smaller and smaller with tiny (uctuation as time
elapses. For the AIP and RBP #lters, they can localize the target faster but may lose
the target later on. Although all the three #ltering algorithms, being at least adaptive,
are readily able to localize the target, the REST #lter is the best one. From Figs. 1
and 3, we also see that the RBP #lter is more e<cient than the AIP #lter when the
number of particles is not too large, although there is little di)erence between their
e<ciency when the number of particles is large. From Figs. 2 and 4, we #nd that
the computation time for the REST #lter is much less than that of the AIP and RBP
#lters.
From the simulation results, we can conclude that the new method of solving non-

linear #ltering problems numerically introduced in this paper, which uses a Markov
chain to push particles about #xed grid points, provides a mathematically sound solu-
tion to a general class of such problems and a practical solution to the given speci#c
problem.
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Fig. 4. REST #lter initialized with 2500 particles, AIP #lter initialized with 20 000 particles, RBP #lter
initialized with 20 000 particles.
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