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Abstract

For most of the last {.. vears Artificial Intelligence (Al) has been confined to
academic study. In the past decade, however, it has experienced an explosive growth
in industry. So pervasive has been its recent growth that it prompted Tom Peters,
world-renowned industry watcher, to espouse “that any senior manager in any
business of almost any size who isn’t at least learning about artificial intelligence (Al),
and sticking a tentative toe or two into Al’s waters, is simply out of step, dangerously

» 1

50.

Al enccmpasses a varied array of technologies including virtual reality, speech
recognition, natural language, intelligent robotics, expert systems and neural networks.
The research covered by this thesis involves learning about the expert systems and
neural network technologies, theories and tools, and then applying this knowledge to
solve appropriate problems within the Weyerhaeuser pulp mill operations at Grande

Prairie, Alberta.

Applying new technology, however, involves more than simply finding an elegant
solution to a problem. There is a human side to technology implementation that must
also be managed in order for any new technology to be effectively deployed and

maintained. The knowledge gained in this area is discussed in this thesis.

' Allen, Mary Kay and Helferich, Omar Keith, Putting Expert Systems to Work in Logistics, Council
of Logistics Management, Oak Brook, I, 1990, p. 158
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Chapter 1

Introduction

The Pulp and Paper Industry has always been known for applying only sufficient levels
of technology to solve the problems at hand. This has resulted in lower levels of tech-
nology being used than in other chemical industries. This reduced application is
caused by the mistaken perception that the process is simple and inexpensive and
therefore does not warrant the added complexity and risk that state of the art technol-
ogy entails. This has been especially true in the real time information and process
control technologies. Recently, several factors have combined to create a need for so-

phisticated technology to be applied against the industry's unique problems.

The drivers for this change include increased global competition, increased environ-
mental awareness, ‘mproved technology to measure environmental impact and an in-
crease in cost of the forest resources. The environmental drivers have served to illus-
trate to the industry how complex the pulp and paper process truly is. The increased
cost of the diminishing forest reserves, the competitive pressures of globalization and
escalating ca~*al expenditures for the physical plant have dispelled the perception of

an inexpensive process.

Even a process as simple as repulping used newspapers becomes very complex and

expensive given the need to control to a high quality target while maintaining excellent



environmental performance. In order to maintain costs and quality control the pulp
and paper industry has begun to use techno'ogy successfully applied in other chemical
industries, such as oil and gas. Two of the most excitirg staie of the art technologies

increasingly applied are model-based control and expert syster -..

Although the need for advanced technology is now recognised, there remains little
data on how and where to implement advanced solutions. This thesis will review sev-
eral applications of Artificial Intelligence to pulp mill operations. The purpose of these
examples is to illustrate a variety of industry problems that can be addressed with ad-
vanced information technology, problems that could not be solved using traditional
methods. As the examples are reviewed, the features that make them successful im-
plementations will be discussed. This will allow the reader to reapply the methodol-

ogy, if not the application.

The thesis comprises three examples. Chapter 2 deals with an expert system designed
to help control pulp inventories at a customer's plant. In addition to requiring an ex-
pert system, it was determined that basic control theory could be applied to this prob-
lem. This is a marked departure from the accepted approach currently used by the in-

dustry.

The third chapter deals with the development of models to analyse plant operation.
These models will eventually be incorporated into a control strategy, but that is be-
yond the scope of this paper. Three approaches to modelling are reviewed: parametric

models (regression analysis); neural network models; and, adaptive logic models which



are a hybrid of the first two methods. Each of these methods is illustrated with two
examples. One model relates pulp machine throughput to the position of the basis

weight valve. The second model is of pulp strength which is governed by a large

number of processing parameters.

Chapter 4 deals with the issue of how to integrate the use of advanted technology into
the manufacturing organizations that they support. The major issues are how to get
the required organizational resources to develop and maintain the systems, and how to
ensure that systems are used effectively and remain healthy contributors to the bottom

line cver the years.

The thesis looks at these three examples, illustrates their development, describes how
they solve real industrial problems and then talks about the organizational and human
factor issues that need to be addressed when implementing these types of projects in

an industrial operation.



Chapter 2

Expert Systems

2.0 Overview

Expert Systems technology is one of the most popular and successful areas in the
broad field of Artificial Intelligence (AI). The concept of computer programs that
emulate human thought was at the root of the first Al efforts in the early 40’s. Unfor-
tunately, to date, mimicking human thought has proven to be too ambitious a target.
Rather than attempting to recreate human thought processes, expert systems are de-
signed to capture human knowledge and expertise. This is a worthwhile and more
achievable goal. As a result there is a proliferation of expert systems and expert sys-

tem development tools on the market’.

Expert systems fulfil a real need. In general, expert systems are used where data exists
in conjunction with a set of rules that are used to interpret the data and arrive at some

conclusion. This is typical of problems found in the chemical industry. Industrial

2 Allen, Mary Kay and Helferich, Omar Keith, Putting Expert Systems to Work in Logistics, Council
of Logistics Management, Oak Brook, 11, 1990, p. xiv



applications of expert systems solve problems that:

require asialysis of large amounts of data

e are governed by complex rules

e utilize knowledge that is required infrequently

e utilize knowledge that i 0 longer available due to inaccessibility of experts due to

vacations, transfers, retirement, and other such causes.

The later part of this chapter contains a discussion about the solution to a problem that

exhibits these characteristics.

With the rule-based expert system, knowledge is represented as a series of rules as
typified by IF-THEN type of logic. By simplifying human knowledge to this level,
computer programs can be designed to generate the same conclusions that a human
expert would provide, given the same problem description. As well, expert systems
usually incorporate the capability to explain the process used to arrive at that conclu-
sion to the user. Expert systems consist of these major components: the knowledge
base, the database, the inference engine, and the user interface which perform the

aforementioned functions respectively.

Knowledge base. The knowledge base is the knowledge of a human expert coliected

into a series of rules. A simple example could be:



e [F TANK LEVEL LESS THAN 1 METRE

THEN TANK LEVEL IS LOW

» [F TANK LEVEL IS LOW

THEN STOP PUMP

Data base. Wi..c the knowledge base represents the static knowledge of the expert,
.ne data base contains the -lynamic data of the specific problem being solved. In the
above example, to determine if the pump should be stopped, not only are the rules
(knowledge) required, but the actual level of the tank (data) is needed before the deci-
sion can be made. The data base describes the current situation, and the knowledge

base provides the rules to be used when interpreting the data.

Inference engine. The inference engine is the heart of an expert system. Given a set
of data, it parses through the rules to arrive at some conclusion. This is referred to as
forward chaining in that the inference engine starts with the data and goes “forward”
through the rules to arrive at a conclusion. Backward chaining is the process of start-
ing with the conclusion and working backwards through the rules to determine
whether the conclusion is true or not’. In the above example, given the tank level we
could forward chain through the rules and produce the conclusion that the pump

should (or should not) be stopped. Or we could assume that the pump should be

3Zinn, Walter and Marmorstein, Howard, Comparing Two Alternative Methods of Determining Safety
Stock Levels: The Demand and the Forecast Systems, Journal of Business Logistics, Volume 11 #1,
Nov 1990, p. 40



stopped and backward chain through the rules and data to determine if that were a

valid assumption.

User interface. The user interface performs two independent sets ~* %:nctions for the
expert system. During the reasoning stage, it asks the user for any ncti:d data that is
not contained in the data base. Once a conclusior: is reached, most user interfaces al-
low the user to query the system and find out what rules and data contributed to arriv-

ing at the conclusion.

Expert systems generally are written using a special development environment called
an expert system shell. The shell contains the inference engine and the user interface.
The knowledge base is contained in a separate file. While the knowledge base can be
modified by the user, the shell itself usually cannot be. In the examples that follow,
MetaCOOP, a shell developed in the Intelligence Engineering Laboratory at the Uni-
versity of Alberta was used. This shell was selected over other shells because its ob-
ject oriented approach to knowledge representation provided a superior development
environment. As well, because the source code was available, it could be modified to

suit the needs of this project. These changes are described later in this chapter.

In the examples that follow, an expert system was developed in conjunction with a
spreadsheet to provide knowledge, numerical analysis, and interfaces that solved in-
ventory management problems for Weyerhaeuser Canada. The primarily source of

knowledge was the logistics manager at the Grande Prairie Alberta pulp mill.



2.1 Continuous Replenishment

Continuous Replenishment is a process designed to deliver to the customer just the
right quantity and quality of material at just the time that it is required. In its purest

form, this is known as Just-In-Time delivery.

ideally, the supplier would be able to deliver each item as it is required continuously
throughout the day. This is possible in cases where the customer and supplier are in

close proximity and delivery time is negligible.

When delivery time is significant, Just-In-Time delivery can still be achieved if the de-
livery time of the product from the supplier to the customer is constant and if the cus-
tomer’s usage can be accurately predicted for a period of time greater than the delivery
time. Although examples of these situations exist, the normal situation is that usage is
not fully predictable and variations in delivery time occur. This necessitates the accu-
mulation of inventory at, or close to, the customer. This excess inventory is known as
“safety stock”. The amount of inventory that must be maintained is dependent on how
well the usage can be predicted and how little deviation in delivery times occur®. The
ideal safety stock level is the minimum level that adequately ~rotects the customer
from major deviations in delivery or usage. An expert system can be used to help

minimize this inventory.

4 Zinn, Walter and Marmorstein, Howard, Comparing Two Alternative Methods of Determining
Safety Stock Levels: The Demand and the Forecast Systems, Journal of Business Logistics, Volume
11 #1, Nov 1990, p. 61



The current estimate is that maintaining pulp inventory represents a yearly cost of up
to 25% of its value. This is based on the cost of foregoing investment opportunities,
interest costs, quality degradation, extra handling, storage costs, and so forth. Be-
cause of this cost, an economic ¢ ci<ic 1 must be made whether to protect agrinst all
deviations. Protecting against deviations that may occur only once a decade might re-
sult in a very high safety stock level being maintained. The cost of maintaining this
inventory may well exceed the cost of the potential supply disruption. The measure of
a customer’s sensitivity to disruption of supply is known as confidence level. A high

confidence level indicates a high sensitivity.

The Distribution Department at the Weyerhaeuser pulp plant in Grande Prairie has de-
veloped a system to maintain minimum safety stock at their customers' plants. Even
during periods of low pulp prices, the savings available to a customer by this inventory

minimization is substantial.
The Continuous Replenishment Process (CRP) is composed of three subsystems:

Safety Inventory Calculator. This is used to determine the minimum inventory re-
quired by the customer to compensate for variances in usage, order processing and
transit time; and in some circumstances, damaged or deteriorated supply. This subsys-
tem is usually used when initially setting up a customer. It is also used to illustrate the
advantages of CRP to the customer by showing how much inventory can be reduced.
In the latter example, the system is used by sales personnel who may have a lower

level of understanding of the calculations involved.



Inventory Replenishment Planning. This develops a pulp shipment plan based on
the customer's pulp usage, required safety inventory levels, the customer’s receiving
constraints, production variations, and shipment scheduling. Once this plan is devel-
oped, it must be continually updated to account for changes in usage, transit time, etc.
Experience has shown that forecasted usage is highly inaccurate and this results in a
need to continually fine tune the shig.nent plan. This subsystem is generally run by

people knowledgeable in CRP.

Shipment Tracking. This subsystem tracks shipments from the time they leave the
plant until they are received and unloaded by the customer. This subsystem was not

automated in this project.

Each subsystem, while seemingly straight forward, involves substantial troubleshooting
as each component is complex and subject to errors. For example, when the systems
are initially being developed, there is often very little data available. A common mis-
take is to perform the safety inventory calculation on a set of data that is too small or
does not have a normal distribution in which case a safety inventory can not be calcu-
lated. This type of problem is not easy to detect yet it will result in improper invento-

ries being calculated.

Generally, there are two elements in each subsystem: numerical algorithms and exper-
tise knowledge. The numerical algorithms can be readily handled by a spreadsheet.

The expertise knowledge, however, currently exists only in a handful of experts in the

10



plant. Neither element by itself is sufficient for the system to operate. The knowledge
is of little use without the numerical methods and, because the numerical methods are

prone to inaccuracies, their use requires an expert.

The objective of this project was to capture the expertise knowledge and to develop
the required numerical methods. These were then integrated in a computer system so
that the CRP was not dependent on experts to function. It was felt by leadership
within the plant that this was an ideal opportunity to introduce advanced computer

technology into the pulp mill.
The CRP was bound by several user constraints. The system had to:

® be easy to use;
e link to automatic data retrieval systems where possible (to minimize manual en-
tries); and,

¢ use an Excel interface as that is the current plant standard.

Data is stored either in Excel spreadsheets or an Oracle database, both of which are

corporate standards. The system runs on an IBM compatible PC.

Ongoing maintenance of the system was considered and the system developed with
tools appropriate to the tasks. Using Excel to capture heuristic knowledge would

have been an inappropriate application of technology, resulting in ongoing mainte-

11



nance problems. Similarly an expert system development tool was not suitable for

significant numerical calculations.

In the sections that follow, we will discuss the two implemented subsystems: the ex-
pert system to aid in the calculation of safety inventory and the inventory replenish-
ment tool. Both of these subsystems wei¢ nnly developed to a framework level. The
initial goal of the project was to illustrate the technology to plant and divisional re-

sources. As such, many more rules are required to completely flesh out the system.

12



2.2 Development of a Safety Inventory Expert System

The standard demand formula® for calculating safety stock is well known and given by:

S5, = Z*J(t*S2)+ (d* *S?) 2.1)

where
§S, = Safety Stock under the demand system

Z =Confidence Limit
t = Average Lead-time ( Order Processing Time + Delivery Time )

S, = Standard Deviation of Demand

d = Average demand

S, = Standard Deviation of Lead-time

The reader is refered to Zinn for an explanation of the above formula. The calculation
of safety inventories used at the Weyerhaeuser plant involves applying a simplified

version of this formula® given by:

SS = Z*CV, ., *d*JT 2.2)

demand

where

5 Zinn, Walter and Marmorstein, Howard, Comparing Two Alternative Methods of Determining

Safety Stock Levels: The Demand and the Forecast Systems, Journal of Business Logistics, Volume
11 #1, Nov 1990, p. 97

¢ Jacob, H.M. Current Best Approach for Raw Material Inventory Tracking, Confidential Procter &
Gamble document, 1990

13



SS = Safety Stock Level

CvV, = Coefficient of Variance of Demand

demand

T = Maximum lead-time plus all processing time. This includes the time between each

system review, order processing time and transit time.

The simplified formula results because the choice has been made to use ihe maximum
value (occurring during normal conditions) for the leadtime factor. Choosing this, as
opposed to using the average lead-time, allows the standard deviation of lead-time (S;)
to be assumed to be 0. As a result, the last term of the demand formula is eliminated.
Using thiz assumption, a simple change of form of the equation (using the definitior: vf
the coefficient of variance) is easily achieved resulting in the simplified forraula shown

in equation 2.2.

After the data is input by the user, the calculated output must be validoted by an expert
before the calculated safety inventory is accepted. The objective of this part of the

project was to automate the calculation and validation processes.

The data flow diagram is shown in Figure 2.1.

14



Transit Time Data

— (from Union Pacific Average

Historical Technologies) Processing

Usage Time
data (from Uscr)
(from Excel
Spreadsheet) . Calculate
Maximum, Average, and Confidence
Standard Deviation of Limit
Transit Time

(from User)

Spreadsheet Calculates
Average and Standard
Deviation of Usage

»,

LN
Expert System Performs
Validity Checks

TN

Spreadshect Calculates
Safety and Demand Inventorics

Figure 2.1: Safety Inventory Calculation Data Flow Diagram

Figure 2.1 illustrates the data flow once it has been prepared for inclusion into an Ex-

cel spreadsheet.

The three sources of data are;

Historical Usage which is contained in mainframe files. An ASCII report is gener-

ated, imported into Excel and parsed into a usable format.

15



Transit Time data which is obtained from Union Pacific Technologies (UPT) in the
form of an ASCII report. This is parsed and loaded into an Oracle database. SQL

routines in Excel are then utilized to extract data from the database

Average Processing Time (time to prepare all paperwork before shipment) and the
confidence limit (how many standard deviations of safety are desired) which are en-

tered by the v.€r into the safety inventory calculation spreadsheet.

The safety inventory calculations are contained in an Excel spreadsheet part of which
is shown in Figure 2.2. The spreadsheet is colour coded to quickly distinguish be-
tween the fields the user must enter, the fields based on calculations, and the fields

containing knowledge base data.

16
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In use a macro is executed automatically when the spreadsheet is opened. This macro
parses the ASCII reports for transit time and historical usage, extracts the required

data, and enters it into the appropriate cells in the spreadsheet.

Once the macro has completed filling in the spreadsheet, the user enters the confidence
limit and the average processing time. The spreadsheet automatically calculates the
required safety inventory, the demand inventory and the ratio of demand to safety in-
ventory. The user may then click on the “Check Results” button to invoke the Meta-
COOP based expert system to perform a validity check on the input data and the re-

sults.

As the goal of the project was simply to demonstrate the capabilities of expert systems,
the knowledge base is quite limited. Based on the success of the demonstration it will
be expanded in the future. The current knowledge base contains the following reason-
ableness checks which represent some of the knowledge used in the manual system:
e Ensure that a sufficient historical data is used. Currently the threshold is set
to 150 data points.
¢ Ensure that the Standard calculation and the Demand calculation give similar
answers. The two calculations are considered similar if they are within 25%
of each other.
o Ensure that the variability of the historical data is not too large. Variability is

too great if the coefficient of variance is greater than .33.

18



The above rules were those specified by the logistics manager (although she does plan

to implement more robust statistic measures in the future).

To meet the requirement of no extraneous output, the expert system operates without
sending any messages to the user directly. All /O is performed threugh the spread-
sheet. All the user sees is two icons appearing for approximately 5 seconds while the
expert system runs in the background. When the expert system analysis is complete,
the spreadsheet is updated with messages that state whether the data is normally dis-
tributed or not, whether the data count is OK and whether the ratio of demand to
safety inventory is within limits. If the user is unsure of any messages that are dis-
played, he or she can click on the “Help on Results” button which activates a hypertext
help system. This help system explains the rules, messages, and assumptions used in
the calculation of safety inventory. The hypertext help system was written using Guid.
version 3.17. Guide was chosen as previous experience with this package had shown it

to be a full-featured and easy to use hypertext development system.

Orce the appropriate safety inventory level is calculated the user is ready to build an
inventory replenishment plan. In practice this would first be done in conjunction with
the safety inventory calculation. It would then be rec-izulated on a regular basis as

usage, transit times, or the variance of either of these change.

" OWL International, Inc. 2800 156th Avenue SE, Bellevue WA, 98007 USA, (206)747-3203
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2.3 Development of an Inventory Replenishment Expert System

The calculation of a shipping plan that maintains a customer’s inventory at a target
level is a highly manual process that is difficult to computerize. Unlike the safety calcu-

lations, inventory replenishment is not based on a well known set of calculations.

As part of this project, several commercial inventory management programs were in-
vestigated. Although the algorithms are considered proprietary, observations showed
that they search for an optimal solution through a highly iterative methodology. These
programs are expensive, slow, and require powerful workstations. Manual sysiems
handle inventory management as illustrated in Figure 2.3. A key feature is the lack of

inventory level feedback to the shipment plan.

>

Shipment Plan G

Develop
Shipment
Plan
Pulp
Inventory
Usage
Usage Forooast | e

~_

Figure 2.3: Tank Analogy to Inventory Management as Used by Industry Today

20



The first step in building a system for Grande Prairie was to develop an algorithmic

approach that reduced the iterative nature of inventory management and captured the

more robust aspects of their inventory replenishment planning process. The basic pulp

shipment process is shown in Figure 2.4.

Pulp
Plant

Pulp Shipments

o

Customer

Current Inventory Levels Warechouse

-y

Usage Forecast

Figure 2.4: Pulp and Information Flow

Usage
—

This system is analogous to the simple tank system shown in Figure 2.5 and the con-

trol procedures are similar.

Usage Forecast

Shipment Plan G

Pulp
Inventory

Usage

7

Figure 2.5: Tank Analogy to Inventory Management as Used by Weyerhaeuser
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A simulation was built by the Logistics Manager that modelled a customer’s pulp us-
age. This model incorporated random normal variations in transit time and usage. It
was very successful in emulating a typical customer. This model was utilized when

analyzing various approaches to inventory management.

Because usage is completely independent from inventory, the ware. _use can be repre-
sented as a pure integrating process. Inventory replenishment can be a simple applica-

tion of control theory learned in undergraduate engineering.

The three major feedback control schemes, P, PI, and PID were applied to this
(simulated) "process” and their outputs compared. Of particular interest was their
ability to maintain inventories around a setpoint (in this case 500 tonnes) with minimal
variance. The minimum, maximum, average and standard deviation of the inventory
levels are compared in Table 2.1 and the ongoing inventories are shown in Figures 2.6,
2.7 and 2.8. As well, an inferential control scheme was applied and is shown in Figure
2.9. These figures are included to show the effect of the discrete nature of this process
on the control schemes. The large fluctuations (at steady state) of inventory level are

caused by the long periods between shipments (2-3 days).

The usage also fluctuates in the first 13 days. This is because of the simulation used.
The simulation models days 1-13 as having already occurred and therefore models
fluctuations typically seen at a customer’s plant. Usage for days 14-36 are usage fore-

casts. Typically these forecasts are simply an average daily usage (as shown here).
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Control Type P Pl PID P/intcrential
Maximum Inv 829 829 758 745
Minimum Inv 173 89 5 341
Average Inv 501 544 437 511
Std Dev 141 174 195 103

Table 2.1: Control comparison

The three feedback control schemes were all able to control the inventory when usage

variation was low. However, step changes in usage typically resulted in wide fluctua-

tions in inventory levels. This is due to:

o the hipily dise; ete nature of the shipping process.

» the in«gular shipoing schedule, i.e. Mon, Wed, & Fri rather than every day.

e constiaini at the i< site on the number of cars that can be unloaded each day.

Of the three cauise:, the }gsi was probably the most influentiai. Through several simu-

lations with ..~ tumung nwiameters, it was observed that the controller output

could often ¢x2¢. i the cemusner’s ability to unload pulp. This often resulted in system

instability. With proper tuning, ., the three feedback schemes, pure proportional con-
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trol showed the least oscillatory behaviour as measured by range and standard devia-

tion of the invcritory levels.

Although *.ie proportional scheme provides adequate control, the customer’s usage
foreca:' .an be incorporated into the control scheme to provide more robust inventory
ma:-:gement. In some manual implementations of inventory management, only the
u'nge forecast is used to develop shipment plans. In these systems, adjustments are
:aade on an irregular frequency to accommodate inaccuracies in the forecast. Grande
Prairie’s initial manual system was of this type, although inventory adjustments were
made on a frequent (usually weekly) basis. A combination of inferential and propor-
tional control approximately replicates the current manual system used in Grande

Prairie.

The optimum choice of control scheme for inventory control represents an intriguing
opportunity for further research. For this thesis however, the proportional/inferential
control scheme provides adequate performance and has the advantage of capturing the
essence of the current manual system. The following example illustrates the control

algorithm as built for the inventory replenishment spreadsheet.

To calculate the number of tonnes that need to be shipped on any given day, the fol-

lowing steps are executed.

1. Calculate today’s inventory. This is yesterday’s inventory plus what was unloaded

yesterday less what was used yesterday.
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2. Calculatz forecast usage. This is the sum of the projected usage between now and
the next time a shipment can occur. (Note, the spreadsheet accommodates “odd™
shipping schedules. For example, shipments usually occur on Monday, Wednesday,
and Friday, but during shutdowns, rail problems, etc., it is able to accommodate any

shipment schedule.)

3. Calculate the inventory shortfall (excess). This is the safety inventory less today’s
inventory. This is the deviation from the target (safety) inventory levels. Multiplied

by a gain this would be the response from a proportional controller.

4. Calculate the number of tonnes needed. This is the forecast usage pli.s the inven-
tory shortfall. The forecast usage represents the inferential portion of the control

scheme. The number of tonnes needed is what is required in today’s shipment.

The above control scheme provides a satisfactory, though non-optimal solution to in-
ventory management. An expert that reviews the shipment plan from this spreadsheet
can usually improve the plan. The expert ::¥cally would change slightly the target
inventory to accommodate transportation outa,: :, step changes in usage, and other
factors. To capture the expert’s knowledge, an expert system was built that evaluates
the shipment plan, applies the heuristic knowledge of the expert, changes the target

inventory by some offset, and then reruns the shipment plan. This may be repeated

several times.

The data flow diagram for the project is shown in Figure 2.10.
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Figure 2.10: Inventory Replenishment Calculation Data Flow Diagram

Once the data is entered into the Excel spreadsheet the shipment plan is calculated.
The expert system is then run to calculate the proper change to the target inventory (in

a similar manner to that for the safety inventory).

As in the safety inventory subsystem, Excel is used for the user interface. Colour
coding readily identifies user entry and calculated cells. The spreadsheet has a button
that executes the expert system. Once the user has entered all of the data into the

spreadsheet, they push the expert system button and the plan is updated. The average
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length of time to calculate a shipment plan is 15 seconds, as compared to the 1 to 2

hours required by the manual method.

As can be seen from the above, the customer desired a very simple system. They did
not want to interact with an expert system if at all possible. Significant effort was re-
quired to limit the expert system interface to simply a button on an Excel spreadsheet.
As stated earlier, the reasons for using MetaCOOP were that its object oriented ap-
proach provided a superior development environment and the source code could be

modified to provide the minimal user interaction that had been specified by the cus-

tomer.
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2.4 MetaCOOP Enhancements

MetaCO: /P is an object oriented expert system shell that was developed by the Intelli-
gence Er.gineering Lab at the University of Alberta. The original program was a full
featured windowing program run on a Sun Workstation. This had been ported to the
PC environment to produce a non-windowing version (PCM'.aCOOP). As part of
this project, this non-windowing version was modified to be Microsoft Windows
compliant with support for Dynamic Data Exchange (DDE). The modified version of

MetaCOOP (WMetaCOOP) met the following user/developer considerations:

Operates under Microsoft Windows as a Windows program. This was required so

that the system would be consistent with other programs operated by the user.

Automatically executes a knov ledge base (reasons) when run. The user did not
wish to learn another package and therefore running the expert system had to be

transparent to the uscr.

Provides no extraneous output to the user. As above, the user was not interested in

the details of how a result was obtained. The expert system had to be transparent.

Supports DDE (both send and receive). As the user was experienced with Micro-
soft Exce! this was chosen as the interface. DDE was chosen as the most practical

method to interface with the expert system.

30



The source code to the base MetaCOOP program contains minimal changes.
Other students in the Intelligence Engineering Lab planned enhancements for Meta-

COOP. By minimizing the changes made at this time, their work was eased.

Provides an improved developer interface. After the development of this project
was complete, plant personnel would have to maintain the knowledge base. The exist-
ing developer interface was very difficult to use and required improvement for a pro-

duction environment.

The MetaCOOP program has three main functions: compiling, reasoning, and execut-
ing the user's methods. From an I/O standpoint, the compiling function consists solely
of output while the reasoning and methods functions incorporates both input and out-

put. From a user interface standpoint the data flow within the program is as shown

below:
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Figure 2.11: PCMetaCOOP User Interface Data Flow

The compile and reason functions use a common output routine while all other IO is
through dedicated routines. A Windows wrapper was designed that intercepts the
output from MetaCOOP, decides what function is active at the time and then sends
that output to one of three windows (user, reason, or compile windows). Input to the
reasoning function is trapped and redirected to a dialogue box. Input to the method is
not supported. This implemented the required Windows interface without major
modifications to the main program. When the main MetaCOOP program is updated,
less than 20 lines of code need to be changed in order to restore Windows functional-

ity.

32



One of the advantages of the new Windows interface is that it provides a 250 line dis-
play which the user can scroll to view messages. One of the problems with PCMeta-
COOP is that compile messages quickly scroll off the screen. This is no longer a

problem with WMetaCOOP.

The data flow with the windows wrapper is shown below

[(ﬁ) (=) (=) m]

Input Outpat
[ Inp|_n ] 0““?“' J ( Routine J Routine J
Routine Routine
L4
¥
Reason Compile Main Not
Window Window Window Implemented
Menu

DDE
Interceptor

( DDE DDE
\_  Processor Interceptor

External
Programs

Figure 2.12: WMetaCOOP User Interface Data Flow
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As can be seen, the input and output routines trap DDE requests and redirect those to
the DDE processor sub-function. The interception is based on finding the string
“DDE” in the output message or input prompt. Although not the most elegant
method, it was the only way to meet the constraint of minimal changes to the base

MetaCOOP program.

So that the user does not become burdened with extraneous messages, all but the user
window can be disabled. Again, this was a marked change from the original develop-
ment environment which output numerous messages for every rule that fired. For a
new user it was nearly impossible to determine which were extraneous mess~ges and
which were important. WMetaCOOP can be configured to discard the extraneous
messages and only display those that are required by the user. From a user perspec-

tive, WMetaCOOP was found to be much easier to use.

The PCMetaCOOP program is designed for developer use only. It expects a user to
load the desired file, compile it, and give it the reason command to execute the knowl-
edge base. This process is not suitable for an end user. WMetaCOOP allows a file
name to be entered on the command line. If the file is a source code (as indicated by
the extension FRA) then that file is loaded and WMetaCOOP waits for developer
commands. If the file is a compiled knowledge base (as indicated by the extension
CBK) WMetaCOORP starts up, lcads the file, performs the reason command, and then
exits. This allows WMetaCOOP to run in a background mode without user interven-

tion.



PCMetaCOOP was written in standard Borland C. The enhancements were written in
Borland C++ version 3.1. Some complexity was added by interfacing C to C++, how-

ever the advantages of object oriented programming outweighed the difficulties.

The change of PCMetaCOOl; to WMetaCOOP was a challenging but rewarding pro-
gramming endeavour. It required much learning, not only in how expert systems are
developed, but also in how to write C++ based Windows compliant programs. A
great deal of planning was required to determine the optimum methods for enhancing
what existed with PCMetaCOOP to provide a package that users with lower skills in

expert systems could use.

All design requirements of the upgrade were met.
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2.5 Project Development

The development of this project followed the five stages of expert system develop-

ment®:

3.

Identification Stage. The characteristic of the problem was identified with the as-
sistance of the department manager. In this stage, the various functions of the ex-
pert were studied and the goals of the project were developed. It was here that it
was decided to provide a small example solution to prove the technology to the

business leaders prior to developing a full scale implementation.

. Conceptualization Stage. The concepts and relationships were developed. This

was especially important in the Inventory Replenishm :nt project. In this stage the
actual data flows were investigated. Although Figures 2.1 and 2.10 appear simple,
it required much analysis to arrive at that data flow as being representative of the

manual system.

Formalization Stage. The data structures and knowledge base were defined and

data flow diagrams prepared prior to any programming.

Implementation Stage. Implementation is basically complete for the Safety Inven-
tory, partially complete for the Inventory Replenishment and has not yet begun for

the Shipment Tracking portions of the project.

* Rao, Ming and Qiu Hainming, Process Control Engineering, Gordon and Breach Langhorne PA.,
1993, p. 370
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5. Evaluation Stage. Testing and modification has been conducted on simulated

data.

As part of the development process, requirements for the user interface were defined.
The piant currently uses Microsoft Excel, and wished to continue to use that as the
primary interface. We were not familiar with any expert system shells interfaced to
Excel in the manner that we required. As we had the source code for MetaCOOP we

modified it to meet the project’s specifications.
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2.6 Summary of CRP Project

The CRP project accomplished the following goals.

1. The implementation of expert systems in pulp operations were proven to be a justi-
fiable expense. It has eliminated a barrier to approaching CRP as part of a team
assignment. The technician who operates the CRP out of Grande Prairie is very
knowledgeable. Despite the high level of multiskilling inherent in Grande Prairie’s
team system, other members of her team are not sufficiently skilled to operate CRP
without the expert system. Management at the plant was just as impressed by the
expert system’s ability to remove this barrier, as they were by its capacity to help

manage the CRP.

2. The application of standard control algorithms to inventory management was
shown to be a valid approach. This approach has greatly eased the process of cal-

culating shipments.

3. The MetaCOOP program was extensively modified to improve its user interface.
The specifications used in modifying MetaCOOP have been incorporated in later
versions of the program. As a side benefit I learned much about Windows and C++

programming.

There remains much work to be done to fully complete this project, but the basic

frame work is in place. The objective of proving the benefit of Al to typical pulp mill

38



problems was achieved. Progress on the project has been delayed due to the death of

the manager who was championing the process across the pulp division.

Future Research

A major opportunity for future research is the application of modem control theory to
the field of inventory replenishment. This in conjunction with a complete rule base

would deliver an extremely capable inventory management systein.
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Chapter 3

Modelling with Neural Networks

3.0 Overview

Models are important to the efficient operation of complex chemical processes, such as
those found in a pulp mill. They are used in model-based control systems and decision
support systems. They are also important to various empirical process optimization

studies that are used to develop a better ursierstanding of pulp processes”.

This chapter discusses process models that predict or simulate pulp and paper process
behaviour over a finite time *:: . The purpose of discussing these models is to
illustrate how a network bascu i+ :& ' can overcoipe some of the problems that are
encountered in specific situations when using traditic..-] models. These case studies
also illustrate that network models are not a panacea, because as will be shown, the
models are not perfect and their predictions require significant analysis. Although the
models may be imperfect, the reader should gain an appreciation for the capabilities of

two more tools that can aid them in their modelling efforts.

9 Seborg, Dale E.; Edgar, Thomas F.; Mellichamp, Duncan A., Process Dynamics and Control,
John Wiley and Sons, New York, 1989, p. 164



The chapter is broken into three parts:

Part 1 introduces the concept of modelling in general (as it is practised today).
Regression analysis is the most common modelling tool in use today. The popularity
of regression modelling is increasing as many computer programs are now available to

do most of the work in building this type of model.

The discussion of regression analysis is followed by a review of neural networks,
specifically, the back propagation network (BPN). Neural networks provide the
ability to model processes that were heretofore difficult or impossible to model using
parametric models such as regression analysis. One of the major barriers to their
acceptance has been the “black box” stigma associated with neural networks. By
showing how neural networks can solve heretofore impossible modelling challenges,

and provide substantial process insight, some of the mystique will be removed from

this methodology.

Part 2 describes applications of network modelling using problems from the
Weyerhaeuser pulp mill at Grande Prairie. An overview of the pulp mill operation lays
the groundwork for understanding the two examples of modelling that will be
presented. In the first example, models that relate basis weight valve setting with
production rate are illustrated. Both regression analysis and neural networks models
are developed so a comparison can be drawn between the results of the two methods.
The second example is a neural network that relates finished product pulp strength to

various mill operating parameters. This illustrates an instance where a neural network
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successfully modelled a process that had proven impossible to model using traditional

techniques.

Part 3 revisits the basis weight model .1 1ses a new tool called Adaptive Logic
Networks. ALNs are a hybrid of network and parametric models. Some of the short
comings of neural networks are discussed in this section. ALNs represent a significant

new addition to the modeler’s toolbox.
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3.1 Modelling Theory Overview

The simulation of a process or activity in order to predict future responses is applied
to almost every field of human endeavour from chemical processes to psychological
studies. Simulation aids in better understanding the process, and, in the case of
chemical processes, permits the user to effect short and/or long term optimizations.

These optimizations can be achieved by implementing':

e model-based controls.
e model-based decision making.

e model-based process studies.

Model-based control systems are those automated process control systems which
incorporate models in order to provide improved process control with minimal human
intervention. The most common type of such system is inferential control where the
control system adjusts control elements to achieve the desired process output based on
the model’s prediction of the response of the process to changing inputs or raw
material feed. This is contrasted to the most common non-model control - feedback
control - which adjusts inputs based on measurements of the process output.
Feedback control requires deviations in the output to occur before remedial action is

initiated, while the model-based inferential control takes proactive action, based on the

19 Seborg, Dale E.; Edgar, Thomas F.; Mellichamp, Duncan A., Process Dynamics and Control,
John Wiley and Sons, New York, 1989, p. 10
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model’s prediction that some corrective actior 1s required to respond to a fluctuation

in the process inputs.

Model-based decision making provides decision support data to operators in
situations where manual control is required. A common application of this type is
called a “soft sensor”. The name derives from the fact that the software (model)
simulates sensor output to the user. An actual hardware sensor may not be viable for a
variety of reasons, such as cost, reliability or technology limitation. This situation is
very common as there are many circumstances where current sensor technology is
inadequate and process control relies on manual testing. Examples are K# testing,
pulp strength tests, viscosity testing, etc. Part of the research discussed in this paper
relates to a model designed to provide pulp strength information that reduces
operations requirement for a manual test which requires one day to perform. A twenty

four hour sampling time is obviously not conducive to adequate control.

Model-based process studies use models to improve our knowledge of a process.
Many processes are well understood when operating in a very narrow range of
“normal” conditions. For large processes, the expense and complexity of changing
operating conditions for extensive testing outside this narrow range is prohibitive. In
these circumstances, a model can be developed to simulate the process and process
studies are directed against it. Such process studies are also useful where a process
operates correctly but is not fully understood. In this case, a model is constructed that
incorporates known and assumed relationships. If the model correctly simulates the

observed process behaviour then the relationships are assumed to be correct and



knowledge has been gained about the process. Because of the empirical nature of the
model the relationships can only be assumed true for those ranges over which the
model has been tested. A common mistake of the modeler is to extrapolate (or
interpolate) the use of the model for assumed relationships outside the test range. This

can result in significant process upsets and/or questions about the validity of the

model.

There is a difference between models that are based on theoretical knowledge
(mass/energy balances, etc.) and those that are empirical in nature. Although the first
two categories of models (model-based control and decision making) can either be
theoretical or empirical, models in the last category are typically empirical. A
theoretical model is preferred over an empirical model as it will generally be more
accurate. In many cases however, a perfect theoretical model cannot be built due to
inefficiencies in the process, imperfectly understood chemical reactions, or insufficient
measurements. In these cases, the modeler must resort to an empirical model. The
remainder of this chapter will deal with empirical models and how best to represent

mathematically a data set that is obtained from some process.

For models in the third category (model-based process studies), there will be a focus
on obtaining a relatively simple mathematical relationship that can be analyzed to
provide information on the process itself. This will require modelling techniques that
provide readily understandable mathematical forms. For models in the first two
categories (model-based decision making and model-based control), we will focus on

obtaining mathematical forms that can be implemented in a computer. Extracting an
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understandable mathematical form will be of less importance. The most important
aspect of these models will be to accurately simulate process behaviour for some range

of input data.

Three types of empirical modelling tools will be discussed. Regression models and
those based on adaptive logic networks provide readily understood mathematical
relationships. Neural network modelling techniques provide models that can be easily
implemented in computer systems and in some cases are better able to emulate the
behaviour of a process than other modelling techniques. For each modelling tool, an

example will be given that illustrates the strength or weakness of the technique.

3.1.1 Regression Analysis

A model provides a relationship between independent variables (inputs) and dependent
vaiiadles (outputs) in some mathematical form. Regression analysis is a technique
often used to find the best relationship'’. The modeler must chose the mathematical
form, although the simple linear form is most common. If the linear form is chosen,
then the regression model is referred to as linear regression. Multiple regression and
non-linear regression models are used as well. Regression models provide very good

performance and can provide a very accurate model if the problem is relatively simple

"' wittnik, Dick R., The Application of Regression Analysis, Allyn and Bacon, Inc. Needham
Heights, Ma., 1988, p. 2



The simplicity and accuracy of the approach make regression analysis to be the
preferred choice for process models. In many cases however, this modelling technique

fails to provide an adequate model.

The failure of the technique can be due to correlation between the “independent”
variables, more variables than can be easily handled by the modeller, or difficulty in
obtaining an assumption about the base mathematical form of the relationship being
modelled. The latter problem is due to the trial and error nature of regression analysis.
The typical procedure is to assume the simplest reasonable mathematical form and

then use increasingly complex forms until a model of acceptable accuracy is obtained.

The measure of accuracy normally chosen is the square of the error (summed over the
useful range of the model). This choice eliminates the sign from the error
measurement and penalizes a model for having large deviations from the actual data.
A model with a few large erroneous values will generally be considered worse than a
model with many small errors, as the modeler can then be assured that no single
modelled value deviates significantly from actual value. Although use of the least
square of the error is typical, the choice of performance measurement is always
problem dependent and in some cases modeler dependent. For example mean absolute
error (the sum of the absolute values as opposed to the squares) puts less penalty on

large errors. This measure is used in control systems where the squared error measure
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“can lead to unacceptably large = ~elerations and jerks”'>. In this thesis the square of

the error is used as the performance measurement.

3.1.2 Neural Networks

Neural network research has its roots in the 1940’s era research into how people learn.
Several works of this era stand out in the field of Neurocomputing. In 1943 Warren
McCulloch and Walter Pitts" showed that any arithmetic or logical function could be
computed by a simple neural network'. Other research of the time proposed the
study of computers that simulated brain structure. The most notable was found in tlie
papers and books by Norbert Wiener and John von Neuman'’. Probably the most
significant contribution was by Donald Hebb'® who, in 1949, proposed that learning
occurred at the neuron level and went on to describe a learning law for the synapses of
the neuron. This was important as it provided an example of a learning method that
researchers could implement when developing computer programs that could “leam”.

These and other works in the late 40’s and early 50’s led to the 1957 development of

12 Hecht-Nicison.R., Neuralcomputing, Addison-Wesley, New York, 1989, p. 114

'3 McCulloch, W.S. and Pitts, W., A logical calculus of the ideas immanent in nervous activity,
Bulletin of Math. Bio,, 5, 1943, pp. 115-133

* Rarisini, T. and Zoppoli, R., Neural Networks for Feedback Feedforward Nonlinear
Control Systems, IEEE Transactions on Neural Networks, IEEE Neural Networks Council, May
1994, p. 447

'S Hecht-Nielson,R., Neuralcomputing, p. 15

'* Hebb,D., The Organization of Behaviour, Wiley, New York, 1949
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the Mark I Perceptron by Frank Rosenblatt, Charles Wightman, and others. The

results of this research became part of the then new field of artificial intelligence.

As time progressed, a great deal of “hype” was generated by the neural network
community. “For example, there were widely publicized predictions that artificial

brains were just a few years away from development, and other incredible

»17

statements.””'. Because of the wide divergence between promise and reality, neural

network research declined and was mostly ignored, especially by agencies responsible
for funding research. Although research in neural networks was already declining,
Marvin Minsky and Seymor Papert are usually credited with causing this dormant
period in neural network research'®. In the last decade, the capability of the networks

has begun to catch up with the previous hype and the field is once again flourishing.

17 Hecht-Nielson,R., Neuralcomputing, p. 16
'8 Kempka, Anthony A., Activating Neural Networks: Part I, Al Expert, Miller Freeman, San
Francisco, June 1994, p. 33
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3.1.3 Neural Network Training

The key feature of neural networks is their ability to “learn” from data that is
presented to them. The most common type of network used in modelling is a
feedforward model called the Back Propagation Network (BPN). Building a BPN

consists of the following steps:

e chose a topology i.e., number of input, output and hidden nodes, and number of
hidden layers

e initialize the weights to random values

e input a data vector (exemplar) to the network and calculate the network’s output

e compare the network output to the desired outnut and determine the error

e propagate this error back through the network (from output layer to input iaye:),
adjusting the weights to reduce the error. This step is the source of the name for
this network.

e continue steps 3 - 5 until a minimum or satisfactory level of error is found

This type of network requires that « trzining set of dava be available, i.e, a set of data
for which the desired output is known. This style of learning is called supervised
learning. There are networks that can learn in an unsupervised mode. However they

are more suited to classification problems and are not typically used in modelling.
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3.1.4 Back Propagation Network Learning

The advantage of neural nctworks is their ability to learn functions based on a set of
exemplars. Learning occurs when the weights within the network are changed to
reduce the error between the network output and the measurcd data. Initially BPN’s
were trained using a gradient descent methodology called the Delta Learning Rule

which was first used by Widrow and Hoff*.

Gradient descent is best understood by visualizing an error surface composed of the
total error of the network for each set of weights in the network (because network
error is a function of the network weights). There is at least one point on this surface
which represents the set of weights for which the error is a minimum. Assuming an
initial random set of weights, gradient descent is the changing of the weights in the
network to step down this surface until a minimum is found. The size of the step

taken is given by the learning rate n.
3.1.5 Modified Learning Rules

The gradient descent based Delta Learning Rule has several undesirable features. For
small values of n, finding the minimum on the error surface can involve a significant
amount of time. As well, the rule has no mechanism to reject local minima.
Modification of learning rules to speed learning and more effectively handle local

minima have been major research areas for neural networks in the past.

' Rao, Valluru B. and Rao, Hayagriva V., C++ Neural Networks and Fuzzy Logic, Management
Information Source, Inc., New York, 1993, p. 96
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Of the many learning rules developed cver the years, two modifications to the Delta
Learning Rule have been particularly s . c_essful. These are the Delta Bar Delta (DBD)

rule and the Extended Delta Bar Delta (EDBD) rule.

Delta Bar Delta Learning

The Delta Bar Delta rule was developed by Jacobs™ to improve the speed at which a
minimum is located. It uses the heuristic that if weight changes are of the same sign
for several iterations then the learning rate can be increased. However, if the weight
changes alternate signs for several iterations, then a minimum is being straddled and
the learning rate should be reduced. Increases in learning rate are constant while
decreases are geometric. This helps to keep the learning rate from becoming too large
too fast. Decreasing geometrically ensures that the learning rates do not become

negative®'.

® Jacobs, R.A., Increased Rates of Convergence Through Learning Rate Adaption, Neural
Networks, Volume 1, 1988, pp. 295-307

2! NeuralWare Inc., Neurocomputing, a Technology Handbook for Professional 1I/+ and NeuroWorks
Explorer, NeuralWare Inc., Pittsburg Pa., 1993, p. NC-131
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Extended Delta Bar Delta Learning

This modification to Delta learning was developed by Minai and Williams® to
incorporate heuristics not found in the Delta Bar Delta learning rule. The major
change is the addition of a momentum term. This momentum term is generated by
adding an amount proportional to the last weight change to the current weight change.
If the Delta rule continually causes a weight change in one direction, the momentum

term will gradually increase the weight change and the learning will increase in speed.

The analogy of a ball picking up speed (or momentum) as it rolls down a hill is very
appropriate. This means for long gradual gradients in the error surface, the learning
will generally be shorter than DBD learning. Of course, the “down” side of
momentum is when the minimum is found, the weight changes will continue due to the
momentum effect and the weight will overshoot the minimum. This is not necessarily
bad. If the minimum is only a local minimum, then the weights may “roll up” out of

the valley and on to the next minimum.

Decreasing learning rates occur in a similar manner to DBD learning. Increased
learning rates are a geometrically decreasing function of the weighted gradient
components. This means that changes in learning will be greatest in areas of high

curvature. A cap is placed on the learning rate and momentum.

= “inci, AA. and Williams,R.D., Acceleration of Back-Propagation through Learning
Rate and iMoment - - - daption, Inernational Joint Conference on Neural Networks, Volume 1,
January 1990, py. 6-:.-679
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Network Configuration with DBD and EDBD learning

Both DBD and EDBD modify the basic Backpropagation approach to the nodes in the
neural network. With Backpropagation, the learning rates are established for the
entire network. With DBD, each node has it’s own learning rate. EDBD extends this
so that each node also has its own momentum term. As well, EDBD incorporates a
memory. The weights for the current iteration (and the associated error) are saved. If
on the next iteration, a larger error is generated, the previous weight values are

restored and the learning rate and momentum reduced.

This gives a brief overview of neural networks. In practice many commercial
packages are available so that minimal familiarity with the learning rules is sufficient.
This allows the user to focus on simulating a process rather than writing network
software. Even though commercial packages are avadable it is important to
understand the basic principles underlying these packages. Without this
understanding, choosing the proper network configuration becomes a purely trial and

error process which can be very time consuming.
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3.2 Pulp Mill Applications

Modelling is an important tool for process engineers. To illustrate the types of
modelling encountered in general, and the application of neural networks in particular,

two case studies are investigated:
1. a feedforward production rate control scheme, and

2. a pulp strength study.

In order to assist the reader to better understanc the models, a brief review of a pulp

mill operation is included.

Pulp mill operations are often described in terms of major functional blocks as shown

in Figure 3.1.
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— Wood Chips

Digesting Brownstock Bleaching Pulp Machine

> ) )
I

Liquor Loop Packaging Drying

Pulp to customers

Figure 3.1: Pulp Mill Operation

Wood Chips:

Wood is made up of roughly four materials (each of equal volume): cellulose fibre,
lignin, and water, and air. The objective of the Kraft process is to separate the
cellulose fibres from each other and from the other three constituents with minimal
damage to the cellulose fibres. “Kraft” refers to the type of chemical processing used.
The word is derived from the German word for strong, so named because the resulting
pulp is stronger than that produced by other processes. Such other processes as
Thermal Mechanical Pulping (TMP) or Chemi-Thermal Mechanical Pulping (CTMP)

separate the cellulose fibres from each other by grinding the wood chips into a fibrous

56



state. This causes major fibre damage in the process. Kraft pulping retains fibre

integrity and strength.

Cellulose fibre is a component of all plantlife. The most common example of raw
cellulose is cotton batting which is very similar in appearance to fully bleached
woodpulp. Lignin is a complex organic binder which holds the cellulose fibres

together. An example of lignin is sap.

Digesting

Digesting combines woodchips and a caustic (Sodium Hydroxide) “white liquor” at a
high temperature and pressure for a specific time period to extract the lignin from the
cellulose fibre. The industry refers to this as cooking. The correct combination of
chemical strength, temperature, pressure and time will provide a very strong pulp of
low lignin content. If some component of the combination is too low, the wood will
not “cook” completely. This will result in excess lignin being left in the celiulose
causing increased usage of expensive chemicals in the bleaching stage. If some
component is too high, the cellulose fibres will be degraded, and a weaker pulp will
result. One test for how well the pulp is cooked is called the K’ test, so named
because it consists of chemically preparing the pulp sample and then titrating the
sample with a potassium compound. The amount of potassium usec provides a
numeric indication of cooking level, the higher the number, the less cooking has

occurred.
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Brownstock

Digesting produces a mixture of cellulose fibre and spent (black) liquor. Brownstock
is the process where the spent liquor is separated from the cellulose. This is done
through various devices that hold the fibre against a screen while the liquor is forced
out of the pulp by forcing wash liquor through the pulp mat. Throughout the process,
as high strength liquor is removed from the pulp, it is washed with lower concentration

liquor until the final stage where nearly pure water is used.

Liquor Loop

The spent cooking liquor recovered from brownstock contains a significant amount of
organics (lignin). The main process in the liquor loop is the recovery boiler where the
combustion of the organics yields a chemical residue that can be converted back into
white liquor. The steam created in the boiler is used to generate power and heat for
the rest of the process. The liquor loop makes the Kraft process very economical in

terms of chemical and energy usage.

58



Bleaching

The pulp that leaves brownstock is brown in colour, about the same as brown
wrapping paper. The goal of bleaching is to whiten the pulp so that it can be used in
writing papers. This whitening is accomplished by a variety of chemicals. Although
Kraft identifies a common liquor loop and digesting process, there are many bieaching
processes in use (oday. Chemicals used in these processes are Cl;, ClO;, H;0,, O,
Os, and others. Bleaching processes are rapidly changing at the current time due to
environmental concerns. For example, chlorine (Cl,), the most common bleaching
chemical 15 years ago, is now absent from most bleach plants because of the tendency
of the chlorine to bind with harmless dioxins to form chlorinated dioxins, some of
which are extremely toxic. Chlorine dioxide (ClO,) does not produce chlorinated
dioxins to the same degree and is currently the bleaching chemical of choice for many
plarts. The two main bleaching chemicals at the Grande Prairie plant are chlorine

dioxide and hydrogen peroxide (H,0,).

Pulp Machine and Drying

Once the pulp leaves bleaching it is chemically ready to be used by the customer -
usually a paper machine of some sort. As the pulp that leaves the bleach plant is in a

slurry of 88% water, it must be concentrated prior to shipping. This is the job of the

59



pulp machine. The pulp machine forms a sheet on a moving screen. This sheet is then
pressed to remove as much water as possible. At this point the sheet is about 52%
water. The remainder is removed by thermal drying until a final target of 10% water

by weight is achieved.

Packaging

Like all processes previously mentioned, the pulp machine is continuous, so the
packaging department receives an endless sheet 226 inches wide travelling at 600 fpm.
This is converted into nackages of pulp approximately 32”x32"x16” which are loaded
into boxcars and shipped to the customer. Each package contains about 600 pounds
of pulp. Customers typically purchase pulp in boxcar loads, which at current market
prices, costs in excess of $50,000/boxcar. In order to ensure that the pulp purchased
is of specified quality, several performance tests are performed on the finished product.

These include moisture content, dirt content, brightress, viscosity and strength.

3.2.1 Basis Weight Valve Model

One of the greatest difficulties facing process contro! engineers is adequately handling

those processes with long deadtir:es, i.e., the time from when a change is made at the



input of a process until a resulting change is seen at the output. The pulp machine is
an area where deadtime can be as much as 15 minutes and hence presents a significant

challenge to process control.

The most common type of control is feedback control, which consists of taking
corrective action when an error is observed at the output. With long deadtime
processes this becomes impractical. For example, if the control system is designed to
observe the outputs of the pulp machine and take corrective actions once an error is
observed, the error would continue for 15 minutes before the corrective action could
be observed at the output. A mechanism that responds to errors in the inputs, so that
the output is maintained in control is snuch preferred. This is referred to as model
reference feedforward control. The modelling tools described earlier provide a

foundation for developing such a control scheme.

To illustrate how these models provide such foundation, an example relating to pulp
machine throughput will be used. Throughput (measured in tonnes per day at the
dryer output) is controlled by the stock flow rate through the basis weight valve to the
headbox. Stock consistency prior to the basis weight valve is controlled to a nominal
3% consistency although this varies significantly. The stock flows tarough the
headbox and on to the rest of the drying process, where machine throughput is
measured by on-line sensors. Measured values prior to the headbox are consistency
s s:ive position. For the problem we will be discussing, changes in dilution water
fisw. do not have a major impact on machine production The process is shown in

Figure 3.2.
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Headbox
—— >
Dilution Water To Finishing

Figure 3.2: Basis Weight Valve Diagram

During operation, when a change in throughput is required, the operator manually
opens (or closes) the basis weight valve slightly, while at the same time increasing (or
decreasing) dilution water flow. This increases (or decreases) stock flow to the
headbox while maintaining headbox consistency. The change in stock flow causes a
change in machine throughput. To automate this process requires that given a target
production rate, a basis weight valve setting can be determined. In order to determine
this, a model is required that provides a relationship between consistency, valve
position, and throughput. Once this model is available it can be incorporated into a

feedforward scheme to reduce the impact of consistency variations.

One approach would be to use the valve curve to obtain the relationship directly.
Unfortunately, the curve for this valve/positioner combination is not readily available.

However the problem is simple enough that it provides a good test for the modelling
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techniques. Two approaches will be examined: regression analysis and a neural

network model.

Modelling with Regression Analysis

Because flow through a valve is usually governed by the square of the open area, it is

assumed that flow onto the fourdrinier will have the form
throughput = a*cons(b*pos+c*pos?)

a, b,and c are constants to be determined, cons is consistency, and pos is the basis
weight valve position as read from the positioner. Note that the linear term for pos is
included on the chance that the positioner or valve construction modifies the behaviour
such that a linear relation resuits. Using regression techniques on basis weight and
consistency data from the Grande Prairie operation for 1993, the values for the

coefficients were found to be

a=.057
b = negligible

c=183

This indicates that there is no actual linear component to the relationship aithough
given the small range of valve position and slight cuivature the relationship can be

considered linear.
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The scatter plot of predicted valu >s versus actual values is shown in Figure 3.3.
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Figure 3.3: Regression Model

As can be seen, there is significant “noise” in the readings. The plot also indicates a
“shadow” pattern that sits under the main pattern, indicating that there may be another
factor in the flow. Possible factors would include changes in pressure (which was
assumed to be constant), or modifications to the positioner/valve mechanism during

the period of data collection.

At this point it would seem to be proper to perform some further analysis to determine
the overall accuracy of this model. However, as can be seen from Figure 3.5 the

regression model is too far from accurate to be of any value. This illustrates that given



the wrong mathematical form, regression analysis can generate very poor “best” fits.
As two other models will be developed in later sections, the trial and error process of

finding the proper form for this model was not attempted.

Modelling with Neural Networks

A neural network was built to compare tt® -.sults of this type of model to the
standard regression analysis. The network was built using 4 ,~yers, 2 input nodes, 20
hidden nodes in the first hidden layer, 5 nodes in the second tidden layer and 1 linear
output node. The learning mechanism was extended delta bar delta leamning. The
network was trained for 99,000 passes through the training data used in the regression

analysis example.

This network topology was chosen as it was similar to that developed for the pulp
strength model described later. The first network topology attempted was successful
and no attempt was made to minimize the size of the network because, as will be seen
later, a better model was developed using an alternate modelling method. As the
purpose here was to illustrate the capability of networks to model a function it was felt

that further work on refining the model would be superfluous.
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Figure 3.4
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A comparison of the results of the regression analysis (shown in Figure 3.3) and the
neural network model (shown in Figure 3.4)show the “squashing” of the neural
network output at the upper and lower extremes of the data range. Methods to
evercome this squashing effect will be discussed later. Despite this squashing, both
models appear to yield a fair simulation of the output data. However, as previously
discussed, Figure 3.5 shows that the regression model is not as robust as the neural

network model.

Data Analysis

If the analysis were left at this stage some significant factors could be overlooked. In
truth, as will be illustrated, neither model can be verified as correct. To properly

analyze the models, first, the input data must be scrutinized.

A visual examination of the distribution of the data points in the above figures show
that the bulk of the data occurs around a throughput of 975 which is a typical
operating rate for this plant. There is no indication in these figures of the distribution
of the input data, i.e., consistency and valve position. As we will see, this distribution

of data is important to understanding the capabilities of the models.

Table 3.1 shows this data distribution with each muber in the table representing the

number of samples at those conditions.
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Cons
2.40
2.80
2.90
3.00
3.10
3.20
3.30
3.40
3.50
3.90

Total

Pos 47 48 49 S0 51 52 S3 54 55 S6 57

4
1
1 1
1 2 2 1
1 5 2 2 4 21 15 43
84 135 290 255 264 461 1417 2122 1870 67
I
2

—

2 1 1 ) 13 19 39 19

1 1 1 3 6

86 137 302 258 267 469 1444 2153 1933 109 26

Table 3.1: Data Distribution Valve Position vs. Comisténcy

Total

(RS I N

[=))

6965
96
14

"1 78

As can be seen, 75% of the data occurs when the range for position is from 53 to 55

and consistency is 3.2%. 97% of the input data occurs for a consistency of 3.2.

Obviously, there is insufficient data to draw firm conclusions about model performance

for other consistencies with any reasonable degree of confidence”. A comparison of

model predicted output and actual values for a consistency of 3.2 is shown in Figure

3.5.

» Eberhardt, Keith R., Survey Sampling Methods, Handbook of Statistical Methods for
Engineers and Scientists, Harrison M. Wadsworth (Editor), McGraw-Hill, New York, 1989, pp. 9.1

9.18
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Figure 3.5: Model Comparisons

The actual output data clearly shows a break at a valve position of about 52. It
appears that the “normal” operating range of 53-55 follows a different set of rules than
the rest of the range. The neural network identifies this difference and models it
correctly. The regression model is restricted in its form and therefore does not n;odel

the change.

The problem that the modeler faces at this point is that the pattern of the output data
must be explained as the measured curve is counterintuitive. There are other factors
(such as inconsistent operating strategies, maintenance changes, data collection
problems etc.) that could cause this pattern and they should be investigated prior to

using the neural ne. vork model. Clearly, the regression model is unsuitable as is. In
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this example, further tests can be conducted to verify the reasons for the pattern.
However, in more complex processes, this may not be possible. In such cases, the

neural network model may be used as is or as a basis for further research.

Which method of modelling is better? The regression models should be better if they
are based on good a priori knowledge. In the above example, the knowledge used to
build the regression model, was the same knowledge that was used to state that the
input data was counterintuitive. Although the neural network does an excellent job of
predicting the output data, because the output data is suspect, then so is the model. If
good a priori knowledge exists, then a regression model should be possible. If this
knowledge does not exist, then the neural network can give excellent simulation, but
there is no easy method to verify that the model is doing anything other than
replicating some set of previously seen output data. If replication is all that is
required, then neural networks without further analysis are excellent tools. However,
if confidence that the network is learning a function is required, then further testing is

needed.

If the requirements of a problem are such that a neural network is feasible, then there
is an added advantage in their use - the ease of on-line training. In cases where the
proper output will be known at some time in the future, it can be backpropagated
through the network, updating the weight vectors. This is very advantageous in those
processes that change their characteristics over time, as happens in this basis weight
valve problem. Over time, the positioning mechanism will degrade and periodically be

repaired. As this occurs, the relationship between indicated valve position and
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throughput will change slightly. A relationship modelled using regression would have
to be recalculated, whereas, a neural network could be configured to learn on-line and

automatically adjust for any changes in the process.

3.2.2 Pulp Strength Model

The relatively simple basis weight problem described above demonstrates the
complexities of modelling even a simple process with minimal variables. Within our
pulp mill operations, there are very complex processes with multiple variables and
even larger deadtimes. Modelling such processes with traditional tools such as
regression analysis has proven to be ineffective. It is in these situations that neural
network models will excel. One such process in the Grande Prairie operation is that

which involves controlling the strength of our finished product.

Wood pulp is the raw material for many consumer products, such as tissues, paper
towels, newspapers, sausage skins, cigarette paper, magazine stock, and diapers. Each
product is distinguished by certain properties. For example, we expect that tissues will
be soft and strong, paper towels will be absorbent when wet, and newspapers will be

strong and stiff. One of the tools the papermaker uses in creating these properties is

the choice of raw materials.
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Woodpulp from northern latitudes tends to have long, stiff fibres which result in strong
but hard paper, while pulp from southern areas tends to be softer and weaker. The
papermaker creates a “pulp recipe” to obtain the desired base material charactenistics
for their product. The pulp produced at the Weyerhaeuser pulpmill in Grande Prairie

is one of the premier high strength Northern Softwood Kraft (NSK) pulps.

Because strength is an important feature of the pulp produced there, operations
personnel want to have a complete understanding of how all process variables affect
the pulp strength. Unfortunately, the process is so complex, and so many factors

influence pulp strength, that there is not a complete understanding of these factors.

Pulp strength (also known as tensile strength) is aff=cted by several factors associated
with the individual cellulose fibres, such as length, strength, damage, straightness, and
inter-fibre bonding. [Each of these fibre properties is impacted t_ the chemica:
processing that occurs throughout the process. Experts in the pulping process have
determined 60 process parameters that can possibly impact pulp strength®.  For
twenty years, attempts have been made to build a model that correlated a subset of
these parameters with the actual measured pulp strength. A subset was chosen
because a model with 60 variables is difficult to build with traditional tools, and many
of these variables are correlated. The process has been to try to eliminate the
correlated variables and build a model with the half dozen or so variables that were

left. No model using this process was satisfactory.

* Eberhardt, Keith R., Survey Sampling Methods, Handbook of Statistical Methods for
Enginecrs and Scientists, Harrison M. Wadsworth (Editor), McGraw-Hill, New York, 1989, pp. 9.1-
9.18
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The basis weight valve model showed a comparison of regression analysis with a
neural network model. Typically, a parametric model is preferred as it provides a
good basic understanding of the process with a minimum of effort. In many cases
however, regression or other techniques cannot provide an accurate model. One
example is where there are many variables, some of which are correlated with each

other to some degree. Pulp strength is one of these cases.

Because of the structure of neural networks, correlated variables do not pose a
problem. In fact, as eve'y input node is connected to every first layer hidden node, the
network’s assumption is that every variable is correlated. The size of the model! also
poses little problem to the modeler. The major impact model size creates is the need

for larger amounts of data and longer computing time while training.

The value for a pulp strength model is two fold. First and foremost, the effect of the
60 variables on pulp strength currently is not well understood. With a model that
accurately predicts puip strength, investigations can be made to determine what the
key variables are and how to better control them. Currently, if the pulp strength gets
out of control, it is not clear which variables should be the immediate focus areas. The
only alternative is to try to bring all 60 back into specifications. This is typically a
difficult task. If operators knew which were the top ten variables to control pulp

strength, response to strength vanations would be quicker.

Second, pulp strength is a finished product test and is used to determine which

customer gets which pulp. Each customer has specific product and product wrapping
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specifications. Typically, high strength pulp wrapped for one customer cannot be ser’
to another customer. Obviously low strength pulp wrapped for a high strenyih
customer would not be suitable for any of the customers. The problem is that the pulp
strength test is a manual test that requires up to a full day to complete. By the time
that test resuits reveal that pulp strength has decreased unexpectedly, the chances are
high that the pulp is already en route to *he customer. This means that the shipment
must either be recalled or diverted to another customer. In either case, a substantial
amount of rework on the part of the shipping office and loss of face with the customer

is incurred.

A pulp strength model that accurately predicts tensile properties of the finished
product would allow improved decision making relative to both operation of the plant
and wrapping and shipping procedures. A neural network was constructed to model

pulp strength.

As stated previously, experts had identified 60 possible candidate variables. The mill
information system retains hourly averages of this data and it was used in the model.
Each hour has 60 input variables and one output variable. This represents one input
vector or exemplar. The number of exemplars needed to train a network is dependent
upon the number of weights that must be modified. The first step is to determine the

number of weights in this network.
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This network is configured as 60 inputs nodes, 1 hidden layer with 20 nodes, another
hidden layer with 5 nodes and 1 node in the output layer. Currently thers are

inconsistent approaches to choosing network topology.

This choice of topology was based on the rule of thumb as taught by NeuralWare
trainers (and others) to have a roughly pyramidal shaged netwc:k. As well, this form

of network was similar to a network that performed reasonably well !earning the

Mexican hat function.

Prior to this project, a brief study was conducted on how a network’s topology
impacted it’s ability to model functions. In this study the 2-dimensional Mexican hat
function was used. This function is characterised by many inflection points. Although
not an exhaustive study, about 20 different topologies were tried and it was found that
those that incorporated a single hidden layer had difficulty learning more than 2
inflection points. Those that had two hidden layers were much better at learning the

complexities of that function.

Results of the neural networks versus desired Mexican hat function values exhibited
the same “squashing” as evident in the basis weight valve problem shown in Figure
3.4. As can be seen from that figure, the network rradictions tend to “flatten out”™ at
the extremes. This appears to be a common problem with the real valued (as opposed
to classification oriented) neural networks. The problem is due to the use of a logistic
function (which appropriately is referred to as a squashing function). Several methods

are used to combat this:
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e Data scaling of input and output values is often used to reduce the range of the
data and therefore force it to the centre (and more linear) portion of the s shaped

logistic.

e Greatly increased learning times are sometimes used to decrease squashing but

has the disadvantage of often incurring overfitting problems.

o Choice of logistic function can be changed. The standard sigmoid function of
fix)=1/(1-™) is often replaced with the hyperbolic tangent. The sigmoid varies
from O to 1 while the hyperbolic tangent varies from -1 to +1. This seems to

provide better performance.

e Data elimination can improve the performance. If the data set is normally
distributed then most of the data will be near the mean value. There will be little
outlying data for the neural network to train with. If there is more than enough
data in the training set to train the network, one can remove some data points near
the mean. This will force the neural network to spend a larger percentage of time
learning the outliers. The goal should be to have a uniform or random distribution
of data points as opposed to a normal distribution. That is, the data histogram

stould look like a box rather than a bell.

For the pulp strength model the last two methods were used to cvercome the lack of
performance at extreme values which was evident in early attempts at the model. As
well the network topology was the result of the tried and true approach of trial and

error. Over 100 networks were attempted over a period of two years with varying
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degrees of success. Another issue in choosing topology is ensuring that sufficient

training exemplars exist.

For this network there are 60*20=1200 connections between the input layer and the
first hidden layer, 20*5=100 connections between the hidden layers, and 5*1=5
connections between the second hidden layer and the output layer. In total there
would be a total of 1,305 connections. The large number of hidden nodes (25) was
chosen because, based on the difficulty others had encountered building pulp strength
models, it seemed probable that the relationship of tensile to the inpu: variables would
be complex. The large number of hidden nodes should help in capturing that

complexity. The next step was to determine how many exemplars are available for

training.

A good rule cf thumb is that twr thirds of the available data should be used for
training and the remainder for testing. The training set should be twice as large as the
test set. Rounding to even numbers gives us a training set of 1,000 exemplars and a
test set of 400. Although the modeler should obtain as much data as possible, there
should be at least 1 exemplar per network connection. Fewer exemplars than this
increases the risk that there will be insufficient data to properly train the network.

Clearly our 1,305 connections are too many for the 1,000 exemplars that we have.

Fortunately, in this problem, we are fairly sure that the full 60 variables are not
required. Which of the 60 are not significant is not known. If only 48 variables were

used then there would only be 1,065 exemplars are needed, which is close to the 1,000
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that are available. At this stage it was decided to build a model with 48 inputs using
1,000 exemplars. There was a risk that the model could not be trained but if that. -were
to happen, more variables could be eliminated or a different network configuration
chosen. In fact, this network was found to be trainable, although the final network
configuration was modified slightly from this initial configuration in order to obtain a

more accurate model.

The standard deviation, minimum, and maximum of the 60 variables that were
identified as potential factors were calculated. During 1993, pulp strength had a
standard deviation of 5%. Variables that had very little deviation, or extremely large
deviations compared to this were eliminated. Although this is a fairly arbitrary
method, the resulting variables that were dropped did not appear to be influential on
pulp strength. The resulting 48 variables were used for the network model. The
variables evaluated are listed in Table 3.2 . (Note: Table 3.2 has been removed in

order to protect confidential information.)

The actual networks were: built using a commercial tool (Professional II+ by Neural
Ware?). This allowed quick development of the models and allowed investigations
into the impact of different network configurations. After a capable model was
produced several slightly different topologies were tried so as to fine tune the result.
The best success was obtained with a network configured with 48 inputs, 1 output and

10 hidden nodes in the each of the two hidden layers. This only slightly reduced the

 NeuralWare Inc., Building IV, Suite 227 Penn Center West, Pittsburgh, Pennsylvania USA,
15276, (412) 787-8222
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total number of hidden nodes, 20 as opposed to the original guess of 25 and so
retained the networks ability to capture complex functions. However, moving some of
the nodes from the first hidden layer to the second, reduced the total number of
connections in the network to 680, thereby increasing the ratio of exemplars to

connections. The topology of the network is illustrated in Figure 3.6.

Figure 3.6: Neural Network for Pulp Strength Model

The plot of network prediction versus actual values is shown in Figure 3.7. As can be
seen, good agreement is obtained by the network although significant noise exists.

This network has been used to predict excursions of pulp strength from specification.
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Figure 3.7: NN Prediction versus Actual Pulp Strength (6pt mvg avg)

The more formal methods of model quality evaluation and/or discrimination are not
considered here. An analysis using the regression coefficients indicates that the model
explains 72% of pulp strength variation when evaluated on any individual sample.
Most of the remaining variability is due to the large variability inherent in the actual
pulp strength test. To measure trends, the six point moving average is used. This

represents a 24 hour average. In this case the model correlation is 90%.

This model more than satisfies the original objective of indicating trends in pulp
strength. In use it has successfully provided that type of information. As an added
benefit, the model was analyzed to determine key contributors to pulp strength

variability. These key contributors and their relative impacts are shown in Table 3.2.
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In order to maintain confidentiality of Weyerhaeuser data, in all but one case, the
variable names have been replaced with the name of the area in which they reside.
Brownstock pitch dispersant is named so that it can be used as an illustration of the

type of analysis that can be carried out on the other variables.
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# PIS CV% | Rank | Impact Description
21 491 7.45 01 23.7 Brownstock pitch dispersant
26 900 8.52 02 23.0 Machine variable 1
48 1734 27.7 03 20.7 Brownstock variable 2
31 47 9.80 04 20.5 Digesting variable 1
39 1558 18.54 05 194 Bleaching variable 1
18 306 6.72 06 19.3 Bleaching variable 2
49 474 29.44 07 19.0 Brownstock variable 3
17 1618 6.62 08 18.9 Brownstock variable 4
47 272 25.97 09 18.2 Bleaching variable 3
10 568 5.40 10 18.1 Recovery variable 1
13 248 6.15 11 18.1 Digesting variable 2
50 1823 4571 12 17.5 Recovery variable 2

6 1552 3.88 13 17.4 Bleaching variable 4
29 266 9.24 14 17.4 Brownstock variable 5

8 180 3.99 15 17.3 Bleaching variable 5

9 297 471 16 17.2 Bleaching variable 6
27 201 857 17 17.0 Brownstock variable 6
28 848 9.08 18 16.9 Machine variable 2
43 304 20.86 19 17.0 Bleaching variable 7
25 504 8.31 20 16.8 Digesting variable 3

4 246 240 21 16.8 Recovery variable 3
22 846 8.07 22 16.8 Machine variable 3
24 922 8.11 23 16.7 Machine variable 4
20 476 7.23 24 1£.4 Brownstock variable 7
45 1733 25.66 25 16.3 Brownstock variable 8

1 N/A N/A 26 16.3 Machine variable 5

5 303 342 27 16.2 Bleaching variable 8
4] 290 19.00 28 16.2 Bleaching variable 9
11 247 572 29 16.0 Recovery variable 4
35 1039 11.59 30 16.0 Bleaching variable 10

* Indicates value not used in neural network

Table 3.2: Variables Used in Pulp Strength Model
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I# P1S CV% Rank | Impact Description
7 921 3.92 31 15.9 Machine variable 6

40 72 18.59 32 15.8 Digesting variable 3

12 451 5.89 33 15.8 Bleaching variable 11

33 252 10.82 34 15.6 Digesting variable 4

44 383 22.06 35 15.6 Brownstock variable 9

14 300 6.33 36 15.5 Bleaching variable 12

38 1551 143 37 15.2 Bleaching variable 13

36 293 12.26 38 15.1 Bleaching variable 14

16 40 6.59 39 15.0 Digesting variable 5

42 350 19.71 40 143 Digesting variable 6

15 648 6.46 41 143 Recovery variable 5

32 1959 9.83 42 14.0 Bleaching variable 15

46 271 25.75 43 10.8 Bleaching variable 16

23 341 8.11 44 9.5 Bleaching variable 17

37 1575 13.30 45 89 Bleaching variable 18

34 N/A 10.98 46 8.5 Machine variable 7

19 39 6.78 47 6.1 Brownstock variable 10

30 N/A 9.47 48 1.4 Machine variable 8
51* 1410 51.29 Water treatment variable 1
52* 1409 (5.31 Water treatment variable 2
53% 342 105.93 Digesting variable 7
54* 1412 106.87 Water treatment variable 3
55%* 1500 195.47 Water treatment variable 4
56* 228 234.94 : Bleaching variable 19
57* 1162 247.78 Machine variable 9
58* 1822 353.30 Recovery variable 6
59* 1501 465.44 Water treatment variable 5
60* 1335 471.30 Machine variable 10

2* 309 .54 Bleaching variable 20

3* N/A .59 Machine variable 11
Out N/A 543

Fulp strength

* Indicates value not used in neural network

Table 3.2: Variables Used in Pulp Strength Model
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The first column of the table represents the input node number in the network that the

variable is entered. The coefficient of variance (CV) column is shown as a percent.

The impact column represents the results of a simulation to determine how much pulp
strength changes when subjected to a change in the input variables by a set amount. A
vector was built that contained the average value for each input. A vector was then
built for each of the other 48 variables in which all variables were their average value
except for one. For that variable, input was changed by 10% of its CV. The change
was calculated based on CV to ensure that the relative impacts of the different

variables were the same.

Each vector was presented to the network and the output recorded. The change in
pulp strength (relative to its CV) is the value shown in the impact column. The rank
column is simply the order of sensitivity of pulp strength to perturbations in the input
variable. The other columns contain descriptions of the actual variables used and are

blank to maintain confidentiality of Weyerhaeuser data.

According to the model, the greatest impact on pulp strength is caused by pitch
dispersant. Unfortunately, experts assert that this cannot be true, i.e., adding more
pitch dispersant will not make a stronger pulp. However, pitch dispersant is a measure
of woodchip properties. In other words, as the raw wood changes, operators make
compensating changes in pitch dispersant. The raw wood is known to be a significant

contributor to pulp strength, but there are no on-line measurements of wood
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properties, and even off-line measurements are inconclusive. Therefore, pitch

dispersant is likely signalling wood property changes to the model.

Arother possibility is that the experts are wrong. Pitch dispersant is felt to be a
weaker contributor to pulp strength so it is not modelled. It may be that pitch
dispersant has a greater impact than previously thought. This highlights possibie
problems with a priori knowledge. If a priori knowledge is incorrect, greater problems
can occur than if it did not exist at all. As well this illustrates a problem with
traditional modelling techniques. Typically the modeler is forced to minimize the
number of variables that are input to the model due to limitations in the modelling
technique. This may result in important relationships being overlooked. The ability of
neural networks to model problems with large dimensionality results in fewer variables

being overlooked.

Scanning the list of variables shown in Table 3.2 one can see that there are many
rankings that are expected, and many that are surprising. The next phase of modelling
will be to verify these results using both network and traditional approaches. In many
cases, designed experiments will be required. The next phase of modelling is on hold
waiting for a new high speed data acquisition system to be installed in the spring of
1995 and research into chip quality measurements that will be performed by the Laser

Institute in 1995.

In summary, neural networks provide a simple approach to modelling that can

determine base relationships where other traditional techniques are less successful. As

85



with any technology, the user must be conversant with the tools that they use, or
inappropriate results may be obtained. The availability of commercial packages greatly
lessens the burden on today’s modeler. However, this availability does require
increased diligence on tiie part of the modeler to ensure that he or she understand

exactly what the tools are doing and how to take the greatest advantage of them.

The use of a commercial tool is only part of developing & ful model. Whatever
the mudelling tool, proper data preparation, data analysis and model verification is

required. These steps are usually the most difficult portion of the modelling exercise.

Previously we compared neural networks to regression analysis. Given the ability of
neural networks, it may appear that models built using this tool are capable of working
wonders; and, in many cases they can. However, they have areas of weakness as well.
Neural networks are excellent at modelling processes with high dimensionality. Neural
networks are also excellent at rejecting noisy signals. However, studies I conducted as
part of a Computing Science course showed that neural networks have difficuity
simulating very dynamic functions such as the Mexican Hat function. A network

based tool that does not suffer from this limitation is the Adaptive Logic Network.



3.3 Adaptive Logic Networks

3.3.1 Introduction

In this section a model of the basis weight valve problem will be developed through an
Adaptive Logic Network (ALN) using development tools provided by Dendronic
Decision Limited?®. ALNs have several advantage- rake them useful for a wide
range of problems”. ALNs have the features of bown 1egression and neural network
models. Because of this, they can be used in place of either of these modelling

techniques.

ALN's are comprised of two parts. The first part is a tree of logic functions. Each
node in this tree has either an AND or an OR function. Like a neural network, the tree
is organize:; ir. layess aad all nodes in the same layer have the same function. The
function .« er.:.es ch layer For example, if the top layer uses an AND function,
then the nc.c f,or will use an OR function. All of the nodes in the logic ti.e have

other nodes below them, either more logic nodes, or terminal nodes.

Terminal nodes have no nodes beneath them and represent the second part of the
ALN. Each terminal node develops a single hyper-planar surface. In two dimensions,

this is a linear segment. In dimensions higher than three, the surface developed is a

% pDendronic Decisions Limited, 3824-108 St, Edmonton, Alberta, T6J 1B4, (403) 438-8285
¥ W. W. Armstrong, et al, Learning and Generalization in Adaptive Logic Networks,
Artificial Neural Networks, T. Kohonen et al (Editors), Elsevier Science Publishers B. V.
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hyperplane. The number of dimensions is determined by the number of input variables.
If a problem has four input variables, then four dimensional linear segments are

required and each terminal node would have four inputs.

During training, the linear segments are developed in terms of slope and intercept.
Given an input, each terminal node (linear segment) provides an output value. Using a
best fit scheme, the linear segment is built so that it provides accurate values for some
range of the input data. The binary tree is responsible for learning which linear

segment to use for which range of data.

A simple tree adapted for modelling continuous processes is shown in Figure 3.8. In
this example, a three-dimensional surface is being modelled, therefore, each terminal

node has three inputs to define the linear segment.
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@ @ @ @ OR Functiotis

Linear Segments

@ @ AND Functions

Linear Segments

Figure 3.8: Simplified ALN Structure

This example has 5 planar surfaces. Terminal . odes are attached to the lowest and
next lowest layers at random. The terminal nodes are split over two layers so that the
binary tree can develop a relationship with planar segments based on both AND and

OR logic functions.
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When illustrating neural network structures, much of the detail is not shown so that
the drawing is easy enough to understand. The simplicity of ALNs is demonstrated by
the fact that the above example is a full featured and robust configuration. Adequate

models could be built using fewer processing elements than shown above.

3.3.2 Developing models with ALNs

In general terms, ALN's operate much like BPN's. Training and test data preparation
is similar. Rather than specifying the number of hidden layers, nodes, and learning
algorithm, the ALN user specifies the number of layers, the logical function to use in
the topmost layer, and the fan-in of the network. Fan-in refers to the number of
connections to each non-terminal node. For example, in Figure 3.8 the fan-in is 2 as
each non-terminal node has 2 nodes connected to it. The number of layers and the

fan-in control the number of linear pieces used in modelling the function.

Because of randomness built into the network, it is not possible to determine *he exact
number of linear pieces that will develop, but an order of magnitude can be
ascertained. This is a limitation of the current beta version being used and will be fixed
in the final release version of the software. The reader is referred to the references for

further details on the actual structure and operation of the network



Once the basic structure of the ALN is built, the modeler can input the existing
knowledge of the process. This knowledge takes the foitn of two types of data:

monotonicity and slope.

Inputs can be morotonic increasing, monotonic decreasing, or free. Monotonic
increasing means that the output variable always increases when the .nput increases. If
the output of a process is known to be monotonically increasing with some specific
input, then .o« . should always provide an increase 1. the output when presented

with an increz-: . - sput

By speciiying =i the input is monotonic increasing, the ALN will ensure that no
planar segment is developed with a negative slope. A positive (or zero) slope will be
enforced, even if the input data indicates a negative slope is required in some region.
Usually this aids in smoothing small perturbations in the input data. However, it also

can uncover inconsistencies in the input data.

Similar to the monotonicity, the maximum slope of a relationship can be specified.

This helps reject noise or other inconsistencies in the input data.

3.3.3 ALN model of Basis Weight Valve Position

To help understand the operation of an ALN and to compare its performance to that
of regression analysis and neural networks, an ALN was developed to model the basis

weight problem discussed earlier in the chapter. The data used is the same as
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discussed in section 3.2.1 . The model was built using basis weight valve position and

throughput data wk-~ "' consistency was 3.2%.

Figures 3.9 and 3.10 sl :he results of the models.
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Figure 3.9: ALN Model of Machine Rate

The first figure shows the comparison of actual measurements to that predicted by an
ALN comprising 4 layers with a fan-in of 2. The topmost node has an OR function.
This configuration should provide 2*"=8 linear segments which is much larger than
required. Because we knew what the curve looked like, (from the neural network

study) it was determined that three linear segments would be sufficient to model this
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problem. The above configuration was the smalle.. configuratic n th  provided an

acceptabie model

It was discovered thai this was a bug in the beta software which will be uxed in the
release version. Typicall , if the user can deteruine now many linear segments are
required then he ALN is constructed to provide that. If the modeler cannot determine

the number of segments needed, then a sufficiently large “umber is used.

The second figure shows the comparison of actual measurements versus that predicted
by a neural network with 2 hidden layers of 3 nodes each using the extended delta bar

deita learning rule.
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Figure 3.10: Neural Network Model of Machine Rate
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As can be seen, both methods give good results. Both models took about the same
time to train (about 1 minute from 100 data points). It should be possible to compare
the two models quantitatively by comparing the RMS. error of each model.
Unfortunately, the beta version of the ALN software does not provide this value. This
was another recommendation from this project that will be implemen’cu in the (inal

production version. From a use standpoint, both methods were sin. .1

The major difference was the use of a priori knowledge and the - .iysir —ossibic w'th
the ALN. The neural network provides an excellent prediction «. throughput based on
basis weight valve position. However, there is little capabiiity to extract a simple
mathematical relationship from the neural networks complex model. The ALN model
also provides an excellent simulation of the process, and the linear approach can be
clearly seen. The neural network shows a sigmoidal type relationship, whereas the
ALN provides basically two linear segments to model most of the operating range.
The ALN clearly shows a break point in the relationship at a valve position of about

53.4. This break point is difficult to determine with the neural network.

In using the ALN, the concept of the Simplest Accurate Model (SAM) was employed
(i.e. what is the simplest model that emulates the process with a desired accuracy).

Because of the complexity of neural networks, SAM has no meaning when using them.

The ALN model was used to determine the fit using 1, 2, 3, and even more linear

segments. For the basis weight st:dy, the 2 segment model was the simplest accurate
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model. Because of the simplicity of the model, it can be very easily implemented in a
process control situation. Not only will the implementation be easy, but the draw on
computing resources will be minimal. Where the neural network will require 17
multiplication and 16 addition operations, the linear model requires 1 logical test, 1
multiplication, and 1 addition. In other words, the linear model should be over 15
times faster than the neural network implementation. This speed difference is
important in situations where very quick response is required or where there are
significant numbers of models employed. An example of an ALN that uses this high
speed capability is in active suspensions for military vehicles traversing rough open

terrain.

In summary, neural networks and ALN's provide powerful tools for modelling
complex processes. ALN's have an advantage where a priori knowledge exists, fast
response is required or further analysis of the model is desired. Where these
requirements do not exist, either method is adequate. Neural networks are particularly
good where noisy systems or highly dynamic processes must be modelled. No matter
which method is chosen, daia preparation and model evaluatior - important steps in
building an acceptable model. A comparison of each of the three techniques is shown

in Table 3.3



Simple Many Can use a | must use a
Variables | prioni prion
knowledge | knowledge
Regression Yes No Yes Yes
Neural Networks No Yes No No
Adaptive Logic Networks Yes Yes Yes No

Table 3.3: Comparison of Modelling Techniques
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3.4 Summary of Modelling with Network Models

Whether trying te find the best fit for a straight line through a two-dimensional set of
pomts, or mapping a complex surface to a multi-dimensional data set, regression
analysis has long been the mainstay of the process engineer. This is even truer today
when computers have eliminated most of the drudgery from the process. Although
suited to any mathematical form, regression is most commonly used to fit straight lines

to nearly linear data sets.

Linear models form the most common model in industry. The ubiquitous PID
controller provides a linear relationship between the dependent and independent
variables. When non-linearities in the process cannot be ignored, the simple expedient
of gain scheduling is often employed. This is simply an extension of the linear
approach (i.e., assume that the modelled function is made up of two or more linear

pieces).

Why are linear approximations popular? Certainly, from an historical perspective,
previous generations of modelers did not have the computing capacity required to
develop and implement large numbers of non-linear models. Two reasons for the
continued popularity of linear models are that by design they are easier to understand
than non-linear models, and they typically provide adequate accuracy. It has only been
recently that the influx of modern computer power has made these restrictions
obsolete and non-linear modelling methods are beginning to find acceptance in the

modelling community. The indication of this acceptance is evidenced in the increased

97



implementation of neural network based models. Neural networks are now a major

field, not only for the academics, but for the modelling community.

The Backpropagation Network (BPN) is the most common type of neural network
used in modelling. It has the advantage of being relatively easy to program, simple to
use, and can achieve a good fit to a known data set. Naturally, if this data set is an
accurate representation of some larger data set, then the network will provide a
satisfactory model of that data set as well. Although this point seems obvious and

hardly worth stating, ignoring it is one of the major stumbling blocks of neural

networks.

This real problem is one created by the exuberance of the neural network community.
Several papers have described neural networks that are able to extrapolate or
interpolate into areas for which there is little or no training data. In other words, they
have contradicted the above "obvious" comment. Unfortunately, these examples are
often interpreted by inexperienced modelers to imply that all neural networks can

interpolate or extrapolate with similar accuracy.

The examples of good interpolation and extrapolation with neural networks are due to
fortuitous circumstance as opposed to any systemic capability. The only systemic
impact is that, because neural networks are much more powerful than traditional
methods, they are capable of generating a wide range of results in areas where there

are no traini.,, points. In some cases, the output is what is desired. However, it just

as easily can be an undesired result. The training mechanisms provide no guidance to




the network where there is a scarcity of training data. it has been shown that even
well trained neural networks can generate a very large (and erroneous) change in

output when interpolating between two inputs.

One of the advantages of a linear regression model (or even a non-linear regression
model) is that the modeler is usually aware of the limitations of the model. The fit of
the model output to actual data is closely scrutinized. This scrutiny is possible because

the complexity of problem that can be solved by regression is usually restricted.

Neural networks, on the other hand, can model very complex processes. Visualizing a
best straight line or parabola to a set of points is easy compared to visualizing a 10-
dimensional hyperplane. Usually, the model~~ can "see” how well a regression model
simulates the measured data while they often have little idea of what the neural
network output looks like. Typically, all the neuromodeler has is a measure of total

RMS. error.

Another criticism of neural networks is their "black box" methodology. Regression
models take the approach of finding the simplest mathematical model that can fit a set
of known data points. Neural networks, on the other hand, take the opposite
approach. They provide an extremely complex mathematical model and fit it to the
data points. Once again, it is easy to understand the regression model that comprises a
few linear or quadratic terms. A simple neural network will have over a hundred

exponential terms and is impossible to decipher directly.



The greatest difficulty with neural networks is their inability to make use of a prion
knowledge. In other words, not only do they allow users that have no understanding
of the underlying process to build models that appear satisfactory, but, if some
knowledge of the process exists, there is no methed t': incorporate this knowledge into
the model. If the modeler has no knowledge of the process, this is of little concern.

However, if the knowledge exists, it is a very frustrating limitation.

So, the question is, if neural networks cannot use a priori knowledge, provide very
complex models, and are black boxes, why are they so popular? The reason is that
when treated with the proper care, they are very powerful. Neural networks fill a
niche in the modelling world between the simple regression models and the more
sophisticated models. They are able to deal with large data sets with correlated

variables and large dimensionality.

Another reason is that up to now, there have been no bettcr techniques to share that
niche with neural networks. Recent developments in adaptive logic networks have
positioned them to take a more dominant role in modelling. ALNs have all the

adwvantages of neural networks while remaining simple, fast, and deterministic.

In this chapter it has been shown that advanced modelling techniques are extensions of
traditional techniques. These extensions allow added capability that is needed when
building empirical models of real chemical processes. A simple example, the basis
weight valve position, was used to highlight the modelling approach used by each

technique. This example was chosen because it was a real problem, but simple enough
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that process complexities would not hamper the illustrative nature of the uxample.

The use of the model in the mill environr.ent was of secondary importance.

The tensile problem, on the other hand, is neither easy to model nor does it lend itself
to illustrating different approaches between modern and traditional techniques. For
twenty years, experts in modelling have attempted to model this problem and using
standard approaches have failed. The ability to provide a working model with neural
networks shows the capability of these types of models to succeed hers other

methods fail.

ALNS are another new technique that hold great promise. The technique is SO new
that the example in this thesis was built using 2 beta version of the software. Further
developments in the next several years likely will result in this becoming a key

modelling tool for many engineers.

Besides showing that these new artificial intelligence based models are very useful to
the pulp industry, this chapter has shown that the underlying mathematics of these
approaches is sound. With the advent of powerful computers it has become too easy
for people to accept with blind faith that any output from a commercial computer
program must be correct. People with little understanding of what these packages are

meant to do often misuse them. In the end, Leonardo da Vinci says it best:

Those who ... practice without knowledge are like the sailor who gets
into a ship without rudder or compass and who never can be certain
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whither he is going. Practice must always be founded on sound theory
... without this nothing can be done well**.

% 4a Vinci, Leonardo, The Notebooks of Leonardo da Vinci, Jean Paul Richter (Editor), The General
Publishing Company, Ltd. Toronto, 1970, Volume I p. 18
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Chapter 4

Organizational Aspects of Implementing Advanced

Technologies

4.0 Overview

As can be seen from the foregoing, using advanced technology is a practical way to
solve many problems in today’s pulp mill environment. However, providing the
technology is only one piece of the puzzle. To operate and manage a large chemical
plant requires the proper delivery of the technologies used by the plant effectively.
Proper delivery of technology is a broad subject and cannot be covered in depth here.
However, any discussion of the applications of advanced technology is incomplete

without a review of these issues.
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In this context, delivery encompasses a much broader definition than simply “giving”

the results of some development to the organization. Delive -y includes:

the ongoing development of the delivering organization.

¢ integration of the technology with the needs of the customer.

e education systems to keep non-technical people abreast of the capability of the
technology to solve important problems.

e systems to ensure that the technology is contributing to bottom line results, both in

the long term and the short term.

The proper delivery or implementation of technology is difficult. This is especially so
with technologies such as Al (expert systems, r>ural nets and ALNs) that are new and
not well understood by the organization. The challenge is to build acceptance both at
the individual level and the organizational level. Industry has experienced some key

learnings in those areas over the past several years.
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4.1 New technologies in the Control Room

Al once only a topic of discussion in the halls of academia, is now being put to
practical use in the control rooms of industry. The implementation process for this and
other new technologies has not been without its difficulties. The purpose of this
portion of the thesis is to review some of the key learnings that we have gained over
several years of implementing small advisory systems in the Grande Prairie plant.
Similar considerations apply to other computer technologies as well. The ability to
implement these technologies is founded on a clear understanding of where to apply
the technology (in this case, advisory or expert systems); understanding of the barriers

to acceptance at the operator level; and awareness of prereguisites for success.

4.1.1 Problems Where Advisory Systems Shine

To receive acceptance, advisory (or expert) systems must be applied to the proper
types of problems. Generally such problems are those that no two operators would

typically solve the same way. Five types of problems in this category are:

¢ Complex problems with more data than can be easily assimilated by one person.

Problems that are not easily discernible until too late to take effective action.

Problems that occur infrequently.

Problems for which solutions are non-intuitive.

Problems where there is a lack of knowledge or training in the operator community
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Complex problems with more data than can be easily assimilated by one person.

These types of problems require th~ analysis of large amounts of data and this is
rapidly becomirg the most frequen. ..se of advisory systems due to the impact of
distributed control systems (DCS). The DCS has allowed a significant decrease in the
operator to control loop ratio. Although the typical control room of today has banks
of screens showing details of the plant's operation for cach operator, there is much
more data to be monitored than can be displayed at one time. Alternate tracking
methods are used for those process variables that cannot be continuously monitored by
the operator. The most common method (and a very rudimentary advisory system) is

to install alarms that alert the operator when predefined process conditions occur.

Many operations find that simple alarming is of limited use as the process variables go
into alarm condition too often, either because many variables go into alarm during a
single upset, variables vary around a trigger point setting off the alarm regularly, or
because a variable's alarm state is determined by other variables in the process. As a
result, operators often turn off or ignore the alarms, with the risk of missing an alarm
that requires response. Smart alarming is required and in many cases artificial

intelligence is the ideal solution.
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Problems that are not easily discernible until too late to take effective action.

Many processes exhibit non-linear behaviour - that is, if a problem is detected early, it
can be easily fixed. But, if the problem is not noticed in time, it becomes difficult or
impossible to fix. To make matters worse, these types of problems are often complex
problems as well. Operators often require significant amounts of data to recognize a
problem, especially in the early s.. es. In these cases an on-line expert system can

monitor the significant variables, and alert an operator in the early stages of an upset.

In the Grande Prairie plant, digester level control was a problem of this type. The level
sensor provided reliable data most of the time. Often, however, it would provide a
false indication of level. Only by looking at several other variables could one determine
if the reading was valid. In this situation responding quickly to an impending level
upset was trivial, while if the upset became large enough, it could take days to
properly line out the process again. We used an expert system to monitor all of the

variables on-line to provide a more reliable level indication than the level sensor alone.

Problems that occur infrequently

In these situations, the appropriate response is generally well understood, but because
of the long time between occurrences, the operators often need to relearn the
response. Traditionally they "go to the manual" . However, on-line systems - in the

form of expert systems or hypertext documents - are becoming more popular.
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Occasionally, an infrequent problem has many of the same symptoms as a frequent
problem. Here an advisory system can be used to quickly identify the real problem

without the human prejudice of expecting the problem to be the frequent one.

Problems for which solutions are non-intuitive

There are many examples in industry where the correct response to a process change is
not obvious to a casual observer. Many years of experience are needed for an operator
to learn these types of processes as they are complex, use large amounts of data or just

respond contrary to what one would expeci.

Problems where there is a lack of knowledge of training in the operator

community

The last example is most common in areas that are experiencing high levels of turnover
or where processes are extremely complex. Here the operator is not fully conversant
with the proper response to the process and must consult others. In these cases, an on-
line tool is useful in providing assistance. This also encompasses the occasions when
the resident expert retires or quits. When this occurs, an expert system that has

captured the knowledge can be a valuable tool while that expertise is redeveloped.
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4.1.2 Barriers to Acceptance

Once an appropriate project is identified, there are some potential barriers to
acceptance by the operating community that must be addressed. Five potential barriers

are:

Fear of losing jobs.

Fear of leading edge technology.

Fear of computers.

Fear of reduced stature for experts.

Lack of visible results.

If worked properly and in a timely manner, most of these barriers can be avoided. If
they are ignored or considered too late, these barriers can destroy an otherwise good

application.

Fear of losing jobs.

The fear of layoffs caused by technology upgrades is real. In our plant, although

implementing new technology has resulted in a reduced work force, we have reduced
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at a pace that matches attrition, so there have been no layoffs. Even with this record,

we need to address job security each time a new technology installation occurs.

Fear of leading edge technology

Although artificial intelligence has existed in academia for many years, it is still a
relative newcomer on the industrial scene. Justifying an artificial int~lligence
application is still much more difficult than justifying a new pump. A pump is a well
understood technology while artificial intelligence is still a new concept in many
industries. At our plant we have made a concerted effort to educate everyone .10
especially plant leadership) on the benefits of the technologies that we usc. by
educating proactiely we find fewer issues to deal with when we implement a new

project.

Fear of computers

This fear is mostly in the computer illiterate operators. For these operators we have a
training program in basic computer operation. The key to this has been the
development of such simple applications as a basic messaging system or systems that
help them manage their personal work affairs, such as vacation or shift schedules . By
increasing their use of computers for general items, they more easily adapt to more

complex process and business computer systems.
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Lack of visible results

Many advisory systems provide business benefit by avoiding or speeding up the
resolution of problems. In these cases the benefit is not what you see, but what you
don't see: long downtimes, poor quality, and so forth. In these cases careful
documentation is required to show the before and afer results. Otherwise, it may

appear that the new technology has not done anything.

Fear of reduced stature for experts

For many experts, much of the prestige of their jobs comes from being called on to
help others. Placing their knowledge into a computer can reduce their feelings of self
worth and may cause problems in the future. It is important to help them understand
how capturing their knowledge on a computer is beneficial to them. In our plant we
had one expert on chemical addition that was regularly called for his advice. He was
very proud of this role and it was not until he realized how many of the calls were
occurring at 2-3 o'c'nck in the momning that he asked us to build an application that

captured his knowledge (and let him get a full night's sleep!).
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4.1.3 Prerequisites for Success

There are several prerequisites for a successful application. An advisory system must:

e Solve a "real" problem.

¢ Provide an agreed upon solution.

e Be easy to use with a familiar format.
e Give the correct results.

e Be significantly better than existing systems.

Solve a real problem

Typically we have found that operators will not waste their time using a system that
does not benefit them. Although this may seem obvious, we have relearned it on
several occasions. The most typical example is when a manager comes up with what
they think is a great idea and requests an advisory system be built. In some cases the
operators have not been properly consulted and when the solution is implemented we
find that they don't believe it adds benefit, and the "great idea" sits unused. Before
building an application, it is important that the end user understands and agrees to its
purpose. If the end user is not the originator of the request, then the originator must

also understand the need for user acceptance.
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Provide an agreed upon solution

By their very nature, advisory systems tend to provide standardized solutions. All
users must concur that the advice provided by the system is the proper advice. If a
group of 10 operators cach use a different operating strategy, then an advisory system

that provi-es one of those strategies as its advice will only be used by one operator.

The advisory system can rarely be used to enforce a standard solution. The operators
must accept the standard solution before the advisory system can be effectively used.
If there is contention about the correct operating strategy then thi~ needs to be

resolved before the complexity of a computer system is added to the problem.

Easy tc use with a familiar format

For many operators the concept of advisory systems is new. If the system also has a
new and strange interface, its use will be limited. The user interface must be as

consistent as possible with the existing tools that the operators use.

Give the correct results

This again seems fairly obvious, but it is surprising how many applications are
developed that do not provide complete accuracy. I'or a human expert, occasional

errors are a sign of being human. Computers do not have the advantage of being
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human. Any errors in any piece of advice are an ‘- Jication to the operator that the
entire system is flawed. Either the system must provide completely accurate advice or
the limitations of the system must be well understood and accepted by the operators.
One of the methods we have used is to enrol the operators in the venfication of the
advisory system. As new learnings are made or errors are encountered, the operators
incorporate the new information into the system. This not only improves the system
but it also keeps the operators as part of the development loop and keeps them from

becoming too reliant on the computer system.

Better than existing systems

If the existing system to get advice (e.g. ask another operator) is satisfactory, then no
new system will be successful. Advisory systems need to be easier, quicker and/or

more accurate than existing methods.

4.1.4 Summary

New technologies (such as advisory systems) are quickly gaining more acceptance in
industry to solve a variety of problems. Process information managers can assist in
this process when developing such technologies by following a few basic rules: focus

on the needs of the users and apply the correct technology, ensure operators are
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involved in the identification of problems to be solved and the development of the

system to solve them; and, ensure that users are satisfied with the solutions that the

system will provide.
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4.2 Technology Delivery at the Organizational Level

Successful implementation of new technologies on an application by application basis
alone is not sufficient to ensure effectiveness on an organizational level. This requires
a much more systemic approach to the seiection and deployment issues. A business
that produces a product or provides a service uses many different technologies in
pursuit of its objectives. These technologies can include financial systems, human
resource technologies, computer technologies (both mainframe and PC) and cthers.
How these "support" technologies are delivered can be critical to the success of an
enterprise. Clearly a business that has control of all technologies used in its process,
has a much better chance of survival thar one that does not. This portion of the thesis
will describe one method for ensuring that technologies support the business objectives

and continue to add value.

What is a Technology?

The dictionary defines technology as the "science of industrial and mechanical arts"?.

This is certainly an all encompassing description, and one that is satisfactory for our
purposes. Often, technology is narrowly defined so as to include only those things that
have some associated hardware, such as computer technology. When discussing
support requirements, this narrow definition minimizes the needs of the "soft"

technologies such as human resourcing, financial analysis, etc. Conceptually, there is

» The Penguin Concise English Dictionary, Revised Edition, 1969, p. 744
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little difference between a "hard" technology and a "soft" technology and the
techniques discussed here do not just explain how to organize a computer department,

but can be applied to almost any business endeavour.

What is the problem?

Why should business be concerned about the proper implementation of technology?
The proper implementation of technology is key to the success of a business.
Although there are examples of businesses that are successful without a systematic
support plan for technology, there are many more examples of businesses that fail due
to lack of adequate support systems. With proper organization and direction, those
technologies that support improved profitability can be nurtured to contnbute the
optimum amount. Equally important, those that do not contribute fully, can be

eliminated or contracted out, reducing costs to the organization.

In many plants today, a wide range in quality of technology implementations exist.
Typically there will be several implementations of different technologies that cover the

spectrum of too little, too much, and just the right amount of support structure.

For example, in our plant, we have people that are unable to adequately use the
interoffice electronic mail system. This results in increased costs as paper systems
(mail runners, typists, etc.) must continue to be supported in addition to the electronic
system. Therefore two systems are being supported (with a real cost) where one

would suffice if it were properly implemented. At the other end of the spectrum, we
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have a person who used to write their own editors for their PC. Not that there was a
real deficiency with the standard editor, but rather, programming is something this
person enjoys doing, so he wrote his own packages, editors, spreadsheets, etc. Here
we have effort being spent developing technology that does not move the business
forward. Finally, there are technology implementations that, with minimal support,
have greatly contributed to business results for over a decade. All three examples of
technology implementation have their associated costs, but each delivers radically

different results to the organization.

What does business need

How can a business ensure that all the technology being used is contributing
adequately and is not under or over implemented? The answer is, plan for the future
and evaluate the present. As in everything else, if the objective is well understood and
communicated, then the chances of success are increased dramatically. Continual
evaluation of progress against the objectives will almost always guarantee a successful

and durable implementation (as well as timely elimination).

Another question that business is often faced with is what to contract out to third
parties and what to keep as part of the core organization. If the technology objectives
are well understood, then the decision is easily made. When the objective is not well

understood, incorrect decisions often result. To help develop objectives and
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evaluations a model of the ideal technology implementation was developed. This

model is called the Technology Delivery Model or alternatively the VALUE model.

4.2.1 The VALUE Model

The VALUE model was the result of several managers at the Procter & Gamble (now
Weyerhaeuser) Grande Prairie Pulp Mill trying to understand why some technology
installations were very successful, while other applications were implemented,
contributed at a high level for six months, and then their contribution dropped off
while they continued to draw heavily on the organization’s resources (in the form of
support and maintenance). The successful implementations were examined and two
common features were discovered. Further investigation revealed that these same
features were missing from those technologies that were poorly implemented. The
two features were the existence of well understood objectives, and monitoring or

feedback mechanisms.

A technically competent support staff was found to be common to both types of
implementation so it was determined that this was important to success, but it did not
preclude misuse of the technology. An assumption had been that technically
competent support staff led to overuse of the technology (the editor programmer) but
our research showed that if the objectives were understood, communicated and

monitored, there was little chance of inappropriate use of technology. We were also
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able to determine that without quality technical input, objectives were likely to be

poorly developed.

The two features - objectives and monitoring - were further broken down into four
tasks. Setting objectives was split into the tasks of Visioning, Applying, and Learning.
Monitoring was found to be better described by Enabling as the task was more
encompassing than just checking whether objectives were being met. Finally a fifth
task was added as it was found that in the successful implementations, the support
group rarely used the technology directly, but rather supported various users in the
plant. Therefore, in order to make the model complete, a Utilization step was added.

These five terms:

Visioning
Applying
Learning
Utilization

Enabling

classify the tasks necessary to siccessfully implement a technology. In practice, each
task class is executed iteritively and concurrently, so there is no logic to the order

(other than its value as an acronym).
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The Objective

Visioning, Applying, and Learning are the processes used to develop and communicate
a clear objective with and to the organization. The objective is described in terms of
what decisions the users make and how the technology is used to help them
accomplish that. If the organization has a human resource or work system plan then

that is usually a key part or influence on the technology vision.

Visioning

The knowledge gained in the learning phase (described below) is used to develop a
vision of how the technology benefits the business. This vision is not described in
terms of the technology itself, but in terms of what the users are doing and the results

they achieve. What is achieved is of p.ime importance, how it is done is secondary.

One successful vision (for our process information system) was written in the form of
a trip report describing the plant five years in the future. The trip report described
how the operators interacted with each other, for which decisions they were
responsible, and how they made these decisions. Attached to this was a brief outline

of what technologies were required to fulfil this vision.

Typically the vision is built with substantial discussion between the support groups and
the customers. Once a preliminary vision is developed it is shared throughout the

organization for feedback and modified as required before it is implemented.
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Application

Once the vision is developed and understood, projects may be initiated to turn the
vision into reality. More often however, the vision is used as a guide when
implementing projects justified by other means. For example, only 1 project was
initiated as a result of the previously mentioned information system vision. However,
when one of the computers needed to be replaced due to high maintenance costs, the
vision was used to determine which replacement option would be consistent with
future needs. This highlights another key feature of the vision, it is a living document

that sets direction as opposed to a project implementation timeline.

Learning

For each successful technology, one or more people understood what the state of the
art technotoey was and what its capabilities were. Rarely was the state of the art
implevented.  But, there was a good understanding of what was possible. This
‘cwowiedpe v aiked through reading literature, attending selected conferences, and

talking to pecrs .. other industries and sectors.

The techaci: .ists alsc h»1 a very good understanding of what their customers
required. e oust =+ sapplier relationship between the technologist and customer

was more of 2 parinershig *han customer/supplier interface. For example, in the four
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person real time information system team, 2 people had transferred to the group after
extensive expericnce in operations, one transferred from maintenance, and only the
department head had formal computer science training. Successful technology groups
do not jus. rely on customer input, but have developed an in-depth understanding of
the cust:-mer's business, either through previous experience, rotational assignments, or

othrz methods.

Utilization

Utilization is the actual task of using the technology. In an information system, it
would describe all of the applications that a user sees, decisions that the user makes,
training that the user requires, and so on. This can be a very detailed document and
can be integrated into other programs, such as defining the skills required for
promotion. Routine reporting of benefits derived from using the technology can also

be generated in this phase.

This is often the most visible part of a technology, and in poorly implemented
technologies, this is the only part. Utilization can consume vast resources and,
without the other parts of the model, there is little chance of the utilization
contributing effectively to business results. Unfortunately, the vast resources
consumed by utilization are often hidden as the users ofter: have other responsibilities.

Two hundred operators who use an information system 10% of the time represent
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twenty dedicated people. This is never as noticeable as the 4 support personnel

dedicated to the system (and usually located in 2 very visible location).

Enabling

The last phase is comparing the current contribution of the technology to the
objectives. If outages are detected then corrective measures are initiated. This can
range from the use of training programs to the modification of the objectives to
deciding to abandon the technology altogether. The results of this comparison are
broadly shared with the organization. This achieves two objectives. First it maintains
the organization's focus on the objectives for the technology. Second, it highlights

how valuable (hopefully) the technology is to business success.

4.2.2 Application Examples

This model has been successfully applie- : - several technologies. The two best

examples are the plant's real time information system and control engineering system.

Real time information system

The plant's real time information system was implemented in 1982 with very clear and

well communicated objectives. Over the years the objectives and benefits of this
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technology have been shared with the organization every 6 to 12 months. Since 1982

many changes have occurred in the objectives.

In 1982, the information system's objective was to provide real time information to its
primary customer - the operator. As Distributed Control Systems (DCS) were
implemented, the objective of the information system moved to an historical focus with

the primary customer now being the process engineer. By maintaining a continual

emphasis on th _ctive of the technology (even though it was changing), the change
to the current re. - evolutionary. Without continual monitoring, it is very
likely that the real - mation system would have remained unch:17ed until it

was discovered at some late date that it was obsolete and not being used. Through all
these changes the technology has continued to contribute to business results, as shown

by the records of the annual assessments.

Control Engineering

As the DCS was implemented in the plant it was felt that there was a need for
engineers who could leverage this new technology to provide better quality pulp at a
reduced cost. A vision was developed with the focus on what decisions people needed
to make. This vision clearly laid out the objectives of the technology. Based on these
objectives, it was determined that contracting out the control engineering role was
inappropriate. Two new control engineers were hired and systems set up to support

them. Again, as that group has evolved, the objectives have changed, but because the
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evolution has been managed, there is no question about value of the team to the plant

objectives

Contractors

Often the question of whether to contract out parts of the business arises. In many
cases this is a verv good strategy. A first decision point is to determine if your
organization has the skills and desire to manage the technology using the VALUE
model. If utilization is all that can be supported, then contracting out to an
organization that can provide the visioning and evaluation systems is appropriate.
Clearly the need is to find a third party that has the capability to support all steps of

the VALUE model and not just the utilization aspect.

If the business has the skills to support the VALUE model, the next test is whether the
technology is critical to business results. For example, most businesses need computer
systems, but for many industrial plants, this technology is not considered critical to the
core business. The same busincss might decide that process engineering is more
critical in the development of a proprietary competitive advantage. In this example,
computer systems would be open to outsourcing, while process engineering would

not.
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in some cases, how a technology is implemented can determine whether to outsource.
In our real time information system, the strong operation background of the support

team cannot be replicated by a third party.

4.3 Summary

Technologies can have a major influence on whether a business succeeds or fails. A
well managed business requires that all its parts be well managed as well. This means
well thought out and communicated objectives, and continual evaluation of progress
against objectives. A clear vision that is a living document is a key method to share
objectives and set business direction. The VALUE model has been found to be an

excellent tool for ensuring this occurs.

When these elements exist at the organizational level the support organizations are
able to develop into cohesive groups that can truly impact the bottom line. This
impact will be a long term effect rather than a short term gain that is usually seen in

organizations that do not foser this type of development.

Although organizational support is important, the individuals and teams implementing
applications must also use some methodology to ensure success of their applications.
Following the guidelines outlined in section 4.1 has proven crucial to implementing

successful applications at the Grande Prairie pulp mill.
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By maintaining a focus on success at both the organizational level and the team level, a

business can successfully utilize technology to achieve its corporate goals.
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Chapter 5

Conclusions

Increased global competition, increased environmental awareness, improved
technology to measure environmental impact and an increase in cost of the forest
resources have created a need for improved tools to operate the increasing complex
pulp and paper plants of Canada. Artificial intelligence provides some of these tools.
This thesis reviewed several applications of artificial intelligence to pulp mill
operations. These examples illustrate a variety of problems that can be addressed with

artificial intelligence, problems that could not be solved using traditional methods.

The first application discussed involved the use of an expert system to aid customer
service representatives in determining safety inventory levels and inventory
replenishment plans. It was determined that basic control theory could be applied to
this problem. This is a marked departure from the accepted approach currently used

by the industry.

The second chapter of the paper dealt with the development of models to analyze plant
operation. Three approaches to modelling were investigated, parametric models
(regression analysis), neural network models and adaptive logic models. The two
examples show how Al baséd networking techniques can overcome problems that

traditional modelling was incapable of solving.
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The final chapter consisted of two papers that dealt with the issue of how to integrate
the use of advanced technology into the manufacturing organizations they support.
The major issues addressed were how to get the required organizational resources to
develop and maintain the systems, and how to ensure the systems are used effectively

and remain healthy contributors to the bottom line over the years.

The paper looked at three examples, illustrated their development, described how they
solve real industrial problems and then talked about the organizational and human
factor issues that need to be addressed when implementing these types of projects in a

plant.

Future Research

Areas for future research include:

e research into the application of modern control theory to inventory management.
e research into the relationship between problem complexity and network topology.
e research into the application of Adaptive Logic Networks to chemical processes.

e research into the impact of processing parameters on pulp strength

These areas of research would provide important contributions to the study of the

application of artificial intelligence to the pulp and paper industry.
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