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Thus, far from being an exercise in reason, a convincing
certification of truth, or a device for enhancing the understanding, a
proof in a textbook on advanced topics is often a stylized minuet
which the author dances with his readers to achieve certain social
ends. What begins as reason soon becomes aesthetics and winds up

as anaesthetics.

—Philip J. Davis
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ABSTRACT

Mathematics education is essential, both in helping students to function in a
Rationalist world, and in assisting them in making that world a better place. The
deductive reasoning which typifies mathematical proving is the basis for
Rationalism, and so is important in the achievement of both of these goals. At
present, however, the teaching of proving is largely unsuccessful. This lack of
success seems to be related to an incompatibility between the picture of proving
portrayed in schools, and the role of deductive reasoning in professional
mathematics and in students’ lives. The research reported here is concerned with
developing a better understanding of students’ need 1o prove, with the aim of
identifying aspects of teaching which might be improved.

The research studies involved the observation and interviewing of high
school and undergraduate univerzity students as they investigated problem solving
situations. Their mathematical activity is described using a vocabulary developed
during the research that identifies (1) needs which motivale reasoning, (2) types of
reasoning, and (3) degrees of formulation of proving and of proofs. Categories of
needs include explanation, exploration, and verification. Reasoning can be
inductive, deductive, or analogical. Proving can be unformulated, formulated,

mechanical, or formulaic. Proofs can be preformal, or semi-formal.

Three main observations are derived from the research studies: (1) The
participants were able to reason deductively, and, with help, to formulate their
proving. (2} Proving was applied primarily to exploration and explanation.
Venfication seemed to be a very poor motivation to prove. (3) The reasoning used
by the participants was influenced by the activities of those around them, both
¢’ servers and other participants,

These observations lead to two suggestions {or teaching: (1) The current
presentation of proving as deductive reasoning employed to verify statements
should be expanded to include the use of proving to explain and explore. (2) The
organization of class activities should accommodate the development of a “culture
of proving,” in which students feel that deduction is an appropriate way to reason
about mathematics.
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INTRODUCTION

Caminante, son tus huellas el camino, nada
mds®
— Antonio Machado

“The need to prove” has a double meaning for me. Both of its meanings
come into play in this dissertation. In the first half I concentrate on the need to
prove felt by students engaged in mathematical activity. In the second half I
consider the need to prove on a societal level. These two perspectives are linked by
a consideration of the teaching of proving, which must blend students’ needs and
society’s needs in order to be success{ul.

The relevance of my research to the field of mathematics education will be
addressed in the main body of the text. Here I would like to mention the relevance
of my research to me, and some of my personal assumptions that have motivated
me to conduct this research in the way [ have.

As a teacher and researcher in the psychology on mathematics education ¥
have become convinced that learning very much depends on students’ prior
knowledge, abilities, and beliefs; what is, in the language of constructivism** and
Enactivism, called their “structures,” Given this, the practice of teaching
mathematical reasoning as if it were unconnected to students’ prior experiences of
reasoning in other domains, and without considering students’ prior ability to
reason deductively, seems nonsensical to me. I feel that the way to teach students
to prove must lie between assuming they know nothing and teaching logic as rules
of procedure, and assuming they know everything and penalizing them when they
fail to apply their abilities to reason to the peculiar contexts of mathematics.

With this assumption in mind, the first step in improving the teaching of
proving must be the development of an understanding of how students reason in
mathematical situations so we know where to begin. Such an understanding cannot
be a general understanding of how all students reason. Students reason in quite
individual ways. What this understanding can and must be is a sense of the range
of possibilities in individuals’ reasoning, combined with some way of noticing and
talking about this reasoning. I believe my research is an important step toward this
understanding, combining what is already available in the mathematics education
literature with the results of my own empirical studies of proving.

A large part of my motivation to be a teacher is the conviction that schooling
can play a role in preparing students to survive and improve the world in which
they live. This conviction 15 also a motivation for my research. The adoption of
proving in mathematics as the model for correct thinking in all domains has been
seen as marking the beginning of the modern era, and is central to the Rationalist
attitude that continues to affect the way decisions are made in our society.
Meanwhile, the limitations of proving have come to be understood through work in
mathematics, analytic philosophy, and linguistics. It is in these fields, that depend
heavily on proving as their method of discovery, that the determination that proving

* Wanderer, the road is your {ootsteps, nothing else.

** Constructivism the theory of learning, not the philosophy of mathematics or the art
movement.



has limits first became possible. It is also in these fields that these limits have been
analyzed and understood. Teaching students to survive in a Rationalist world must
involve teaching proving, and helping them improve this world must involve
teaching proving well enough for the limits of proving to be seen and understood.

It is not only students who need to take responsibility for improving the
world. Educators and researchers must also engage in the continuous process of
considering how our methods arose, and what limits their origins have passed on to
them. Research in education has been strongly influenced by the Rationalist
attitude, and this influence, although weakening, continues. The particular limits of
proving as a model for research in education have been revealed in two ways.
Many researchers have noted that the predictive power of proving seems not to
apply in educational research, and that there are many aspects of education that
seem to be inexpressible in Rationalist terms. This is a partial understanding of the
limits of proving as a model for research, as it detects limits, but does not provide
any analysis of the origins of those limits. In some cases this has led researchers to
advocate a complete rejection of Rationalist methods in educational research. Other
researchers have come to an understanding of the limits of Rationalist methods by a
careful use of the methods themselves. This process is analogous to the processes
applied in mathematics to reveal the limits of proving. It has the advantage of
revealing not only the limits of Rationalist methods, but also the origins of these
limits. Limits which have not yet been detected can be predicted, and so areas in
which Rationalist methods can be reasonably applied can be identified. In my final
chapter I will describe a methodology for research in mathematics education that
comes out of such a self-reflective analysis of method.

In an earlier draft of this dissertation I structured my chapters and sections
as if they were part of a proof. My arguments were broken down into definitions
and lemmas, some of them quite involved, that led up to short sections with
ambitious titles in which I asserted my conclusions. These sections referred back to
the preceding chapters for the lemmas required to support their conclusions. This
format was singularly inappropriate to the message 1 am attempting to
communicate. In my final chapter you will find me asserting that research into the
thinking of human beings cannot be like proving, and so casting the results of such
research into the shape of a proof was not only a confusing act on my part, it was a
serious contradiction.

One of my indulgent readers pointed out this problem, and unlike many
people who point out problems, she also provided me with a solution. Of course I
must take responsibility for the success or failure of this attempt to implement her
idea. The restrictions of text and my own lack of creativity led to the linear form of
my writing. I admit that [ have written the sections with the lower page numbers as
the beginning, and have proceeded in the usual way through a middle, to an end. |
think it reads pretty well this way, but I will leave it to you to make the final
judgment. The structure ends up resembling my own progress in my research.
First I considered what I knew and had read about proving by students and by
professional mathematicians. Then I observed students proving, and noted what 1
felt was important in what they did. Next I considered how the proving of the
students I observed might relate to the teaching of proving, and to the role of
proving in society. Finally, I considered how the ideas of Enactivism informed and
were clarified by what I had leammed in my research. When I came to write about
what I had leamned there were inevitably things which needed to be written, but
which played supporting rather than central roles in my thinking. Such things have
been included in appendices.



I would like to emphasize that there is no reason to read from beginning
through middle to end. There is a degree of connection between the end and the
beginning, that lends a circular aspect to the whole work. While writing in my
mundane linear manner I have tried to make connections forward and backward, so
that an adventurous reader might start anywhere and read in either direction.

Before you decide how adventurous you would like to be, let me describe
the territory you will be exploring. In the following you will find me setting forth
some fundamental questions related to the need to prove, reporting the results of my
attempts to answer these questions, relating my results to the teaching of
mathematics, discussing the role of proving in society, and offering some ideas on
research and the need to prove.

In Chapter I the basic questions underlying my research are introduced.
They are “What is proving?” and “Why do people prove?”’ 1 take some preliminary
steps to answer the first question, suggesting that proving should include deductive
reasoning used for any purpose, in order to fit with the role of proving in
mathematics. [ also report further on proving in mathematics to address the
question “Why do mathematicians prove?” The chapter ends with a sketch of the
methods I used in my attempt to answer the question, “Why do students prove?”

In Chapter II, I turn to the question “Why do students prove?” and report
some results of the research studies | undertook in order to investigate students’
need to prove. This chapter 15 organized into several sections addressing specific
needs; explaining, exploring, venification, and teacher-games. A network of terms
is used to clarify the relationships between needs and proving.

In Chapter III, I use the language developed in Chapter I! to describe the
proving of two students who partictpated in one of my studies. This example
shows both the application of the language and also expands on the relationships
between terms.

In Chapter IV I report on circumstances that constrained the use of proving
in my research studies. These include individuals’ structures, social constraints,
and the problem situations in which the participants found themselves.

In Chapter V, I discuss the teaching of proving. This includes a
consideration of the importance of proving seen by curriculum designers, a critique
of current teaching practices, a description and critique of several innovative
experiments in teaching proving, my own speculations as to ways in which the
teaching of proving might be improved, and finally a reinterpretation of the need to
teach proving.

In Chapter VI, I tum to the role of proving in society, including the rise and
influence of Rationalism, some problems with Rationalism, and alternative modes
of thinking.

In my final chapter, Chapter VII, I describe Enactivism, as an extension of
Rationalism that acknowledges its limits. I show how Enactivism can be used to
provide a theoretic basis, and a methodology, for educational research into proving.
I conclude with a summary of my thoughts on proving, in education and in
research.



There are several appendices that provide details of my research that did not
fit into the structure of the main body of the text, but that some people might find
interesting. They include an annotated bibliography of research on teaching proof
(as opposed to teaching proving), details of the design of my research studies, and
several different summaries of my data.

As noted above, I have written the text in what I feel is the best way for it to
be read. If you prefer to read a more traditional dissertation, or a more deductive
argument of my points, Table 1 gives a concordance of the Chapter and sections
included here, in an order suitable for those two alternate readings.

Chr. Traditional Dissertation Deductive argument
Intro. Introduction, I-1, V-1 Introduction, V-1
I I-2, A VI
II B V-5, V-2,1-2, VII-2
I11 I1, I, IV B, VII-3, 11
v V-4, VII4 V-4, VII-4

Table 1: Alternate readings.

To clarify, a reader who wished to read a traditional dissertation should
begin by reading this introduction, the first section of Chapter I, and the first
section of Chapter: V. Taken together these sections cover much of what is usually
presented in the introduction to a dissertation. On the other hand, the first section
of Chapter I is not really needed for the deductive argument reading, and can be
omitted. :

Note that two sections that are usually found at the beginning of a
dissertation, a review of related literature and a description of the design of the
studies, have been relegated to appendices. The reasons for this move are given at
length at the end of Chapter I and at the beginning of Appendix A. Briefly, the
traditional exhaustive review of the literature has been rendered superfluous by the
introduction of electronic indexes to the literature, so I restrict the references I make
in the main text to those that are directly related to the topics under discussion. For
example, the extensive work of BalachefT on teaching students to create proofs is
not mentioned until Chapter V, when teaching proving is considered. The custom
of describing in detail the design of research studies is taken from the style of
reporting research used in the sciences, where reproducibility is an important issue.
The complexity of human reasoning makes reproducibility in detail impossible, so
in the main body of the text I limit my descriptions of my studies to what is needed
for understanding the results I report.

A note on transcripts and diagrams

In presenting excerpts from the words spoken and the writing of the
participants in my research studies I have attempted to balance clarity of
presentation with completeness. While I recognize that transcripts and writing
pulled out of context are already a long way from the situations in which they
occurred, I realize that some readers will wish to consider how the examples I give
might be interpreted differently, and I do not wish to discourage them. At the same
time, transcripts and reduced images of written work are more difficult to
understand than the original voices and full sized writings. I do not wish to make
my examples any more difficult to decipher than they need be. With this in mind I
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have made some editorial changes to the transcripts and diagrams included as
examples.

In the case of transcripts, [ have omitted many of the inevitable “hmrms,”
“uhs,” and other sounds that punctuate normal speech. Such omissions are marked
with ellipses {...). I have used two conventions in an effort to capture some of the
rhythm of spoken language in text. Utterances that were interrupted or left
unfinished are marked with a short dash (-) at the point of interruption. Long
pauses are marked with long dashes (—). Longer pauses are marked with several
long dashes. In a very few cases I have omitted several lines from transcripts
where they do not contribute directly to the point [ am attempting io illustrate. Such
omissions are noted in the analyses of the transcripts, and glosses of the omitted
matter are provided there.

The participants in the studies were quite careful not to use more paper than
absolutely necessary, which resulted in pages covered with writing, often
overlapping or oriented in strange directions. As it is impossible, and unhelpful, to
reproduce such pages at their actual size in the space defined by my margins, I have
either reduced them in size, or selected smaller areas of pages that are of particular
interest. I have also erased stray lines, figures, etc. that do not relate to my purpose
in providing the illustration. There are cases where my main interest is in the
content of the participants’ writings, and they do not include drawings. In such
cases ] have typed the participanis’ writings. Such passages are italicized.



CHAPTER I

PROOF AND PROVING

Prove all things; hold fast that which is good.
— [ Thessalonians 5, 21

This chapter explores two questions, by way of introducing the ideas I will
be considering as part of my larger exploration of the need to prove, The first of
the questions is, “What is proving?” The second is, “Why do people prove?” In
the two sections of this chapter I will only be able to begin trying to answer these
questions, but I do hope to clarify exactly what is being asked.

1. What is proving?

The simplest answer to this question might be “Proving is making a proof.”
This answer leaves us free to talk about proofs. Talking about proofs is easier than
talking about proving, just as talking about books is easier than talking about
writing. If my original question had been “What is a proof?” we could have begun
with a few examples. This is precisely the approach taken by the professor in a
vignette by Davis and Hersh (1981. p. 39), when asked “What is a mathematical
proof 7. There has been a great deal of research done in mathematics education on
proof, especially on teaching students to read and write proofs, and on their
difficulties in doing so. There has been very little research on proving, the
reasoning processes that the proof embodies. It is not that proving is uninteresting.
It is just that proofs are a lot easier to observe, to talk about, and to write about, 1f
I were researching proofs [ could show you the proofs that were produced in my
studies. Strictly speaking, I cannot show you proving (although I will be trying to
do so with transcripts of students’ proving).

Nevertheless, it is important that ] am researching proving. Rather than
saying “Proving is making a proof,” I would rather say “A proof is what results
from proving.” This emphasis on proving is a consequence of my belief that the
teaching of proving must begin with students’ existing reasoning processes, and
with an awareness of the circumstances in which they reason deductively. Inthe
next chapter it will become apparent how this emphasis affects my research.

So, what is proving? In Thessalonians, Paul the Apostle advised “Prove all
things.” Paul was not, so far as I know, an obsessed mathematician. His
suggestion simply means that we should investigate. “Prove” is derived from
probare, which means {0 test, to try. The verb “probe” still carries this meaning,
although it also conjures images of poking with sticks. The sense of probare is part
of what proving is: investigating. But proving is investigating in a certain way, and
to get at that aspect of what proving is, I will, after all, have to talk about proof.

In some common phrases, “proofread,” “proof of the pudding,” “100
proof,” the word “proof™ still holds onto the meaning of investigation, but there is
another common usage of proof. When we doubt a statement, we may ask, “Do
you have any proof of that?” In this question “proof” means evidence. Often the
evidence is expected to take the form of a deductive argument from some agreed
upon premises to the desired conclusion. This especially true in the sciences and in
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mathematics. This deductive aspect of proof indicates the way of investigating that
I call proving.

The contrast between everyday uses of the word “prove” and the more
precise meaning ! give it is illustrated by the expression “the exception which
proves the rule.” This expression is usually taken in the paradoxical sense of
asserting that the presence of a single counterexample to a generalization establishes
the universal truth of that generalization. “Prove” is taken to mean providing
evidence, without any reference to reasoning about the situation. This expression
was not always so paradoxical. In fact, if we remember that proving originally
referred to investigating a situation, saying “the exception proves the rules”
amounts to suggesting that examining exceptions closely, reasoning out the way
they occur, can lead to a clarification and improvement of the rule. Lakatos (1976)
elaborates this process in some detail, in his analysis of the ways in which
counterexamples and proving interact to improve theorems in mathematics.

In summary, proving, for me, is investigating using deductive reasoning.
Deductive reasoning refers to reasoning that proceeds from agreed upon premises to
conclusions, using logical arguments. I will not be using proving to mean
investigating in non-deductive ways, nor will I be restricting proving to reasoning
deductively to provide ¢vidence, I hope the reader will agree that this interpretation
of proving is useful, in light of the ideas it permits me to present in the following
chapters.

Although proving is a part of reasoning in many fields, I am particularly
concerned with proving in mathematics, and 50 it seems advisable to look at what
proving is in mathematics. As mathematics in schools is necessarily different from
what professional mathematicians do, I will briefly mention what proving is in
schools, both in the curriculum and in students’ own understandings, before
describing what proving is to mathematicians.

What Is proving in school mathematics?

In schools “prove” is often used loosely, as it is in everyday life. It can also
have a much more restricted meaning. The authors of Alberta’s curriculum
documents define “prove” in this way: “Prove: to substantiate the validity of an
operation, solution, formula or theorem in general and to provide logical arguments
for each step in the process” (Alberta Education, 1991, P- 5). This meaning of
proving is concerned with providing evidence, with substantiating validity. No
longer are the experimental techniques once used to “proof” rum appropriate.
Proving here is logical, deductive, certain, and general. In addition the stress has
shifted from the action of proving to the result, certain knowledge of the validity of
a statement.

Students often use “proving” to mean providing evidence, without
distinguishing how that evidence is obtained. This is startlingly illustrated by the
comments of students interviewed by Finlow-Bates (1994). Consider the
following exchange (K is Finlow-Bates, T is a university student):

K: And the examples, what are they there for?

T: Just to prove, prove the statement.

K: What does that mean, “they prove the statement™?
T: They prove, that means they make it true.
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K: So the ...
T (interrupting) under all conditions. (p. 348, emphasis in original)

For this student “provef’ means to make a statement true, and the inductive evidence
provided by examples is sufficient to do so. We will see other examples of this
association of “proof” with verifying in the next chapter.

t] vi rofessi at icians?

Proving is a means of coming to understand, and of coming to
know what understanding is. In trying to prove something new,
one is asking what makes it tick; in trying alternative proofs,
rejecting them, modifying them, one is discovering things about its
structure—-and solidifying one’s knowledge in the process. This is
the deep reason for much of the emphasis on proof in mathematics.
The mathematician comes to accept proving as a way (if not the
way) of thinking, a way of demanding and insuring that he does
indeed understand.  (Schoenfeld, 1982, p. 168, emphasis in
original)

Professional mathematicians prove as an integral part of their occupation.
Lakatos (1976) describes the process of mathematical discovery as a cycle of
conjecturing, making a proof, and testing with counterexamples. This process can
begin at any stage in the cycle. For example, a conjecture can be made for which a
proof is offered, and then a counterexample is found that forces a revision of the
conjecture or the proof, so a new conjecture or proof is made, and the cycle
continues. Alternately, proving could lead to a new result, so that the proof and the
conjecture arise together. The discovery of a counterexample then returns the cycle
to proving anew. While Lakatos does not consider beginning the cycle with a
counterexample, a cycle could begin there, as in the case of a counterexample to an
implicit generalization. An example is De Morgan’s discovery that the digit 7
occurs less often than one would expect in the decimal expansion of s, which
marks the origin of a cycle of proofs and refutations involving the degree of
randomness 1o be expected in 7.

AN X

Figure 1: Intersecting perpendiculars.

While conjecture, proofs, and counterexamples can all arise from proving,
proving is not the only way of investigating used by mathematicians. The
importance of analogical and inductive reasoning in mathematics has been described
at length by Polya (1968). Reasoning by analogy involves making a conjecture
based on similarities between two situations. For example, one might conjecture
that the perpendiculars through the centroids of the faces of an irregular tetrahedron



meet in a point, by analogy to the perpendicular bisectors of a triangle (see
Figure 1).

Inductive reasoning is characterized by the making of a generalization from
a pattern noticed in severai specific cases. The classic example is making the
generalization “The sun will rise every day” from several million specific cases. A
more mathematical example would be generalizing “The product of two consecutive
numbers is always even” from the cases 3x4=12, 4x5=20, 12x13=156, and
37x38=1406.

Lakatos developed his cycle of proofs and refutation to accurately represent
what proving is to mathematicians. He did so in opposition to what he called the
Euclidean model, which portrays mathematical research as a process of beginning
with a set of assumptions, and then proving theorems from them with absolute
certainty. Thisimage might be derived from the assertions of Formalist
philosophers of mathematics (see Chapter VI, section 2). The Euclidean model
bears a superficial resemblance to a cycle that begins with making a proof. It lacks,
however, any role for counterexamples. In the Euclidean model mathematical
discovery is seen as a steady forward progress from truth to truth, not a recurring
cycle of proof and refutation.

Another mistaken image of what proving is to mathematicians portrays
proving as the verification of mathematical discoveries that are made through other
ways of reasoning. This image is often associated with the teaching of
mathematics. For example the NCTM Standards (NCTM, 1989) state:

A mathematician or a student who is doing mathematics often makes
a conjecture by generalizing from a pattern of observations made in
particular cases (inductive reasoning) and then tests the conjecture
by constructing either a logical verification or a counterexample
(deductive reasoning). {(p. 143)

If a cycle of proofs and refutations begins with the making of a conjecture then that
cycle looks something like this “discover, then prove” image. It differs from this
image both in its cyclical character, and in that conjectures can arise through
proving, as well as through inductive or analogical investigations.

This may be an appropriate place to mention that the question “Whatis a
proof?” is an important one in mathematics. This question is related to two issues,
the degree of formality of a proof, and the sort of proving that produced the proof
(see Chapter VI, section 2). Formality became important in the early twentieth
century, when formal proofs were seen as more reliable than informal proofs. The
sort of proving involved in producing a proof has become important with the
increase in the use of computers in mathematics. The character of proving by
working through an argument oneself differs from proving done by setting up a
computer to check all possible cases. Concern over the nature of proof also arises
when a proof is the product of many individuals working on related topics, so that a
conclusion might be reached without any one person ever having proved it entirely.

Lakatos (1978, p. 61) introduced the terms pre-formal, formal, and posi-
Jormal to describe proofs of different degrees of formality. 1 would further divide
formal proof's into semi-formal and completely formal proofs, a distinction pointed
out to me by Uri Leron. A pre-formal proof might appear in the working notes of a
mathematician. It may involve hidden assumptions, and use informal language and
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notation. It might also include references to analogical or inductive evidence for the
conjecture. A semi-formal proof is presented in a form suitable for publication in a
professional journal or a textbook. The arguments are purely deductive, and
unusual assumptions are made explicit. Some steps might be omitted however,
with a note to the reader suggesting how they may be worked out. The proof is
written in a mixture of formal symbols and natural language. A completely formal
proof might also appear in a journal, or as a computer program. In a completely
formal proof all steps are included, and all assumptions are made explicit. The
language of the proof is entirely symbolic. A post-formal proof talks about the
nature of formal proofs, from a meta-mathematical perspective. They may resemble
pre-formal or semi-formal proofs, but they will also include elements from the
formal system that is the object of the proof. The proof of Godel’s Theorem is a
well known example (see Chapter VI, section 2).

2. Why do people prove?

It is impossible to give a single reason why people prove. Proving occurs
in widely different circumstances, with different goals. Within groups, however,
one can begin to see some common purposes for proving. Because proving is so
important in mathematics, I would like to begin by focusing on the question “Why
do mathematicians prove?” The more complicated question, “Why do students
prove?” is central to my research. I will consider it at the end of this section and in
the next three chapters. In Chapter VI I will return again to the general question of
why people prove, and by that point it may be possible to hint at some answers.

Why do mathematicians prove?

Ulam (1976) hints at the answer to this question when he states that “Georg
Cantor proved (i.e., discovered) that the continuum is not countable” (p. 282).
Cantor’s discovery came through proving. Lakatos’ (1976) historical analysis of
the use of proving in mathematics reveals that mathematicians in general employ
proving to both discover and improve propositions. The use of proving to
discover, which Lakatos calls “deductive guessing,” involves a cycle of proofs and
refutations in which the proving is both the source of the conjecture and part of the
process of testing it. As Lakatos wrote:

There is a simple pattern of mathematical discovery — or of the
growth of informal mathematical theories. It consists of the
following stages:
(1) Primitive conjecture.
(2) Proof (a rough thought-experiment or argument,
decomposing the pnmitive conjecture into subconjectures or
lemmas).
(3) ‘Global” counterexamples (counterexamples to the primitive
conjecture) emerge.
(4) Proof re-examined: the ‘guilty lemma’ to which the global
counterexample is a ‘local’ counterexample is spotted. This
guilty lemma may have previously remained ‘hidden’ or may
have been misidentified. Now it is made explicit, and built into
the primitive conjecture as a condition. The theorem — the
improved conjecture — supersedes the primitive conjecture with
the new proof-generated concepts as its paramount new feature.
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These four stages constitute the essential kemel of proof analysis.
But there are some further standard stages which frequently occur:
(5) Proofs of some other theorems are examined to see if the
newly found lemma or new proof-generated concept occurs in
them: this concept may be found lying at cross-roads of different
proofs, and thus emerge as of basic importance.
(6) The hitherto accepted consequences of the original and now
refuted conjecture are checked.
(7) Counterexamples are turned into new examples — new
fields of inquiry open up. (1976, p. 127)

This use of proving to discover is doubtless the central reason why
mathematicians prove. Thurston (1995), in relating something he learned as a
graduate student about mathematicians, mentions other reasons. “I thought what
they sought was a collection of powerful proven theorems that might be applied to
answer further mathematical questions. But that’s only one part of the story. More
than knowledge, people want personal understanding. And in our credit driven
system, they also want and need theorem credits (pp. 35-36, emphasis in original}.

The importance of proving as a mark of mathematical activity should not be
underestimated. The criticism of Mandelbrot by Krantz (1989), in which Krantz
charged that Mandelbrot’s investigations of fractal geometry were not a part of
mathematics because Mandelbrot proves no theorems, illustrates this use of proving
as a marker. The exclusion of non-Europeans from the history of mathematics, on
the same basis that they did not prove their work (Gheverghese Joseph, 1991), is
another example. Proving in this context can be seen as conferring status on a
mathematician, as a stethoscope does on a doctor. Mathematicians form a society
with customs and nituals, just as other groups of people do, and the rite of initiation
is the creation of an original proof.

] have not mentioned a reason to prove that many people would see a central
to mathematics: verifying that theorems are true. The influence of this idea can be
measured by reference to Crowe’s (1988) list of “ten misconceptions about
mathematics.” It is included in Crowe’s list twice, once as “mathematics provides
certain knowledge,” and the second time as “mathematical statements are invariably
cormrect.” It is a misconception for two reasons: 1) Proving does not always verify,
and 2) Methods other than proving are often used to verify theorems.

Vi t alw A

The status of proving as the path to absolute certainty has suffered some
serious setbacks in the last two centuries, and this process continues. The
discovery of non-Euclidean geometries, which contradicted the claim that Euclidean
geometry describes with certainty, was the first setback. The paradoxes of set
theory offered the second setback, and Godel’s Theorem set bounds on the
certainty proving could provide (Kline, 1980; see also Chapter VI, section 2).
More recently, the proliferation of proofs in mathematics journals, the increasing
length of proofs, the specialization of the field, and the increased use of computers,
have highlighted the human and social elements of the uncertainty of proving.

Ulam (1976, p. 288) estimated that in the early 1970s, almost 200 000
theorems were published each year. Davis (1972/1986) pointed out the stress this
puts on the process of refereeing proofs, leading to the suggestion that half of the
proofs published might be flawed. Although this suggestion was originally made
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to Davis in jest by an editor of Mathematical Review, it has been widely quoted as
correct, presumably because it seems quite plausible to members of the
mathematical community. Recently, the case of Wiles’ proof of Fermat’s Last
Theorem (see below) has added further evidence as to the unreliability of published
proofs. The careful checking of Wiles’ proof resulted in the discovery of errors in
several of the proofs to which he made reference. Given this, it is hard to justify a
claim that we are certain of the 200 000 theorems published in 1970, even though
they have been proved. At best we can ascribe a probability of certainty to them.

Part of the difficulty in deriving certainty from contemporary proofs in
mathematics is their length. The elusive property of elegance 1n proofs includes an
inclination towards short proofs. A joke claims that a Ph.D. thesis in mathematics
should be rejected if it runs over ten pages. This preference for brevity is not
merely aesthetic, however. There are sound practical reasons for mathematical
proofs to be short. Chief among these is the requirement of surveyability. For a
proof to be surveyable it ought to be possible for a suitably trained mathematician to
consider the whole proof at one time. Many contemporary proofs stretch this
requirement. The most extreme example thus far is the cataloguing of the simple
finite groups. The proofs cover over 5000 journal pages, and none of the
mathematicians involved can be said to have surveyed the complete proof (Davis &
Hersh, 1981, p. 388).

A further difficulty in achieving certainty through proving is the increased
specialization of mathematics. Many proofs concern topics or employ techniques
so abstruse as to be incomprehensible tc the vast majority of mathematicians. This
problem is a steadily worsening one. It is said that Poincaré, who died in 1912,
was the last mathematician to have a sound grasp of the entire field (Boyer,
1968/1985, p. 650).

The problems of length and specialization can be illustrated by a
consideration of the recent proof of Fermat’s Last Theorem by Wiles (ciiginally
described by him at Cambridge in 1993, and outlined by Ribet & Hayes in
American Scientist in 1994. The original, flawed, proof has been repaired, but is
as yet unpublished). The proof is very long, running to about 200 pages (Ribet &
Hayes, 1994, p. 156), and makes use of several mathematical specializations:
elliptic curves, Galois groups, deformation theory, modular forms, etc. There are
few mathematicians with the background to referee Wiles’ proof, and its complexity
and length make their task difficult. If the proposition were a less celebrated one, it
is doubtful the resources being devoted to checking the proof would have been
available, and the errors detected so far might have gone uncorrected.

The proof of Fermat’s Last Theorem also demonstrates another aspect of the
role of proving in providing certainty. Prior to the announcement of Wiles’ proof
few mathematicians would have doubted that Fermat’s Last Theorem is true, based
on the considerable empirical evidence amassed in the three centuries since Fermat
proposed it. It is known, for example, that Fermat’s Last Theorem is true for all
numbers less than 4 million. Fermat’s Last Theorem also has a quality, which
could be described as plausibiliry. In mathematics, exceptions to simple
generalizations usually are discovered quickly, if they exist. The truth of Fermat’s
Last Theorem for n =3 or 4 made it plausible that no other exceptions would be
found. Given that everyone expected Fermat's Last Theorem to be true, in what
sense can Wiles’ proof be said to have increased the certainty of its truth?
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The use of computers in math has radically changed the way we see proof in
mathematics. This has occurred in two ways. Computers have introduced a
powerful new tool for proving mechanically, analogous to algebra and calculus, but
not as yet enjoying the same degree of acceptance. In addition, computers have
allowed mathematicians to visualize mathematical situations before proving in those
situations.

I have been fortunate to been working in mathematics in the years when
two fascinating theorems first were proved: Fermat’s Last Theorem, and the Four
Colour Theorem. Both of these propositions are easily stated, but difficult to
prove. The proof of Fermat’s Last Theorem is long and complicated, but traditional
in form. The proof of the Four Colour Theorem, on the other hand, provoked
controversy because of the extensive use of computer algorithms in it. Because of
the use of this novel technique of mechanical deduction many mathematicians
rejected the proof as invalid. This added another element of uncertainty to use of
proving to verify.

The proof of the Four Colour Theorem could be criticized on the basis of its
unsurveyability, due to its length, or the specialist backgrounds required to
understand it; however, the chief critique focused on the possibility of
programming or computer error. This is a general weakness in any form of
mechanical deduction. A misprint in an algebraic derivation or a computer program
can be made easily, have radical effects, and be almost undetectable. As a result, in
practice the validity of & prcof must often be determined in other ways.

W ¢l veri

Hanna (1983) describes five ways in which she believes mathematicians
verify propositions:

Most mathematicians accept a new theorem when some combination

of the foliowing factors is present:

1. They understand the theorem, the concepts embodied in it, its
logical antecedents, and its implications. There is nothing to
suggest it is not true;

2. The theorem is significant enough to have implications in one or
more branches of mathematics (and thus important and useful
enough to warrant detailed study and analysis);

3. The theorem is consistent with the body of accepted mathematical
results;

4. The author has an unimpeachable reputation as an expert in the
subject matter of the theorem;

5. There is a convincing argument for it (rigorous or otherwise), of
a type they have encountered before.

If there is a rank order of criteria for admissibility, then these five
criteria all rank higher than rigorous proof. (p. 70)

Note that most of these are based in the human and social nature of
mathematics, not on the use of proving to produce certainty.
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Why do students prove?

Some readers may question the wisdom of asking “Why do students’
prove?” when it seems quite possible that students do not prove. To begin, then, I
will give some examples of students’ proving from my own work and from the
mathematics education literature. I will then review the answers given in that
literature to the question “Why do students prove?” with some comments on the
plausibility of those answers. The next chapter explores my own attemplts to
investigate students’ need to prove in detail.

Do students prove?

When “proving” is taken in the restricted sense of “producing semi-formal
proofs” very little proving is witnessed. But if “proving” is taken to refer to
deductive reasoning, evidence abounds that students can and do prove in and out of
mathematical contexts. In this section I will be mainly concerned with what I call
“unformulated proving,” proving that is informal and only partially articulated. A
more detailed description of unformulated proving occurs in the next chapter.

In the mathematics education literature the main focus is on proofs rather
than proving. This has limited the amount of published discussion of unformulated
proving. There are, however, several indications that unformulated proving is a
known phenomenon. Balacheff (1991, p. 179) mentions that students show “some
awareness of the necessity to prove and some logic” in their behavior outside of
school. Edwards (1992) comments:

Some students at the beginning of high school, even without
instruction in formal proof, will go beyond empirical reasoning and
offer informal proofs, or explanations, of their findings. (p. 215)

Blum and Kirsch (1991} describe “preformal” proofs, which they claim students
are generally able to construct, based on “intuitions” that are common to atl
students. Moore (1990, 1994) also observed students who could prove informally,
and examined some of the elements of their difficulties in making their proving
more formal. “Examples, concept images, and informal approaches were helpful,
and often necessary, for discovering a proof, they did not guarantee that a student
could write a correct proof” (1994, p. 257, emphasis in oniginal).

In my own research {Reid 1992, 1993) I have seen unformulated proving
by students from a wide range of schoo! levels and mathematical abilities. A
particularly clear example appears in Reid (1992). Beth, a university humanities
undergraduate, who last took mathematics in grade 11, gave this argument that
every third Fibonacci number” is even:

(1) Beth: This one, at least I think I know why, the multiples of three work
out to be even because the, the other two, when you add the
Fibonacci numbers the other two are odd and then so it would come
out to be even.

(2) DR: How do you know the other two are going to be odd?

* The Fibonacci numbers are the elements of the sequence 1, 1,2, 3, 5,8, 13, 21, ... in which
each term is the sum of the previous two terms. The first two terms are both 1, by definition.
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(3) Beth: I don’t — that again is looking at the little charts and they seem to
work out that way —

(4) DR: So you’ ve made a conjecture that, the two Fibonacci numbers
before one that is a multiple of three will both be odd.
(5) Beth: Because, no, because you- If each Fibonacci number is the first

one plus the second one equals the third one, — the first, it starts
out, well, then you would be adding two odd numbers together and
get an even number, and then you add, oh, that’s the same thing, I
see, youw’d say, then the next one then is odd, so you'd add that to
the even and then you’d come out to ancther odd, but then I don’t
necessarily know that the, that the next number after an even number

would be odd so —

(6) DR: Can you think of any reason why the next one after an even number
should be odd?

(7) Beth: — because the one before the even number was odd (p. 319)

In my current research (described in the next chapter) unformulated proving
was used by all the participants, including Sandy, a mathematically talented student
in grade six, and Bill and John, two mathematically weak students in grade 10.

Uses of proving

Many uses of proving have been mentioned in the mathematics education
literature. They include:

Verification - Fischbein and Kedem (1982), Bell (1976), and
many others

Explanation — Hanna (1989), de Villiers (1991), Bell (1976),
Moore (1990)

Exploration — de Villiers (1990)

Systematization — Bell (1976)

Communication — de Villiers (1990), Arsac, Balacheff and Mante
(1992)

Aesthetics — de Villiers (1990)

Personal self-realization — de Villiers (1990)

Developing logical thinking — de Villiers (1991)

A “teacher-game” — Alibert {(1988), Schoenfeld (1987)

In a survey of prospective teachers de Villiers (1991, p. 23) found that most (61%)
felt that the main function of proof is verification. Other popular categories were
explanation (7%), systematization (11%), and developing logical thinking (4%).
Moore (1990) found that college students only listed verification and explanation as
functions of proof. In contrast to de Villiers” teachers, Moore’s students proposed
explanation and verification in approximately equal numbers (5 explanation, 6
verification, p. 113). Each of the uses listed above will be described in more detail
in the following paragraphs.

Teachers of ten tell students that proving verifies that a mathermatical
proposition is true. In doing so we echo a traditional definition of proof as
something that establishes truth. The need to verify as a motivation for proving
appears in almost all research about proof and proving (see Appendix A). This
motivation for proving has also provided mathematics education researchers with a
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methodology to determine understanding of proving. For example, Fischbein and
Kedem (1982) tested understanding by asking students who had seen a proof
whether they would care to examine other confirming examples of the proposition.
Students who requested additional empirical data were deemed not to understand
proof, as they had not understood that proving establishes certainty. According to
this criteria, mathematicians such as Crowe (1988), who does not believe that
proving establishes certainty, would also be deemed not to understand proof.

Finlow-Bates (1994) has done some research that suggests that the students
Fischbein and Kedem studied might have learned to request additional examples in
school. In his study five students were asked to select the “best” proof from a set
of four. The four proofs included a set of examples, a proof, a proof preceded by
examples, and a proof followed by examples. Although three students chose the
proof alone when first asked, the suggestion that they provide a reason for their
choice caused them to switch to the proof followed by examples. In the final
rankings all five students rated best the proof followed by examples, with the
examples followed by the proof ranked second best. Although the reason for the
students’ choice is not obvious, it seems plausible that they were reflecting the
normal presentation they had seen in school where teachers often state a general
principle, explain it, and then give examples.

Research has suggested that only a few students see verifying as a use of
proving; most students do not (Bell, 1976; Braconne & Dionne, 1987; Fischbein,
1982; de Villiers, 1992; Senk, 1985). Using verification to motivate proving in
schools may play a significant role in students’ difficulties in learning to prove.
The fiction of proving as the path to complete certainty is a fiction, and students
may be quicker than their teachers to recognize this.

Hanna (1989) and de Villiers (1991) both stress the importance of proving
as a way of explaining in educational contexts. Hanna asserts that proofs used by
teachers in lessons should be picked on the basis of both their explanatory and
verificatory qualities. De Villiers claimed that students have a need for explanations
and will accept proof's as explanations. Unfortunately, de Villiers’ research is not
sufficient to indicate that students would feel a need for explanation in all
mathematical contexts, nor did he consider whether students themselves would
employ proving to explain. In my research I have attempted to investigate these
questions further (see Chapter II). -

De Villiers (1990) asserts that proving is an important means of exploring in
mathematics.

Even within the context of such formal deductive processes as a
priori axiomatization and defining, proof can frequently lead to new
results, To the working mathematician proof is therefore not merely
a means of a posteriori verification, but often also a means of
exploration, analysis, discovery and invention. (p. 21)

De Villiers goes on to give examples of theorems in geometry that students could
discover through deductive exploration. The use of proving to explore is also
implicit in the teaching methods proposed by Fawcett (1938) and Lampert (1990).

Systematization consists of “the organisation of results into a deductive

system of axioms, major concepts and theorems, and minor results derived from
these” (Bell, 1976, p. 24). De Villiers (1990) mentions the importance of
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systematization for mathematicians, but he presents no evidence that students would
prove to satisfy a need to systematize.

Communication is also suggested by de Villiers (1990) as a possible reason
to prove. Arsac, Balacheff & Mante (1992) provide examples of students proving
as communication, in the context of an activity which asked them to focus
specifically on communicating mathematical ideas.

De Villiers (1990) briefly mentions aesthetics and personal self-realization
as reasons to prove, but he does not elaborate. Presumably he meant these to
correspond to needs felt by professional mathematicians.

Developing logical thinking was once an often stated goal of teaching proof
(see Fawcett, 1938, for a summary of such assertions). Although research (e.g.,
Sekiguchi, 1991, p. 26} indicates that there is little transference of proof skills
learned in mathematics to other contexts, some teachers (4% according to de
Villiers, 1991, p. 23} still believe that this is the primary function of proof.

A teacher-game is an activity that eams marks and acceptance, but is seen as
being otherwise useless. Alibert (1988) and Schcenfeld (1987) describe proof
having this function for students. Teacher-games are described in more detail in
Chapter II, section 4.

Researching the need to prove

The needs listed above are all possible answers to the question “Why do
students prove?” but a more precise answer is needed. If teaching is to be based on
an understanding of students’ needs, then that understanding must include an idea
of which needs are most important, and what circumstances occasion those needs.
Developing this understanding is the goal of the studies I report in the next three
chapters. Before considering those studies, however, let me recall two basic
assumptions on which my research s based.

First, | assume that what people learn is based on what they already know.
In fact, to make this statement a bit stronger, [ assume that what we can learn is
based on what we already know. This assumption is at the base of constructivist
learning theory, and Enactivism, a theory of learning [ will be describing at length
in Chapter VII. A consequence of this assumption for education is that teaching
ought to be based on what students know. In the context of teaching mathematical
proof, this means that the proving we would like students to do should be based on
the proving they already do, not developed as a disconnected skill unrelated to any
other way of thinking. This assumption also has a consequence for my research, in
that I concentrate on the proving in which students engage without any instruction
from me. The studies I conducted occasionally touched on the possible effects of
teacher interventions on students’ proving, but the main focus was the reasoning
students were inclined to do based on whatever previous experiences they had.

Second, I assume that people reason in different ways in different contexts
and that seemingly similar contexts can, and often do, turn out to be different
enough to give rise to different reasoning. For this reason I am not interested in
searching for rhe context in which students’ prove. [ am interested in exploring
possibilities, not generalities. This interest had consequences for the way I
conducted my studies. It occasioned the use of open problem situations, in which
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deductive reasoning could be used, but was not required. It also occasioned the
involvement of a wide range of students, both in age and ability.

Before describing the studies, and my results, a brief note on the contents of
the next few chapters is in order. It is usual in dissertations to describe in detail the
design of the studies undertaken before presenting the results of the studies. This is
sound practice if an important feature of the research being conducted is
reproducibility. For a legitimate attempt at reproducing a study to be made, it is
necessary that the design of the study be clearly understood.

In the case of my studies the situation is a bit different. My conclusions are
of two kinds: observations and speculations. My observations consist of claims
that one or more of the participants in my studies reasoned in a particular way.
Such observations are clearly not reproducible, as the context can never be
replicated. To do so would require a replica of the participant involved, and not
even the original participants continue to encompass all the aspects of who they
were at the time. My observations show what is possible, but do not allow
predictions of what will happen. All the same, suggesting ways to improve
teaching must be based on some sort of reasons, and in many cases these reasons
take the form of predictions of the wonderful things that will result if such-and-such
a reform is introduced.

This is where my speculations come in. Based on both the observations |
have made, and philosophical considerations, I indulge in some speculations as to
ways the teaching of proving could be reformed. 1 do not, however, claim that
these speculations are based on reproducible evidence. In fact, I would suggest that
the best way to test my conclusions as they apply to teaching is not to attempt to
replicate my results (I would be far more interested in studies that expanded the
bounds of the possible by observing proving in situations 1 failed to investigate),
but rather to attempt to implement my speculations in practice. It could be
suggested that experimenting with new methods of teaching, without having
“scientific” evidence of their effectiveness beforehand, is irresponsibility on the part
on an educator. In response I would note that the results of research on students’
understanding of proving in mathematics (e.g., Bell, 1976; Braconne & Dionne,
1987, Fischbein, 1982; de Villiers, 1992; Senk, 1985) indicates that current
methods are so unsuccessful that it is difficult to imagine students suffering much
under a change. I would also note that it may be impossible to acquire “scientific”
evidence in some contexts (I expand on this idea in Chapter VI) and so limiting
educational reform to those based on such evidence might permanently cripple our
educational systems.

With the above comments in mind, I have left the details of the design of my
studies to an appendix (Appendix B). Below [ will give an introduction to the
studies, and in the following chapters I will describe aspects of the studies as they
become needed. In doing so I will concentrate on the particular, in keeping with
overall focus of my research. Those who would prefer an overview should consult
Appendix B now, and Appendix D when a summary of results is desired.

In Chapter VII I make some important connections between how [ did my
research and the theoretical basis for my thinking. It could be suggested that an
understanding of my methodology and the theoretical basis of it is important to the
reading of the results I have included in the next three chapters. This may be, but it
is also the case that the contents of the next three chapters are important to the
reading of my final chapter. Enactivism, the topic of Chapter VI, is not a theory or
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a methodology in the abstract. It must be abour something. In Chapter VII it is
about my research into proving. The reading of the next three chapters may raise
important questions about theory and methodology, the existence of which will give
the answers given to them in Chapter VII a context and motivation.

Although there is a great deal of research in mathematics education on the
types of proofs students make and accept, on the teaching of proving, and on
students’ acceptance of proofs as absolute verification, the only studies that have
concentrated on students’ need to prove have been those of Bell (1976), Hanna
(1989), and de Villiers (1990, 1991). None of these observed students’ proving in
contexfs in which proving was possible but not required. As it seems to me that it
is only in such situations that students’ needs to prove will become apparent, I have
attempted in a series of research studies to observe students in such contexts.

The students involved in my studies were volunteers from high schoot and
university classes. They represent a wide range of mathematical backgrounds,
from students with undergraduate degrees in mathematics, studying to become
teachers, to students in the non-academic stream of grade 10. In addition to taking
part in problem solving sessions, high school students were also observed in their
regular classrooms, to get a sense of what their typical experience of proving in
mathematics is like.

The studies included observations of three high school classes, observations
of students in problem solving situations, and interviews with those students.
Three problem situations were investigated: the Arithmagon, the Fibonacci
sequence, and GEOworld. Prompis used for the Arithmagon problem and the
Fibonacci zituation are given in Figures 2 and 3. GEOworld is a computer
microworld, that will be described when students’ activities in that situation are
discussed. These problems were selected based on their having occasioned proving
in previous studies (e.g., Reid, 1992) and pilot studies. It might be helpful for the
reader to investigate these problems before continuing, in order to have a better feel
for the students’ reasoning®.

The numbers on the sides of this trmangle are the sums of the
numbers at the corners. Find the secret numbers.

27

Figure 2: The Arithmagon prompt.

¥ “Answers” appear at the back of the book, in Appendix E.
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The Fibonacci sequence begins:
1,1,2, ..

and continues according to the rule that each term is the sum of the
previous two (e.g., 1+1=2).

The Fibonacci sequence has many interesting properties.

Can you find an interesting property of every third Fibonacci
number?

Can you find other interesting properties?

Figure 3: The Fibonacci prompt.

After investigating the problems, in separate sessions, the students were
interviewed.

As I mentioned above, the next three chapters elaborate on the studies I
conducted into students’ proving and need to prove, and the results of these
studies. Most of the examples in these chapters are transcribed from video tapes of
the problem sessions and interviews. A few examples are taken from the
observations of high school mathematics classes. Introducing all the students I
observed at once could be confusing, and is unnecessary, as my analysis
concentrated on the particular rather than the general. I have taken most of my
examples from the observations of three pairs of university students, two pairs of
high school students at North School, and Sandy, a male grade six student. The
university students included one male-male pair (Ben and Wayne), one female-
female pair (Eleanor and Rachel), and one female-male pair (Stacey and Kerry).
Both pairs of high school students are male. Bill and John were in grade 10. Colin
and Anton were in grade 12. Descriptions of the students and their mathematical
backgrounds is given in Appendix B.
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CHAPTER II

NEEDS AND PROVING

Come, my Celia, let us prove
— Ben Jonson, Volpone, 111.v

One object and result of my research into the need to prove is a vocabulary
for describing needs, and various ways of proving. The needs suggested in the
literature in mathematics education have been described in the previous chapter.
They included: verification, explanation, exploration, systematization,
communication, aesthetics, personal self-realization, developing logical thinking,
and “teacher-games.” Notall of these needs seemed to be felt by the students
involved in my studies. In this chapter [ introduce the needs I did identif’ yinmy
studies: explaining, exploring, verifying, and teacher-games. After a short
introduction each of these needs will be illustrated with examples drawn from the
studies, which show the various ways in which proving and other kinds of
reasoning were used to satisfy these needs.

Exploration extends the bounds of what is known. Questions such as
“How can I find the measure of this angle? and “I wonder what happens if [ add the
sides” indicate a need 10 explore. In the case of the first question it is a need to
explore with a goal in mind. In the case of the second question the exploration does
not have a goal. De Villiers (1990) suggests that the need to explore motivates.
proving.

The following example of exploring is taken from the work done by two
university students, Stacey and Kerry, while investigating the Arithmagon
situation. Itis episode 2 in the mathematical activity trace in Appendix C* and also
appears as part of the case study in Chapter 111. Stacey and Kerry solved the

original puzzle by reducing a system of equations. In this episode Stacey explores
the situation further.

(1) Stacey: What happens if you add the middle numbers together? —

(2) Kerry: Well I guess we could, hmm.
(3) Stacey: I just want to try something. If vou take 27, 18, and 11. 2, 4, 5,
56. Right?

(4) Kerry: Sure.

(5) Stacey: And you have — So you add each of those twice, right? — Yeah

you do. That’s not going to help you either. That’s what you end
up doing right?

* Mathematical activity traces are summaries of (he activities of the participants in a session.
They were created for some of the problem sessions and interviews as part of the analysis of the
studies. They also provide a context for the episodes I will be referring to, and I will make
reference to them when describing episodes for which a MAT exists. Appendix Cis divided into
two sections. The first included MATS for the students from North school. The second includes
MATS for the university students. Within these sections the MATSs are grouped according to
which pair of students was involved. The Table of Contents lists the exact page number for each
MAT in Appendix C
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(6) Kerry: What’d you do?

(7) Stacey: ~ You add A, B, C. Then you multiply them by 2. You get this
answer. —

As I reconstruct them, Stacey’s thoughts ran as follows: “What happens if
you add the middle numbers together? 27+18+11 is 56. And how is that related to
the numbers on the corners? Each corner number is added into two of the middle
numbers, 50 in the total of the middle numbers you add each corner number twice.
Therefore the sum of the middie numbers is two times the sum of the comer
numbers. But just knowing the sum of the corner numbers doesn’t help us figure
them out.”

Stacey’s initial comment “What happens if you add the middle numbers
together?” indicates an exploratory frame of mind, as does her making observations
without a particular goal. That she was not expecting the conclusion she reached is
indicated by her dissatisfaction with it: “That’s not going to help you either.”

Verifying involves the determination of the truth or falsity of a statement
whose truth value is in doubt. A question like “Is the sum of the sides always
even?” indicates a need to verify. Many researchers, including Bell (1976) have
identified verifying as a source of a need to prove.

The following example continues from the transcript of Stacey and Kermry
investigating the Arithmagon situation, given above.
(8) Kerry: Do you add?
(9) Stacey: 22, and 34. Yup. Do you know what | mean?

(10) Kerry: ~ Sorry. So you add this and multiply by 2 so, like, the sum of this is
28 imes 2. And it’s 56. Good one. What’s that mean?

(11) Stacey:  Nothing. [laughing]

(12) Kerry: s that-

(13) Stacey:  That was just-

(14) Kerry:  Is that true for all of them?

(15) Stacey:  Yeah.

(16) Kerry: I guess so. It must be. It can’t just be fluke.

When Kerry asked, “Is that true for all of them?” Stacey could respond that
it was, because the exploring she had done also verified that the relationship is
generally true for Arithmagons. As Kerry did not see how Stacey had arrived at her
conclusion, his verification of it was based on the low probability of such a

relationship occurring by chance in this case. Both of them verified, but in different
ways.

Explaining provides connections between what is known in a way that
clarifies why a statement is true. A question like “Why is the sum of the sides
always even?” expresses a need to explain. Bell (1976) and de Villiers (1990)
suggest explaining as a need to prove.

The following example, taken from a lesson observed at Central High
School, illustrates explaining in a mathematical context.
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The teacher, Mr. C, presented his grade 12 class with the problem of
showing that @):G)+(;) He asked, “Can someone explain why the number of

ways of selecting 3 from 8 is the same as { 5 ]+{, |7" The students gave no

response, and Mr. C explained. He asked them to constder the particular problem
of choosing three people from a committee of eight. Assuming the role of one
member of the committee, he reasoned that the number of ways of choosing the
three people would be the sum of the number of ways three people could be chosen
without including him, and the number of ways the three could be chosen if he
were among those chosen. The number of ways the three could be chosen to

exclude Mr. C is G) and the number of ways they could be chosen to include Mr.

Cis @) As the total number of ways of choosing three people from a group of
eight is known to be @) the equality @)=@+@) is explained by this argument.

The need to explain provided the motivation for the proving Mr. C did for
his class. This is indicated by his question “Can someone explain why...”, and by
his role as a teacher with a responsibility to explain. The possibility that verifying
might have been a motivation is unlikely, considering that verification of this
particular sum could have been achieved much more quickly using arithmetic
techniques.

A teacher-game is a situation in which students act in a particular way in
order to satisfy the implicit or explicit demands of a teacher. Playing a teacher game
can be based on attempting to achieve a high grade, or simply facilitating the
smooth running of the class, to avoid social discomfort. Alibert (1988) and
Schoenfeld (1983) point to the importance in schools of conforming to the
expectations of the teacher, playing a ‘teacher-game’, as a motivation to engage in
proving.

As an example consider the continuation of the lesson taught by Mr. C.
8

After explaining that (3)= G)+(Z) Mr. C assigned the students the task of proving

algebraically (7,):(";1)+(’;:11) As they were proving | asked several students
why they were doing so. Six of the seven students 1 asked indicated they were
proving only because it was an assigned task (the seventh said it was for fun). In
this example it was a teacher-game that created the need to prove. Other possible
needs had been satisfied by Mr. C’s explanation and authonty as a teacher.

NEEDS Explaining Exploring

Figure 4: First rank of the proving network.

These four needs form the first rank of a network of paths relating aspects
of proving (see Figure 4). As each of these needs is discussed, the relevant part of
the network will be expanded. Section 1 elaborates and gives examples of proving
to explain, and of the use of reasoning by analogy to explain. A distinction is made
between proving that is unformulated, of which the prover is unaware, and
formulated proving. Section 2 concerns exploring, and the use of proving,
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inductive reasoning, and reasoning by analogy to explore. Proving by mechanical
deduction, using a deductive tool like algebra, is described in this section. Section
3 includes examples and explanations of the use of proving and inductive reasoning
to verify. Section 4 describes proving that takes place as part of a teacher-game.
The chapter concludes with a summary of needs and the proving associated with
them.

1. Explaining

Explaining provided a definite need to prove for the participants in my
studies, but proving was not the only sort of reasoning motivated by a need to
explain. Reasoning by analogy was also used to explain and was preferred to
proving in some cases. In addition, I observed significant differences in the
formulation of their proving. In Figure 5 the paths involving explaining in the
network are shown. Those involving proving are shown by thick lines. The three
remaining stages of the network appear for the first time in this figure. The second
stage includes different types of reasoning. The third distinguishes proving by the
degree of formulation involved init. The fourth stage differentiates between
proofs, on the basis of the formality of their presentation. In the following
examples and discussion of these paths the distinction between “formulated” and
“unformulated” proving will be clarified. Pre-formal proofs, described above in
Chapter I, section 1, will be elaborated upon, and illustrated with examples. At the
end of this section examples of explaining by analogy will be discussed and

NEEDS

REASONING
—
PROOF

Figure 5: Paths related to explaining.
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contrasted with explaining by proving. In the following section the network will be
extended, as new nodes in each stage are discussed.

— ] Vi —_

Perhaps the most important distinction suggested by my research is that
between formulated and unformulated proving. Formulation refers to the provers’
knowledge or awareness that they are proving. It could also be described as the
degree to which the proving is thought-of and thought-out. Formulation is related
to two other characteristics of proving: its articulation and the hidden assumptions
made while proving. Articulation and hidden assumptions provide valuable clues to
formulation, in addition to being important characteristics of proving in and of
themselves.

The extent and clarity of the spoken or written articulation of proving has
implications for the possibility of the proving being interpreted by others and for the
formulation of the proving. Being aware of one’s own proving and being able to
articulate that proving are interrelated. Articulating proving assists in formulating
since articulation makes aspects of proving tangible. At the same time, formulated
proving is more easily articulated.

All proving involves some hidden assumptions. These assumptions can
range from wrong assumptions through implausible and plausible assumptions to
assumptions that are known within a community. The formulation of proving
reveals hidden assumptions, making the presence of wrong or implausible
assumptions less likely.

Explaining using formulated proving can be quite successful; however, it
seems to require a suitable social context. Rachel and Eleanor, two undergraduate
students, provide an example of the use of formulated proving to explain. Their
case, and those of Ben (an undergraduate student), Colin and Anton (two grade 12
students), and Bill (a grade 10 student), illustrate the different social contexts in
which formulated proving to explain seems to occur.

el and r explain the ulae foupd i ithma

Rachel and Eleanor developed two different methods for solving the
Arithmagon. Rachel derived the formula x = b*%‘i algebraically from the

relations between the three known values, , b, and ¢. Eleanor’s method was based
on two observations: that the sum of each side and the corner opposite it is a
constant for a given triangle, and that the sum of the comners is half the sum of the
stdes, and is the same constant. Her method was to find the sum of the sides,
divide by 2, and subtract the side opposite the corner she wished to discover.

At the end of the session (MAT episodes E22, R14 ) Eleanor and Rachel
began to wonder why the relations Eleanor’s method is based on work, and how
their two methods are connected. They derived the relationa+ b+ c=2(x + y + 2)
independently (see Figure 6 for the diagrams corresponding to Eleanor and
Rachel’s equations). Eleanor derived it from the given relations between the sides
a, b, and c and the unknown corners. Rachel derived it from her formula

X= brc-a (see Figures 7 and 8).



b ¢ b c
y a x a y
Figure 6: Diagrams corresponding to Rachel’s (left) and Eleanor’s (right)
equations.
X+y=a
y+zi=c
x+z=0

2x+2y+2z=a+b+c

2x+y+z)=a+b+c

Y+b=y+(x+z)= -21-{a+b+c)

Figure 7: Eleanor’s proving to explain her method.

Eleanor then asked: “How come this plus this — adds up to the sum of all
these?” In other words, why is it that the relation (y + b = y+ x + z), which relates
the sum of a side with the corner opposite 10 it to the sum of the sides, holds? She
quickly derived it from the relation & = x + z. Meanwhile, Rachel derived her
formula from a formulation of Eleanor’s method.

(a+¢—b)+(¢+b—¢)+(c+b—¢)=x+y+z

2
a+ b +c a+b+c-2c a+ b-c
— 5 =T =Y

Figure 8: Rachel’s proving to explain her method.

Eleanor and Rachel did not begin suddenly to engage in formulated proving.
Rachel had begun early in the session, as a way of exploring (see section 2).
Eleanor had been working with either Ben and Wayne, with whom she worked
inductively, or Rachel, with whom she engaged in formulated proving. Eleanor’s
sensitivity to the reasoning of those with whom she was communicating illustrates
one characteristic of a social context for formulated proving. If others are
communicating by way of formulated proving, then this activity might be picked
up. This point is elaborated further in section 2.



When Rachel, Eleanor, Ben, and Wayne investigated the Arithmagon
situation, the first person to solve the original puzzle was Ben. When Eleanor
asked how he found the solution so quickly his first response was “Don’t ask me
that! I don’t know. [ just saw it right away.” A short while later, he attempted to
explain his method, which he seems to have reconstructed deductively (MAT
episode 7). Unlike his attempt to explain using unformulated proving (described
below), this attempt was formulated, and much more successful as an explanation.

(1) Eleanor:
(2) Ben:
(3) Eleanor:
(4) Ben:

(3) Wayne:
{6) Ben:

(7) Eleanor:
(8) Ben:

(9) Eleanor:
(10) Ben:

But you saw that right away.
Yeah.
Why don’t you try another one and see if -

It'd have to be do-able though — I don’t know. I kind of looked at
27. I don’tknow what I did actually. No idea how I got that. —
Well I knew, well OK, 1 kind of knew how I did it. The number,
the number between. You know how I did that? The number here
fC] had to be less than 27, and less, it had to be less than 18, the
number here, right, — had to be less than 18. And the number here
[B] had to be less than 11,— right?

Yeah, otherwise they'd add to more than 27

So then the number here [A] had o be less than 18 and less than 11.
So, I mean, I just said — This 27 right and this 18 since this
number is being added, right, that’s one of the adding factors.

You mean that this number here?

Well no, I don’t know what I looked at first, but | looked at, [
noticed that, it [C] has to be lower than 27 and 18, to be added to
each other, right?

Yeah

And I noticed that 11 and 18 had to be a number less than 11 and
18. And 1 noticed that it had, the third number, 10, had to be less
than 11 and 27.

Figure 9: Labeling of Arithmagon for description of Ben’s explanation.

In line 4 Ben observes that C 11ust be less than both 27 and 18 (see Figure 9
for labeling of comers). This is true only if the secret numbers are assumed to be
whole numbers. Both Ben and the others seem to have made this assumption at
first. He goes on in lines 4 and 6 to specify the constraints on A and B. In line 5
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Wayne explicitly gives the reason for the constraints. Ben repeats this reason in
line 8.

All of the things Ben noticed “had to be” involve making deductions from
an assumption that the solution is limited to whole numbers. This allows limits to
be placed on the potential values of the unknowns. Once he had completed his
explanation, Eleanor showed she had understood it by attempting to use his method
to solve another puzzle.

_ In the previous two cases it was the questions of other participants that
provided the social context for the use of formulated proving to explain. In the next
three cases it is the interviewer who sets up the occasion for proving to explain.

Colin and Anton were two grade 12 students in an academic stream
mathematics course. After two problem sessions, in which they worked on the
Arithmagon and the Fibonacci situations I interviewed them twice. In the first
interview session, after Colin and Anton had derived and verified their formula for
the Anithmagon, [ asked them why their formula works (MAT episode 3). While
Anton referred to the examples they had tested it with, Colin proposed “proving” it:

(1) Anton: This is the relationship between the comers and their sides.

(2) Colin: Right, but how come that works? — They have to be related
because-

(3) Anton: Because 11
(4) Colin: Yeah. The one number, defines them both. In this corner.
(5) DR: How do you mean it defines them?

(6) Colin: Well, See, if this was 3 and 13, whatever this number [Y] is, is
going to affect both of these numbers. [See Figure 10]

(7) DR: Okay
(8) Colin: So.
(9) Anton: *Cause if this is 10 more, then this has to be 10 more, in order to get

the same numbers, you know. So we have this main point right
here. So, if this is more, more, this has to be 10 more, in order to
get,

(10) Colin: ‘Cause this number wiil be the same. So it could be 12, and still
this would be 10 apart. So that’s why those two are 10 apart, and
that’s where we got this first formula. And then this one-

After Anton identified one of their equations as the difference relation they
had found (Z - X = x — z, line 1}, Colin asked why it worked (line 2}. They then
made the connection with the common comer Y , which in this case is 11 (lines 3-
4}, which requires that any difference in the sides ((13+Y) — (3+Y)) be due to the
difference between the other two comers (13-3) (lines 9-10).

After explaining the relation generally, “The one number, defines them
both,” Colin repeated the explanation using specific values. This use of general
numbers in proving is less formulated than his general explanation but has greater
explanatory power. The use of numbers makes his explanation clearer. He might
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instead have rephrased his general explanation into something like “Each side is the
sum of this comer number and another number, any difference must come from the
other number, as this number is shared by both sums.” In conversation, because of
its rapid pace, it is more important that an explanation come quickly and clearly than
that it be perfectly formulated. This seems to have been behind Colin’s switch from
a general statement to the use of general numbers. Anton’s less formulated way of
expressing himself may also have had some influence.

3 X
3/\ /\

13+Y 13 Y

Figure 10: Labeling of triangles for description of Colin and Anton’s explanation.

In the second interview, Colin and Anton were guided through a formulated

proving that 3 — n is a multiple of 6. They made this conjecture after examining a
number of specific values for the expression. I began by asking them if they would
prefer to explore, explain, or verify this conjecture. They indicated that they were
more concerned with explaining it. By asking guiding questions, like “What do
you know about (n—1)(n)(n+1)?" I guided them through a deductive argument.
After we had completed the derivation verbally, I asked if it explained their
conjecture. They said it did. I then asked them to write out the argument, and Colin
did so (see Figure 11, MAT episode 6). Colin omits the last step of stating that the
product of an even number and a multiple of 3 must be a multiple of 6.

Colin’s argument, and the verbal argument that preceded it, occurred in a
particular social context, that of a teacher guiding students through an argument.
This context encouraged the reasoning to remain formulated and deductive. An
interesting aspect of this particular case is that when [ asked Colin and Anton if they
had discovered anything through the reasoning used to explain their conjecture they
said no even though they had remarked on the discovery that n3 —n is the product of
three consecutive numbers, with 7 as the middle number. In this case, the need to
explain seems to have kept Colin and Anton from seeing that a need to explore
could also be addressed by the same reasoning. One need to prove might interfere
with the satisfaction of another,



n3-n
n{n+l1)(n-1) ——— means multiplying 3 consecutive #’s

One of the 3 #’s must be even, another must be a multiple of 3.
Even because when you choose 3 consecutive #’s 1 must be even.,

odd, even, odd (7,8 9)
even, odd, even (4, 5, 6 )

Multiple of 3 because when choosing 3 consecutive #’s one is
divisible by 3.

if n = 3x then
if n = 3x-2 then n-1 = 3x-3 which is a multiple

ifn=3x-1thenn+l = 3x

Figure 11: Colin’s written proof from the second interview.
d ’s explanati t ¥

Bill and John were two grade 10 students at North School. In their first
interview session they were guided through the derivation of a formula to solve
Arnthmagons. Bill followed this derivation, but John had trouble with it. In the
derivation of the formula A, B, and C were used to represent the unknown corner
(A+C)~(A+B)+(B+C)

2

numbers. The formula at which we arrived was . Itis fairly

easy to show that this formula simplifies to C, by rearranging the terms:

(A+B) '_(A:B) +(C+C). Bill used this simplification to show the equivalence twice.

John sugge;ted that the formula should be rewritten using variables o stand for the
known numbers on the sides: D, E, and F. His formula was: E—E+F. Figure 12

shows the labeling they used. In the following transcript they compare the two
formulae (MAT episode 14).

(1) John: Plus B plus C, which would be F. So in other words, E minus D
plus F.
(2) Bilk: Yeah. That’s an easy way to think of it.

(3) John: So, 63. So we just Jook. We know Eis63. Dis 18 And Fis3.
So it’ll make it much easier to work with. I guess.

(4) Bill: Yeah.
(5) John: Then we can just go from there. We know that’s divided by 2. So.
(6) Bill: But, You, you are aware of why it is divided by 2, right? The ...

reason this, this would make it kind of easier is ‘cause you would
know how much is left behind. You would see that the A’s cancel
each other out. The B cancels each other out. You would know that
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(7) John:
(8) Bill:

(9) John:
(10) Bili:

you would have 2C. With this you wouldn’t really know that you
had to divide it by 2. With this you would.

That’s true. — OK. So then would it be

But, uh. Once ... you already knew that you had to divide by 2,
some brilliant genius ... could go like E take way D plus F and then
have it divided by 2 and that would be the whole formula. That’s
how they would word it. From the start. But they won’t know
wiiy it works. But they would know it does. This shows why it
works. That’s, that’s all I can say. But yeah, yours is pretty good.

OK. So it just works. This is why it works.
Yeah.

63 E

Figure 12: Labeling used by Bill and John for their formulae.

The contrast they make is between John's “much easier to work with”
formula, and Bill's, which “shows why it works.” Bill’s formula makes it simple
to prove that the calculation must end with the division by 2. This association with
the formulated proving Bill had done makes it more explanatory. Bill
acknowledges that John’s formula is easier to use, but he feels that given that
formula, “they won’t know why it works.” This case is similar to the previous
case involving Colin and Anton, in that the guided, formulated proving the students
engaged in satisfied a need to explain. The need to explain by itself was not enough
to motivate the proving, but the addition of a social context that encouraged it
occasioned activity that satisfied that need to explain.

In my second interview with them I guided Bill and John through two
attempts to prove that the sum of two odd numbers is even. The second attempt
was fairly successful, and after they had proven even+even=even and
even+odd=odd with my guidance, they were able to prove odd+odd=even
independently. After this proving concluded, I asked them if the proof explained
why the sum of two odd numbers is even (MAT episode 18).

(1) Bill:

(2) DR:
(3) Bill:

Um. Yeah. It does explain it, ‘cause, ... this would be the same as,
... an even plus an even. ... In the end result, which were given,
even, ‘cause we found that out here, already. ... This is an even
plus an odd, which gives you an odd ‘cause, well we found that
out. ... ‘Causeit’s plus 1.

Umhmm.
It’s an even number plus I that’s why it’s an odd. Um, yeah. That
explains it.
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Figure 13: Representation of addition of odd numbers used in Bill’s proving.

Here Bill is summarizing the formulated proving they had done. They
represented an odd number both as a column of pairs of dots, with a single dot
added, and with the expressions 2n + 1 and 2m + 1 (see Figure 13). Inline 1 he is
saying that 2n + 2m is even because it is “an even plus an even” which they know
is even “ ‘cause we found that out here, already.” That even number (2n+2m) plus
1 “is an even plus an odd, which gives you an odd * ‘cause, well we found that
out.” Bill’s summary is a bit different from what they actually did since in their
original proving they considered (2n+2m) + 2, which is even, according to they
rule they proved earlier. His addition of 1 may have been a step in a derivation
involving the principle that one more than a odd number is even, or he may have
been making connections with both of the rules they knew as part of an effort to
systematize their knowledge. In any case, I interrupted his summary at this point.
What is clear is that he considered their formulated proving to be an explanation of

the odd+odd=even rule.

ainine — vi

As an explanation for others, unformulated proving is inadequate. The lack
of articulation and hidden assumptions that come with unformulated proving
prevents other people from being able to understand it. For an individual,
however, unformulated proving can be used to provide a personal explanation.
This is successful when the deductive chain is not too long. Of the cases that
follow, Kerry’s concerns a short, unformulated, deduction that explained. Other
such episodes probably occurred in the studies, but the very fact that they are short
and involve unformulated proving makes it difficult to be sure of their nature, and
especially to be sure that they involve a need to explain. The other two cases of
explaining using unformulated proving described here illustrate how such attempts
can fail when the deductive chain is too long. The first involves Ben, an
undergraduate student. The second involves Bill, a grade 10 student.

Kerry’s short explanation

When working in the Fibonacei situation Kerry noticed a pattern in the sums
of sequences of three consecutive Fibonacci numbers (MAT episode 6, see

* Appendix C). He noted that the sum was always twice the last number. For

example, he saw that 55+89+144=288. He wondered to himself why this should
be so and quickly observed that as the rule defining the Fibonacci sequence told him
that 55+89 would be the next Fibonacci number, 144, the sum of three consecutive
Fibonacci numbers would always be the same as adding the last of the three to

itself.
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Kerry’s explaining here is barely articuiated, but his assumptions and
reasoning are fairly clear. The brevity of his proving contributes to its lack of
formulation. A quick deduction like this one does not require any formulation to be
continued. Longer chains of deduction become increasingly difficult without
formulation.

’ ted

A group of four undergraduate students, Wayne, Ben, Eleanor, and Rachel,
worked together in the Arithmagon situation. Rachel and Eleanor solved the initial
puzzle using systems of equations. Ben gave the correct answer almost
immediately, and later reconstructed a solution method based on selective guessing
guided by the given numbers. At the time this transcript begins (MAT episode 8), |
offered him a challenge. My description of the 1-4-12 triangle as “simple” is ironic,
as | chose it precisely because the solution includes negative numbers and fractions.

(1) DR: Here’s a simple one: Can you do 1, 4, 127

(2) Ben: 1,4, 12, like that?

(3) DR: Well, they’re on the sides, because you’re supposed to be figuring
out -

(4) Ben: On the sides, 1, 4, 12. Well that’s QO or 1. One of them has to be 0

— No, That’s impossible — Because, | mean if this one is O, that
one has to be 1, that one has to be 3, this is adds up to 3. If this one
is 0, this one has to be 4 and that one has to be 1.

(5) Wayne:  Who said it’s got to be 0 though?

(6) Ben: Well, Yeah — It still shouldn’t matter — if you go down on the
number line you still have to go up on the number line

*k K

(7) Eleanor: 4 and a negative 3
(8) Wayne:  Umhmm

(9) Ben: The differenceis stilla | —
(10) Eleancr:  but this doesn’t have to be 0
(11) Ben: But even if it is, like let’s say negative 4 and negative 3, right? You

still have to get this to be 4 it has to be 7, all right? It’s still minus.
So it will still be like, 3. — You know where I'm coming from?

(12) Eleanor: Say it again

(13) Ben: The difference, the difference between these two is still always
going to be 1, right? No matter if you represent it with negative or
adding.

Ben'’s first explanation (line 4), is a fairly well formulated deduction from
the principles he had been using to solve other puzzles. He explains why the
triangle is impossible by reasoning deductively from the implicit assumption that the
secret numbers are natural numbers. When Wayne questions his hidden
assumption, Ben immediately offers further explanation (line 6). Note that this
explanation has a different character from the ones he has offered before (in line 4).
It is much less articulated, making it difficult to judge how aware Ben was of his
reasoning. His language suggests that his proving is based on an image of the
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relationship between the values. These features lead me to characterize this
explanation as unformulated proving.

Eleanor’s request to “say it again” (in line 12) marks the failure of Ben’s
unformulated proving to explain to her. Ben has based his argument (in line 11) on
a hidden assumption, which in this case is wrong. He seems to believe that the
difference between the two secret numbers is 1. This is true in the case where one
of them is zero, which he had just been considering. The two numbers he names,
~4 and ~3, have a difference of 1, and these numbers do not work. In fact, if the
difference must be 1, there is no way that a difference as large as ( 12-4) could
occur. This provides the basis for Ben’s belief that the puzzle can not be solved.

Bill's unformulated explanation that F3, is even

When investigating the Fibonacci situation, Bill and John identified the
recursive rule defining the sequence, and found pattemns in F3,, and Fy,
inductively. The pattern they saw for F3, was that all such Fibonacci numbers are
even. John accepted that this was generally true, based on inductive evidence,
although Bill did not. Bill was unusually resistant to accepting inductive
verifications. At the end of the session I asked Bill if he could see any reason why
every third Fibonacci number is even (MAT episode 16.2).

(1) Bill: Um. Why? Um. When you add two odd numbers it goes into an
even. That’s one theory. Idon’t know. If you. If you add two
odds you’d get an even, wouldn’t you?

(2) DR: Y eah.

(3) Bill: So, let me see. It starts with, uh, with uh one. One, one plus one
gives you two.

(4) DR: Umhmm.

(5 Bill: And then this it would give you an odd. And then since, uh, then

that’s. Oh, wait wait wait wait wait wait. — What was | seeing?
{laughs] — —Every third, third number. Oh yeah, Oh no. I'm
thinking, right. To get the third number you would add the two
odds. Since this is the third number, this would be the next third,
third number. There’s two odds, you get an even. This is the third
number. There’s two odds, you get an even.

(6) DR: Would it work- It wouldn’t work if there wasn’t two odds?

(7) Bill: It wouldn’t work if there wasn’t two odds. But since there’s two
odds—you can make an even. —

Bill identified part of the deductive argument that shows that every third
Fibonacci number is even. The argument involves three steps. The first is to
observe that every third Fibonacci number is even because it is preceded by two
odd numbers. The second step is to see that this odd-odd-even pattern must recur
since it forces the two numbers after an even Fibonacci number to be odd. The
final step is to generalize this recurring pattern to the entire sequence. Bill saw the
first step, and in line 5 he may have briefly seen the second step. Then he became
confused, and soon after he reverted to inductive reasoning to establish that there is
always a pair of odd numbers before F3,, .
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Explaiing— ,

Reasoning by analogy to explain occurred only a few times in the studies,
but those occasions indicated that analogy can be a powerful method of explaining
in mathematical situations. The analogies the participants offered can be described
as ‘weak’ or ‘strong’ analogies. Their acceptance as explanations was related to
this strength. The two cases I will describe in detail involve Bill, and Rachel, Ben,
and Wayne. In Bill’s case his analogy is very strong. Rachel, Ben and Wayne
each offered explanations of which Rachel’s was deductive, Ben’s was a strong
analogy, and Wayne's was a weak analogy.

M?

ati

In my second interview with Bill and John, the grade 10 students at North
High School, we examined a question that had come up in the first interview
session: “Why is the sum of two odd numbers even?”

When the question was first asked (MAT episode 9) Bill gave an
explanation by analogy, that he had hinted at in the first interview session. His
analogy relates even and odd numbers to positive and negative integers. The rule
‘An odd number plus an odd number is an even number’ corresponds to the rule ‘A
negative number times a negative number is a positive number.” The sums of even
numbers and odd numbers are related in a similar way to products of integers.

This analogy is actually quite strong. The integers can be divided in half in
various ways, two of which are the division into even and odd, and the division
into positive and negative. In both cases there are ethical connotations attached to
the words used to describe the two halves, which makes one half “better” than the
other. For example, both ‘even’ (as in ‘even-handed’) and ‘positive’ have good
connotations. As well, in both cases there is a binary operation that combines two
like numbers into a number in the “better” half, and that combines two unlike
numbers into a number in the other half. All of these features mark links between
the two domains of the analogy. The number of links, and the degree of match
between the features they link, is a measure of the strength of the analogy. I am not
asserting that Bill would have been able to explicate these links himself, only that
they contribute to the strength of his analogy.

After Bill offered his analogy, I led Bill and John through a deductive
exploration of the question, using a syncopated algebra to deduce the rules. This
was accepted, but not with enthusiasm. I then proposed a pictorial model of the
sum of two even numbers and a formal notation related to it. In this context Bill
and John were able to prove the odd+even=odd principle with some assistance, and
the odd+odd=even principle independently. I then asked Bill and John if what they
had done explained the principle odd+odd=even. Bill said it did, and repeated the
gist of the argument in order to illustrate how it explained the principle.

About ten minutes later Bill made an interesting comment (MAT episode
20.3). He stated that he did not like proofs, and that he had no interest in
explanations of mathematical principles. This statement contradicts comments he
made in the first interview session, in which he expressed a preference for his
Arithmagon formula and derivation on the basis that they allowed him to see why
the division by 2 was needed. This change of heart may reflect the differing
circumstances in the two situations. In the first interview session, the proving
through which 1 guided Bill explained his new formula, which was otherwise
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unexplained. In the second interview, the statements they proved were already
known and accepted, and Bill had already offered his analogy as an explanation for
them. If Bill judged his analogy to be a better explanation than the proof, then the
proving in this case could be seen as superfluous. As his analogy is a strong one,
and he showed enthusiasm for it,  suggest that he did choose it over the deductive

explanation offered by the proof.

A strong analogy can indicate the possibility of a deductive link although in
the case of Bill this is not so. In the following case of Rachel, Ben and Wayne an
analogy that does indicate a deductive link will be described and strong and weak
analogies will be contrasted.

d W, I

: “W l)f)’,

The following episode (MAT episodes B19.3, W17.3, E18, R12.1) took
place toward the end of a problem session in the first clinical study, in which four
undergraduates (Ben, Wayne, Eleanor and Rachel) were working in the
Arithmagon situation. It shows both strong and weak analogies, and explaining by
proving. Rachel had discovered a formula for determining the value at a vertex x.

Itis:

b+c-a
2

X =

where q, b, and c are the values on the sides of the triangle, with a opposite the
vertex x. Wayne gave a verbal rendition of this formula:

(1) Wayne:  You pick any vertex and it’s going to be the two sides that make the
angle, subtract the side opposite the angle, and divide by two. |
understand everything except why you divide by 2.

REKXK

(2) Ben: You know why you divided by 2, is because-

(3) Rachel: Because there’s two sides.

(4) Ben: No. No, it’s because-

(5) Wayne:  There's two other points, to be solved for, no?

(6) Ben: No. No. No. Wefound out that Y, X + Y + Z is half of the
outside points.

(7) Wayne:  That’s right!

Rk

(8) Ben: So if you’re trying to find one point you add the two-

(9) Wayne:  The two sides-

(10) Ben: -adjacent sides and then-

(11) Wayne: -that angle. The two sides that come in-

(12) Ben: -Yeah, the angle.-

(13) Wayne: -to that point to make that angle, OK Adjacent.

(14) Ben: -minus the opposite.
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(15) Wayne: And divide by 2 because we found out that the ratio for sides added
together, plus points added together was 2.

(16) Rachel: Was 2.
(17) Ben: The ratio is one half,
(18) Wayne: And since we’re trying to find a point,
(19) Eleanor: ‘This is half of this,
{20) Wayne: -that’s why it’s a half, over a half.
In line 1 Wayne wants an explanation: “Why you divide by 27" After a
short discussion of the differences between the way Wayne describes the process

and Rachel’s equation (omitted from the transcript), Ben attempts an explanation
(see lines 2-7). He is interrupted by explanation from both Rachel and Wayne.

Rachel’s explanation (line 3) might be analogical or deductive. She may be
referring to an analogy between the two sides adjacent to the vertex to be solved and
the divisor 2. But it is more likely that her explanaticn is deductive, given that she
derived the original equation algebraically. She began her derivation by adding the
two equations referring to the vertex x:

x+y=»b
X+2z=¢
2x+y+z=b+c
2x+a=b+c
2x=b+c-a
_b+c-a

el

X

When the 2 appears in the third line, it is because x is involved in the totals
of two sides, b and ¢. When the denvation is completed the 2, which came from
the combination of two sides at the beginning, becomes the 2 that is divided by at
the end. Rachel’s explanation is deductive for no one but her since her short
comment is not sufficient to really communicate it to them or to Eleanor. In fact, it
is likely that if they considered her explanation at all, they took it to be a weak
analogy.

Wayne’s explanation (line 5) works only by analogy. There are two more
vertices to be solved, once the first is known, but there is no connection between
the division by 2 and the number of vertices remaining to be solved, other than the
number 2. This makes this 2 weak analogy. It is interesting that even though
Wayne had been the first to voice a need to understand the division by 2, a minute
and a half later he seems more anxious to suggest his own explanation than to hear
Ben'’s. -

Ben’s explanation (line 6) might be analogical or deductive, but it seems
more likely that it is analogical. There is no evidence that Ben spent time making a
deductive connection between Rachel’s equation and the relation which he had
discovered empirically with Eleanor and Wayne: a+ b+ ¢ =2(x + y + z). Here the
analogy is stronger than in Wayne’s explanation since the analogy is between two
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equations with variables instead of between an equation and a state of affairs. This
strength is likely to have led to Wayne's acceptance of Ben'’s explanation over his
own.

The explanations that were rejected were a weak analogy (Wayne’s) and a
deductive explanation that was taken by the rest of the students to be a weak
analogy (Rachel’s). The students preferred the strong analogy, which was based
on several points of connection. This is sensible since a strong analogy could have
(and in this case does have) the potential to be developed into a deductive proof. In
the end (at line 15) it is this strong analogy that is accepted as explaining why the
division by 2 occurs.

It is worth noting that even though Rachel’s explanation was the most
thought out and based on deduction rather than analogy, which might suggest it
was a more certain explanation, it was apparently not even considered by the
others. This illustrates a weakness of proving versus analogy for explaining.
Proving is a process that must be formulated to be communicated and must be
followed with some care to be understood. In this situation the social dynamic did
not afford Rachel the opportunity to make her case clearly. Ben’s analogy, on the
other hand, could be understood immediately by Wayne and Eleanor, who were
familiar with the context to which he was making links. Rachel could also see these
links after Eleanor showed her what formula was being referred to (line 19).

Summary

Explaining can be done by proving and by analogy. Explaining by proving
can be more or less formulated. Whether explaining is successful depends not only
of the method of explaining but also on the social context.

Unformulated explanations are limited precisely because they are
unformulated. As explanations for other people they are useless, as Ben’s attempt
reveals. As explanations for an individual, they may work, but only if the
argument required is very short. These same weakness show up in unformulated
proving used to explore (see section 2).

Formulated proving allows extended expianations beyond what analogy can
provide. At the same time, formulated proving is not necessarily preferred over
explaining by analogy (as in the case of Bill). In some contexts, where no strong
analogies occur, formulated proving may be the only method of explaining
possible. At the same time, formulated proving to explain seems to require an
appropriate social context, either one in which it is already occurring to address
another need, or one in which there is a strong need to explain to others, or one in
which a teacher (present or in the past) indicates that formulated proving should be
used.

Analogies can be described as strong or weak. A strong analogy can satisfy
a need for explanation. In fact, a strong analogy can be preferable to a deductive
explanation, either because it is more easily communicated, or because it occurs
first and removes the need to prove to explain.
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2. Exploring

Given the exploratory nature of open ended problem solving it is not
surprising that the need to explore arose often in my studies. This need occasioned
both unformulated and formulated proving as well as an important kind of proving
that I call mechanical deduction. Mechanical deduction involves the use of a
technique or technology that is based on deductive principles, but that conceals the
operation of these principles in a set of mechanistic rules. Algebraic manipulations
are included in mechanical deduction, as is computer programming. Both
reasoning by analogy and inductive reasoning were also used to explore, and
exainples of such reasoning are discussed at the end of this section. Figure 14
shows the paths in the network related to exploring, with paths involving proving
marked by thicker lines. :

NEEDS Exploring

REASONING
o !
PROOF

Cresoma>

Figure 14: Paths related to exploring.
— I V'

Several episodes of unformulated proving used to explore were observed.
In each of these it seems that such explorations niust be successful quickly or not be
successful at all. It seems also that the results of such explorations are not
remembered unless they are later formulated. The cases here show a successful
short term exploration (the case involving Bill), and a case of unformulated
explorations that were remembered because they were later formulated (the case of
Sandy, a grade 6 student).

39



Bill’s unformulated explomti

This case is taken from Bill and John’s investigation of the Fibonacci
situation. Arter they had been working for about 30 minutes, I asked them to
summarize their results (MAT episode 11). After listing three of the relations they
had discovered, Bill made this claim: “The first number here would have to be 0,
because O+ 1 = 1.” This claim is an example of a simple deduction of a value in
the sequence from the recursive rule defining the sequence. Any extension of the
sequence, such as determining the value of Fg from the values of Fg and F-, would
be logically the same. Bili’s claim is different in that it uses the recursive iule in an
unusual way, to extend the sequence backwards beyond its “beginning”. He found
that the recursive rule and deductive reasoning allowed him to circumvent the given
situation: “the sequence of Fibonacci numbers begins: 1, 1 ...;” and to invent new
mathematical objects, in this case Fo. It is the novelty of the result obtained that
makes this case an example of exploration.

T
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I made several informal visits to meet with Sandy at his school when he was
in grade 6. His ability in mathematics was impressive and inspired my visits. On
my first visit I asked him to investigate the Anithmagon situation. He solved the
original puzzle quickly through unformulated proving. As he solved a second
puzzle his reasoning became more formulated and when asked he could produce a
formula and provide a proof of it.

When Sandy was first given the 11-18-27 Arithmagon, he guessed 5 as the
value at the top corner, but then rejected it without trying. He then adopted a more
systematic approach. He tried 0 and mentally determined that it didn’t work
because 11 + 18 = 27. He then observed that the choice of the value at the top
corner determines the values of the other two which must add up to 27: “That
would make these two numbers and then you just have to find one that makes 27.”
He also commented: “I knew it was a fairly small number because this [27] is
almost these two [11+18] together.” Although he did not say anything at the time,
based on his later comments, ] believe that when he tried 1 and found that it
worked, he also observed that the sum 11+18 contained the top corner number
twice and each of the others once. This allowed him to deduce that the value of the
top number would be half of the difference between 11+18 and 27, that is, 1.

Sandy was then asked to make up an Arithmagon of his own, and he chose
13-21-42. He added 13+21 mentally and then subtracted 34 from 42. This gave
him 8, which he took half of to arrive at a value of 4. These calculations came
quickly and confidently, indicating that he had worked out a method similar to that
described above while solving the original puzzle. When Sandy checked his
answer, however, he discovered a problem. 4 was not the correct value.

He then tried 2 and when it didn’t work he asked: “Are there only certain
combinations that work out here?” He was reassured that the puzzle should work,
and then realized the value would have to be negative: “The number’s too high —

unless you put -4.” He immediately tried ~4 and found that it worked.
(1) DR: Why did you go straight to =47

(2) Sandy: Because these two [13+21] were less than that [42], you need
negative numbers.



(3) DR: But how come 4?

(4) Sandy: I subtracted 34, the total of this, from 42, which gave 8 divided in
half. ... I tried 4 first, remember?

(5)DR: Yeah.

(6) Sandy: I figured 1’s not enough, 0’s not even enough, so I tried 4.

Here Sandy’s reasoning is much clearer. He took the sum of the two
adjacent sides, found the difference from the opposite side, and divided by 2. At
first he took the positive difference which gave him 4. When this failed, he briefly
turned to a systematic inductive approach, dividing by 2 again and then reasoning
about the size of the number he was seeking. When he realized the answer must be
negative, he returned to his original method, seeing that it was sound. He then

repeated his calculations in an organized way to show that they gave ~4.

X

y .
c

Figure 15: Sandy’s formula for the Arithmagon.

After repeating his calculations for the original puzzle, to show how they
worked in that case, he was asked to solve two more Arithmagons and to write his
method in formal terms. This he did. He solved a triangle with fractional values as
secret numbers without comment and finally produced the diagram and formula in
Figure 15.

Sandy’s original proving, which led him to the discovery of his method,
was unformulated, but the problems he had with the second puzzle, and the
questions he was asked {ed him to formulate it somewhat. This enabled him to
used his method intelligently in cases with fractional solutions and later when
exploring Arithmagon squares.

Exploring — Formulated proving — Preformal proof

In all the studies I did as part of this research, exploring using formulated
proving occurred in only one case: Rachel and Eleanor’s investigation of the
Arithmagon situation with Ben and Wayne. The association of this proving with a
need to explore should be qualified by the observation that Rachel’s initial choice to
explore by proving was motivated by the expectations she ascribed to one of the
observers. Eleanor’s choice to prove as a way of exploring may be linked to her
observation of Rachel’s activities.
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For the first half hour of the session, Rachel engaged in activities similar to
those of the others. She solved the original puzzle by using a system of equations,
she tried solving other triangles, she experimented with Ben’s constraints method,
and she searched for patterns inductively. In the second half hour of the session,
however, she worked by herself, or with the help of an observer, Tom Kieren,
using formulated proving to explore. Her first exploration was of the situation in
which two of the known sides are equal. By working with the known relations she
was able to deduce that two of the corners would be equal in that case (see Figure
16). After she came to this conclusion, she described her work to the others MAT
episode 8). This description may have inspired Eleanor’s explorations by
formulated proving (see below).

Rache] then explored the case of all the known sides being equal. When she
completed her deductions, the observer closest to her, Tom, suggested that she
explore the situation without putting any constraints on the situation. With a few

hints from Tom she then derived a general formula, x = b_+2g_-__g for an unknown
cormner.
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Figure 16: Rachel’s proving to explore.

While Rachel’s proving led to her discovery of new aspects of the
Arithmagon situation, it would be misleading to claim that exploring was her sole
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motivation to prove. Her comments in the interview session make it clear that she
had other considerations in mind.

(1) DR: Why were you doing that?

(2) Rachel:  Oh, you want me to answer right now? [laughter] Because I was
stuck at them. I didn’t know where to go. And Tom was sitting
beside me saying, “Well, what can you do now?”

(3) Eleanor:  Nothing, nothing. [laughter]

(4) Rachel; So I was thinking I’d better think of something, or else that
question’s going to keep coming. So [ just thought, well hey, in
math you always get that right? You always get those conditions.
Every teacher’s listing these conditions. Now, if we have this
condition where this equals that. You know what I mean. So that’s.
Itjust. You know. Itcomes from my head. Something I knew of
already that I thought I could apply to that problem.

Here it seems that the form of Rachel's proving was taken from her past
school experience, in the hope of satisfying her need to answer Tom’s question
“What can you do now?”

4
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While Rachel was exploring the Arithmagon situation modified by various
conditions, Eleanor was working with Ben and Wayne. Together they found
inductively the relations a+z = b4y = c+x and a+b+c = 2(x+y+z) (see Figure 17).
Eleanor then worked independenily, trying to invent a general methed of solution
based on these relations (MAT episodes 11-13). Her work was interrupted on
several occasions but she did manage to develop an alternative solution method to
Rachel’s. Her method invcives finding the sum of the three sides (34, in the
example shown in Figure 17), and dividing by 2 (17 in her example, but not
shown). This calculation gives her “middle number,” (note the expression in the

. middle of the upper triangle). Because the sum of a side and the corner opposite is
this middie number, the comer numbers are obtained by subtracting across the
triangle (e.g., 17-11=6).

Eleanor’s explorations differed from Rachel’s in an important respect.
Rachel began from the conditions known to her and those she added, and explored
to see what she could find out. She had no particular goal in mind. In Eleanor’s
case, she had the specific goal of finding a general solution method. One difference
between exploring with a goal and exploring without one is the criteria for
satisfaction. In Eleanor’s case, her proving could only satisfy her need to explore if
she found a general method. In Rachel’s case, whatever particular results she
found satisfied her need to explore. It was only the teacher-game she felt she was
playing with Tom that kept her proving (Other teacher-games are described in
section 4).
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Figure 17. Work related to Eleanor’s formulated proving to explore.
— i duction —

Particular circumstances are necessary for mechanical deduction to be used
to explore. The situation has to be one in which what is known about the situation
can easily be cast into a form to which a particular technique is suited. The
Arithmagon situation is one such situation. Kerry, Jane, Chris, Rachel, and
Eleanor in the first clinical study, and Colin in the North school study, used
mechanical deduction to solve the original puzzle (see Chapter 111 for Stacey and
Kerry’s uses of mechanical deduction, and Appendix E for descriptions of ways of
solving the Arithmagon puzzle).

When the information given in the problem is cast into an algebraic form a
system of three equation in three unknowns is generated:

at+b=11
b+c=18
a+c=27



This system of equations can be solved by elimination, using procedures that were
known to all the participants in the studies except Sandy, Bill and John. The
system can also be solved as a matrix, and this was done by Kerry and Chris.

Chris’s explorations (his partner, Jane, was not very actively involved)
were unusual for the strong preference he had for mechanical deduction. In the
Arnithmagon situation (see MAT) he solved the original puzzle using a system of
equations and felt he had established a general method. I then suggested he try an
Arithmagon square. Some Arithmagon squares have an infinite number of
solutions, and some have no solution. He began working with a matrix, which he
row reduced correctly, as far as was possible. He was not able, however, to give
meaning to his result. He continued wondering what was wrong with his matrix
for an extended period. At no point did he attempt an example, which might have
indicated to him the nature of his difficulties with his matrix. In the Fibonacci
situation he formalized the rule as Fi=a, Fa=b, F;=Fp.1 + Fp.2. He then derived a
wide variety of statements from this rule, without interpreting any of them in terms
of the actual sequence. At one point he obtained a sequence of expressions, that
included the Fibonacci numbers as coefficients, but he did not notice. The
mechanical deduction he was engaged in kept him from seeing any meanings in
what he was doing.

That mechanical deduction was not employed for exploration more
extensively is probably an indication of the unusual conditions present at the
beginning of the investigation of the Arithmagcn situation, compared to the
conditions later in that situation and generally in the Fibonacci situation. In the
Arithmagon situation an algebraic expression of the situation is easily obtained, and
is of a form familiar to most of the participants. These problem situations are
unusual when compared with the exercises the students at Central, North and South
Schools saw in their mathematics classes. In the schools the majority of exercises
the students are assigned are set up to provide a fairly easy entry for the algebraic
techniques used for mechanical deductions.

For example, at South High School the students were assigned problems
asking them to determine, given the coordinates of four points, if those points were
the vertices of a parallelogram. In class they were specifically instructed that a
careful graph of the points would not suffice to answer the question, even if the
graph clearly showed two sides were not parallel. A correct solution to the exercise
required that the students employ the slope formula to determine the slopes of the
two segments in question. The exercise was set up to make mechanical deduction
using the slope formula easy, and the teacher’s instructions required it.

Exploring — Analogy

Many participants in the studies considered whether the triangle in the
original Arithmagon puzzle might offer a clue toits solution. Wayne was unusual
in that he took this clue seriously, even when told that the situation had nothing to
do with triangles. Wayne explored the Arithmagon situation by drawing analogies
between the situation, and his knowledge of triangle geometry (MAT episodes 1, 3,
5, 6, & 16). This made triangle properties like area, Pythagorean triples, and angle
measure relevant to his exploring (see Figure 18).
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Figure 18: Triangles drawn by Wayne while exploring, relating to geometric
properties.

This unusual use of analogy to explore interfered with Wayne’s ability to
identify patterns inductively and so interfered with the satisfaction of his need to
explore. His lack of success need not have been the case, however. The main
limitation of his use of analogy was the weakness of the analogy. Nothing but the
arrangement of the puzzle suggested that triangle geometry might be involved.
Perhaps if the analogy had been stronger, Wayne might have enjoyed successes like
those of Euler, who used analogy extensively in his mathematical explorations

(Polya, 1968).
— IV sonj

Exploring inductively was used extensively by all the participants in the
studies. This is not surprising. In many circumstances the information given
provided a weak base for both analogy and proving. In addition, inductive
exploring was the way of exploring most often modeled in the schools.



Inductive exploring was used more often in the Fibonacci situation than in
the Arithmagon situation. This may be due to the ease of generating new data in the
Fibonacci situation. In the Arithmagon situation new triangles could be generated
by starting with known corner numbers and adding to find the side numbers, but
this technique produced Arithmagons with special properties. To generate general
examples, new puzzles had to be made, and then solved. Even with the use of
mechanical deduction this process was time consuming. Most participants
examined only a few Arithmagon triangles. On the other hand, most participants
examined from 20 to 40 terms of the Fibonacci sequence. Ancther feature of the
Fibonacci situation, that may have discouraged deductive reasoning, is the recursive
formulation of the rule defining the sequence. While unformulated reasoning was
not hampered by this feature of the situation, the participants are unlikely to have
had much experience reasoning formally on recursive sequences.

In the GEOworld situation the students were asked to try to identify features
of a geomeiric world defined by a computer procedure that drew geometric figures
based on three numeric inputs. For example, Figure 19 shows the results of the
inputs 100, 100, 3. In this situation the students had no general knowledge of the
situation at all. Any general principles had to be developed inductively by them. [
was interested to see whether the establishment of such principles would give rise
10 a need to prove from them, or whether some need to prove would motivate the
participants to establish general principles.

Figure 19: Output of GEO 100 100 3.

In the end, the GEO situation provided little information about proving,
because almost all the reasoning employed in that situation was inductive. This
reflects the complete lack of known relations available at the beginning of the
participants’ investigations. In a few cases reasoning by analogy and unformulated
proving were used, once some patterns had been established, but these were
fleeting.

Summary

Exploring is the need that was satisfied in the widest variety of ways by the
participants in my studies. Both inductive reasoning and reasoning by analogy
were used to explore, but exploring inductively was far more common and far more
successful. The proving used include unformulated and formulated proving and
mechanical deduction. The problem situations themselves seemed to be the
strongest constraints on the method of exploration. The exception to this is the case
of formulated proving, which seems to require a supportive social context to occur.

Unformulated proving can satisfy a need to explore, but only in cases where
the situation is not too complex. Simple discoveries like Bill's occur in isolation
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and are unlikely to be connected with other aspects of the situation. Sandy provides
an example of unformulated proving which became sufficiently formulated to be
used and extended as exploration of the situation continued. As with explaining by
unformulated proving, the proving that occurred in these examples is difficult to
detect and lacks the permanence that formulated proving seems to possess.

Exploring by formulated proving was an uncommon method of exploring
for the participants in the studies. This seems odd considering its usefulness as a
method of exploration. It may be that other methods of exploration are just as
useful, or that students have more experience with other methods of exploring.
Exploring can be directed to a particular goal or undirected. Formulated proving is
useful in both cases although satisfaction is likely to come more quickly if no
particular goal is sought. Finally, as in the case of explaining by formulated
proving, social factors seem to be important in the use of formulated proving to
explore.

3. Verifying

Verifying is traditionally and most commonly thought to be the need which
proving satisfies. As I noted in the previous chapter, this is not the case in
mathematics nor for many students. The participants in my studies did prove to
verify, but only in particular circumstances. For example, unformulated proving
was an integral part of “guess and check” inductive explorations, forming the

NEEDS
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Figure 20: Paths related to verification.

48



“check.,” Proving which was begun to saiisfy some other need can also verify. All
three kinds of proving [ identified are include in the network shown in Figure 20
because of this incidental verifying which occurs. Formulated proving to verify
also occurred as part of a teacher-game. These occurrences are described and
discussed 1n the next section, which is focused directly on teacher-games as a need
to prove.

Inductive reasoning can also be used to verify and an example and
discussion of this will also be given. While not a kind of reasoning, appeal to
authority can also be an important way of verifying in mathematics, and so I include
it as part of the network. Appeal to authority was only observed with the high
school students. Figure 20 shows the paths associated with the need to verify.
Those involving proving are marked by thick lines.

Venfving — t Vi

Unformulated proving was used in conjunction with inductive exploration
in a ‘guess and check’ cycle. While many ‘checks’ were simple calculations, which
I do not count as deductions (although technically they are), others were more
involved. A particularly clear example is Bill’s verification of a method he found
for solving the Arithmagon. Bill had been experimenting with various operations
on the three known sides to try 1o derive a secret number. When he calculated
27 + 18 x 11 = 16.5 he felt he was near a solution (MAT episode 6). Once he
had rounded 16.5 to 17 he could determine the other secret numbers by subtracting
from the sums on the sides. Bill had at this point found a solution method that
worked for a special case. Now he needed to test 1t in general. He asked “But
would it work for any one?” and tned the case of a 3-6-17 triangle. His method
gave him a value of 9, which he felt was wrong.

To verify that 9 did not work Bill used unformulated proving by reducio ad
absurdum®. “No, how could it be 97 Because you, you get 6. [9+?=6] Unless this
was, um, negative three. [94+(-3)=6. Another secret number must then be ~3.]

But then you get 3 from here. {(73)+7=3] You would have to have, um. To geta

negative, you have to have 6. [(-3)+6=3. The third secret number would have to
be 6.] Butthen9 and 61is 15. [Not 17, as it should be. A contradiction has been
reached.} It would not work.”

While most participants were not so clearly using unformulated proving to
verify results, this does seem to have been fairly common. This seems reasonable
since the main weakness of unformulated proving, the impermanence of the process
and resuit, does not matter in cases where the result will be discarded if found
wrong. It should also be noted that unformulated proving to explain or explore can
also verify the results involved, and some examples included under those headings
could also appear here.

Verifving — : S

Colin was observed using mechanical deduction to verify statements during
the first interview session at North School. There is an interesting contrast between
Colin’s use of mechanical deduction and Anton’s use of inductive reasoning to
verify.

* .y . s
Deriving a contradiction.
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In the first interview session I asked Colin and Anton to reexamine a
calculation they had made in the Arithmagon situation. They did so, and Colin
noticed an error in it. This allowed him to perform a correct calculation which
produced the formula Z = xgi When I asked Colin what this formula meant, he
said with confidence that it gave one of the secret corner numbers. Anton then
suggested trying it to see if it worked. They did so. Anton then suggested trying it
on a different corner. They did so, and I asked if they had expected the formula to
work on one corner but not on all. Colin asserted that the formula should work the
same way for all corners (MAT episode 2.5). Anton then asked ine if the formula
was correct, and I said it was one of several correct formulae. These episodes were
followed by Colin’s use of formulated proving to explain, described in section 1.

What distinguishes this case from those of formulated proving described
above is the use of mechanical deduction to discover and simultancously verify the
formula. The mechanical aspect of Colin’s derivation was revealed more clearly
later in the session when I asked them to interpret the derivation in terms of what it
meant to subtract the two equations relating sides to corners. They were unable to
do so, indicating that the original subtraction was not a formalized act of deductive
reasoning but a mechanical act of deductive reasoning.

Verifving — ‘v

Verifying using inductive reasoning was observed far more often than
verifying by proving. This seems to be the method of choice for verifying in
mathematical situation for the participants in the studies. Colin and Anton provide a
sharp contrast between these two methods of verifying (described under
Verifying—Formulated proving). Such a sharp contrast is not visible in many
other cases, since few people verified by proving while everyone verified
inductively. :

Inductive verification was used often even when a deductive verification
could easily have been provided. For example, when Rachel announced her
formula for solving Arithmagon puzzles, she made it clear that she had derived it.
Ben and Wayne, however, did not ask her how the derivation went, but instead
tried her formula on a example and concluded that it worked.

This overwhelming preference for inductive reasoning as a way of verifying
has been demonstrated by many studies (e.g., Fischbein & Kedem, 1982) that
claim that students do not understand proofs because they prefer to verify
statements inductively. The possible implications this could have for teaching
proving are discussed in Chapter V.

Verifvine — Author

The way of verifying mathematical statements that was second in popularity
to inductive reasoning was a form of non-reasoning: making reference to an
authority. Two of the participants at North School, Bill and Anton, provide good
examples of verifying by making reference to authority. The participants in the
clinical studies secem to have assumed that simply asking for answers was not
permitted. They may have been playing a research-game more than a teacher-game.
These two high school students, however, were willing to ask, and did so. The



case of Anton gives 2 simple example of asking for verification. The case of Bill is
more complex.

Anton’s reference to authority

Immediately after Colin and Anton solved the Arithmagon puzzle, in the
Arithmagon session, Anton asked if their solution was correct (MAT episode 1.4).
As they found their solution by means of a mechanical deduction, it is not
surprising that Anton might have doubts abont their solution. Mistakes happen in
mechanical deduction, and are hard to notice. What is surprising is that Anton
chose to verify their solution by asking an authority, rather than checking it himself.
He seems at this point to have a preference for authority over induction. This was
not the general case, however, as Anton verified statements inductively in the other
sessions.

Bill’s rejection of analogy. inducii | deduction in the face of authori

In the second interview with Bill and John, we proved that the sum of two
odd numbers is even, twice. They both seemed quite confident that this was a
general principle. Bill, in particular, had a number of reasons to believe in the
generality of this principle. He had seen inductive evidence for it in the Fibonacci
session. In the first interview session I had assured him that it is generally true. In
both interview sessions he had offered explanations by analogy of the principle.
And finally he had just seen two proofs of the principle, one of which he developed
himself. When I made the claim, at the end of the second interview session, that
the assertion fails for large numbers, their response surprised me. In the face of all
the evidence they had seen, Bill and John rejected the generality of the
odd+odd=even principle (MAT episode 19).

Both Bill and John’s first response to my assertion that the principle failed
for large numbers was to ask “How large are we talking?” I replied that the
principle failed for 117 digit numbers. Bill then said: “I don’t see how come that is,
but of course I’d have to see a number that long. [laughter] And it would take like a
year to really find out why. But, um, That’s really kind of neat.” His comments
do not indicate that he couldn’t see how the principle could fail, that he doubted it
could, but rather that he could not understand why it would fail. He acted as if the
failure of mathematics to make sense in this case was a failure on his part to make
sense of it. Against all the inductive, deductive and analogical arguments he had
seen, my authority, acting in the role of a teacher, was overwhelming. Neither the
possibility that I was lying or mistaken was voiced, and neither possibility seemed
even to be considered. (Lest there be concerns about the ethics of my research, 1
did admit my deception before the session ended.)

Bill’s beliefs about the origins of mathematics may be related to his attitude
towards authortties. In line 8 of the transcript in the sub-section Explaining —
Formulated proving, in section 1, he refers to “they”, the “brilliant genius” who
could develop the formula and then rephrase it in a useful form. Of course, this is
exactly what Bill and John did, but Bill quickly removed himself from this creative
aclivity, substituting the anonymous geniuses who create mathematics.
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Verifving in scl

It seems plausible that Bill and Anton might have developed their attitudes
towards verifying by making refercnice to authority in school. This example from
South School illustrates how this might have come about.

Ms. E was teaching a lesson on slopes of perpendicular lines. She had the
class suggest relationships between the slopes of perpendicular lines. The first
suggestion was that the slopes would be opposites. The exampie Ms. E had on the

board involved slopes of 1 and -1, so in this case the suggested relationship
worked. Ms. E then looked an example of a line of slope 3. She drew in a line of

slope =3 and noted that the line did not look perpendicular. A student suggested the

negative reciprocal. Ms. E. drew in a line of slope :31 and noted that it did look

perpendicular. She then said, “That doesn’t look bad. Again, it’s not a proof, but
it’s good inductive reasoning, and in this case it is true.” In this case the students
have been given some visual, inductive evidence that the relationship is what Ms. E
says it is, but she has then explicitly rejected that evidence as a verification. The
students are left to rely on the teacher’s authority as verification.

Summary

Venification, the traditional reason to prove, seems not to be a major
motivation for the students I observed. Some unformulated proving and
mechanical deduction was used to verify, but either as a side effect of proving for
some other reason, or as part of an inductive, guess and check, process. Verifying
by induction was quite popular, as one would expect from past research. The
popularity of verifying by making reference to authority, especially among the high
school students surprised me. I suspect | was being naive. On reflection verifying
by making reference to authorities makes a lot of sense.

Verifying by reference to authority is not necessarily a poor method of
verification. Matters of historical fact, for example, cannot be verified without
consulting and analyzing various texts, which act as authorities. In mathematics
verifying by making reference to published proofs saves considerable time and
effort, although at some risk, as Wiles found when some of the proofs on which he
had based his first proof of Fermat’s Last Theorem turned out to have flaws. The
elevation of verification by reference to authority over reasoning as a method of
verifying has problems, however. Authorities make errors (or iie as I did with Bill)
and reasoning in various ways can discover these errors (as occurred in the case of
Wiles’ proof of Fermat’s Last Theorem; see Chapter I, section 2).

4. Teacher-games

Formulated proving, specifically intended to verify, occurred only as a
result of an interaction with someone in the role of a teacher. In these cases the
need to venify becomes entangled with a teacher-game as a motivation to prove. In
addition, proving to verify as part of a teacher game can lead to what I call
“formulaic” proof-making. Formulaic proof-making results in a proof, but it is not
proving. Instead the proof was constructed according to principles which are
associated with the creation of the sorts of proof teachers like. Two of the
examples given below illustrate formulated proving as part of a teacher-game. The
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third illustrates formulaic proof-making. Figure 21 shows the paths associated with
these examples.

|
REASONING
PROVING
PROOF

Figure 21: Paths related to teacher-games.
acher- {Verfying — u Vi

The cases described here come closest to the ‘official” model of proving of
any of the paths I have described. Here the purpose of the proving is to verify, and
the proving is formulated. Another characteristic of these cases is that in both of
them the proving is occasioned by an observer. By questioning the participants’
ccafidence a teacher-game is initiated. The first case is taken from the second
interview with Colin and Anton at North School. The second case is taken from
Kerry’s investigation of the Fibonacci situation,

~olin verif . by ref ormulated ooy

In the second interview session, Colin and Anton determined inductively
that n3-n is always a multiple of six. I then guided them through a formulated
proving of this statement (described in section 1). After Colin had written out the
argument I asked them if they now knew that 4173417 is a multiple of 6 (MAT
episode 7). While Anton checked on a calculator, Colin applied the reasoning he
had just written out in general to verify this particular case. He argued that
417°-417 is 416x417x418, which includes an even number and a multiple of 3.
Colin’s use of formulated proving to verify stands in contrast to Anton’s use of
inductive reasoning.
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Kerry proves to verify that F3, is even

After spending a few minutes examining cases, Kerry and Stacey
determined that F3,, is even, inductively. Having solved this puzzle to their
satisfaction, they began exploring F;, the Fibonacci numbers with prime indexes.
After about 7 minutes of this they had concluded that Fp is always prime. The
observer, Tom Kieren, then asked them about F3,, again (MAT episode 4). They
looked once more at their table of Fibonacci numbers. Tom then asked, “How sure
are you about that?” In response to this Kerry proved the statement in a formulated
way, making explicit use of the odd+odd=even and odd+even=odd relations for
addition of even and odd numbers:

Kerry; Oh, I’m positive. Because, well, you can see that the- that you'il
add this odd number to an even number to get an odd number. Then
you’ll add a- Then you’ll add that odd number to the even number
to get an odd number. Then you’ll have two odd numbers to add
together to get an even number.

Kerry had already verified his statement inductively, and it seems unlikely
he would have produced his clear argument to satisfy some residual doubt he might
have had.

Teacher-game/Verifying — Formulaic proof making

Laura discovered the formula ﬂ-,—)l-)—'—c— for solving the Arithmagon
inductively. When | asked her if she was sure her formula worked for all
Arithmagons, she replied “Oh, you want me to prove it” and she wrote out the
“proof” in Figure 22.

It should be noted that this proof is not correct. Laura shows that if her
formula works, then the known relations between the sides and corners will hold.
She has proved the converse of her statement. Her proof-making is formulaic, not
a result of formulated proving, since she has lost track of the sense of her steps and
is ‘going through the motions.” In a different context she proved differently.
When she was shown this proof in the interview session she reported that she had
seen a better proof when she got home, and she described a correct proof based on
the given relations.
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Figure 22: Laura’s “proof.”
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In all of these cases, the use of formulated proving to verify was triggered
by an observer’s question. The second interview involved my explicitly guiding
Colin and Anton through formulated proving, and I raised the question of the truth
of their conclusion in a particular case. Kerry had already verified his statement
inductively and it seems unlikely he would have produced his clear argument to
satis{y some residual doubt he might have had. Similarly Laura’s “proof™ could not
have verified her formula for her, as she did not unpack the meaning of her
manipulations. 1 have listed these cases under the heading of “Teacher-
game/Verifying” to signal that an important aspect of these episodes is their role as
part of a teacher-game, of producing “proofs” to verify a statement for a teacher.
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5. Synthesis

This section attempts to summarize what I can now suggest about the need,
or needs, to prove displayed by the participants in my studies. The different
activities of the participants provide a rich source of possible connections and
distinctions between needs, forms, and contexts of proving. I have chosen to
summarize the connections that seem most significant to me under the headings of
needs. I begin with verification, since it is the traditional purpose ascribed to
proving. I then move to explanation, which has been a popular alternate purpose
for proving in mathematics education research. Third, I look at exploration, which
is important in Lakatos’ (1976) account of professional mathematicians’ reasoning.
Finally I consider teacher-games and other social situations.

NEEDS Explaining Exploring @

REASONING Analogy @

FPROVING Unformulated @ @

Figure 23: The complete network.

The relationships between needs, reasoning, proving, and proofs can now
be gathered together in a single network. An episode of reasoning connects a need
with a way of reasoning and if the reasoning is deductive, the connection continues
down through a kind of proving and a type of proof (see Figure 23).

Verificati

According to a common understanding of it, proving is about knowing with
absolute certainty, verifying without doubt. The participants in my studies,
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however, did not use proving to verify except in certain special circumstances.
Instead they relied on inductive evidence and authorities to verify their conjectures.
This is not unreasonable, considering that in many other fields the accepted form of
verification is induction or appeal to an authority. These are also the methods of
verification modeled by mathematics teachers, at least at North and South schools.
It could be argued that it is precisely the fact that proving is used to verify in
mathematics that distinguishes mathematics from other fields and so proving should
be taught as the only acceptable method of verifying in mathematics. There is,
however, significant evidence raised by quasi-empiricist philosophers of
mathematics that it is not the case. They point to contemporary and historical cases
that illustrate that professional mathematicians do not verify by proving (see
Chapter 1, section 2).

It is important to note, however, that the participants in the study did prove
to verify in some circumstances. As part of inductive cycles of guessing and
checking, unformulated proving was used to test conjectures in specific cases (e.g.,
Bill in section 3). Unformulated proving is well adapted to this usage. Formulated
proving was used to verify by some participants who have leaned that proving is
the only acceptable form of verification in mathematics (e.g., Kerry and Laura in
section 4). While they did not prove to verify for themselves or their colleagues,
they did so when an observer asked for verification. It would seem that there are
two mathematics going on in these situations: the mathematics of the participant and
an ‘official’ mathematics represented by the observer.

Explanation

Proving to explain has been suggested as a good way to introduce proving
to students (Hanna, 1989). The participants in my studies did use proving to
explain with varying success and accepted deductive explanations. At the same
time, explaining by analogy was an unexpectedly successful method of explaining.

The deductive explanations observed in the studies involve unformulated
proving, formulated proving producing preformal proofs, and formulated proving
to interpret semi-formal proofs. Of these, unformulated proving was not usually
successful in explaining to others (e.g., Ben in section 1) although short
unformulated proving was used in explanations to the prover (e.g., Kerry in section
1). Formulated proving was more successful as a way of explaining (e.g., Eleanor
in section 1). Its main weakness was the time and attention it required of the
listener. Semi-formal proofs were also accepted as explanations by some
participants but not by all (e.g., Kerry in Chapter iII, section 12).

The main rival of proving for explaining was the use of reasoning by
analogy. Explaining by analogy was more or less successful, depending on the
strength of the analogy. A strong analogy was accepted over a deductive
explanation in some cases (¢.g., Ben, Wayne, and Rachel in section 1). Some
explanations by analogy made connections which could have been established
deductively although no participants attempted to transform an analogy in this way.

Exploration
Some exploring by proving was observed but for the most part inductive

reasoning was used for exploration. The deductive explorations that were
successful were formulated or, in certain conditions, mechanical deductions. Both

57



the problem situation and the social context played a significant role in the choice of
deduction for exploration.

Unformulated proving was occasionally used for exploring, but these
explorations cannot be counted as successful, since they were forgotten soon after
(e.g., Stacey in Chapter III, section 2). Formulated proving was more successful
(e.g., Rachel in section 2). The use of proving for exploration required that initial
conditions suitable for deduction be clearly accessible to the participants. If these
conditions happened to match the requirements of a particular deductive technique,
then mechanical deduction was usually used (e.g., solving the Arithmagon using a
system of equations). In other cases the proving was formulated and either focused
on a particular goal or on reaching nove] conclusions. The role of social conditions
on proving to explore is discussed in Chapter IV, section 2.

In situations where the participants did not perceive sufficient initial
conditions for proving they chose to explore inductively. This occurred in most
situations. Exploring by induction was generally successful, occasionally leading
to discoveries the observers were not expecting.

Teacher games and other social contexts.

The occurrence of formulated proving whether to verify, explain or explore
was usually related to a social context. In the case of verification, the social context
was what [ call a teacher-game. That is, it was a situation where the perceived
expectations of someone in the role of a teacher guide the actions of the prover.
There were differences between the social contexts occasioning proving to explore
and those which occasioned proving to explain.

The need to explain to others requires that the explanation be in a form that
can be understood by others. This encourages formulation of the proving process.
The participants’ skills in formulating explanations varied, as did their success in
explaining to others. The semi-formal proofs I offered as explanations were also
accepted as such by some participants. The interpretation of proofs seems to
require similar skills to the formulating of proving, and so formal proofs could not
be accepted as explanations by all participants.

Proving to explore occurred both as part of a teacher game and because of
the generation of a social context that supported proving to explore. It is this
second context that is the most interesting. In Eleanor’s case, at least, the sort of
exploring she did depended on the exploring being done by those around her.
When working with people exploring inductively, she explored inductively. When
working with Rachel, who was proving to explore, Eleanor proved.



CHAPTER il

KERRY, STACEY AND THE ARITHMAGON: REASONING IN ACTION

I gave her one, they gave him two,
You gave us three or more;
They all returned from me to you,
Though they were mine before.
— Lewis Carroll,
Alice’s Adventures in Wonderland.

In this chapter I will describe the reasoning of a pair of undergraduate
students, Stacey and Kerry, as they investigate the Arithmagon situation. The
terms | introduced in the previous chapter will be used in this description, clarifying
the relationships between needs and proving, while presenting a more situated view
of students’ proving.

Stacey was a student in mathematics education when she volunteered to
participate in the first clinical study. She asked if she could work with her friend,
Kerry, who was an undergraduate student in Finance. It was plain in the problem
solving sessions, and I hope it will be clear in the transcripts given below, that
Stacey and Kerry enjoyed investigating the situations, and were comfortable
working together. They investigated the Arithmagon in their first problem session.
They were interviewed three weeks later, after investigating the other two problem
situations.

The numbers on the sides of this triangle are the sums of the
numbers at the comers. Find the secret numbers.

27

Generalize the problem and its solution

Figure 24: The Arithmagon prompt.

1. Mechanical deduction to explore®

After Stacey and Kerry were given the Arithmagon prompt (Figure 24) they
negotiated how begin. The operant need at this point is a need to explore towards

* The numbers of the sections in this chapter correspond to MAT episode numbers in Stacey and
Kerry's MAT for the Arithmagon in Appendix C.
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the specific goal of finding an answer to the puzzle. Stacey proposed exploring
inductively, by “irial and error” (line 2). Kerry rejected this suggestion, preferring
to “deduce” the answer by mechanical deduction, using a system of equations (line
8).

(1) Kerry: I guess this is uh, — uh
(2) Stacey:  Trial and error?

(3) Kerry: No. We’ll go. Let’s assign variables to these then. Do you want?
We can write on this paper right?

4) DR Sure

(5) Stacey: Goforit

(6) Kerry: Wwe’ll start with A B and C.
(7) TK: We've got plenty of paper

(8) Kerry: OK. Yeah. And]I guess we’ll probably get a system of equations
out of that. And we’ll try and- And we’ll subtract one equation
from the other. And try and deduce one variable, plug it back in —
OK So that’s the sum of A and B

(9) Stacey: Yup.

(10) Kerryv: OK  [Kerry starts writing equations]

(11) Stacey: AandBis1l. BandCis 18. And A and Cis27 —

(12) Kerry:  OK — These are our three formulas. Our three equations.

After solving the equations they checked their answer against the original
puzzle, verifying the result of a mechanical deduction by simple, unformulated
proving. Kerry then noted the general rule that if the system of equations gave a
solution, then the answer must work in the original puzzle. This is a second case of
proving to verify, specifying from a general rule in a formulated way. In both

cases the proving involves only a single deductive step, and is applied to a very
simple situation.

2. Unformulated proving to explore
Stacey then began exploring again, this time without a clear goal (this
episode is also described at the beginning of Chapter II).
(1) Stacey: ~ What happens if you add the middle numbers together? —
(2) Kerry: Well 1 guess we could, hmm.

(3) Stacey: I just want to try something. If you take 27, 18, and 11. 2,4, 5,
56. Right?

(4) Kerry: Sure.

(5) Stacey: And you have — So you add each of those twice, right? — Yeah
you do. That’s not going to help you either. That’s what you end
up doing right?

(6) Kerry: What’d you do?



(7) Stacey: ~ Youadd A, B, C. Then you multiply them by 2. You get this
answer. —

(8) Kerry: Do you add?
(9) Stacey: 22, and 34. Yup. Do you know what I mean?

(10) Kerry:  Sorry. So you add this and multiply by 2 so, like, the sum of this is
28 times 2. And it’s 56. Good one. What’s that mean?

(11) Stacey:  Nothing. [laughing]

(12) Kerry:  Is thai-

(13) Stacey:  That was just-

(14) Kerry:  Is that true for all of them?

(15) Stacey:  Yeah.

(16) Kerry: 1 guess so. It must be. It can’t just be fluke.

Stacey, in lines 1 through 5, is exploring, as indicated by her initial
comment “What happens if you add the middle numbers together?” She continues,
proving in an unformulated way. After determining the sum of the three numbers
(56, line 3) she reasons that each of the secret numbers must be included in the sum
twice. This occurs because “you add each of those twice,” “those” being the secret
numbers. Although she does not see any connection with her conclusion and the
problem of generalizing the Arithmagon, she checks with Kerry to see if he has
followed her reasoning (line 5). Because it is unformulated, he has not understood
either her conclusion, or how she reached it (line 6).

She manages to communicate her conclusion in the specific case that they
are considering (lines 7-10), at which point Kerry asks “Is that true for all of
them?” provoking a need to verify. Stacey’s unformulated proving, although it was
originally begun to satisfy a need to explore, also satisfies this new need to verify
but only for her. Kerry, who has no access to her unformulated reasoning, instead
verifies by a probabilistic argument, based on the inductive evidence that most
patterns observed in mathematical situations turn out to be general patterns, rather
than “flukes.”

An important aspect of this case is the ease with which Stacey’s conclusion
was forgotien. When Stacey and Kerry were searching for an explanation for the
division by 4 in the method the discovered later in the session (see section 9 or
Appendix E), they made no link between the relation Stacey discovered and the
division by 4. Given their failure to come up with any explanation other than a
weak analogy, it would be surprising if they remembered Stacey’s relation but
failed to make use of it. Kerry, in fact, claimed in the interview session that he had
never even seen Stacey’s relation.

3. Mechanical deduction to explore
After dismissing Stacey’s relation between the sum of the sides and the sum
of the secret numbers, Kerry proposed solving the puzzle again, using a matrix

instead of a system of equations. This is another example of mechanical deduction
used to explore, but as the solution to the puzzle was already known to them, this
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exploration must not have had that as its goal. Instead Kerry was exploring to find
something new, without any idea of what it might be.

While Kerry seemed comfortable working with his matrices, and was
proceeding in a mechanical way, Stacey seemed uncomfortable, and as Kerry
worked she interpreted the matrices as equations. This became evident when Kerry
made an arithmetic error resulting in the matrix:

I 1 0 11
01 1 18
0 01 12

Kerry saw nothing significant in this matrix, but Stacey, who was interpreting
Kerry’s mechanical deduction saw 0 0 1 12 as C=12, which she knew contradicted
the value for C they had found earlier. This reveals an important aspect of
mechanical deduction, that the meaning of the symbols being manipulated is
suspended which the deduction proceeds.

After Stacey pointed out the contradiction, they carefully checked Kerry’s
calculations but did not find the error. They were uncertain what to do next, but
eventually they continued reducing this matrix, arriving at a second solution to the
Arithmagon. The existence of this second solution made them aware of an implicit
assumption they had made, that only one solution existed. They then checked their
new solution against the original puzzle (verifying by a short, unformulated act of
proving) and rejected it, concluding that they had made an error somewhere in the
reduction of the matrix. Kerry ended this episode by specifying from the (false)
generalization that reducing a matrix gives a unique solution if the number of
variable equals the number of equations.

4. “Generalizing™

Tumning to the cryptic instruction “Generalize the problem and its solution”
they were uncertain what to do. Kerry decided that generalizing meant describing
what they had done in solving the system in general terms (e.g., “We added the
first two equations.”) This rehashing of their actions is not described as reasoning
in my terminology, although it could be considered a kind of formulating of the
rules of their mechanical deduction.

5. Inductive and deductive exploring

This is another episode of Stacey exploring, this time involving a mixture of
unformulated proving, mechanical deduction, and inductive reasoning. As Kerry
was winding up his “generalization” Stacey had been looking thoughtfully at the
original problem. As soon as he finished, she began exploring:

(1) Stacey: OK. This is what we have. — — 18 11 and 27 and we’re given
three other numbers. — Right? What can we do with three other
numbers? We can, extend lines. — — — '

(2) Kerry: What’ya doing? Making another big triangie?

(3) Stacey:  Yeah. — I don’t know what I’'m doing yet. ... And we’ll call—
What's 11, 27?7 Right. This one. What was this? 10?
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(4) Kerry: Yeah. Let’s get rid of this. The oiher answers

(5) Stacey [laughs] Well what-

(6) Kerry: This, this was 17. And, what, what was this?
(7) Stacey: It was-

(8) Kerry: This side here was

(9) Stacey: 17

(10) Kerry:  C, was 17. Yeah.

(11) Stacey:  And this is 17. What was the top one? 1.
(12) Kerry: 1. —

Here she begins exploring, without a goal: “I don’t know what I’'m doing
yet.” She adds a second triangle around the original one, and fills in the values
which they now know on her new diagram (see Figure 25). The “other answers”
Kerry refers to in line 4 are the values obtained from their matrices.

10 27 17

Figure 25: Stacey’s triangle with “extended lines.”

(13) Stacey:  You keep going.

(14) Kerry:  Where you going?

(15) Stacey:  You keep going. We could find numbers for this. —
(16) Kerry:  For that?

(17) Stacey: Yeah. —

(18) Kerry: OK. So ybu want to solve that then?

(19) Stacey: Umhmm

(20) Kerry: OK.

(21) Stacey: It will go right to zero. —

(22) Kerry:  Are you saying-

(23) Stacey:  This I don’t, [ don’t know.

(24) Kerry:  Are you saying the numbers would keep getting smaller?
(25) Stacey:  Yeah, these ... would have to be-

(26) Kerry:  YeahI guess the will be getting smaller
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(27) Stacey:

-like decimals. *‘Cause you got 1 on one side. — ...

Stacey proposes here (2 they solve the new 1-10-17 triangle revealed by
her diagram. This generation of new data about triangles is part of exploring by
inductive reasoning. At the same time her prediction “It will go right to zero” is
arrived at by unformulated proving, possibly based on her earlier conclusion (in
episode 2) which implies that the sum of the sides will be halved for each new
triangle she adds by “extending lines,” As the sums must have a limit of zero, she
reasons that the individual numbers on the sides must also have the same limit, and
that eventually they “would have to be ... decimals.” This is likely to happen soon,
as “you got 1 on one side.”

(28) Kerry:

(29) Stacey:

(30) Kerry:

(31) Stacey:

(32) Kerry:

(33) Stacey:

(34) Kerry:

(35) Stacey:

(36) Kerry:

(37) Stacey:

(38) Kerry:

(39) Stacey:

(40) Kerry:

(41) Stacey:

(42) Kerry:
(43) Both:
(44) Kerry:

(45) Stacey:

(46) Kerry:

(47) Stacey:

(48) Kerry:

(49) Stacey:

(50) Kerry:

(51) Stacey:

(52) Kerry:

(53) Stacey:

(54) Kerry:

(55) Stacey:

Y ou, want, you want to try to solve it then?

Yeah sure, Away you go. ...

OK, then let’s labe] it.

[ like drawing it

OK, well label these anyways. So we’ve gone. Sogo. DE
and F

F. OK. D plus F equals 10. D plus E equals 1. E-
E plus F

plus F

17

Equals 17 — OK So uh,

... How are we doing here?

OK, we’ll subtract, we’ll take uh,

I minus 2

1 minus 2. So we’ve got

Fminus Eis9

and then we’ll go, uh.

That plus 3

Hmm?

Plus 3

Plus 3?7

Yeah.

OK. E plus F equals 17 and then cancel, cancel. 2 F equals 26
F equals 13.

13

Soit’s 13 here.

13 there. And, want another one?

Y eah.



(56) Kerry:  OK. Then. Oh T think we’re going to get a nice negative number.
(57) Stacey: Oooh

(58) Kerry: Dequals minus 3 —

(59) Stacey:  Negative 3 and E is then

(60) Kerry: Eis

(61) Stacey:  [whispers “4”]

(62) Kerry:  [whispers “47]

(63) Stacey:  Sorry. 4. [laughs]

(64) Kerry:  OK. So we got. We did get a negative number.

This long recital is the spoken manifestation of mechanical deduction.
Throughout it is Kerry who writes the equations, although Stacey is involved in
what he does. Note that the equations are referred to by numbers (lines 41, 42, 45,
47, and 48). They are being added as formal strings, although Stacey is using
some aspects of their structure to decide which ones to add first. At line 54 Kerry
continues to work with the equations, in spite of the fact that knowing one secret
number means that they could return to the meaningful situation of the triangle to
find the rest of the values. Because the meanings of the equations have been
suspended while doing the mechanical deduction, there is no prompt for him to
return to the onginal situation. Stacey is connecting what Kerry is writing to the
original triangle, and when she whispers the final value, 4, she has seen the answer
in the triangles rather than in the equations. Her apology in line 63 is directed
towards the observers, who have asked them to speak clearly to make deciphering
the videotape easier.

G

Figure 26: Stacey’s third triangle.
(65) Stacey: Oooh. Let’s keep going.
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(66) Kerry:

(67) Stacey:

(68) Kerry:

(69) Stacey:

(70) Kerry:

(71) Stacey:

(72) Kerry:

OK. —

This 1s negative 3 — This is 4. And they join each other.

Y ou didn’t drop this low enough. Soon you’ll need a huge sheet of
paper.

OK

Pretend the corner’s there.

That was 4. And this is — 13.

OK.GHandI. — Sol plus G equals negative 3. G plus H equals
4. H plus I equals.

Here Stacey extends lines again, producing the diagram shown in Figure
26. Kerry immediately begins setting up the equations to solve this new triangle by
mechanical deduction (line 72).

6. Inductive reasoning to explore

In this episode Stacey and Kerry explore inductively, and reject conjectures
based on short unformulated proving, or verify them inductively. The transcript
continues directly from the transcript in episode 5.

(73) Stacey:

(74) Kerry:

(75) Stacey:

(76) Kerry:

(77) Stacey:

(78) Kerry:

(79) Stacey:

(80) Kerry:

(81) Stacey:

(82) Kerry:

(83) Stacey:

(84) Kerry.

(85) Stacey:

(86) Kerry:

(87) Stacey:

Do you know what?

What?

— OK. You want a prediction?
OK. Sure,

Well I don’t know about this. This is just the one little step. This is
decreased by 14. This is decreased by 14. And this is decreased by
14, —

What’s that mean?
From here 1o here.
I see that. That’s-
Yeah

-pretty neat.

Y eah.

Yes.

Keep going. Does that mean this will decrease by 147 For this line
here?

OK. ForH. Well.
Is that a prediction that H is 3? Go for it.

Stacey’s prediction comes as the result of exploring by inductive reasoning.

She has seen that 27-14=13, 18-14=4, and 11-14=-3 in this case. She is aware of
the weakness of generalizing from one case “This is just the one little step” and so

she urges Kerry to find the solution for the -3-4-13 triangle in order to provide
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another case on which to base an inductive argument. Kerry solved his system of
equations (again using mechanical deduction to explore towards a specific goal) and
soon found that H=10, contradicting Stacey’s conjecture. The rejection of her
conjecture at this point qualifies as verifying the falsehood of her conjecture by
unformulated proving involving a single deductive step.

After Kerry had found the values of G, H, and I, Stacey and Kerry
advanced new predictions. Kerry predicted that the next difference would be 3.5,
reasoning inductively that the differences, 14 and 7, were being halved at each
stage. Stacey suggested that the differences might alternate: 14,7,14,7,... To test
Stacey’s prediction they switched from their previous pattern of solving each new
triangle using a system of equations, and instead tried the values predicted by
Stacey directly on the new —6-3-10 triangle. When the predicted values failed to
work this verified, by way of simple unformulated proving, that Stacey’s prediction
was wrong. Stacey observed that her prediction was based on inductive reasoning
from very little data, so it was not surprising when it failed. Kerry then returned to
his systems of equations to find the correct values. They conformed to his
prediction of a decrease of 3.5, verifying his conjecture inductively. To provide
further inductive verification, Kerry predicted the values for the next triangle, and
tested them. At this stage they both accepted as a general principle that the
difference for each triangle was half of the difference for the triangle contained in it.

7. Unformulated proving to explore

Having verified a gereralization inductively, Stacey and Kerry were now in
a position to explore by proving from their generalization. In episode 7 they did so.
In fairly quick succession they made two predictions based on unformulated
proving. They predicted that if they drew a triangle inside the original 11-18-27
triangle, the values on its sides could be found by adding 28 (14 times 2) to the
values on the 11-18-27 triangle’s vertices. They did so, which provides an
example of exploring deductively, followed by verifying inductively, precisely the
opposite of the pattern suggested in curriculum documents (e.g., NCTM, 1989)
and the research literature (e.g., Fischbein and Kedem, 1982). They then reasoned
that there would be a limiting value for the numbers on the trnangles if the process
of adding triangles outside was continued indefinitely. Aside from a quickly
rejected suggestion that Stacey calculate this limit, they made no additional attempt
to verify this conjecture, presumable because an inductive verification would have
been laborious, and the unformulated proving which suggested it also verifted it.
This episode ended with Stacey suggesting that they find a formula for their
conclusion, but the confusion of variables in their diagram convinced them that this
would be difficult.

8. Reasoning by analogy to explain

This episode marks the first time Stacey and Kerry evidenced a serious need
to explain. Kerry wondered why the initial difference in their triangles had been
14, and also why his matrices had not produced the correct answer. Stacey
experimented with the numbers involved in the original puzzle, and discovered that
36, that is (11+18427), is evenly divisible by 14. This lead them to conclude (by
the same inductive “It can’t just be fluke” reasoning Kerry employed earlier) that the
number 4 must be significant in some way. Their interest then tumed to explaining
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the association of 4 with the original situation. They each noted an analogy which
would explain 3 being important, as if they were attempting to find analogies for 4
and failing. Stacey noted that triangles have three sides, which Kerry noted that
finding the sum of three numbers and dividing by 3 would be taking the average of
them. Kerry even went so far as multiplying 14 by 3 to see if that product would
be related to the situation in some way. These associations with 3 are imperfect
examples of explaining by analogy, as they fail to explain the occurrence of 4. In
episode 10 Stacey offers a more reasonable analogy to explain the occurrence of 4.

9. Inductive reasoning to explore

One of the observers, Tom Kieren, interrupted them at this point, and asked
“Is 14 special, or is one fourth of the sum special?” This provoked further
inductive explorations directed towards the goal of seeing whether 14, or 4, was a
general feature of the Arithmagon situation. The checked one of the triangles they
had already produced by extending lines, and a new triangle with sides 8, 19, and
21. These explorations led them to make a new conjecture, of a general method for
solving Arithmagons:

(1) Kerry: Hmm? Yeah, OK. — Well, we {igured out that’s how it goes, eh?
(2) Stacey: Yeah, it’s quite constant,

(3) Kerry: You take the. So if we. If we were first given this, we could've —
found the sums, right off the bat. We found the sums. Found the
sum, sorry, the sum of these three. — Of these: 11 plus 18 plus 27
equals 56. We divided that by 4, right off the bat. We got our 14 to
start with, —

Stacey interrupts Kerry’s description at this point, but to continue and
clarify it, their method is as follows. First they extend the diagram by adding a
second triangle around the first one. Next they add together the three known sides
(“11 plus 18 plus 27 equals 56™), and divide by 4. In this case this gave them 14.
Subtracting this result from each of the known sides gives values which they assign
to the corners of their outer triangle (see Figure 27). Adding these gives numbers
for the sides of the outer triangle, which are also the values for the secret numbers
on the corners of the inner iriangle.

-3 4

11 18

13

Figure 27: Values on the outer triangles.
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10. Reasoning by analogy to explain

Having developed a general method for solving Arithmagons, they then
returned to the problem of explaining the importance of the number 4. This
transcript continues the transcript in episode 9.

(4) Stacey: ~ But why did we divide by 4?
(5) Kerry: Because 4 is the. We figured out 4 is the magic thing here.
(6) Stacey:  Yeah, but why?

(7) Kerry: Oh yeah, OK, so we figured it out anyways. — But we now have to
figure out, why 4? So we figured out the system, now we’ve just
got to understand: why the system?

(8) Stacey: Yeah,

(9) Kerry: Why is 4-

(10) Stacey:  Yeah.

(11) Kerry:  So important?

(12) Stacey: A triangle has 3 sides, and 3 points. When you cut thatin 1, 2,3, 4,
(13) Kerry:  What? How are vou cutting that in 4?

(14) Stacey:  Why didn’t I just see that? But does that have anything to do with it?
Here you have a triangle. There you have a triangle. Here you have
a triangle. There you have a triangle.

(15) Kerry:  Well tljx_at‘s 4 triangles. —
(16) Stacey:  We'll just use that, OK? {laughs]

In lines 10-14 Stacey has finally found something in the problem situation
which is associated with the number 4. She observed that the act of nesting the

original triangle in a larger triangle created four triangles approximately the same
size as the original (see Figure 28).

Figure 28: Stacey’s four triangles.

Kerry was unhappy with this explanation however, “You can’t just say that,
you have to explain that. Why are those 4 triangles important?” Stacey’s analogy
is a weak one, between the geometry of the situation and the method of its solution,
so it is not surprising that neither of them had much faith in it.
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11. Further exploring

At this point the preblem session ended. Before they left Stacey and Kerry
asked if they had done what we had expected; if they had found the answer, as it
were. After congratulating them on following a path which we had not anticipated
in the least, we commented that investigating Arithmagon squares was one
generalization we had thought that some participants might make. Stacey and Kermry
reported when they came in for the GEOworld session the next week that they had
gone to the library and spent many hours exploring how their method could be
extended to Arithmagons of four or more sides, evidencing a strong need to explore
at that time.

12. Formulated proving to explain, interpreting a semi-formal proof

When Stacey and Kerry left the Arithmagon problem session, they were still
wondering why the number 4 had come up in their general method for solving the
Arithmagon . In the interview session, they were shown a formal proof (see Fi gure
29), which derives a formula equivalent to their solution method from the relations
given in the problem. For Kerry this proof explained the need to divide by 4in

their method. Several times he made comments like “That’s where we get the i

from, Neato” and “That’s the irule.” For him the formulated proving involved in
interpreting the proof satisfied his need to explain.
My claim that formulated proving is involved in the interpretation of proofs

is based on my own experiences, and the following analysis by Freudenthal
(1973).

B+C+C+A+A+RB
(A+B+C)

=4 a+B+y)

it
t

a =B+C
za+y+o+f
=oa+o+B+y

o+ a+b+c
= y

—a a+b+c
* = Z]

Figure 29: The proof shown to Stacey and Kerry in the interview session.
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The only mathematician 1 can tell precisely of how he reads
mathematical papers, am I myself. I never read mathematical papers
from the first to the last word. 1 start with the results. I appreciate
them being neatly exhibited. Then I think about them. If I cannot
confirm them, I look through the paper for some indication how
they can be proved. Maybe I then succeed in confirming the results.
Otherwise ] look for lemmas I understand and try to derive the main
theorems from them. Maybe I have to take a closer look at some
proof; if an earlier result is referred to, 1 go back to it. If finally by
my own means and a bit of cribbing I have confirmed the results,
that is, if [ master all the connections, I am likely to read the papers
through once again systematically. Others have told me that they
also read papers written by others in approximately the same way.
There are people who can read papers systematically, page by page,
line by line, letter by letter. To do so testifies to a strong discipline
of mind which is not everybody’s attribute. I think it is the rule that
in trying to understand papers written by others, people behave as if
they are making original investigations. They try to reinvent the
contents of the paper; this is a bit easier than brand-new inventions
because you can crib as much as you want. (1973, p. 115)

Interpreting proofs involves a process of proving, guided by the proof.
This process need not begin with the definitions and premises of the proof. In fact,
in the case of many proofs, this approach would be quite difficult. The process of
interpretation involves a loose reading of the proof, identifying the basic structure,
and looking for aspects which might cause difficulties. Once this is done, tricky
parts of the proof might be examined in more detail. It is at these times that the
definitions and premises chosen often turn out to be relevant, because they were
chosen by the originator of the proof not before proving, but during the process, as
the need for them arose.
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CHAPTER IV

CONSTRAINTS ON PROVING

“I know what your thinking about,” said
Tweedledum; “but it isn’t so, nohow.”
“Contrariwise,” continued Tweedledee, “if it
was so, it might be, and if it were so, it
would be; but as it isn’t, it ain’t. That’s
logic.”

— Lewis Carroll,

Through the Looking Glass, and

What Alice Found There.

My research would be much more simple if the same needs always led to
the same reasoning. If exploring meant proving, and verifying meant reasoning
inductively, and explaining meant reasoning by analogy, then the need to prove
would be all that needed to be said about it. Unfortunately, the examples in the
previous chapters show that this is not so. In addition to the needs that motivate
proving there are also other factors that constrain proving. In Chapter I these
constraints are mentioned as they occurred, but the focus of that chapter is needs,
and so constraints are not treated systematically there. This chapter attempts to
organize what I learned about three important constraints on proving into a useful
summary.

1. Individual differences

Not everyone proves in the same way. It would be foolish to try to
generalize from a few people’s proving behaviors to a larger group. In the case of
the participants in my studies there is ample evidence of considerable variation in
proving style and in the needs felt (see Appendix D for a summary of this
variation). In the previous chapter I described Stacey and Kerry’s approaches to
the Arithmagon in which there are clear differences between them as individuals. In
this section I will describe two other participants, Bill and John, in order to further
illustrate the range of activity I observed.

Bill and John were two students in a Math 13 class at North School. Math
13 is the grade 10 mathematics class in which students who have done poorly in
grade 9 find themselves placed. Bill was among the better students in his class and
seemed to be actively engaged in following the teacher’s lessons and in doing the
assigned work. He responded readily to the teacher’s questions and asked
questions if he did not understand something. John was more quiet but also
seemed to be actively following the lessons. He did have difficulty with the
assigned exercises on some occasions and was more likely to turn to Bill for help
than to ask the teacher.

Bill and John were not only different in many ways from the other
participants in the studies (as one would expect given the differences between the
Math 13 program and undergraduate mathematics) but also different from each
other. At the same time the proving they did is similar in many ways to that done
by other participants.
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Bill explored generally toward some goal and explained both to himself and
to John but vernified only by making reference to my authority. In his explorations
he made use of both unformulated proving and inductive reasoning. He had a
preference for an explanation by analogy for the sum of two odd numbers being
even but on other occasions accepted unformulated and formulated proving as
explanation. He was the only participant in the study to explicitly reject inductive
verification, accepting verification t 7 authority only.

Bill’s spontaneous efforts at proving to explain or explore were generally
short and unformulated. When I guided him through more formulated proving
however, he displayed a clear understanding of the arguments and, in the case of
the formula we deduced for the Arithmagon he accepted the proving as explaining.
While proving is something Bill is capable of, at least unformulated proving, it is
not his first choice for satisfying a need to explain, explore or verify. In explaining
the fact that two odd numbers always add up to an even number, he preferred his
analogy to the product of two negative numbers to either of the pre-formal proofs
we produced. In that case he explicitly said he did not like explanations like the
pre-formal proofs. In the case of the formula for solving Arithmagons, he had said
he preferred the form of the formula which made it easy to explain how it worked.
This seeming contradiction illustrates the importance of the need to prove. In the
case of the Arithmagon formula we were dealing with a new piece of mathematics,
which lacked an explanation. In the case of the sum of two odd numbers, Bill had
provided an explanation by analogy, and had it on my authority that the rule was a
general one. There was no need for proving the rule.

In exploring Bill was like the other participants in preferring to explore
inductively. In venfying he was quite different. Most of the participants would use
either inductive reasoning or proving to verify. In Bill’s case reasoning did not
verify. He relied completely on my authority to establish truth. This was strongly
suggested by Bill’s reaction when I claimed that 117 digit odd numbers do not
generally add up to even numbers. Bill responded, “I don’t see how come that is,
... but that’s really kind of neat.” Against my authority, two pre-formal proofs, an
analogy, and a wealth of inductive evidence were insufficient to convince Bill.

John was less involved and less vocal than Bill and so there is less that can
be said about his reasoning. He explored inductively but whether he had a goal in
mind was not clear. He explained when asked 1o, and asked for explanations from
Bill. Explaining by proving was acceptable to him, and he used proving to explain
in simple situations. His verifying was tentative, but he was more willing than Bill
to accept inductive verifications.

The clearest indication of John’s thinking came after Bill and I had deduced

(A+OAAB)ABC) (\AT episodes 10-14). Our

formula involves variables representing the three unknown corners, grouped in
added pairs according to sides. For Bill this formula was good because it had
explanatory power. While he recognized this power, John preferred a different

a formula for the Arithmagon:

formulation: E_?*"F This formula is easy to use. John choice of formula

illustrates his preference for mathematics that is easy to use, as opposed to
mathematics that is easy to understand.

73



Summary

While the cases of Stacey and Kerry (described in the previous chapter) and
Bill and John do not begin to cover the range of individual differences seen in the
participants in my studies, they do point out certain kinds of differences that
influence the need to prove and the proving that is done. An important difference
between Stacey and Kerry was in what they knew, or at least the technical skills
with which they felt comfortable. Kerry’s use of mechanical deduction could not
have occurred if he had been unfamiliar with solving systems of equations and
might not have occurred if he had been just as proficient but less comfortable.
Table 2 shows the initial method used o solve the original puzzle for all the
participants in the studies, and whether they had been taught to solve systems of
equations. The entries “10+” and “10~" indicate the accelerated Math 10 program at
South school, and the Math 13 class at North School, respectively. The cases
marked with a question mari: (7) were in the process of learning to solve systems of
equation at the time of the Arithmagon session, and it is not clear exactly what they
had been taught at the time of the session. -

Group Grade Solution method Taught?
Ben & Wayne U Trial and Error Yes
Jane & Chris U System of Equations Yes
Kerry & Stacey U System of Equations Yes
Eleanor & Rachel U System of Equations Yes
Roger & Marie U Trial and Error Yes
Trisha & James U Trial and Error Yes
Laura & Donald U Trial and Error Yes
Colin & Anton 12 System of Equations Yes
Joseph, Stephen, & Scott 10+ System of Equations Yes
Alec & Darrell 10+ System of Equations Yes
Tara & Topaz 10+ Trial and Error ?
Ann, Lynda, & Joanna 10+ Trial and Error ?
Bill & John 10- Trial and Error No
Sandy 6 Unformulated proving No

Table 2: Use of systems of equations in solving the Arithmagon.

Bill and John indicate the importance of individual’s beliefs about
mathematics and learning to the need to prove. Bill’s reliance on authorities as the
ultimate source of verification limited the importance of that need in motivating both
proving and inductive reasoning. While proving to verify is not common in
general, most of the participants in the studies did verify inductively, and Bill’s
reluctance to do so may be limiting his possibilities for learning from his own
experiences. John’s preference for useful mathematics over explanations could
make learning mathematics more difficult for him. It provides him with a
disincentive to develop relational understandings as opposed to instrumental
understandings (to use terminology from Skemp, 1987). Instrumental
understandings are not as useful a basis for learning new concepts as relational
understandings and are harder to maintain.
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2. Social constraints

In all the sessions the participants worked in a social context. The
observers and the other participants defined an environment in which each
participant reasoned. In my final chapter I describe a theory in which the
development of deductive reasoning is tied to social relations between people,
mediated by language. If deductive reasoning develops out of social relations then
it is not surprising that reasoning in problem solving is constrained by social
factors. In this section I will describe how social constraints were linked to proving
activities in the cases of Rachel and Eleanor, two university students, and Bill and
John, two Math 13 students.

Eleanor and Rachel

Eleanor and Rachel provide an excellent example of social constraints, in
part because of their manner of working together and in part because of the different
social contexts in which they worked. The Fibonacei session was their first
session. In it they established a pattern of working somewhat independently but
consulting each other regularly. This permitted them to act independently when
they wished but also to work with each other’s ideas. In the Arithmagon session
they worked with Ben and Wayne, but the dynamic between them was similar to
that they established in the Fibonacci session. Other social constraints, however,
meant that they acted quite differently in the two sessions.

Rachel

Rachel spent the Fibonacci session exploring and verifying the conjectures
she made inductively (see MAT). She noticed a pattern in the sequence of every
third Fibonacci number, which she then described to Eleanor. Eleanor formalized
the pattern as F3,, = 4F3,.3 + F3,6. For example, Fg =34, Fg=8, and F3 = 2,
and 34 = 4(8) + 2. Rachel continued to explore inductively, looking for similar
patterns for Fy,, Fsu, Fep, etc. Whenever she found a pattern she described it in
terms of actions, e.g., “Multiply by 4, add the previous one, and you get the next
one.” She then helped Eleanor formalize her pattern, or in the case of the later
patterns, formalized it herself. This pattern of discovery, verification and
formalization was her way of working throughout the session.

In the Arithmagon situation, Rachel was sitting between Eleanor and Tom
Kieren, who was observing. She began by solving the puzzle using a system of
equations, and then began looking for patterns, exploring inductively as she had in
the Fibonacci situation. She interrupted her explorations to listen to Ben describe
his method of solving by systematic trial and error. She then attempted to use his
method. When [ suggested to Ben that he try to solve a 1-4-12 triangle (because his
method would need to be modified to solve it) Rachel also attempted io solve that
triangle.

About halfway through the session, Rachel’s activity changed (MAT
episode 8). She stopped exploring inductively and began using formulated proving
to explore special cases of the problem (e.g., when two sides are equal). Her
explorations are described in Chapter 11, section 2. In the interview session I asked
her why she had begun to explore in this way.

(1) DR: Why were vou doing that?
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(2) Rachel: ~ Oh, you want me to answer right now? [laughter] Because I was
stuck at them. I didn’t know where to go. And Tom was sitting
beside me saying, “Well, what can you do now?”

(3) Eleanor:  Nothing, nothing. [laughter]

(4) Rachel: So1 was thinking I'd better think of something, or else that
question’s going to keep coming. So I just thought, well hey, in
math you always get that right?. You always get those conditions.
Every teacher’s listing these conditions. Now, if we have this
condition where this equals that. You know what I mean. So that’s.
It just. You know. It comes from my head. Something I knew of
already that I thought | could apply to that problem.

At first, Rachel had addressed her need to explore by way of inductive reasoning,
but the presence of Tom was a social constraint that led her to use formulated
proving. A bit later, Tom became a more explicit social constraint, by suggesting
that she see what she could derive for the general case. This led to her denivation of
a general formula for solving the Arithmagon.

Eleanor responded to Rachel’s announcement of her formula by asking for
an explanation. This social context led to a need to explain, and Rachel’s immediate
history of formulated proving led her to use formulated proving to explain in this
context.

Eleanor

In the Fibonacci session Eleanor played off Rachel’s ability to see patterns
by formalizing them, and then searching for patterns in the formalization. Without
Rachel’s participation her activities would have been different, since her focus
would have had to include the onginal sequence as well as the relations Rachel
found in it

In the Arithmagon situation Eleanor was sitting between Rachel and Ben.
She began solving the original puzzle using a system of equations and then stopped
when she saw that Rachel had found the answer. After comparing methods with
Ben and Wayne she then began trying to use Ben’s method to solve the triangle.
When I proposed the 1-4-12 triangle she discussed with Ben whether it was
possible or not, and then, at Ben’s request, solved it using a system of equations.
She then joined Ben and Wayne in exploring inductively. They found the relations
A+a= B+b = C+c and a+b+c = 2(A+B+C). Eleanor then worked independently,
eventually discovering a general method of solution based on these relations. Her
method is described in Chapter II, section 1 and in Appendix E. After Rachel
announced her formula and explained its derivation to Eleanor, Eleanor described
her method, and began explaining, to herself for the most part, how it related to
Rachel’s formula.

Eleanor changed the way she was working depending on the way the people
around her were working. She used mechanical deduction while Rachel was doing
so. She tried Ben’s method, and solved a triangle with a system of equations when
Ben asked her to. She explored inductively when working with Ben and Wayne,
who had been working inductively (and, in Wayne'’s case, by analogy) all along.
She explored using unformulated proving when working alone and then explained
using formulated proving when working with Rachel.
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Bill and John

Bill and John are included here because of the conirast between their
inductive and analogical reasoning in the two problem sessions, compared to their
use of formulated proving in the interview sessions when I encouraged them to
reason deductively. In the problem sessions they occasionally used unformulated
proving, but it required the social context of my encouragement for them to
formulate their proving, and o prove for extended periods. This is heartening in
terms of the potential influence a teacher has on students’ reasoning. The proving
they did in the interview sessions is described in Chapter II, section 1.

3. The prompts

The factor that might have been expected to have an influence of the
participants’ proving, the problems they were investigating, did turn out to
constrain the activities in which they engaged. Investigations of the Anthmagon
problem involved proving, and especially mechanical deduction, more often than
either of the other two situations. In the GEOworld situation almost all the activity
was inductive exploraticn. In the Fibonacci situation, some participants did nothing
but inductive exploration while others engaged in some, usually unformulated,
proving.

Arnthmagon

The numbers on the sides of this triangle are the sums of the
numbers at the corners. Find the secret numbers.

27

Figure 30: The Arithmagon prompt.

The Arithmagon problem was chosen for its potential to be generalized in
many ways, and the variety of solution methods and interest it created in infcimizal
pilot testing of it. In the studies it lived up to my expectations, and in some cases it
occasioned truly unexpected mathematical activity (see Appendix E). Th=~ discovery
that other researchers (Simpson, 1994; Duffin & Simpson, 1993} weic « “w vsing
the problem for research into proof was fortuitous and added another point of view
to my research.

All the participants in the studies investigated the Arithmagon. The activities
in which they engaged ranged from inductive exploration to formulated proving.
Some participants discovered a general method for solving Arithmagons, some
discovered a formula, some did both, and some did neither. The activities of ali the
participants in my studies is summarized in Table 3.
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The variety of solution methods listed in Table 3 only begins to suggest the

openness of the Arithmagon situation. For example, Kerry and Stacey’s general
method for solving Arithmagons, based on adding a new triangle around the

original, is very different from Eleanor’s method of adding the sides together,
dividing by 2, and using this number, which is also the sum of a side and the

comer opposite it, to find the corners. Appendix E lists a number of other methods

of solving the original puzzle and deriving a general method.

Means of deriving a
general method or

Group Solution method formula
Ben & Wayne Inductive Told by Rachel
Jane & Chris Mechanical deduction None
Kemry & Stacey Mechanical deduction Inductive
Eleanor & Rachel Mechanical deduction Formulated proving
Roger & Marie Inductive Guided proving
Trisha & James Inductive Inductive
Laura & Donald Inductive Inductive
Colin & Anton Mechanical deduction Mixed inductive and
deductive reasoning
Joseph, Stephen, & Scott ~ Mechanical deduction None
Alec & Darrell Mechanical deduction None
Tara & Topaz Inductive Inductive
Ann, Lynda, & Joanna Inductive None
Bill & John Inductive Guided proving
Sandy Formuiated proving Formulated proving

Table 3: Summary of participants’ activities in the Arithmagon situation.

Fibonacci

The Fibonacci sequence begins:
1, 1,2, ..

and continues according to the rule that each term is the sum of the
previous two (e.g., 1+1=2),

The Fibonacci sequence has many interesting properties.

Can you find an interesting property of every third Fibonacci
nuraber?

Can vou find other interesting properties?

Figure 31: The Fibonacci prompt.

The Fibonacci numbers are famous as a rich source of patterns, all derived
from a simple rule. In my research for my master’s thesis (Reid, 1992), I found
that the pattern of every third Fibonacci number being even was easily discovered
and proved. For this reason I included the Fibonacci situation in my research for
this dissertation. Surprisingly, the pattern of every third Fibonacci number being
even was either too simple (some participants noticed it but continued looking for
something more significant) or missed entirely. One unexpected outcome was the
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discovery, by several participants, of a relation between every third Fibonacci
number which was new to me. Rachel’s discovery of it is described above (section
2). The wording of the prompt caused some trouble, and it was changed for each
of the three studies for which it was used, but in all cases the presence of several
suggestions for patterns to notice led to participants moving quickly on from one
inductive exploration to the next. This fragmented pattern of exploration is
described in more detail in Kieren, Pirie, and Reid (1994). The Fibonacci situation
was not used at South School because of this problem.

My chief expectation for the Fibonacci situation was that the participants
would notice that every third Fibonacci number is even, and prove this, noting that
the rule defining the sequence forces a pattern of Odd, Odd, Even, Odd, Odd,
Even, onto the sequence. While this pattern was noticed in several cases, it was
only Kerry and Bill who proved the patiern, and in both cases it was as a result of
an observer’s intervention. What I had expected to be an occasion for proving to
explain became an occasion for proving in a teacher-game.

GEOworld

The GEOworld offered the possibility of seeing the participants prove from
postulates of their own creation, as a way of exploring and explaining. The
situation is similar to a scientific investigation, as initial theories must be established
inductively, but then proving can be used both to test the theories, and to explore in
a more directed way. None of the participants did anything in the GEOworld
situation other than exploring inductively and occasionally making a prediction and
testing it. To allow additional time for interviews, the GEOworld situation was not
used at North School.

Summary

The sampling of examples in this dissertation reveals that the Arithmagon
situa’ion was much more conducive Lo proving than either the Fibonacci situation or
GEOworld. That some situations are better for proving than others is not a
surprise, but the exact features that made the Arithmagon different are not entirely
clear. It was important that the situation gave some initial relations on which to
build deductive arguments, which GEOworld did not do. The imprecision of the
prompt, compared to the Fibonacci prompt, may also have been an advantage.

It should be noted, however, that having a problem situation conducive to
proving is not enough. As has been pointed out above, social and personal factors
are also important, and the variety of activities in which participants engaged in the
Anthmagon situation is an indication of this.
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CHAPTER V

TEACHING PROVING

Histories make men wise: poets, witty; the
mathematics, subtle; natural philosophy,
deep; moral, grave; logic and rhetoric, able to
contend,
— Francis Bacon, Essays,
50. Of Studies

The importance of teaching proving has long been recognized by
mathematics educators and curriculum designers. The diff; iculty of teaching
proving also has been recognized, and research focused on improving the teaching
of proving dates back at least sixty years (e.g., Fawcett, 1938). The insi ghts into
students’ need to prove provided by my research suggest ways of modifying and
extending teaching methods to help students develop mathematical thinki ng from
their own ways of reasoning.

1. Proving in the curriculum

In North America three curricular positions regarding proving can be
identified. In some places proving is taught as part of geometry, the teaching of
which occupies the second year of high school. In other places the curriculum has
been reorganized, downplaying geometry and proving. This move may have been
inspired in part by the poor results of teaching proving in geometry (Senk, 1985).
Other places have adopted the NCTM Standards (1989) as the basis for their
curricula. The Standards place considerable emphasis on mathematical reasoning in
general, and proving in particular, and encourage the teaching of proving in all
mathematical contexts, not just geometry.

Alberta

The current curriculum of Alberta illustrates the second curricular position,
the downplaying of geometry and proving. In the introductory material to both the
Courses of Studies, and the Teacher Resource Manuals for grades 1C, 11, and 12,
the following definitions occur:

Throughout the learner expectations, the words verify and prove
appear. For the purposes of the Senior High Mathematics Program,

they are interpreted as:
* Verfy:  to substantiate the validity of an operation, solution,

formula or theorem through the use of examples that
may or may not be generalized;
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+« Prove; to substantiate the validity of an operation, solution,
formula or theorem in general and to provide logical
arguments for each step in the process. (Alberta
Education, 1991, p. 5; 1990, p. 6; 1989 p. 5;
emphasis in original.)

Note that ‘proving’ refers only to deductive reasoning used to verify. The use of
‘proving’ in this restricted sense is common in mathematics education. Even
though attention is paid to the definitions of these words, which are supposed to
occur “throughout the learner expectations,” proving is rarely mentioned in these
documents.

In the Program of Studies (Alberta Education, 1989) for Math 10, the
word “verify” occurs six times in 102 pages. “Prove” does not occur, but
expectation 1.1.1 in the topic area Coordinate Geometry and Graphing reads:
“Students will be expected to be able to deduce the distance formula from the

Pythagorean theorem.” This is the only explicit reference to proving in the Math 10
curriculum documents.

In the Course of Studies (Alberta Education, 1990) for Math 20, “prove”
does not occur; however, students are expected to provide two “logical arguments”

in the context of geometry (pp. 12, 13). The word “verify” occurs four times in
that document.

In Math 30, things improve somewhat, as proving is mentioned in non-
geometric contexts. Students are expecled to prove the Remainder Theorem and the
Factor Theorem in the unit on Polynomial functions (Alberta Education 1991 p. 37)
and to prove trigonometric identities (p. 44).

The discussion of the expectations related to proving in the Math 30 Teacher
Resource Manual (Alberta Education, 1991) are interesting as an illustration of the
ways proving is seen by curriculum planners.

Manipulating trigonometric identities provides an excellent
opportunity for students to leam to “prove” that a given relationship
is true. The nature of proof should be discussed, particularly in
terms of the difference between a verification using particular values
of the variable and a complete argument that demonstrates truth in
general. A discussion of the nature of deductive and inductive
proofs would fit well here....

Students should be encouraged to present logical arguments to show
that the quotient and Pythagorean identities are true. Note that this
does not necessitate the use of the T proof processes that were so
common in the teaching of deductive geometry. This is an excellent
place to discuss deduction and show students that a proof is a

* The high school mathematics courses in Alberta are numbered as follows: The 10/20/30 stream
is grade 10/11/12 mathematics (respectively) for college bound students. The 13/23/33 stream was
intended to be the regular stream for most students, but the desire to have the option of attending a
post-secondary institution means that many students opt for the 10/20/30 route instead. The
13/23/33 route has become the route for students who have difficulties in mathematics.

Specialized courses (business math, calculus) are given the tens digit appropriate to their grade
level, and a units digit other than 0 and 3,
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logical, cogent sequence of statements beginning with what is given
or is known to be true, followed by statements based on previously
established knowledge and concluding by what is to be proved.
(p- 45, quote marks in original)

The curriculum planners clearly see proving as a process whose function is
verification. Although the definition of “prove” they gave in the introductory
material implied that proving is a deductive process, they imply here that “proofs”
can be either deductive or inductive. Proofs must also be semi-formal, hence the
requirement that variables be used instead of specific values. The second paragraph
concentrates on the form of a proof. The warning against “T" proofs reflects the
practice of requiring such proofs in the past* .

It should be noted that even in a curriculum which pays scant attention to
proving, mathematics is described as useful in developing logical reasoning.
Alberta Education’s “Program Rationale and Philosophy”, which appears in all the
senior high school curriculum documents, states that: “an understanding of
mathematical techniques or processes ... will enable [students] to ... acquire higher
order skills in logical analysis and methods for making valid inferences.” (Alberta
Education, 1991, p. 1; 1990, p. 1; 1989, p. 1)

During my research studies I had the opportunity to see how three well
respected teachers interpret the Alberta curriculum in their classroom. Two of the
three made no mention of proving to verify in the time [ observed them. The third,
Ms E, described algebraic determinations of slopes of lines as “proofs”. Examples
of her teaching appear Chapter 11, section 3. In most cases mathematical statements
made by the teacher were verified inductively by examples or by reference to the
teacher’s knowledge and authority.

The Standards

The NCTM Curriculum and Evaluation Standards for School Mathematics
(1989) reflect a different approach to proving. Of the 14 standards for senior hi gh
school mathemalics, standard 3 is “mathematics as reasoning”. This is also one of
the 13 standards listed for the lower grades. The Standards document is a
publication of North America’s largest mathematics education organization, which
is intended to “guide reform in schoo! mathematics in the next decade” (NCTM,
1989, p. v). The inclusion of reasoning as one of the key standards in this
document indicates the importance attached to proving in mathematics education.

Standard 3 states:

In grades 9-12, the mathematics curriculum should include
numerous and varied experiences that reinforce and extend logical
reasoning skills so that all students can—

* make and test conjectures;

formulate counterexamples;

follow logical arguments;

Judge.the validity of arguments;

construct simple valid arguments;

* A“T” proof was once the required form of proofs in high school geometry. A large “T™ was
drawn, and the steps of the proof were written on the left side of the horizontal, with references to
the theorems or axioms which justified each step written on the right.
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and so that, in addition, college-intending students can—
* construct proofs for mathematical assertions, including indirect
proofs and proofs by mathematical induction. (p. 143)

The function of these reasoning skills that the NCTM envisages can be seen
in their description of the practice of mathematics:

A mathematician or a student who is doing mathematics often makes
aconjecture by generalizing from a pattern of observations made in
particular cases (inductive reasoning) and then tests the conjecture
by constructing either a logical verification or a counterexample
(deductive reasoning)....Furthermore, all students, especially the
college-intending, should learn that deductive reasoning is the
method by which the validity of a mathematical assertion is finally
established. (p. 143)

This vision of proving is well within what Dawson (1969, p. 142) called the “naive
heuristic of mathematical inquiry.” Based on the work of Lakatos (1963/1976)
Dawson identified a second heuristic, the deductive heuristic, in which the function
of proving is to explore rather than to verify. Proving to explore is described in
detail in Chapter II.

2. Current practices in teaching proving

Proving has been a part of teaching mathematics since at least the time of
Plato. But millennia of experience does not mean teaching is as good as it can be.
In fact, the current methods fail to teach many students to prove (Senk, 1985;
Schoenfeld, 1985; Fischbein, 1982). What, then, is wrong with the way we teach?

People learn when they have a need which learning might fulfill. As
Vygotsky observed, learning is adaptation and it is a truism that “all adaptations are
regulated by needs” (1986, p. 37) There have been two needs that teachers by and
large have invoked in order to motivate students to prove: the need to succeed in
school and the need to know with certainty.

Of the three curricular approaches to proving mentioned in the previous
section, the two most common are the teaching of proving in a year long course in
Euclidean Geometry, and the downplaying of proving, as in the Alberta program of
studies. Schoenfeld (1985) describes teaching in the first of these contexts. I will
illustrate teaching in the Alberta context with observations from my studies in high
schools (see Appendix B for descriptions of thess studies).

Schoenfeld on teaching for examinations

At the school Schoenfeld studied, the teaching of proving involved a
requirement that students prove propositions on a timed examination. Schoenfeld
traced the effects this requirement had on what teachers taught and what students
believed. Students were expected to prove one of a set of 30 propositions in
Euclidean geometry on New York’s Regent's examination. For Schoenfeld this
expectation explained the adoption by their teacher of drill and memorization as his
main teaching methods. In this context the students became adept at the speedy
production of precise constructions and at memorizing proofs.
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In addition to encouraging memorization, Schoenfeld found that the
examination system motivated the development of beliefs about the role of proving
in mathematics. The two beliefs Schoenfeld mentions which are most closely
related to proving are these:

The processes of formal mathematics (e.g., “proof™) have little or
nothing to do with discovery or invention.

Only geniuses are capable of discovering creating or really
understanding mathematics. (Schoenfeld, 1988, p. 151)

The antecedents of these beliefs in teaching probably include the practice of
ignoring proving in the context of constructions and def initions, the other main
topics of students’ work in Euclidean geometry. The verification of constructions,
which could be made an important context for proving, is often done visually —
hence the stress observed by Schoenfeld on precision in constructions. Definitions
are usually presented as fait accompli rather than evolving from the needs of
proving, as advocated by Borasi (1991).

The second belief noted by Schoenfeld, that mathematics is created only by
geniuses, might also be related to the requirements of examinations. Examinations
require that a certain collection of facts, procedures, and skills be mastered. This
content is not organized as if it arose from a probable sequence of mathematical
explorations, but rather as the endpoints of many explorations which have found
application in some context deemed important at some time or another, Asa resulta
teacher aliowing students to engage in any creation of mathematics would be doing
them a disservice since it would detract from mastering the content required by the
examinations. Even if the content were such that a teacher could expect students to
create it in the course of exploration, such a course would still be irresponsible
since the course of exploration can never be entirely controlied, and the presence of
digression can only serve to distract students from the required content. Given the
beliefs about math and the prevalence of memorized proofs encouraged by
examinations it is not surprising that teaching based on using scholastic success to
motivate students has failed to result in many students learning to prove.

Teaching at North and South Schools

The teaching of mathematics I observed at North School made no reference
to proof or proving. Verification of answers was done inductively or by reference
to the authority of the teacher or textbook. The focus was on learning procedures
for obtaining answers quickly and accurately. In the Math 13 class, this was a
conscious decision of Mr. A, who felt the students would be best served by
extensive practice of procedures without being confused by proofs. In the Math 30
class Mr. B had made explanatory proving a part of his teaching, but the students,
concerned with performance on their final examinations, had asked him to limit
himself to what was going to be on the test.

At South School, proving was identified with al gebraic methods and was
associated with verification. On several occasions Ms E pointed out that a graphical
rendering of a situation is not a proof and that proving required algebraic
manipulations based on formulae. On other occasions, while graphs were rejected
as proofs, the only alternative offered was the authority of the teacher.



3. Experiments in teaching proving

Fawcett (1938) suggests these assumptions as the basis of the teaching of
proving:

1. That a senior high school pupil has reasoned and reasoned
accurately before he begins the study of demonstrative
geometry.

2. That he should have the opportunity to reason about the subject
matter in his own way,

3. That the logical processes which should guide the development
of the work should be those of the pupil and not those of the
teacher. (p. 21)

In Chapter I, section 2, I have indicated my reasons for believing that students can
prove, in agreement with Fawcett’s fiyst assumption. His second and third
assumptions could well have been listed by any present day proponent of the
constructivist theory of learning. In the following discussion of the teaching of
proving I will be accepting Fawceti’ s assumptions, as well as two more:

4. The proving which is taught in mathematics should reflect the
nature of proving in professional mathematics.

5. The teaching of proving should take into consideration not only
the form of proving used, but also the need which proving is
satisfying in that context.

In my examination of the research literature on proof and proving, I have
encountered only three studies of teaching in which proving was taught it a manner
consistent with Fawcett’s assumptions. These studies are those by Fawcett
himself, Batacheff and his coworkers (Balacheff , 1991; Arsac, Balacheff, &
Mante, 1992) and Lampert (1990). I would like now to describe the work of these
researchers and to comment on them in light of assumptions #4 and #5.

Fawcett’s research

Fawecett’s research is the subject of an NCTM Y earbook (Fawcett, 1938).
In it he describes in detail his methods of teaching and the results he obtained,
according to both interviews with students and standardized tests. In general he
was quite successful and it is not clear why his straightforward suggestions for
improving teaching were not implemented more widely. His description of the
teaching methods he hoped to replace are quite similar to those described by
Schoenfeld (1985) which I related in the previous section.

In some respects Fawcett’s teaching seems quite traditional. He makes no
reference to students working together, except in the context of whole class
discussions led by the teacher. The context for teaching proving is geometry and
although Fawcett does note the importance of students being able to transfer their
ability to prove to non-mathematical domains, he does not discuss proving in other
areas of mathematics. Other aspects of his teaching are fairly radical, at least
compared to current practice. He summarizes his methods as follows:

1. No formal text is used. Each pupil writes his own text as the
work develops and is able to express his own individuality in

85



organization, in arrangement, in clarity of presentation and in the

kind and number of implications established.

The statement of what is to be proved is not given the pupil.

Certain properties of a figure are assumed and the pupil is given

an opportunity to discover the implications of these assumed

properties.

3. No generalized statement is made before the pupil has had an
opportunity to think about the particular properties assumed.
This generalization is made by the pupil after he has discovered
it.

4. Through the assumptions made the attention of all pupils is
directed toward the discovery of a few theorems which seem
important to the teacher.

5. Assumptions leading to theorems that are relatively unimportant
are suggested in mimeographed material which is available to all
pupils but not required of any.

6. The major emphasis is not on the statement proved, but rather on
the method of proof.

7. The extent to which pupils profit from the guidance of the
teacher varies with the pupil and the supervised study periods
are particularly helpful in making it possible to care for these
variations. In addition individual conferences are planned when
advisable. (p. 62, emphasis in original)

3

Fawcetl was quite successful in achieving the objectives he set for himself.
His teaching cannot be criticized on the basis that it does not work. In fact, in many
ways his methods seem deserving of application in the teaching of mathematics in
general, not just proving. At the same time [ have some concerns related
specifically to the aims of his teaching. Fawcett assumes that the purpose of
proving is the determination of truth. He makes no reference to proving as
explaining or exploring although the students in his course did a fair bit of both.
He is also concerned that his students be able to transfer their ability to prove to
“non-mathematical material” (p. 21). In his classes the non-mathematical material
examined consisted of advertisements, political arguments, and legislation. He
achieved some success in persuading his students to reason deductively outside of
mathematical contexts, as indicated by these comments he received from parents by
way of another teacher who conducted interviews with them:

The parents fear that the course may tend to inhibit in the boy the
power of imagination for creative writing in English. For example,
when he was writing of a personal experience for an English
assignment he resented some suggestions his mother made in order
to add interest to the composition on the basis that the suggestions
were not facts. He wished to write only in a scientific manner.

The mother fears that the girl may carry her criticism to the point of
quibbling, however. In some cases she has gone to the point of
criticising authorities on subjects about which she knew nothing.
(p. 109)

My point in quoting these comments is to suggest that presenting proving as
verifying, and then encouraging students to employ proving in a wide range of
contexts, could lead them to apply proving in cases where it is inappropriate and
also to miss occasions when proving might be used to explain or explore but not to
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verify. In the next chapter | have some further comments on the misapplication of
proving to verify outside of mathematics.

Research bv Balacheff et al.

An example of the studies being done in France by Balacheff and others is
the study done by Arsac, Balacheff, & Mante (1992). Students were presented
with this task:

Write for other students a message allowing them to come to know
the perimeter of any triangle a piece of which is missing. To do so,
your colleagues will have at disposal only the paper on which is
drawn a triangle and the same instruments as you have (rulers, etc.)
(pp. 10-11)

The lesson was di*ided into two phases. In the first phase the students solved the
problem, working, “a groups.

During the second phase, called the debate period, aiming at a
collective discussion about the proposed solutions, the organization
is the following: Students’ solutions are written on a large sheet of
paper and are then displayed as posters on the wall of the classroom.
Each team has tc analyze the posters and their spokes-person tells
the class their criticism and suggestions. The criticism must be
accepted by the team whose poster is discussed. Since the students
involved are 13 to 14 years old, it is not possible to leave them free
of any regulation. The management of the activity is then left to the
teacher.... The social situation, as a whole, constitutes here the
didactical milieu of the students’ mathematical activity. But such a
milieu is not sufficient by itself to guarantee the quality of the
debate. We can then foresee that the teacher will have to play a role
especially when the student group might come to an incorrect
agreement or to an impasse. (p. 9, emphasis in original)

I'liken this process of presentation of arguments followed by consensus
decision making to a judicial trial, with the students acting as both lawyers
presenting arguments and as jurors evaluating the argument. The teacher plays the
role of the judge, advising the jury on the admissibility of evidence. Teaching
based on this “courtroom” metaphor has much to recommend it . The body of
mathematical knowledge provides a codified basis for argument, much as the body
of laws provides a basis for legal arguments, especially in legal systems based on
the Napoleonic code, such as France and the United States. In addition, the
process of evaluating major mathematical propositions within the mathematical
community has characteristics of a legal proceeding. The evidence fora
proposition, a proof, is offered to the community, experts comment on it and point
out flaws. These are then correcte, and perhaps new arguments are brought forth,
until finally the proposition is accepted into the body of mathematical knowledge.

The research done on the basis of the courtroom model also places a strong
emphasis on communication. This is important as an encouragement to formulate
unformulated proving. This practice could help students to overcome the diff: iculty
in formulating I observed in my studies.
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Research bv Lampert in the United States

Lampert (1990) has taken the important steps of attempting to teach proving
to students in the early grades. She taught a grade 5 class using a method similar to
that employed in France, with modifications appropriate to younger students.

As students volunteered their solutions to a given problem, 1 write
them on the board for consideration, ang I put a question mark next
to all of them.... Once the list of students® solutions was up on the
board, they were open for discussion and revision.... If they
wanted 1o disagree with an answer that was up on the board, the
language that [ have taught them to use is, “I want to question so-
and-so’s hypothesis.” ... I always ask them to give reasons why
they questioned the hypothesis, so that their challenge took the form
of a logical refutation rather than a Jjudgment. (p. 40)

Lamipert also placed some emphasis on portraying mathematics as
exploratory, in keeping with Lakatos’ (1976) historical analysis (see Chapter I,
section 2). She is especially aware of the “cultural” side of teaching proving;

I assumed that changing students’ ideas about what it means to
know and do mathematics was in part a matter of creating a social
situation that worked according to rules different from those that
ordinarily pertain in classrooms, and in part respectfully challenging
their assumptions about what knowing mathematics entails. (p. 58)

Teaching based on the “courtroom” metaphor provides a context for the
development of a culture of provin g. The importance of such an atmosphere is
indicated in the encouragement to prove it provided the participants in my studies.

Weaknesses of teaching based on the courtroom metaphor

Teaching based on the courtroom metaphor does have some shortcomings.
One of these is pointed out by Arsac, Balacheff » & Mante (1992), who report that
in classrooms the arguments offered are often not entirely founded on mathematical
bases, but include appeals to social and personal factors. Students rely on their
personal authority as members of the social structure of the class to verify their
statements by reference to their own authority. This is entirely in keeping with the
metaphor since the decisions of juries are as much determined by the persuasive
abilities of lawyers as they are based on the code of law.

A second flaw in the courtroom metaphor is found in the need a trial serves:
the establishing the truth or falsity of charges. A legal proceeding verifies. In the
same way teaching based on the courtroom metaphor verifies the conjectures that
students make. As I noted above, professional methematicians use proving Lo
satisfy needs other than verifying, and the results of my studies indicate that
proving to verify is contrary to students’ inclinations. It is the stress on proving to
verify which is, in my mind, the major problem with the courtroom approach to
teaching proving.



4. Speculations on improving teaching

The research on teaching proving I have described above contains many
excellent suggestions for improving teaching, which I can only reiterate. There are
shortcomings in: the basic assumptions of these efforts, however. Clief among
these is that the need to prove is a need to verif y. L believe that the teaching of
proving ought to center on the importance of proving as a way of explaining and
exploring in mathematics and also in the sciences and in dealing witha
technological world.

Teaching with this aim must still include several of the important features of
Fawcett’s teaching, and of teaching in the courtroom metaphor. These features are
the following:

1. Providing situations for proving in which results are discovered
by the students, and in which the need to prove aiises out of a
need to explore, explain, or verify in the situation.

2. Statements which are proved are proposed by students, at the
level of precision the students find necessary.

3. The need to define precisely arises out of the requirements of
proving, not as an arbitrary imposition by authority.

4." “The major emphasis is not on the statement proved, but rather

on the method of proof’ (Fawcett, 1938, p. 62, emphasis in
original)

5. Providing occasions for students to express their reasoning in
their own way, and in ways which permit communication with
their peers and with the larger mathematical community.

6. Proving occurs in a social context in which there is an
expeclation that explanations will be deductive and in which
accommodation is made for the time and attention explaining by
proving requires.

In addition to these principles, | would propose an alternative to the
courtroom metaphor implicitly used by Lampert, and BalachefT, et al. Inspired by
the deductive methods of Sherlock Holmes and by the mathematical acumen of his
nemesis, Prof. Moriarty, I would propose a metaphor of mathematics as detective
work. This metaphor shares important features with the courtroom metaphor like
communication and the fostering of a “culture of proving.” At the same time it
emphasizes the importance of proving as a way of explaining and exploring in
mathematics and provides a basis for exploration by formulated proving by inviting
the question, “What do you know? What clues do you have?”

A small shift in emphasis can bring teaching based on the courtroom
metaphor closer to the detective metaphor. In the courtroom the objective of the
lawyers’ arguments is to convince the jury. A detective is more concerned with
proving to explain than to convince, and this suggests scme changes to the teaching
methods of the courtroom metaphor. The same process of generating conjectures
occurs, but instead of the students attempting to convince each other, they attempt
to explain to each other. They try to help the other students understand why their
conjecture is true, not just that it is true, This shift in focus builds on the use of
proving to explain which was indicated in my studies, and in previous research
(Hanna, 1989; de Villiers, 1991). It also makes the decision process less one of
conflict and more one of consenrsus building.
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A more complete development of the detective metaphor involves the
students in significant investigations in mathematics. Such investigations require
complex and open situations, teacher support and gridance, and a culture of
proving in the classroom, such as some of those suggested by Favvcett (1938).

The problem prompts employed in my research begin to suggest the sorts of
situations which would permit mathematical investigations involving proving.
They could be criticized on the basis of being unconnected to the topics in many
high school curricula. I consider this less of a difficulty than the limited scope of
the problems. The Fibonacci situation can be expanded io include other topics
(e.g., the golden mean) but it is practically limited to the properties of the sequence
itself. The Arithmagon situation can include a wide range of uses of systems of
equations and linear algebra, but at the same time it imposes constraints on the
interpretations of these topics.

I would propose that the best problem prompts might already appear in our
textbooks, either as mathematical problems which involve most of the content of a
unit, or as “add-on” or “enrichment” activities linking the content with genuine
applications of mathematics in business, science, or the arts. For example, the
problems Ms E presented at the end of her unit on equations of lines involved
finding equations of altitudes, medians, and perpendicular bisectors of the sides of
triangles. These problems could have been presented at the beginning of the unit as
problems for investigation. Determining the point of intersection for these lines
could have extended the same problems into the next unit on linear systems.

Fawcett (1938) provides other exampies of good problems for investigation:

Referning to the diagram [Figure 32] let us assume that AP and AQ
are tangents drawn to circle O from an external point, A. What are
the implications of this assumption?

P

Q

Figure 32: Fawcett's diagram.

Draw a right triangle and from the vertex of the right angle draw a
perpendicular o the hypolenuse. What properties of this figure can
you discover and establish by deductive proof? (p. 91)

I would replace the phrase “establish by deductive proof,” in Fawcett’s
second problem with the word “prove” but otherwise these problems seem to be
excellent starting points for mathematical investigations. Fawcett’s students’
investigations led them to a wide range of discoveries, including the Pythagorean
Theorem, which is suggested by the second problem.

To contrast the results of current teaching methods with what could occur if

students spent more time proving to investigate problems like these, consider the
behavior of students interviewed by Schoenfeld (1985). When given the diagram
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in Figure 33 and asked to prove that PA = QA and OA bisects ZPAQ the students
could do so easily. When given the same diagram with the circle omitted a few
minutes later, and asked to construct a circle tangent to PA at P and also tangent to
PQ, they attempted to do so by constructing various arcs and lines with the
inaccurate compass Schoenfeld provided, judging whether they had succeeded by
the appearance of the result. No attempt to use the provin g they had done
previously was made. Would students who had learned to prove to explore, not
Just to verify, have behaved the same way?

P

Q

Figure 33: Perpendiculars to tangents meet at the center.

Threughout such investigations the teacher plays vital roles, as observer,
guide, resource, and co-investigator. These roles focus the teacher on the process
of doing mathematics, on reasoning and understanding, and on the mathematical
worlds of the students. They stand in contrast with more traditional teacher roles as
an authority on mathematical knowledge and the active agent in the classroom.

As an observer the teacher assesses the reasoning and understanding of
students so as to be better able to guide them in their investigations. This role also
plays an important part in the investigation itself since an observer can record and
recollect parts of the investigation which might be useful later. This recollection is
also an aspect of the teacher’s role as a resource. In acting as an observer, the
teacher is modeling an activity which the students themselves should learn as part of
mathematical and scientific investigation. The role of observer might be usefully
assigned to students as one way of contributing to a group investigation.

Guiding students should not be confused with “funneling” them towards a
known goal along a familiar path. Guiding students’ investigations is more
concerned with pointing out important signs, reflecting on reasoning, raising
unthought of possibilities and, on occasion, warning students away {rom
unprofitable paths. It must be emphasized that investigation is not about efficiency
and optimization. In every path there is some value. The teacher does have a
responsibility, however, to proscribe the range of investigation to exclude paths
which are known 10 be generally unproductive, or even misleading,

In addition to recalling students’ recent actions and discoveries, the teacher
is also a source of information and ideas. Of course, this is a large part of teachers’
traditional role but with an important difference. While the usual pattern is for
teachers to anticipate what skills and knowledge students’ will need (as Ms E did in
her unit on graphing lines), a teacher acting as a resource for an investigation must
learn to wait and listen and to provide students with information when it is needed,
not before. This was the role my co-researchers and I adopted in problem sessions.
While we asked questions to point out aspects of the situation for the participants to
continue their investigations, we gave answers only to the participants’ own direct
questions. Interestingly, those participants who were most willing to ask questions
asked only to allow themselves to continue investigating without the impediment of
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stopping to make calculations. They asked no questions that would dispel the
mystery they were investigating.

The openness of the problem prompts used in my research created situations
in which the participants knew as much about what was going on as the observers
did. This was especially true in the Arithmagon situation, in which almost all the
participants, including both the first and the Iast groups observed, surprised me
with aspecits of the situation I had not anticipated. Classroom investi gations should
also afford the opportunity for teachers to join their students in genuine
mathematical activity, complete with the uncertainty of exploration. This places a
demand on teachers unlike those often encountered. What is most important for
teaching in investigations is a willingness to learn and to live with the uncertainty
which come with learning,

Permitting the development of a culture of proving in a classroom is a
difficult task. Some studies (e.g., Perry, 1981 Belenky, Clinchy, Goldberger &
Tarule, 1986) suggest that students are not prepared to participate in such a culture
prior to their university education, or that current schoolin g practices delay the
development of the necessary attitudes towards knowledge until students enter
universities. Lampert (1990) offers some hope that the real situation is the latter.
She reports success in developing in grade 4 and grade 5 students attitudes
appropriate to mathematical investigations. These attitudes are described by Polya
(1968) as “intellectual courage,” “intellectual honesty,” and “wise restraint.”

First, we should be ready to revise any one of our beliefs.

Second, we should change a belief when there is a compelling
reason to change it ...

Third, we should not change a belief wantonly, without some good
reason. (p. 8)

In addition to these attitudes, classrooms also need 1o present opportunities
for mathematical discourse, such as are described in the NCTM Professional
Standards for Teaching Mathematics (1991, see also Reid, 1994).

In order for students to develop the ability to formulate problems, to
explore conjecture and reason logically, to evaluate whether
something makes sense, classroom discourse must be founded on
mathematical evidence.

Students must talk, with one another as well as in response to the
teacher. When the teacher talks most, the flow of ideas and
knowledge is primarily from teacher to students. When students
make public conjectures and reason with others about mathematics,
ideas and knowledge are developed collaboratively, revealing
mathematics as constructed by human beings within an intellectual
community. (p. 34)

5. Why teach proving?
Y ou will have noticed that the critiques of the teaching methods proposed by
Fawcett, Balacheff, and Lampert (above), could as easily be applied to the

curricular objectives I described at the beginning of this chapter. The justification
given for teaching proving is that proving is the way to verif y in mathematics. If 1
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argue that this justification misrepresents mathematics and proving, and leads to
teaching in ways which neglect students’ needs to prove, what then is the reason to
teach proving at all?

Perhaps the best way to begin to answer this question is to look at the
reason we teach anything. Bruner sums it up nicely:

A culture is as much a forum for negotiating and renegotiating
meaning and for explicating action as it is a set of rules or
specifications for actions. Indeed, every culture maintains
specialized institutions or occasions for intensifying this ‘forum-
like’ feature. Storytelling, theatre, science, even Jjurisprudence are all
techniques for intensifying this function—ways of exploring
possible worlds out of the context of immediate need. Education is
(or should be) one of the principle forums for performing this
function—though it is often timid in doing so. It is the forum aspect
of a culture that gives its participants a role in constantly making and
remaking the culture. (Bruner, 1986, p- 123, emphasis in original)

According to Bruner, and I would have to agree with him, education has
two aims. The first is simple. We want to pass on aspects of our culture which we
consider to be important to our children. In doing so we are presenting them with
“a set of rules or specifications for actions” which will allow them to continue to be
a part of a world defined by our culture. For this reason we teach children to speak
the language we speak, to listen to music like the music we listen to, to read books
we have read, and to appreciate the dramatic arts as much as we do.

Passing on our culture to students takes many forms, from providing basic
skills and knowledge we know all of them will need; to exposing them to the more
esoteric aspects of human culture, giving them opportunities to go where they might
otherwise never have ventured. Among the basic skills of living in our society is an
ability to reason deductively as a basis for problem solving in encounters with
technology and as a tool for evaluating scientific, legal, and statistical arguments
used to justify public policy. Proving is also an introduction to the esoteria of
mathematics, physics, and analytic philosophy, which are as much a part of our
culture as the poems of Milton and the music of Bach, and so as important to
students’ education.

It is vital not to be confused about the importance of basic skills versus
exposure to esoteria. Teaching students the relevance of proving to mathematics or
philosophy is not the most central of our aims and teaching needs to reflect this.
Reasoning deductively to determine the functions of, or flaws in, a product of
rational design science is a more central aim. This should be apparent in the
contexts for reasoning we choose for our students. Students may learn to prove as
well in thinking about set theory as in thinking about microwave oven
programming, but the reasons to prove communicated will be quite different.

The second aim of education, according to Bruner, is to give students “a
role in constantly making and remaking the culture.” Deductive reasoning is an
important part of our culture and a part of our culture in need of being remade (as
discuss further in the next chapter). An important part of remaking this part of our
culture is detecting misuses of proving. In some cases these become apparent from
the unsatisfactory results obtained, but it is better to notice misuses of proving
before they cause harm, and in a way which includes an understanding of the
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weaknesses which make proving unsuitable for a particular use. The ability todo
this depends on an ability to prove.

The misuse of proving might be a result of flawed proving, or it might
result from the use of proving in an inappropriate context. When the misuse of
proving is a result of errors in the proving process it is only through proving that
the errors can be discovered. This use of proving might be compared with Lakatos’
“proving tc improve” (1976, p. 37) in mathematics, broadened to include proving
in other contexts. When a correct proving process is used in an unsuitable context,
proving provides the basis for a precise understanding of its own limits.

The use of proving in our culture, its misuses in inappropriate contexts, and

the ways in which proving can define its own limits, are the topic of the next
chapter.
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CHAPTER Vi

PROVING IN SOCIETY

Logical consequences are the scarecrows of
Jools and the beacons of wise men.
— T. H. Huxley, Science and Culture,
ix, On the Hypothesis that Animals
are Automata.

The usual reason given for teaching proving, the importance of proving as
the method of verification is mathematics, does not agree with either the role uf
proving in mathematics or with students’ needs to prove. This observation led me
to raise the question “Why teach proving?” at the end of the previous chapter. It
could have as easily led to the question “Why are the curriculum designers asserting
that proving has a role that it does not have either in mathematics or for students?”
The answer to this question lies in the role of Rationalism in our society. The
problems that have resulted from the application of proving in inappropriate
contexts and weaknesses in the basic assumptions of Rationalism suggest that the
role of Rationalism in society needs to be reconsidered. In fact, I would assert that
if education involves preparing students to play “a role in constantly making and
remaking the culture” (Bruner, 1986, p. 123), then Rationalism is a part of our
culiure that needs remaking.

In this chapter [ describe Rationalism and some problems it has given rise
to. I then analyze some of its weaknesses and l:mits. These limits suggest both a
need for other modes of thinking and a need for a remaking of Rationalism. In the
next chapter I describe one possible remaking of Rationalism, and its implications
for teaching and research. My critique cannot pretend to be exhaustive. A
thorough description and critique of Rationalism would {ill many volumes. I will
be ignoring the critical perspectives of feminism, post-modernism, and
phenomenology, among others. These perspectives are certainly valuable, but my
purpose here is simply to suggest that a strong critique of Rationalism exists from a
Rationalist perspective, and so I will be limiting myself to that perspective. [ will
also be providing a simplified description of Rationalism, which contains what I
believe are its central points, but which necessarily neglects subtleties which would
be included in a more thorough history.

1. What is Rationalism?

Rationalism is based on two beliefs: that deductive reasoning can determine
absolute truths, and that deduction is applicable to all situations. The implication of
these two beliefs is that in any situation in which we want to know something, the
best way to reason is deductively. The basic ideas of rationalism can be traced to
Descartes. Descartes published his Discourse on the Method for Rightly
Conducting One’s Reason and for Seeking Truth in the Sciences in 1637. The
“Method for Rightly Conducting One’s Reason” he wrote of is deductive, rational
thought.

As an aside, ] shouid note that my tracing of Rationalism to a few words of
Descartes could be seen as a misrepresentation of his work. Descartes’ ideas
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occurred in a context and have been reinterpreted many times in many other
contexts. My use of his name and words here is largely a rhetorical and heurisiic
device. Itallows me to describe in a simple way a belief or attitude held by many
people at many times. Modern Rationalism can be, as I have done here, traced to
Descartes, but just as easily traced to Russell, or Leibniz, or Plato.

Descartes’ method was inspired by the proofs of Euclid. His innovation
was to imagine that such deductions might illuminate other areas:

Those long chains of reasoning, each of them simple and easy, that
geometricians commeonly use to attain their most difficult
demonstrations, have given me an occasion for imagining that all the
things that can fall within human knowledge follow one another in
the same way and that, provided only that one abstain from
accepting anything as true that is not true, and that one always
maintains the order to be followed in deducing the one from the
other, there is nothing so far disiant that one cannot finally reach nor
so hidden that one cannot discover. (Descartes, 1637/1993, p. 11)

In fact, Descartes believed that the simple and easy reasoning that
geometricians use was the only way of reasoning which could succeed in revealing
truth:

Of all those who have already searched for truth in the sciences,
only the mathematicians were able to ind demonstrations, that is,
certain and evident reasons. (p. 11)

The influence of Rationalism has extended beyond its origins in
mathematics, science, and philosophy. In the eighteenth century, the Age of
Reason, the successes of Rationalist science became known to all educated
Europeans and had effects on their vision of the world:

Science was for them ... living growing evidence that human
beings, using their “natural” reasoning powers in a fairly obvious
and teachable way, could not only understand the way things really
are in the universe; they could understand what human beings are
really like, and by combining this knowledge of nature and human
nature, learn how to live better and happier lives. (Brinton, 1967,
p. 519)

This Enlightenment vision has continued into present day rhetoric,
curriculum documents, textbooks, and teaching. Rationalism also continues to play
an important role in research, both in the definition of reasoning and as the basis of
methodology. Lakoff (1987) describes the dominant understanding of what
“reasoning” means in this way:

In this century reason has been understood by many philosophers,
psychologists, and others as roughly fitting the model of formal
deductive logic:
Reason is the mechanical manipulation of abstract symbols
which are meaningless in themselves, but can give meaning by
virtue of their capacity torefer to things either in the actual world
or in possible states of the world. (p. 7)
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2. Rationalism’s weaknesses

The two beliefs that form the basis of Rationalism, that deductive reasoning
can determine absolute truths and that deduction is applicable to all situations, turn
out to be problematic. The weaknesses in these fundamental beliefs permeate all of
Rationalism (because Rationalism has a deductive structure). In this section I
describe the weaknesses of Rationalism, and also suggest that Rationalism is not
only flawed, but dangerous when applied to many situations.

Deduction and absolute truth

Descartes modeled his method on the proofs of Euclid, and saw them as the
ultimate example of thinking which produced certainty. For this reason it seems to
me that the relationship of absolute truth fo proving in mathematics is a sensible
place to explore this aspect of Rationalism in general. In the past two centuries the
relationship of absolute truth in mathematics has shifted radically. In the late
eighteenth century mathematics, and especially geometry, was seen as the most
absolute of truths. By the late nineteenth century, it was acknowledged that what
was true depended on the assumptions, the axioms and postulates, which form the
basis of a mathematical system. There could be two equally valid systems, based
on different assumptions, but within each system proving could reveal all truth and
engender no contradiction. By the mid-twentieth century, even this hope was lost
since it was shown that all mathematical systems are necessarily incomplete; there
are truths that can be known but not proven. What Kline (1980) called the “loss of
certainty” in mathematics has implications for Rationalism as a whole although they
are barely beginning to be felt.

In the Age of Enlightenment Euclid’s geometry was often held to be the
epitome of certainty. Descartes based Rationalism of Euclid’s proofs, and Kant
(1781/1927) used the certainty of geometry to support the necessity of space being
apriori.

On this necessity of an a priori representation of space rests the
apodictic certainty of all geometric principles, and the possibility of
their construction a priori. For if the intuition of space were a
concept gained a posteriori, borrowed from general external
experience, the first principles of mathematical definition would be
nothing but perceptions. They would be exposed to all the accidents
of perception, and there being one straight line between two points
would not be a necessity, but only something taught in each case by
experience. Whatever is derived from experience possesses 2
relative generality only, based on induction. We should therefore
not be able 10 say more than that, so far as hitherto observed, no
space has been found to have more than three dimensions. (p. 19)

The “apodictic certainty of all geometric principles” was undermined by the
discovery, in early nineteenth century, of non-Euclidean geometries. These
geometries begin with different assumptions than Euclid’s, but rather than
collapsing in a mess of contradictions, as Kant might have predicted, they turn out
to be just as consistent as Euclidean geometry.

* “Apodictic” means “established on incontrovertible evidence. (By Kant applied toa proposition
enouncing a necessary and hence absolute trutk.)” (Oxford English Dictionary, 1971)
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The first of these non-Euclidean geometries, hyperbolic geometry, was
independently discovered by Lobachevsky (published in 1829), Bolyai (published
in 1832}, and the renowned mathematician Gauss (never published, but he claimed
he thought of it first). Hyperbolic geometry replaces Euclid’s “parallel postulate”
(There is exactly one line through a given point parallel to a given line) with the
postulate “There is mnore than one line through a given point parallel to a given
line.” This postulate leads to many surprising results, like the sum of the angles in
a triangle is less than 180°, but it does not lead to contradictions.

Strictly speaking, what was shown was not that the non-Euclidean
geomeltries are consistent, but rather that they are consistent if Euclidean geometry
is consistent. This raised for the first time the question “How do we know
Euclidean geometry is consistent?” The old answer, that it is the absolutely true
geometry of space and so must be consistent, was no longer acceptable. Instead, a
mathematician named Hilbert answered this question by proving that Euclidean
geometry is consistent i/ basic arithmetic is consistent. Now the problem was to
show that arithmetic is consistent.

Hilbert presented this problem, along with about twenty others, at the
Second International Congress of Mathematicians held in Paris in 1900. At that
time great progress had been made in making mathematical reasoning more formal,
which made gaps in logic easier to spot and fix. The mathematical community had
great confidence that the formal structures they were developing would, for
mathematics at least, achieve what Leibniz had dreamed of in the eighieenth
century, “an exhaustive collection of logical forms of reasoning—a calculus
ratiocinator—which would permit any possible deductions from initial principles”
(Kline, 1980, p. 183).

It quickly became apparent that the problem of verifying the consistency of
arithmetic was not going to be a simple one. And the problem was not just
showing consistency. By selecting a very small number of initial assumptions or
axioms, it was easy to produce a system that was consistent. But a small number
of axioms was not enough to allow the derivation of all the statements one might
make about arithmetic. In this case the system would be a consistent but incomplete
anthmetic.

Most attempts to develop a formal structure for arithmetic used axioms
about sets as their basis. But the theory of sets, which was chosen for its simplicity
and obviousness, turned out to produce paradoxes. The central problem involves
sets that contain themselves. The set of all apples does not contain itself because a
setis not an apple. The set of all mathematical objects does contain itself because a
set is a mathematical object. We can distinguish between sets that do contain
themselves and sets that do not. But what of the set of al! sets which do not contain
themselves? Does it contain itself?

This paradox is called the Barber Paradox, which was first noticed by
Bertrand Russell in 1502. The name comes from the following story, which
expresses the same paradox in different terms.

In a village there is a barber, who claims that he shaves every man

who does not shave himself. Of course, he does not shave those
who do shave themselves. Who shaves the barber?
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Implicit in the paradox is a fashion statement: all men are shaved. Either
Russell’s barber shaves himself, or he doesn’t. If he does, then he belongs to the
class of men who shave themselves, and he does not shave those men so he cannot
shave himself. If he doesn’t shave himself, then he belongs to the class of men
who do not shave themselves, and he shaves all such men. Either way, a
contradiction arises.

This amusing story caused great consternation in the small, but famous,
circle of mathematicians working on the problem of showing that arithmetic is
consistent. Their proofs became more and more formal. Solutions to the
paradoxes were proposed, but many of these solutions had undesirable side effects
since they barred methods of proving that had been used with much success in the
past. It began to look like showing arithmetic to be consistent might require
redoing most of mathematics or even rejecting parts of it.

Hilbert, Russell, Whitehead, Peano, Frege, Zermelo, Brouwer, Weyl, and
many others worked on the problem of consistency. They divided into various
schools, employing different bases and limitations on logic in developing
arithmetic. The conflict between these schools raised another issue. Critics from
other schools raised the point that it might be possible that such and such a school’s
position might guarantee consistency but only at the cost of completeness. There
might be important parts of mathematics that would left out. The baby mi ght go
with the bath water.

Russell and Whitehead decided to approach the problem by basing
arithmetic on logic itself. As logic would be used in any proof of consistency,
using logic as a basis added no new potential source of contradiction. Russell and
Whitehead’s efforts resulted in their Principia Mathematica, first published in
1913. Although no one felt that they had completely solved the problem of
consistency, Russell and Whitehead had, through careful use of formal proving,
clarified the problem further. Progress continued, and things looked hopeful.

In 1931 the situation changed radically. Kurt Godel published a paper
entitled *On Formally Undecidable Propositions of Principia Mathematica and
Related Systems.” In this paper Godel delivered a powerful double whammy. The
first blow related specifically to “Principia Mathematica and Related Systems.”
Godel proved that the task which had occupied the greatest mathematical minds of
the first three decades of the century could not be done. The consistency of
arithmetic cannot be established using the logical principles of Russell and
Whitehead. The second blow was even worse. Godel proved that any system
which does manage: to show that arithmetic is consistent, must be incomplete, That
is, we can use formal deductive logic to know that part of arithmetic is free of
contradictions, but we can never know that all of arithmetic is free of
contradictions.

Gddel’ s proof depends on producing a true statement, which he then shows
cannot be proved without resulting in a contradiction. He does this by encoding the
familiar Epimenides paradox into formal mathematics. The simplest formulation of
this paradox is the sentence “This sentence is false.” If this sentence is true, then it
is false. If itis false then it is true. Godel produced a formal sentence (encoded as
a number), which asserted that it could not be proved. If the statement is assumed
to be true, then there is a true statement that cannot be proved and mathematics is
incomplete. If it is false, then there is a false statement that can be proved and
mathematics is inconsistent. (A readable description of Godel’s Theorem is
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Hofstadter, 1980. Readers with backgrounds in computer science may prefer the
description in Penrose, 1994, based on computability. The empty set {readers who
are mathematicians and read German, but are unacquainted with Godel’s Theorem}}
will find a reference to the original paper in the list of References.)

Gidel’s Theorem established that deductive reasoning has limits even in
mathematics, the original model of Rationalism. Itssignificance lies in establishing
that there are some questions that deductive reasoning is powerless to answer.

Significance of Gdel’s Theorem outside of mathematics

Godel’s Theorem undermines the foundations of Rationalism by
invalidating Descartes’ original assumption that mathematics is complete. This is
enough to cast doubts on any sort of Rationalist description of the world. Godel’s
Theorem and analogous arguments can also be applied direcily to Rationalist world
views. Asexamples, consider Penrose’s critique of Artificial Intelligence research,
and Putnam’s critique of Objectivist semantics.

Penrose (1989, 1994) argues that Godel’s Theorem implies that Artificial
Intelligence (Al), as it is usually understood, is impossible, and that a scientific
understanding of the mind will require major revisions to current theories in
physics.

His argument against Al is essentially that a computer based Al is a formal
system, and so by Godel’s Theorem there are statements that are true, but which the
Al cannot know because they cannot be proven within the formal system defined by
the AL. Penrose asserts that an intelligent being could understand Godel’s
Theorem, but that an Al could not, at least as far as Gode!'s Theorem applies to the
Alitself. If it could, then it would know some statement was true but be unable to
prove it. Knowing the statement is true, however, implies that it is proven within
the formal system of the Al

Penrose’s argument for the need to revise the theories of physics is based
on his Al argument. According to current physical theories, the human brain
operates according to physical laws which, in theory, could be represented by an
incredibiy complicated formal system. If this were the case, then the same
argument he used to show an Al cannot exist would show that human intelligence
cannot exist. Given that human intelligence does seem to exist, there must be some
physical property of brains that makes them essentially unlike a formal system. If
such a property exists, however, current theories of physics must undergo a radical
modification.

Lest you be tempted to assume that Penrose is a crackpot, which would be
reassuring given the sweeping nature of his conclusions, I should assure you that
he is a well respected mathematical physicist. He has had many critics, which is a
measure of the significance of what he has to say. People may not agree on what
significance Godel’s theorem has, but at the very least there is no doubt that its
significance is not restricted to mathematics.

Semantics is the part of linguistics that shows how abstract symbols are
related to the world and that characterizes ‘meaning’. In what Lakoff (1987) calls
Objectivist semantics, these two processes are one and the same. Recall the
description of reason according to Objectivism:
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Reason is the mechanical manipulation of abstract symbols which
are meaningless in themselves, but can give meaning by virtue of
their capacity to refer to things either in the actual world or in
possible states of the world. (Lakoff, 1987, p. 7)

A symbol has meaning only because of the way it is related to the world.
This relation is based on the idea of truth value. A sentence has meaning if it has a
well defined truth value, which in turn is supposed to be based on the way the
terms in it are related to the world. Putnam (1981) argues against this position by
showing that a sentence might have two interpretations; that is, its terms might
relate to the world in two different ways while the truth value, and hence meaning,
of the sentence remain the same. If this is the case, then meaning cannot be based
on the relation between symbols and the world.

Putnam’s argument is analogous to Godel’s Theorem in at least two ways.
It plays a similar role in limiting Rationalism, and the arguments are similar in
structure. Godel’s Theorem does not show that all of mathematics is inconsistent,
or even that deduction cannot be used to safely determine truth in mathematics.
What Godel showed is that there are limits to the power of deduction to reveal truth.
Similarly Putnam showed not that it is impossible for symbols to be related to the
world in a way that gives them meaning, but instead that there are limits to this
process of making relations to the world to give meaning. According to Godel
there is a class of true statements that cannot be accounted for by deduction.
According to Putnam there is a class of meaningful statements that cannot be
accounted for by reference to the world.

Recall that Godel’s proof involved producing a sentence that asserted that it
could not be proved. Putnam produced a sentence that could be given two
interpretations. In both interpretations the sentence is true, so it has a truth value
and is meaningful. But the iwo interpretations use very different references for the
terms involved, making its meaning under the two interpretations different. In
other words, Putnam produced a well-defined, meaningful sentence (according to
the Objectivist idea of ‘meaning’), with a completely ambiguous meaning
(according to common sense). Thus there must be something more to ascribing
meaning to a sentence than the criteria employed by Objectivism.

Putnam illustrates his proof with an example, and I am not able to provide a
clearer synopsis of his proof, soI will quote his example in full. Further details
can be found either in Putnam’s work, or in Lakoff (1987).

Consider the sentence

(1) A cat is on a mat. (Here and in the sequel ‘is on’ is
tenseless, 1.e. it means ‘is, was, or will be on’.)

Under the standard interpretation this is true in those possible
worlds in which there is at least one cat on at least one mat at some
time, past, present, or future. Moreover, ‘cat’ refers to cats and
‘mat’ refers to mats. [ shall show that sentence (1) can be
reinterpreted so that in the acmual world ‘cat’ refers to cherries and
‘mat’ refers to frees without effecting the truth-value of sentence (1)
in any possible world. (‘Is on’ will keep its original interpretation.)
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The idea is that sentence (1) will receive a new interpretation in
which what it will come to mean is:

(a) A cat* is on a mat¥*.

The definition of the property of being a cai* (respectively, a mat¥)
is given by cases, the three cases being:

(a) Some cat is on some mat, and some cherry is on some tree.
(b) Some cat is on some mat, and no cherry is on any tree.
(c) Neither of the foregoing.

Here is the definition of the two properties:

DEFINITION OF ‘CAT*’

x is a cat* if and only if case (a) holds and x is a cherry; or case
(b) holds and x is a cat; or case (c) holds and x is a cherry.
DEFINITION OF ‘MAT#*

x is a mat* if and only if case (a) holds and x is a tree; or case
(b) holds and x isa mat; or case (c) holds and x is a quark.

Now, in possible worlds falling under case (a), ‘A cat is on a mat’ is
true, and ‘A cat* is on a mat*’ is also true (because a cherry ison a
tree, and all cherries are cats* and all trees are mats* in worlds of
this kind). Since in the actual world some cherry is on some tree,
the actual world is a world of this kind, and in the actual world
‘cat*" refers to cherries and ‘mat*’ refers to trees.

In possible worlds falling under case (b), ‘A cat is on a mat’ is true,
and ‘A cat* 1s on a mat*’ is also true (because in worlds falling
under case (b) ‘cat’ and ‘cat*’ are coextensive terms and so are ‘mat’
and ‘mat*’). (Note that although cais are cats* in some worlds —
the ones falling under case (b) — they are nor cats* in the actual
world.)

In possible worlds falling under case (c), ‘A cat is on a mat’ is false
and ‘A cat* is on an mat¥’ is also false (because a cherry can’t be on
a quark).

Summarizing, we see that in every possible world a cat is on a mat if
and only if a cat* is on a mat*. Thus, reinterpreting the word ‘cat’
by assigning to it the intension we just assigned to ‘cat*’ and
simultaneously reinterpreting the word ‘mat’ by assigning to it the
intension we just assigned to ‘mat*’ would only have the effect of
making ‘A cat is on a mat’ mean what ‘A cat* is on a mat*’ was
defined to mean; and this would be perfectly compatible with the
way truth-values are assigned in every possible world. (Putnam,
1981, pp. 33-35, emphasis in original)*

* The asterisk (*) in Putnam’s example is used to distinguish the word *cat’ from the word *cat*’,
and does not indicate a reference to a footnote.
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Rationalism is not universallv applicable

Examples of cases in which Rationalism seemed not to be applicable have
occurred many times in the past three hundred years. Mere examples, however, are
not enough to shake the Rationalist belief that proving is universally applicable. In
some cases it was suggested that human weakness had introduced some bias into
the course of the deduction, which made the problem people rather than
Rationalism. In other cases, it was acknowledged that Rationalism could say
nothing about a phenomenon, but that was taken to indicate that the phenomenon
did not really exist. This approach has been taken by some Artificial Intelligence
researchers to deal with the phenomenon of consciousness (Searle, 1992, pp. 6-7).

In order to show that Rationalism is not universally applicable, it is
necessary to prove it, just as Godel proved that Rationalism cannot establish all
truths. In order to do so, we need to consider the relationship between logical
implication and causation. The application of Rationalism to events in the world
requires that physical causes must be almost as certain as logical implications.
Otherwise Rationality has no predictive power, which is its whole point. Not even
the most die hard Rationalist would assert that causes can be used to predict effects
exactly, but there is an underlying assumption that causes predict effects
approximately. The great successes of Rationality in the physical sciences bear this
out. The orbits of the planets are almost exactly what Newton’s laws predicts, and
Einstein’s theories improve the accuracy even further. In the Rationalist world all
phenomena can be predicted, and things like the weather, for which prediction is
currently very approximate, will be predicted with more and more accuracy as
science progresses.

I bring up the planets and the weather as examples because they are two
examples of dynamical systems, which are the topic of chaos and complexity
theory. The simplest description of chaos theory is that it is the study of how chaos
can emerge from order. Complexity theory considers how order can arise out of
chaos. To take the planets as an example, physics provides precise laws which
govern the motion of the planets. However, the interacting gravities of several
bodies in motion result in a system for which questions like “Will the moon fall out
of the sky one day?” cannot be answered. Not only is it impossible to predict the
path of the moon exactly, it is not even possible to do so approximately over long
periods of time. In weather systems this phenomenon is more obvious. In fact it
was in attempts to simulate weather systems that the emergence of chaos from order
was first observed (Gleick, 1987, p. 16). Approximate prediction is not possible
because very tiny changes to initial conditions result in radical changes in final
conditions. One might expect that knowing approximately what the current state of
things is would be sufficient to predict approximately future events. This would
allow refinements in our knowledge of the present to improve predictions of the
future. In dynamical systems, however, the sensitivity to initial conditions is such
that prediction is simply impossible.

Complexity theory examines dynamical systems in order to describe how
order emerges from the chaos produced by the interactions within them. To return
to the example of weather, one might expect that a system which changes radically
in response to slight variations in initial conditions would be essentially random.
However, when we examine satellite photographs, for instance, we see patterns in
this chaos. Not all chaotic systems give rise to patterns, but some of the ones that
doare very significant in our lives. They are those systems whose internal
interactions are such that they are self-sustaining. This characteristic means that
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within such systems the second law of thermodynamics, entropy, does not apply.
Some examples are living things, species, herds, and societies.

The emergence of such orderly systems out of the chaos of dynamical
systems implies that they are, for all practical purposes, unpredictable. This
sharply limits the use of Rationalism in understanding them. At the same time the
basis of dynamical systems is interactions, which are causal when taken
individually. This means that Rationalism has a role to play in the study of such
systems. Butitis arole thatinvolves some fundamental changes in the use of
proving. Itis arole that replaces proving to verify with proving to explain and
explore. Itis proving that the students who participated in my research might relate
to. Anexample of such a transformation of Rationalism is Enactivism, which is the
topic of the next chapter.

Dangers of misapplied Rationalism

I would like to briefly mention some of the effects attempts to treat
Rationalism as if it can be applied in all domains have had. I do this in order to
make it plain that applying Rationalism to “al! the things that can fall within human
knowledge,” as Descartes suggested, is not only a logical error, but dangerous to
individuals and societies.

Descartes spent a number of years as a gentleman soldier of fortune, and so
itis perhaps appropriate to begin by describing the Rationalism of war. War has
become increasingly “scientific,” especially in the past hundred years. When
Gilbert and Sullivan wrote The Pirates of Penzance in 1880 mathematics was as
important to the training of a “modern Major General™ as statecraft or strategy. By
the First World War, the planning of the generals was so rationally perfect that the
Austrian declaration of war on Serbia led to the British declaration of war on
Germany eight days later with all the inevitability of one of Euclid’s proofs (Taylor,
1974, pp. 25-28).

Modern technology provides further scope for Rationalist military planning.
Consider the age old problem of ground troops becoming frightened or disturbed at
the carnage of war. The U.S. military is developing remote control, “telerobotic,”
tanks and planes, which can be operated from sufficient distances to eliminate the
risk to the driver or pilot operating them (Rheingold, 1991, pp. 357-358), and
stmulators, like SIMNET which is capable of connecting 200 four person tank
crews, each in their own simulated M-1 tank, into a virtual tank battle. The
combination of these two technologies could solve the problem of troop morale. If
the simulators used to train soldiers are equipped to operate the robot tanks and
planes, then the combatants need never know that the images on their simulator
screens are real people, and they will feel no remorse at their deaths. One more
human element will have been eliminated from the planning of war on Rationalist
principles.

Many people have realized that, “if there are ‘objective’ criteria on which to
base a decision, then one cannot be blamed for being biased, and consequentially
one cannot be criticized, demoted, fired, or sued” (Lakoff, 1987, p. 184). The
association of mathematics with objectivity, which is an integral part of
Rationalism, has lead to the use of mathematics as an “objective” way of
determining which people are accepted to some desirable position. For example, in
universities many academic programs include a mathematics course as part of their
requirements. These “service” courses have high failure rates. In the case of the
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introductory calculus course at one major Canadian university about a third of the
students who register either fail or drop the course. This limits the number of
students enrolled in programs with mathematics requirements. Mathematics serves
as a social filter, imbued with the appearance of rationality and objectivity.

Davis and Hersh (1986) describe this situation in the case of the calculus
requirement of the typical business school:

There seems to be no necessity to make math a requirement. There
is a practical necessity to make a selection among the students who
want to go to the business school. The business professors decide
to use math for that purpose. Is that OK? How should we (math
teachers) feel about it? First of all, there is nothing inevitable about
the choice of math as a filter. Some other filters that could be used,
or that have been used are: family connections, political connections,
income, ability in sports, personal charm, brutality and
aggressiveness, trickiness and sneakiness, devotion to public
welfare, etc. The first five have been relevant criteria in admission
of students to U.S. institutions of higher learning; the last three are
suggested, somewhat in jest, for particular relevance to a school of
business. (pp. 101-102)

Davis and Hersh go on to consider the effects on mathematicians that result
from spending a great deal of effort teaching students who have no desire to learn
mathematics, and who see it mainly as an impediment to their success in some
unrelated academic program. In this case, it is not only the students who are denied
access to their chosen career on the basis of a Rationalist criteria who suffer. The
mathematicians who participate in this process also find it demoralizing and try to
avoid teaching such courses.

Gould (1981) described the unfortunate effects of Rationalist atiempts to
quantify mental attribuies have had on individuals and groups. The connection
between mathematics and Rationalism leads to situations such as Gould described,
in which the use of statistical methods in psychometrics gave the field an air of
objectivity. This Rationalist claim has been the basis for the acceptance of
psychometrics as the fair way to determine employment, immigration, and
scholastic opportunity since the development of statistical techniques in the late
nineteenth century.

Gould’s most disturbing example describes the effects of the IQ testing of
1750 000 U.S. Army recruits during the First World War on social policy. One
important “discovery” that came out of the interpretation of this data was the mental
inferiority of immigrants, especially immigrants from Mediterranean and Slavic
backgrounds, including Jews. This led to the U.S. Immigration Restriction Act of
1924, which sharply limited immigration in general, especially from southern and
eastern Europe. This Act prevented the immigration to the U.S. of millions of
people, including Jews attempting to leave Hitler's Germany. As Gould (1981)
says:

We know what happened to many who wished to leave but had

nowhere to go. The paths to destruction are often indirect, but ideas
can be agents as sure as guns and bombs. (p. 233)

105



That particular misapplication of Rationality is still a serious problem is
indicated by the periodic appearance of books that make use of data from
psychometric testing to argue for the inferiority of various groups within our
society, or globally (e.g., Jensen, 1979; Hermstein & Murray, 1994).

Our model of thinking defines what we can think. Not surprisingly,
Rationalism most strongly determines how scientists and mathematicians can think.
This can limit the possible explanations scientist can provide for phenomena,
perhaps resulting in false conclusions. This is illustrated by the existence of
something known in psychology as the ‘base-rate fallacy’ which is usually
illustrated by studies done by Kahneman & Tversky (see, for example, Bruner
1986, p. 89 or Holland, Holyoak, Nisbett & Thagard, 1986, pp. 217-222). Ina
typical study subjects are shown psychological profiles drawn from a sample of 70
engineers and 30 lawyers. They are then asked to guess whether the profile is that
of an engineer or a lawyer. When the subjects ignore the information that 70% of
the profiles are of engineers, even when the individuating information is completely
useless for making a decision, the researchers label this irrational behavior the
“base-rate fallacy.” The subjects are not thought to be thinking differently, but
incorrectly. The interpretation given by the scientists involved is an illustration of
the powerful hold Rationalism has on the paths that their thoughts can take and
cannot take. As Wittgenstein points cut: “So much is clear: when someone says: ‘If
you follow the rule, it must be like this’, he has not any clear concept of what
experience would correspond to the opposite” (1956, §111-29, p. 121, emphasis in
original).

3. Rationalism and other modes of thought

The previous sections could be very discouraging if we believe that thinking
means thinking deductively. And we would not be alone in believing that:

In this century reason has been understood by many philosophers,
psychologists, and others as roughly fitting the model of formal
deductive logic:
Reason is the mechanical manipulation of abstract symbols
which are meaningless in themselves, but can give meaning by
virtue of their capacity to refer to things either in the actual world
or in possible states of the world. (Lakoff, 1987, p. 7)

Any mode of thought defines how one sees the world and acts in the world,
which in turn defines what one is in the world. Rationalism is no different. It acts
as a filter and a lens for perception, eliminating some objects and relationships from
view, distorting others, and bringing some into clear focus. It “enable[s] us to keep
an enormous amount in mind while paying attention to a minimum of detail”
(Bruner, 1986, p. 48) in much the same way that a wide angle lens provides an
enormous view, but distorts details.

As Rationalism has developed, it has become more and more difficult to see
the world in other ways. This is a general feature of “ideas of mind.”

Perhaps once a culture has become gripped by an idea of mind, its

uses, and their consequences, it is impossible to shed the idea, even
when one has lost faith in it.
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For the impact of ideas about mind does not stem from their truth,
but seemingly from the power they exert as possibilities embodied in
the practices of culture. (Bruner, 1986, p. 138)

The adoption of Rationalism gives it power to affect the way that society
develops. As Rationalism is more generally considered to be the model of thinking,
we construct our society in such a way that it must be our model of thinking.

Isn’t it like this: so long as one thinks it can’t be otherwise one
draws logical conclusions. This presumably means: so long as such-
and-such is not brought into question at all.

The steps which are not brought into question are logical inferences.
But the reason why they are not brought into question is not that
they ‘certainly correspond with the truth’—or something of the
sort,—no, it is just this that is called ‘thinking’, ‘speaking’,
‘inferring’, ‘arguing’. There is not any question at all here of some
correspondence between what is said and reality; rather is logic
antecedent to any such correspondence; in the same sense, that is, as
that in which the establishment of a method of measurement is
antecedent to the correctness or incorrectness of a statement of
length. (Wittgenstein, 1956, §1-155, p. 45, emphasis in original)

If we accept that all thinking is deductive, and combine that idea with the
knowledge that systems of deductive logic are essentially incomplete, we might be
tempted to believe that there are things we cannot think about at all. Rather than do
that [ would take up Bruner's (1986) suggestion that thinking can occur in a
number of modes.

Bruner identified two main modes of thinking in our society, paradigmatic
{which is Rationalism), and narrative.

The ‘reality’ of most of us is constituted roughly into two spheres:
that of nature and that of human affairs, the former more likely 1o be
structured in the paradigmatic mode of logic and science, the latter in
the mode of story and narrative. The latter is centered around the
drama of human intentions and their vicissitudes; the first around the
equally compelling, equally natural idea of causation. (p. 88)

It should be noted that these modes of thought are complementary. While it
seems that some individuals have developed one of these modes of thought toa
higher degree than the other, all humans possess the ability to think in these ways.
In this modes of thought seem to correspond to what Lakoff (1987) calls
“conceptual schemes”,

The paradigmatic mode of thought is closely allied to Rationalism.

[It] attempts to fulfill the ideal of a formal, mathematical system of
description and explanation. [t employs categorization or
conceptualization and the operations by which categories are
established, instantiated, idealized, and related one to the other to
form a system. Its armamentarium of connectives includes on the
formal side such ideas as conjunction and disjunction, hyperonymy
and hyponymy, strict implication, and the devices by which general
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propositions are extracted from statements in their particular
contexts. At a gross level, the logico-scientific mode ... deals in
general causes, and in their establishment, and makes use of
procedures to assure verifiable reference and to test for empirical
truth. Its language is regulated by requirements of consistency and
noncentradiction. its domain is defined not only by observables to
which its basic statements relate, but also by the set of possible
worlds that can be logically generated and tested against
observables—that 1s, it is driven by principled hypotheses. (Bruner,
1986, pp. 12-13)

The narrative mode, on the other hand, “deals in human or human-like
intention and action and the vicissitudes and consequences that mark their course.
It strives to put its timeless miracles into the particulars of experience, and to locate
the experience in time and place” (Bruner, 1986, p. 13).

Bruner briefly touches on one other mode of thinking, faith, and notes its
power in the Middie Ages. This was: “an unmediated knowing of eternal truths
revealed by God (or ... by virtue of man’s endowment with an intuition of pure
knowledge). It was revelation” (p. 108). Barrow (1992) goes into more detail on
the subject of faith, or theological thinking:

Abstract ideas and concrete realities were once interwoven and
interdependent to such an extent that no significant wedge could be
driven between them. For the ancients and the medievals symbolic
meanings of things assumed a natural significance that rests upon
associations of ideas that we no longer possess. ... In this way
numbers came to possess one aspect that was within the reach of
human computation, whilst always possessing others which could
be fathomed only by divine revelation. ... Every user of numbers
adds their own subjective ingredient to the question of their true
meaning and its link to the meanings of other aspects of reality.
(p. 106-107, emphasis in original)

Barrow’s description of faith in the Middle A ges resembles what Godel
called “the theological worldview™ which is:

the idea, that the world and everything in it has meaning and reason,
and in particular a good and indubitable meaning. It follows
immediately that our worldly existence, since it is in itself at most a
very dubious meaning, can only be the means to the end of another
existence. The idea that everything in the world has a meaning is an
exact analogue of the principle that everything has a cause, on which
rests all of science. (quoted in Barrow, 1992, p. 124)

Note that just as paradigmatic thought is based on causality, and narrative
thought is based on intention, theological thought has its basis, which Godel called
meaning.

Narrative, paradigmatic and theological thinking do not necessarily exhaust
the possible modes of thinking. Davis’ (1993) statement “mathematics also
displaced religion, history, and narrative to become the primary model of reason for
the modern era” (p. 3) suggests that history could also be seen as a mode of
thinking. In an historical mode of thought, truth would be derived from the truths
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of the past, from traditions and customs. The basis of the historical mode thought
could be called ‘conservation of truth over time’. If scientists best typify
paradigmatic thinking (as Bruner asserts, 1986, p. 15), then perhaps members of
conservative political parties and movements best typify the historical mode of
thinking.

The existence of different modes of thought, each suited to thinking about
the world in different ways, provides one important answer to the question “How
can we know what Rationalism cannot tell us?” We can know in many ways. At
the same time it is important to ask, “If Rationalism cannot tell us everything, what
can it tell us?” The answer to this question is the topic of the next chapter.
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CHAPTER VII

REASONING AND RESEARCH FROM AN ENACTIVIST PERSPECTIVE

“Well, it’s no use your talking about waking
him,” said Tweedledum, “when you’re only
one of the things in his dream.”
— Lewis Carroll, Through the Looking
Glass, and What Alice Found There.

In this final chapter [ attempt to describe Enaciivism, and to relate it to my
research. 1 begin by describing some of the key ideas of Enactivism and giving
examples from my studies of these ideas in action. I then develop a theory of the
development of deductive reasoning, based on Enactivist principles. This is
followed by a description of an Enactivist methodology for research in education,
which reflects the current state of development of the underlying methodology of
my studies. Finally I make a few comments on the relationship between my
research and this dissertation and on the teaching of proving in schools.

1. Enactivism

“Enactivism™ is used by Bateson, Maturana, Rosch, Thomson, and Varela
to label their theories. The “Expenientialism” of Lakoff and Johnson is closely
related to Enactivism, and | will not distinguish them here. Enactivism is a theory
of mind, but, as Bateson (1987) notes, from an Enactivist perspective
“epistemology and theories of mind and theories of evolution are very close to
being the same thing” (p. 38) so discussions of Enactivism range through the
traditional disciplines of philosophy, psychology, and biology. Elements of the
psychology of Piaget and Vygotsky are compatible with Enactivism, and I will
draw on their writings occasionally, especially in considering Enactivism in relation
to learning. The philosophical basis of Enactivism can be found, with some effort,
in the writings of Wittgenstein on the philosophy of psychology, and 1 will make
connection with his work wherever possible.

A good starting point to understanding Enactivism is the problem of the
relationship between an entity and its surroundings. The first part of this problem
is specifying what it is that makes us see the entily as separate from its
surroundings. The term organization is used to describe those features of an entity
which allow an observer to distinguish it from everything else. Note that this
implies that an entity’s organization varies from observer to observer.

The participants in the studies, the pens they wrote with, the tables they
write on, all have particular organizations that make them people, or pens, or tables.
These entities have fairly stable organizations, but other entities do not. During the
problem solving sessions many groups worked together as a group. The groups
themselves can be distinguished as entities, which had a certain organization in the
problem solving situations. In most cases however, those entities no longer exist.
The organization that defined them no longer relates the people involved. Stacey
and Kerry were an interesting case, partly because the organization that defined
them as a pair existed before they became participants in my studies. This impliesa
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different organization for the Stacey-Kerry pair than for the others, one that
continued to exist.

Some entities have an organization that is complex. Complexity is a term
borrowed from complexity theorists (e.g., Kauffman, 1993, see also the previous
chapter). A system is complex if “a great many independent agents are interacting
with each other in a great many ways” (Waldrop, 1992, p. 11). Complex systems
create themselves, in the sense that they come into being and remain in existence
through their own internal interactions.

Systems that continually create themselves are referred to in Enactivism as
autopoetic. The components of autopoetic systems “must be dynamically related in
a network of ongoing interactions” (Maturana & Varela, 1992, pp. 43-44). That is,
the components interact in ways which are continually changing, but which at the
same time allow for the continuation of interactions so that the system continues to
exist. In addition, the interactions of the components of an autopoetic system are
responsible for the production of the components themselves. In summary, an
autopoetic system is an emergent phenomenon arising from the interaction of
components which, by way of these interactions, give rise to new interactions and
new components, while preserving the system’s autopoetic character.

Human beings, and living beings in general, are autopoetic. I change
continuously, but at the same time all these changes permit me to continue existing
as me. In the past three years many of the changes in me have involved the
evolution of my ideas on proof, proving, and thinking. These changes have been a
part of my continuing existence as a Ph.D. candidate. The interactions which make
me a Ph.D. candidate are now changing as well as the complex system that is me
prepares to orient itself to a different environment in a way that will permit my
continued existence.

Adapting involves changes to a system’s structure. 1t is important to
distinguish between the structure of a system and its organization. A system’s
organization includes the invariant features without which it would cease to be what
itis. An autopoetic system must maintain its organization. The structure of a
system includes all its features at a given moment. Interactions with its
environment and within the system itself result in a continuous modification of a
system’s structure,

The problem is how to handle the problem of structural change and
to show how an organism, which exists in a medium and which
operates adequately to its need, can undergo a continuous structural
change such that it goes on acting adequately in its medium, even
though the medium is changing. Many names could be given o
this; it could be called learning. (Maturana, 1987, pp. 74-75)

In the problem sessions the participants’ structures were changing
continuously as their understandings of the situations changed and as they reasoned
in different ways. At the same time they remained themselves. When Eleanor
switched from reasoning inductively with Ben and Wayne to proving with Rachel
she did not become a new person. Nor was there any danger in confusing who
was Eleanor and who was Rachel when they were thinking in the same way. The
way they were thinking was a part of their structure. That they could think is a part
of their organization. I have been careful not to say: “Rachel is an deductive
thinker,” which implies thinking deductively is a part of her organization. If this
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were so then she would cease to be the entity she is whenever she thought in
another way. Thinking deductively was a part of her structure for much of the time
she was investigating the Arithmagon situation, but that is as much about the
situation and the social context as it is about her.

Living systems achieve autopoesis by acting in some way to adjust to local
conditions. Itis this acting that indicates cognition, so in Enactivism, cognition is a
feature of all living systems. This idea is encapsulated in the phrase “Knowing is
being is doing.” The word “enactivism” is derived from this idea of knowing in
action. The way a living system comes to know about the medium it is in is through
interaction with that medium. This implies that the system’s knowledge of its
world depends not only on the medium, but also on the actions the system is
capable of.

To take an example from the Arithmagon situation, some of the participants
who knew how to solve systems of equations acted in the Arithmagon situation b
solving it using such a system. In doing so they learned that the Arithmagon is, in
a sense, about a system of equations. That is, for those participants who solved the
puzzle using a system of equations, the Arithmagon is a system of equations. For
the participants who could not act in that way, either because they did not know
how, or for some other reason, the Arithmagon is not about a system of equations.
What they could know about the medium they were in, the Arithmagon situation,
depended on what they could do.

An autopoetic system is “an active self-updating collection of structures
capable of informing (or shaping) its surrounding medium into a world through a
history of structural coupling with it” (Varela, 1987, p. 52). As noted above, a
system only knows about those aspects of its medium with which it can interact in
some way. This means that in being, doing, and knowing, a system defines the
world in which it lives.

As I noted above, for those participants who solved the Arithmagon using a
system of equations, the Arithmagon situation included systems of equations. For
others it included other features. When Eleanor showed her solution method to the
rest of us, the Arithmagon included a “middle number” that was simultaneously the
sum of the corners, half the sum of the sides, and the sum of a corner and the side
opposite. For the participants in other sessions, the Arithmagon did not have a
“middle number.” For usitdid. Similarly other groups were in an Arithmagon
situation which included only the sum of the side and the corner opposite or which
included the relationship between the sums of the sides and comers. For Wayne,
the Arithmagon situation included properties of triangles, and he explored the
Anthmagon using those properties.

The activity of coming to know, of learning, is a modification of structure.
At the same time it 1S the system’s structure that limits what actions it can take in the
environment, and therefore what it can come to know. This limitation of a system’s
possible actions is called structure determinism. What a system does in response to
a trigger from its medium is determined entirely by its structure,

When I asked Laura if she was sure her formula worked for all
Arithmagons, I asked because [ wanted to know if she was sure. Her reply “Oh,
you want me to prove it” indicates that her structure was such that the trigger
provided by my question did not produce the effect I expected. My question was
_ Justa trigger. Laura’s response was a product of her structure. If she has spent
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some period of time in a medium where the question “Are you sure?” is used as a
trigger for proving in a teacher-game, for example in a mathematics class where
proving is thought to be the only way to be sure, then Laura would have had to
modify her structure to remain viable in that medium. This modified structure then
determined her response to my question. Of course the action of producing her
“proof” changed her structure, and the realization she related later, that she could
prove her formula in a better way which explained it, changed her structure again,
and so I could not predict how she would respond in a similar situation now, just as
I could not predict how she would respond when I asked the question in the first
place. Because she has a complex structure her actions may be determined from
moment to moment, but they are never predictable.

If I have a living system ... then this living system is in a medium
with which it interacts. Its dynamics of state result in interactions
with the medium, and the dynamics of state within the medium
result in interactions with the living system. What happens in
interaction? Since this is a structure determined system ... the
medium triggers a change of state in the system, and the system
triggers a change of state in the medium. What change of state?
One of those which is permitted by the structure of the system.
(Maturana, 1978, p. 75)

In this passage Maturana introduces a central idea of Enactivism: co-
emergence. The interaction between a system and a medium (which may include
other autopoetic systems) is the mechanism by which both the system and the
medium change. Aslong as a system and a medium continue to be able to interact
they are said to be structurally coupled and they co-emerge. It should be
emphasized that co-emergence does not imply that the system and the medium are
becoming more fully adapted to each other. All that is certain is that their structures
allow them to interact. Itis possible that a history of structural coupling may lead to
a situation in which the system and the medium are no fonger able to interact. In
this case they cease to be structurally coupled. This may be because the system
migrates to another medium or because the interaction between the medium and the
system disrupts the organization of one or the other, and it dies.

Inany of the sessions the participants and the observers co-emerged with
each other and the situation. Tom’s presence changed Rachel’s actions, and hence
her being, her structure. At the same time her actions changed his structure, as he
learned about mathematical understanding, among other things, in the Arithmagon
situation. What Eleanor knew at the end of the session developed through her
interactions with everyone else, and what the rest of us knew at the end of the
session developed in part through her interactions with us. As what we know is
embodied in our structures, our structures co-emerged throughout the time we were
interacting; that is to say, throughout the time we were structurally coupled.

In describing the relationship between an entity and its environment, the
mistake is sometimes made of seeing the environment as prescribing the structure of
the entity. For example, in the popular understanding of Darwin’s theory of
evolution animals are seen as having certain features because their environment
requires that feature. So polar bears are white, unlike most other bears, because
they live in snowy surroundings. The enactivist view of evolution is one of natural
drift, based on an animal’s environment proscribing certain features, This
proscription is simply another way of looking at the breakdown of the structural
coupling between the animal and its environment. If the animal’s structure does not
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allow for interaction with its environment, then it dies. In effectitis not allowed to
have that structure. This is not the same as the environment requiring that it have a
certain structure, and in fact many different structures are possible within the
constraints imposed by the need to remain structurally coupled. The full range of

possible structures defines a sphere of behavioral possibilities within which animals
can act.

The problem situations the participants investigated defined a sphere of
behavioral possibilities for them. The Arithmagon situation can be investigated in
many ways, but not, as far as I know, by singing arias. If the participants had
chosen to sing arias during a problem situation, then I would judge that they were
no longer in the situation. Their behavior would break the structural coupling
between them and the situation. When Kerry began to investigate the negative
Fibonacci sequence, Tom intervened and said the sequence did not work like that.
The Fibonacci situation, which for Kerry included Tom, was proscribing the
investigation Kerry had attempted to initiate.

2. Enactivism and reasoning

Enactivism is, among other things, a theory of learning, and the following
is my attempt to use the ideas of Enactivism to elaborate a theory of the
development of deductive reasoning in children growing up in a Rationalist society.
This is a theory in progress, as all good theories should be, but this one is so early
in its progress that I expect its structure to undergo some serious modifications in
the future. I include it here both as an application of Enactivism, and as an
indication of the theoretical perspective which co-emerged with the methodology
and results of my research. It is also a hint of future research I plan, involving
studies of younger students reasoning deductively, with the aim of tracing the
development of deductive reasoning more closely.

In developing a theory of the development of deductive reasoning I have
drawn on the ideas of Piaget, Vygotsky, Wittgenstein, and the Enactivists. Piaget’s
ideas form the basis of constructivism, a theory of learning that informs my work
and the work of many others in educational research. The central idea of
constructivism is that the individual constructs the world in which he or she lives.

...when language and thought begin, [the child] is for all practical
purposes but one element or entity among others in a universe that
he has gradually constructed himself and which hereafter he will
experience as external to himself. (Piaget, 1967, p. 9)

For Piaget the world is constructed by the individual, and the influence that the
world has on the individual’s development is not a major focus.

For Vygotsky, the external world, especially the social world, plays a
central role in the development of the individual. This is especially evident in the
relationship between thought and language.

Thought development is determined by language, i.e., by the

linguistic tools of thought and by the sociocultural experience of the
child. (Vygotsky, 1986, p. 54)
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Vygotsky holds that language development and thought development occur
separately in very young children. Ata certain point however, these two paths of
development meet, and “thought becomes verbal and speech rational” (1986,

p. 83); that is, thought and language develop together from that point on. The
development of language cannot depend solely on the individual, as language takes
place in a social context. The linking of thought and language means that thought
is similarly constrained by social context.

Wittgenstein also considered the relationship between thought and lan guage,
and contributed the important idea of a “language game”. A language game is the
context, the “form of life” in which words are spoken, and actions are made.

-..we make a radical break with the idea that language always
functions in one way, always serves the same purpose: to convey
thoughts—which may be about houses, pains, good or evil, or
anything else you please. (Wittgenstein, 1958, §304)

The way we use language in a particular context determines the meaning of the
words we use in that context. Meaning cannot be established, once and for all, as
dictionaries attempt. The best we can hope for is to be aware of language games,
and perhaps make use of the “family resemblances” between language games to
know what meanings are in play.

Varela and Maturana introduced the Enactive approach to cognition to
escape from the “chicken and egg” situation of trying to decide whether the
individual constructs a world or if the world constructs the individual. In a sense,
they agree with everyone. The material world and the social world do affect the
cognitive structures of the individual, as they must if the individual is going to
survive embedded in a material and social context. At the same time, the cognitive
structures of the individual guide the individual’s actions and interactions in and
with the material and social worlds. “World and perceiver, specify each other”
(Varela, Thompson, and Rosch, 1991, p. 172). We as beings co-emerge with the
worlds we inhabit.

The mechanism by which this co-emergence takes place has two parts:

... the structured nature of bodily and social experience and ... our
innate capacity to imaginatively project from certain well-structured
aspects of bodily and interactional experience to abstract conceptual
structures. (Lakoff, 1988, quoted in Varela, Thompson, and
Rosch, 1991, p. 178)

Lakoff and Johnson give the name “experiential gestalt” to our perception of
structures in our material and social worlds. They call our ability to “imaginatively
project” from our experiential gestalts to abstract concepts “metaphoric projection.”
I believe these two mechanisms can be used to provide a theoretical path from
human experience, at its most basic level, to the production of formal proofs.

The perception that lies at the base of deductive reasoning is coincidence.
When two unusual events happen at roughly the same time, or in the same place,
we perceive them as linked. For example, Freudenthal (1973) tells a story of
walking with a child past a railway crossing. The previous day, when they had
passed the crossing, there had been a friendly dog there. On this day they came to
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the crossing, and the child asked “But where is the dog?” The child had perceived a
link in the coincidence of the dog and the crossing.

The capability to notice and remember coincidences is vital for perception.
Without this capability, babies, for example, could not learn that the particular
sensory stimulations associated with faces often coincide with those associated with
voices, a necessary step to the perception of voices emanating from faces.

The studies of the behaviorist psychologists seem to have established that
mammals and birds are capable of noticing and remembering coincidences. Itis the
coincidence of two stimuli that allows the transference of a response from one to the
other. Note that noticing and remembering coincidences is an act of perception, not
one of conscious, thoughtful, action. Given the empirical evidence, it seems
reasonable to accept that observing coincidences is a biological feature of human
beings.

One coincidence that babies might observe and remember is that shaking a
rattle, and the sound of a rattle coincide. In fact, babies not only observe and
remember such coincidences, they practice them (Lakoff & Johnson, 1980, p. 70).
These coincidences are important for babies, and so they shake their rattles, not
continuously, but in short bursts, pausing to delight in another occurrence of the
coincidence.

Bruner notes research showing that babies have a sense of causation {1986,
p. 17). Given that such a sense exists, how might it have come to exist? Lakoff
anc Johnson (1980} consider causation to be an experiential gestalt. Just as
coincidence involves observing and remembering when events occur, an
experiential gestalt involves observing and remembering 0w events occur. The
event of shaking a rattle shares an experiential gestalt with many other coincidences
in babies’ lives. Pulling blankets, dropping things, throwing things, all share
features with shaking a rattle.

Lakoff & Johnson (1980} give a list of the features of the prototypical
experiential gestalt for causation:

The agent has as a goal some change of state in the patient.

The change of state is physical.

The agent has a “plan” for carrying out this goal.

The plan requires the agent’s use of a motor program.

The agent is in control of that motor program.

The agent is primarily responsible for carrying out the plan.

The agent is the energy source (i.e., the agent is directing his
energies toward the patient), and the patient is the energy goal (i.e.,
the change in the patient is due to an external source of energy).

The agent successfully carries out the plan.

The change in the patient is perceptible.

The agent monitors the change in the patient through sensory
perception.

There is a single specific agent and a single specific patient.
(pp- 70-71)

In the case of the rattle the agent is the baby; the patient is the rattie; the energy
transfer is the shaking; and the goal is the sound.
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While the experiential gestalt of causation has been presented here in a
propositional form, babies, of course, do not think of causation in this way. I
would characterize babies’ pre-verbal thinking as sensing, and speak of a sense of
causation. A parallel might be made between this sense of causation and the sense
of direction we derive from hearing sounds:

I may be able to tell the direction from which a sound comes only
because it affects one ear more than the other, but I don’t feel this in
my ears; yet is has its effect: I know the direction from which the
sound comes; (Wittgenstein, 1958, I]viii, p. 185)

Similarly, when we know that an event caused some other event, it may be
because we recognize that the condition for the experiential gestalt of causation are
present, but we do not know it in that way. We just know It as a sense. In the
case of the pre-verbal baby this sense can exist, even though the concept of
causation cannot.

The fact of becoming conscious of a category will alter its actual
nature.... When the child “is cause,” or acts as though he knew one
thing was the cause of another, this, even though he has not
consciously realized causality, is an early type of causality, and, if
one wishes, the functional equivalent of causality. (Piaget, 1959,
pp. 229-230)

When a baby begins to learn Janguage, the sense of causation the baby has
developed from coincidences is changed by the way language talks about causation.
“The rautle made noise because I shook it” seems to be nothing more than an
expression of the sense the baby already possessed, but the very act of expressin g
that sense changes it. As Vygotsky (1986, p. 219) puts it: “It does not merely find
expression in speech,; it finds its reality and form.”

Talking about causation is an act with causation itself as its object. The very
act of talking about causation makes causation an object in our world. “As
language arises, objects also arise as linguistic distinctions of linguistic distinctions
that obscure the actions they coordinate” (Maturana & Varela, 1992, p. 210). In
talking about causation we are constrained by our language. A child’s idea of
causation, once articulated, becomes subject to the rules of already existing
language-games. These language-games are the context in which verbal thought
develops. Itis important to consider, as well, that this development has effects on
both the individual’s thinking, and the language-game. Verbal thought and .
language-games coemerge. So, even as we become able to think about cat:zation
by becoming able to talk about causation, what “causation” could mean to us is
changed by our new ability to think about it.

What is the “new form™ of causation? We can now say “We will eat now
because it is six o’clock.” Such a sentence casts time as an agent, and ourselves as
patients, changing who we are. Such a sentence is an example of the metaphoric
projection of causation. The casting of an experiential gestalt into verbal form
permits such projections of meaning to new domains. This process both changes
the concept we extend {causation) and the domains into which we extend it (time,
and ourselves). Such metaphoric projections can be made by individuals, but more
often they are suggested to us by others. The language used around us leads us to
make certain metaphoric projections and not others.
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As we learn language we also learn to use language to refer to abstract
entities like time. These abstract entities, and the ways in which we can talk about
them, are constrained by the language games in which we find ourselves
embedded. When the language game involves making links between abstract
entities, analogous to causal links between material entities, we have the occasion to
make inferences. Inference is the metaphoric projection of causation to abstract
entities and energies.

To emphasize the importance of language games in the development of the
ability to make inferences, consider Belenky et al.’s (1986) Silent Knowers. They
experience situations of extreme social instability. In such situations language
games do not include inferences, and so making inferences is both useless and
inconceivable. Itis only in retrospect that a silent way of knowing can be
described, if such a description assumes a way of knowing that includes sufficient
stability of abstract entities to allow inferences to be made.

The ability to make inferences probably precedes the concept of inference,
just as the ability to sense causation precedes the concept of causation. Unlike
causation, however, the concept need not come after the sense. Just as the sense of
inference develops from the sense of causation, the concept of inference can
develop from the concept of causation by metaphoric projection.

The experiential gestalt of causation deals for the most part with physical
agents, physical energy transfer, and physical patients. In the example of “We will
eat now because it is six o’clock” we encountered an abstract agent, time. Sucha
metaphoric projection is comprehensible to us because of our ability to perceive
coincidences, in this case between aspects of abstract entities and physical entities.
We cannot perceive coincidence between just any aspects; however, the aspects
available to our perception are those that are reified by language. By such a
metaphoric projection the concept of inference can develop. In the case of
inference, the sense need not precede the concept, nor must the concept precede the
sense. It seems likely that when language is full of abstract entities linked by
inference there would also be occasions to refer to these inferences, and in such a
context the sense and concept of inference could coemerge.

The concept of inference is the basis for deduction. Deduction involves a
perception of inferences as meaningful.

The school child passes from unformulated to verbalized
introspection, he perceives his own psychic processes as
meaningful., (Vygotsky, 1986, p. 170)

Being able to make inferences, being able to refer to inferences, and the use
of inferences in paradigmatic Janguage games (Bruner, 1986), gives the inferences
themselves meanings, beyond those of the concepts involved. Part of the meaning
of an inference is the idea of logical necessity. An inference with such a meaning is
a deduction. When these meaningful inferences or deductions occur in sequences
they constitute what I call proving.

An inference need not be a deduction. In the case of narrative language
games inferences are related to intention, rather than logical necessity (Bruner,
1986). Because of this distinction, inferences about the actions of human beings
and other intentional beings refer to choices made by them, rather than actions
forced on them by material or logical constraints.
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Deduction permits the conscious choice to deduce, with particular ends in
mind. Deductive “chains” can be purposefully constructed. The concept of a
formal proof can be developed by metaphoric projection of deduction and chains,
into an abstract entity which can be both analyzed and self-directed.

Learning to direct one’s own mental processes with the aid of words
or signs is an integral part of the process of concept formation.
(Vygotsky, 1986, p. 108)

Analysis of reality with the help of concepts precedes analysis of the
concepts themselves. (Vygotsky, 1986, p. 141)

A chain consists of links, each of which is a separate entity. The links are
not materially connected to each other. They could continue to exist outside of the
context of the chain. Their structure, however, is such that they are constrained by
their neighbors. The combined effect of these constraints can be seen byan
observer to constitute a single object, a chain, where many objects exist. Similarly
the deductions in a proof can stand alone, but their structure allows them to be
Joined together into what seems to an observer to be a single object, a proof.

Because proofs are metaphoric projections of chains, they can be analyzed
as if they were chains, one link at a time. The strength of a proof, like the strength
of a chain, is that of its weakest link. A missing link in a proof or a chain makes it
completely functionless as a way of connecting its two ends. The making of a
proof, like the making of a chain, is a self-directed activity. At each link there is a
decision made as to what link to attach next, how it should be attached, and whether
there might be some shorter chains (lemmas) lying about that might be incorporated
into the proof chain under construction.

Because proofs are self-directed and analyzable, they must be generated by
a formulated act of proving. Formulated proving is a sub-category of the proving
which I described above as sequences of deductions. In formulated proving the
next link is chosen. In unformulated proving the next link is whatever is at hand.
This means that an observer could judge the strength of a proof produced by
unformulated proving (by analyzing it, proving in a formulated way with the proof
as a guide), the person who proved could not.

3. Enactivism and research

Enactivism is not only a logical extension of Rationalism made aware of its
weaknesses, nor only a theory of learning with which to interpret the proving of
students, nor only the basis for theories such as the one | just outlined. It is also,
and must also be, if it is accepted as a theory of leaming, the basis of a
methodology for research. Research is leaming, and educational research which
employs one theory of learning to interpret a student’s actions, and a different
theory to motivate a researcher’s actions, undermines its own basis. In this section
I describe my methodology, which arose out of this research and the research and
teaching I have done in the past, and which co-emerged with the research
methodologies of my colleagues who form a loose Enactivist research group.
Kieren, Gordon-Calvert, Reid & Simmt (1995), or Gordon-Calvert, Kieren, Reid
& Simmt (1995) are examples of research done by the group as an emergent entity
of structurally coupled researchers.
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Basic principles

The overall methodology, which connects the various methods and analytic
procedures outlined below, I call ‘bricological.” Bricological research, in short,
combines the flexibility and creativity of bricolage, with an underlying logic of
inquiry. Given the critique of Rationalism in Chapter VI, I hope you will not be
surprised that some Rationalist assumptions are missing from this methodology.
The idea of objective truth, and the application of deductive reasoning to
nondeterministic complex systems, like people and societies, are the two most
important omissions.

For me, the key point of Enactivism is the co-emergence of individuals with
their environments. The distinction between individual and environment must be
blurred, as each is an active entity whose actions occasion modifications of the
other’s structure. A related idea is that of proscriptive constraints. Any individual
acts within a sphere of possibilities, which proscribe some actions, but dictate no
action in particular. This play in the interaction between individual and environment
makes the usual assignations of cause and effect impossible. What the individual
does is ‘caused’ both by its own dynamic structure and by the constraints of the
environment. At the same time there are ‘effects’ on both the individual and the
environment as their structures are changed by the (inter)action.

Bricolage, as it is used in conceptualizing bricological research, favors the
production of complex structures, theories, models, etc. because there is no need to
reject possibilities that are ‘too expensive’, or *too long’. It can be contrasted with
a technological attitude that favors production of lots of results through
straightforward, ‘clean’ techniques. Complex theories are appropriate because the
topics of my research are complex systems in and of themselves. It is important to
note that just as complex systems are self-organizing, so are complex theories.
They organize themselves in a medium that is defined by my thinking, and the
thinking that takes place in the groups with whom I do research. They also adapt as
part of the process of reporting research, as writing involves a structural coupling
with an imaginary reader, whose thinking joins into the theories’ medium.

The logic of the bricological methodology comes from the questions chosen
for research, and the theories and models with which the research begins. These
questions, models, and theories reflect expectations of what might be seen. In the
adaptation of Enactivism to research, these expectations correspond to the plastic
structure that determines the actions of an individual in a context. Just as an
individual’s structure changes in changing the context, so our expectations change
even as we observe, interview, and analyze according to our expectations.

My favorite metaphor for bricological research is the medieval method of
cathedral building. Unlike modern office towers, the design of a cathedral was not
the work of an individual whose plans determined the actions of a crew of workers.
In the construction of a cathedral every worker had a general idea of the final
appearance of the building, but no single individual knew exactly what it would
look like. In the time scale of cathedral building, the master builder who sketched
out the initial design might well be dead by the time the cathedral was completed,
and changes in finance, style, technology, and workers might have resulted in
considerable alterations. Each worker’s contributions were to a small portion of the
building and were governed by the possibilities created by the actions of previous
workers. The combined efforts of the workers constituted a bricolage of what was
possible with the materials. skills, and prior work present. At the same time their
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work was drawn together by the idea, the logic, of the cathedral as a final form,
dedicated to the glory of God.

Some specifics

Bricological research is research in the Rationalist tradition, though much of
what was wrong with Rationalism is missing, and much of what is left is changed.
All the same, I can write of my “data” and the “analysis” of it.

The data generated in my research include field notes, video tapes, audio
tapes, participants’ writings, transcripts, notes based on viewing video tapes,
mathematical activity traces (MATS, see Appendix C for examples) which
summarize the actions in a video taped session, research reports, conference
presentations, and notes from discussions with other researchers. These artifacts
can be lumped together, as they are here, as ‘data’, but at the same time all of them
record acts of interpretation. In a sense it can be said that there is no data, only
interpretations and interpretations of interpretations. That said, I will refer to any
artifact of the research process as ‘data’.

The analysis of the data is tied up with the idea of multiple interpretations.
This means several things. It means that the same event was interpreted in several
kinds of data. It means that the data was interpreted by several researchers. It
means that the data was interpreted many times by one researcher. It means that the
problem prompts were interpreted by a number of participants. It means that the
participants were interpreted by several problem prompts. A rough chronology of
this process follows.

The first stage of analysis in all the studies was the recording of field notes
and video tapes (or in the case of the classroom observations, audio tapes) and the
collection of participants’ writings. The field notes record the initial impressions of
the researcher as to what was important in the session. The video tape records what
was visible and audible from a particular point of view. The participants’ writings
record what they felt it was necessary to record during the course of their
investigation of the situations.

The second stage of analysis was the viewing of video tapes and
participants’ writings by the researchers, either alone or in groups. The notes
produced through this process reflect again what was important to the researcher at
the time, and the significant points introduced by other researchers. This stage was
repeated a number of times by various researchers, according to the perceived
significance of the data produced.

The third stage of analysis included the production of transcripts and
mathematical activity traces from the video tapes and notes taken during viewing.
Not every word spoken, nor every action taken by the participants was transcribed
or entered into a MAT. The selection of significant episodes was yet another
interpretive action coming out of the viewing of the tapes.

The fourth stage of analysis was the preparation and presentation of the
research. The organization and expression of data in publications, research reports,
and presentations, occasioned the modification of theories and the reevaluation of
data, The comments of respondents at presentations marked their involvement as
co-participanis in the research whose contributions form a part of the interpretation
and data of the research.
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As is discussed in the methodology section above, the analysis of data is
seen here not as the re-presentation of objective facts, but as a process of ¢o-
evolution of theory and data. This point of view comes out of a recognition that
such a process is implied in all research, and a belief that adopting a methodology
that makes use of this inevitability is the best way to accommodate it. | take
seriously the claims of philosophers of science (e.g., Kuhn, 1970, and Chalmers,
1982) that no observation is free of a bias introduced by the theoretical position of
the observer. At the same time the necessity of theory to account for data results in
a dialog between theory and data, with each one af fecting the other. A
methodology that attempts to make use of this interaction transforms the analysis of
data into a continual process of change and encourages this process as the
mechanism of theory improvement.

4. A few parting words on Enactivism, proving, and teaching

I hope this chapter points out the Enactivist notion of “coemergence” in the
relation between my empirical and theoretical work on reasoning, and the
underlying methodology of my work. In researching reasoning I was reasoning
about research, and what I found out about reasoning and what 1 reasoned about
what I found interacted throughout my work. The circularity in my writing, which
I noted in my introduction, is not a simple ploy to get you to read more or
differently, but instead an accurate reflection of the relationship between
methodology, theory, and data in my work. Perhaps research can be done in the
traditional models of picking a methodology, gathering data, and developing a
theory (although Enactivism suggests that this is not so); in my research the
methodology, data and theory emerged together in the interactions which define my
research.

Those who have thought about the place of proving in mathematics
education, and the place of mathematics in education, have tvpically arrived at one
of two contradictory positions. Some argue that mithinatics is the best context for
the teaching of rational thought. Others have pointed to the damage done by
scientific and mathematical thinking, and have wondered whether we mi ght not all
be better off not knowing how to think rationally. I believe that both positions
ignore the feature which makes rational thought so far unique. Of the various
modes of thinking we have, rational thought is the only one which has
demonstrated, within its own criteria, that it has limits. Its strength is in identifying
its weakness.

Rationalism has been a horrible choice for the status it has been givenas
sole mode of correct thinking. But forgetting how 1o think rationally is not the
answer even if it were possible. Rationalism was embraced with enthusiasm
because of its power to make predictions about the natural world. That power is
worth something in itself, and even if we never helped our children to think
rationally, some would discover how to and lead humanity down the same path
again. Instead we must try to make sure that we teach deductive reasoning well
enough that its limits are understood.

In the past we have been unsuccessful in teaching deductive reasoning in
mathematics classes. At the root of this failure are two misconceptions about proof
and proving. When students ask why they must prove, the common answer is that
proving verifies statements. This answer neglects both the importance of other
factors in convincing us of truth, and the importance of other uses of proving. We
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also expect proofs to be individual works, expressed in formal language, but this
expectation ignores the vital role that social interaction plays in supporting proving
and its formulation. If we can teach in a way that acknowledges that importance of
explaining and exploring as motivations to prove, and that creates social contexts
that allow the development of a culture of proving, then we may find that our
students prove and understand proving well enough to understand that other ways
of thinking are sometimes better.
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APPENDIX A

RELATEDLITERATURE

It was once customary for a dissertation to include a section entitled
“Literature Review” in which the author attempted to describe all the research which
had been done on the topic of the dissertation. The bibliographic search required to
assemble this section was often a large part of the effort involved in preparing a
dissertation. This effort was worthwhile, both as basic preparation for beginning
research in an area, and as a service to the research community. Such reviews
provided a starting point for other researchers interested in quickly becoming
acquainted with the literature of a particular area.

The introduction of services like ERIC and Dissertation Abstracts
International, especially in their electronic formats, have made the preparation of a
literature review much easier, at the same time they have made it largely
superfluous. Assembling a list of most of the works in educational research related
to proof and proving is now a matter of a few keystrokes, and the information
available includes extensive abstracts and detailed information on availability of
unpublished manuscripts, research reports, and government documents,
dissertations, as well as journal publications. Given this level of service it would
be surprising if a researcher interested in proof and proving went to the trouble of
requesting a copy of my dissertation, either as an interlibrary loan or from
University Microfilms International, just to read my literature review, when the
same information, in more detail and more up to date, is available in any university
library and over the Internet,

For this reason this appendix is an appendix, and slightly different in form
than the traditional literature review. The research which is directly related to mine,
and which played an important role in the development of my ideas, is described in
the appropriate sections of the main text. Other work on proof and proving which
1s interesting, but not directly related to my interest in the need to prove, is gathered
together here. The one exception to this is the first section, in which [ have listed
works by researchers who have been very productive, and published their research
in a wide range of publications. Rather than list a reference for every occurrence of
a researcher’s ideas when I mention them in the main text, I have chosen to list only
the most accessible or complete presentations of the ideas. For completeness, and
in the event that some sources are not as accessible as I thought, I have listed other
publications of *i =se researchers here.

1. Other publications by researchers referenced in the main text

Arsac, G. (1990). Les recherches actuelles sur 'apprentissage de la demonstration

et les phenomes de validation en France. Recherches en Didactique des
Marthématiques, 9(2), 247-280.

Arsac, G., Chapiron, G., Colonna, A., Germain, G. Guichard, Y., & Mante, M.

(1992). Initiation an raisonnetnent déductif au collége. Presses Universitaires
de Lyon.



Balacheff, N. (1986). Cognitive versus situational analysis of problem-solving
behaviors. For the Learning of Mathematics, 6(3), 10-12.

Balacheff, N. (1987). Processus de preuve et situations de validation. Educational
Studies in Mathematics, 18, 147-176.

Balacheff, N. (1990a). A study of students’ proving processes at the junior high
school level. In1. Wirszup & R. Streit (Eds.), Developments in School
Mathematics Education Around the World, Vol. 2. Reston VA: NCTM.
(Originally presented in 1988 at the joint conference 66th NCTM and UCSMP
project, Chicago.)

Balacheff, N. (1990b). Beyond a psychological approach: The psychology of
mathematics education. For the Learning of Mathematics,10(3), 2-8.

Balacheff, N. (1990c). Towards a problematique for research on mathematics
teaching. Journal for Research in Mathematics Education, 21(4), 258-272.

Borasi, R. (1990). The invisible hand operating in mathematics instruction:
Student’s conceptions and expectations. In T. Cooney (Ed.), Teaching and
learning mathematics in the 1990s: NCTM yearbook 1990. Reston VA:
National Council of Teachers of Mathematics.

Bruner, J. (1990). Acts of meaning. Cambridge MA: Harvard University Press.
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Hersh, R. (1993). Proving is convincing and explaining. Educational Studies in
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Schoenfeld, A. (1982). Psychological factors affecting students’ performance on
geometry problems. In S. Wagner (Ed.), Proceedings of the Fourth PME-NA
Conference, (pp. 168-174). Athens, GA.

Schoenfeld, A. (1986). On having and using geometric knowledge. In: Conceptual
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Schoenfeld, A. (1987a). Confessions of an accidental theorist. For the Learning
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Schoenfeld, A. (1987b). Understanding and teaching the nature of mathematical
thinking. In 1. Wirszup & R. Streit (Eds.), Developments in School
Mathematics Education Around the World. Reston VA: NCTM.

Schoenfeld, A. (1989). Explorations of students’ mathematical beliefs and
behavior. Journal for Research in Mathematics Education, 20(4), 338-355

Tymoczko, T. (1986) Making room for mathematicians in the philosophy of
mathematics. Mathematical Intelligencer 8(3), 44-50.

2. Discussions of the nature of proof in mathematics
Barbeau, E. (1990). Three faces of proof. Interchange, 21(1), 24-27.

Barbeau mentions the two everyday uses of “proof”: verification, and
testing or trying. He also points out that proofs can satisfy a need for explanation
in mathematics. He makes a distinction between verification and convincing, which
he uses in the sense of explanation. He defines verification as making a
mechanically checkable argument, and conviacing “a revelation of underlying
structure, appropriate level of generality, comprehensiveness, and a degree of
satisfaction and appreciation aroused in the listener” (p.24).

Neubrand, M. (1989). Remarks on the acceptance of proofs: The case of some
recently tackled major theorems. For the Learning of Mathematics, %(3), 2-6.

Neubrand quotes Hanna’s (1983) assertion that verification is supposed to
be the business of mathematics, but this is practically impossible, and convincing is
what mathematicians actually engage in. He states that “a ‘convincing argument’ is
not simply a sequence of correct inferences. One always expects some ‘qualitative’
reason, or an intuitive capable basic idea, behind the— nevertheless necessary —
single steps of the proof” (p.4). He adds, however, that in mathematics “to be
convinced depends on the high standards of argumentation which mathematicians
have reached during a long historical development” (p.3).

Wheeler, D. (1990). Aspects of mathematical proof. Interchange, 21(1) 1-5.

Wheeler seems to assert that proving does not create new mathematical
knowledge, which would imply that it is not useful for exploration. “We can no
longer assume that proofs establish knowledge, because in fact most proofs come
after the knowledge of the things they prove. They could be said perhaps to
substantiate knowledge or to validate it, or confirm it, but proofs, on the whole, do
not establish knowledge” (p.2). He does not believe there is much of a role for
proving in mathematics classrooms,

3. Research on students’ understanding of the concept of proof

Chazan, D. (1993). High school geometry students’ justification for their views of
empirical evidence and mathematical proof. Educational Studies in Mathematics,
24, 359-387.

Chazan reports interviews with high school students describing their views
of proofs as evidence, versus their acceptance of examples as verification.
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Hershkowitz, R. (1990). Psychological aspects of learning geometry. In P. Nesher
& J. Kilpatrick (Eds.), Mathematics and cognition: A research synthesis by the
international group for the psychology of mathematics education (pp. 70-95).
Cambridge: Cambridge University Press.

Hershkowitz discusses proving in the context of van Heile’s level of
understanding of geometry. She suggests that students’ difficulties in proving may
stem from a lack of understanding of the necessity to prove in mathematics. She
advocates a strategy of presenting proofs to trigger the students’ “intellectual
curiosity”, in which empirical discovery acts as a source of a need to verif y by
proving. “Itisacommon belief now that inductive, empirical discoveries in
geometry are necessary because ... by regarding the generalization as a conjecture
in itself, the learner feels the necessity to prove what he or she has conjectured to be
true; and ... inductive experiences are the intuitive base upon which the
understanding and the generation of a deductive proof can be built” (p.89).

Martin, G. & G. Harel (1989) Proof frames of preservice elementary teachers.
Journal for Research in Mathematics Education, 20(1), 41-51

Martin & Harel (1989) conducted a quantitative study in which they claim:
“Many students who correctly accepted a general-proof verification did not rejecta
false proof verification; they were influenced by the appearance of the argument —
the ritualistic aspects of the proof —rather than the correctness of the argument”
(p-49). Unfortunately their statistics seem not (o back this up. They presented pre-
service teachers with two statements, one of which the teachers had seen in class
three weeks previously. The teachers were given empirical evidence for each
Statement, as well as a correct and an incorrect deductive proof. They were asked
to rate each on a scale of 1 to 4, with 4 indicating that they felt the evidence
constituted a proof. For the statement they had seen in class 52% rated the incorrect
proof either 3 or 4, indicating they accepted it as a proof. 75% gave the correct
proof either 3 or 4. This would argue that the proof-like form of the incorrect proof
was influencing them. If this were the case one would expect a similar result in the
case of the unfamiliar stalement. In that case however, only 28% gave the incorrect
proof either 3 or 4 while 63% gave the correct proof 3 or 4. [t may have been that
the teachers remembered the familiar statement as correct, and so were predisposed
to assume that a proof of it was correct, In that case of the unfarmniliar statement the
proofs would have been checked more closely, resulting ir a drop in the acceptance
of the false proof.

Movshovits-Hadar, N. (1988). Stimulating presentation of theorems followed by
responsive proofs. For the Learning of Mathematics, 8(2), 12-19, 30.

Movshovits-Hadar proposes presenting conjectures in surprising ways in
order to inspire a need to verify and explain in students, in a manner similar io that
proposed by Hershkowitz.

O’Daffer, P. G. & Thornquist, B. A. (1993). Critical thinking, mathematical
reasoning, and proof. In P. 8. Wilson (Ed.), Research ideas for the classroom:
High school mathematics (pp. 39-56). New York: Macmillan.

A general discussion of research and the meanings of the various terms used
in the NCTM Srandards (1989) to describe reasoning,
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Sierpinska, A. (1995). Mathematics: “In context”, “pure”, or “with applications™?
For the Learning of Mathematics, 15(1), 2-15.

A discussion of the role of real life contexts in mathematics teaching.
Sierpinska critiques the use of social contexts in the teaching of proof, as proposed
by Arsac, Balacheff, and Lampert, and suggests instead an apprenticeship model.
Her focus seems to be more on the education of future mathematicians than the
general population.

4. Useful literature reviews

Rather than duplicate the efforts of other researchers who have assembled
reviews of the literature related to the aspects of proof and proving they find most
interesting, I have gathered together here a few works which contain excellent
reviews. The two dissertations include the traditional exhaustive literature review,
and in addition to the interesting research they report, they also fulfill the traditional
purpose of making other researchers’ lives easier. These two are particularly strong
in listing older research, which is not always covered in the electronic databases.

Dreyfus, T. (1990) Advanced mathematical thinking. In P. Nesher & J.
Kilpatrick (Eds.) Mathematics and Cognition. (pp. 113-134).

An overview of current research.

Smith, E. P. (1959). A developmental approach to teaching the concept of proofin
elementary and secondary school mathematics. Unpublished doctoral
dissertation, Ohio State University.

Smith’s dissertation was written in the early days of the development of the
“*New Math” and he sets out clearly the agenda of that movement.

Williams, E. R. (1979). An investigation of senior high school students’

understanding of the nature of mathematical proof. Unpublished doctoral
dissertation, University of Alberta.

Williams did his research at the close of the “New Math” era, and he covers

most of the research done within that approach to mathematics and mathematics
education. His research is a series of statistical studies of students’ performance.
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APPENDIX B

DESIGN AND DEROULEMENT OF THE RESEARCH STUDIES

The empirical basis of my research includes four research studies, and
several isolated observations and interviews. The basic structure of each study was
the same. Typically, a pair of students was observed in two problem solving
situations, and then interviewed. Each problem solving session and the interview
took about one hour and the sessions were spaced one week apart. Differences
from this typical outline will be indicated below for each of the studies.

1. The North School study
Context

The study took place over a seven week period in the spring of 1994, The
site was a large urban high school, which will be referred to as North School. The
classes invoived were both normally taught by the same teacher (called Mr. B here),
but the period of the study overlapped the last four weeks of a student teacher’s
practicum in Mr. B’s classes. This student teacher (called Mr. A here) had sole
responsibility for teaching one of the classes chosen for observation. Mr. B taught
the other class. Both teachers are highly competent. Mr. A’s lack of experience
was compensated for by his enthusiasm and knowledge of mathematics and
teaching methods. M. B. is a highly respected teacher both in his school district
and in the community at large.

The classes chosen were selected to be as different as possible in the high
school context. One class was a non-academic 10th grade class (Math 13), which
was taught by Mr. A. It had a total enrollment of nearly 30, but normal attendance
ranged between 20 and 25. The other was a 12th grade class for university bound
students (Math 30). It had an enrollment of just over 20, almost all of which were
present every day. Each class met three times a week, for 65 minutes each session.

Outline

The study was conducted in two phases, a classroom observation phase,
and a smali group phase.

In the first phase each class was observed engaged in their normal
mathematical activities, over a period of three weeks. In this period field notes
were kept of the general character of the classes’ activities, to provide context, and
of particular observations of deductive reasoning employed by the students in the
course of their normal activities. On some occasions audio tapes were made of
class sessions which were then used to expand the records in the field notes.

In the second phase a pair of students who volunteered from each class
engaged in problem solving activities. There were four sessions in this phase: two
problem sessions, and two interviews. Each session was video taped for later
analysis. During the problem sessions the students worked together on a single
problem for about one hour. The researcher observed, interacting with the students
only when they asked questions. During the interview sessions the researcher
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asked the students about particular aspects of their problem solving, making use of
video tapes of the problem sessions where appropniate. The students were also
asked to continue work on the problems they had been given in the problem
sessions, and to solve a new problem, with some help from the researcher. They
were then assisted in making formal the reasoning they had employed in solving the
problems. The problem situations used in the problem sessions were the

Arithmagon and Fibonacci. The prompts for these problems are shown below (in
section 7).

Participants

The students who participated in the second phase were selected from their
classes on the basis of their willingness to participate, their involvement in class,
and the reasoning they displayed in class.

The pair chosen from the Math 13 class I have called Bill and John. Bill sat
behind John in class. At the time of the study Bill was doing very well in Math 13.
He was normally attentive in class, and appeared to catch on quickly to the concepts
presented to him. On two occasions, when Mr. A was absent and Mr. B was
teaching the class, Bill responded at length to requests for explanations and
alternative methods. Bill normally worked on seat work by himself. John had
more difficulty than Bill, but was still able to succeed on most of the work required
in the class. He rarely spoke in class, and worked by himself, except for rare
occasions when he would consult with Bill on seat work with which he was having
difficulty. On one of the uncommon occasions when John asked a question, he had
noticed an unusual pattern in a linear equation, and wondered if it were general.

(Briefly, John noticed that the solution, 1:} of the equation 2 = 34 b, could be

7

obtained by calculating 2 x 7 = 14, and then subtracting 14 - 3 = 11, and placing
this result over the denominator 7.)

The pair from the Math 30 class | have called Colin and Anton. They often
worked iogether, or with others in the group of students sitting near them. Colin
was the top student in his class. He was attentive, did all assigned work, and
understood new corncepts quickly. Anton was in the top half of the class, was less
enthusiastic about doing seat work, and often needed to ask Colin or someone else
10 explain the procedures required by the assigned tasks. This was more due to his
lack of attention to Mr. B’s explanations and instructions than to difficulties in
comprehension. Anton was more talkative in class than Colin, although much of
his talking was not related to mathematics.

2. The South School study
Context

The study at South School took place in the fall of 1994. South School is a
large urban high school. One class was observed, taught by MsE. MsEisa
highly competent and well respected teacher, who has made considerable efforts to
promote mathematics at South School and through professional organizations. The
class chosen was an “Academic Challenge” grade 10 (Math 10 AC) class. The
students had been selected from among the most successful students in their grade 9
programs. The class met every day, for 80 minutes each session.
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Cutline

The general outline of the study was the same as for the North School
study. The class was observed for two weeks, and then students were observed
and interviewed. In the small group phase four groups of students participated.
There were three sessions with each group, two problem sessions and an interview.
Each session was video taped for later analysis, In keeping with the enactive
methodology (described in Chapter VII) several researchers were involved in each
session. Researcher interventions in the problem sessions were limited to
answering the participants’ questions, and asking questions designed to encourage
further invesiigations. During the interview session the researchers asked the
participants about particular aspects of their problem solving, and proposed
additional problems. The Arithmagon and GEOworld situations were used in the
problem sessions (see below for prompts).

Participants

The students who participated in the problem sessions and interviews were
selected {rom their classes on the basis of their willingness to participate, their
involvement in class, and the reasoning they displayed in class. In general al} the
students did well in class.

Group I included three female students, Ann, Lynda, and Joanna. Ann was
active in the class, asking and answering questions, and working with the students
around her, including Lynda, who sat in front of her. Lynda was quiet, and
participated in class only in her interactions with Ann. Joanna was active primarily
in responding to Ms E’s questions, and working with the students who sat around
her.

Group I included two female students, Tara and Topaz. Tara was active in
working with the students around her, and in answering questions, Topaz was
occasionally absent, and her main involvement in the class was working with the
students around her and asking Ms E questions.

Group III include three male students, Joseph, Stephen and Scott. The
three of them sat together, and often worked together. Scott was interesting in that
he often talked to himself while working, and seemed quite involved in his work.

Group IV included two male students, Alec and Darrell. They normally

worked by themselves, occasionally interacting with those around them.
3. The first clinical study
Context and outline

Two of the main studies were conducted with undergraduate students.
These studies will be referred to as the ‘clinical studies’. The first clinical study
occurred in the fall of 1993.

The clinical studies involved three problem solving sessions, followed by
an interview. The problem situations used were the Arithmagon, Fibonacci, and

GEOworld. In the first session each pair of participants worked separately on
either the Arithmagon or the Fibonacci situation. In the second week each pair
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worked in GEOworld. In the third week each pair worked in the situation they had
not yet seen. The prompts used are given below, in section 7. For the sessions in
the second and third weeks the pairs were grouped in two sets. Each set worked in
the same situation at the same time, and could communicate with the other pair in
the set. The situations and sets are summarized in Table 4. Each pair was
interviewed separately in the fourth week.

Pair | Week 1 Week 2 (set) Week 3 (set)
I (B&W) Fibonacci GEOworld (A) Arithmagon (A)
II (S&K) Arthmagon GEOworld (B) Fibonacci (B)
Il (E&R) Fibonacci GEOworld (B) Arithmagon (A)
IV (J&C) Arithmagon GEOworld (A) Fibonacci (B)

Table 4: Schedule of the sessions for the first clinical study.

Particinants

The students who participated (with one exception, Kerry) were volunteers
from a pre-service mathematics teacher education course. A total of eight students
participated. The participants worked in the following pairs:

Pair I: Ben and Wayne. Ben and Wayne volunteered as a pair. Each of
them had completed the mathematics requirements of the B, Ed. degree.

Pair I1: Stacey and Kerry. When she volunteered Stacey asked to work
with her friend Kerry. Kerry was student in Finance, and had completed courses in
linear algebra and calculus as part of his degree. Stacey had completed the
mathematics requirements of the B. Ed. degree.

Pair H1I: Eleanor and Rachel. Eleanor and Rachel volunteered separately and
were paired by default. Eleanor had completed a bachelor’s degree in mathematics
15 years previously, which provided her with the mathematics entrance
requirements for the B. Ed. degree. Rachel had completed the mathematics courses
required as part of the B. Ed. degree.

Pair IV: Jane and Chris. Jane and Chris volunteered as a pair. They had
both completed bachelor’s degrees in the past which provided them with the
mathematics entrance requirements for the B. Ed. degree. Chris had recently
completed a physics degree. Jane had completed a mathematics degree.

4. The second clinical study
The second clinical study took place in the fall of 1994. The context and

general outline was identical to that of the first clinical study, except that the pairs
never worked as a set of four. The schedule of sessions is summarized in Table 5.

Pair | Week 1 Week 2 Week 3
I {(J&T) Fibonacci GEOworld Anthmagon
II (M&R) Arithmagon GEOworld Fibonacci
INI(L&D) Fibonacci GEOworld Arnthmagon

Table 5: Schedule of sessions for the second clinical study.
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Participants

As with the first clinical study, the students who participated were
volunteers from a pre-service mathematics teacher education course. Six students
participated. The participants worked in the following pairs:

Pair I: James and Trisha. James and Trisha were paired by chance. Each of
them had completed the mathematics requirements of the B. Ed. degree.

Pair II: Roger and Marie. Roger and Marie were paired by chance. Each of
them had completed the mathematics requirements of the B. Ed. degree.

Pair I1I: Laura and Donald. Laura and Donald were paired by chance. Each
of them had completed the mathematics requirements of the B. Ed. degree.

5. Other Studies
Sandy

In the winter of 1993-1994 several interviews were done with Sandy, a
mathematically gifted student in grade 6. In one of these sessions Sandy was given
the Arithmagon problem to explore. This session differed from the typical problem
sessions as Sandy was questioned about his reasoning as he worked on the
problem.

Central High School

In May 1993 I spent two weeks observing two mathematics classes at an
academically oriented high school, as a preliminary study 10 the school studies.
One of the classes observed was a grade 10 class studying linear equations. The
other was a grade 11 International Baccalaureate class studying combinatorics and
probability. The organization of the classes was flexible, but a typical period would
begin with a lecture by the teacher, followed by work on assi gned exercises, either
individually or in small groups. Occasionally a period would begin with a problem
solving exercise, to be done individually and as quickly as possible.

6. Methods

Three contexts for research were used in the studies. Different methods
were appropriate for each of these. The classroom observations, and observations
of the problem sessions involved passive observation techniques. The interviews
employed techniques from traditional clinical interview methods (see below). All of
these methods were used in the context of the Enactivist methodology described in
Chapter VII.

The observers’ role in the observations of the problem sessions can be
called ‘passive’, as the observers interrupted the participants’ work only when
asked to do so by the participants. This usually took the form of the participants
asking a factual question of the observers. This passivity permitted the students
participating to *‘own’ the situation to a greater extent than in the interview sessions.
Their explorations and interactions were governed more by their own interests and
needs, than by those of the observers. In some of the problem sessions it is clear
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that the number of observer interruptions is related to the degree to which the
participant reasoned and understood in a connected manner (see Kieren, Pirie, and
Reid, 1994, for details).

The clinical interview is a research method derived from the work of Piaget.
Piaget developed the clinical interview in order to investigate reasoning in young
children. The method has since been modified in many ways, involving more or
less standardization. Opper (1977) gives this description:

The essential character of the method is that it constitutes a
hypothesis-testing situation, permitting the interviewer to infer
rapidly a child’s competence in a particular aspect of reasoning by
means of observation of [the child’s] performance at certain tasks.. ..
The interviewer presents to the child an “experiment” that has been
selected as suitable for the study of the specific aspect of cognition
of interest.... [The interviewer] asks a series of related questions
which are aimed at leading the child to predict, observe, and explain
... It is these predictions, observations and explanations that provide
useful information on the child’s views of reality and his thought
processes. The verbal explanations are particularly valuable for
inferring the underlying mental processes ... If further clarifications
are required [the interviewer] asks additional questions or introduces
extra items.... The information at any point may substantiate or
invalidate the original hypothesis. In the former case, the
interviewer may ask additional questions so as to satisfy himself of
the stability and consistency of the child's responses ... If the
original hypothesis is not confirmed, the interviewer reformulates it
to take into account the child’s responses and asks further questions
or introduces additional items to clarify these responses. (pp. 92-
93)

In the case of the interviews in my studies the “experiment” presented to the
students were questions, notes and transcripts based on my previous observations.

7. Prompts

The situations the participants explored resemble those employed in problem
solving research (e.g., Schoenfeld, 1985). While this research owes much to
traditional problem solving research, the underlying assumptions concerning the
nature of the participants’ activities differ. What would otherwise be seen as
“problem solving” is seen here as a process of transforming a text (the prompt) into
a situation and invesligating and extending that situation. This process depends as
much on the participants’ histories as it does on the originating text. Within this
process we see both the participants’ cognitive structures being modified through
learning about the situation, and also the situation itself being modified through
interaction with the participants’ cognitive structures. Thus, these situations can be
seen as co-emerging” with the participants during the course of a session.

The mathematical situations explored were based on three “prompts”; the
texts on which the participants founded their explorations. Two of these,

* See Chapter Vi for a description of co-emergence, and structure.
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Arithmagon and Fibonacci, are traditional paper and pencil problems. The thirdisa
LOGO microworld.

Arithmagon

The Arithmagon situation is derived from a problem in Mason, Burton, &
Stacey (1985). The text used in the North School study was slightly different from

the text used at South School, and in the clinical studies. The prompt used at North
School was:

The numbers on the sides of this triangle are the sums of the
numbers at the corners. Find the secret numbers,

27

Make up a triangle of your own, and solve it.

Can you describe a general way to solve all triangles?
Make up a square and solve it.

Can you find a general way to solve all squares?

The last four lines were replaced by the instruction “Generalize the problem
and its solution” in the other studies. The questions were added to the North
School prompt to try to focus the participants’ investigations along paths which I
thought at the time to be the most fruitful. I do not believe this was the case, and so

the prompt reverted to its original form for the second clinical and the South School
studies.

Fibonacci

The prompt for the Fibonacci problem was modified for each study. The
prompt used in the first clinical study was:

The Fibonacci sequence begins:
1,1,2,3,5 8, 13,21, 34, 55, 89, ...

If you are familiar with the recursive rule def; ining the sequence
write it down. If you are not, try to discover the rule.

Use the notation Fy to stand for the nth Fibonacci number. For
example, F7is 13 and Fyq is 55.

Look for patterns which relate the index n to the Fibonacci
number Fp.  For example, is there anything special about F,
when n is a multiple of 3, or a multiple of 4, or prime?

The prompt used at North School was:
The sequence of Fibonacci numbers begins:

1,1,2,3,5,8 13, 21, 34, 55, 89, ...
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Try to discover a rule which will tell you the next number in the
sequence.

Is there anything special about every third Fibonacci number ( 2,
8, 34, .)7

Is there anything special about every fourth Fibonacci number
(3, 21, ...)?

The prompt used in the second clinical study was:

The Fibonacci sequence begins:

1,1,2, ..
and continues according to the rule that each term is the sum of
the previous two (e.g., 1+1=2).

The Fibonacci sequence has many interesting properties.

Can you find an interesting property of every third Fibonacci
number?

Can you find other interesting properties?

The Fibonacci prompt in all its forms had the problem of being too
directive. The intention of the questions was to inspire investigations in particular
areas known to be suitable for deductive reasoning. They usually resulted in
superficial investigations, since the participants were quick to go on to the next
queston.

In both the Arithmagon and Fibonacci situations the participants are given
an initial puzzle to solve. In the Arithmagon the puzzle is the determination of the
secret numbers. [n the Fibonacci situation the puzzle is determining the recursive
rule defining the sequence or finding a pattern in every third Fibonacci number.
These tasks are puzzles in that they have definite answers, and are well within the
capabilities of the participants. The giving of initial puzzies was intended as a
means of giving the participants’ investigations an initial basis, motivation and
direction. This was more successful in the case of the Arithmagon than in the case
of the Fibonacci numbers.

GEOworld

The LOGO microworld, called GEOworld, is created by a simple recursive
program (reproduced below) which accepts three numerical parameters and
produces a geometric figure. In this case no initial puzzle was proposed. The
situation is not really suited to the construction of simple puzzles. Instead an initial
prompt was given. In the clinical studies the example of GEO 100 100 2 was
included in the instruction sheet (Figure 34 shows the output of this input). In the
second school study the functions of the three parameters were described vaguely,
and three examples were proposed: GEQ 100 100 2, GEO 135, 100 -3, and GEO
1525 1. These prompts do focus the participants on certain aspects of GEOworld
to the negiect of others, but it was possible to ignore them.
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togeo:a:b:c
if :b <1 [stop]
fd:b

r:a
geo:a:b-icic
It:a

bk:b

end

Figure 34: Output of GEO 100 100 3.
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APPENDIX C

MATHEMATICALACTIVITY TRACES

As is mentioned in Chapter VII, part of the analysis of the data involved
making Mathematical Activity Traces (MATs) which chart the episodes which
occurred in a session. This made it easier to see shifts in reasoning, and to
associate reasoning with needs. The analysis of data progressed to different stages,
depending on its usefulness to my research at that time. For this reason not every
group had a MAT made for them. These are included both to give examples of this
way of recording the events in a problem solving session, and to organize the
episodes I have referred 10 in the text.

1. MATs from the study at North School
Mathematical Activity Traces for the Math 13 Pair, Bill & John

Fibonacci
(minutes elapsed)

1.1 Given sheet. (01)
1.2 Looked for difference pattern
1.3 B saw recursive rule pattern.
1.4  Calculated 55+89=144. (02)
2 Both immediately observed that F3, is even.
3.1 J conjectured Fy, is odd
3.2 B pointed out 144 is not odd (03)
3.3 Jinvestigated relationships between Fyy,; nearly found

Fan + 4Fania = Fanusg (04-05)
3.4 Jextended sequence
3.5 B observed sum of digits in Fy, is divisible by 3; assembled

empirical evidence. (Q7)
3.6 B suggested finding the next Fy,; J did so. (08)
3.7 B saw pattern in 144 233 377, contradicted by 610. (0%9)
3.8 B again expressed his sum of digits rule, with a reservation

about its generality based on the inadequacy of empirical

evidence. (10)
3.9  Jsuggested looking at F;, for n = 4. Looked instead at 3, 21,

144, 233, 377. B expressed confusion about this sequence. (11-12)
4 B checked digit sum conjecture for larger vzlues of F4,, but

continued to reject generality because of limitations of empirical

evidence. (13)
5.1  Jcalculated differences in 2, 8, 34, 144, 610. B examined

differences of differences. (14)
5.2 Bagain mentioned digit sum conjecture, and limited its

generality: “It could be a coincidence” (15)
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I suggested dividing sums of digits by 3. B responded that they
will divide evenly by 3, but no one did the division.

B checked F3, is even conjecture for larger values.

J observed that F4, + Fan.4 = 6. He used this to calculate:

987 + 144 =6, 6x 21 =144

B found next F4, to test J’s conjecture.

J checked conjecture with 4181. It failed as 4181 is not the right
number.

B checked sequences to see if they had the right number.

They checked J’s conjecture.

J formuiated his conjecture.

B commented on its lack of practical utility.

B commented that his digit sum conjecture had not been
disproved. J suggested reexamining it. B suggested a counter
example would soon occur.

J noticed a pattern in the sums of digits: 3, 3, 9, 24, 24,

B calculated the next numbers.

They checked the next number. Jiook 10946 to be the next and
found it didn’t work. B took 46368 to be the next number and
found it worked. They clarified which numberis Fy4,,.

They discussed J's ratio conjecture again. J commented on its
inexact nature, B commented on its uselessness.

B checked F3, for even numbers again. J watched. The
conjecture was confirmed for several more values, but B was
still not certain.

B considered his use of digit sums. He was uncertain as to its
applicability to mathematics as he had only seen the technique
used in astrology/numerology.

B on F3;: “We could go on forever but we can’t know that it’s
always even”

J asked DR if they are on the “right track”. DR said yes, and
asked for a recap.
They listed 3 conjectures they found:
' 1. the recursive rule for the sequence
2. B’s digit sum conjecture
3. J’s ratio conjecture.
B formulated J’s conjecture
B added O to beginning of sequence and gave a deductive
justification for its being correct.

B noticed pattern in sums: 3,3,9,6,6,9.

J became confused between F, and F4,,. B correcied J's
confusion

B began to extend sequence systematically, recognizing need for
some organization in their work. J was working on a dividing
pattern using digit sums which he never described.
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12.4 B fourd a contradiction to his digit sum conjecture; 260497,

which was due to an addition error in extending the sequence. (41)
12.5 B rejected his conjecture on the basis of his counter example.
12.6  Both began looking for pattems in differences of the digit sums.

They noted they are all multipies of 3. (44)
12.7 B suggested a pattern of alternating divisibility by 3 and 2, in

groups of six,
13.1 DR pointed out addition error in sequence. “@n
13.2 B recalculated sequence. J watched.
13.3 B checked next value of F,,: 317811. “It still works™ (50)
13.4 DR talked about potential for surprise in the sequence (51
13.5 B proposed trying next value of F4pto test digit sum conjecture,

and did so. (52)
14.1 DR asked about surprise.
14.2 B commented that there is no reason to be surprised at a counter

example and expressed doubt of Fz,, even conjecture. (56)
14.3  Jinvestigated sums of digits for other numbers.
15.1 B suggested that differences between F, s are divisible by 3
15.2  Checked several cases, but doubted generality.
16.1 DR pointed out that 3, 21, 144, ... are all multiples of 3. B

didn’t think 144 was. (62)
16.2 DR asked B if he can give a reason for every third number to be

even. B suggested it is because the sum of two odd numbers is

even. (64)
16.3 B checked sequences to see if pairs of odds continue, and to see

if O+O=E rule holds. (66)
Arithmagon

(time of day, tape started at 10:52)

0.1 Discussed previous session (Fibonacci). J commented that it

helped him learn that many pattern might exist, rather than just 1

simple answer. (10:53)
0.2 Baskedif the ratio F,:F,,; was ever the same for two values of

n, in response to DR’s commenting that the ratio was

approximately the same and more so as n gets bigger.
1.0 Given sheet (10:56)
1.1 B formulated how puzzie works, while J read entire sheet. (10:57)
1.2 B announced solution, used inference. (10:58)
1.3 B created 3-3-4 triangle, by choosing corners and adding. (10:59)
1.4 B looked for patterns in solved puzzles (11:01)
1.5 B asked whether negative numbers are allowed. (11:03)

(from 1.2-1.5 J is working silently)
2.1 J asked for a protractor, B found a tentative rule. (11:04)
3.1 B returned to examining the original puzzle. J asked him for the

numbers. (11:05)
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Looked for patterns (11:06-11:08)
J wondered if 11, 18, 27 are all multiples of something. B

formulated the task as finding a simpler way (better than trial and

error) to find the solution. (11:08)

B returned to his “old theory” (2.1) which worked in two cases. (11:09)
J reported that the sum of the sides is 56. He divided by 3,

because the iriangle has three sides, to get 18. (11:10)
B looked for factors in common.

J suggested looking at square (they didn’t) (11:13)
Looked for patterns (11:14-11:16)

B found a possible method: 27 + 18 x 11 =16.5 = 17, which is
one of the numbers needed. He tried this method with other
sides, and it failed, but he reasoned that he only needed one
corner to find the others. He tried his method on a 3-6-17

triangle . J worked in silence. (11:16)
B tried his method on a 41-86-92 triangle (11:19)
J asked B what he was doing. B described his conjecture that

A x B +C=x, and said he was trying other examples. (11:22)
B tried a 14-29-56 triangle. (11:22)

J said that the “minus 1 thing” doesn’t work. They had

conjectured carlier that one vertex was a side minus 1. B gave a

reason “It only worked here [11-18-27) because this is 17, (11:23)
B: “Maybe this would work with the 56 theory” (11:25)

B wondered if J tried the square. J said he did but it “didn’t go”
B considered solving squares, but decided to do triangles firsL.
Conjectured that the solution was related to the number of sides.

B conjectured the pattern of odd-odd-even is important. (11:28)

B conjectured (A - C) + (B + C), rounded off, which in 11-18-

27 triangle gives him B, 18, again. He recognized that this is

not his goal. (11:30-11:31)
J conjectured 2 + 27 (in 14-29-56 triangle) gives 29, but realized

he was reasoning from corners to sides, and he didn’t know

corners to start with. (11:32)

J showed B the 11-17-21-15 square he was working on at some

previous time. B worked on it, conjecturing that the solution of

the square might help solve the triangle. (11:33)
J suggested adding all the numbers.

B commented squares are harder than triangles. Wondered if

there is really a link between squares and triangles. Decided

there is, based on both occurring in the same situation. (11:34-11:35)
B returned to triangles, suggesting that the only reason he has

for thinking there is an easier way, the need to solve large

number triangles, could be eliminated by employing SI units, or

scientific notation. (11:37-11:38)
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11.1 DR suggested looking at triangles with smaller numbers. (11:38)

11.2 B worked on 2-3-3 tnangle, (11:39)
11.3 B conjectured, based on 3-2=1, 3 x 1 = 3. He generalized and
checked with another triangie (11:40)

Session ended due to time constraint.

First Interview

In this trace each group of episodes is given a heading indicating the general
nature of the episodes, or the stage in deductive exploration.

(Time of day)

1 Stating unknowns and givens: (1:59-2:05)
1.1 DR pointed to B+C=18; B added A+C=27 (2:00-2:01)
1.2 DR pointed to working with a particular corner, as it relates to

the others. (2:03-2:05)
2 Building on givens: (2:05-2:08)
2.1 DR: combined 27+11=38, related to A+B+A+C (2:05-2:07)
2.2 B: made a false start solving from new relation. (2:07-2:08)
3 Stating more givens: (2:09-2:12)
3.1 DRpointedtoB & C {2:09-2:10)
3.2 DR wrote known relations (2:10)
3.3 Basserted that finding one corner A will be enough to solve all. (2:10)
3.4  Jsummed 11+17+27+38 and was corrected by B (2:11-2:12)
4, Building from givens with a new triangle (2:13-2:16)
4.1 B stated that Knowing the solution interferes with solving in a

new way. DR offered 1-4-12 triangle as an alternative puzzle,

and established known relations. (2:12-2:13)
4.2 DR suggested subtracting (A+B)-(A+C)=3 and simplified to

B-C=3. B claimed to follow, J was uncertain. (2:14)
4.3 B pointed out that now that the sum and difference of B & C

were both known, a solution could be found. (2:16)
5 Review: Digression as DR reviewed simplification of difference

for J. (2:17-2:18)
6 Building from givens continued. (2:19-2:23)

6.1 B continued: Now that sum and difference of B & C were both
known, solution could be found, but he was stumped when no
pairs of whole numbers summing to 12 had a difference of 3.  (2: 19-2:21)

6.2 DR suggested looking for numbers in between, and B arrived at

7.5and 4.5 (2:21)
6.3 B vernfied solution (2:22-2:23)
7 B solved a new triangle at DR’s suggestion. (2:24-2:30)
7.1 DR offered 3-18-63 triangle for solution. Suggested B

“explain” toJ (2:24)
7.2 B consulted previous work, and recreated the derivations. (2:24-2:26)
7.3 Basked for confirmation that he was proceeding correctly (2:27)
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B was worried about C-B=45, as difference should be less than
sum. (2:28)

7.5 DR suggested adding C-B and C+B. B did so and simplified to

=24 (2:28-2:30)
7.6  Bverified C=24in puzzle. (2:31)
8 Review (2:31-2:34)
8.1  Jasked how B found the other sides once C was known. B

explained (2:31-2:32)
8.2 Jsuggested replacing A+B with a single variable. (2:33)
8.3  Brecapitulated the derivation. (2:33-2:34)
9 Generalization (2:35-2:37)
9.1 B asked if the process will always simplify to 2C (2:35)
9.2 DR pushed him to try to explain why it would be. (2:35
9.3 B explained his goal: to produce a simple equation. (2:36)
9.4 DR asked where the 2 came from. (3:36)
9.5  Brecapitulated the simplification, and siill wondered if the 2C is

general, (2:36-2:37)
10 Formulating (2:38-2:39)
10.1 B wrote (AXC)(A+B)-(B+C) (2:38)
10.2 B explained that this formula simplifies to C. (2:38)
10.3 B used formula with numbers. (2:39)
11 Checking formula (2:40-2:41)
11.1  Jsuggested solving 11-18-27 triangle with formula (2:40)
11.2 B did so. (2:40-2:41)
12 Testing B’s strength of conviction (2:41-2:48)
12.1 B stated that formula works for the second triangle, but that says

nothing about general case. (2:41)
12.2 DR pointed to the canceling in B’s derivation of the formula and

asked if it indicated anything about when the formula would

work, B said “I couldn’t say”. (2:42-2:43)
i2.3 B commented that the canceling eliminated the negatives; the

“angles” are positive. (2:43)
12.4 DR asked if substituting -21 for B would effects anything. B

asserted that the formula would still work with numbers.
12.5 DR asked if there are circumstances in which the formula

wouldn’t work.
12.6 B digressed into a comparison with the area formula for the

triangle. (2:46)
12.7 B commented: he couldn’t see why it wouldn’t work for all

triangles, but he might be wrong. (2:47)
12.8 Jcommented that they don’t need to figure out the other sides

once they’ve figured out C with the formula. (2:47)
12.9 DR asserted that he can see no reason the formula would not

work in general. B concluded that they had found it out. (2:47)
13 Review of derivation
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13.1 Jwent through derivation trying to understand where the 48

came from. (2:49)
13.2 B explained the origin of the 48 to J. (2:49)
14 Formulating (2:52-2:54)
14.1 ) replaced B's formula with Z2F (2:52)
14.2 B asked Jif he understood where the 2 came from. (2:52)
14.4 B claimed his notation shows why the formula works, while J’s

is tidier, easier to learn. (2:53)
14.5 DR asked if this was related to their school experience. B

commented he liked to know why. (2:54)
15 Videotape follow-up (2:55-2:58)
15.1 DR showed video tape of 13-F; 16.2-16.3 (2:55-2:57)
15.2 DR asked why two odds make an even. B gave examples of

n+n=even and asserted all numbers would end in digits which

determine parity.
15.3  Jcommented that figuring out why is hard, so it’s easier “just to

believe” (2:58)
16 Starting from a proof (2:59-3:00)
16.1 D asked why there’s always two oddsinarow in F,. B

questioned odd+even; claimed it wouldn’t always give an odd,

then checked a single case and claimed it would.
17 Proof analvsis, Lemma (3:00-3:04)
17.1 DR asked why odd+even=0dd? No reply. (3:00)
17.2 DR asked whai “even” means. B replied “divide by 2” (3:00)
17.3 B related odd--2ven (o positive times negative, (3:01-3:02)
17.4 Jmade a comment on eveiiess. (3:03)
17.5 DR gave a weird explanation about odd+even. (3:04)
18 Return to an example (3:04-3:06)
18.1 DR listed the Fibonacci numbers and labeled each O or E as

appropriate. (3:04)
18.2 B asserted that F3, is even and F,,, is odd. (3:04)
18.3 B commented that the pattern is “working out sc far ... if I'm

correct” (3:06)
19 Testing conviction (3:06-3:08)
19.1 DR asked if the OOE pattern would continue forever. (3:06)
19.2 B said “Yes”, and explained that the sequence started out that

way and the pattern repeats, but qualified with “I think” (3:06-3:07)
19.3 DR asked how the pattern could change. B said that from what

they had seen that would be inconceivable. (3:08)
19.4 DR asserted that the pattern did continue.
20 Reflections on school math.
20.1 B & Jasked what DR could say about them (3:09)
20.2 DR commented they didn’t work well together, and asked if they

had done group work in class. (3:10)
20.3 B commented that math is an individual activity. (3:10)
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Second Interview

(time of day)

1. Conjecture (12:59)
1.1 Given sheet for n3-n (12:59)
1.2 B conjectured that they are all factors of 4. (12:59)
2. Exploring factors (1:007-1:05)
2.1 DR gave choice: to verify, explain or explore. (1:007)
2.2 B and Jchose “why” (1:02)
2.3 B observed the vaiues of n3-n are multiples of 3 as well. (1:02)
2.4 DR asked if all multiples of 6 are even. (1:037
2.5  J gave explanation: 6 is even and adding evens makes evens. B

extended this with the example 6x4=6+6+6+6. (1:037)
2.6 DR asked if all multiples of 6 are multiples of 3. (1:04)
2.7 Jreplied that 3 goes into 6 50 3 goes into “these”. B observed

that 3 can be a factor of both even and odd numbers. (1:04-1:05)
3 Failed formalization :
3.1 DR asked what they knew about n3-n. (1:06)
3.2 B responded that it was a general expression for expressions like

333 (1:06)
3.3 DR asked if they knew about factoring. They said maybe;

probably not. (1:06-1:07)
4. Exploring n3-n (1:07-1:1h
4.1 DR asked if 53-5isa multiple of 5 (1:07)
4.2 Bresponded “yes” and noted that 60 (43-4) is a multiple of 4. (1:08)
4.3 Jsuggested finding 63-6. DR said it is 210. (1:08)
4.4 B observed that 210 is a multiple of 3, and asked DR what he

was trying to get them to see. (1:08-1:11)
S. Exploring factors of 120 (1:11-1:15)
3.1 DR asked what goes into 120 (1:11)
5.2 BandJlisted all the factors and thought in silence. (1:12-1:14)
5.3 DR observed 120=5x24, and asked if there is anything special

about the factors of 24 (1:14)
5.4 B listed the factors. DR asked if 5 was among them, and B

teplied “No”. (1:157
6 Exploring factors of other numbers (1:16-1:20)
6.1 DR suggested looking at the factors of other numbers. B and J

wrote out factors. (1:16-1:17)
6.2 B suggested a false pattern. (1:18)
6.3 DR pointed out the sequence 123, 1234, 12345, 123456 (1:18}
6.4 B predicted, 1234567, tried it and rejected the conjecture. (1:19-1:20)
7. Exploring groups of factors (1:20-1:23)
7.1 DR asked what the faciors of 210 are. (1:20)
7.2 B wrote them out. (1:21)
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7.3 DR pointed out the groups 123 and 567. (1:22)
7.4 B Saw no pattern, and suggested investigating differences. (1:22-1:23)
8. Formalizing with a generic example (1:24-1:347)
8.1 DR factors 6 out of 63-6, and then redistributes 62-1 (1:24-1:28)
8.2 DR asked if breakdown of 63-6 into (6-1)(6)(6+1) would work

for 3 (1:28)
8.3 B said “yes” and checked. (1:28-1:29)
8.4 DR asked if it would work in general. B said yes (1:30)
8.5  DRattempted to explain that n>-n is always a multiple of 6,

based on the factoring. (1:30-1:32)
8.6 B wondered if all the work was really needed. He pointed out

that it only gave them a few factors, which DR claimed was

enough to show the conjecture. (1:32-1:33)
S Explaining O+O=E (1:35-1:387
9.1 DR asked why adding rules for odd and evens work. (1:35)
9.2 B gave hisanalogy with integer multiplication, including implicit

use of the parity adding rules to justify the integer multiplication

rules. (1:25-1:36)
9.3  DRrejected his argument because it was based on the notation

which is of recent introduction. (1:36)
9.4 DR asked ] for his ideas. He had nothing to add. (1:387
10 Exploring evenness (1:39)
10.1 DR asked what they knew about even numbers, (1:39)
10.2 B said they were multiples of 2, except for 0, and they can be

divided by 2. (1:39)
10.3  Jargued that E+E=E because apple+apple=apple. DR gave

O+0, orange+orange, as a counter example. (1:39)
11 Explaining E+E formallv (1:40-1:43)
11.1 DR went through argument that E+E=E based on denoting E as

“2xsomething” and redistributing. (1:40-1:42)
11.2 Jasked for clarification: if you multiply 2 by an odd you get an

even. (1:43)
12 Explaining E+O formallv (1:44-1:487
12.1 DR asked B to do E+O (1:44)
12.2 B wondered if the factor of 2 for an even would be 1 or 3 foran

odd. (1:44)
12.3 DR asked what they knew about odds. J offered that they had

two factors, and then realized he was thinking of primes and

composites. (1:44)
12.4 DR went through argument with generic example of 2+3=5 (1:45)
12.5 DR generalized to 2n+2m+1 (1:45)
13 Explaining formallv O+O (1:487-1:51)
13.1 DR asked B to do O+0O (1:487)
13.2 B began with 2(3)+2(3) (1:487)
13.3 DR prompted “odds are...?" B Replied “1 more than even” (1:49)
13.4 DR went through argument (1:51)
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14 Explaining graphically E+E (1:53-1:547)
14.1 DR drew arrays of pairs of dots, and asked whether the totai

number was even or odd. (1:53)
14.2 Jexplained that there are 2 dots in every group, so “it’ll always
be even” (1:53)

14.3 DR formalized the number of pairs to be # and m and asked how
many dots in each column (2»: J) and how many in the total

(2n+2m: B) (1:53-1:547)
15 Explaining graphically E+O (1:55-1:57)
15.1 DR drew arrays for E+O (1:55)
15.2  Jsaid the total would be odd. B began assigning symbols to the

number of dots. . (1:55)
15.3 B worked through the formal argument for odd (1:56)
15.4 DR asked for clarification of why the answer was odd, and B

gave it, based on the total being one more than a multiple of 2. (1:57)
16 Explaining graphically and formallv O+O=E (1:58-1:59)
16.1 DR asked what the pictures for O+O would [ook like. (1:58)
16.2 B drew picture, adding formal labels as he went, and argued

formally that the sum was even. (1:58)
16.3 DR asked why 2 more than an even number would be even. (1:59)
16.4  J explained it based on the alternation of evens and odds. (1:59)
16.5 B explained it based on it being the sum of two even numbers. (1:59)
17 Debriefing (2:00-2:01)
17.1 DR explained that his plan had been to take them from

unformulated proving to formulated proving. (2:00)
17.2 DR commented on the value of pictures to make things less

formal. (2:0D
18 Does proof explain? (2:02)
18.1 DR asked if proof explained that O+O=E B said yes, with a

good summary of argument. (2:02)
19 Testing conviction (2:03)
19.1 DR proposed that for very large odds their sums are odd. (2:03)
19.2 B accepted this idea. (2:03)
19.3 DR said it’s not actually true. (2:03)
20 Winding down (2:04-2:16)
20.1 DR discussed transfinite numbers (2:04)
20.2 B wondered why he and J were picked. DR explained. (2:05-2:07)
20.3 B said he didn’t like proofs, he doesn’t care why. (2:13)
20.4 B wondered if new math is always being discovered. (2:16)

Mathematical Activity Traces for the Math 30 Pair, Colin & Anton

Fibonacci

(Time of Day)
1 Finding Answers (10:57-11:01)
1.1 Given problem sheet (10:57)
1.2 Found recursive rule for sequence and formalized it. (10:58)
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1.3 Clainied F3,, is always even. (10:59)
1.4 Claimed F4, 1s always a multiple of 3. (11:00-11:01)
1.5  Cwrote out “answers” neatly on problem sheet. A asked if there

was more 10 it. DR said yes. (11:02)
2 Data gathering. (11:02-11:06)
2.1 They extended the sequence to 24 terms, making an error at Fy(11:02-11:06)
3 Finding a rule for F3,, (11:07-11:12)
3.1 C noticed 8x4+2=32. Conjectured F3,, = 453,.5 + F3,.6. (11:07)
3.2 Encountered counter examples due 1o error of F; ¢=600. (11:08-11:12)
3.3  Found error, formalized rule for F3,, (11:12)
4 Finding a rule for F4, (11:13-11:20)
4.1 Conjectured Fqn = 7F44-4 - Fan-g. (11:14)
4.2 Encountered problems verifying due to errors in sequence. Re-

calculated the sequence correctly. (11:15-11:17)
4.3  Encountered counter example due to miscalculation. (11:18)
4.4  Tried more cases. (11:19)
4.5  Cf{ormalized rule for Fy, (11:20)
5 Looking for another Fs,, rule (11:21-11:24)
5.1 A considered looking at Fs,, but didn’t as it was not on the

sheet. (11:21)
5.2 They both looked for other patterns in F3,, without finding any.(11:21-11:24)
6 Finding a rule for Fs, (11:25-11:31)
6.1  Cmade a variety of calculations attempting to find a new rule for
6.2 A joined him in considering Fs, (11:28-11:31)
6.3 C described Fs), rule. A commented it was the same rule as they

had found for Fs, and F;,,. (11:31)
7 Finding a rule for F7,, (11:32-11:33%
7.1 Cmadea variety of calculations attempting to find a rule for

Fon. (11:32-11:33)
8 Formalizing (11:33-11:35)
8.1 C wrote out the rules for F3, F4, and Fs, (11:33-11:34)
8.2 C saw a pattern in 4, 7, 11 as 4+3=7, 7+4=11, 11+5=16. A

saw the alternating addition and subtraction in the rules. (11:35)
9 Predicting from a formalism. (11:36-11:38)
0.1 C predicted Fg, = 16F¢;.¢ - Fep.12. (11:36)
9.2 Whenthey’re calculations failed they rechecked them several

times for errors. (11:36-11:38)
10 Summarv (11:39-11:41)
10.1 DR asked them to summarize their results and how they had

arTived at them (11:39)

10.2  C Attempted to locate the formalisms he had written down, and
read them. A indicated that they had tried their conjectures out
and they had worked. (11:40-11:41)
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Arithmagon

(Time of day)

1 Solving by mechanical deduction (12:50-12:53)
1.1 Given sheet (12:50)
1.2 A labeled triangle and set up system of equations (12:51)
1.3 A found an incorrect solution. (12:52)
1.4 A asked DR of their solution was correct. DR asked them to

check it, and they did. (12:53)
2 A second approach (12:54-12:55)
2.1  Cattempted to solve by isolating x and equating the expressions

18-y and 27-z. (12:54-12:55)
3 Redoing the system of equations (12:55-12:57)
3.1 Casked A to explain how he had obtained x-z=7 in his

derivations. (12:55)
3.2 A solved the system of equations again, obtaining the correct

solution and checked it. (12:56-12:57)
4 Considering the general case (12:57-12:58)
4.1  Csetupa general triangle with equations (12:57)
4.2 A suggested solving C’s equations, but decided they couldn’t. (12:58)
5 Searching for patterns (12:59-1:04)
5.1  Csetupa23-30-33 triangle, by beginning with known corners

and adding to find the sides. Both looked for patterns in this

triangle. {12:59-1:00)
5.2 A noticed that the sum of the sides is equal to twice the sum of

the corners. C wrote out this relation formally. (1:00-1:01)

5.3  They attempted to use the sum relation to solve a 23-60-100

triangle. They determined the sum of the corners, but concluded

that the triangle had no solution. (1:01-1:03)
5.4  Csolved a 4-4-4 triangle, then proposed a 4-4-6 triangle. A

systematically checked all positive pairs of numbers adding to 6,

and then rejected the triangle as unsolvable. (1:03-1:04)

6 Searching for a pattern in the original triangle (1:05-1:09)
6.1  CSuggested that solvable triangles might require the ‘prime plus

two multiples of three’ pattern. He attempted to solve a 13-9-12

triangle. C found solution by guessing, but A wanted a

formula. (1:05)
6.2  They re-examined the solution to the original triangle, and

observed that 17=18-11+10. They conjectured a general

formula of x=a-b+10. {1:06-1:08)
6.3 A suggested trying another triangle. C drew 3-15-24 triangle

and they tried it with their formula. (1:08-1:09)
7 Searching for more patterns (1:09-1:16)
7.1  Csuggested investigating 13-16-17 triangle, which he had set

up from known corners. (1:09)
7.2 They calculated the sum of the sides, and A divided the triangle

into sum triangles and calculated sums of corners for them. (1:10-1:11)
7.3 Solved 10-16-26 triangle (1:13-1:14)
7.4 A solved 20-30-22 triangle using a system of equations. (1:14-1:15)
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C noticed relationship between differences of sides and
differences of corners. He related this to the sharing of comers. (1:15-1:16)

8 Investigating squares (1:17-1:18)
8.1  C assumed opposite sides must be equal. (1:17)
8.2 A divided a 3-4-3-4 square to make a triangle, and found a

solution. ' (1:18)
9 Discovering a method (1:19-1:22)
9.1 Found solution to 5-12-13 triangle based on differences. (1:19)
9.2 Found solutions to 20-30-36 triangle, and 24-14-16 triangle.  (1:20-1:22)
10 Formalizing (1:23-1:27)
10.1 Clabeled 11-18-27 triangle. (1:23)
10.2 A suggested using x, X to represent opposite sides and corners. (1:24)
10.3 Cwroteout Z-X = x-z (1:25)
10.4 Ccommented that their method was not a general solution, and

began deriving formally. (1:26)
10.5 Cdenved Z-X+Y=2x, but thought that they had already found

this. (1:27)
11 Back to squares (1:28-1:31)
11.1 Investigated squares with all sides equal. Found that there were

many solutions. Formalized this conclusion. (1:28-1:29)
11.2  Introduced diagonals. Tney found a conflict in a 3-3-3-3 square

with 1-2-1-2 as the solution. C concluded that squares could be

solved in various ways. (1:30-1:31)
12 Formalizing their method for triangles (1:32-1:38)
12.1 Cdrew a general triangle (1:32-1:33)
12.2 A attempted to investigate triangles by adding sides to make a

square. (1:34)
12.3  Cwrote difference relationship as a ratio relationship, and began

trving to solve 11-18-27 (1:35-1:36)
12.4 A asked if they were close to a formula, and then set up another

general triangle. (1:37)
12.5 C concluded that his ratios wouldn’t work. . (1:38)
13 Refining the method (1:39-1:41)
13.1 A declared that they were “stuck”. They looked for more

patterns. (1:39)
13.2  They solved 10-16-44 tnangle. C solved by taking half the

difference ( 16,,10_3) and adding or subtracting it from half the

other side (22), to find the two adjacent corners (he found 20

and 24, by mistake, and did not check). (1:40)
13.3  Cconcluded some triangles were impossible because the

differences would have to be divisible by 2. (1:41)
14 Formalizing the method (1:42-1:43)
14.1 A wrote out difference relation as B-C = b<c (1:42)
14.2  CchangedittolB-Cl=ib-cl. (1:43)
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15 Refining the method again (1:43-1:46)
15.1 Cgave A a21-24-33 triangle to solve. A did a systematic search

based on 33-24=9 and found solution. (1:43-1:45)
15.2 A described the method as taking the difference of the largest

side and another side, and finding two numbers with that

difference, whose sum is the third side.

Session ended due to time constraint.

First Interview

(Time of day)
1 Tape Viewing (12:04-12:16)
1.1 Watched tape of Arithmagon session from 1:20-1:22. (12:04-12:06)
1.2 Cdescribed how they solved triangles using their method. (12:06)
1.3 Watched tape of Arithmagon session from 1:22-1:24. (12:07-12:09)
1.4 Discussed which triangle they had been solving on tape. It was
a 11-18-27 triangle. (12:09)
1.5 DR asked how their differences method worked. C explained. (12:10)
1.6 DR asked how they knew the differences were equal. A replied
that they had tested many cases. (12:10)
1.7 DR asked how knowing the difference helped in solving the

triangles. C replied that they plugged in numbers with that
difference until a pair worked. (12:11)

1.8 DR asked what they would do if the difference were a million.
A replied that they would know where to start checking based on

the sum they were trying to get. (12:12)
1.9 Watched tape of Arithmagon session from 1:24-1:28. (12:12-12:16)
1.10 A commented “We were stuck so we were just trying to do

anything”, referring to their derivation of Z-X+Y=2x. (12:15)
1.1} DR asked for an interpretation of the derivation. C attempted to

explain it, but discovered an error. (12:16)
2 Mechanical deduction of the formula (12:17-12:22)
2.1 C corrected second line to y = X+Z. (12:17)
2.2 Cderived new formula. DR asked what it meant. C noted that

the formula gave one of the corers. (12:18)
2.3 Asuggested trying the formula on an example to see if it

worked. C tried it with the original 11-18-27 triangle and

concluded the formula worked. (12:19-12:20)
2.4 DR asked which side would be subtracted in the formula. C

answered that the side opposite the corner the formula gave

would be subtracted. (12:20)
2.5 A suggested using the formula to find a different corner. After

they had done so DR asked if they had expected the formula to

fail. C claimed that the formula should work in the same way

for all the corners, and wrote a verbal formulation of it in terms

of adjacent and opposite sides. (12:21)
2.6 A asked if the formula was the correct one. DR said it was one

correct formula. (12:22)
3 “Proving” the formula (12:23-12:26
3.1 DR asked why the formula worked. A said they had tested it

with examples. C suggested “proving” it (12:23)

159



C identified the difference relation as impertant to the formula,

and asked why it worked. He then made the connection with the

common corner, which requires that any difference in the sides

be due to the difference between the other two corners. (12:24-12:25)

3.3 DR comimented on the informality and meaningfulness of C’s

argument, compared with the mechanics of the algebraic

derivation. A connected this with the contrast between

explaining and finding a formula, (12:26)
4 Extending new ideas to squares (12:27-12:29)
4.1  C gave an example of a square with negative corners to show

negative numbers could occur. (12:27)
4.2 DR suggested they drop their requirement that all sides of a

square should be equal. (12:28)
4.3 A asserted that they could draw in a diagonal and use their

triangle formula to solve squares. He tried to do this with a 3-4-

3-4 square, artiving at a false solution. C concluded that the

formula didn’t apply to squares. (12:28-12:29)
5 Searching for a pattern for squares. (12:30-12:33)
5.1  They tried to solve a 3-4-5-6 square by trial and error. (12:30-12:31)
5.2 Csetupa7-13-16-10 square by starting with known corners.

They looked for patterns in this square, and labeled the corners

and sides. (12:31-12:33)
53 DR asked what relations they had found, and asked them to

write equations for them. (12:33-12:34)
6 Mechanical deductions on squares (12:34-12:40)
6.1 A derived expressions from the relations he wrote. (12:34-12:36)
6.2 DR pointed out that they also knew that corners added up to

sides, and A added equations for these relations to his. (12:36)
6.3 A produced the equation 27 = 2C-2A+w+z-y. DR asked if that

equation meant anything. A continued with his derivations. (12:36-12:37)
6.4 DR asked how A had arrived at 27, and pointed out that it was

based on the sides of the particular square they were

investigating. A replaced the numerical values of the sides with

the variables which stood for them. (12:37-12:38)
6.5 A continued his derivations, mentioning that he was trying to

isolate the variables for the corners. (12:39-12:40)
7 Formalizing the proof for the triangle formula. (12:40-12:45)
7.1 DR asked them to return to the denivation of the triangle formula,

and to try to formalized the informal explanation of the

difference relation, or to try to explain informally the formal

derivation of the formula. (12:40)
7.2 A commented that some things were more easily done one way

than the other. (12:41)
7.3 Cexplained the difference relation informally. (12:42)
7.4 A setupequations for the relations along the sides in question. (12:43)
7.5  Ccommented that one could see from the equations that the

differences must be the same. (12:44)
7.6 DR asked him to show it algebraically, and C sut:iracted the two

equations to arrive at the difference relation. (12:45)
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8 Giving meaning to the algebra (12:46-12:49)
8.1 DR asked them to say what the algebra of their formula

derivation meant. (12:46)
8.2  Cattempted to dc , but ended up reciting the algebra, rather
than giving meaning to it. (12:47)

8.3  Cfocused on the meaning of the subtraction of the two
equations. A commented that they had learned to isolate
variables. C pointed out that they still didn’t know what it
meant. They continued to consider it. (12:48-12:49)

Session ended due to time constraint.

Second Interview
(Time of day)

1 Gathering data (11:03-11:07)
1.1 A and Cboth thought they had seen something similar before.

Tried to remember. (11:03-11:04)
1.2 A conjectured they are all even, and calculated the next term to

confirm. (11:04)
1.3 Ccalculated several terms and differences between them. (11:05)
1.4 A calculated all the terms up to #=10. (11:05-11:06)
1.5 DR asked why the needed more terms. C answered that it kept

them from identifying “fluke patterns”. (11:06)
1.6 A calculated termsfor-4<n <0 (11:07)
2 Noticing patterns (11:08-11:10)
2.1  Cconjectured they are all even. (11:08)
2.2 Anoticed 0006 4 pattern in final digits and pointed it out to C.(11:08-11:09)
2.3  Acalculated termsfor 10<n < 15 (11:10)
2.4  Cconjectured that they are all multiples of 6 and DR said that

was the pattern he was thinking of. (11:10}
3 What do we know about n3-n? (11:11-11:13)
3.1  DRaskedif they would like to explain or verify that n3-n is

always a multiple of 6, or explore for more. They chose to

explain. (11:11)
3.2 DR asked what they knew about expressions like #3-n. They

replied they could graph it or factor it. (11:12)
3.3  C factored n3-n. (11:13)
4 What do we know about those three numbers? (11:13-11:15)
4.1 DR asked what they knew about #(n-1)(n+1). C replied that

they were three consecutive numbers. (11:13)
4.2 DR asked why the product of three consecutive numbers would

be a multiple of 6. (11:13)
4.3 A observed that either they would have two odd numbers or two

even numbers in the three. (11:13)
4.4  Cpointed out that they needed to show that the product was '

divisible by both 3 and 2. (11:14)

4.5 DR asked if they knew one of the numbers is even. C answered
that the numbers were either even-odd-even, or odd-even-odd.
A concluded this meant the product must be even. (11:14)
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4.6

C commented that the middle number of the three is the original

n from #3-n. (11:15)
5 Is there a factor of 37 (11:15-11:17)
5.1 DR asked if they could find a factor of 3 in the three numbers.

C examined several examples. He then claimed that they would

always have a number divisible by 3 because every third number

is divisible by 3. (11:15-11:16)
5.2 DR asked if that explained why #3-n is always a multiple of 6.

A said yes, and C explained that #3-n is always the product of

three consecutive numbers, at least one of which is even and one

of which is a multiple of 3. (11:17)
6 Formalizing (11:17-11:22)
6.1 DR asked if they could write out the argument. (11:17)
6.2  C wrote out the argument. (11:17-11:21)
6.3  C gave examples of the two cases of # not a multiple of 3. (11:22)
7 Testing confidence (11:23)
7.1 DR asked them if they now knew that 4173-417isa multiple of

6. (11:23)
7.2 A checked on a calculator. (11:23)
7.3 Cargued that it would be 416x417x418, which includes an

even number and a multiple of 3. (11:23)
8 Did we explain/explore? (11:24-11:25)
8.1 DR asked if they would use their argument to explain why n3-n

is always a multiple of 6. C said yes. (11:24)
8.2 DR asked if they had discovered anything new about #3-n by

working out the argument. They didn’t think so. DR

commented on the discovery that n3-n is always the product of

three consecutive numbers. (11:25)
S What about the converse? (11:25-11:16)
9.1 DR asked if the product of three consecutive numbers would

always be #3-u for some n. C answered ves, and that n would

be the middle number of the three. He also worked an example.(11:25-11:26)
10 Another statement to explain (11:27-11:30)
10.1 DR asked why the sum of two odd numbers is even. (11:27)
10.2  Cand A independently determined the sum of (2#-1) and (2#-1),

concluding that 41-2 must be even. (11:27-11:28)
10.3 DR pointed out that they had only shown that the sum of two

identical odd numbers is even. C calculated (2n-1)+(2n-7). A

calculated (2r-1)+(2n+1), (11:28)
10.4 DR pointed out that these were still special cases, and suggested

using a different variable for the second numbes. C and A

independently added (2n-1)+(2x-1) arriving at 2(s+x-1). (11:29-11:30)
11 Winding down (11:30+)

Various discussions occurred after the second interview. Only
key episodes are listed here.
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(11:34)
(11:37)

(11:38)

(time elapsed from start of tape)

11.1 DR showed how Arithmagon squares work.

11.2 A commented on doing math in school. “I can’t remember a
formula unless I understand it.”

11.3 A commented that Mr. B was happy to explain anything they
asked about, at great length, and they were disappointed when
they found an elaborate explanation would not be on the
examination. A described this as a “waste of time.”

2. MATs from the first clinical study
Group I: Ben and Wayne

Arithmagon |

Ben

0. Given Problem Sheet

1. Solved Problem “intuitively”

2.1  Explored relations between the numbers.

2.2 Found pattern in differences: A-B=a-b, efc.

3 W: “Can you use negative numbers?”

B: “Sure.”
W: “You can’t have negative length of a side though.”
B: The triangle is irrelevant.

4 Compared Solutions withR & E

5.1  Basked E & R how they used algebra to solve problem;

5.2 B Explained his constraints method to E & W

6 W said he was “playing” with properties of triangles.

E & K told W the triangle was irrelevant.

E: “I guess you could [treat sides as lengths]”

B: “Idon’t think you could.”

B rejected taking triangle as importan as angles didn’t work.

7 Discussion of B’s method. B reconstructed his thinking and
solved another triangle.

8.1 DR gave 1-4-12 triangle.

8.2 B declared itimpossible. He explained that only 0+1 gives 1,
and neither order works. E & W suggested negative numbers

9 W: “Do the three numbers represent angles or something?”
E, B, & DR: “No.”

10.1 B Decided 1-4-12 triangle could be solved with negative

numbers.
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B Proposed that E or R solve 1-4-12 algebraically, E started

E explained her method. W interrupted with a new problem.
E gave solution. W: “No.”

B, W & E worked on relation of division by 2 to area formula
fora triangle.

R announced her formula a+E+ 1o the group.

Tried with W to Confirm R’s formula for 0-1-2 triangle

Everyone discusses connection of R’s formula with cosine law

Discussed R’s formula. W: “I understand everything except
why you divide by 2"

W repeated operational version of R’s formula.
Exchange of explanations for division by 2. B's link to
a+b+c=2(A+B+C) accepted as explanation.

Watched W work examples

All explained E’s method to TK

Discussed relation with angles, with E & W

Worked out 3-7-9 triangle by E’s method.
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B: “I've determined that it is impossible.” (25:30)
E: “You think it’s impossible?”

B: (1o DR) Is it impossible?

B Asked for E’s algebraic solution. (25:40)
E got it wrong.

- B Suggested fractions involved. (26:11)
All worked on 1-4-12 independently ~ (26:30-29:00)
E gave B solution to 1-4-12 triangle. (~29:00)
B checked her solution (~30:00)
Everyone listed to R describe progress.

W described what he was doing to E and B. (~32:00)
E noticed 6-6-6 [A+a=B+b=C+c] in W’s work. (~32:30)
W checked [A+a=B+b=C+c] on other triangles. They continued

to explore. (~33:00)
E noticed that a+b+c=12=A+a in a particular triangle

(Announced that a+b+c=12) (37:14)
W enunciated rule: a+b+c=2(A+B+C) (~37:30)
Several examples were checked. (38:50)
K & W worked on solving 11-8-15 using new found relations,

Found that sum/2 =12, but then became stuck. (~40:00)
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(time elapsed from start of tape)

Given Problem Sheet (4:08)
Explored properties of triangles. (~5:30-9:30)
W: “Can you use negative numbers?” (5:40)
B: “Sure.”

W: “You can’t have negative length of a side though.”
B: The triangle is irrelevant.

Compared Solutions withR & E (~10:30)
Explored properties of triangles. (~11:00-1200)

W said he was “playing” with properties of triangles. {(~13:00)
E & K told W the triangle was irrelevant. :

E: “I guess you could [treat sides as lengths]”

B: “I don’t think you could.”

B rejected taking triangle as important as angles didn’t work.

Working on diagrams of triangles. (14:30)
Announced that he was: “Frustrated...no idea what to do.” (~15:00)
DR gave 1-4-12 triangle. (~22:30)

B declared it impossible. He explained that only 0+1 gives I,
and neither order works. E & W suggested negative numbers (~23:00)

W: “Do the three numbers represent angles or something? "
E, B, & DR: “No.” (~23:30)

Explained his “page 1” to DR. Began with 3-4-5 because it is a
right triangle. Expanded out. Shrunk in. Proposed 0-1-2
triangle to B. (~26:30-29:00)

Everyone listed to R describe progress.

W described what he was doing to E and B. (~32:00)
E noticed 6-6-6 [A+a=B+b=C+c] in W's work. (~32:30)
W checked [A+a=B+b=C+c] on other triangles. They continued

to explore. (~33:00)
E noticed that a+b+c=12=A+a ina particular triangle

(Announced that a+b+c=12) (37:14)
W enunciated rule: a+b+c=2(A+B+C) (~37:30)
Several examples were checked. (38:50)
K & W worked on solving 11-8-15 using new found relations.

Found that sum/2 =12, but then became stuck. (~40:00)
E explained her method. W interrupted with a new problem. (~40:30)

E gave solution. W: “No.”

Confirmed that A+a rule holds for original Arithmagon.
Recorded rule.

B, W & E worked on relation of division by 2 to area formula
for a triangle.
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13 Suggested link to Golden Ratio. DR discouraged this idea.

14 R announced her formula a+t23+ £ to the group.

15 Tried with B to confirm R’s formula for 0-1-2 triangle (49:30)
16 Everyone discussed connection of R’s formula with cosine law (~50:00-51:00)

17.1 Discussed R’s formula. W: “I understand everything except

why you divide by 2” (~52:30)
17.2 W repeated operational version of R’s formula. (~53:30)
17.3  Exchange of explanations for division by 2. B’s link to

a+b+c=2(A+B+C) accepted as explanation. (~54:00)
18 Worked examples, others watched. (~55:00)
19 All explained E’s method to TK (~57:00)
20 Discussed relation with angles, with E & B (~58:30-59:30)
21 Wrcie out rule. Gave verbal version of rule to DR. (~61:00)

Group II; Stacev and Kerrv

Arithmagon
(time elapsed from start of tape)

0. Given problem sheet. (2:10)
1.1.  Kerry chose to “deduce”; to use algebra rather than tral and

€ITOT. (2:45)
1.2 Solved by using simultaneous equations. (3:15-4:30)
1.3 Checked their solution: Stacey—"Is that right?” (4:30)
1.4 Kerry observed that if method gives solution, it must work in

original puzzle.
2.1 Stacey —"What happens if you add the middle numbers

together?” (6:50)
2.2 She added up the “middle” numbers (those on the sides), and

then considered how that is related to the secret numbers on the

corners. (7:10)
2.3 Aseach secret number is added into two of the numbers on the

sides (“So you add each of those twice”) she deduced that the

sum of the numbers on the sides is twice the sum of the numbers

on the corners. {7:30)
2.4 Kemy checked her assertion, but did not see her argument, (8:10)
2.5  For Stacey the relationship must hold “for all of them” because

she has deduced it. For Kerry it is only the unlikeliness of such
a relationship occurring by chance that convinces him that the
relationship is a general one. (820)
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Kerry solved again, by using matrices. (8:30-15:00)
Stacey observed that 0 0 1 12 is wrong, as she attached the
meaning C=12to it. Kerry was proceeding formally. (c. 11:00)

Due to an arithmetic error, they obtained a different “solution”.
After checking over their work, they briefly considered the
possibility of two solutions, but rejected the idea when they

checked their answer in the original problem. (14:15)
Kerry claimed matrix should give solution as the number of

variables equals the number of equations. (16:15)
“Generalized" their solution by describing their actions in

general terms. (18:00-21:00)
Stacey extended sides: “just trying something”. (21:45)

Around the original triangle she drew a sequence of triangles,

using the corner numbers from each triangle as the side numbers

for the next larger triangle.

Explored relationships between nested triangles. (€. 23:00)

Stacey observed that the differences 27-13, 17-3, and 11-(-3),

are all 14. She predicted that the numbers in the next triangle

would also be 14 less than those in the 1-10-17 triangle. For

example, she predicted that the number at the lower right hand

comer of the largest triangle would be 3. (25:15;
When this prediction was disproved (26:40)
both Stacey and Kerry advanced new predictions. Kerry

predicted that the next difference would be 3.5, an induction

based on 7 being half of 14. Stacey suggested that the

differences might alternate: 14,7,14,7,... (30:00)
Tested Stacey’s prediction (33:25)
Kerry suggested trial and error to determine next triangle’s

solution (33:40)
Stacey observed that her prediction was only based on one trial,

so it was not surprising it failed. (33:50)

She suggested they work out the next triangle’s solution to give

them another trial to base predictions on.

Kerry’s prediction of 3.5 was confirmed. (36:00)
Kerry predicted 1.75, tested and confirmed his prediction.  (36:30-37:45)

They extended halving principle to a doubling principle (going

in). (41:00)
They discussed the limit of the values for the triangles. (43:00)
Stacey suggested deriving a formula. This idea was rejected due

to the large number of variables. (45:15)
Kerry expressed interest in finding a reason for the initial

difference being 14 and for failure of the matrix. (47:00)
Stacey observed that (11+18+27)+14=4. (48:00)
Stacey compared 4 with the number of sides of the triangle. (48:45)
Kerry compared dividing by 4 with averaging. (50:00)

TK intervened—"Is 14 special, or is one fourth of the sum
special 7’ (50:30)
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Investigated an exterior triangle, and another triangle based on
new numbers. (c. 51:00)
Described a general method for solving triangles. (59:00)

Both expressed continuing concern over the number 4. (60:30)
Stacey observed that the act of nesting the original triangle in a

larger triangle created four triangles approximately the same size

as the original. (61:00)
Kerry was unhappy with this as an explanation—"Y ou cazp’t just

say that, you have to explain that. Why are those 4 triangles

important?” (61:30)

Continued exploration (of Arithmagons of more than 3 sides)
after research session ended,

In a follow up interview three weeks later, Kerry and Stacey
were shown a formal proof of the correctness of their method.
For Kerry this proof explained the occurrence of the 4. He
commented “That’s where we get the 1/4 from™. It is not clear
whether Stacey understood the proof as an explanation.

Fibonacci

(time elapsed)
They tried to remember the rule, arrivingat Fy = Fp.) + Fyp. (began 1:35)
Kerry rephrased as Fpio = Fho1 + Fy
Kerry added F;= Fyy2-Fp. 1 to allow determination of Fy and Fa

Verified by cases. (until 6:00)
Looked for other rules. (7:00-7.45)
Examined F3y, for pattern. Tried to used differences and ratios. (began 8:00)
Deiermined they are even, by induction. (finished at i2:40)
Examined Fp for pattern (began 12:45).
Stacey determined they are all odd, by induction. (12:55)
Revised conjecture to: Fp is always prime, (13:45) (14:15)
Made a list of Fibonacci numbers to examine. (14:15-15:15)
Observed that converse does not hold. (15:50) (16:15)
Tested more cases. (16:15-20:30)
TK asked which are even (20:30).
Examined F3p, in table.

Kerry provided O+O=E proof when prompted. (23:25-25:30)
Examined groups of four consecutive Fibonacci numbers at

TK’s prompting. (27:00-28:00)
Investigated sequence starting with 7,7 at Stacey’s suggestion. (28:00)
Found sums of groups of four make a Lucas sequence. (28:40-32:00)
Investigated negative sequence (32:00-35:00)

Explored groups of three consecutive Fibonacci numbers at
Kerry’s suggestion. Found sums make a Lucas sequence.  (36:00-43:00)

DR suggested investigating products of three consecutive
Fibonacci numbers. (43:00)
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7.2 Found a false pattern. (47:00)
7.3 Found product of end numbers equal to middie number squared
*+1 (47:30)
7.4 Checked for 7,7 sequence at Stacey’s suggestion. (48:15-50:00)
7.5  Find product of end numbers equal to middle number squared +
1. (50:00)
7.6 Investigated other sequences. (53:00)
7.7  TK and Kerry debate whether sequences start n,n or 0,1 . (56:00)
7.8 TK suggests making a list of sequences considered so far.
8. Gave F3;, even and Fp prime as their discoveries when asked to
summarize. (100:00+)
Group I11I: Eleanor and Rachel
Arithmagon
Eleanor
(time elapsed from start of tape)
0. Given Problem Sheet (3:55)
1.1 Worked with R on solution by system of equations. (-6:00)
1.2 Worked independently on solution by system of equations. (6:00-7:55)
1.3 Wondered if the solution is unique, (8:00)
1.4 Decided that the algebraic solution showed only one solution is
possible. (9:38)
2.1 Compared Solutions withR, B & W (10:20)
2.2 Basked E & R how they used algebra to soive problem; (~11:00)
3 W said he was “playing” with properties of triangles. E & K
told W the triangle was irrelevant.
E: “I guess you could [treat sides as lengths]”
B: “I don’t think you could.”
B rejected taking triangle as important as angles didn’t work.
4.1  Discussion of B’s method.
4.2 E &R watched B (1400-1500)
B reconstructed his thinking and solved another triangle.
S. Worked independently (1500-1600)
6.1 R &E analyzed B’s method. (16:30-~17:00)
6.2  Tried a triangle by B’s method, with R (~17:00-21:00)
(~20:00 B gave solution)
7.1 DR gave 1-4-12 triangie. (22:15)
7.2 Bdeclared itimpossible. He explained that only 0+1 gives 1,
and neither order works. E & W suggested negative numbers
7.3 W:“Do the three numbers represent angles or something?” E, B,
& DR: “No.” (~23:30)
7.4 B Proposed that E or R solve 1-4-12 algebraically, E began to
do so. (~25:00)
7.5  B:*I've determined that it is impossible.”
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E: *“You think it’s impossible?”

B: (to DR) Is it impossible?

B Asked for E’s algebraic solution. (25:40)
worked on 1-4-12 independently (~26:30-29:00)
E gave B solution to 1-4-12 triangle.

Everyone listed to R describe progress.

W described what he was doing to E and B.

E noticed 6-6-6 [A+a=B+b=C+c] in W’s work.

W checked [A+a=B+b=C+c] on other triangles. They continued

to explore.
E noticed that a+b+c=12=A+a in a particular triangle

{Announced that a+b+c=12) (37:14)
W enunciated rule: a+b+c=2(A+B+C)

Several examples were checked. (38:50)

Worked on inventing a method of solution.
E explained her method. W interrupted with a new problem. (40:00)

E gave solution. W: “No.”

Tried to clarify the relations she was working with.

B, E, & W worked on relation of division by 2 to area formula

for a triangle. (~44:30-48:00)

at+b+c
R announced her formula —

to the group.

R explained the derivation of her formula to E by recapitulating
her calculations. (~49:30-51:00)

Tried to relate R’s formula to her own relations.

General discussion of R's formula. W: “] understand
everything except why you divide by 2”

Announced they have found two different methods.
Worked on clarifying her method.

All explained E’s method to TK (~56:00-58:00)
Discussed relation to angles with B&W (~58.30-59:30)
Derived R's formula from her equations. (~59:30-60:30)
Compared results w/ R (~60:30)
Tried to explain equations by algebraic derivation. (~62:00)

Rachel

(time elapsed from start of tape)
Given Problem Sheei (3:55)
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Worked with E on solution by system of equations. (-6:00)
Worked independently on solution by system of equations. (6:00-7:55)

Solved puzzle (7:55)
Compared Solutions with E, B & W (10:20)
B asked E & R how they used algebra to solve problem; (~11:00)
Made a new puzzle (~11:00)
Looked for patterns. {(~13:00-14:30)

Discussion of B’s method.
E & R watched B (1400-1500)
B reconstructed his thinking and solved another triangle.

Worked independently {1500-1600)
R & E analyzed B’s method. (16:30-~17:00)
Tried a triangle by B’s method, with E (~17:00-21:00)
(~20:00 B gave solution)
Tried a triangle by B’s method, alone (~21:00-22:15))
DR gave 1-4-12 triangle, (22:15)
Worked on solving 1-4-12 triangle (~23:00-25:30)
Watched E& B ~ (25:30-26:00)
worked on 1-4-12 independently (~26:30-29:00)
Began working on algebraic derivations. (~29:00)
Determined that if two sides are equal then two corners are
equal. (29:37)
Everyone listed to R describe progress. (~31:00)
Continued to explore deductively. (~32:00-48:00)
Worked with TK’s help (~34:00-35:00)
deduced that if all sides are equal all corners are too. (~37:30)
TK suggested deducing with no constraints. (42:20)
TK Suggested focus on % (4:30)
TK helped (46:00)
Found formula, and tested it. (~46:30)
R announced her formula a+g+ S0 the group. (~48:00-49:00)
R explained the derivation of her formula to E by recapitulating
her calculations. . (~49:30-51:00)
Watched as:

All discussed R’s formula. W: “I understand everything except
why you divide by 2”

W repeated operational version of R’s formula. (~53:30)
Exchange of explanations for division by 2. B’s link to

a+b+c=2(A+B+C) accepted by W, and R, as explanation. (~54:00)
Watched W work an example. {~55:00)
All explained E’s method to TK (~56:00-59:00)
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14.1  Derived a+b+c =2(A+B+C) algebraically (59:00)
14.2  Compared results w/ E (~60:30)
14.3 Continued derivations (~62:00)
Fibonacci
(time of day, or tape counter)
1 Making conjectures (Clk 3:10-3:15)
1.1 Conjecture (R): F3p is even (Clk 3:12)
1.2 Conjecture (E): Fqp is odd, also a multiple of 3 (Clk 3:12)
1.3 Noted pattern OOEOQE (Clk 3:15)
2. Discovery of 3s rule
3. Making conjecture (E?): Fp is prime, and F¢ is not
prime (Clk: 3:20)
4.1 Exploring: R looking at 4s, E looking at 3s
4.2  4srules discovered (100)
verified, (130)
Jormulated (160-730 by R)
5. Making conjecture: F.p = «-Fp (Ctr: 660-700)
5.2  Summarized results (780-880)
53  TKtalked about Fibonacci Quarterly (880-1000)
6 3s rule formulated (1050 by E)
(Wihy 42, need 1o explain) (Ctr: 970-1130)
Worked independently:
E tried to relate the 4s rule and the 3s rule (1150-1350)
TK asked for clarification, R answered (1250-1320)
E gave report to TK (1350-1400)
? (1400-1625)
7 E wondering about 4 in 3s rule. R looking at factors (1625)
Searching for explanations (1625, E)
R looked at 2s rule briefly (1660)
8 35 rule discovered, (1760)
verified, (1760)
SJormulated (1860-1940 by E; 2070 by R)
9 Making conjecture (R): An n-rule exist for all n (Ctr: 1920)
10 Cycles of discovery, verification, and formulation,
10.1  6s rule discovered, verified ( 2040)
formulated ((2120 by E; 2190 by R)
10.2  2srule discovered and verified (2150)
R formulated her method for discovering rules (2200)
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11 Making conjecture (R): 7s rule will not work as 7 is

prime. E:2&3 are prime. (2300-2310)
12 Cycles of discovery, verification, and formulation.
12,1 7srule verified (2360)
12.2  8srule predicted & verified, (2420)
alternative verificalion suggested, (2390-2480)

They were about to check for an 11 rule when they ran out of time.

Group IV: Jane & Chris

Arithmagon
(tape counter)

Solving

1.1 Using system of equations (140-450)

1.2 Check solution, it doesn’t work in original problem (it does, C
mis-added in his head. ) (450)

2.1 Second attempt, with matrix (580-940)
C knows matrix is the same as equations, but doesn’t have any
better ideas (580)

2.2 CPredicts matrix will not reduce, as otherwise it should produce
a solution which should work. (640)

3 Temporary halt in matrix work, based on knowledge that it’s the
same as the equations. Search for error in the equations. (770-880)

4 Discovery of solution with matrix (880-940)

Generalizing

5 Conjecture that all numbers which work are of the form 2n, 3n,
n+2. Rejected. (1200-1550)

5 trying another example: 3-5-2. C predicts any triangle solvable
based on 3 equations with 3 unknowns. (1580-1550)

7 J Considers 1-1-1 triangle, concludes need for fractions. (1720-1760)

Is the Arithmagon always solvable?

8 C on general solvability: 3x3=>solution (1840)
Squares work too. (1870)
Equations must be linearly independent (1890)

9 Is the triangle always solvable?

9.1  Worked to solve general square. J using equations, C using
matrix. (1920-2200)
Matrix does not reduce. This casts doubt on general solvability
of triangles. (2200}

9.2 ] Solving triangle in general. C continuing to investigate
square’s matrix (2270)
J concludes square 1iever works (2375)

9.3  Csolves general triangle with matrix (2600-2680)
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10
10.1

10.2
10.3
10.4

11
11.1

11.2

13

Is the square never solvable?
Solution of triangle now casts doubt on calculations related to

square (2680)
C reviewed calculations for square (2680-2750)
Conjecture made: Square is different as corners are unconnected.

Conjecture Squares never work. (2750-2800)
Counter exanple 1-1-1-1 (2825)

Revised conjecture: It works for some values.

What is going on with our matrix?

Search for error in square’s matrix: Confusion in writing v and v

(2930)
Relation: v=y+z-x discovered, confirmed, and
considered. (3000, 3060 &3170)
Conclusion that C and D are arbitrary (3110, 3160&3300)
rejected on grounds it “doesn’t make sense” {3130&3300)
Interacting with TK (3350-3400)
Continuing to explore square’s matrix (3415-3460)
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APPENDIX D

TABLES OFRESULTS

The following tables summarize some of the information presented in
Chapters II, Il and IV. Table 6 shows the distribution of needs and reasoning
according to problem situations. Table 7 shows the distribution of needs and
reasoning according to the participants involved. The remaining tables show
distributions for individual participants, indicating problem situations.

1. Needs and proving in different problem sitvations

Proving Reason- Inductive Referring
Unform-  Form- Mech. ingby reasoning toan
ulated ulated  Deduction analogy authority
Explaining F A
to self
Explaining [ A, F A N,O AO
to others
Exploring A A A A A, F, G,
toa goal N, O
Exploring A F A AF AFG
without
goal
Verifving A A A, F, G, A0
......... N, O
Teacher- A, N
game

Table 6: Distribution of needs and reasoning according tc problem situations.

Kev to problems:

A: Arithmagon

F: Fibonacct

G: GEOworld

N: Patterns in #3-n

O Sum rule, Odd+0Odd=Even
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2. Needs and proving by different participants

Proving Reason- Inductive Referring
Unform-  Form- Mech. ingby reasoning  toan
ulated ulated  Deduction  analogy authority
Explaining K E.K,R
1o seif
Explaining | Be, Bi A, Be, Be, Bi,
to others Bi, Co, St, W
E, Jo,R
Explonng Sa E,Sa Co,E K, w A, Be,
toa goal St, R Bi, Co,
E, Jo, K,
R, St, W
Exploring St R Ja, Ch A, Be,
without Bi, Co,
goal E, Jo, K,
R, St, W
Venfying Bi Co A, Be, A, Bi
Bi, Co,
E. K, R,
St, W
Teacher- Co, K, R
game

Table 7: Distribution of needs and proving according to participants involved.

Keyv to participants:

A
Be:
Bi:
Ch:
Ca:
E
Ja:
Jon
R:
Sa:
St:

Anton
Ben
Bili

(Math 30 student, worked with Colin)
(undergraduate student, worked with Wayne)
(Math 13 student, worked with John)

Chris (undergraduate student, worked with Jane)
Colin  (Math 30 student, worked with Anton)
Eleanor (Undergraduate student, worked with Rachel)
Jane  (undergraduate student, worked with Chris)
John (Math 13 student, worked with Bill)

Rachel (undergraduate student, worked with Eleanor)
Sandy (grade 6 student, informal interview)

Stacey (undergraduate student, worked with Kerry)
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3. Needs and proving for individual participants

In the following tables letter codes for the problem situations in which the
reasoning took place are used. The key for Table 6 should be consulted. An “X”
indicates that such reasoning occurred several times, but that no specific example is
present in Chapter I1. In all other cases a description of the episode in question can
be found in the appropriate section of Chapter 11 or, in the case of Stacey and

Kerry, in Chapter III.

Explaining
to self

Proving

Unform-
ulated

First clinical study

Form-
ulated

Mech.
Deduction

Reason-

ing by
analogy

Inductive Referring
reasoning  toan
authornty

Explaining
to others

A

A

A

Exploring
toa goal

Exploring
without
goal

Venfying

Teacher-
game

Wavne

Explaining
to self

Tabie 8: Needs and reasoning — Ben.

Proving

Unform-

ulated

Form-
ulated

Mech.
Deduction

Reason-

ing by
analogy

Inductive Referring
reasoning  toan
authority

Explaining
to others

A

Exploring
to a goal

A X

Exploring
without
goal

Veriiying

Teacher-
game

Table 9: Needs and reasoning — Wayne.
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Stacey

Explaining
to self

Proving
Unform-
ulated

Reason-
ing by
analogy

Inductive Referring
reasoning  toan
authonty

Farm-
ulated

Mech.
Deduction

Explaming
to others

A

Explonng

Explorng
without
goal

Venfving

Teacher-
game

Kerry

Table 10: Needs and reasoning — Stacey.

Proving
Unformn-
ulated

Reason-
ing by
analogy

Inductive Referring
reasoning  toan
authonty

Form-
wiated

Mech,
Deduction

Explaining
...... 1o self

F A

Explaining
to others

Exploring |

without
goal

Ver@_[_ ying

Teacher-
game

Table 11: Needs and reasoning — Kerry.
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Eleanor

Proving Reason- Inductive Referring
Unform-  Form- Mech. ingby reasoning  toan
wlated ulated  Deduction analogy authority
Explaining A
to self
Explaining A
to others
Explornng A A X
to a goal
Exploring X
without
goal
VENUNING | oo %
Teacher-
game

Table 12: Needs and reasoning — Eleanor.

Rachel

Proving Reason- Inductive Referring
Unform-  Form- Mech. ingby  reasoning toan
ulated ulated  Deduction analogy authority
Explaining A
to self
Bl \ SN
vae to Others L L L b b b b e e e e L R B PR N b b8 bt b e m e m g P g PN T BN NP A F s PR T E RN RSN SBE D4 b b4 BBEDASbabbhnbbanikbinnnanrgnaren
“"Exploning AT X
to a goal

Exploring e
without
goal

Teache]-_ A .........................
game

Table 13: Needs and reasoning — Rachel.
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Jane

Proving Reason- Inductive Referring
Unform-  Form- Mech. ingby reasoning toan
ulated ulated  Deduction  analogy authority

Explaining
to seif
Explaining
1o others
Explorning A X
to a goal

Exploring X
without
goal

Verifving X

Teacher-
game

Table 14: Needs and reasoning — Jane.
Chris

Proving Reason- Inductive Referring
Unform-  Form- Mech. ingby reasoning  toan
ulated ulated  Deduction  analogy authority

Explaining
to self

o2
to others

Exploring
10 a goal

Exploning Xmmmmmmm———em——
without
goal

Verifying

Teacher-
game

Table 15: Needs and reasoning — Chris.
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o
=

=
=

Explaining
to self

Proving
Unform-
ulated

North School study

Form-
ilated

Mech.
Deduction

Reason-

ing by
analogy

Inductive
reasoning

Referring
to an
authority

Explaining
tc others

O

@)

Explonng
to a goal

Explonng
without
goal

Verifying

Teacher-
game

John

Explaining
to self

Table 16: Needs and reasoning — Bill.

Proving
Unform-
ulated

Form-
ulated

Mech,
Deduction

Reason-
ing by
analogy

Inductive Referring

reasoning

to an
authority

Explaining
1o others

Exploring
toa goal

Exploring
without
goal

Veniving

Teacher-

game

Table 17: Needs and reasoning -— John.
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Colin

Explaining
to self

Proving
Unform-  Form-
ulated

ulated  Deduction analogy

Reason- Inductive Referring
Mech. ingby reasoning  toan
authority

Explaiming
to others

A, N

Explornng
o a goal

Exploring
without
goal

Verifying

Teacher-
game

Anfon

Explaining
........ to self

N

Table 18: Needs and reasoning — Colin.

Proving
Unform-  Form-
ulated ulated

Deduction  analogy

Reason- Inductive Referring
Mech. ingby reasoning toan
authority

Explaining
to others

N

“"Exploring
to a goal

Exploring
without
goal

Verifying

Teacher-
game

Table 19: Needs and reasoning - Anton,
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Explaining
to self

Sandy

Proving Reason- Inductive Referring
Unform-  Form- Mech. ingby reasoning toan
ulated ulated  Deduction analogy authority

Explaining
to others

Explonng
to a goal

Exploring
without
goal

Verifying

Teacher-
game

Table 20: Needs and reasoning — Sandy.
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APPENDIX E

METHODS OF SOLUTION

While the methods the participants used to solve the initial puzzles and the
generalizations they made in the problem situations were not objects of my studies,
they are of sufficient interest to warrant their inclusion here. They may serve to
provide those readers who have not had time to investigate the problem situations
themselves an opportunity to see the openness and possibility of the problems.

1. Arithmagon

The numbars on the sides of this triangle are the sums of the
numbers =" the corners. Find the secret numbers.

27

Figure 35: The Arithmagon prompt.

Most of the participants were given a problem prompt containing nothing
but the initial puzzle shown in Figure 35 and the cryptic instruction to “Generalize
the problem and its solution.” In the following sections I will describe, in tumn,
specific solutions to the puzzle, general solutions, and general problems.

Specific solutions to the puzzle

I have seen three solutions to the puzzle which I do not consider to be
general solutions, for various reasons. The constraints method involves an
assumption which is not generally true, so that while it does solve the given puzzle,
it cannot solve all puzzles. Using a system of equations is quite general, in fact too
general, and it tells us nothing about the Arithmagon itself. If it is solved for the
general case with three variables on the sides, I consider the resulting formula to be
a general solution to the Arithmagon. If every Arithmagon requires solving a new
system, however, that is not general enough for me. The method of false position
is quite general, but the one person I have seen come up with it did not see it that
way, s0 [ include it here as a specific method.

The constraints method

This method was used by about half the participants. It is based on an
assumption that the secret numbers are whole numbers, which they are in the case
of the initial puzzle, so they can be found this way. The method is an intelligent
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guess and check. Ben described this method to Rachel, Eleanor, and Wayne as the
way he had solved the puzzle (see Chapter I1, section 1).

The assumption that the secret numbers are whole nurnbers means they
cannot be less than 1. How large they can be depends on the numbers on the sides.
The secret number at the top can be at most 10, because it must add to another
number, which we know is at least 1, to give 11. Similar reasoning gives
maximum values for all the secret numbers. It is now a simple matter of trying all
the values in the allowed range of one secret number until we find the right one. If
we start with the value 1 for the top number (which most participants did) we
quickly find that the secret numbers are 1, 17, 10.

Systems of equations

If we label the diagram as shown in Figure 36 we can express the
relationships between the secret numbers A, B, C, and the number on the sides in
these three equations:

() A+B=18
(2) B+C=27
3) C+A=11

Figure 36: Labeling the Arithmagon for a system of equations.
Subtracting equation (1) from equation (2) vields:  (4) C-A=9
Adding equation (4) to equation (3) yields: (5) 20=20
Dividing by 2 yields: C=10. The remaining values can be found by

substituting 10 into the equations wherever C occurs, or by writing in 10 on the
diagram and working around the triangle. subtracting to find the unknown
numbers.

The method of false position

One solution which none of the participants used, but which I have seen in
another context, is similar to a historical technique for solving equations known as
the method of false position. Begin with a corner, say the top, and pick a number,
say 5. If the top were 5 then the lower left would be 6, and the lower right would
be 13. The sum of these is only 19, so they are too small. That means our original
guess was too big. We might simply try reducing it by some amount at random,
and we would quickly zero in on the right value. However, we can be a little bit
more clever. Our sum for the base was wrong by 8. Changing the top number
makes changes in each of the bottom corners equally, so it makes sense that an
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answer which is too low by 8 means that each of the bottom corners is too low by
4. So the lower left is 6+4 = 10 and the lower right is 13+4 =17.

General solutions

The usual f orfﬁula

As I noted above, solving the Arithmagon using a system of equations with
variables in place of the known side numbers yields a general formula, A = -‘ié:'l
where x is the side opposite the secret number A. Expressed verbally, it is “Add
the two adjacent sides and subtract the opposite one.” This formula was also
discovered inductively by some participants, and by proving in the case of Sandy
(see Chapter I1, section 2).

Stacey and Kerrv’s method

This method is quite unusual, and based on the extended explorations
undertaken by Kerry and Stacey. Itis described in Chapter 1. I will repeat the
gist of it here.

Begin by drawing another triangle around the original triangle (see Figure
37). Add the known numbers and divide by 4 (in this case we get 56+4=14).
Subtract this number from each of the known sides, and write the values you get on
the corners of the new, larger, triangle (see Figure 37).

-3 4

27-14=13
Figure 37: Stacey and Kerry’ general solution.

Adding these values in pairs, (e.g., 13+4 =17) gives the side numbers for
the larger triangle, which are the secret corner numbers for the original triangle. It
really works! If you will not take my word for it (verifying by authority) try ita
few times (verifying inductively) or see the proof in Chapter III (verifying by
proving).



Colin and Anton’s method

Colin and Anton noticed that the difference of two comer numbers is the
same as the difference of the numbers on the two sides they do not have in
common. (see Figure 38). They discovered this relationship inductively and later
explained it deductively (See Chapter II, section 1). Once this relationship is
known it establishes enough information to quickly find an answer. For example,
in the original triangle, it tells us the difference of the secret numbers on the base is
18-11 =7 (Notice that the equation C — A =9 which came up in the solution using
system of equations expresses the same relationship for two other secret numbers).
We know their sum is 27 and their difference is 7. Anton would usually find the
numbers quickly by guess and check at this point, but on one occasion Colin
suggested subtracting the difference from the sum to find twice one of the numbers,
and then dividing by 2. They had a great deal of difficulty formulating this method,

y = (2 - x)
’) 3

but had they succeeded it would have produced a formula like A =
which is similar to the “usuval” formula, though it reveals its much different origins.

A-C=2-x

C

Figure 38: Colin and Anton’s difference relation.

Eleanor’s method

Working with Ben and Wayne, Eleanor notice two important relationships
between the numbers in the Arithmagon. They are: a+z = b+y = c+x and
a+b+c = 2(x+y+z) (see Figure 39).

X

/

Z c y

Figure 39: Labeling of triangle for the basic relations in Eleanor’s method.

Using this relation she developed a general method for solving the
Arithmagon. Her method begins by adding up the known numbers, and dividing
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by 2 (yielding 27 in the original puzzle). She then writes this in the center of the
triangle (see Figure 40). Subtracting each of the known sides from this number
yields the secret number on the corner across from it.

11 18

27
Figure 40: Eleanor’s “middle” number.

General problems

The Anithmagon problem can be generalized in several ways.
Generalizations of the problem did not occur spontaneously to any of the
participants. The idea of Arithmagon squares was suggested to several groups (and
included in the prompt used at North School), and some investigations of
Arithmagon squares did occur. Stacey and Kerry were the only participants to look
at Arithmagons of more than four sides.

Other than generalizing the number of sides of the Arithmagon, one can also
generalize to higher dimensions, and investigate Arithmagon polyhedra
(Arithmahedra?), or, in the abstract, figures of 4 or more dimensions. Or one could
look at the effect of using the product or difference of the two secret numbers to
produce the numbers on the sides.

2. Fibonacci

The Fibonacci sequence begins:
1, 1,2, ..

and continues according to the rule that each term is the sum of the
previous {wo (e.g., 14+1=2).

The Fibonacci sequence has many interesting properties.

Can you find an interesting property of every third Fibonacci
number?

Can you find other interesting propertics?

Figure 41: The Fibonacci prompt.

The investigation of the Fibonacci sequence usually turned into a property
hunt. All this hunting did result in the discovery of some interesting properties. In
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addition some participants generalized the sequence by loosening some of the
requirements of its definition.

Properties of everv nit Fibonacci number

Most groups noticed that every third Fibonacci number is even, but in many
cases this was not considered interesting enough to be a property. In general every
n'd Fibonacci number is a multiple of F,,, so Fs,, is even because F3 is 2. Some
participants, after noting the evenness property went on to notice the relation
F3"1 = 4F3”; 3+ F3n1 6. For examp]e F9=34, F6=8, and F3=2, and

34 = 4 x 8+ 2. Similar relations hold for Fg,,, Fs,,, etc. with the multiplier ‘4’
being replaced by increasing terms of the Lucas sequence, 4, 7, 11, 18, ...

Several groups noticed that Fibonacci numbers with prime indexes (F, where p is
prime) are also prime. No group noticed that this property fails for Fyo.

Generalizations of the Fibonacci sequence

Stacey and Kerry were the most enthusiastic generalizers of the Fibonacci
sequence, but others also explored some of the possibilities. The sequence can be
generalized by changing the initial values, changing the range the sequence is
defined on, or changing the rule. No one tried changing the rule, perhaps because
itis the most unusual aspect of the sequence. Stacey and Kerry examined the
sequence without constraining the values to positive integers. They developed the
integer sequence ... -8, 5,-3,2,-1,1,0,1,1,2,3,5, 8, ... They, along with
other groups, also explored sequences beginning with values other than i, 1.
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