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Abstract

With the increase in the number of deep learning networks, many excellent

methods have been proposed for video segmentation tasks. However, most of

the these methods are for learning pattern information. Not as much work

has been done in the area of distribution information, which is also useful

for video segmentation. Therefore, this work focuses on learning statistical

distributions via neural networks for video segmentation tasks including back-

ground subtraction, vessel segmentation and crack detection. In this thesis,

we discuss four proposed methods in order to identify an effective way to learn

statistical distributions. First, we propose a dynamic deep pixel distribution

learning (D-DPDL) method for background subtraction. In D-DPDL, a ran-

dom permutation of temporal pixels feature is used to force the network to

learn the statistical distributions. Compared with previous background sub-

traction methods based on deep learning networks, the D-DPDL model only

requires limited ground-truth frames for training, and it is effective even when

training videos and testing videos are captured from different scenes. Then, we

improve the D-DPDL method and apply it to vessel segmentation and crack

detection, and we found that a wide rather than deep network works better.

Finally, we proposed an arithmetic distribution neural network (ADNNet),

which is based on arithmetic distribution layers, for learning distributions.

The arithmetic distribution layers is the first work to propose network layers

based on arithmetic distribution operations, which perform even better than

convolutional layers in distribution classification.
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Preface

The majority of this thesis has been published in peer-reviewed journals or

conferences. The contents of Chapter 3 include the article “Dynamic deep

pixel distribution learning for background subtraction,” which was published in

the IEEE Transactions on Circuits and Systems for Video Technology (2019).

Chapter 4 incorporates the papers “Pixel Distribution Learning for Vessel

Segmentation under Multiple Scales” and “Multi-scale deep pixel distribution

learning for concrete crack detection,” which were published in IEEE Engineer-

ing in Medicine and Biology Conference (2021) and International Conference

on Pattern Recognition (2021), respectively. Finally, Chapter 5 includes our

work in “Universal Background Subtraction based on Arithmetic Distribu-

tion Neural Network” which has been published by the IEEE Transactions on

Image Processing (2022).
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Chapter 1

Introduction

1.1 Motivation and Statement

Video segmentation has been increasingly attracting attention from researchers

in computer vision during this period of explosive growth in video streaming.

Especially with the increasing application of deep learning networks, the pat-

tern information implied in videos is being more effectively extracted and a lot

of excellent algorithms have been proposed for video segmentation. However,

in contrast to the methods for learning pattern information, the methods for

learning statistical distributions do not seem to have been as well investigated

in the literature. Statistical distribution is supposed to have great potential for

applications in academia and industry. Based on this insight, a few interesting

questions have been presented: Is it possible to propose new techniques to

effectively and automatically learn the statistical distributions and are these

new techniques better than traditional deep learning networks in applications

related to distribution analysis? The proposed methods [138], [151], [153],

[154] discussed in this thesis are designed to provide answers, which should

prove useful in distribution analysis.

Distribution analysis is arguably one of the oldest techniques used in com-

puter vision applications. Tremendous distribution information is implied in

videos, which is very useful for a lot of vision applications. For example,

the distribution of temporal pixels can be approximated by several Gaussian

functions, which can be used to model the background of video frames. The

Gaussian mixing model [159] is thus proposed to use distribution information
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to model the background, which underlies one of the most popular techniques

for background subtraction. Unfortunately, despite a comprehensive literature

review, we have not found an effective distribution learning technique for video

segmentation tasks. Therefore, in this thesis, we focused on learning statistical

distributions and applying them to video segmentation applications. In order

to automatically and effectively learn the statistical information, it was reason-

able to incorporate convolutional neural networks, which have demonstrated

excellent learning ability. However, to the best of our knowledge, the con-

ventional convolutional neural network is not a perfect candidate for learning

statistical distributions since the computational operations are mainly based

on matrix operations, in which all involved entries are considered as feature

vectors rather than as statistical distributions. For that reason, the main

focus of this thesis is how to propose a network for learning statistical distri-

butions. We proposed several methods to fill the gap that use new types of

networks to learn statistical distributions. In particular, the arithmetic dis-

tribution neural network discussed in Chapter 5 was specifically devised for

learning distributions automatically. In the background subtraction task, the

arithmetic distribution neural network performed better than the traditional

convolutional neural network.

In total, four of our proposed methods are discussed in this thesis. All are

related to learning statistical distributions in video segmentation tasks. Two

are proposed for solving the moving objects segmentation problem. One each

is applied to vessel segmentation and crack detection. All are proposed for one

purpose ot learn statistical distributions for video segmentation. They play

different roles in the development of the arithmetic distribution neural net-

work, which is ultimately the method of our choice for distribution learning in

this thesis. The dynamic deep pixel distribution learning (D-DPDL) model is

first discussed in Chapter 3, in which we attempt to use a convolutional neural

network for learning statistical distributions. In the D-DPDL model, the tem-

poral pixels are randomly permutated and input into a convolutional neural

network. This forces the network to focus on learning statistical distributions

since only statistical information is retained in the input after random permu-
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tation. Then, our pixel distribution learning technique is further refined and

applied into into vessel segmentation and crack detection, which is introduced

in Chapter 4. We devised a wide rather than a deep network for learning sta-

tistical distributions, and used a multiple scales strategy to improve accuracy.

Finally, in order to figure out why random permutation works for distribu-

tion learning, we proposed the arithmetic distribution neural network, which

is discussed in Chapter 5. The arithmetic distribution operations are used for

the forward pass and back propagation. To the best of our knowledge, this is

the first method to propose network layers based on arithmetic distribution

operations for learning distributions during background subtraction.

1.2 Scope and Significance

This thesis focused on learning statistical distributions for video segmenta-

tion applications. However, since distribution analysis has a wide range of

applications, we had to select a particular application evaluating the methods

that we proposed. We used moving objects segmentation, also known as back-

ground subtraction, as the application of starting point. We did so because the

moving objects segmentation problem can be considered as a binary classifica-

tion of temporal pixels in which many methods were proposed to analyze the

statistical distribution. In Chapter 3, we propose a D-DPDL learning model

for background subtraction, which is the fundamental problem of computer

vision. We further applied this model to vessel segmentation and crack detec-

tion, which we introduce in Chapter 4. A new type of network, the arithmetic

distribution neural network, is proposed in Chapter 5 for background subtrac-

tion again, in order to compare it with the D-DPDL model and the traditional

convolutional neural network.

1.3 Challenges

There are two primary challenges in this thesis. The first has to do with the

involved video segmentation applications containing background subtraction,

vessel segmentation and crack detection. Background subtraction is a funda-
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mental problem in computer vision caused by the diversity and complexity of

natural scenes. Vessel segmentation applications require the proposed methods

can be trained with limited groundtruth frames. Crack detection algorithms

have to deal with noisy points since crack images often included stains.

The second challenge comes mainly from the mathematical theory involved

in the arithmetic distribution neural network, which is based on arithmetic

distribution operations rather than matrix operations. The arithmetic distri-

bution operations are used to compute the distribution of the arithmetic of

two random variables with their particular distributions. It involves probabil-

ity calculus under an infinite domain, which is quite challenging to a student

like me, whose background is not in math.

1.4 Contribution

In order to figure out how to most effectively learn statistical distributions

from video segmentation tasks, four works are proposed in this thesis, which

are discussed in three different sections.

1. Dynamic Deep Pixel Distribution Learning for Background Subtrac-

tion: We propose a novel moving objects segmentation algorithm, named

Dynamic Deep Pixel Distribution Learning (D-DPDL). The enties of

patches, which is used the input of networks, are randomly permu-

tated to force the network focus on statistical distributions. This work

strongly suggests that networks can be used to learn statistical distri-

bution. Among its strengths are that it only requires a limited ground-

truth frames for training, and the training videos and testing videos can

be different, unlike state-of-the-art methods that are based on traditional

convolutional neural networks.

2. Pixel Distribution Learning for vessel segmentation and crack detection:

When we saw how useful the D-DPDL method was for learning distri-

butions in moving-objects segmentation, we further applied it to vessel

segmentation and crack detection. This showed that our distribution

4



learning technique can be used for more than moving objects segmenta-

tion. In particular, we found that a wider rather than deeper network

is more suitable for learning statistical distributions. To improve the

accuracy, we captured features from multiple scales and input them into

the network for learning distributions.

3. Universal Background Subtraction based on Arithmetic Distribution Neu-

ral Network: Although the distribution learning technique used in D-

DPDL has demonstrated an ability for learning distribution information,

it is still not clear how exactly the random permutation works for learn-

ing distribution. Therefore, we further propose a universal background

subtraction framework based on the Arithmetic Distribution Neural Net-

work (ADNN) for learning the distributions of temporal pixels. In our

ADNN model, we used the arithmetic distribution operations to intro-

duce the arithmetic distribution layers, including the product and sum

distribution layers. Compared with the convolution layer, the arithmetic

distribution layers worked better in distribution classification tasks with

far fewer parameters. In short, the proposed ADNN performed better

than the traditional convolutional neural network, and a comprehensive

experiment was proposed for validation.

1.5 Organization of the thesis

The rest of the thesis is organized as follows: In Chapter 2, we cover existing

research and related works in background subtraction, vessel segmentation

and crack detection related to distribution analysis. In Chapter 3, we detail

the D-DPDL method for background subtraction. In Chapter 4, we further

apply the pixel distribution learning technique to vessel segmentation and

crack detection. In Chapter 5, we introduce our optimal solution for learning

distribution in videos: the ADNN. Chapter 6 contains the conclusion and the

discussion of future work.
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Chapter 2

Background and Related Work

In this chapter, we first briefly discussed the correlation between background

subtraction methods and distribution learning technique in Section 2.1. A

detailed review of existing background subtraction methods is proposed in

Section 2.2. Next the methods related to vessel segmentation and crack de-

tection are covered in Section 2.3. Finally, we further discussed the methods

of background subtraction related to distribution learning in Section 2.4.

2.1 Distribution Learning and Moving Objects

Segmentation

Statistical information includes several features including histograms, prob-

ability, and distributions. Because they provide a good representation of

the background scene, the statistical distributions play an important role [2],

[20], [22], [24], [36], [44], [50]–[52], [79], [80], [91], [103], [121], [129], [145],

[159] throughout the development of moving objects segmentation algorithms.

Many research papers have utilized statistical distribution models to find the

background using temporal pixels. For example, the Gaussian mixture model

proposed by Zivkovic et al. [159] is one of the most popular techniques. Lee

et al. [79] utilized an adaptive learning rate for each Gaussian function to

improve the convergence rate during clustering, and Haines et al. [50] [51]

used the Dirichlet processes with Gaussian mixture models to analyze pixel

distributions. Recently, Chen et al. [20] [22] used Gaussian mixture models

to represent the vertices of spanning trees and Akilan et al. [2] proposed a
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foreground validation process through probability estimation of multivariate

Gaussian model distribution. In addition to the Gaussian distribution, there

are several other techniques to describe temporal pixels, such as Laplacian

distribution [24], kernel density estimation [103] and artificial neural networks

[44].

Unfortunately, artificial models do not have the ability to handle the com-

plex distributions generated from diverse natural scenes which is the reason

that learning-based algorithms [41], such as convolutional neural networks, are

growing in popularity. However, most existing distribution learning algorithms

are related to label distribution learning [41], [45], [59], [60], [64], [69]. They

handle insufficient training data based on label ambiguity. In contrast, we

intend to learn the statistical distribution by using deep learning networks.

Then, these learned distributions will be used for video segmentation.

2.2 Background Subtraction

Traditionally background subtraction is done by modeling the variation of

pixel observations over time (e.g. [6], [8], [18], [23], [50], [68], [71], [79], [82],

[83], [90], [100], [111], [128], [129], [133], [143], [159]). Among them, one of the

most popular techniques for background subtraction [48] is the Gaussian mix-

ture model (GMM) [159], where pixel distribution is approximated by several

Gaussian functions. Numerous extensions of GMM have been proposed. For

example, Varadarajan et al. [129] approximate the distribution from regions

instead of pixels for background subtraction, where the neighboring relation-

ships between pixels are also considered. Similarly, Sriram et al. [121] extend

approximation through the use of expectation maximization. Moreover, sev-

eral sophisticated algorithms utilize the kernel density estimation (e.g. [36],

[52], [80], [91], [103]) instead of Gaussians for approximation. Recently, Haines

et al. [50], [51] proposed the use of Dirichlet processes with Gaussian mixture

models to analyze pixel distribution, while Chen et al. [21], [22] used Gaussian

mixture models to represent the vertices of spanning trees.

Besides GMMs, there are also several other recent advances (e.g., [18], [19],
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[65], [70], [113], [145]) in background subtraction. Charles et al. [18] utilized

temporal binary features and color information for background subtraction.

Moreover, inspired by the traditional codebook algorithm [75], they also uti-

lized word dictionaries for background subtraction [19]. Zeng et al. [145] pro-

posed the use of a histogram based on strong uniform fuzzy partitions, where

the threshold for background segmentation is set adaptively according to the

shape of the histogram. Sajid et al. [113] proposed a universal multi-modal sys-

tem that merged pixels together to form what the authors called mega-pixels.

Javed et al. [67] proposed a robust principal component analysis framework,

which incorporates spatial and temporal sparse subspaces. Finally, Huynh et

al. [65] subtracted the moving objects from a dynamic background by analyz-

ing the motion of pixels captured from the comparison between current and

background frames, while Jiang et al. [70] utilized a weighted-sample method

to rapidly adapt to changing scenarios, and Yong et al. [143] proposed online

matrix factorization for background subtraction.

However, these hand-crafted models do not work effectively when applied

to a wide range of scene categories. For example, GMM-based algorithms

suffer from performance degradation in scenes with high complexity [67], where

the distributions of pixels are too complex to be described even by several

Gaussian components. It inspired us that a new distribution learning technique

maybe needed, and in this thesis we mainly focus on how to automatically and

effectively learn the distribution information from videos.

2.2.1 Algorithms based on Supervised Machine Learn-
ing

Besides traditional algorithms, there are also several background subtraction

methods [25], [28], [32], [49], [53], [88], [96], [97], [148], [149], [158] that uti-

lize machine learning, commonly involving support vector machines (SVM)

and Bayesian methods. Lin et al. [88] proposed using a probabilistic SVM for

background initialization, Cheng et al. [25] accommodated spatial interactions

by minimizing a risk function generalization of the one class SVM, and Han et

al. [53] utilized density-based features as the input to an SVM classifier. Zhang
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et al. [148], [149] proposed an imbalance compensation mechanism based on

bilayer modeling and Bayesian classification. Culibrk et al. [28] constructed

an unsupervised Bayesian classifier for background modeling and subtraction

using a neural network architecture. The novel subspace learning method,

proposed by Zhou et al. [158], extracted a sequence of regular video bricks.

Then, it posed the background modeling problem as pursuing a subspace rep-

resentation for video bricks while adapting to scene variations.

In addition to the above, there are also related works employing neural net-

works for background subtraction. Gregorio et al. [49] proposed a weightless

neural network for dynamically adapting to background change, while Mad-

dalena et al. [96], [97] proposed having background models be automatically

generated through a self-organizing network, which appears to work well in

several scenes containing gradual illumination variation and camouflage.

2.2.2 Algorithms based on Deep Learning

As we all know, deep learning has become popular in diverse applications of

computer vision, such as image classification [57], [58], [110], image segmen-

tation [5], video captioning [146] and so on. Since background subtraction

can be considered as a pixel-wise classification, or image segmentation based

on spatial information, it is not surprising that recent background subtrac-

tion methods [4], [10], [11], [18], [33], [84], [86], [136], [144] have embraced

deep learning. Wang et al. [136] considered background subtraction as scene

segmentation, and proposed a fully connected network with cross-entropy loss

function to learn the background scenes directly. Similarly, Zeng et al. [144]

proposed the multi-scale strategy to generate better results and Lim et al. [86]

extracted multi-scale features of background scenes in the middle layers of a

network. In addition, Braham et al. [11] employed deep networks to evalu-

ate the difference between current frames and a background image, the latter

being computed as the temporal median across multiple frames.

In addition, a more robust background model algorithm was proposed by

Babaee et al. [4] for background subtraction, with a network used for sub-

tracting the background from the current image. Liang et al. [84] proposed a
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guided learning strategy to avoid manual labeling, in which the network is ini-

tiated with the foreground mask generated by the SubSENSE algorithm [18].

Zeng et al. [33] combined several background subtraction methods with the

convolutional neural network. Although some of these excellent advances have

achieved almost perfect results in standard datasets, many frames are needed

in the training phase to achieve accurate segmentation of moving objects. How-

ever, since every pixel of a frame needs a label of foreground or background

in background subtraction, the ground-truth masks of background subtraction

are expensive, which limits the applications of these excellent methods.

Therefore, the proposed dynamic deep pixel distribution learning (D-DPDL)

method, which is the first work discussed in this thesis, departs from the con-

ventional approach of creating an explicit representation of the background

scene. Instead, it focus on the more fundamental concept underlying back-

ground subtraction, which is the classification of pixels in a time sequence

[6], based on network-learned discriminative features that act directly on the

distribution of pixels over time. Compared to existing methods based on deep

learning networks, there are two excellent properties of in the proposed D-

DPDL model. First, since a large quantity of distribution information can

be generated with a limited number of ground-truth frames, the ground-truth

data assumed by the proposed approach is much less than previous approaches.

Moreover, the proposed D-DPDL model is effective when training videos and

testing videos are from different sources, since distributions of temporal pix-

els have a considerable independence from scenes. As such, the distribution

depends on a pixel itself even under the influence of interactions between

neighbouring pixels.

2.3 Vessel Segmentation and Crack Detection

Since the proposed dynamic deep pixel distribution learning (D-DPDL) model

have demonstrated a few excellent properties in background subtraction, we

thus further applied it into vessel segmentation and crack detection applica-

tions.

10



2.3.1 Vessel Segmentation

Medical image processing is an important topic in computer vision [62], [92]. In

particular, the segmentation of blood vessels is a challenging problem because

of the extreme variations in the morphology of the vessels against the noisy

background [35], [74], [116], [118]. Plenty of approaches have been developed

into this topic, which includes many works based on the deep learning network.

However, for brevity, only a few typical methods related to convolutional neural

networks and distribution analysis are discussed here.

For vessel segmentation, several approaches based on the analysis of dis-

tributions have been proposed. For example, Hassouna et al. [55] utilized the

stochastic modeling to segment cerebrovascular structure from time of flight

magnetic resonance angiography. In this approach the histogram of pixel inten-

sities is classified as the vessel or the background. Specifically, the Background

class is approximated by the combination of two Gaussian and one Rayleigh

distributions, while the Vessel class is approximated by one Gaussian function.

Besides this work, Evgin et al. [47] used k-means for rough liver vessel segmen-

tation. They used further iterative refinement steps based on morphological

operations to refine the segmentation result. In addition, Oliveira et al. [105]

segmented liver vessels in CT images utilizing region-growing. A pixel was in-

corporated within a region if its intensity fell within a predefined range, which

was defined by approximating the image histogram with a Gaussian Mixture

Model (GMM) [37]. However, due to the complexity and diversity of different

vessel structures, the Gaussian distribution may not be strong enough to han-

dle all these cases. In contrast, we focus on how to make the network learn

the distribution information automatically.

In addition, there are also several other methods related to deep learning

networks. For example, Dasgupta et al. [29] formulated the segmentation task

as a multi-label inference problem, which combined a convolutional neural net-

work with structured prediction. The network architecture was devised as a

fully convolutional network to segment the retinal blood vessels from fundus

images. In addition, Fu et al. [40] formulated the vessel segmentation prob-
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lem as a boundary detection task. In particular, a multi-scale and multi-level

convolutional neural network was utilized to learn a rich hierarchical repre-

sentation, and the conditional random field was used to model the long-range

interactions between pixels. Similarly, Luo et al. [95] combined the prediction

ability of CNNs and the segmentation ability of CRFs. In their approach an

end-to-end deep learning model was trained for retinal images with the ability

to segment one image during one network forward computation. Moreover,

Vega et al. [132] utilized a Lattice neural network with Dendritic processing,

which does not require parameters and can automatically construct its struc-

ture. Related to this, Wang et al. [134] combined two superior classifiers:

Convolutional Neural Networks (CNN) and Random Forests (RF). Where the

CNN performs as a trainable hierarchical feature extractor [140] and ensemble

RFs work as a trainable classifier. By contrast, we formulate the vessel seg-

mentation as a spatial distribution classification problem. Then the deep pixel

distribution learning (DPDL) model is revised to learn the spatial distribution

for vessel segmentation.

2.3.2 Crack Detection

Recently, since a large number of roads, buildings of last century have reached

their intended lifetime, crack detection becomes an interesting research topic

in computer vision. Essentially, crack detection is a classification problem.

Therefore, several different features have been used for crack detection, such

as Gabor filters [17], wavelet features [157], Histogram of Oriented Gradient

(HOG) [73], and Local Binary Pattern (LBP) [61]. These features are exracted

from crack images and used as the input of the following classifier consisting

of handle-crack model or machine learning methods. Moreover, Wrong et al.

[31] proposed to use edge detection techniques in the frequency domain with

the utilization of Sobel or gradient based operators used for identifying cracks

on walls of buildings. In addition, Zou et al. [160] utilized the local patterns

together under a global view, which have considered the photometric and

geometric characteristics of the crack images, in order to reduce the noising

points in the output and make the detected crack more continuous.
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Recently, several works have tried to use deep learning networks [93], [106],

[117], [139] for crack detection. For example, Young-Jin et al. [16] proposed

to utilize convolutional neural networks for crack detection, which requires a

large labelled training images. Xie et al. [139] proposed a bottom-up architec-

ture for hierarchical feature extraction, and then applied several side networks

combining VGGNet [117] and a fully convolutional network (FCN) [93] to de-

tect the edges. Moreover, Yang et al. [141] proposed the Feature Pyramid and

Hierarchical Boosting Network (FPHBN), which integrates a feature pyramid

module and a hierarchical boosting module into HED [139]. The feature pyra-

mid is added after the feature extraction step. It is designed to introduce

context information from higher-level to lower-level feature maps via a top-

down architecture. Fan et al. [38] incorporate an adaptive threshold strategy

into a deep convolutional neural network for crack segmentation.

However, these methods related to deep learning networks usually assumed

a large number of images for training, which is quite expensive in real appli-

cation. In order to handle it, we applied our pixels distribution learning tech-

nique for crack detection, which only requires a limited ground-truth frames

for training.

2.4 Distribution Learning and Background Sub-

traction

Unfortunately, it is still not clear what kind of distribution information is

learned by the proposed deep pixel distribution learning (DPDL) technique.

Therefore, in order to explain it, we further proposed the arithmetic distri-

bution neural network for background subtraction, which also theoretically

explain what has been learned by the DPDL model. Before that, we first

discussed existing background subtraction methods related to statistical dis-

tributions.
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2.4.1 Non-Deep-Learning Algorithms

As we mentioned above, throughout the development of background subtrac-

tion Algorithms [2], [6], [8], [9], [14], [18], [20], [22]–[24], [36], [42], [44], [50],

[51], [65], [67], [68], [70], [71], [75], [79], [80], [82], [83], [90], [91], [100], [103],

[111], [121], [123], [133], [143], [145], [150], [159], the distribution of temporal

pixels has played an important role since it is a good representation of back-

ground information. Lee et al. [79] utilized an adaptive learning rate for each

Gaussian function to improve the convergence rate during clustering. Haines

et al. [50] [51] used the Dirichlet processes with Gaussian mixture models

to analyze pixel distributions. Recently, Chen et al. [20] [22] used Gaussian

mixture models to represent the vertices of spanning trees and Akilan et al.

[2] proposed a foreground validation process through probability estimation

of multivariate Gaussian model distribution. Besides the Gaussian distribu-

tion, there are also several other techniques for the description of temporal

pixels, such as Laplacian distribution [24], kernel density estimation [103] and

artificial neural networks [44].

In addition, several excellent publications [14], [67], [68], [143] have con-

sidered the background as a low-rank component of video frames, given the

correlation between background scenes of frames over time. For example,

Javed et al. [67], [68] utilized robust principal component analysis [14] to

separate the background scenes based on the spatial and temporal subspaces.

Yong et al. [143] proposed online matrix factorization for background sub-

traction. Machine-learning techniques have also been utilized for background

subtraction [25], [28], [32], [49], [53], [88], [96], [97], [148], [149], [158]. Lin

et al. [88] classified the pixels using a probabilistic support vector machine.

Similarly, Han et al. [53] used density-based features into a classifier utilizing

a support vector machine. Li et al. [25] formulated background subtraction

as minimizing a constrained risk function and Culibrk et al. [28] proposed

an unsupervised Bayesian classifier using a neural network architecture for

background subtraction.
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2.4.2 Algorithms based on Deep Learning

Since convolutional neural networks have demonstrated an excellent ability to

learn scene information, several approaches [4], [10], [11], [18], [27], [30], [33],

[43], [46], [49], [54], [56], [63], [77], [84], [86], [98], [99], [101], [104], [108], [109],

[124]–[127], [135], [136], [142], [144], [151], [152], [156] have used deep learning

networks to learn the background scenes for subtraction. For example, Wang

et al. [136] proposed a fully connected network to learn the background scenes.

Zeng et al. [144] utilized a multi-scale strategy to improve the results. Sim-

ilarly, Lim et al. [86] used a triplet convolutional neural network to extract

multi-scale features from background scenes and Yang et al. [142] improved the

robustness of their method by using an end-to-end multi-scale Spatio-temporal

(MS-ST) method to extract deep features from scenes. Unfortunately, these

papers usually assume a large number of ground truth frames for training,

which is very expensive in background subtraction applications. In contrast,

Babaee et al. [4] proposed a robust model in which a network is used to sub-

tract the background from the current frame, using only 5% of the labeled

masks for training. Liang et al. [84] utilized the foreground mask generated

by the SubSENSE algorithm [18] rather than manual labeling for training, and

Zeng et al. [33] used a convolutional neural network to combine several back-

ground subtraction algorithms together. However, since these approaches rely

substantially on the scene information, their performance decline considerably

when an unseen video is tested for background subtraction. Recently, Mandal

et al. [99] incorporated temporal information by using a foreground saliency

reinforcement block, and proposed the 3DCD network for unseen videos. Sim-

ilarly, Tezcan et al. [126], [127] trained a U-net architecture to do subtractions

between background images and current frames, and Giraldo [46] solved an

optimization problem of graph signals for background subtraction, utilizing a

deep learning network for feature extractions. Such algorithms are effective in

unseen videos since they use temporal information; however, a large number

of ground-truth frames are still needed from other videos for training. In order

to handle it, we proposed the arithmetic distribution neural network (ADNN).
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The proposed ADNN requires less than 1% of the frames as ground-truth for

training, and it is also effective for unseen videos. In addition, given the gen-

erality of distribution information, one ADNN can be trained for all seen or

unseen videos and the parameters of networks are thus fixed for all testing

videos.
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Chapter 3

Dynamic Deep Pixel
Distribution Learning for
Background Subtraction
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Abstract

Previous approaches to background subtraction usually approximate the dis-

tribution of pixels with artificial models. In this chapter, we focus on automat-

ically learning the distribution, using a novel background subtraction model

named Dynamic Deep Pixel Distribution Learning (D-DPDL). In our D-DPDL

model, a distribution descriptor named Random Permutation of Temporal Pix-

els (RPoTP) is dynamically generated as the input to a convolutional neural

network for learning the statistical distribution, and a Bayesian refinement

model is tailored to handle the random noise introduced by the random per-

mutation. Because the temporal pixels are randomly permutated to guarantee

that only statistical information is retained in RPoTP features, the network

is forced to learn the pixel distribution. Moreover, since the noise is random,

the Bayesian theorem is naturally selected to propose an empirical model as

a compensation based on the similarity between pixels. Evaluations using

standard benchmark demonstrates the superiority of the proposed approach

compared with the state-of-the-art, including traditional methods as well as

deep learning methods.
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3.1 Introduction

Motion is a powerful cue for image and scene segmentation in the human vi-

sual system. The human ability to detect, segment and understand motion

is nearly instantaneous and works for diverse complex scenes. While there

has been considerable recent progress related to understanding motion, it still

appears that we are far from reaching human capabilities. Therefore, as an

essential and fundamental research topic related to motion in computer vision,

background subtraction has been attracting increasing attention. Especially,

with the utilization of deep learning networks, several researches have recently

achieved excellent performance. However, such sophisticated algorithms re-

lated to deep learning usually require hundreds of labelled frames for training,

which is too expensive to be acceptable in real applications, since every pixel

has to be labelled. Therefore, a general solution to background subtraction

remains a challenging problem given limited labelled frames.

Essentially, background subtraction is a classification of pixels in a sequence

of image frames, typically assuming a static camera, wherein every pixel of a

frame is classified as foreground or background by comparing its current mea-

surement with historical observations. This is a challenging problem when

dealing with diverse and complex scenes, since the pixel measurements take

the form of complex distributions. For example, as shown in R1, R2 and

R3 of Fig. 5.1, the distributions of the pixel observations in the moving ob-

jects, the static and the dynamic backgrounds are completely different, and

manually-tailored models have limited ability to cope with these contrasting

distributions. To handle this problem, we focus on learning the distribution

automatically instead of devising a sophisticated model. A deep learning net-

work is naturally selected to learn the distribution, given its excellent learning

ability. Then, a novel background subtraction model named Dynamically Deep

Pixel Distribution Learning (D-DPDL) that needs limited groundtruth frames

is proposed.

In our D-DPDL model, the distribution of pixels’ observations is described

by the Random Permutation of Temporal Pixels (RPoTP) feature, in which the
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Figure 3.1: An illustration of the deep pixel distribution learning model. The
RPoTP features encode the distributions of pixel observations that belong to
moving objects R1, static background R2 and dynamic background R3 respec-
tively. The RPoTP features from all pixels are then fed into a convolutional
neural network to learn a classifier for background subtraction.

pixel observations are randomly permutated to guarantee that only the statis-

tical information is retained. The RPoTP features are dynamically generated

as the input of the convolutional neural network (CNN) for every training

epoch. This indirectly forces the network to rely solely on the statistics of the

pixel intensity distribution. However, the utilization of random permutations

unavoidably introduces random noise, and a Bayesian refinement model based

on similarity between pixels is proposed to compensate for the random noise

and improve the accuracy of the proposed approach. Since each RPoTP fea-

ture only depends on a single pixel, a large number of features are obtained
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for training, even with limited groundtruth frames. Moreover, the proposed

approach is valid even under the condition that training frames and testing

frames are obtained from different scenes, because the distribution informa-

tion is a general feature regardless of the scene. The main contributions of

this work are:

1. We improve the procedure of distribution learning, in which the Ran-

dom Permutation of Temporal Pixels (RPoTP) features are dynamically

generated during the training to prevent the network from over fitting

the pattern implied in random permutations.

2. We propose a Bayesian refinement model to compensate for the ran-

dom noise generated from the utilization of random permutations in the

extraction of the RPoTP features for training the network. The accu-

racy of the proposed approach is improved after compensating with the

Bayesian refinement model, which is based on the assumption that sim-

ilar neighboring pixels share similar labels of foreground or background.

3. Comprehensive experiments are proposed for evaluating the proposed

approach, including a) the validation of the proposed approach under

the condition that training videos and testing videos are different, as

shown in Section 3.3.1, b) the effectiveness of the proposed Bayesian

refinement model and strategy of dynamical RPoTP feature generation

is shown in Section 3.3.2, c) a comprehensive comparison between the

proposed approach and state-of-the-art methods including traditional

and deep learning approaches is shown in Section 3.3.3.

3.2 Dynamic Deep Pixel Distribution Learn-

ing

The details of our Dynamic Deep Pixel Distribution Learning (D-DPDL)

model are explained in this section. As shown in Fig. 3.4, the proposed

approach is divided into two parts: “Pixel Distribution Learning,” in which
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Random Permutation of 
Temporal Pixels

Randomly
Permuted

Figure 3.2: The extraction of the Random Permutation of Temporal (RPoTP)
pixels feature in a particular pixel. The historical observations of pixels are
randomly permutated and reshaped into a rectangle. The RPoTP feature is
then captured from the difference between the pixels in the rectangle and the
current pixel.

Table 3.1: Details of our network architecture, which consists of 4 convolu-
tional layers, 3 batch normalization, 2 max pooling and a softmax operator.

Type Filters Layer size Data size
The RPoTP feature 25× 25× 3
Convolution 64 7× 7× 3 19× 19× 64
Batch Normalization 19× 19× 64
Max pooling 4× 4 16× 16× 64
Convolution 128 7× 7× 64 10× 10× 128
Batch Normalization 10× 10× 128
Max pooling 4× 4 7× 7× 128
Convolution 1024 7× 7× 128 1× 1× 1024
Batch Normalization 1× 1× 1024
Rectified linear unit 1× 1× 1024
Convolution 255 1× 1× 1024 1× 1× 255
Softmax

the RPoTP features are dynamically generated as the input of a convolutional

neural network for learning the distribution of pixels (Section 3.2.1), and the
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Figure 3.3: Illustration of the deep pixel distribution learning model. The
RPoTP features from all pixels are fed into the convolutional neural network
to learn a classifier for background subtraction.

“Bayesian Refinement Model,” which is proposed to compensate for the ran-

dom noise (Section 3.2.2).

3.2.1 Deep Pixel Distribution Learning

For the completeness, we first introduce our previous Deep Pixel Distribution

Learning (DPDL) [152] model. Then, the dynamic training strategy, which is

one of the main differences between D-DPDL model and our previous DPDL,

is discussed. then the improvement of DPDL model proposed in this work is

discussed.

In videos obtained from natural scenes, multiple factors contribute to the

variation of observations in a particular pixel, such as illumination change,

dynamic background and moving objects. More importantly, the distribution

of observations is different depending on the causes of the variation. For exam-

ple, variations resulting from illumination changes typically follow a smooth

unimodal distribution, since the position of the sun changes slowly during a

time sequence. Conversely, for pixels in a dynamic background, the varia-

tion often takes the form of a multi-peak distribution, due to the pattern of
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cyclical repetitions in background pixels, such as leaves fluttering. However,

when the variation is caused by moving objects, the observations are typically

outliers compared to the distribution formed by the observations of pixels in

the background. Therefore, the main purpose of the proposed approach is

learning the distribution of pixels in different scenarios to classify these pix-

els into foreground or background. In particular, the Random Permutation

of Temporal Pixels (RPoTP) feature is proposed to discriminate among dis-

tributions. The process of extracting the RPoTP features is shown in Fig.

3.2. An image sequence is denoted as {It|t ∈ [1, T ]} where T is the number

of frames, captured with a static camera. The temporal observations for a

particular pixel are obtained as a vector and reshaped into a square matrix,

in which the observations are randomly permutated by a random permutation

X = {ai|i ∈ [1, N ]} where N is the length of the permutation. The square

matrix includes a fair sample set of historical observations, and the random

permutation guarantees that only statistical information remains in the ma-

trix. Finally, the RPoTP feature is extracted by subtracting the current pixel

value from the sample matrix, in order to explicitly describe the difference

from historical observations, which is mathematically shown as:

RPoTP r
x,y(m,n) = It(x, y)− IX (m·r+n)(x, y) (3.1)

where RPoTP r
x,y denotes the RPoTP feature extracted from the pixel located

at (x, y), r is the user parameter to control the size of the RPoTP matrix, m,n

are the indices of an entry in a matrix. During all the experiments, the radius

r of the RPoTP feature is set to 25.

Essentially, background subtraction is a classification of pixels over time.

Pixels are classified as foreground or background based on the comparison with

their historical observations. The RPoTP features are actually the statistical

representation of the comparison, which is used as the input to a convolutional

neural network for classification. Therefore, the architecture of our network

is devised for classification and the whole classification procedure is shown in

Fig. 3.3, which can be divided into three parts, features extraction, learning

block and decision block. First, the RPoTP feature is extracted for each pixel
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and used as the input of the learning block. The learning block consists of

several stacks of convolutional, normalization and pooling layers. The decision

block is a set of convolutional, normalization and ReLU layers, followed by a

fully connected layer that implements the softmax operator. Mathematically,

it is shown as follows:

`x,y = D(Lθ(RPoTP r
x,y)), (3.2)

where `x,y is a binary label of the pixel at location (x, y) identifying it as

foreground or background, L is the learning block and D is the decision block.

θ denotes the parameters of the learning block. The learning block L consists

of several stacks of convolutional, normalization and pooling layers with θ

determining the number of these layers. The decision block D is a set of

convolutional, normalization and ReLU layers, followed by a fully connected

layer that implements the softmax operator. During training, the logistic loss

on the final output node is minimized.

Usually, the training instances of networks are pre-generated before train-

ing, it is possible that the network overfits to the pattern implied in random

permutations rather than learns the statistical information included in RPoTP

features. In order to address this issue, a dynamic training strategy is pro-

posed as a compensation, in which the entries of RPoTP features are randomly

re-permutated by new permutations for every training epoch. This strategy

effectively prevents our network from overfitting, and improves the accuracy

of the proposed approach in complex scenes. Section 3.3.1 demonstrates the

effectiveness of the dynamical training strategy by comparing our previous

DPDL and the proposed D-DPDL.

In addition, there are also several minor modifications in the network ar-

chitecture in the proposed D-DPDL model compared with our previous DPDL

model. First, we increased the width of network and decreased the depth in-

spired by [89] which suggests wider networks tend to learn pixel distribution

features. Besides, the sizes of convolutional kernels are increased as well, to

allow more temporal pixels to be input into the network for learning distri-

butions. Moreover, the stride of the pooling layer is set to 1 to avoid missing
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useful information during the down-sampling procedure. The comprehensive

details of the network architecture are shown in Table 5.1.

3.2.2 Bayesian Refinement Model

To the best of our knowledge, pixels are not independent but related to their

neighborhoods, especially similar ones. It is common to accept that similar

pixels should share similar labels of foreground or background. Such similarity

is very useful against random noise. The Bayesian refinement model based on

the similarity among pixels is thus proposed to compensate for random noise

generated during distribution learning.

The Bayesian refinement model is devised as an iterative procedure to

infer the labels of pixels according to their neighborhoods, with the Bayesian

theorem as the kernel of inference. As shown in the right part of Fig. 3.4,

the foreground mask produced by the pixel distribution learning, which is

discussed in Section 3.2.1, is iteratively refined based on the Bayesian theorem.

We explain the process of refinement in a pixel during one iteration, but the

procedure is identical for every pixel during all iterations. Let us denote the

features captured from the center pixel and their neighborhoods as v and G

repectively. The procedure of inferring the label of the center pixel v is as

follows:

P (ai|v) =
P (v|G)P (G|ai)P (ai)

P (v)
, (3.3)

where ai ∈ {0, 1} denotes the labels of the pixels, which is either background

represented by 0 or foreground represented by 1. P (v) and P (ai) are the

marginal probabilities corresponding to the feature and the label respectively.

There is no need to consider P (v) in the Bayesian inference procedure, since it

is a constant. P (v|G) and P (G|ai) are the conditional probabilities, in which

P (G|ai) describes the probability of pixels with the label ai belonging to G, and

P (v|G) denotes the proximity between the center pixel and its neighborhoods.

Next, the details of computing these probabilities are discussed.

The marginal probability P (ai) in Eqn. 3.3 represents the probability of

label ai in G which is the set of pixels in a rectangular region around the center
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pixel. During experiments, the size of the rectangular region is controlled by

a user input radius R. Therefore, the statistics of pixels’ labels in the region

can be used to compute P (ai) as:

P (ai) =
1

(2R + 1)2

x+R∑
x′=x−R

y+R∑
y′=y−R

|B(x′, y′) ∩ ai|, (3.4)

where (2R+ 1)2 is the total number of pixels in the rectangular region, (x, y)

represents the position of the center pixel and B(x′, y′) denotes the foreground

mask as well as the label matrix corresponding to the pixels of the current

frame, in which x′, y′ are the indices. A high value of P (ai) implies higher like-

lihood of the label ai appearing in the region, and there is a high possibility

that the label of the center pixel is ai due to the correlation with their neigh-

borhoods. In this condition, the label of the center pixel is correctly labelled

as ai by the marginal probability even though random noise is generated. The

marginal probability P (ai) thus has the ability to isolate the influence of noise,

and it is one of the main reasons motivating us to devise a statistical refinement

model based on the Bayesian theorem.

In contrast to the marginal probability P (ai), the conditional probabili-

ties P (v|G)P (G|ai) tend to protect the border between the foreground and

background, since it is based on the proximity among pixels. In particular,

G represents the set of neighboring pixels, v is the feature of the center pixel

and ai denotes the label. Let us denote the pixels in G as gj ∈ G, and the

procedure of capturing the conditional probability can be distributed by gj as∑
P (v|gj)P (gj|ai). Due to the fact that the foreground and background are

exclusive to each other, it is fair to assume that there is no correlation between

pixels with different labels, and P (gj|ai) becomes 0 corresponding to gj whose

label is not ai. Based on this assumption, we divide G into two subsets Gi

and (Gi)
c according to the labels of pixels, where Gi is the set of pixels with

the label ai and (Gi)
c is the complement. Then, the conditional probability
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P (v|G)P (G|ai) can be computed as:

P (v|G)P (G|ai) =
∑
gj∈G

P (v|gj)P (gj|ai)

=
∑
gj∈Gi

P (v|gj)P (gj|ai) +
∑

gj∈(Gi)c

P (v|gj)P (gj|ai)

=
∑
gj∈Gi

P (v|gj)P (gj|ai)

∵ P (gj|ai) = 0 ∀gj ∈ (Gi)
c.

(3.5)

In particular, P (gj|ai) represents the probability of pixels in G under the condi-

tion that ai is the label of pixels. It can be computed by a statistical procedure,

which is:

P (gj|ai) =
1

||Gi||0
=

(
x+R∑

x′=x−R

y+R∑
y′=y−R

|B(x′, y′) ∩ ai|

)−1
, (3.6)

where B(x′, y′) is the label matrix introduced in Eqn. 3.4. ||Gi||0 is the l0

norm of Gi, which is also the number of pixels in Gi. P (v|gj) represents the

proximity between the center pixel v and its neighborhood gj. In this work,

the proximity is approximated by a distance function L(), which is a measure

of distance between v and gj, and an activation function ϕ(), which convert

the distance to proximity. Mathematically, it is shown as:

P (v|gj) ∼ ϕ(L(v, gj)). (3.7)

Then, with the help of Eqn. 3.6 and Eqn. 3.7, the conditional probability

P (v|G)P (G|ai) in Eqn. 3.5 can be expressed as:

P (v|G)P (G|ai) =
∑
gj∈Gi

P (v|gj)P (gj|ai)

∼ 1

||Gi||0

∑
gj∈Gi

ϕ(L(v, gj))

(3.8)

With several attempts with different activation functions, the following for-

mula of ϕ achieves the best performance with acceptable complexity of com-

putation:

ϕ(d) =
1

d
. (3.9)
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Moreover, inspired by the extraction of super-pixels [1], the distance function

L(v, ci) is devised as an Euclidean distance of the vectors consisting of five

entries {l, a, b, x, y}, where (l, a, b) is the LAB color space of pixels and (x, y)

is the spatial location. Mathematically, it is shown as follows:

L(v, c) =

√(
dc
µc

)2

+

(
ds
µs

)2

(3.10)

where dc and ds denote the Euclidean distance of the LAB color and the spatial

location between v and gj. µc and µs are the means of the color and spatial

distance, which are used to combine these two components. Mathematically,

they are computed as:

µc =
1

||G||0

∑
gj∈G

dc(gj, v), µs =
1

||G||0

∑
gj∈G

ds(gj, v) (3.11)

Now, we have the conditional probability, and the marginal probability.

The label with the highest probability is used as the label of the center pixel

located at (x, y). Therefore, our Bayesian refinement model is described as:

M(x, y) = F(U ,B) = argmax
ai

P (ai|U(x, y))

= argmax
ai

P (ai)

||Gi||0

∑
gj∈Gi

ϕ(L(U(x, y), gj))

= argmax
ai

∑
gj∈Gi

ϕ(L(U(x, y), gj))

Gi = {U(x′, y′)|B(x′, y′) ∩ ai = 1}

∵
P (ai)

||Gi||0
= (2R + 1)2

& argmax
x

Nx = argmax
x

x ∀N > 0

(3.12)

whereM(x, y) is the output of the refinement model in which x′ ∈ [x−R x+R]

and y′ ∈ [y − R y + R] are the indices of pixels belonging to Gi and (x, y) is

the location of the center pixel, B(x′, y′) is the foreground mask generated by

distribution learning and U(x, y) = v denotes the feature captured from the

pixel located as (x, y). L and ϕ are the distance function and the activation

function discussed in Eqn. 3.10 and Eqn. 3.9.
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The noise included in the input of the refinement model influences the

output. Thus, our Bayesian refinement model cannot handle stubborn noise

in one iteration. Fortunately, the output of the Bayesian refinement model

is empirically better than the input, and can be used in the input again to

generate better results iteratively, as shown in the right part of Fig. 3.4.

Therefore, our Bayesian refinement model is devised as an iterative procedure

as:

Mn(x, y) = F(U(x, y),Mn−1(x, y)), (3.13)

where Mn(x, y) is the foreground mask in iteration n, F is the Bayesian re-

finement model and U is the set of features captured from pixels. Considering

performance and computation cost, the number of iteration is set to 3 and

the radius R is set to 4 during all experiments. In particular, With a larger

iteration number, the performance of the proposed approach is supposed to be

better, but the computational cost will increase. Moreover, the robustness of

the refinement model is improved when R becomes larger, sicne more pixels are

considered during refinement. However, a larger R increase the computational

cost as well.

3.3 Experiments

In this section, comprehensive experiments for evaluating the proposed ap-

proach are presented. In Section 3.3.1, the transferability of our D-DPDL

model is discussed, in which the training videos and testing videos are differ-

ent. The efficiency of our dynamic training strategy and Bayesian refinement

model, which are the two main differences compared with our previous work

[152], is demonstrated in Section 3.3.2. Then, comprehensive comparison be-

tween the proposed approach and several state-of-the-art methods including

deep learning methods is presented in Section 3.3.3. Finally, a discussion of

the computational cost of the proposed approach is proposed in Section 3.3.4.
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Figure 3.5: The qualitative evaluation of the transferability of the proposed
approach in several videos of CDnet2014 [135] dataset. In particular, the
training frames and testing frames are obtained from different videos.
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Table 3.2: Quantitative transferability evaluation of the proposed approach
using Re, Pr and Fm metrics, in which the training and testing videos are
different.

Training Sets Testing Sets Performance
Video Category Video Category Re Pr Fm

highway baseline pedestrians baseline (0.9723, 0.8138, 0.8860)
pedestrians baseline highway baseline (0.6132, 0.9998, 0.7602)

overpass Dyn. Bg. canoe Dyn. Bg. (0.8231, 0.9948, 0.9008)
canoe Dyn. Bg. overpass Dyn. Bg. (0.3709, 0.9530, 0.5340)

blizzard Bad Wea. skating Bad Wea. (0.8471, 0.9870, 0.9117)
snowFall Bad Wea. skating Bad Wea. (0.7618, 0.9924, 0.8619)

tramCrossroad Low Fr. turnpike Low Fr. (0.9188, 0.9537, 0.9359)
tramCrossroad Low Fr. tunnelExit Low Fr. (0.7544, 0.3724, 0.4987)
abandonedBox Int. Mot. highway baseline (0.8103, 0.9996, 0.8951)

busStation Shadow pedestrians baseline (0.9747, 0.8668, 0.9176)
fall Dyn. Bg. highway baseline (0.8102, 0.9994, 0.8949)

canoe Dyn. Bg, busStation Shadow (0.0718, 0.9738, 0.1337)
Average (0.7274, 0.9089, 0.7609)

3.3.1 Transferability of D-DPDL

In this section, the transferability of our D-DPDL algorithm is demonstrated.

Previous approaches related to deep learning only guarantee the effectiveness

under the assumption that the training frames and testing frames are obtained

from the same scene. In contrast, our D-DPDL model is valid even when

the testing frames are captured from a scene different from the one used for

capturing training frames. This happens because the distribution of pixels,

which are learned by the D-DPDL model, is a general feature regardless of the

scene.

In order to demonstrate transferability, the proposed approach is evalu-

ated for image frames which do not belong to the training video. During the

experiments, several challenging videos are selected from Change Detection

net 2014 (CDnet2014) dataset [135] for evaluation. In particular, 10 frames

are extracted from the training video to learn the distribution information of

pixels, and all frames of the testing video are utilized to evaluate the proposed

approach. Quantitative and qualitative evaluations are shown in Table 3.2

and Fig. 3.5 respectively. The evaluations are divided into two parts. First,
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the training videos and testing videos are selected from the same category,

which means the distribution of pixels from training videos and testing videos

may share some common features. For example, most of the pixels on the

background scene of videos in the category of “Dynamic Background” shared

a repetitive pattern of variation in pixels’ observations. In the second part, the

training video and testing video are selected from different categories to em-

phasize the difference between training videos and testing videos for evaluating

the transferability of the proposed approach.

As shown in Table 3.2 and Fig. 3.5, our D-DPDL model achieves 0.7609

on the average Fm metric of all testing videos, when the scenes in the train-

ing and testing videos are different. Therefore, it is fair to claim that our

D-DPDL is effective when the training and testing videos are completely dif-

ferent, demonstrating the transferability of the proposed approach. Moreover,

the performance of the transferability is reasonably different in different cases

due to the diversity of scenes in these videos. For example, in the first case

“highway-pedestrians,” the proposed approach is trained on the video “high-

way” and tested on the video “pedestrians.” Since the scenes for these two

videos do share several similar parts like the plants and roads, the proposed ap-

proach generates promising foreground results in this case. However, when we

simply switch these two videos in the second case “pedestrians-highway,” the

performance of the proposed approach has an obvious decline, due to the fact

that the diversity of the scene with pedestrians is lower than the one with high-

ways. The diversity of scenes thus plays an important role in the transferability

of the proposed approach. This is more clear from the cases “overpass-canoe”

and “canoe-overpass,” in which the video “overpass” includes water, plants

and roads, but the video “canoe” only contains water and plants. When the

proposed approach is trained on the video “overpass” and tested by the video

“canoe,” it achieves 0.9008 for the Fm metric. On the other hand, the pro-

posed approach only achieves 0.5340 when the training and testing videos are

switched as shown in the case “canoe-overpass.” Hence, it only achieves 0.1337

when the proposed approach is applied to a more diverse video “busStation”

as shown in the case “canoe-busStation,” in which the video “canoe” with low

36



diversity is used for training and video “busStation” with high diversity is used

for testing.

Similar phenomena are also shown in the cases “blizzard-skating” and

“snowFall-skating,” in which the testing videos are the same but the training

videos are different. As we can see in Fig. 3.5, the scenes in the video “bliz-

zard” and “snowFall” are similar to each other. Thus, the proposed approach

learns similar distribution information when these videos are used for training.

Consequently, the proposed approach achieves similar performances when it

is tested on the same video “skating” in these two cases. Similar conditions

are also shown in the cases “tramCrossroad-turnpike” and “tramCrossroad-

tunnelExit” where the proposed approach is trained on the same video but

tested on different videos. In summary, the transferability of the proposed ap-

proach is highly dependant on the diversity of scenes included in the training

video, where more diverse distribution information can be learned by the pro-

posed approach. When the diversity in the training video is higher than that

of the testing video, the proposed approach generates good results. Otherwise,

it fails like for the case “tramCrossroad-tunnelExit.”

In the second part of Table 3.2 and Fig. 3.5, the transferability of the

proposed approach is demonstrated under the condition that the training

videos and testing videos are captured from different categories, including the

cases “abandonedBox-highway,” “busStation-pedestrians,” “fall-highway” and

“canoe-busStation.” The proposed approach works well in the first three cases,

as the diversity of scenes in the training videos is obviously higher than that

of the testing videos. Therefore, the transferability of the proposed approach

is affected by the diversity of scenes in the videos rather than their categories.

Moreover, the proposed approach failed in the last case as the training videos

only include plants and water, which do not appear in the testing videos. Since

the objects in the training videos are not contained in the testing videos, the

proposed approach cannot capture enough distribution information, which is

the main reason for the poor performance in this case.
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3.3.2 Bayesian Refinement Model and Dynamic Train-
ing

In this section, the validation of dynamic training and Bayesian refinement

model is presented. The strategy of dynamic training is proposed to prevent

the network from overfitting the pattern implied in random permutations. The

Bayesian refinement model is devised to overcome the random noise generated

by random permutations used in RPoTP features.

In order to present the validation of the Bayesian refinement model, we

compare the performances of the proposed approach with or without the com-

pensation of the Bayesian refinement model. As shown in Table 3.3 and

Fig. 3.6, the performance of the proposed approach with refinement model

is denoted by “Bayesian Refinement” and the performance without refinement

model is denoted by “Dynamic Training.” Moreover, for validating the dy-

namic training strategy, the performance of our previous work DPDL [152] is

presented as well for comparison, since the dynamic training strategy is not

applied in DPDL [152]. During comparison, only one groundtruth frame is

used for training and several challenging videos are selected from CDnet2014

dataset [135] for comparison.

As shown in Table 3.3 and Fig. 3.6, the dynamic training strategy and

Bayesian refinement model have significant contribution to the efficiency and

accuracy of the proposed approach. Compared to DPDL [152], the dynamic

training strategy contributes over 30% improvement on the average Fm value,

since RPoTP features are dynamically generated to prevent the network from

overfitting to the pattern implied in random permutations. Then, the effi-

ciency of the dynamic training strategy is demonstrated. In particular, the

improvement resulting from the dynamic training strategy is more clear in

several complex videos such as the video “office,” “bungalows” and “cubicle.”

In these videos, the motion of moving objects is complex, where the network

generates more noise in the foreground and background when it overfits to

the pattern in a random permutation. For example, in the visual foreground

shown in Fig. 3.6, the background of the video “office” has many randomly

38



incorrect foreground points compared to the video “highway.”

The Bayesian refinement model further improves the performance of the

proposed approach by handling the noise generated from the utilization of

random permutations during capturing RPoTP features. This is shown in the

visual foreground proposed in Fig. 3.6. The foreground mask produced by

the dynamic training includes many noisy points in the background scenes as

well as the foreground objects. By contrast, all these noisy points are removed

in the foreground mask after refinement by the Bayesian refinement model.

This is achieved by the marginal probability of the Bayesian refinement model

discussed in Eqn. 3.4, which can handle random noise. Moreover, the con-

ditional probability is utilized to protect the border between the foreground

and background, and the Bayesian refinement model contributes an extra 10%

improvement on the average Fm metrics. With the help of these two compo-

nents, the proposed approach achieves much better performance with even less

training frames. Specifically, our D-DPDL model with 10 groundtruth frames

for training achieves higher performance than our previous DPDL [152] model

with 40 groundtruth frames for training.

3.3.3 Comprehensive Evaluation of D-DPDL

In this section, comprehensive comparisons between our Dynamic Deep Pixel

Distribution Learning (D-DPDL) model and several sophisticated state-of-

the-art methods including traditional methods and deep learning methods on

LASIESTA [27] and CDnet2014 [135] datasets are presented. The results of the

compared algorithms are directly referred from the implementation provided

by authors.

It should be noted that the training data is important to supervised meth-

ods and has direct contribution to their performances. Methods with more

training data are desired to achieve better performance. Especially, with

the utilization of deep learning network, a few excellent methods [86], [87],

[136], [137] achieve almost perfect results in standardized datasets when many

groundtruth foreground masks are used for training. For example, FgSeg-

Net model proposed by Lim et al. [87] achieves over 98% F-scores when 200
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Table 3.4: Quantitative comparison between the proposed approach and state-
of-the-art using Fm metric on LASIESTA [27] dataset.

Videos D-DPDL3D-DPDP1 CueV2[7]Haines[50]Cue[26]SOBS[97]
I SI 01 0.9596 0.8335 0.9208 0.9622 0.8143 0.9559
I SI 02 0.8687 0.7963 0.8403 0.8130 0.7576 0.9409
I CA 01 0.9309 0.6881 0.9062 0.9220 0.8424 0.8416
I CA 02 0.8850 0.8724 0.7826 0.8656 0.6296 0.8731
I OC 01 0.9710 0.8094 0.7013 0.8920 0.8274 0.9573
I OC 02 0.9677 0.9331 0.8600 0.9526 0.8781 0.9508
I IL 01 0.7161 0.6398 0.6452 0.8861 0.7966 0.1898
I IL 02 0.8972 0.8749 0.6523 0.8122 0.7864 0.2312
I MB 01 0.9699 0.9627 0.9543 0.9816 0.7779 0.9728
I MB 02 0.9195 0.5937 0.9204 0.7064 0.6797 0.8517
I BS 01 0.8371 0.5609 0.7132 0.6285 0.5065 0.4015
I BS 02 0.6178 0.7393 0.6156 0.7333 0.6607 0.4021
O CL 01 0.9792 0.9584 0.9508 0.6946 0.9280 0.9657
O CL 02 0.9800 0.9819 0.9045 0.9588 0.8995 0.9760
O RA 01 0.9072 0.4047 0.8453 0.8225 0.7462 0.8353
O RA 02 0.9803 0.9812 0.8886 0.9590 0.8699 0.9591
O SN 01 0.9690 0.4590 0.9317 0.3054 0.8214 0.9093
O SN 02 0.9341 0.9421 0.6256 0.0426 0.0895 0.7116
O SU 01 0.9065 0.8783 0.6774 0.8115 0.6527 0.8742
O SU 02 0.9388 0.9171 0.7669 0.9021 0.8074 0.8843
Average 0.9068 0.7913 0.8051 0.7826 0.7386 0.7842

groundtruth frames of each video are used for training. Though, these meth-

ods achieve better quantitative scores than the proposed approach, they also

used much more groundtruth frames than our method requiring less than 10

groundtruth frames of each video. Therefore, in order to propose a fair compar-

ison, besides unsupervised algorithms, several state-of-the-art methods claim-

ing limited groundtruth frames are selected for comparison, which includes

CwisarDH [49], DeepBS [4], GuidedBS [84], CNN-SFC [33] and our previous

DPDL [152].

Among these supervised methods, CwisarDH [49] mentioned in their work

that several pixel instances are taken in different frames of videos for train-

ing, but details are lacking. DeepBS [4] claims 5% of groundtruth frames of

entire dataset are utilized for training, which means around 5% × 160000 =

8000 groundtruth foreground masks are required to train the network, where
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160000 is the total number of groundtruth frames contained in CDnet2014

dataset [135]. Although GuidedBS [84] extracts no foreground masks from

groundtruth frames for training, 200 foreground images of each video are as-

sumed from the results generated by SubSENSE [18], which is a good back-

ground subtraction method. Therefore, we consider that 200 × 53 = 10600

foreground masks are required in GuidedBS [84]. This is around 6.625% of en-

tire dataset. CNN-SFC [33] utilizes 4000 foreground masks from groundtruth

data for training, which is around 2.5% of the entire dataset. For DPDL

model [152], DPDL1, DPDL20 and DPDL40 utilize 1, 20 and 40 groundtruth

masks for each video respectively, which are 0.033%, 0.66% and 1.32% of en-

tire dataset. In contrast to the results of D-DPDL model proposed in this

chapter, 1 and 3 groundtruth frames are extracted for training in each video

of LASIESTA [27] dataset to demonstrate the performance of D-DPDL1 and

D-DPDL3 shown in Table 5.8, which takes around 0.24% and 0.72% of the

groundtruth frames available in LASIESTA [27] dataset. In addition, in the

CDnet [135] dataset, 1 and 10 frames are used for training in each video to

demonstrate the performance of D-DPDL1 and D-DPDL10 shown in Table 5.9

and Fig. 3.7, which represents 0.033% and 0.33% of the groundtruth frames

available in entire dataset.

Quantitative evaluation of the proposed approach on LASIESTA [27] dataset

is shown in Table 5.8. The proposed approach achieves promising results even

when only 1 groundtruth frame is used for training, and it generates the best

performance when 3 groundtruth frames are used for training. There are

20 videos obtained from 10 different conditions in LASIESTA [27] dataset.

Among them, videos “I SI 01-02” are obtained from simple indoor scenes,

in which the distribution of temporal pixels is easily classified, and the pro-

posed approach achieves good performance. In addition, videos “I CA 01-02,”

“I OC 01-02,” “I IL 01-02,” and “I MB 01-02” include challenges of camou-

flage moving objects, occluded moving objects, moving objects with global

illumination changes and modified background respectively. These challenges

have significant influence on the distribution of pixels’ observations. Fortu-

nately, benefiting from the strong learning ability of a deep learning net-
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work, our D-DPDL model handles these challenges and achieves promising

results. In particular, D-DPDL1 does not achieve good performance in video

“I IL 01,” since the illumination is changing during entire image sequences and

1 groundtruth frame may not contain enough information for the network to

learn. When the number of groundtruth frames is increased to 3, the results

of the proposed approach becomes promising.

However, in video “I BS 02,” the performance of D-DPDL3 is not good and

it is even worse than their counterpart with 1 groundtruth frame for training.

The reason is the imbalance between training instances for foreground and

background. During the training of the proposed approach, the groundtruth

frames are randomly selected from image sequences. When only 1 groundtruth

frame is used for training, only the frames with foreground objects are used as

candidates to make sure there are foreground instances in the training data.

While for 3 groundtruth frames, the extra 2 groundtruth frames are randomly

selected from the entire video, and it is possible that the selected groundtruth

frames do not include any moving object to cause foreground and background

instances being extremely imbalanced. This condition becomes even worse

when the moving objects are relatively small and only appear in a few frames,

which happens in the video “I BS 02.” In contrast, videos “O CL 01-02,”

“O RA 01-02,” “O SN 01-02” and “O SU 01-02” are obtained from outdoor

scenes under different weather conditions, such as cloudy condition, rainy con-

dition and so on. Our D-DPDL3 achieves over 90% F-scores in all these videos,

since the Bayesian refinement model has the ability to handle these isolated

distractions from weather conditions.

Quantitative and qualitative evaluations of the proposed approach on CD-

net2014 [135] dataset are shown in Table 5.9 and Fig. 3.7 respectively. To

the best of our knowledge, CDnet2014 [135] dataset is the largest dataset

for background subtraction, which contains 11 categories of videos. There-

fore, the evaluation on CDnet2014 [135] dataset is fair and complete. As

shown in Table 5.9, our D-DPDL10 has the best overall performance using 10

groundtruth frames compared to unsupervised methods as well as the super-

vised methods. Moreover, even with only one groundtruth frame, the proposed
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D-DPDL1 still produces promising results which are close to the ones of MBS

[113] or SuBSENSE [18]. Both of these demonstrate efficiency and accuracy

of the proposed approach assuming limited groundtruth frames. In the “Base-

line” category, the complexity of the distribution in pixel is not high, and the

statistical information is easily learned by the proposed approach. The pro-

posed D-DPDL10 thus achieves excellent performance in this category with 10

groundtruth frames used for training. It is higher than our previous DPDL40

training by 40 groundtruth frames. This improvement demonstrates the ef-

fectiveness of our strategy of dynamic RPoTP feature generation, as well as

the Bayesian refinement model. In addition, the improvement is more clear

if we refer to the comparison between D-DPDL1 and DPDL1, where only one

groundtruth frame is utilized for training. D-DPDL1 achieves much higher

performance compared to DPDL1, since the dynamic training strategy is not

applied in DPDL1, the network tends to overfit to the pattern implied in ran-

dom permutations when the training data is limited.

In the “Dynamic Background” category (Dyn. Bg.), the improvement of

D-DPDL becomes more obvious due to the increasing complexity of pixel

distribution compared to our previous DPDL model [152]. In a dynamic back-

ground, the observations of pixels have a pattern of repeating variation, which

generates a multiple-peak distribution. Compared with the DPDL model, the

proposed D-DPDL model can focus better on the distribution with the help

of the proposed dynamic training strategy. Therefore, our D-DPDL1, which is

trained with one groundtruth, even achieves performance close to DPDL20 tak-

ing 20 groundtruth frames for training. However, due to the complexity of the

distribution information in the pixels of a dynamic background, the network is

trained by RPoTP features which unavoidably generates random noise during

the utilization of random permutations. Thus, the Bayesian refinement model

is proposed to handle the random noise, and the proposed D-DPDL model

gives better results. This is more clear in the qualitative comparison shown in

Fig. 3.7, in which the foreground masks generated by the D-DPDL model have

almost no noise compared to our previous DPDL [152] model. Similarly, in the

Camera Jitter (Cam. Jitt.) category, except for random permutations, the jit-
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ter of cameras also generates random noise. In this condition, the distribution

of pixels’ observation have multiple peaks as well. Benefiting from the learning

ability of deep learning networks and our Bayesian refinement model’s ability

to handle random noise, the proposed approach generates promising results.

In the “Shadow” category, the main challenge comes from the illumination

condition. The observations of pixels have significant variations when the

illumination is occluded by moving objects. In this condition, the intensity of

pixels’ observations have a constant decline, which has a small influence on

the waveform of their distribution. Previous methods, such as SemanticBGS

[12], usually utilize texture features to overcome the illumination change. In

contrast, the proposed D-DPDL model focuses on the distribution itself led by

the illumination change, and has a strong ability to learn the distribution of

pixels in the shadow or unshaded regions. Therefore, the proposed approach

produces excellent foreground results in this category. A similar situation is

also shown in the “Thermal” (Ther.) category. The “bad weather” (Bad

Wea.) category includes several challenging videos. In particular, raining and

snowing cause several hurdles in learning distributions. However, with the

help of our Bayesian refinement model, the proposed approach still achieves

promising results with 10 groundtruth frames for training compared to other

deep learning methods such as CNN-SFC [33]. A similar condition also prevails

in the “Low Frames” (Low Fr.) category, in which the different frame rates

of cameras produce challenges to the methods related to distribution analysis

such as GMM [159]. Fortunately, with the strong learning ability of our D-

DPDL model, the proposed approach still generates promising results.

However, the proposed approach does not work well in the “Night Video”

and “PTZ” category. It is understandable why the proposed approach cannot

work in the PTZ category, since the videos in this category are obtained by

moving cameras. For videos captured by a moving camera, the pixels no longer

maintain their positions. The statistical information in the RPoTP feature is

thus meaningless for learning the distribution. In the “Night Video” category,

the proposed approach is still the best of two and close to CNN-SFC [33].

The distribution learning still works in this category, but the lighting in a
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video is too complex to be learned with limited groundtruth frames. Thus,

the performance of the proposed approach is not that good.

3.3.4 Implementation details and Computational Cost

The D-DPDL model is implemented in Matlab with MatConvNet [131], and

the source code is available at https://github.com/zhaochenqiu/D_DPDL.

The experiments are run on a PC with i7 CPU processor and GeForce GTX

1080 GPU processor in the Matlab 2018b environment under Ubuntu 16.04.

In the evaluation experiments, all images have not been normalized. During

training, 40 epochs are set as the maximum and the objective-epochs plots on

four videos from different categories are shown in Fig. 3.8. Correspondingly,

the processing time of the D-DPDL model on these videos are shown in Table

3.6.

As shown in Table 3.6, our D-DPDL is divided into three parts:

• 1) RPoTP features extraction: Observations of pixels are converted to

RPoTP features and used as the input to the network.

• 2) Foreground segmentation: RPoTP features captured from pixels are

classified by a convolutional neural network to generate foreground mask.

• 3) Bayesian refinement: The foreground mask generated from last step

is iteratively refined by a Bayesian refinement model.

In total, the proposed D-DPDL model needs around 5 seconds to process an

image frame with a resolution of 320× 240, excluding the I/O time (i.e., read-

ing frames from disk), since the proposed method is implemented purely in

Matlab without any code optimization. In particular, the Bayesian refinement

procedure uses most of the runtime, because it is an iterative procedure imple-

mented in Matlab. In future, the refinement procedure will be re-implemented

in C++, which will save considerable time. In addition, in the foreground

segmentation part, we believe a multiple GPU implementations will acceler-

ate the proposed approach. In the procedure of RPoTP features extraction,
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Figure 3.8: The objective-epoch plots on four videos from different categories,
in which video “highway” comes from category “Baseline,” video ”fall” is ex-
tracted from category “Dynamic Background,” video “skating” is from cate-
gory “Bad Weather” and video “traffic” belong to category “Camera Jitter.”

Table 3.6: The runtime of different parts of D-DPDL model in frames captured
from several videos with varying resolutions (seconds/frame).

Videos Resolution
RPoTP Features

Extraction
Foreground

Segmentation
Bayesian

Refinement
Overall

highway 320× 240 0.5577 1.5453 3.3475 5.4505
fall 720× 480 2.4810 10.0575 14.5516 27.0901
skating 540× 360 1.3670 6.6319 7.2662 15.2651
traffic 320× 240 0.5109 1.7026 2.7228 4.9363

since loop computations are involved, the re-implementation by C++ will ac-

celerate the proposed approach. Finally, the GPU implementation for random

permutation should also accelerate the proposed approach.
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3.4 Conclusion

In this chapter we proposed the Dynamic Deep Pixel Distribution Learning

(D-DPDL) model for background subtraction. In particular, Random Permu-

tation of Temporal Pixels (RPoTP) features is proposed to indirectly force

the convolutional neural network to learn statistical distributions. Also, a

Bayesian refinement model was proposed to handle the random noise gener-

ated during random permutations. Due to the pixel-wise representation of the

RPoTP feature, a large number of RPoTP features can be captured with lim-

ited groundtruth frames for training the proposed approach. Moreover, since

the statistical distribution is a general feature regardless of the scene, our D-

DPDL model is effective even under the condition that the training videos and

testing videos are completely different. Comprehensive evaluations comparing

with other state-of-the-art methods demonstrate the superior efficiency of the

proposed approach. In the future, we will work on optimizing the code and

consider GPU implementation so that the proposed approach can get close to

real-time performance.
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Chapter 4

Pixel Distribution Learning for
Vessel Segmentation and Crack
Detection
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Abstract

The dynamic deep pixel distribution learning (D-DPDL) model proposed in

last chapter has demonstrated a few excellent properties such as less training

data, training videos and testing videos can be different, which demonstrate a

good potential of wide range of applications more than background subtrac-

tion. Therefore, in this chapter, we further applied the pixel distribution learn-

ing technique into vessel segmentation and crack detection which are related

to medical images and architecture images respectively. Moreover, in order

to improve the accuracy of the proposed approach, a multiple scale strategy

is utilized for capturing features. In addition, Based on our preliminary ex-

periments, we currently believe that a wide network, rather than a deep one,

is better for distribution learning. Therfore, there is only one convolutional

layer, one rectified linear layer and one fully connected layer followed by a

softmax loss in our network. Evaluations using standard benchmark datasets

demonstrate that the proposed approach achieves promising results compared

with state-of-the-art methods.
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4.1 Vessel Segmentation

4.1.1 Introduction

Vessel segmentation is a fundamental problem of medical image processing,

with has a wide range of applications; such as oncology [15], ophthalmology

[13] and neurosurgery [102]. Previous approaches usually devised an artificial

model to analyze the distribution of pixels for vessel segmentation. However,

because of the diversity of the medical images, which comes from the profiles

of different patients, or machines, vessel segmentation is still a challenging

problem in computer vision. Vessel segmentation is essentially a binary pixel-

wise classification problem. A pixel is classified as a vessel or background based

on the comparison with its neighborhood. In this work, the distributions of

spatial pixels are used for vessel segmentation, and a novel method based

distribution learning is proposed.

In our previous work [151], [152], we demonstrated that a convolutional

neural network can be guided to learn a statistical distribution by randomly

permutating the temporal pixels. In this work, our previous technique is ex-

tended for vessel segmentation, since vessels in an image can be segmented by

classifying the distributions of spatial pixels. The pixels are subtracted from

their neighborhoods, and the distributions of the subtraction results are input

into the network for vessel segmentation, as is shown as Fig. 4.1.

In the proposed approach, a spatial distribution descriptor named the Ran-

dom Permutation of Spatial Pixels (RPoSP) feature is proposed, in which the

spatial pixels are randomly permutated to guarantee that only the statistical

information is retained. The RPoSP features are dynamically generated as the

input to the convolutional neural network (CNN) for every training epoch. It

indirectly forces the network to rely solely on the statistics of the distribution

of spatial pixels. Moreover, several RPoSP features captured under different

scales [114] are combined and input to the network, in order to improve the

accuracy of the proposed approach. The main differences between this work

and our previous work [151], [152] are:

• Random Permutation of Spatial Pixels: In this work, the distribution
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Figure 4.1: Pixels Distribution Learning for Vessel Segmentation.

of spatial pixels rather than temporal pixels is learned by the network.

Compared to the temporal pixels, the variation of spatial pixels includes

higher complexity and diversity, which is one of the motivations behind

capturing the distribution information under multiple scales.

• Multiple Scales: We captured the distribution information at multiple

scales rather than only one scale. This strategy provides the network

with better information for learning the distribution and improves the

accuracy of the proposed approach.

• Network architecture: We simplified the network architecture consider-

ing the computational cost. Our architecture is quite simple; thus, it

should probably not be considered “deep.” It only includes one convo-

lutional layer, one rectified linear layer, and one fully connected layer.

4.1.2 Spatial Pixel Distribution Learning under Multi-
ple Scales

In this section, the details of the proposed approach for vessel segmentation

are discussed. The flowchart of the proposed approach is shown in the Fig.

4.2, in which the Random Permutation of Spatial Pixel (RPoSP) features are
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Figure 4.2: The flowchart of the proposed approach.

captured first and then input into the network to label if a pixel belongs to a

vessel or is part of the background.

For vessel segmentation in medical image processing, it is reasonable to seg-

ment vessels based on comparisons between the center pixel and its neighbor-

hood. This is because the intensity of pixels in a vessel is significantly different

from ones in its neighboring pixels. In this work, we focus on learning the dis-

tribution of these comparisons for segmenting vessels, utilizing convolutional

neural networks. In addition, motivated by our previous work [152] [151], it

is possible to force a network to solely focus on the statistical distribution,

by randomly permutating the temporal pixels which are used as the input to

the network. However, in this work, the distribution information is derived

from spatial pixels instead of temporal pixels. Therefore, a new distribution

descriptor named Random Permutation of Spatial pixels (RPoSP features),

which is an extension of our previous work, is proposed. Since the complexity

of the distribution captured from spatial pixels is higher than the one from

temporal pixels, a multiple scale strategy is proposed to extract the multiple

RPoSP features to improve the robustness of the proposed approach. The

combination of several RPoSP features captured from a particular pixel under

different scales is input into the network for learning the distribution. The

network architecture is devised as a classification network to classify pixels

into the categories of a vessel or the background scene.
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Table 4.1: Details of our network architecture, which consists of 4 convolu-
tional layers, 3 batch normalization, 2 max pooling and a softmax operator.

Type Filters Layer size Data size
Input Data 15× 15× 15
Convolution 10024 15× 15× 15 1× 1× 10024
Rectified linear unit 1× 1× 10024
Convolution 2 1× 1× 10024 1× 1× 2
Softmax

The procedure of extracting RPoSP features under multiple scales is shown

in Fig. 4.3. We introduce the extraction of RPoSP features for one pixel,

but the procedure is identical for each pixel. Let us denote a given vessel

image as I(x, y), where x and y represent locations of pixels. The patches

with the center location of (x, y) under multiple scales are extracted, and

the intensity of the center pixel is subtracted from them. Following this, the

RPoSP features are captured by randomly permutating entries of subtracted

patches at a particular scale. Mathematically, this can be described as follows:

RPoSPx,y(m,n : Ri, Ro) = I(x, y)− I(x+ r(m), y + r(n)),

m, n ∈ [1 Ri], r(m), r(n) ∈ [1 Ro]
(4.1)

where RPoSPx,y(m,n : Ri, Ro) denotes the RPoSP feature extracted from the

pixel located at (x, y). m,n are the indices of an entry in a patch and r() is

the random permutation to generate a random position according to the input

indices. Ri and Ro are the parameters to control the size of RPoSP features

under multiple scales. In particular, Ro is the radius of patches under different

scales, and Ri is the radius of the RPoSP features. The reason we use two

parameters is that the RPoSP features captured from different scales need to

be linked together to input into the network. First, a patch with radius of Ro

is captured and randomly permutated. Then, a download-sampling is used to

captured a patch with radius of Ri and used as the RPoSP feature captured at

a particular scale. This step guarantees that the RPoSP features at different

scales have the same size. Thus, these features thus can be linked together

and input into the network.

The network architecture in the proposed approach is devised for a classi-
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fication network, which is shown in Table 5.1. The input of the network is the

combination of RPoSP features captured at multiple scales; and the output is

the label corresponding to the pixel where these RPoSP features are extracted.

Mathematically, are steps can be shown as follows:

`x,y = D(Lθ(F1,F2, . . . ,FN)),

Fn = RPoSPx,y(m,n : Ri
n, R

o
n)

(4.2)

where `x,y is a binary label of the pixel at location (x, y) identifying it as a

vessel or the background, L is the learning block and D is the decision block.

θ denotes the parameters of the learning block. The learning block L consists

of convolutional, and Rectified linear layers. The decision block D includes a

fully connected layer linked with a Softmax loss.

There are several differences between the proposed approach and our previ-

ous work during network training. For our previous work, the data input into

the network for training is only generated once. Thus, the input of the net-

work is the same for every training epoch. Under this condition, it is possible

that the network overfits the pattern implied in random permutations rather

than learn the statistical information included in RPoSP features. In order to

address this issue, a dynamic training strategy is proposed as a compensation.

In this approach, the entries of RPoSP features are randomly re-permutated

by new permutations for every training epoch. This strategy effectively pre-

vents our network from overfitting, and improves the accuracy of the proposed

approach in complex scenes.

4.1.3 Experiments

In this section, we evaluate the proposed approach. Our approach is compared

with several state-of-the-art methods [29], [39], [40], [95], [132], [134] on the

DRIVE [122] dataset. In particular, both of these methods are based on deep

learning network. It should be noted that the training data is important for

supervised methods and has a direct contribution in their performance. Meth-

ods with more training data are expected to achieve better results. This is

especially true when deep learning networks are utilized. In the DRIVE [122]
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Figure 4.3: The extraction of Random Permutation of Spatial Pixel (RPoSP)
features under multiple scales.

dataset, there are 20 images included in the training set, with another 20 im-

ages contained in the testing set. For the methods compared, all the 20 images

in the training set are used for training the network. In contrast, since the

proposed approach extracts training instances at a pixel-level, many training

instances can be captured within one image. Considering this, our network is

trained with 15 images, accounting for the limitations on our computational

resources.

During the experiments, several metrics are used for evaluation, including

Acc, Se, Sp, DSC and MCC. The definitions of these metrics are shown as

follows:

Acc =
TP + TN

n
, Se =

TP

TP + FN
, Sp =

TN

TN + FP
,

DSC =
2TP

FP + FN + 2TP
,

MCC =
(TP × TN)− (FP × TN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

where TP and FP are True Positive and False Positive. Here, positive refers

to a vessel, while negative represents background. True denotes that the result

of this detection is correct, while False means otherwise. Thus, TP means that

the result of the detection is a vessel as well as being the ground-truth.

The quantitative comparisons between the proposed approach and state-
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Table 4.2: Quantitative comparison between the proposed approach and other
state-of-the-art methods on the DRIVE [122] dataset.

Methods Acc Se Sp DSC MCC
Luo et al. [95] 0.95 0.75 - - -
Dasgupta et al. [29] 0.95 0.75 - - -
Fu et al. [40] 0.95 0.76 - - -
Vega et al. [132] 0.94 0.74 0.96 0.69 0.66
Wang et al. [134] 0.95 0.74 0.98 - -
Fraz et al. [39] 0.95 0.74 0.98 - -
Proposed approach 0.95 0.76 0.97 0.78 0.51

of-the-art methods are shown in Table 4.2. In addition, since the qualitative

results of these compared methods are not available, only the qualitative re-

sults of the proposed approach are shown in Fig. 4.4. As shown in Table 4.2,

the proposed approach achieves promising results compared to other state-of-

the-art methods. In particular, the proposed approach achieves the highest

scores in Se and Acc, which are considered as the completeness and the accu-

rateness of the vessel mask generated.

There are some disadvantages to the proposed approach. Although the

proposed approach achieves good scores in the Acc metric, which is consid-

ered as the accuracy, there are still several noisy points that can be seen in

Fig. 4.4. These noisy points are a result of the random permutation utilized

in the proposed approach. Since the entries of the RPoSP features are ran-

domly permutated during every training epoch, it is possible that the RPoSP

features fed into the network during the testing cases are never shown in the

training procedure. In this condition, the network may falsely generate some

random noise. In addition, the computational cost is another disadvantage of

the proposed approach. Since the proposed approach is devised a pixel-wise

classification network, every pixel of an image need to be classified by the

network, which is time-consuming.
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4.2 Crack Detection

4.2.1 Introduction

A number of roads, bridges, and buildings built in the last century have already

reached their intended lifetime. Cracks are one of the common defects in

cement surfaces and pose a potential threat to road and building safety. For

maintenance purposes, people need to inspect these structures regularly and

crack detection is usually the first step. However, due to the diversity and

complexity of cracks, detecting cracks manually is extremely labor-intensive.

How to effectively and automatically detect cracks is an interesting problem.

Recently, the DPDL method has been proposed for background subtraction

[152]. This method demonstrates a few good properties such as transferability,

which means that the training images and testing images can be captured from

different scenes. This is suitable for crack detection applications, since there is

significant diversity in cracks, and training data is limited. Therefore, in this

work, we applied deep pixel distribution learning for concrete crack detection.

Unlike common deep-learning applications such as face recognition [155] or

object detection [83], the ground-truth data of crack detection is quite expen-

sive. In addition, since cracks in different environments are very diverse, it is

important to test the pre-trained model on a new dataset. In this work, we pro-

posed a multiple scales deep pixel distribution learning (MS-DPDL) model for

crack detection, and evaluated it using different training and testing datasets.

To improve accuracy, we used a multiple scale strategy to learn the distribution

of pixels from different scales. As shown in Fig. 4.5, the proposed method was

first trained on the CRACK500 [141], [147] dataset, which is a dataset with

500 crack images of size 3264 by 2448 pixels. Then, this pre-trained MS-DPDL

model was tested on the Concrete Crack Images dataset [107] for a classifica-

tion task. Therefore, the training and testing datasets of the proposed method

were completely different. During the testing, the proposed method achieved

an accuracy of 0.97525 on the entire classification dataset (of 40,000 images),

which demonstrates good precision and transferability.
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Figure 4.5: The demonstration of using pixels distribution learning for crack
detection. The proposed method is first trained on CRACK500 dataset [141],
[147], then the Concrete Crack Images dataset [107] is used for testing.

4.2.2 Pixel Distribution Learning for Crack Detection

The framework of the proposed approach is quite straightforward, as shown

in Fig. 4.6. Crack images from multiple scales were extracted and converted

into the random permutation of spatial pixel (RPoSP) features, which were

discussed in the previous section. Then, the RPoSP features from different

scales were input into convolutional layers whose output was combined for

final classification. The final classification block consisted of a relu layer and

fully connected layer followed by a logic loss such as the softmax function

combined with a negative log likelihood loss.

4.2.3 Experiments

During the evaluation of the proposed method, the CRACK500 [141], [147]

dataset was used. CRACK500 is a pavement crack dataset with 500 im-

ages (pixel size 3264 by 2448) taken using cell phones on the main campus

of Temple University in Philadelphia, Pennsylvania, in the United States. It

is currently the largest publicly accessible pavement crack dataset with pixel-

wise annotation. Due to the large size, the authors cropped each image into
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Figure 4.6: The network architecture of the pixel distribution learning network
for crack detection.

16 non-overlapped image regions. There are, in total, 3368 cropped images.

Fig. 4.7 shows some sample images in CRACK500. As shown, there are dif-

ferent kinds of pavement concrete. Some is in different colors and patterns,

some cracks are obvious while some are tiny. Also, there may be deceptive

factors like cigarette butts and yellow lines. This makes the dataset really

complex. This dataset is used for training, and measures the performance for

crack segmentation. In addition, in order to demonstrate the transferability of

the proposed method, we evaluated our method in the Concrete Crack Images

[107] dataset, which is proposed for crack classification. The dataset contains

concrete images both with and without cracks. The data was collected from

various METU campus buildings. For image classification, it is divided into

two types of crack images: positive and negative. The sample images in the

two classes are shown in Fig. 4.8 and Fig. 4.9 respectively. Each class has

20k images with a total of 40k images of size 227 by 227 pixels with RGB

channels. The dataset was generated from 458 high-resolution images (4032
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(g) (h) (i)

Figure 4.7: Examples of cropped images in CRACK500 dataset.

by 3024 pixels) with the method proposed by Zhang et al. [147].

Evaluation metrics

To validate the quality of our method result, we use four measures: recall[38],

precision, f-measure and IoU for crack segmentation. These measurements are

in the range from 0 to 1, a higher value means a better performance.

We use recall, precision, f-measure and accuracy to evaluate crack classifi-

cation, which are mathematically shown as follows:

precision =
ntp

ntp + nfp

recall =
ntp

ntp + nfn

accuracy =
ntp + ntn

ntp + ntn + nfp + nfn

F1 = 2
precision · recall

precision + recall
IoU =

target ∩ prediction

target ∪ prediction

63



(a) low illumination (b) tiny crack (c) hole

(d) blurred (e) red line (f) dust

Figure 4.8: Examples of cracked images.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.9: Examples of non-cracked images.

where ntp, nfp, ntn and nfn represent the true positive, false positive, true

negative and false negative respectively. In particular, positive means the
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Table 4.3: A quantitative comparison of between the propose approach and
previous methods

Measurements Recall Precision Fm Accuracy
Proposed method 0.9916 0.9918 0.9916 0.9920
CNN(Sitara) [119] 0.94 0.95 0.94 0.99

VGG16 [119] 0.92 0.93 0.92 0.96
VGG19 [119] 0.73 0.80 0.76 0.81

Inception ResNet [119] 0.93 0.93 0.93 0.98
SVM [66] [78] 0.7333 0.6875 0.7096 0.7187
CNN [66] [130] 0.7802 0.8875 0.8304 0.8187

FCN(Manjurul) [66] 0.941 0.913 0.927 0.928
CNN-AT(Rui) [38] 0.9992 0.9992 0.9992 0.9992

output of network is crack, and true means this output is correct.

Comparison with Previous Work

The proposed method was compared with FPHBN [141], CrackForest [115],

and DPDL [152]. The results of the compared algorithms were captured by

the implementation provided by the authors. In particular, the FPHBN [141]

was trained with 1,896 images on the CRACK500 dataset for 12,000 iterations.

CrackForest was trained on the same configuration. The proposed approach

was trained with 200 images for 200 epochs. During training, 200 images were

used and 200 was given as the maximum epoch number. Fig. 4.10 shows

the visualization comparison of some sample cases. We performed better than

CrackForest and DPDL. And even though the proposed approach was trained

on far fewer images than FPHBN, we achieved similar results.

Crack classification Results

In order to demonstrate the transferability of the proposed approach, we used

the pre-trained model of the proposed approach (trained on 20 images for 80

epochs) to do the crack classification on the Concrete Crack Images for Clas-

sification dataset [107]. A threshold K = 40 was used during all experiments.

When the number of pixels labelled as 1(crack) in an image is greater than K,

we say there is crack in the image. Otherwise the image is a non-crack.

Table 4.3 shows the quantitative comparisons between the proposed ap-
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Figure 4.10: Results of compared methods on different kind of concrete sur-
faces

proach and state-of-the-art methods. There are 20k cracked images and 20k

non-cracked images in that dataset. To compare with Rui’s [38] model, which

tests only 10k images from the dataset, we used stratified sampling to select

5k from the cracked images and 5k from the non-cracked images. In con-

trast, Rui [38] trained their net on 30k images (15k positive and 15k negative)

and tested on the remaining 10k images. Sheerin’s network [119] trained on

32k images(16k positive and 16k negative) and tested the remaining 8k im-

ages. Sheerin’s work shows results for VGG16, VGG19 and Inception ResNet

as well. Manjurul [66] used 24k images(12k positive and 12k negative) for

training and validation, and tested on the remaining 16k images. As shown

in Table 4.3, the proposed approach achieved 0.992 overall accuracy over the
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10k sampled test images. It should be noted that the proposed approach

was trained on CRACK500 dataset only. We used the trained model of the

proposed approach, which was trained only on the CRACK500 dataset.
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Chapter 5

Universal Background
Subtraction based on
Arithmetic Distribution Neural
Network
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Abstract

In this chapter, we propose a universal background subtraction framework

based on the Arithmetic Distribution Neural Network (ADNN) for learning

the distributions of temporal pixels. In our ADNN model, the arithmetic

distribution operations are utilized to introduce the arithmetic distribution

layers, including the product distribution layer and the sum distribution layer.

Furthermore, in order to improve the accuracy of the proposed approach, an

improved Bayesian refinement model based on neighboring information, with a

GPU implementation, is incorporated. In the forward pass and backpropaga-

tion of the proposed arithmetic distribution layers, histograms are considered

as probability density functions rather than matrices. Thus, the proposed

approach is able to utilize the probability information of the histogram and

achieve promising results with a very simple architecture compared to tradi-

tional convolutional neural networks. Evaluations using standard benchmarks

demonstrate the superiority of the proposed approach compared to state-of-

the-art traditional and deep learning methods. To the best of our knowledge,

this is the first method to propose network layers based on arithmetic distri-

bution operations for learning distributions during background subtraction.
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5.1 Introduction

Background subtraction is a fundamental research topic in computer vision,

which has attracted increasing attention during a period of explosive growth

in video streaming. Recently, several sophisticated models based on deep

learning networks have achieved excellent performance. Unfortunately, to the

best of our knowledge, there are still a few challenges that limit the use of

deep learning networks in real applications of background subtraction. First,

such algorithms usually require a large number of ground-truth frames for

training; however, creating ground-truth frames is quite expensive since ev-

ery pixel of each frame has to be labelled. Second, several excellent networks

for background subtraction perform poorly for unseen videos, because of their

dependence on the scene information in training videos. Last but not least,

various networks are trained with different videos and the parameters of net-

works for different testing videos are thus different. Therefore, there is no

single well-trained network that can be applied for all testing videos. In order

to address these challenges, a universal background subtraction method based

on the Arithmetic Distribution Neural Network (ADNN) is proposed.

In background subtraction, pixels are classified as foreground or back-

ground based on comparisons with their historical counterparts. Thus, previ-

ous approaches captured a background image to represent the historical ob-

servations of pixels. Several recent methods used deep learning networks to

learn the background representation for subtraction. However, such networks

usually require a large number of ground-truth frames to learn the background

representation and need to train a particular network for every video, to deal

with the diversity in scene information for different videos. In addition, al-

though a few excellent research (e.g., FgSN [86]) have achieved almost perfect

results, their performance declines when an unseen video is introduced for

segmentation. Background subtraction is essentially a classification of tem-

poral pixels. The distributions of comparisons between temporal pixels are

useful features that can be directly input into the network for classification.

Therefore, in this work, we focus on learning the distribution of comparisons
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Arithmetic 
Distribution Layers

BackgroundForeground

(   ×    )+ (   ×    )+

Learning kernels of 
product distribution layer

Learning kernels 
of sum distribution layer

Figure 5.1: Illustration of the arithmetic distribution neural network for back-
ground subtraction. Histograms of subtractions between the current observa-
tions and their historical counterparts in pixels are input into the arithmetic
distribution layers, containing the product and sum distribution layers for
distribution learning. In particular, the learning kernels of arithmetic distri-
butions layers are also distributions described by histograms. A classification
architecture is then attached to label the pixels according to the output of
these layers.

to classify pixels into foreground or background, based on a new Arithmetic

Distribution Neural Network (ADNN), as shown in Fig. 5.1.

The architecture of the proposed network is straightforward. Distributions

described by histograms of subtractions between pixels’ current observations

and their historical counterparts are used as the input of the arithmetic distri-

bution neural network. In particular, we propose the arithmetic distribution

layers including the product and sum distribution layers as the first block of

the network for learning distributions. A classification block is attached to

label pixels according to the output of the arithmetic distribution layers. The

architecture of the classification block is kept as simple as possible, with only

one convolutional layer, one rectified linear unit layer, and one fully connected
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layer, to demonstrate that the good performance of the proposed approach

comes from the proposed arithmetic distribution layers. Unfortunately, since

pixels are classified independently, the proposed network is sensitive to noisy

points that can be handled by neighboring information. An improved Bayesian

refinement model, with a GPU implementation, is thus proposed for noise

compensation. By utilizing the arithmetic distribution layers, histograms are

considered as probability density functions, with the probability information

being utilized. This helps the proposed approach achieve better distribution

learning ability compared to even convolutional neural networks. Further-

more, since the histograms of temporal pixels are pixel-wise features, a large

number of training instances can be captured. Thus, the proposed approach

requires fewer than 1% of the ground truth frames during training. Finally,

since the distribution information of temporal pixels is independent of scene

information, the proposed network does not rely too much on the scenes where

training frames are captured. Our ADNN can be trained with video frames

obtained from different scenes, and it is valid even when no frame from the

scenes of the testing videos is included in the training set. In addition, the

independence of distribution information allows us to train only one network

for all seen and unseen videos. The main contributions are shown as follows:

• We propose the Arithmetic Distribution Neural Network (ADNN) for

background subtraction, utilizing the product distribution layer and the

sum distribution layer.

• An improved Bayesian refinement model, with a GPU implementation,

is proposed to improve the accuracy of our approach. In particular,

an approximation of the Gaussian function is utilized to compute the

correlation between neighboring pixels.

• Comprehensive experiments are conducted to evaluate the proposed ap-

proach, including: a) comparisons between the proposed ADNN and

traditional convolutional neural networks on real data, as shown in Sec-

tion 5.4.2; b) an ablation study of the proposed arithmetic distribution

72



layers; c) a comprehensive comparison between the proposed approach

and state-of-the-art methods including traditional and deep learning ap-

proaches on standard benchmarks, as shown in Section 5.4.3.

5.2 Arithmetic Distribution Layers

In this section, the mathematical details of the proposed arithmetic distribu-

tion layers are discussed. To the best of our knowledge, distributions have to

be converted to histograms for convolutions in which the matrix arithmetic

operations are used; and, all the objects involved in the operations are consid-

ered as vectors. Under this condition, the correlation between the entries of

a histogram as well as their probability information are ignored. Essentially,

histograms can be considered as the discrete approximation of the probabil-

ity density functions that describe the distributions of the observed values of

random variables. When a histogram of a distribution is input into a network

for classification, it can be considered as a classification of random variables

that have the input distributions. Based on this insight, we assume that the

arithmetic distribution operations [120] are better than matrix arithmetic op-

erations for distribution analysis, because histograms are considered as distri-

butions rather than vectors during arithmetic distribution operations. Thus,

a new type of network layers named arithmetic distribution layers, which con-

tain the product and sum distribution layers, is proposed as a better substitute

for the convolution layers for distribution classification. During the forward

pass of the proposed arithmetic distribution layers, the input distributions are

computed with the distributions in the learning kernels to generate the output

distributions. In contrast to the backpropagation of the arithmetic distribution

layers, the gradient of the distributions in the learning kernels with respect to

the network output is computed to update the learning kernels. In particular,

all these distributions are described by histograms and all computations are

based on the arithmetic distribution operations in the proposed arithmetic

distribution layers.

Notation: Before discussing the mathematical formulae of the forward
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pass and backpropagation of the proposed arithmetic distribution layers, the

notation used throughout the rest of this section is first introduced. Let X

and Z denote the random variables following the distributions of the input and

output of the proposed arithmetic distribution layers, respectively. Let W and

B denote the random variables following the distributions in the learning ker-

nels of the product distribution layer and sum distribution layer, respectively.

Let fX(x), fW (w), fB(b) and fZ(z) denote the probability density functions

of random variables X, W , B and Z, respectively, where x, y, b and z denote

the observed values of X, Y , B and Z, respectively. Let ~x, ~w, ~b and ~z denote

the histograms used to describe fX(x), fW (w), fB(b) and fZ(z), respectively.

In particular, xn, wi, bk and zj are the entries of histograms ~x, ~w, ~b and ~z,

respectively, where n, i, k, j are indices. loss is the final scalar output of the

network using the arithmetic distribution layers. During training, we want to

minimize the value of loss to approach 0 if possible. δS ≡ ∂loss
∂S

is the gradient

of variable S with the respect to loss. S can be the entries of histograms in

the learning kernels, such as wi or bk.

The product distribution layer is used to compute the distribution of the

product of random variables X and W having distributions fX(x) and fW (w),

respectively. The input of the product distribution layer is a histogram de-

scribing fX(x). Then, the histogram of the learning kernel in the layer is used

to describe fW (w). Finally, the output of the layer is a histogram of fZ(z),

which is the probability density function of the random variable Z = XW . In

order to implement the product distribution layer, the expressions for fZ(z)

and the gradient of fW (w) must be obtained for the forward pass and the

backpropagation, respectively. This is discussed in the remaining part of this

section. The forward pass of the product distribution layer is the procedure

to compute fZ(z) by the product of fX(x) and fW (w). In order to capture the

expression for fZ(z), the definition of the cumulative distribution function of
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Z is proposed first, as shown below:

FZ(z)
def
= P(Z ≤ z) = P(XW ≤ z)

=P(XW ≤ z,W ≥ 0+) + P(XW ≤ z,W ≤ 0−)

=P(X ≤ z

W
,W ≥ 0+) + P(X ≥ z

W
,W ≤ 0−)

∵ XW ≤ z,W ∈ [−∞ 0−] ∪ [0+ ∞]

⇒X ≤ z

W
,W ≥ 0+ or X ≥ z

W
,W ≤ 0−

(5.1)

where FZ(z) is the cumulative distribution function of the random variable Z.

P is a cumulative distribution under a particular condition. Next, assuming

X, W and Z are between negative infinity and positive infinity, the expression

of FZ(z) is converted into an expression following the cumulative distribution

function. Mathematically, this can be shown as:

FZ(z)=

∫ ∞
0+
fW (w)

∫ z
w

−∞
fX(x)dxdw+

∫ 0−

−∞
fW (w)

∫ ∞
z
w

fX(x)dxdw

∵ P(X ≤ z

w
,W ≥ 0+)=

∫ ∞
0+
fW (w)

∫ z
w

−∞
fX(x)dxdw

P(X ≥ z

w
,W ≤ 0−)=

∫ 0−

−∞
fW (w)

∫ ∞
z
w

fX(x)dxdw,

(5.2)

where dx and dw are the delta of x and w respectively. Then, the formula of

fZ(z) can be obtained by the derivative of the cumulative distribution function

FZ(z) with respect to z. However, since z is under the integral sign, the Leibniz

integral rule is applied. In calculus, the Leibniz integral rule is used for differ-

entiating under the integral sign. For example, the derivative of
∫ b(z)
a(z)

f(z, x)dx

with respect to z, where −∞ < a(z), b(z) <∞, can be expressed as:

d

dz

(∫ b(z)

a(z)

f(z, x)dx

)
= f(z, b(z)) · d

dz
b(z)

−f(z, a(z))· d
dz
a(z) +

∫ b(z)

a(z)

∂

∂z
f(z, x)dx.

(5.3)

Thus, with the help of the Leibniz integral rule, the expression for fZ(z) can

be obtained as the derivative of the cumulative distribution function FZ(z)
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with respect to z. This is expressed as:

fZ(z) =
d(FZ(z))

dz

=d

(∫ ∞
0+
fW (w)

∫ z
w

−∞
fX(x)dxdw+

∫ 0−

−∞
fW (w)

∫ ∞
z
w

fX(x)dxdw

)
/dz

=

∫ ∞
0+
fW (w)

[
d
∫ z

w

−∞fX(x)dx

dz

]
dw+

∫ 0−

−∞
fW (w)

[
d
∫∞

z
w
fX(x)dx

dz

]
dw

=

∫ ∞
0+

fW (w)fX(
z

w
)

1

w
dw −

∫ 0−

−∞
fW (w)fX(

z

w
)

1

w
dw

=

∫ ∞
0+

fW (w)fX(
z

w
)

1

w
dw +

∫ 0−

−∞
fW (w)fX(

z

w
)

1

−w
dw

=

∫ ∞
0+

fW (w)fX(
z

w
)

1

|w|
dw +

∫ 0−

−∞
fW (w)fX(

z

w
)

1

|w|
dw

=

∫ ∞
−∞

fW (w)fX(
z

w
)

1

|w|
dw

∵
d
∫ z

W

−∞ fX(x)dx

dz
= fX(

z

w
)
d

dz
(
z

w
)− f(−∞)

d

dz
(−∞)

+

∫ z
W

−∞

∂

∂z
(fX(x)dx) = fX(

z

w
)

1

w
− 0 + 0

d
∫∞

z
W
fX(x)dx

dz
= fX(∞)

d

dz
(∞)− fX(

z

w
)
d

dz
(
z

w
)

+

∫ ∞
z
W

∂

∂z
(fX(x)dx) = 0− fX(

z

w
)

1

w
+ 0

|w| = −w if w ∈ [−∞ 0−], |w| = w, if w ∈ [0+ ∞]

⇒ zj =
∞∑

i=−∞

wifX(
zj
i

)
1

|i|
· 1 ∵ dw = 1, fW (i) = wi,

(5.4)

where wi and zj are the entries of histograms ~w and ~z that are used to describe

fW (w) and fZ(z), respectively. The formula for the forward pass of the product

distribution layer is thus derived. Then, the gradient of fW (w), which is used

to update wi during backpropagation, is obtained by partial derivatives and
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the chain rule. Mathematically:

∂loss

∂wi
=
∂loss

∂Z
· ∂Z
∂wi

=
∞∑

j=−∞

∂loss

∂zj
· ∂zj
∂wi

=
∞∑

j=−∞

∂loss

∂zj
·
∂

(
∞∑

i=−∞
wifX(

zj
i

) 1
|i|

)
∂wi

=
∞∑

j=−∞

δzjfX(
zj
i

)
1

|i|

⇒ δwi =
∞∑

j=−∞

δzjfX(
zj
i

)
1

|i|
,

. (5.5)

where δwi and δzj are the gradients of entries of histograms of fW (w) and fZ(z)

respectively, i and j are indices. loss is the final scalar output of the network

having product distribution layers, which is also the output of loss functions

such as Mean Squared Error or Cross-entropy Loss during training. This way,

the formula for backpropagation of the proposed product distribution layer is

derived.

Similarly, the sum distribution layer is used to compute the distribution of

the sum of random variables X and B, which are described by fX(x) and fB(b),

respectively. Similar to the product distribution layer, fX(x) and fB(b) are

represented by histograms as well. Utilizing the same mathematical procedure

as the product distribution layer, the expression of the probability density

function of the sum Z = X +B of X and B is obtained. Mathematically:

fZ(z) =

∫ ∞
−∞

fB(b)fX(z − b)db

⇒ zj =
∞∑

i=−∞

bifX(zj − i) · 1 ∵ db = 1, fB(i) = bi,
(5.6)

where bi and zj are the entries of histograms utilized to describe fB(b) and

fZ(z) corresponding to random variables B and Z, respectively. i and j are
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indices. Also, the formula for backpropagation is:

∂loss

∂bk
=
∂loss

∂Z
· ∂Z
∂bk

=
∞∑

j=−∞

∂loss

zj
· ∂zj
∂bk

=
∞∑

j=−∞

∂loss

zj
·
∂(

∞∑
i=−∞

bifX(zj − i))

∂bk

=
∞∑

j=−∞

δzjfX(zj − k)

⇒ δbk =
∞∑

j=−∞

δzjfX(zj − k),

(5.7)

where δbk and δzj are the gradients of entries in histograms corresponding to

fB(b) and fZ(z) respectively, and k and j are indices. loss is the final output

of the network using the sum distribution layer.

With the help of Eqn. 5.4–5.7, the forward pass and the backpropagation

of arithmetic distribution layers can be easily implemented in Pytorch [3]. In

particular, the gradient of the learning kernels of the arithmetic distribution

layers is computed and input into the “Autograd package” of PyTorch [3] for

backpropagation. In our implementation of the arithmetic distribution layers,

since the distributions of temporal pixels whose values have been normalized

within [0, 1], are used as the network input, the x coordinate of histograms is

narrowed into [−1, 1] with a bin interval of 0.01. This means that there are

(1− (−1))/0.01 + 1 = 201 bins in the histograms. This is the reason why the

size of the arithmetic distribution layers shown in Table 5.1 is 3×201×1, where

3 represents the RGB channels of images. Furthermore, the sum of probability

values falling into bins are normalized to 1, before the histograms are used as

network input. It should be noted that a larger range of the x coordinate of

histograms can give us more accurate results. However, this implementation

setting is enough to generate promising results, and is used for all experiments

proposed in this work.
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Table 5.1: Details of the proposed arithmetic distribution neural network ar-
chitecture for background subtraction.

Type Filters Layer size Data size
Input B×3× 201× 1
Product Distribution 2 3× 201× 1 B×3× 201× 2
Sum Distribution 2 3× 201× 1 B×3× 201× 2
Convolution 1 3× 1× 2 B×10× 201× 1
Convolution 512 1× 201× 1 B×512× 1× 1
Rectified linear unit
Convolution 2 512× 1× 1 B×2× 1× 1
Softmax

B: Batch size.

5.3 Arithmetic Distribution Neural Network

for Background Subtraction

Utilizing the proposed product and sum distribution layers, the arithmetic dis-

tribution neural network is devised for background subtraction. Background

subtraction is a binary classification of temporal pixels; thus, the distributions

of temporal pixels play an important role. In this work, the distributions of

subtractions between pixels and their historical counterparts are used for clas-

sification. In particular, histograms are utilized to describe the distributions

of subtractions and also directly used as the input of the proposed arithmetic

distribution neural network. The network architecture is quite straightfor-

ward: histograms are first input into the product distribution layer and the

sum distribution layer. Then, the outputs of these layers are combined by a

convolution followed by a classification architecture which consists of a con-

volution, a rectified linear unit (Relu) layer, and a fully connected layer. The

classification architecture is deliberately kept as simple as possible, with only

3 layers, in order to demonstrate that the good results come from the proposed

arithmetic distribution layers.

The components of the proposed arithmetic distribution neural network for

background subtraction are illustrated in Fig. 5.2, with details of the network

architecture presented in Table 5.1, in which the first two convolutions are 1D

convolution, since one of the values of the kernel size is 1. Starting with a

given frame of a video, denoted as I = {I1, I2, · · · , IT} = {It|t = [1, T ] ∩ N},
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where t is the frame index, T is the number of frames, and N is the set of all

natural numbers. To perform background subtraction for a particular pixel

located at (x, y) on frame t, the histogram of subtractions between pixels’ cur-

rent observation and their historical counterparts is captured for classification.

Mathematically:

Hx,y(n) =
T∑
i=1

(Ii(x, y)− It(x, y)) ∩ n, (5.8)

where Hx,y is the histogram of subtractions, and n is the index of entries of the

histogram. Ii(x, y) denotes historical observations of the pixel located at (x, y),

and It(x, y) denotes its current observation. The distributions of subtractions

are directly used as the input to the product and sum distribution layers for

distribution learning. Then, the sum of the outputs of these two layers is used

as the input of the classification architecture. Mathematically:

M(x, y) = L(C(Fp(Hx,y) + Fa(Hx,y))), (5.9)

where Hx,y is the input histogram; Fp and Fa denote the product distribution

and the sum distribution layer; C is the convolution procedure; and L is the

classification architecture consisting of a convolution, a rectified linear unit,

and a fully connected layer attached with a softmax function. In particular,

the negative log likelihood loss (NLLLoss) is used to update the parameters

in L, C, Fp and Fa during the training process. In contrast to the testing

process, the arguments of the maxima (argmax) function is attached on the

last layer of the classification architecture L to generate the label M(x, y) of

the histogram captured from the pixel located at (x, y).

Unfortunately, the histograms utilized for classification are captured from

independent pixels. Thus, the correlation between pixels is ignored. In order to

improve the accuracy of the proposed approach, an improved Bayesian refine-

ment model is introduced. For completeness, we briefly introduce the Bayesian

refinement model; please check [151] for more details. In the Bayesian refine-

ment model, the labels of pixels are re-inferred according to the correlations

with their neighborhoods, and the Bayesian theory is utilized during infer-

ence. In particular, Euclidean distance is used to compute the correlation. In
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Figure 5.3: An illustration of the Gaussian approximation function which
approximates using a piecewise function controlled by the parameters of the
Gaussian function.

contrast, we utilize a mixture of Gaussian approximation functions to capture

the correlation. This is the main difference compared to the original Bayesian

refinement model. Mathematically:

F(I(x, y),M) = argmax
ai

P (I(x, y)|ai)P (ai)

P (I(x, y))

= argmax
ai

P (ai)
K∑
k=1

πkNp(vk|µk,i,Σk,i)

∵P (I(x, y)) = N

& argmax
x

Nx = argmax
x

x

P (I(x, y)|ai) =
K∑
k=1

πkNp(vk|µk,i,Σk,i),

(5.10)

where F denotes the proposed improved Bayesian refinement model. ai ∈

{0, 1} denotes the labels of foreground or background; I(x, y) is a pixel located

at (x, y); and, P (I(x, y)|ai) is the probability that the label of this pixel is

ai, which is captured though a mixture of Gaussian approximation functions

Np(vk|µk,iΣk,i). In particular, vk denotes the feature vector consisting of the

Lab color and spatial position of the pixel I(x, y), and k is the index of entries

in a vector. uk and Σk denote the mean and variance of features of a pixel in a

local rectangular range with center at (x, y) and radius R = 4. πk is the weight

to mix the Gaussian approximation functions Np which is mathematically
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expressed as:

Np(x|µ, σ) =

{
|1 + x−µ

nσ
| |x− u| ≤ nσ

0 otherwise
(5.11)

where µ and σ denote the mean and variance, and n is a user parameter. Dur-

ing experiments, n = 2 gives us the best results. As shown in Fig. 5.3, the

Gaussian approximation function is actually a rough estimate of the Gaussian

function. We use a piecewise function to approximate the waveform of the

Gaussian function considering the computational cost. Also, it is more conve-

nient for a GPU implementation, which significantly accelerates the refinement

procedure.

Finally, the output binary mask is used in the input again to generate better

results iteratively. The Bayesian refinement model is utilized to iteratively

refine the foreground mask. Mathematically:

Mn(x, y) = F(I(x, y),Mn−1), (5.12)

where n is the iteration number and Mn−1 is the binary mask from the last

iteration. Using a GPU implementation, with the number of iterations set to

20, which is used in all the evaluation experiments proposed in this work, the

entire refinement procedure only takes a few seconds.

The improved Bayesian refinement model (IBRM) runs much faster than

the Bayesian refinement model (BRM) with almost no loss in accuracy. A

comparison between them on a few frames for videos at different resolutions is

shown in Table 5.2. In particular, the running time of BRM and IBRM with

iteration numbers 1, 20 and 50 are presented, as well as the Fm value of their

corresponding output masks after refinement. As shown in Table 5.2, when the

number of iterations is 50, although the Fm value of the output mask shows

obvious improvement, the run time also increases to 52s, which is too long for

real applications. In contrast, IBRM needs only 3.5s of processing time, and

the Fm value of the output mask is still close to the one for BRM. Actually,

improved Bayesian refinement is devised for GPU implementation with the

motivation of accelerating the refinement procedure. Thus, the superiority of

the proposed IBRM is demonstrated. For comparisons, both BRM and IRBM
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Table 5.2: Comparison between Bayesian refinement model and our improved
Bayesian refinement model on frames of videos at different resolutions.

Video Resolution NI
Time/s Fm value

BRM IBRM BRM IBRM

highway 320× 240
1 1.2533 1.4429 0.9554 0.9612
20 21.1842 2.2524 0.9826 0.9828
50 52.7545 3.5712 0.9911 0.9905

canoe 320× 240
1 1.1496 1.4215 0.9552 0.9528
20 19.9488 2.2968 0.9535 0.9482
50 50.4685 3.5780 0.9534 0.9453

wetSnow 720× 540
1 5.2601 1.6945 0.7252 0.7279
20 93.1602 5.8695 0.7731 0.7646
50 234.7885 12.5385 0.7750 0.7732

NI: Number of iterations BRM: Bayesian refinement model
I BRM:Improved Bayesian refinement model.

are run on GPU devices, all data are moved into video memory (GPU memory)

to guarantee the running environment of BRM and IBRM are the same.

5.4 Experiments

5.4.1 Verification of Arithmetic Distribution Layers

In this section, we verify the correctness of the proposed arithmetic distribution

layers including the product distribution layer and sum distribution layer. In

the experiments, synthetic data is used for verification. In particular, two

continuous independent random variables X and W , which are described by

two different probability density functions representing two histograms, are

generated. In addition, the product Zp = XW and the sum Zs = X + W

of the two variables X and W are computed for use as the target output.

The values of X and W as well their product and sum are generated over one

million times to capture the target histograms of Zp and Zs. The verification

experiment is quite straightforward: the histogram of X is input into the

product distribution layer and the sum distribution layer, to compute with

the histogram of W ′ in layers to output the histograms of Z ′p and Z ′s. The

output histograms are then compared with the target histograms of Zp and Zs

to capture the gradients to train the arithmetic distribution layers. Finally,

the correlation values between the output histograms and target histograms
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Table 5.7: Quantitative evaluation of the proposed approach for unseen videos
on the LASIESTA [27] dataset, using the Fm metric.

Videos ADNN-IBC2fsBSUV2.0[126] 3DCD[99] FgSN[86] CueV2[7]
I SI 02 0.91 0.89 0.86 0.53 0.84
I CA 02 0.79 0.60 0.49 0.58 0.78
I OC 02 0.95 0.95 0.93 0.25 0.86
I IL 02 0.53 0.89 0.85 0.41 0.65
I MB 02 0.88 0.76 0.79 0.63 0.92
I BS 02 0.92 0.69 0.87 0.25 0.62
O CL 02 0.97 0.89 0.87 0.54 0.90
O RA 02 0.97 0.93 0.87 0.54 0.89
O SN 02 0.80 0.70 0.49 0.05 0.63
O SU 02 0.87 0.91 0.83 0.29 0.77
Average 0.86 0.82 0.79 0.41 0.79

are computed to verify if the output is close to the target. Mathematically,

the correlation value is computed as:

v =
HZ ·HZ′

|HZ ||HZ′ |
(5.13)

where HZ and HZ′ are the histograms of the target distribution and output

distribution, and v is the correlation value.

The experimental results are shown in Fig. 5.6, in which the histograms of

X and W , the histograms of output layers Z ′p and Z ′s, the target histograms

of Zp and Zs, the histogram of the arithmetic distribution layers W ′, and

the correlation-epoch plots are shown. After training hundreds of epochs, the

correlation between the output and target distributions is almost equal to

1. Furthermore, the distribution learned by the arithmetic distribution layers

is almost the same as the one for W , which is used to generate the target

histogram. Both of these results demonstrate that the proposed arithmetic

distribution layers have the ability to output the desired distributions. The

correctness of the proposed arithmetic distribution layer, which contains the

forward pass and backpropagation through layers, is thus verified.

5.4.2 Comparisons with Convolutional Neural Networks

In this section, we demonstrate the superiority of the proposed arithmetic

distribution neural network (ADNN) compared to the convolutional neural
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Product Distribution Correlation value = 0.999

Correlation value = 1.000Sum Distribution

Figure 5.6: Validation of the arithmetic distribution layers including prod-
uct and sum distribution layers. The histogram of input X, the histogram
in the learning kernel W ′, the histogram of the ground truth W , the his-
tograms of output layers Z ′p and Z ′s, the target histograms of Zp and Zs and
the correlation-epoch plot are shown.

network (CNN). Arithmetic distribution layers are proposed to serve as a

better substitute for the convolutional layer. Thus, the proposed ADNN is

better than convolutional neural networks in distribution classification. In or-

der to demonstrate this, we devise 2 arithmetic distribution neural networks

(ADNN1−2) to compare with 14 traditional convolutional neural networks

(CNN1−14). Details on the architecture of ADNN1−2 and CNN1−14 are shown

in Table 5.4. CNN1−3 are devised by replacing the arithmetic distribution lay-
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ers in ADNN1 by several convolutional layers. CNN4−7 are devised by inserting

extra nonlinear activation functions, such as Rectified Linear Unit (Relu) or

Gaussian Error Linear Unit (Gelu), into CNN3 to handle the nonlinear data.

Similarly, CNN8−10 are devised by replacing the arithmetic distribution layers

in ADNN2 with fully connected layers, and CNN11−14 are devised by insert-

ing extra Relu and Gelu layers into CNN10. During the comparisons between

ADNNs and CNNs, one ground-truth frame from training videos is extracted

for training, and all training and testing settings of CNNs and ADNNs are the

same, including the learning rate, training algorithms, maximum number of

training epochs, random number seed as well as the input and output of net-

works. For evaluation, the Re (Recall), Pr (Precision), and Fm (F-measure)

metrics are used.

From the quantitative comparisons shown in Table 5.5, we can conclude

that the results of CNN3 are better than CNN2 which are better than CNN1,

since when the training data is fixed, a network with more parameters is sup-

posed to have better learning ability. In addition, the results of CNN3 are

better than the ones of CNN4−7 which are devised by adding Relu and Gelu

layers into CNN3. This is because Relu or Gelu drops several entires of input

vectors which may result in losing useful information. In contrast, the proposed

ADNN1 achieves better results on the average Fm value compared to CNN3−7,

which uses around 100 times more parameters than the proposed ADNN. This

clearly demonstrates that the block consisting of arithmetic distribution layers

has better distribution learning ability than the one consisting of traditional

convolutional layers attached or not attached with Relu or Gelu. Moreover,

in order to further compare the proposed arithmetic distribution layers with

fully connected layers, which has better ability than convolutional layers to

learn global information, the comparisons between ADNN2 and CNN8−14 are

presented in Table 5.6. In particular, since the learning ability of CNN and

ADNN are improved by increasing of the number of parameters, both the seen

and unseen videos are used for evaluation to obtain the quantitative results

under challenging conditions. As shown in Table 5.6, CNN6 is the largest

network with 2.9 million parameters and it is constructed purely by fully con-
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nected layers, and CNN11−14 are devised by inserting Relu and Gelu in these

fully connected layers. However, the proposed ADNN2 still achieves better re-

sults than CNN8−14 and the number of parameters in ADNN2 is only around

0.1 million. Thus, it is fair to claim that the proposed arithmetic distribution

layers are better than convolutional layers in distribution classification tasks.

5.4.3 Comparisons with State-of-the-art Methods

The proposed approach has three good properties for use in real applications.

1) Generality : the proposed approach is effective for unseen videos; 2) Effi-

ciency : only limited ground-truth frames are required to generate promising

results; 3) Universality : one network can be trained for all videos. In this sec-

tion, these three properties are demonstrated through comparisons with state-

of-the-art methods including unsupervised methods, deep learning methods

for seen videos and unseen videos on CDnet2014 [135] LASIESTA [27] and

SBMI2015 [94] datasets.

The deep learning networks compared include DeepBS[4], GuidedBS[84],

CNN-SFC[33], D-DPDL [151], 3DCD[99], FgSN[86], MSFS[85], DVTN [43]

and BSUV[126], [127]. In particular 3DCD[99] and BSUV[126], [127] are ef-

fective for unseen videos. After the rise of deep learning networks in the

background subtraction field, the fairness of comparisons between deep learn-

ing methods has been a concern. It is commonly accepted that the quantity

of training data and the number of parameters in a network have significant

and direct contributions to the performance of various methods [77]. However,

the assumptions on the training data, numbers of parameters in the network,

and the utilization of pre-trained networks in these methods are completely

different. In order to propose fair comparisons, the proposed ADNN is trained

and tested under 6 conditions to propose different evaluation results which

are named ADNN-IBU4fs, ADNN-IBC2fs, ADNN-IBL3fs, ADNN-IBS2fs, ADNN-

IBc8fm and ADNN-IBC20fs for comparisons with various state-of-the-art meth-

ods.

ADNN-IBU4fs is trained following the partition of training and testing

videos proposed in BSUV [127]. During training, 4 ground-truth frames from
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every training video and 4 binary masks of testing videos provided by IUTIS-

5 [8] are mixed and used for training. Note that BSUV also manually ex-

tracted hundreds of frames from testing videos to generate reference images

which can be used as background instances to train the proposed approach.

ADNN-IBC2fs is trained by a mixture of 2 ground-truth frames from every

video of the CDnet2014 [135] dataset. ADNN-IBc8fm is trained by a mixture

of 8 down-sampling ground-truth frames from every video of the CDnet2014

[135] dataset. During the down-sampling procedure, only 25% of labels from

the ground-truth frames are kept for training. Thus, the total number of train-

ing instances of ADNN-IBc8fm and ADNN-IBC2fs are actually the same, but

the training set of ADNN-IBc8fm includes more temporal information. Both

ADNN-IBC2fs and ADNN-IBc8fm are tested on CDnet2014 [135], LASIESTA

[27] and SBMI2015 [94] datasets. During the evaluations of ADNN-IBc8fm and

ADNN-IBC2fs, only one network is trained and the parameters of the network

are thus fixed for all testing videos.

ADNN-IBL3fs, ADNN-IBS2fs and ADNN-IBC20fs are evaluated on LASI-

ESTA [27], SBMI2015 [94] and CDnet2014 [135] datasets respectively. During

the evaluations, 3, 2, and 20 ground-truth frames from videos of corresponding

datasets are used for training, and the remaining frames of the same videos

are used for testing. This means that various networks are trained for differ-

ent videos to generate the results of ADNN-IBL3fs, ADNN-IBS2fs and ADNN-

IBC20fs. The training frames only take less than 1% of ground-truth frames of

the corresponding datasets and all ground-truth frames used for training are

randomly selected.

Generality

The distributions of temporal pixels are relatively independent of the scene

information, demonstrating that the proposed approach is generalizable. In

order to demonstrate this, ADNN-IBU4fs, ADNN-IBC2fs and ADNN-IBc8fm are

trained and evaluated. The quantitative results of ADNN-IBU4fs are shown in

Table 5.4. ADNN-IBU4fs achieves the best results in the “Dyn. Bg.” category.

In this category, single background images are not enough to describe back-
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ground information. In contrast, distributions for temporal pixels have better

description ability. This is main reason why ADNN-IBU4fs has better results

than BSUV2.0 and IUTIS-5. Unfortunately, the overall results of ADNN-

IBU4fs can only be considered as promising during comparisons with BSUV

and BSUV2.0. However, such comparisons may not be fair to the proposed

approach, since BSUV extracted 200 ground-truth frames from every training

video, and BSUV2.0 also utilized synthetic ground-truth frames to train their

network. The synthetic ground-truth frames used in BSUV2.0 are very close

to the ground-truth of testing videos, since they are generated by the fusion of

manually selected frames from the testing video and moving objects segmented

from other videos with the help of ground-truth frames, and videos from the

same dataset are correlated to each other. However, when the training videos

and testing videos are extracted from different datasets, the contribution of

the quantity of the training set is reduced due to the lower correlation between

training videos and testing videos. Thus, ADNN-IBC2fs and ADNN-IBc8fm are

trained to compare with BSUV2.0 and 3DCD across datasets. The quantita-

tive results of ADNN-IBC2fs on several videos from LASIESTA are shown in

Table 5.7. The LASIESTA dataset contains 20 videos from indoor and outdoor

scenes. In addition, it also includes videos with illumination changes (I IL)

or camouflage (I CA), which are challenging scenes for background subtrac-

tion. However, ADNN-IBC2fs achieves the best results compared to BSUV2.0

and 3DCD. In particular, not only is the proposed ADNN-IBC2fs, but also

BSUV2.0 and 3DCD are trained on the CDnet2014 dataset and tested on

the LASIESTA dataset. This demonstrates the superiority of the generality

of the proposed approach across different datasets. Such superiority is also

demonstrated by the quantitative results shown inTable 5.8. The proposed

ADNN-IBC2fs achieves better results than BSUV2.0 and 3DCD on the entire

LASIESTA dataset. Thus, the ability of the proposed approach to generalize

is demonstrated.
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Efficiency

Recently, a few excellent deep learning networks, such as MSFS-55 and FgSN-

55, have achieved almost perfect results when the training frames and compu-

tational resources are not limited. However, the utility of these methods is lim-

ited since creating ground-truth frames is very expensive in real applications.

In addition, when the ground-truth frames used for training are limited or un-

seen videos are included for evaluation, such methods no longer work perfectly.

For example, according to the results published by Lim et al. [86], the FgSN

method attains over 98% in Fm value on CDnet2014. However, when FgSN is

evaluated by the partition of training and testing frames proposed by Mandal

et al. [99], the Fm value of FgSN decreases. Furthermore, once FgSN is ap-

plied to the unseen videos of LASIESTA, it only achieves 0.41 in Fm value, as

shown in Table 5.7. In contrast, the proposed approach has good efficiency and

only needs limited ground-truth frames to generate excellent results. As the

quantitative results of ADNN-IBL3fs, ADNN-IBS2fs and ADNN-IBC20fs, show

in Table 5.8, Table 5.9 and Table 5.5, respectively, the proposed approach

achieves the best overall Fm value for all three datasets, and the ground-truth

frames used for training only take less than 1% of ground-truth frames of the

corresponding datasets. By comparison, most of the compared methods based

on deep learning networks use many more ground-truth frames than the pro-

posed approach. For example, 3DCD-55 used 50% of the ground-truth frames

of a particular video for training and the remaining frames from the same for

testing. Compared to all these state-of-the-art methods based on deep learning

networks, the proposed approach achieves the highest Fm value with the fewest

number of ground-truth frames for training. This demonstrates the efficiency

of the proposed approach. In addition, the results of ADNNc20fs, which is the

results of ADNN-IBC20fs without the improved Bayesian refinement model,

demonstrates the contributions of the improved Bayesian refinement model.

As shown in Table 5.9, the improved Bayesian refinement gives the proposed

approach around 5% improvement in Fm value.
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Universality

Traditionally, the parameters of background subtraction algorithms are fixed

for all testing videos. This is reasonable for real applications since parameters

adjustment is time-consuming. However, most of the methods based on deep

learning actually trained various networks for different videos. Even for a

few networks proposed for unseen videos, such as 3DCD or BSUV, various

networks are still trained for videos from different categories or datasets. This

is unfair for comparisons between unsupervised methods and methods based

on deep learning networks. In fact, the results of unsupervised methods can

be easily improved by manually adjusting their threshold values for different

videos. Fortunately, due to the generality of distribution information as well

as the efficiency of the proposed approach, one arithmetic distribution neural

network can be trained for all videos. This demonstrates the universality

of the proposed approach. In order to demonstrate this, ADNN-IBc8fm and

ADNN-IBC2fs are trained and evaluated. In particular, during the testing of

ADNN-IBc8fm and ADNN-IBC2fs, the parameters of the networks are fixed

for all testing videos. From the quantitative evaluations on LASIESTA and

SBMI2015, shown in Table 5.8 and Table 5.5, respectively, both ADNN-IBc8fm

and ADNN-IBC2fs achieve good results compared to unsupervised state-of-

the-art methods. Since no frame from these two datasets are used for training

and the parameters of the proposed approach are fixed for all testing videos,

the comparisons between the proposed approach and unsupervised methods

are completely fair. This way, the universality of the proposed approach is

demonstrated.

From our point of view, when ground-truth frames are limited to an ac-

ceptable level and the network parameters are fixed, methods based on deep

learning networks are appropriate for comparison with unsupervised meth-

ods. This is because researchers also adjust the parameters of their methods

to achieve the best results for a particular dataset. During parameter ad-

justments, the ground-truth frames are also manually checked. Thus, both

unsupervised methods and methods based on deep learning networks include
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prior knowledge from ground-truth frames. The difference is that deep learn-

ing networks directly extract the knowledge from ground-truth frames, while

unsupervised methods capture the knowledge through parameter adjustments

by researchers with the help of ground-truth frames. Based on this obser-

vation, although ADNN-IBc8fm and ADNN-IBC2fs are trained by frames from

the CDnet2014 dataset, they are suitable for comparisons with unsupervised

methods, such as SuBSENSE or IUTIS-5 on the CDnet2014 dataset. Note

that the remaining frames used for testing takes over 99% of the ground-truth

frames of the entire dataset. From the quantitative evaluation shown in Table

5.9, ADNN-IBc8fm achieves better results than IUTIS-5 which is a combination

of several excellent state-of-the-art methods. Since the parameters of ADNN-

IBc8fm are fixed for all testing videos and the amount of ground-truth labels

used for training takes less than 1% of the entire dataset, the comparison be-

tween ADNN-IBc8fm and IUTIS-5 should be considered to be fair. Also, the

good performance of ADNN-IBc8fm demonstrates the potential of the proposed

approach in real applications, since a single well-trained network can be used

for all testing videos even from different datasets, based on results shown in

Tables 5.8 and 5.5. In addition, the visual results of ADNN-IBC8fm are shown

in Fig. ??.

The proposed approach is implemented in Pytorch[3], and the source code

will be made available following acceptance of our paper. Experiments are run

on a GeForce GTX 1080 GPU processor with 8 GB memory. During training

60 epochs are set as the maximum, the learning rate is set to 0.0001 and the

Adam method [76] with default parameters is used for training.

5.4.4 Limitation and Complexity

Failure Case Analysis

Although the proposed approach achieves promising results, there are still a

few failure cases which are discussed in this section. As shown in Table 5.9,

the proposed approach does not work well in the PTZ category where videos

are obtained by a moving camera. This happens because the histograms of
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temporal pixels are no longer useful features since pixels do not maintain their

positions when a camera moves. Fortunately, this limitation can be addressed

by using the histograms of optical flows rather than temporal pixels as the

input of the proposed approach. In addition, since the proposed approach

only takes less 1% of ground-truth frames for training, it is possible that these

training frames are not enough to cover the illumination variation in videos,

which results in the failure of the proposed approach on videos “I IL 01” and

“I IL 02”, as shown in Table 5.8. This problem can be handled by increasing

the number of ground-truth frames for training.

Complexity Analysis

Currently, the proposed approach takes around 3s total time to process a

frame with resolution 320×240 on our computer. In particular, the histogram

generation takes 0.1727s, the computation of the arithmetic distribution layer

takes 0.4292s, the computation of classification block followed by arithmetic

distribution layers takes 0.078s, and the improved Bayesian refinement takes

2.2524s. Although 3s is too long for real-time applications, there are several

ways to accelerate the proposed approach. First, a C++ implementation of the

proposed approach should take much less time, since python is currently used

for implementing the arithmetic distribution layers and improved Bayesian

refinement model. In addition, the batch size of pixels used for processing is

given as 1000, which means only 1000 pixels are processed simultaneously in

one processing round, since our GPU card is GTX 1080 with 8GB memory and

some of the memory has to be used for exception handling. Once a machine

with a better GPU card and larger memory is used for evaluation, the proposed

approach can be easily accelerated by increasing the batch size.

5.5 Conclusion

We proposed the Arithmetic Distribution Neural Network (ADNN) for back-

ground subtraction. Specifically, the arithmetic distribution layers, including

the product and sum distribution layers, based on arithmetic distribution op-
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erations were proposed for learning the distributions of temporal pixels. Also,

an improved Bayesian refinement model, based on neighborhood information

with a GPU implementation, was proposed to improve the robustness and ac-

curacy of the proposed approach. Utilizing the arithmetic distribution layers,

histograms are considered as probability density functions. This probability

information is used during the learning procedure of the proposed approach.

Compared to previous approaches based on deep learning networks, the pro-

posed approach has three advantages, including: a) being effective for unseen

videos; b) promising results are obtained using limited ground-truth frames; c)

one network can be trained for all testing videos even from different datasets.

Comprehensive evaluations compared to state-of-the-art methods showed the

superior performance of the proposed approach, and demonstrated its poten-

tial for use in practical applications.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we proposed several methods to demonstrate how to learn sta-

tistical distributions for video segmentation tasks. These included background

subtraction, vessel segmentation and crack detection. We proposed the ADNN,

which performed better than the traditional convolutional neural network in

distributions classification.

The most important contribution of this thesis is the proposed ADNN,

which is the method of our final choice for learning statistical distributions.

In order to do propose the ADNN, we first proposed the D-DPDL method for

background subtraction. The entries of input patches were randomly permu-

tated to force the network to focus on statistical distributions. The proposed

D-DPDL method demonstrates a few excellent properties including that it re-

quires limited ground-truth frames for training, and that training videos and

testing videos can be different. We further extended the D-DPDL model for

vessel segmentation and crack detection, and the D-DPDL model achieved

promising results on both applications. During the extension of the D-DPDL

model, we had a better performance with a wider rather than deeper net-

work. This interesting phenomenon motivated us to find an explanation, and

arithmetic distribution operations theoretically explains it. Also, based on

the arithmetic distribution operations, we proposed the ADNN, which demon-

strates a better distributions classification ability than the conventional con-

volutional neural network.
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6.2 Future Work

The proposed ADNN is just a prototype. The architecture of the network is

very simple and the number of parameters correspondingly small. The network

used for comparisons with state-of-the-art methods in this work has only 0.1

million parameters, the training set takes less than 1% of ground-truth frames

from the entire dataset and no pre-trained networks are used. However, the

proposed ADNN still achieved promising results compared to state-of-the-art

methods based on deep learning networks with many more parameters than

the proposed ADNN. Thus, there is still room for improvement in the perfor-

mance of the proposed approach by increasing the size of the training dataset,

the number of network parameters, and integrating pre-trained networks for

features extraction. However, due to the limitation of our computational re-

sources, the results proposed in this thesis are the best we can present. In

addition, as shown by the comparisons in Section 5.4.2, the proposed arith-

metic distribution layers are better at distributions analysis compared to the

convolutional layer. This demonstrates excellent potential for the proposed

approach since distribution analysis has a wide range of applications beyond

background subtraction. This provides another direction for our future work.
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“Slic superpixels compared to state-of-the-art superpixel methods,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 11, pp. 2274–
2282, Nov. 2012, issn: 0162-8828. doi: 10.1109/TPAMI.2012.120.

[2] T. Akilan, Q. J. Wu, and Y. Yang, “Fusion-based foreground enhance-
ment for background subtraction using multivariate multi-model gaus-
sian distribution,” Information Sciences, pp. 414–431, 2018, issn: 0020-
0255.

[3] P. et al., “Pytorch: An imperative style, high-performance deep learning
library,” in Advances in neural information processing systems, 2019.

[4] M. Babaee, D. T. Dinh, and G. Rigoll, “A deep convolutional neural
network for video sequence background subtraction,” Pattern Recognit.,
vol. 76, pp. 635–649, 2018, issn: 0031-3203.

[5] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convo-
lutional encoder-decoder architecture for image segmentation,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481–2495, Dec.
2017, issn: 0162-8828. doi: 10.1109/TPAMI.2016.2644615.

[6] O. Barnich and M. Van Droogenbroeck, “Vibe: A universal background
subtraction algorithm for video sequences,” IEEE Trans. Image Pro-
cess., vol. 20, no. 6, pp. 1709–1724, Jun. 2011, issn: 1057-7149. doi:
10.1109/TIP.2010.2101613.

[7] D. Berjón, C. Cuevas, F. Morán, and N. Garćıa, “Real-time nonpara-
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