
University of Alberta

A three-dimensional sharp phase front-based 
theory and application to shape memory alloy 

wires and thin films

by ( c )
Vesselin Stoilov V -x

A thesis submitted to the Faculty of Graduate Studies and Research in partial 
fulfillment of the requirements for the degree of Doctor of Philosophy

Department of Mechanical Engineering

Edmonton, Alberta 
Fall 2002

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



National Library Bibliotheque nationale
of Canada du Canada

Acquisitions and Acquisitions et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A 0N4 Ottawa ON K1A0N4
Canada Canada

Your fife Votmriferonce

Our file Notre reference

The author has granted a non
exclusive licence allowing the 
National Library of Canada to 
reproduce, loan, distribute or sell 
copies o f this thesis in microform, 
paper or electronic formats.

The author retains ownership of the 
copyright in this thesis. Neither the 
thesis nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author’s 
permission.

L’auteur a accorde une licence non 
exclusive permettant a la 
Bibliotheque nationale du Canada de 
reproduire, prdter, distribuer ou 
vendre des copies de cette these sous 
la forme de microfiche/film, de 
reproduction sur papier ou sur format 
electronique.

L’auteur conserve la propriete du 
droit d’auteur qui protege cette these. 
Ni la these ni des extraits substantiels 
de celle-ci ne doivent etre imprimes 
ou autrement reproduits sans son 
autorisation.

0-612-81271-5

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



University of Alberta

Library Release Form

Name of Author: Vesselin Stoilov

Title of Thesis: A three-dimensional sharp phase front-based theory and application 
to shape memory alloy wires and thin films

Degree: Doctor of Philosophy
Year this Degree Granted: 2002

Permission is hereby granted to the University of Alberta Library to reproduce single 
copies of this thesis and to lend or sell such copies for private, scholarly or scientific 
research purposes only.

The author reserves all other publication and other rights in association with the 
copyright in the thesis, and except as herein provided, neither the thesis nor any 
substantial portion thereof may be printed or otherwise reproduced in any material form 
whatever without the author’s prior written permission.

519C Michener Park 
Edmonton, Alberta 
Canada, T6H4M5

Date: ''I 2 _

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate 
Studies and Research for acceptance, a thesis entitled A three-dimensional sharp phase 
front-based theory and application to shape memory alloy wires and thin films submitted 
by Vesselin Stoilov in partial fulfillment of the requirements for degree of Doctor of 
Philosophy

fv A 
\  i-

'  S y
r. Jeff Yokota (Supervisor)

A f J L - L
Dr. Andrew Mioduchowski

'V's.

r. Walied Moussa

Ihbr D r. Cb.'Ci'va

Dr.-

'GUj u ..

Szymanski

Dr. Gary Faulkner

r
Dr. Greg Carman (external examiner)

Date: O c A  i Ar-o x.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Abstract

This dissertation presents a complete theoretical framework for a three- 

dimensional (3D) sharp phase front-based model for phase transformations 

in shape memory alloys. The phases of austenite and martensite are taken 

to be separated by a phase front, and the phase transformation is taken to 

occur when the phase front moves. The usual balance laws (for conservation 

of mass, linear momentum and energy) are written for the bulk phases and 

the interface. Equality of the chemical potential at the interface leads to a 

generalized formulation of the Clausius-Clapeyron equation, which then gives 

the condition for the evolution of the interface during phase transformation. 

The theoretical framework is general enough to incorporate any Helmholtz 

free energy function. Specific results are then given in the context of the 

quasistatic, small strain approximation and a trilinear Helmholtz free energy 

function.

The developed theoretical framework was used to model the phase trans

formations in SMA thin wires (ID) and thin films(2D). In both studies the
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predictions of the theory were calculated and compared with available exper

imental data. The obtained results demonstrate the ability of the suggested 

theory to adequately model different types of phase transformations in SMA 

(pseudoelasticity, shape memory effect and reorientation). The simulations 

were performed by applying two separate numerical algorithms, developed 

for solving ID and 2D problems of phase transformations in SMA. A moving 

boundary finite element method (MBFEM)-based numerical approach was 

proposed to solve one-dimensional (ID) thermomechanical problem. The 

Newton-Raphson method and recursive iterations, respectively, are used to 

address the non-linearity and coupling in the system of equations. In two 

dimensions, the 2D finite element-based method implements a front tracking, 

which is realized by mesh update at each time step. Nonoscillatory interpo

lation (Super Bee) was used to transfer data between the ’’old” and the ’’new” 

mesh.
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Chapter 1

Introduction

1.1 Therm oelastic martensitic phase transfor

m ation

Of the several solid state phase transformations occurring in alloy systems, 

martensitic transformations have had a very special interest to researchers. 

In the early years this interest arose out of the extraordinary hardness that 

iron-carbon martensite possessed. Soon it was realized that a number of 

alloy systems, both ferrous and nonferrous, exhibited martensitic transfor

mations and these have been the subject of innumerable investigations. Spe

cial emphasis was laid on the fact that the resultant martensite phase had

1
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an interface with the parent phase. Extensions! and shear strains on this 

plane are essentially zero. The corresponding strain field in the 3D domain is 

commonly referred in the materials literature as ’’Invariant plane strain”‘[1]. 

This led to the emergence of the phenomenological theories to account for 

the observed crystallography of the parent-product relationship. However, 

the observed overall characteristics of the martensitic transformations have 

been used by Wayman [2] to define a martensitic transformation as one where 

(a) there is a lattice deformation with an accompanying shape change, (b) 

diffusion is not required and (c) the kinetics and morphology during the 

transformation are dominated by the transformation strain energy. There

fore, martensitic transformations can be induced by the application of stress 

as well as by changes in temperature and they are crystallographically re

versible. Usually, the shape deformation of a martensitic transformation is 

so large relative to the stiffness and strength of the surrounding parent phase 

that plastic accommodation takes place during the growth process. In this 

sense, the interfacial motions are not reversible. Alternatively, in those in

stances where the shape deformation can be accommodated elastically, the 

interfacial motions take on reversible features. In this thesis we will con

sider the latter case only, so that no plastic deformation is induced during

2
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the transformation. Then the characteristics of martensitic transformation 

that are mentioned can sometimes lead to some interesting effects: thermoe

lasticity, pseudoelasticity, shape memory effect and two-way shape memory 

effect. A thermoelastic martensitic transformation is realized if martensite 

forms and grows continuously as temperature is lowered, and shrinks and 

vanishes continuously as temperature is raised. In their experiments with 

an In-TI single crystal alloy, Burkart and Read [3] observed a single inter

face separating the parent phase and the product phase. On slow cooling, 

the specimen transformed from the face-centered cubic structure to the face- 

centered tetragonal structure at the martesite start temperature M s. by the 

motion of a single plane interface which traversed the specimen from one 

end to the other. Upon heating, the interface moved back in the reverse di

rection. Other alloys which exhibit thermoelastic transformation are AgCd, 

CuAINi, NiTi, CuZn, CuSn, InTi, and so on. Alloy systems which undergo 

a thermoelastic transformation on cooling can be made to transform in a 

similarly reversible manner, even at temperatures above M„ by applying an 

increasing stress. This type of stress-induced transformation is an example 

of pseudoelasticity in view of the relatively large deformation that can be 

manifested ( ~  8% ) by the induced transformation, and yet this strain is

3
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’’elastically” recoverable on unloading due to the reversal of the transfor

mation. Many interesting features of the pseudoelastic behavior have been 

found. The shape of the stress-strain curve depends heavily on temperature 

and the stress necessary for transformation is found to increase with temper

ature (see Horikawa et. al. [4], Shaw et. al. [5], Fang et. al. [6], Chumlyakov 

et.al. [7]). The shape memory effect arises if a macroscopic deformation is 

accompanied, as before, by a martensitic transformation at a temperature 

lower than the transformation temperature; in a second step the reverse 

transformation and a concomitant reversal of the macroscopic deformation 

are induced by heating up to a temperature higher than the austenite finish 

temperature Af.  The system recovers its original shape after heating.

Up to this point we have implied that pseudoelasticity and the shape 

memory effect were associated with a martensitic transformation. The same 

phenomena can occur even when the specimen is fully martensitic at the 

outset [8]. In this case the macroscopic deformation is induced by reorien

tation of martensites. Thus, pseudoelasticity and the shape memory effect 

may be associated with a martensitic transformation, a reorientation of a 

martensitic structure or a combination of both. The shape memory effect 

just considered is one-way, i.e. no appreciable change in specimen shape

4
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occurs during the martensitic transformation on cooling; instead, a change 

in shape takes place during the reverse transformation on heating above Af  

which cancels the prior change of shape introduced by deforming the spec

imen. In the two-way shape memory effect, an overall change of specimen 

shape operates during the cooling and heating transformations. The condi

tion can be brought about in two ways: either after pseudoelastically cycling 

by loading and unloading several times above the transformation temper

ature or by going through the one-way shape memory effect a number of 

times. It appears that both of the above ”training” methods, i.e. by stress 

induced martensite (SIM) cycling or by shape memory effect (SME) cycling, 

involve the preferential formation of lattice defects or micro-stresses which 

favor selected variants during the thermoelastic transformation on cooling.

1.2 SM A models

Constitutive models, of which there is a rich literature (see [9] for a review), 

can be primarily categorized into three groups: 1. Phenomenological mod

els based on homogenization principles, 2. micromechanical models, and 

3. continuum models or also known as sharp phase front-based constitutive

5
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models. The need to incorporate the SMA material behavior in engineering 

design of SMA-based structures probably motivated the development of the 

phenomenological models. These are built on phenomenological thermody

namics and/or directly curve fitting experimental data. The volume fraction 

of the martensite is typically used as the internal variable and different math

ematical functions are used to describe the transformation procedure (Sato 

and Tanaka [10], Liang and Rogers [11, 12], Boyd and Lagoudas [13], Bekker 

and Brinson [14]). Most of the models in this group only work on uniaxial 

loading or are simple yet unverified extensions of these models to 2D and 3D. 

On the other hand, the micromechanical models sought to bridge the SMA 

response at the microscopic level to the SMA macroscopic response. They 

use thermodynamics laws to describe the transformation and micromechanics 

to estimate the interaction energy due to the transformation in the material, 

which is a key factor in the transformation mechanism (Patoor et. al. [15], 

Sun and Hwang [16, 17], Goo and Lexcellent [18], Lu and Wang [19], Huang 

and Brinson [20]). While these models are quite elaborate and computation

ally expensive to implement, they incorporate a significant amount of the 

physics of the transformation. Both types of models use an internal variable 

approach that allows the material state at a continuum point to exist as a

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



mixture of the two phases of austenite and martensite. Lastly, the contin

uum/sharp phase front-based constitutive models incorporate the very basic 

feature that the SMA phase transformation is often accompanied by the mo

tion of a phase boundary (or multiple phase boundaries) between the old and 

the new phase. Thus, the material state at a continuum point, within the 

context of such models, is either in an austenitic state or martensitic state 

but never both.

1.2.1 Review  of continuum modeling

Various continuum-level issues related to martensitic phase transformation 

in crystalline solids have been successfully studied using the theory of finite 

thermoelasticity. For a thermoelastic material, the Helmholtz free-energy 

function ip depends only on the deformation gradient tensor F  and the tem

perature 9 \ ip = ip(F, 9). If the stress-free material can exist in two or 

more phases, then the Helmholtz free-energy function ip must have two or 

more energy wells. One corresponds to austenite, the other martensititic 

variants. In the presence of stress T r ,  one must consider the energy function 

ip =  ^ > (T r(F , 9), 9) involving the energy wells, where T r  is the first Piola- 

Kirchhoff stress tensor. Now the material can have different stable phases

7
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coresponding to different combinations of applied stress and temperature.

Ericksen [21] studied energy minimizing deformations for a two-phase 

material within the one-dimensional mechanical setting of a tensile bar. He 

showed, in particular, that for certain values of prescribed displacement, 

the stable equilibrium configurations of the bar involve coexistent phases. 

The analogous issue in higher dimensions is more complicated: typically, de

formation gradient tensors F a  and Fm corresponding to the austenite and 

martensite energy minima are not kinematically compatible with each other. 

Therefore an energy minimizing deformation cannot correspond to homoge

neously deformed states of austenite and martensite separated by a phase 

boundary. In fact, an energy minimizer usually does not even exist, and one 

must contend with minimizing sequences. The deformation pattern associ

ated with such a sequence characterizes the underlying microstructure of the 

material; in Cu-Al-Ni for example, an austenite-martensite phase boundary 

separates a homogeneous state of austenite from a fine mixture of twinned 

martensite. These ideas were put forward by Khachaturian [1] using a geo

metrically linear theory, and by Ball and James [22] for the finite deforma

tion theory. Ball and James [22] studied an austenite/ twinned martensite 

interface in detail, and showed that the consequences of their theory are in

8
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agreement with the crystallographic theory of martensite. Needle-like mi

crostructures and self-accommodating microstructures have been explored 

by Bhattacharya [23] using similar ideas.

It has been noted by many researchers that the characteristics of thermoe

lastic martensitic phase transformation are changed when the transformation 

is repeated many times by thermal and stress cycling. This is because, during 

thermomechanical cycling, phase boundaries travel forward and backward in 

the specimen and some microstructural defects such as dislocations are gen

erated and distributed in the alloy; for example, see Melton and Mercier [24], 

Miyazaki et al. [25, 26], and so on. A continuum model to describe the cyclic 

behavior of shape memory alloys was proposed by Tanaka et al. [27, 28]. 

They took the point of view that the dislocations generated are a primary 

cause of the accumulation of a microscopic residual stress and strain in the 

alloy. They introduced three internal variables, i.e. the microscopic residual 

stress and strain and the volume fraction of the residual martensite.

A number of studies have been concerned with developing explicit con

stitutive models. Ericksen [29] and Silling [30] have constructed three- di

mensional Helmholtz free-energy functions for modeling specific crystals. 

Falk [31] has studied a one-dimensional polynomial free-energy function.

9
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Later Falk and Konopka[32] generalized the one-dimensional approach to 

three dimensional free-energy function based on the Landau theory of phase 

transformations.

The usual continuum theory of thermoelasticity, though adequate for 

characterizing phase energy minimization, does not characterize the dynamic 

processes of a body involving transitions from one phase to another. In or

der to achieve an accurate dynamical response, Abeyaratne and Knowles [33] 

expanded the constitutive model developed by Falk [31] with the basic con

servation laws: conservation of mass, linear momentum, angular momentum 

and energy. The resulting model, though defines one-parametric family of 

solutions. This lack of uniqueness of solution to particular initial-value prob

lems has been illustrated in the works of Abeyaratne and Knowles [34]. In 

order to solve this uniqueness problem they adopted the view that the lack 

of uniqueness in the conventional formulations arose from a constitutive defi

ciency associated with particles on the phase interface and they supplemented 

the theory with further constitutive information, which were a kinetic rela

tion and a nucleation criterion. The kinetic relation controls the progress of 

the phase transition once it has commenced and the nucleation criterion sig

nals the initiation of a transition. Thus a complete constitutive theory which

10
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is capable of modeling processes involving thermoelastic phase transitions 

consists of a Helmholtz free-energy function, conservation laws (mass, linear 

momentum, angular momentum, energy) a kinetic relation, and a nucleation 

criterion.

Leo, Shield and Bruno [35] adapted different approach to eliminate the 

lack of uniqueness. They completed the constitutive model with additional 

constitutive equation, which is an experimentally determined relation be

tween the stress and the temperature at the phase transformation interface. 

Bruno et. al. [36] and Shield et. al. [37] showed that the particular initial- 

value problem has unique solution when studied in this broadening setting.

Recently, Stoilov at. el. [38] have suggested a complete, explicit one

dimensional model for describing the thermoelastic phase transformations. 

The lack of uniqueness is eliminated by introducing a fundamental conserva

tion law; the conservation of the chemical potential at the phase boundary. 

The general form of the derivation makes the approach as general as possible 

and applicable to any physical system capable of 1st order phase transforma

tion. The suggested model reduces to any of the two approaches described 

above at the corresponding conditions. For example, using the simplified 

three-linear approximation of the Falk’s Helmholtz free energy function, the

11
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conservation of the chemical potential results in an analytical relation be

tween the stress and the temperature at the phase boundary, identical to the 

experimental one used by Leo at. el. [35].

1.3 Numerical m ethods for moving boundary 

problems

During the processes of phase transformation in thermoelastic materials 

(SMAs), a boundary separating two different phases develops. In these prob

lems, the position of the boundary is not known a priori, but has to be de

termined as an integral part of the solution. The class of problems known 

as Moving Boundary Problems (MBP) is associated with time-dependent 

boundary problems, where the position of the Moving Boundary (MB) has 

to be determined as function of time and space. Moving boundary problems, 

also known as Stefan problems, were studied as early as 1831 by Lame and 

Clapeyron. However, J. Stefan was given the major credit due to a sequence 

of papers, which resulted from his study of the melting of the polar ice cap 

around 1890.

Finite Difference Methods (FDMs) are the most popular choice for nu-

12
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merical solution of MBPs; however, in recent years, Finite Element Methods 

(FEMs) and Boundary Elements Methods (BEMs) have been introduced. 

The advantage of FEMs and BEMs is their ability to handle complex geome

tries. The numerical methods for solving MBPs can be classified into: Fixed 

grid methods [39, 40] and Variable grid methods [41, 42, 43, 44, 45, 46, 47]. 

The formulation of the classical Stefan problem requires not only the initial 

and boundary conditions to be known, as in boundary value problems, but 

one more condition is needed on the moving boundary; e.g. the temperature 

of the boundary during freezing of water/melting of ice. In contrast the tem

perature of the phase boundary during phase transformation in SMAs is not 

prescribed, and instead is a function of the local stress. Due to this extra 

dependence, an additional condition is required to render a unique solution 

of the problem. From a mathematical point of view, the two approaches 

for completing the system, outlined in Sec. 1.2.1, are representative of two 

separate classes of problems. In the case of Leo et. al. [35] approach, the 

experimental correlation between the phase transformation temperature and 

the local stress constitutes a boundary condition at the MB. The velocity 

of propagation of the phase boundary is then found as part of the problem 

solution. This class of problems, where a boundary condition at the MB is

13
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prescribed, is referred to as ’’forward” problems. In the case of Abeyaratne 

and Knowles’ [33] approach, a kinetic relation prescribing the velocity of 

propagation of the phase boundary completes the system. In this case the 

velocity is known and the temperature at the phase boundary can be deter

mined as a function of the position. We shall refer to this class of problems 

as ’’inverse” problems. Each of these classes of problems requires a separate 

numerical approach.

1.4 Thesis objectives and outline

The objective of this thesis is to develop a multiaxial continuum model that 

includes several important features of the austenite (A) to martensite (M) 

phase transformation in shape memory alloys (SMA) : (i) significant hystere

sis between the A M  and M  A  transformation, (ii) strong thermome

chanical coupling, (iii) significant difference in material properties of the two 

phases (this is atleast true for the Nickel-Titanium system (Faulkner, Amal- 

raj and Bhattacharyya[48]), (iv) motion of phase boundaries, and (v) the 

initial microstructure and its influence on the phase transformation. Avail

ability of such a model gives us the capability to study fundamental issues
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involved in the micro-macro transition in the SMA response, e.g. the corre

lation between the first-order transition at the micro-level (transformation at 

a single stress-dependent temperature) to the transformation at the macro

level over a temperature range (even in absence of external stress). The 

model may also be used as a computational tool to guide experiments and 

the development of phenomenological multiaxial models for engineering de

sign.

This thesis is divided into five parts: A Moving Boundary Finite Ele

ment Method(MBFEM), Linear SMA actuators, a complete one dimensional 

theoretical framework for thermoelastic phase transformations, complete 3D 

theoretical model for thermoelastic phase transformations, and numerical 

implementation in two-dimensional domain.

Chapter 2 is entirely devoted to a Moving Boundary Finite Element 

Method (see Stoilov, Iliev and Bhattacharyya [49]) developed for spatially 

ID phase transformation in SMAs. In Chapter 3, the MBFEM is generalized 

to allow a numerical solution for the approach introduced by Leo, Shield 

and Bruno [35]. The modified MBFEM is then used to compare the two 

existing sharp phase front models (Abeyaratne and Knowles [33] and Leo, 

Shield and Bruno [35]) in the context of linear SMA based actuators (see

15
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Bhattacharyya, Stoilov and Iliev [50]). In Chapter 4 we propose a new sharp 

phase front model and the general theoretical framework for one-dimensional 

SMA phase transformations (see Stoilov and Bhattacharyya [38]). In Chap

ter 5 the general three-dimensional form of the continuum model for sharp 

phase fronts is presented, followed by a numerical analysis and implemen

tation of moving boundary problems in 2-D SMA domains. In the same 

chapter we present the predictions for pseudoelastic behavior and reorienta

tion in SMA thin films under biaxial loading as well as a comparison with 

the experimental data of Fang et. al. [6] on SMA thin films. The conclusion 

are given in Chapter 6.
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Chapter 2 

The Moving Boundary Finite 

Element M ethod(M BFEM )

2.1 Introduction

The phase transformation process in SMAs is often accompanied by the mo

tion of a boundary between the ’’old” phase and the ’’new” phase that is 

being created [1, 2]. Traditionally, problems involving a moving boundary 

have been encountered in processes involving melting, solidification or diffu

sion, and are commonly referred to as the Stefan problems [3]. The moving 

boundary in a Stefan problem has two key features: (1) The temperature
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(or ” concentration” for problems in diffusion) at the phase boundary is pre

scribed. (2) The heat flux (or concentration gradient) at the phase boundary 

has a jump, and this jump is proportional to the unknown velocity of the 

phase boundary. The velocity is then found as a part of the problem solution. 

In contrast, the temperature at the moving boundary in a phase transforma

tion process in SMAs is not prescribed. However, similar to a Stefan problem, 

there is a jump in the heat flux at the moving boundary. This jump is pro

portional to the phase boundary velocity, which is also sometimes known as 

the ’’kinetic relation” [4]. The kinetic relation has to be developed from phe

nomenological considerations, and in general, is a function of the unknown 

temperature and stress at the phase boundary. These then have to be found 

as part of the problem solution. Numerical methods that address the Stefan 

problem may be classified in two categories [5]:

1. Fixed grid methods in which the spatial domain is discretized into 

elements of fixed length and the time stepping is based on a constant 

time increment. Therefore, at any given time, the moving boundary 

may lie on a grid node or between two nodes [6, 7].

2. Variable grid methods in which the discretization is fixed either in the 

spatial or the temporal domain. If the spatial discretization is fixed for
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all time, then the incremental time step is adjusted so that the moving 

boundary always coincides with a grid node [8, 9, 10]. On the other 

hand, if the incremental time step is held fixed for all time, then the 

spatial discretization is adjusted over time such that a grid node always 

coincides with the moving boundary [11, 12, 13, 14].

The evolution in the thermal field during phase transformation was de

termined by a variable grid approach, referred as the moving boundary finite 

element method (MBFEM). While the MBFEM has been used to model Ste

fan problems in melting/solidification [11, 14] and diffusion [12, 13], to the 

best of our knowledge, it was used for the first time in problems involving 

phase transformation in SMAs by Stoilov et al. [15]. Issues involving stabil

ity and accuracy of the MBFEM-based numerical approach have been also 

addressed.

In this chapter, a MBFEM-based numerical approach used to solve a 

system of non-linear, coupled equations with a moving phase boundary in 

a 1-D domain, will be analyzed. An SMA bar, initially in the austenitic 

state and at a uniform temperature is considered. The bar is subjected to 

uniaxial mechanical loading. This is accompanied by a phase transforma

tion of the bar from austenite to martensite, and the motion of a phase
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boundary between the two phases; see Fig. 2.1. Due to the strong coupling 

between the thermal and mechanical fields during phase transformation in 

SMAs [4, 16, 17, 18, 19], the effect of the mechanical loading is to induce 

a non-uniform temperature field in the bar. In the 1-D setting to which we 

restrict ourselves in this chapter, the entire problem is described by a system 

of four equations: (1) An equation relating the deformation rate to the stress 

rate (i.e. rate form of Hooke’s law for a thermoelastic material). (2) The 

heat conduction equation (i.e. conservation of energy) for both phases. (3) 

A condition involving the jump in the heat flux at the moving boundary, 

proportional to the phase boundary velocity. (4) An expression for the phase 

boundary velocity, also known as a ’’kinetic relation” [4]. This expression 

has to be ” assumed” based on phenomenological considerations. The heat 

conduction equation is non-linear in the temperature field whereas the sys

tem of equations is strongly coupled in the temperature and the stress field 

(also referred as ”thermomechanical coupling”).

This work addresses the solution of the aforementioned equations as 

a ’’system”. The non-linear heat conduction equation is addressed by a 

Newton-Raphson technique whereas the thermomechanical coupling is ad

dressed by an iterative procedure. Discretization of the spatial domain is
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done by introducing an extra grid node in a 1-D mesh, which otherwise re

mains unchanged from one time step to another. The extra node at a given 

time step is positioned such that it coincides with the phase boundary posi

tion at that instant. Our approach differs from the following approaches: (i) 

Murray and Landis [11] re-meshed the entire domain such that a grid node co

incides with the phase boundary, (ii) Crank and Gupta[12] suggested a grid 

that moves with the phase boundary , such that the phase boundary always 

coincides with a grid node; the method requires the use of interpolation func

tions. (iii) Gupta [13] suggested avoiding the interpolations by employing a 

Taylor’s series expansion in space and time, (iv) Djomehri and George [14] 

suggested the use of time-dependent basis functions in approximating the 

field variable (e.g. temperature).

The accuracy and stability of the proposed MBFEM-based numerical ap

proach are demonstrated for the special case of a thermally induced phase 

transformation (the uniaxial stress is zero, and hence there is no thermome

chanical coupling) that admits an analytical solution. For completeness, we 

also compare the current approach with a finite difference method (FDM)- 

based numerical approach, originally used by Kim and Abeyaratne [4]. Not

ing that the kinetic relation (i.e. the expression for the phase boundary ve-
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locity) is an ” assumed” one, we compare the predictions of both approaches 

within the context of the analytical solution when the kinetic relation is 

’’pathological” in nature. Subsequently, we compare predictions of both ap

proaches for a phase transformation induced by mechanical loading (i.e. ther

momechanical coupling is present).

The chapter is organized in the following sections. Section 2.2 introduces 

the 1-D BVP and Section 2.3 gives the temporal discretization and MBFEM- 

based numerical approach. Section 2.4 describes the spatial discretization 

with the MBFEM, Section 2.5 gives an analytical solution and Section 2.6 

presents the numerical results. The conclusions are outlined in Section 2.7.

2.2 A one-dimensional moving boundary value 

problem in shape m emory alloys

Consider an SMA bar of length 2L, shown in Fig. 2.1. The phase transforma

tion in a bar is often accompanied by the motion of a boundary between the 

new and old phase. As in [4], we assume that during the A—»M transforma

tion (M-»A transformation) for an initially austenitic (martensitic) bar, the
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martensite (austenite) nucleates at the center of the bar (at the end of the 

bar). The motion of the phase boundary is stress and temperature depen

dent, and their values at the phase boundary are not prescribed, in general. 

We consider the simplest situation in which two moving boundaries may 

be observed, wherein we restrict the BVP such that the motion of the two 

boundaries (see Fig. 2.1) is symmetric with respect to the center of the bar. 

Experimentally, this has been observed in Copper-Aluminium-Nickel SMA 

single crystals by Salzbrenner and Cohen [20]. Admittedly, a more common 

scenario is where multiple phase boundaries are observed (e.g. see the work 

of Leo et al. [1], Shaw and Kyriakides [2]). The numerical approach proposed 

herein will have to be modified appropriately to reflect such a situation; this 

is outside the scope of this chapter. Choosing the origin at the center of the 

bar, we focus on the domain, 0 < x < L, for our analysis. The location of 

the phase boundary in that domain is denoted as xPb(t).

Phase transformations in the 1-D SMA bar are considered such that the 

time-dependent uniaxial stress is spatially uniform whereas the temperature 

field is ^-dependent and time-dependent. Thus

a = a(t) and 9 = 9(x, t) . (2.1)

Defining 5(L, t) as the total deformation at the end of the bar, it is given

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



as [21]

8{L.t) =  ^ a(t) +  a f  [6(x, t) -  damb\ dx +  eTxpb(t) , (2.2)
E i J o

where the three terms on the right represent deformation in the bar due to 

elastic strains, thermal strains and strains due to phase transformation. The 

parameter L is the half-length of the bar, E  the Young’s modulus of SMA 

(assumed identical for both austenite and martensite), a  the coefficient of 

thermal expansion and 6amb is the ambient temperature. The parameter e t  

is the inelastic phase transformation strain and is defined as the deformation 

(or change in length) introduced in a unit length of SMA bar as it changes 

from austenite to martensite. The strain can have a value as high as 

8% [22, 23]. In such cases and also in a situation where multiple stress- 

free configurations of the martensite can exist (i.e. e t  will have different 

values depending on the corresponding martensite configuration or variant), 

an additive split of the total deformation in the bar (Eq. 2.2) may not be 

valid. Herein, the theory is restricted to one stress-free martensitic variant. 

Moreover, it is recommended that the theory and the developed numerical 

approach are used to simulate/ predict experimental results only when £t  is 

”small” , and at best, used with considerable caution if the observed £t  is as
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high as 8%. We now define an average temperature in the bar as

1  rL0 =  — f  9(x,t)dx , (2.3)
L Jo

based on which, Eq. 2.2 may be written in a rate form as

dS , r . L da * r d0 * \ dxnfj. , ..
= E T t (t) + L a T t (x' t) + eT- d T (t) ■ (2'4)

The first law of thermodynamics provides the heat conduction equation 

for SMAs. It is [4 , 21]

k —^(x , t )  +pr(x,t)  =  pc + E a 20(x,t)] +
dt 

da
a 0 ( x , t ) ~ ( t )  for Xy& Xpb(t) , (2.5)

valid at all points on the 1-D bar, except at the phase boundary. The param

eter k is the thermal conductivity, p the mass density, r{x\t) a heat source 

and c is the specific heat. The heat source term pr(x,t) (second term in 

Eq. 2.5) is taken as

hPpr{x, t) =  pEJ 2 -  —  [0(x, t) -  9amb] , (2.6)

where the first term on the right represents joule heating of the SMA bar; 

Pe is the electrical resistivity (assumed identical for A and M) and J  is the 

electric current density in the bar. Purely thermal transformations induced

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



by joule heating within the context of this model has an analytical solution 

(as we shall see in Section 2.5); that is why the joule heating term has been 

included. The second term represents convection along the length of the bar 

and has been approximately included as a heat source [4, 21]. The parameter 

h is the convection coefficient along the length of the bar, P  the perimeter 

of the bar cross-section and A  is the cross-sectional area.

At the phase boundary, the heat flux has a jump. This condition is stated

as

~ k (f!c (“J W ’*) -  ^  (**(*)>*)) =  (<r(t)<iT+pXr)^ for x -  x * ( t ) ,

(2.7)

where | |  (£),£) and | |  (x~b(t), t j  are the temperature gradients on the

right-hand side and the left-hand side of the phase boundary, respectively. 

In particular, the term At  (At > 0) represents the magnitude of the latent 

heat that is evolved or absorbed at the moving boundary during an A—> M or 

M—>A transformation, respectively. The term represents the velocity 

of the moving boundary. It is usually specified based on phenomenological 

considerations [4], and will be given at the end of this section.

Adiabatic boundary conditions at the ends of the half-length of the bar
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are assumed, thus

f)R
— (0,t) =  0 and f a ( L , t ) =  0 ,  (2.8)

where the first condition follows from symmetry considerations, whereas the 

latter has been found to be a reasonable assumption [4] in simulating the 

effects of ’’end grips” in a laboratory experiment.

The initial conditions of the stress and phase boundary position are de

noted as

a(0) =  <70 and xPb(0) =  s0 , (2.9)

where 0 0  and sq are parameters to be specified in the numerical implemen

tation. The initial value of the temperature field is taken to be spatially 

uniform, and set equal to a parameter, 0O (which may be different from the 

ambient temperature, 9amb)- Therefore

e(x, 0 ) =  0O ■ (2 .1 0 )

The motion of the phase boundary occurs when a driving force, / ,  at the 

phase boundary attains a critical value. The driving force is dependent on 

the stress and the temperature at the phase boundary. Defining the latter 

as 9Pi — 9{xPi,t), we have [4]

/  =  f(cr9pb) =
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where 9t is a parameter known as the equilibrium temperature. The phase 

transformation occurs when the driving force, f(cr, 9pb), satisfies the following 

criteria:

f  > f i  and f  < f 2 , (2.12)

where the first condition pertains to the A—»M transformation and the second 

condition corresponds to the M —»A transformation. The parameters / i  and 

f-i are defined as

h  = ~ ( e T - M,) , h  = ^ ( 0 T - A , ) ,  (2.13)

where Ms and A s are the experimentally measured stress-free martensitic 

start and austenitic start temperatures, respectively. The velocity, dXp̂ -, of 

the phase boundary is taken as [4, 24]

^  =  2 # exp smh ( « )  . (2.14)dt y 2rEg2K9pbJ \2rK9pb)

where R  is known as the mobility coefficient, 5 =  — called Gruneisen’s con

stant [4], r the number of atoms per unit volume and K  is the Boltzmann’s 

constant. The statement of the 1-D BVP is now complete.

For a specified deformation rate, the problem, then, is to find

the temperature distribution, 9(x, t), in the austenitic and martensitic phases 

of the bar, the uniaxial stress, cr(t), and the position, xpb(t), of the phase
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boundary. These quantities may be found by solving the system of equations, 

Eqs. 2.4, 2.5, 2.7 and 2.14, subject to thermal boundary conditions (Eq. 2.8) 

and initial conditions (Eqs. 2.9 and 2.10).

Before attempting a solution, these equations are now given in a non- 

dimensional form. Non-dimensionalization is carried out by the application 

of the Buckingham n theorem [25]. The non-dimensional variables are given 

in Appendix A. As the non-dimensional equations only will be used in the 

rest of the chapter, we omit the ’’tilde” when we give the non-dimensional 

equations next. Eq. 2.4 becomes

d8 da dd dx„b
s  = Tt + a M +ST~ £ -  ( 2 ' 1 5 )

We incorporate Eq. 2.6 in Eq. 2.5 and give the non-dimensional form of the 

latter as

~  + J 2 - h ( 6 - l )  = (l + gad) ^  +  g 9 ^  for x ±  xpb(t) . (2.16)

The jump condition Eq. 2.7, becomes 

^  (*$(*), ( x p b i t ) ,  t )  =  - ^ ( ^ r + A r ) ^  for x  =  xpb(t) . (2.17)

The velocity of the moving boundary follows from Eq. 2.14 as:

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where /  follows from Eq. 2.11 as:

/  =  crer — At ■ (2.19)

The parameters f i  and / 2 may be derived from Eq. 2.13 as

/ i  =  A r ( l - ^ )  , /2 =  At- ( i - ~ )  , (2.20)

The thermal boundary conditions follow from Eq. 2.8 as:

f l f )  f i n

^ ( 0 , t )  =  0 and ^ ( l , i )  =  0 . (2.21)

The initial conditions of the stress and phase boundary position in their 

non-dimensional forms follow from Eq. 2.9:

<j(0) =  (T0 and xp6(0) =  s0 , (2.22)

whereas the initial non-dimensional temperature distribution follows from 

Eq. 2.10 as:

9(x, 0) =  90 . (2.23)

We now outline the temporal discretization and the MBFEM-based numerical 

approach in the next section.
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2.3 The temporal discretization and the M BFEM - 

based numerical approach

In this section, we describe the temporal discretization of Eqs. 2.15-2.18. This 

is followed by the description of the MBFEM-based numerical approach to 

solve the aforementioned system of non-linear, coupled equations subject to 

the appropriate initial and boundary conditions.

Eqs. 2.15-2.18 are a system of non-linear, coupled equations. The non- 

linearity arises in the heat conduction equation, Eq. 2.16, due to the term 

1 +  gad, On the other hand, the coupling in the equations originates from 

various sources. In absence of a stress-induced transformation, a(t) = 0,

Eq. 2.17 is coupled with Eqs. 2.15 and 2.16 as the phase boundary veloc

ity is dependent on Moreover, when a(t) ^  0, there is an additional 

coupling between the thermal and mechanical fields. This thermomechanical 

coupling originates from two sources: (1) The last term in Eq.2.16, gOj^, 

represents the well-known thermomechanical coupling for a thermoelastic 

material. This coupling is weak when the stress rate (or strain rate) is low, 

i.e. loading is quasistatic in nature [26], as is the case in this work. (2)

During the phase transformation, (i.e. ^  0 in Eq. 2.17), the term on the
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right of Eq. 2.17 represents an additional thermomechanical coupling; this 

effect is quite strong even at quasistatic loading rates [4]. To summarize, 

since the aforementioned system of equations is non-linear and has a strong 

thermomechanical coupling, any numerical approach attempting to solve the 

equations should, ideally, solve them as a system. This is the objective of 

the MBFEM-based numerical approach that we address in this chapter.

2.3.1 The tem poral discretization

Before we discuss the numerical approach, it is convenient to introduce the 

temporal discretization (or time stepping) of Eqs. 2.15-2.18. This is done 

based on a constant time increment, r . At the end of the ith increment, the 

total elapsed time is

ti = ir , i > 1 , (2.24)

where i is an integer. The values of the parameters a(t), 9(x,t) and xpb(t) at 

the end of the ith. increment are defined as

a1 =  a(ti) , 9% = 9(x,ti) , xlpb =  xxp(ti) , (2.25)
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where their partial time derivatives at the end of the ith step are defined by

forward differencing as

dt ~  d t ~  r ’ d t { } ~  d t [ ’ l) ~  r

=  5j*(*.) ~  xk ~ „ xJ*L. .(2.26)
CvV CvC T

With Eqs. 2.25 and 2.26, Eqs. 2.18 and 2.15-2.17 are written at the end of

, (2-27)

the ith time step as

dzEpb   dxpb
dt dt 

dS‘ da> S '  dx1̂  
M = l t + a l M + e T l t f  ( 2 ' 2 8 )

f f i g i  f l f f i  t f f j i

■^2 +  J 2- h ( d l - l )  = (1 + ga9*) + g0%~^[ for x ^  xpb(U) ■ (2.29)

^  {xpb (*) > U) ~  (*i* (*) > fc) =  - 1  (< *r +  At ) ̂  for ® =  xp6fo) .

(2.30)

The reader will notice that some of the terms are written with a super

script This is to indicate that the numerical approach makes a ” guess” 

of these values in order to compute a1, 6l (x) and xlpb at the ith time step; we 

shall return to this point soon.
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2.3.2 M BFEM -based numerical approach

Eqs. 2.27-2.30 are a coupled system of equations that need to be solved as a 

system. The numerical approach involves a spatial discretization of Eqs. 2.29 

and 2.30 by the moving boundary finite element method; this is described in 

Section 2.4. For now, we assume that the aforementioned equations may be 

replaced by the system of equations

A*©* =  B* , (2.31)

where A* is a global mass matrix, 0* the vector of nodal temperatures and B* 

is the global force vector. A* and B* have been written with the superscript, 

as their components contain the term, ga6* (originally in Eq. 2.29). 

Their components are derived in Section 2.4. We now give the solution of 

Eqs. 2.27, 2.28 and 2.31 next.

T he recursive ite ra tio n

In order to calculate a1, 9%(x) and xpb at the end of the ith time step, a recur

sive iteration procedure is implemented within that time step. Specifically, 

we calculate from Eq. 2.27 by setting the starred quantities identical to
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their values at end of the previous time step, Therefore

(2.32)

ax i
Since, is now known, xlpb follows by the third of Eq. 2.26. The stress 

rate, ^  is calculated from Eq. 2.28 by replacing ^  with . Thus

Eq. 2.26. The term, ga9* , in Eq. 2.29 is replaced with ga9l 1 and thus we 

can write Eq. 2.31 as

which is a set of linear algebraic equations in the nodal temperatures, that 

may be easily solved. Next, the ’’starred” quantities in Eqs. 2.27, 2.28 and 

2.31 are updated by setting them equal to their corresponding newly deter

mined values. With this update, Eqs. 2.27, 2.28 and 2.31 are solved again 

to get a new set of values for a1, 9%(x) and xpb. This recursive iteration is 

continued until the relative change in values of the stress and phase boundary 

temperature from one iteration to the next occurs by an amount less than a

dS% da1 d9% 1 dxlb 
—  =  +  a —- — h er (2.33)

may be solved for ^  since is assumed to be known, and has been

computed by Eq. 2.32. With — now known, a1 follows from the first of

(2.34)
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small prescribed parameter, £„ , i.e.

where £a < <  1. The iteration within the ith time step is then terminated.

The recursive iteration coupled with Newton-Raphson m ethod

The numerical approach here is identical to the one in the previous section 

except the manner in which the nodal temperatures are computed. We set 

the non-linear term, gad*, in Eq. 2.29 equal to ga9\  so that Eq. 2.31 becomes

A i Q i =  &  . (2.36)

Since A® and B l are now functions of the current nodal temperatures, Eq. 2.36 

is a set of non-linear algebraic equations in the nodal temperatures. The 

system is solved by the Newton-Raphson method, outlined in Section 2.4.2.

2.4 The spatial discretization w ith moving bound

ary finite elem ent m ethod

The governing equation, Eq. 2.29, and the jump condition, Eq. 2.30, will be 

solved for 9%{x) using the MBFEM. Eq. 2.29 is first discretized without taking
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the jump condition, Eq. 2.30, into consideration. At this stage, the spatial 

discretization is done uniformly. The global stiffness and mass matrices, and 

the force vector are developed. In the second-step, these global quantities are 

augmented to include the effect of the jump condition, after an additional grid 

node, coinciding with the phase boundary (the location of which is already 

determined; see Section 2.3.2), is introduced in the spatial discretization of 

the first-step. This approach is different and somewhat simpler than those 

suggested by Murray and Landisfll], Crank and Gupta[12], Gupta [13] and 

Djomehri and George[14]; see Section 2.1 for discussion.

2.4.1 The spatial discretization

Discretization of Eq. 2.29 in absence of the jump condition, Eq. 2.30

We weigh Eq. 2.29 with a probe function, v — nu{x) and write it (i.e. 

Eq. 2.29) in a weak form

1*1 fjij 1 /*1
-  /  — ~ d x  = -  v(l +  ga9*)(9l -  9l~l)dx +

Jo dx ox r  Jo

/  v®%(̂ x ~ ^  ^  f  v x̂ ®0TX ^  xpb(ti) > (2.37)

where the boundary conditions, Eqs. 2.21, and the second of Eq. 2.26 have 

been used.
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The normalized half-length of the bar is discretized into N  elements of 

equal length, AL =  jj. The elements are numbered 1 to N  from the left to 

the right, whereas the nodes are numbered 1 to N  +  1. The co-ordinates of 

the nodes are denoted with the parameter, Xi{ 1 < i < N  +  1). The time- 

dependent temperature field in the bar is approximated by the following 

function:

2

6%{x) =  Y !  {x )Qlq+j-i > X g  < x < X g + i  , i >  1 , 1 < q < N  , (2.38)
j=i

where ^  and are basis functions for the <?th element. They are taken 

to be linear functions in x, as below

# ( s )  =  Xq+1~*~ and 4 9)(x) =  X ~ X q  , 1 < q < N .  (2.39)
X q + 1 -  X g X g + i  -  X q

The parameter 9%q represents the value of the temperature at the qth node 

and at the end of the ith time step. Eq. 2.37 is now discretized after iden

tifying the probe function as a two-component vector function, where the 

components are taken identical to the basis functions in Eq. 2.39. We shall 

not give the details of the discretization procedure. Here, we give the end 

result

— B yN , (2.40)

where A y N is a (N  +  1) x (N + 1) global stiffness matrix, QlUN is a (N +
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1) x 1 column matrix with the nodal temperatures as its components (i.e. 

®UN,k = &k) BijN is the force vector, represented as a ( N+I )  x 1 column 

matrix. The subscript ”UN” has been used to indicate that Eq. 2.40 has 

been developed without taking the jump condition (Eq. 2.30) into account. 

Moreover, the matrices A *UN and BuN include the term, gad*, and therefore 

have been written with a superscript, . The global stiffness matrix, AjjN, 

is given by

A*un =  rK  +  M +  r  { g ^  + h j M  + agM* , (2.41)

where the components of K, M and M* are given in Section A.2 of Ap- 

pendix A. The global force vector, BjjN is

B*un = (M  +  agM*) 0 ^  +  r(h + J 2)F  , (2.42)

where the components of F  are given in Section A.2 of Appendix A.

M odification of Eq. 2.40 in view of the jum p condition Eq. 2.30

We shall now modify Eq. 2.40 to reflect the effect of the jump condition, 

Eq. 2.30. Noting that the new position of the phase boundary may fall 

between two nodes or on an existing node, the following two cases must be 

considered.
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Phase boundary  lies between two nodes

If the new phase boundary position is within the pth element (or between the 

pth and (p +  l)th  nodes), the original pth element may be replaced by two 

elements, referred henceforth as elements p— and p+, respectively. These 

elements will have lengths, wp_ and wp+, defined, respectively, as

wp-  =  xpb -  xp and wp+ =  xp+i -  xpb . (2.43)

The contribution to the global stiffness matrix and the force vector due to

the discretization for the pth element done in the previous section is now

dropped, and Eqs. 2.29 and 2.30 will be used to determine the appropriate 

temperature discretization in the two newly defined elements. Specifically, 

Eq. 2.29 is written at the pth and (p+f)th node, and Eq. 2.30 is written for the 

extra node introduced at the phase boundary, wherein the spatial derivatives 

and the temporal derivatives are approximated by central differencing and 

forward differencing, respectively. The discretization procedure results in

A*©’ = B* , (2.44)

where now that we have one extra node (at the phase boundary), A* is a 

(N + 2) x (N + 2) matrix, 0* and B* are (N + 2) x 1 column matrices; the 

components of A* , 0* and B* are given in of Appendix A (Section A. 2).
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Eq. 2.44 was first introduced as Eq. 2.31 in Section 2.3.2.

Phase boundary lies on a node

In the event that the phase boundary position lies on an existing node ( e.g. 

the (p+1) node), Eq. 2.30 is used to find the new temperature at the (p+ l)th  

node. With this modification, we have

A*e* =  B* , (2.45)

Since the number of nodes remain unchanged, A*is a (N  +  1) x (N  + 1) 

matrix, and 0* and B* are (N + 1) x 1 column matrices, whose components

are given in Section A.3.2. When the phase boundary lies on a node, we use

Eq. 2.45 instead of Eq. 2.44 in the MBFEM-based numerical approach.

2.4.2 The New ton-R aphson m ethod

We set the non-linear term gaQ* (refer Eq. 2.29) equal to gaO1 (as it should 

be), by which Eq. 2.44 or Eq. 2.45 becomes

A*0* =  B { . (2.46)

Eq. 2.46 was originally introduced as Eq. 2.36 in Section 2.3.2; it is a system 

of non-linear algebraic equations in the nodal temperatures, which is solved
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by the Newton-Raphson method, briefly described below. We define a vector 

/* at the ith time step as

f  =  -  &  . (2.47)

The non-linear system of equations represented by Eq. 2.46 is then tanta

mount to setting

f  = 0 . (2.48)

The solution for the temperature vector is obtained when the condition, 

Eq. 2.48, is met. The Newton- Raphson method is an iterative process, by 

which a trial solution for the temperature vector, 0*(m+1), at the (m + l)th  

iteration is calculated from the trial solution at the mth iteration, i.e. 0*(m), 

This iterative process is based on

0 i( m + l)  =  0 i(m )  _  f<m)  ̂ m > l  , ( 2 .4 9 )

where J 1̂  is the Jacobian; its components are given in Section A.4. This 

iterative process continues until the component of the vector, 0 ^ m+1  ̂— 0®(m), 

with the maximum magnitude is less than a small prescribed parameter, 

thus

max
1 <j<N ,i(m) < 6  , (2.50)
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where the index ”j ’’represents the jrth component of the considered vector, 

N  — N  + 1 if the phase boundary lies on anode and IV -I- 2 if it lies between 

two nodes, and & <<  1.

2.5 An analytical solution

In order to assess the accuracy of the MBFEM, we shall compare its pre

dictions with an analytical solution for the special case of a purely thermal 

transformation i.e. a(t) =  0. The physical problem corresponds to an ini

tially martensitic bar that undergoes a stress-free transformation to austenite 

on joule heating. The BVP is summarized below. The governing equation 

(Eq. 2.16) becomes

a2n xa
^ 2  +  J 2 -  h(0 -  1) =  — for X  ±  xpb(t) , (2.51)

where we have made the assumption that the non-linear term in Eq. 2.16,

gaO «  0; this was shown to be true by Bhattacharyya et al. [21]. The jump

condition (Eq. 2.17) is

(*;&(*)’0  =  ~ ~ X t ^  for x = ’ (2-52) 

where the velocity, of the moving boundary will be specified later. The 

boundary conditions follow from Eq. 2.21 and the initial conditions from

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Eqs. 2.22 and 2.23 wherein we set a(t) = 0.

Eqs. 2.51 and 2.52 with their associated boundary and initial conditions 

may be solved by the Green’s function approach [27] after using the substitu

tion, 0(x,t) =  1 +  <p(x, t)exp(-ht) ,  and then incorporating the transformed 

Eq. 2.52 into Eq. 2.51 using a Dirac-delta function. The solution for the 

temperature fields turns out to be

9{x, t) = 1 +  ^ ( 1  -  exp(-ht))  -  —  f  exp(~h(t -  r))
n a Jo at

x 1 +  £  exp(-(m7r)2(t -  r)) cos(m7nr) cos(m7rxpb(r)) 1 dr . (2.53)
\  m= 1 /

If the phase front velocity is constant, i.e.

dJd T (t) =  A  ’ (2-M)

where A is a prescribed constant parameter, Eq. 2.53 reduces to

»(.,!) = 1 + i  ( >  -  (1 -expt-W )) -  £  w ” *(r a)„ 7 -  „h \  a J a  j—y ((rwr)2 +  h) +  A2(tott)2

x J^(rn7r)2 +  h) (cos(ra7rAt) — exp ((rmr)2 +  hj +  Arrnrhsin(m7rAt)j (2.55)

Since Eq. 2.55 is an infinite series, the number of terms used to calculate 

&(x, t) is decided by the following criterion. We retain only the first N  terms 

in the infinite series in Eq. 2.55 if

0N+i (x,t) -  0N(x,t)
0N(x,t)
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where Oj (x, t) is the temperature computed by including the first j  terms, 

and £c < <  1.

2.6 Numerical results

The ingredients involved in the proposed numerical approach outlined in Sec

tion 2.3, i.e. the MBFEM, the recursive iteration technique and the Newton- 

Raphson method, will be studied and wherever appropriate, we shall also 

include a comparison with the FDM-based numerical approach of Kim and 

Abeyaratne [4]. This section will conclude with a brief parametric study on 

stress-induced transformations.

In all the computations to follow, the dimensional parameters that are 

consistently used have been listed in Table 2.1. The parameters that do 

change from one computation to another will be introduced below.

2.6.1 Accuracy and stability of M BFEM

The accuracy and stability of MBFEM are addressed by simulating the an

alytical solution developed in Section 2.5. We recall that the solution cor

responds to an SMA bar, that is initially martensitic and at a uniform ini-
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tial temperature. The bar undergoes the M  —¥ A  transformation when it is 

heated electrically, in absence of stress. In line with Kim and Abeyaratne’s [4] 

work, we take the phase boundaries to originate at the ends of the bar and 

move to the center. We assume that the phase boundary velocity is constant, 

so that the analytical solution may be used. For these conditions, a ( t )  = 0, 

and the dimensional values of the initial stress, phase boundary position and 

the temperature are taken as 0, L and 370K (or 97°C), respectively. The 

corresponding non-dimensional values are

(To =  0 , sq — 1 , 9(x, 0) =  1.23 .

The constant velocity of the phase boundary is taken as — 1.28mm/s  and 

the dimensional electric current density is taken as 2A /m m 2. Thus, the non- 

dimensional parameter A (refer Eq. 2.54) and the non-dimensional current 

density are respectively

A  =  — 7 and J  — 0.7 .

Recall that in the analytical solution, the non-linear term, gad «  0, (refer 

Eq. 2.16), has been dropped. Therefore, the issue of using the Newton- 

Raphson method does not arise. On the other hand, since the transformation 

is purely thermal (no thermomechanical coupling) and the phase boundary
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velocity is explicitly known (as a function of time), the recursive iteration 

becomes unnecessary. Hence, the simulation of the analytical solution will 

serve to demonstrate the accuracy and stability of the MBFEM.

The numerical results of the phase boundary location, xpb, vs. the phase 

boundary temperature, 9pb, are given in Table 2.2 for A  =  —7. The first 

column gives xPb and the second column gives 9Pb calculated by the analytical 

solution. We use £c =  1 x 10~12(see Eq. 2.56) to calculate 9Pb. A plot of 9Pb vs. 

xPb is given in Fig. 2.2. Note that the temperature at the phase boundary, as 

it moves during the transformation, is not constant (unlike classical Stefan 

problems). In any case, the predictions by MBFEM and a finite difference 

method (FDM) proposed by Kim and Abeyaratne [4] are given in column 3 

of Table 2.2 where the spatial domain has been discretized into 70 elements 

(i.e. element length A L =  0.014) and the time increment, r  =  0.0001. We see 

that both approaches closely approximate the analytical solution and, in fact, 

the FDM does it somewhat better. Due to the known conditional stability of 

the FDM, Kim [24] had suggested the relation, r  < 0.1(pc/k)(AL)2, between 

the element length and the time increment. This is confirmed when A L  is 

reduced by 50% in the fourth column and r  has been reduced in keeping with 

the recommendation. The predictions of both methods are very satisfactory.
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However, when A L  is reduced further without an accompanying reduction in 

r  (see fifth column), the FDM fails to yield meaningful results whereas the 

MBFEM does. This demonstrates the conditional stability of the FDM and 

the unconditional stability of the MBFEM.

Corresponding results are given for the spatial distribution of the tem

perature, 9pb when the phase boundary has moved mid-way to the center of 

the half-length of the bar, i.e xpb — 0.5. The plot of 9pb vs. x  has been given 

in Fig. 2.3 and the numerical results given in Table 2.3.

2.6.2 Effect of kinetic relation

In the previous section, the recursive iteration was not necessary as the phase 

boundary velocity was taken as a known constant, and thus was independent 

of the temperature. In reality, the phase boundary velocity has to be devel

oped from phenomenological considerations and is usually a function of the 

phase boundary temperature (and also the stress in stress-induced transfor

mations). In such a case, a recursive iteration approach is desirable. The iter

ation may be all the more necessary if the expression for the phase boundary 

velocity has a ” complicated” dependence on the temperature. We consider 

an extreme or ’’pathological” case by starting with the analytical expression
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of the temperature field (Eq. 2.55) and deriving an alternative form of the 

constant phase boundary velocity assumption from it. Since 9pb =  0(xpb, t) 

and due to  the constant velocity assumption, by which t =  (xpb(t) — xpb(0))/A, 

we have

= = . (2.57)

We identify the last of Eq. 2.57 as the function F(xpb), therefore

epb =  F(xpb(t)) =  e xpb, Xpb(t) 2^(0) (2.58)

With Eq. 2.58, we may write

d x pb
dt

dF
dx,'pb

(xpb)
de,pb

d t
(2.59)

Also from the first of Eq. 2.58, we have xpb — F l (9pb), and Eq. 2.59 becomes

dxpb
dt

dF
dxpb

-1 d9,pb
dt

(2.60)

Eq. 2.60 is a more complicated representation of the constant velocity 

assumption, and will be used to ” test” the recursive iteration procedure. 

The phase boundary velocity in its present form, Eq. 2.60, is used along 

with the problem defined in Eqs. 2.51 and 2.52 to simulate the analytical 

solution with the MBFEM-based numerical approach. Recursive iteration 

is now needed to accommodate Eq. 2.60; this is done by replacing 9pb and
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dOpb/dt in Eq. 2.60 by 6*b and d0*b/dt, respectively. Also note that the 

inversion of F, i.e. F~1(0pb), has to be done by numerically solving Eq. 2.55, 

for which the bisection method is used. For the recursive iteration, we use 

£a =  5 x 10“6. The comparison of the analytical solution with the results 

of the MBFEM approach is shown in Tables 2.4 and 2.5. We also tried to 

carry out the same computation with the FDM-based numerical approach 

but failed to get convergence. This is probably due to the fact that the 

FDM-based approach does not include a recursive iteration to address the 

coupling. The outcome of this exercise is that while a recursive iteration is 

always desirable to solve a coupled system of equations, it becomes all the 

more necessary when the coupling is ’’pathological” in nature, as represented 

by the complicated kinetic relation in Eq. 2.60. In closing, we note that the 

numerical implementation of Eq. 2.60 is shown in Fig. 2.4; it is seen that it 

simulates the constant velocity assumption (A =  —7) quite well except at 

the start and end of transformation.
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2.6.3 Effect of the Newton-Raphson m ethod and stress-

induced transformations

We now address the general problem of stress-induced transformations. An 

austenitic SMA bar is subjected to a deformation rate, S(L,t) (see Fig. 2.1). 

When the A-»M transformation sets in, the phase boundaries move from the 

center of the bar to its ends. After the completion of the A—>M transfor

mation, unloading (or a decreasing strain rate) causes the initiation of the 

reverse M-*A transformation (if the ambient temperature is high enough). 

The reverse transformation is complete when the stress reduces to zero, lead

ing to the so-called pseudoelastic effect. The dimensional values of initial 

stress, phase boundary position and temperature are taken as 0, 0 and 300A 

(or 27° C), respectively. The corresponding non- dimensional values are

a 0 =  0 , So =  1 > 0(£, 0) =  1 .

Since the bar is not subjected to joule heating, we set J  =  0. The solution 

of the problem follows from Eqs. 2.15-2.18. We point out that we now retain 

the non-linear term, gad, in Eq. 2.16 even though this non- linearity is known 

to be weak [21], To address this non-linearity, the recursive iteration coupled 

with the Newton-Raphson method is used, for which we take & =  1 x 10~6.
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The effect of the non- linearity is shown in Table 2.6. The first column has 

different strain rates. It is seen that irrespective of the strain rate, the average 

number of recursive iterations within a time step is always lower when the 

Newton- Raphson method is used. Note that in spite of the weakness of the 

non-linearity, the difference is not negligible.

The pseudoelastic response of the SMA bar is shown at two different de

formation rates in Figs. 2.5 and 2.6; computations by the MBFEM-based and 

FDM-based approaches are shown. It is only at a high strain rate (Fig. 2.7) 

that there is a noticeable difference between the two approaches. Fig. 2.7 

shows the temperature evolution at the phase boundary during the A—>-M 

(and M—>A) transformation when 8(1,t) =  0.84. It is obvious that, un

like a classical Stefan problem, the temperature at the interface during a 

stress-induced transformation is not constant. Fig. 2.8 shows the spatial dis

tribution of temperature when the phase boundary has moved mid-way along 

the half-length of the bar during the A-*M transformation.
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2.7 Conclusions

In summary, the MBFEM-based numerical approach suggested to address 

1-D moving BVPs in SMAs has been found to be accurate and uncondi

tionally stable when compared to an analytical solution for a purely thermal 

transformation and robust enough to give accurate solutions even when a 

’’pathological” kinetic relation is adopted. While we cannot claim that the 

MBFEM approach is accurate when applied to stress-induced transforma

tions (as there is no analytical solution to compare it with), we have checked 

(by the same procedure as for the purely thermal problem) that it is indeed 

unconditionally stable during stress- induced transformations also.
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Figure 2.1: A schematic of a SMA bar in a deformation-controlled phase 

transformation process.
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Figure 2.2: A plot 0pb vs. xpi during an M—»A transformation, obtained from 

the analytical solution.
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Figure 2.3: A plot 0(x, t) vs. x during an M-*A transformation, at xph =  0.5, 

obtained from the analytical solution.
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Figure 2.4: The simulation of a constant phase boundary velocity vs. time, 

by the numerical approach of Eq. 2.60
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Figure 2.5: A pseudoelastic stress-strain curve computed by MBFEM and

FDM at dS(l,i)/dt  =  0.084.
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Figure 2.6: A pseudoelastic stress-strain curve computed by MBFEM and 

FDM at d6(l,t)/dt  =  0.84.
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Figure 2.7: Phase boundary temperature vs. position when d,S(l,t)/dt =  

0.84.
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Figure 2.8: 9(x, t )  vs. x when xPb =  0.5 during A->M transformation, with

d8(l , t)/dt  = 0M.
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Description Simbol Value

Length of the bar L 31.75 x 10_3m

Perimeter of bar cross-section P 3.3528 x 10~3m

Area of bar cross-section A 0.8942 x 10-6 m2

Mass density P 6450% /m 3

Specific heat c 465J/(kgK)

Coefficient of thermal expansion a 10~5K ~ l

Young’s modulus E 51.6G.Pa

Uniaxial phase transformation strain £T 0.06

Latent heat of phase transformation At 1.8733 x 10V/%

Thermal conductivity k 17 AW/(mK)

Ambient temperature @amb 300K

Mobility coefficient R 0.0509m /s

Atoms per unit volume r 7.785 x 1028m~3

A -kM starting temperature M a 283.81JC

M—>A starting temperature As 286.01JY

Convective coefficient h 5.3757W /(m 2if )

Equilibrium temperature 6t 284.95if

Electrical resistivity PE 6.3242 x 10“4Qmm

Table 2.1: List of dimensional parameters.
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Temperature of the phase boundary, 9pb

Phase boundary 

position, xpb

Analytical

solution

AL  = 0.014 , 

r = 0.0001

AL = 0.007 , 

T = 0.00001

AL = 0.0035, 

t = 0.00001

FDM MBFEM FDM MBFEM FDM MBFEM

0.9 0.9681 0.9559 0.9441 0.9631 0.9557 - 0.9609

0.8 0.9221 0.9142 0.9020 0.9186 0.9117 - 0.9159

0.7 0.9079 0.9016 0.8895 0.9049 0.8986 - 0.9023

0.6 0.9071 0.9015 0.8903 0.9043 0.8984 - 0.9017

0.5 0.9120 0.9082 0.8977 0.9102 0.9054 - 0.9086

0.4 0.9221 0.9170 0.9056 0.9194 0.9134 - 0.9167

0.3 0.9295 0.9250 0.9142 0.9275 0.9215 - 0.9246

0.2 0.9244 0.9196 0.9046 0.9213 0.9138 - 0.9175

0.1 0.8450 0.8396 0.8203 0.8422 0.8384 - 0.8401

0.0 0.4300 0.4189 0.4055 0.4206 0.4124 - 0.4207

Table 2.2: Numerical values of 9pb vs. xpb obtained from the analytical 

solution, MBFEM and FDM-based approaches.
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0(x, t) when xpt, =  0.5

X Analytical AL  =

ooII AL == 0.007 , AL =- 0.0035 ,

solution t  — 0.0001 T =  0.00001 r  = 0.00001

FDM MBFEM FDM MBFEM FDM MBFEM

0.9 1.0367 1.0304 1.0205 1.0342 1.0271 - 1.0311

0.8 1.0183 1.0123 1.0088 1.0159 1.0124 - 1.0131

0.7 0.9897 0.9841 0.9724 0.9875 0.9811 - 0.9848

0.6 0.9533 0.9483 0.9367 0.9513 0.9452 - 0.9487

0.5 0.9120 0.9082 0.8977 0.9102 0.9054 - 0.9086

0.4 1.1972 1.1954 1.1891 1.1971 1.1938 - 1.1955

0.3 1.3259 1.3251 1.3217 1.3258 1.3242 - 1.3250

0.2 1.3825 1.3821 1.3801 1.3824 1.3815 - 1.3819

0.1 1.4056 1.4054 1.4039 1.4054 1.4048 - 1.4051

0.0 1.4118 1.4116 1.4097 1.4116 1.4108 - 1.4112

Table 2.3: Numerical values of 9(x,t) vs. x when xph — 0.5. Results of the 

analytical solution, MBFEM and FDM-based approaches.
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Temperature of the phase boundary, 0pb

Phase boundary 

position, xpb

Analytical

solution

A L = 0.014 

r  =  0.0001

, AL = 0.007 , 

r  = 0.00001

AL = 0.0035,

T = 0.00001

0.9 0.9681 0.9440 0.9555 0.9605

0.8 0.9221 0.9020 0.9115 0.9157

0.7 0.9079 0.8894 0.8986 0.9023

0.6 0.9071 0.8903 0.8984 0.9017

0.5 0.9120 0.8973 0.9054 0.9086

0.4 0.9221 0.9053 0.9134 0.9167

0.3 0.9295 0.9140 0.9214 0.9246

0.2 0.9244 0.9045 0.9136 0.9172

0.1 0.8450 0.8203 0.8382 0.8400

0.0 0.4300 0.4054 0.4122 0.4205

Averaged number 

of iterations per 

time step

2.120 1.990 1.853

Table 2.4: Numerical values of 9pb vs. xpb obtained from the analytical 

solution, and also computed by MBFEM when Eq. 2.60 is used for phase 

boundary velocity.
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0(x, t) when xPb — 0.5

X Analytical

solution

AL = 0.014 , AL = 0.007 

r  =  0.0001 t = 0.00001

, AL  =  0.0035, 

r  = 0.00001

0.9 1.0367 1.0201 1.0270 1.0310

0.8 1.0183 1.0084 1.0123 1.0131

0.7 0.9897 0.9722 0.9810 0.9847

0.6 0.9533 0.9362 0.9452 0.9487

0.5 0.9120 0.8974 0.9051 0.9086

0.4 1.1972 1.1892 1.1935 1.1955

0.3 1.3259 1.3211 1.3240 1.3250

0.2 1.3825 1.3801 1.3814 1.3818

0.1 1.4056 1.4035 1.4046 1.4050

0.0 1.4118 1.4092 1.4106 1.4110

Table 2.5: Numerical values of 9(x, t) vs. x when xpb =  0.5. Results of the

analytical solution are given, and also those from MBFEM when Eq. 2.60 is 

used for phase boundary velocity.
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dS(l,t)/dt Average iterations per time step 

(without Newton-Raphson)

Average iterations per time step 

(with Newton-Raphson)

0.84 5.0 4.3

0.42 4.4 3.9

0.084 1.8 1.5

0.042 1.3 1.3

0.0084 1.3 1.2

Table 2.6: The effect of the Newton-Raphson method at different strain rates.
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Chapter 3

Linear Shape Memory Alloy 

Actuators

3.1 Introduction

Two issues that are of central importance in actuator design with shape mem

ory alloys (SMAs) are: 1. Availability of an appropriate constitutive model to 

characterize the response of shape memory alloys, 2. evaluation of SMA ac

tuator response based on a certain commonly accepted definitions of actuator 

performance. The first issue is complicated by the fact that the phase trans

formations in shape memory alloys are accompanied by a strong coupling
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between the thermal and mechanical fields in the SMA actuator. Another 

important fact is that the phase transformation is largely inhomogeneous 

in nature, accompanied by the presence of multiple phase boundaries that 

move during the progression of the transformation itself. Motion of phase 

boundaries has been observed in experiments on tensile loading of Copper- 

Aluminum-Nickel (CuAINi) single crystals [4] or in Nickel- Titanium (NiTi) 

wires [1, 5]. The former paper reported the motion of one phase boundary 

whereas the latter two reported the motion of multiple phase boundaries dur

ing the phase transformation. In particular, modeling of such experiments 

may be done by the theoretical approaches proposed by Abeyaratne and 

Knowles [6, 3] on the one hand and Leo et al. [1] on the other hand. The lat

ter approach was further elucidated by Bruno et al. [7]. Both approaches are 

similar in most aspects but differ somewhat in how they propose to describe 

the motion of the phase boundary during phase transformation. We shall 

henceforth refer to Abeyaratne and Knowles’ [3] model as the A-K approach 

whereas the model of Bruno, Leo and Reitich [7] will be referred to as the 

B-L-R approach.

Another issue that is central to SMA actuator design is the actuator 

performance. There are two commonly accepted measures of SMA actua-
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tor performance: 1. Energy efficiency, and 2. specific energy output (or 

energy output per unit volume of actuator material). These performance 

measures have to be viewed in the light of the type of SMA actuator be

ing designed -linear (wire, rod or thin film configuration) and rotatory -as 

also the structural situation in which these actuators will be employed. The 

simplest scenario that can be anticipated is when such an active actuator is 

incorporated into a structure having a single passive element (which may be 

taken as elastic). This was recognized by Lagoudas and Bhattacharyya [8] 

when they analyzed a thin plate actuator subjected to a spring-loaded me

chanical boundary condition. The thin plate actuator was activated by the 

thermoelectric effect and they determined the performance measures of such 

an actuator. Motivated by the assumption of free convection thermal bound

ary conditions and the thinness of the film, they could make the reasonable 

assumption that the temperature field in the film was spatially uniform, 

leading to a drastic simplification in the numerical implementation of the 

problem.

This chapter has two objectives and addresses them in the context of an 

SMA linear actuator (an SMA rod or a wire) actuated electrically and sub

jected to spring-loaded boundary conditions at its ends (see Fig. 3.1): 1. The
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first objective is to address the question as to how different is the response 

of an SMA linear actuator as predicted by the A-K and B-L-R constitutive 

models, 2. the second objective is to analyze the SMA linear actuator, and 

determine the influence on the actuator performance due to the structural 

stiffness (modeled here by the stiffness of the spring). In contrast to Lagoudas 

and Bhattacharyya’s [8] analysis, we allow the temperature field to be spa

tially non-uniform. These aforementioned issues can only be addressed after 

the thermomechanical field in the SMA actuator is carefully modeled. Ana

lytical solutions are usually not available for spatially non-uniform thermal 

fields, and thus we use the MBFEM-based numerical approach proposed by 

Stoilov et al. [2] and given in Chapter 2. While they demonstrated their 

numerical approach using the A-K model, we suitably adapt their approach 

here so that the B-L-R model may also be used.

The chapter is organized in five sections. Section 3.2 discusses the bound

ary value problem of the spring-loaded SMA linear actuator. Section 3.3 ad

dresses the issue of phase transformation in the linear actuator in the context 

of the two different constitutive models. Section 3.4 defines the performance 

measures of the SMA actuator in the context of the specific boundary value 

problem outlined in Section 3.2. Section 3.5 discusses the computational
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approach and gives the parametric studies. The chapter ends with the con

clusions of the study, summarized in Section 3.6. The entire analysis will be 

restricted to a quasistatic loading situation such that inertia effects may be 

ignored.

3.2 Boundary value problem for a shape mem 

ory alloy bar w ith a sharp austenite-m artensite  

interface

We begin this section with a description of the schematic in Fig. 3.1. An 

SMA bar of length 2L, is shown with initially pre-stretched linear springs 

attached at its ends. The schematic shows a martensitic phase separating 

two austenitic phases. We consider the class of problems wherein at any 

given time t, the two-phase boundaries between martensite and austenite 

are always symmetrically situated with respect to the center of the bar. The 

location of these two phase boundaries are denoted by the parameter, s(t) and 

—s(t), where s(t) lies within the range, 0 < s(t) < L. Each continuum point
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along the bar will be either in a purely austenitic state or purely martensitic 

state but never a mixture of both. The phase boundary therefore defines the 

location where there is a sharp transition from one phase into another. This 

is in contrast to phenomenological theories of phase transformation based on 

homogenization principles where the material at a continuum point is allowed 

to exist as a mixture of both phases. Based on that approach, phase fronts 

in such problems can possibly represent a transition from purely one phase 

to a mixture of two phases. In that context, such phase fronts will not be 

referred as ’’sharp”. The theories we shall focus on in this work belong to 

the former class, i.e., they allow only sharp phase fronts.

We consider thermomechanical phase transformations in which the uni

axial stress field, a, is time dependent and spatially uniform whereas the 

temperature field, 9, is time dependent and spatially non-uniform along the 

length of the bar (i.e., along the x-direction). Therefore

a =  a(t) and 9 = 9(x, t) . (3.1)

Due to the spatial symmetry of the thermomechanical problem, only one- 

half of the bar (0 < x < L) will be considered in the sequel. In this context, 

only one phase boundary is involved in the problem. While such a situation 

has been observed in experiments on CuAINi SMAs [4], the issue of multiple
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phase boundaries may also be addressed within the context of the theory 

to be discussed here. However, we shall restrict the paper in addressing a 

single-phase boundary problem, so that we can maintain a focus on the issues 

we intend to address in this paper.

3.2.1 Thermomechanical governing equations

The constitutive response of the austenite and martensite phases in the bar 

is taken to be thermoelastic. Excluding rigid body displacements, the defor

mation, 6(L, t), at the end of the bar (x =  L) is

6(L.t) =  ~<j{t) + a f  [9(x, t) — 9o] dx +  eTs(t) , (3.2)
E  JO

where E  is the Young’s modulus, a  the linear coefficient of thermal expansion 

(for simplicity, E  and a have been assumed identical for both phases), 90 

the ambient temperature and e t  is the uniaxial phase transformation strain 

in the martensite phase. We note that the three terms on the right-hand 

side of Eq. 3.2 correspond to contributions to the overall deformation of the 

bar due to elastic strains, thermal strains and phase transformation strains, 

respectively. Often, the rate form of Eq. 3.2 is useful; it is

L rL ■8(L,t) =  —d(t) + a I 9(x,t)dx + £Ts(t) , (3.3)
E Jo
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where a superimposed dot denotes the time derivative. The conservation 

of energy in either phase (but away from the phase boundary) will now be 

given. We shall assume that the SMA bar is heated electrically. Convection 

along the length of the bar is approximately included as a heat sink. The 

energy equation can then be written as

k ^ ( x ’ [0(x> t) ~  0o] +  pEJ 2 =
q / j i

\pc + Eo?6(x,t)] ~ -(x ,t)  + ad(x,t)-^~(t) for x ^  s(t) , (3.4)
1 1 at at

where k is the thermal conductivity, h i  the convection coefficient along the

length of the bar, P  and A  are the perimeter and area of the bar cross-section,

respectively, pe the electrical resistivity, J  the electrical current density, p

the mass density and c is the specific heat. The parameters -k , Pe and c

-have been taken identical for both phases. At the phase boundary, the heat

flux has a jump, given as

- k  (s~(£),t)^ =  (a{t)eT+p\T)s for x = s ( t ) , (3.5)

where At  is the magnitude of the latent heat released (or absorbed) per 

unit mass of austenite as it transforms into martensite (or vice versa) during 

cooling (or heating). The parameters, s+(t) and s~(t) are respectively defined

as s±(t) =  limA-H)(s(t) ±  A), A > 0.
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3.2.2 Initial conditions

The initial conditions for the stress, temperature and the position of the 

phase boundary are defined as

<r(0) =  a0 , 9(x, 0) =  0O , s(0) =  s0 , (3.6)

corresponding respectively to a stressed initial state, spatially uniform initial 

temperature (identical to the ambient) and an initial co-existence of marten

site and austenite. The initial stress state, <tq (given by the first of Eq. 3.6) 

will follow from the condition that the springs have an initial pre-stretch 

when they are attached to the bar. We shall find this stress in Section 3.2.3.

3.2.3 Boundary conditions

The thermal boundary conditions are taken as 

f ) f )  f ) f )
^ ( 0 , t ) = 0 ,  k ^ ( L , t )  = h (e (L ,t )  -  e„) ,  (3.7)

where the former is a statement of the symmetry condition at x  =  0 and 

the latter states that the heat conduction at x =  L (i.e., the end grips in 

a laboratory experiment) is approximately simulated by a convective-type 

boundary condition with a linear temperature dependence; the parameter,
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hb, represents the ability of the end grips to conduct heat. If it is so desired, 

a more complicated end boundary condition may always be adopted.

The mechanical boundary conditions are now given. It is assumed that 

the ends of the SMA bar (of length 2L) are connected to linear springs of 

identical stiffness, K s (see Fig. 3.1), and that the springs are pre-stretched 

by an amount, 8S, before connecting them to the SMA bar. Therefore, for 

the half-length of the SMA bar, 0 < x  < L, we have

a(t) = ~-[8s -  (8(L,t) -  €Ts0)] , 8(0, t) =  0 , (3.8)

where the former state the stress-displacement relationship of the SMA bar 

at x = L due to the spring with stiffness, K s, whereas the latter of Eq. 3.8 

is instrumental in removing rigid body displacements (and has already been 

accounted for, in developing Eq. 3.2). Using Eqs. 3.2 and 3.6, the initial 

value of the stress, <jq (the first of Eq. 3.6) follows as:

»(«) =  • (3-9>
E

In summary, the boundary value problem seeks a solution for cr(t), 8(L,t), 

6(x,t) and s(t) from the Eqs. 3.3-3.5 and the first of Eq. 3.8. Since Eqs. 3.4 

and 3.5 may be viewed as one single equation (this may be realized by in

corporating the heat source, represented by Eq. 3.5 into Eq. 3.4, using a
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delta function), there are really three available equations. Since the number 

of unknown parameters exceeds the number of equations by one, one addi

tional equation is required to allow for a complete and unique solution for 

the unknown parameters. The two different approaches -the B-L-R and the 

A-K models -primarily differ in how they obtain the fourth equation; this is 

what we turn to next.

3.3 M otion of the sharp austenite-m artensite  

interface during phase transformation

Phase transformation with a slow (or quasistatic) motion of phase bound

aries in thermoelastic materials is a dissipative process. Abeyaratne and 

Knowles [6] have demonstrated that the dissipation results in the following 

inequality arising out of the second law of thermodynamics

f s >  0 , (3.10)

where /  is identified as the driving traction at the phase boundary and can be 

shown to be identical to a jump in the Gibbs free energy per unit volume, g, at 

the phase boundary at any instant in time, i.e., /  =  g(s+(t),t) — g(s~(t),t). 

For the boundary value problem defined in Section 3.2, it can be shown
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that [3]

f  = [ a -  aM(Os)]sT , (3.11)

where 0S =  9(s(t),t) is the temperature at the phase boundary and am(@s) 

is the value of the stress at which the driving force vanishes at a given phase 

boundary temperature; (Tm(93) is known as the Maxwell stress. Any addi

tional equation that is proposed to complete the system of equations intro

duced in Section 3.2 will have to be such that Eq. 3.10 is not violated.

Note that while Eq. 3.10 specifies the condition for dissipation, it does not 

address the issue of hysteresis that is a key feature of phase transformation 

in SMAs. To incorporate hysteresis into the aforementioned theory while 

satisfying the second law inequality (Eq. 3.10), the A-K model proposed 

that [3]

/  > / i ,  where A > 0 and s > 0 ,

~ h <  f  < fu  where / i , / 2 > 0 and s = 0 ,

/  < — Hi where / 2 > 0 and s < 0 , (3.12)

where f i  and / 2 are the threshold values of the driving traction during the

A— transformation (s > 0) and the M—>A transformation (s < 0), respec

tively. Eq. 3.12 assures hysteresis in the SMA response as long as / i  and / 2
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are not simultaneously zero. In the context of the above framework, the B- 

L-R model’s [7] approach is to choose the driving traction, / ,  appropriately 

so that Eq. 3.12 is satisfied, whereas the A-K model suggests an expression 

for the phase front velocity, s, so that Eq. 3.12 is satisfied. We briefly discuss 

these two approaches next.

3.3.1 The B-L-R model

Motivated by experimental observations, Bruno et al.’s [7] approach is to 

assume that A =  / 2 and postulate that during the A-*M transformation 

(s > 0), /  =  / i ,  whereas, during the M-*A transformation (s < 0), /  =  

—A- These choices assure that Eq. 3.12 (and thereby Eq. 3.10 is satisfied). 

Denoting a  =  <Ja->m(9s) during the A— transformation and a =  <7m-»a($s) 

during the M—»A transformation, the aforementioned conditions, along with 

Eq. 3.11, may be written as

<74_>m(0s) =  (j m {93) +  — , where A > 0 and s > 0 ,
£T

(Tm->a (9s) = crM{0s) ~  — , where s < 0 ,Et

vm->a (9s) < o  < &a~*m {9 s)i where s =  0 , (3.13)
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where a linear dependence of the Maxwell stress, <tm(Qs), on Qs is assumed 

by Bruno et al. [7] (as was also done in the A-K model; see Section 3.3.2). 

The term, f i /e r ,  in Eq. 3.13 is referred by Bruno et al. [7] as ffhyst, and 

is a measure of the hysteresis inherent in the phase transformation. The 

evolution of the phase front velocity, s, will then emerge as a solution to the 

problem.

3.3.2 The A-K model

The approach of Abeyaratne and Knowles [3] is to specify an initiation cri

terion for the start of the A— (or M—> A) transformation. During the 

subsequent transformation, they prescribe s  in a manner such that Eq. 3.12 

is satisfied. This prescribed expression is referred by them as the kinetic 

relation.

Initiation criterion

The initiation criterion is the condition that is used to determine the initia

tion of the phase transformation, i.e., the criterion based on which the phase 

front velocity changes from s = 0 to s ^  0. Abeyaratne and Knowles [3] 

propose that during the A—>M transformation, /  =  / i ,  whereas during the
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M—» A transformation, /  =  —/ 2. These conditions coincide with those of 

the B-L-R model when f i  — / 2. Using Eq. 3.11, the initiation criterion of 

the phase transformation at some time t =  ti is written as

a =  (Tm (9s) +  — , where f x > 0, s(ti) > 0 ,
£T
ha = aM{9s) ~  — , where / 2 > 0, s(ti) < 0 ,
£t

<7m (Qs ) -  — < ct < crM (ds ) +  — , s(tx) =  0 ,
£ t  £ t

fiin s(ti — At) =  0 , At > 0 , (3.14)

where the first of Eq. 3.14 corresponds to initiation of the A—»M transfor

mation whereas the second of Eq. 3.14 corresponds to the initiation of the

M-»A transformation. The parameters f i ,  f i  are [3]:

p X T  f  9s  f \
~  1 7  j  ’

b  = T T  K  “  A°) ■ <3-15)

where 9t  is known as the equilibrium temperature (i.e., the temperature at 

which the Maxwell stress vanishes), and A® are the respective tempera

tures at which a stress-free A—»M or a M—>A transformation initiates.
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The kinetic relation

Once the phase transformation has initiated, the expression for the phase 

front velocity has to be chosen appropriately so that Eq. 3.12 is satisfied. 

An example of such relation, motivated by experimental observations on a 

CuAINi SMA [4], was proposed by Kim [9] as

s =

R i( f  ~  / i)  for /  > A , R\ > 0 ,

0 for - / 2 < /  < f i  ,

R2 H  + f 2) for /  < —/ 2 , i?2 > 0 ,

where R\ and R2 are experimentally determined material parameters.

(3.16)

3.4 Performance measures of SMA actuators 

in an active structure

The shape memory effect (SME) of an SMA actuator may be advantageously 

used for actuation by integrating the SMA actuator into a structure. There

fore, even if all the other structural components may not possess the SME 

and hence, in that context, are passive, the structure, as a whole, may dis

play some SME, due to the SMA actuator itself. Such a structure is referred
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to as ” active” . It is often of interest to determine how the performance of 

the SMA actuator is influenced by the interaction of the actuator with the 

rest of the structure itself. In that context, two performance measures for 

the SMA actuator may be used: energy output per unit volume and energy 

efficiency [8, 10]. In the context of the boundary value problem defined in 

Section 3.2 for the simple SMA bar-linear spring active structure, we define 

the two performance measures below.

3.4.1 Energy output per unit volum e of SM A (or spe

cific energy output)

The energy stored in the spring during its extension (or actuation) will be 

defined as the energy output of the actuator. Denoting the energy output of 

the SMA actuator per unit volume (or specific energy output) of the SMA 

material as W ^ t ) ,  we have

w act{t) = 7^ r [ o - 2(*) -  <r2(t0)} , (3-17)

where a (to) is the stress at time t =  to, when the M-*A transformation 

commences, leading to the contraction of the SMA bar and extension of the 

spring.
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3.4.2 Energy efficiency

The energy efficiency of the actuator during actuation is defined as the ratio 

of useful mechanical energy, Wact{t), obtained to the electrical energy input, 

Weiec(t), both defined per unit volume of SMA material. If the actuation 

commences at t =  £0) the electrical energy input per unit SMA volume during 

t > to is defined simply as Weiec(t) =  pEJ 2(t — to)- Therefore

„  m  __ Wgctjt) _  A a2(t) -  a2jtQ)
VactW ~  Wdec(t) ~  2K SL pEJ*(t -  t 0) " 1 j

3.5 The com putational approach and para

metric studies

3.5.1 The com putational approach

The system of equations presented in Section 3.3 does not, in general, have 

an analytical solution, and must therefore be solved by an appropriate com

putational approach. The key parameters for which we seek a solution are 

a (t), S(L,t), 9(x,t) and s(t). A  total of 4 equations are needed; these are 

Eqs. 3.3 and 3.4 (combined with Eq. 3.5), the first of Eq. 3.8, and any of 

Eq. 3.13 (when the B-L-R model is under consideration), or the kinetic re-
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lation given by Eq. 3.16 (when the A-K model is under consideration). Any 

numerical approach will have to address the issue of a moving phase bound

ary (characterized by s  ^  0), a coupling between the thermal and mechanical 

fields (evident in Eq. 3.5 and the last term of Eq. 3.4 and a non-linearity of 

the thermal field in the energy equation (represented by the first term on 

the right-hand side of Eq. 3.4). All these ingredients were addressed in the 

context of the A-K model for stress-induced transformations in an SMA bar 

subjected to constant deformation rates by Stoilov et al. [2] when they pro

posed an MBFEM-based numerical approach to deal with such problems. 

The key feature of the MBFEM proposed by them was to introduce a grid 

node (at the phase boundary and moving with it) in a one-dimensional (ID) 

mesh, which otherwise remains unchanged from one step to another. Ad

ditionally, the non-linearity in the system of equations is addressed by the 

Newton- Raphson method and the coupling by an iterative procedure within 

a given time step. They demonstrated the MBFEM to be accurate, uncondi

tionally stable and robust when compared to an analytical solution for purely 

thermal transformations. They also found that the MBFEM-based numer

ical approach to be unconditionally stable in the context of stress-induced 

transformations during a constant deformation rate process. Their approach
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is equally applicable here, with some modification, wherein the mechanical

formation rate process. While the reader is referred to Stoilov et al. [2] for 

details of the numerical approach, we summarize it here in the context of a 

spring-loaded boundary condition and the B-L-R model. An efficient way to 

present the numerical process in a compact, yet easily understandable form 

is to present it in the form of two flowcharts, described below.

The entire numerical approach will be based on a temporal discretization 

with a constant time increment, r  .The total time elapsed at the end of the 

kth increment is defined as =  kr (k > 1, where k is an integer, and not to 

be confused with the same symbol used for the thermal conductivity). The 

values of cr(t), 8(L, t), 9(x, t) and s(t) at the end of the kth increment will be 

denoted as ak, 8k, 9k(x) and sk .Time derivatives of these parameters <r(£), 

S(L, t), 9(x,t) and s(t) -at the end of the kth increment will be denoted as 

&k, 5k, 9k(x) and sk using forward differencing. Thus, for example

Based on the spatial and temporal discretization, the flowchart in Fig. 3.2

boundary condition is dictated by linear springs instead of a constant de-

(3.19)

outlines the process based on which a decision is taken as to which of Eq. 3.13
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is applicable. Once that is decided, the flowchart in Fig. 3.3 gives the process 

by which all the necessary field variables are calculated in the context of 

the B-L-R model. For the sake of completeness, we have also included a 

third flowchart (see Fig. 3.4) that summarizes the MBFEM- based numerical 

approach in the context of the A-K model. This flowchart summarizes the 

decision-making process based on which of Eq. 3.14 should be used to initiate 

the transformation.

3.5.2 The moving boundary finite elem ent m ethod

The flowcharts (Figs. 3.2-3.4) summarize the decision-making process in

volved in evolving the phase transformation by the B-L-R and the K-A mod

els, and the accompanying numerical approach. An integral part of the nu

merical approach is how to solve for the spatial temperature field, 9(x, t), 

from Eqs. 3.4 and 3.5 at a given time assuming that all other quantities in 

those equations are known. This is precisely the MBFEM that was proposed 

by Stoilov et al. [2]. This is briefly described in two steps below.

The first step in the process is to spatially discretize Eq. 3.4 without tak

ing the jump condition Eq.3.5, into consideration. For simplicity, a uniform 

spatial grid of N  elements is adopted, based on which the global stiffness and
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mass matrices as well as the force vector are developed. We write it as

A(jN®un — Bun , (3.20)

where Aun is an (N  +  1) x (N + 1) global stiffness matrix, QUN is an

(N + 1) x 1 column matrix with the nodal temperatures as its components

and Bun  is the force vector, and is an (N  +  1) x 1 column matrix. The 

subscript ”UN” has been used to indicate that the jump condition Eq.3.5, 

has not yet been used. We point out that due to the non-linear temperature 

term in Eq. 3.4 (the first term on the right of Eq. 3.4), the temperature in 

that term, i.e., in E a 29(x, t), will be taken from the previous iteration in a 

Newton-Raphson scheme that is implemented within a given time step (see 

Section 4.2 of Stoilov et al. [2] for details).

In the second step, we account for Eq.3.5 by choosing an additional grid 

node that is taken to coincide with the location of the phase boundary at the 

end of the current time step. With this additional grid node (assuming that 

it is positioned between two successive nodes of the fixed grid) and Eqs.3.5 

and 3.15 is augmented to read

A© =  B  , (3.21)

where A is an (N  +  2) x (N + 2) matrix, 0  and B  are (IV +  2) x 1 column
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matrices. In the eventuality that the phase boundary falls on anyone of the 

fixed nodes, an additional grid node is not necessary, and the number of 

nodes based on which Eq. 3.16 is written is still N  + 1. The details of the 

MBFEM approach may be found in Stoilov et al. [2].

3.5.3 Param etric studies

For the parametric study, we focus on phase transformation in an SMA bar 

that is initially in the fully martensitic condition. It is connected to initially 

pre-stretched springs, as shown in Fig. 3.1. The SMA bar is heated electri

cally until the M-*A transformation initiates. It is assumed that the phase 

boundary will start moving from the ends of the bar towards its center. To 

complete a cycle of transformation, the heating is stopped after sometime, 

and free convection cools the bar until the A-»M transformation initiates 

(i.e., the phase boundary now moves towards the ends of the bar). All pa

rameters used in the computation are listed in Table 3.1. In the study to 

follow, we first give a comparison of the B-L-R and A-K approaches, fol

lowed by some performance characteristics of the SMA linear actuator. The 

results are presented in non-dimensional form. The relevant non-dimensional 

parameters involved in Figs. 3.5-3.9 are listed in Appendix B.
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Fig. 3.5 is a plot of the phase boundary position with respect to time for 

K s =  0.413 (or the dimensional value of K s =  GOON/mm). At this value 

of K s, the transformation from martensite to austenite ( characterized by 

a decreasing s) during heating slows considerably after 60% of the bar has 

transformed to austenite (or s = 0.4). Therefore the data shown in Fig. 3.5 

is for 60% transformation of the initially martensitic bar to austenite. It is 

seen that the B-L-R model predicts a somewhat faster transformation from 

martensite to austenite than the A-K model. Subsequently, the cooling of 

the bar initiates the A-*M transformation after about t =  0.4, which occurs 

somewhat faster by the B-L-R approach (until about i  =  0.7). The evolu

tion of stress is shown in Fig. 3.6. The contraction of the SMA actuator 

during the M—>A transformation during heating is instrumental in extend

ing the spring, and increasing the stress on the bar. Surprisingly, the stress 

calculated by both approaches are almost identical during the M—kA trans

formation. The curves plateau when the heating is stopped at the end of the 

60% transformation from martensite to austenite. The stress level attained 

by the B-L-R model at the end of the heating is seen to be somewhat lower 

than that calculated by the A-K approach. We have found this difference 

to be about 3.3% (since at the end of the heating, a =  0.1990 and 0.206,
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respectively, as computed by the B-L-R and A-K approaches). In spite of 

the small difference, it is somewhat instructive to examine the sources of 

the difference. We can infer from Eq. 3.2 and the first of Eq. 3.8 that, if 

we ignore the thermal strains (i.e., set a =  0 in Eq. 3.2), then there is an 

unique relation between the stress, <r, and the phase boundary position, s. 

This implies that for a given amount of transformation, there is a unique 

value of stress operative in the SMA actuator, regardless of the model used 

to compute that stress. For this special case (i.e., a  =  0), we recomputed 

the non-dimensional stress at the end of the 60% M A transformation 

to be 0.2102 and 0.2118, respectively, as computed by the B-L-R and A-K 

approaches; this is a difference of about 0.76%. This difference, which should 

be ideally zero, is necessarily due to the numerical approach (in principle, 

the difference may be reduced by refining the mesh and reducing the time 

step). Therefore the remainder of the difference, 3.3% — 0.76% =  2.54%, is 

necessarily due to the thermal strains in the SMA bar. The evolution of the 

phase boundary velocity is shown in Fig. 3.7. It is seen that while the qual

itative trend as predicted by both models are very similar, the magnitude of 

the velocity predicted by the B-L-R approach is higher than that predicted 

by the A-K model, during the M —»A transformation. Figs. 3.5-3.7 demon-
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strate that the two approaches do give somewhat different results. They 

would however have coincided exactly if it was possible to write an analyt

ical expression for the phase front velocity predicted by the B-L-R model, 

and then that the expression was adopted as the kinetic relation in the A-K 

model. Nonetheless, within the context of the present results, we would not 

like to indicate a preference of one model over the other. A more pragmatic 

approach will be to test each model against experiments for a specific SMA 

linear actuator, and decide which one is more appropriate. On the other 

hand (in reference to Figs. 3.5-3.7), we observe that while the predictions 

by the two approaches are noticeably different, their quantitative values are 

close enough and their qualitative trend are similar enough so that either 

model may be equally preferred when experiments need to be simulated.

We now turn to the performance measures of the SMA linear actuator, as 

predicted by both models. The results given in Figs. 3.8 and 3.9 have been 

calculated based on a complete transformation of an initially martensitic bar 

to austenite. Fig. 3.8 gives the non-dimensional mechanical work output, 

Wact, with respect to the non-dimensional stiffness, K s, of the spring. It is 

seen that the work output of the SMA actuator changes from about 1 x 1CT4 

to 5.5 x 10~4 as the stiffness changes from about 1 x 10~2 to 8 x 10~2. As the
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B-L-R approach has predicted a lower stress level at the end of the M—»A 

transformation (see Fig. 3.6), expectedly, it predicts a lower Wact as compared 

to the A-K model (see Fig. 3.8). Another feature is that within the consid

ered range of spring stiffness, the change in W ^t  is monotonic. Fig. 3.9 gives 

the energy efficiency, 77, vs. K s. While the B-L-R model predicts a somewhat 

lower 7 7, interestingly both models predict a non-monotonic change in 77 with 

respect to increasing K s. These results therefore imply that there is an opti

mum stiffness of the passive component (spring) of the SMA actuator- linear 

spring structure that will deliver the most energetically efficient response of 

the active structural component (the SMA actuator). Fig. 3.9 indicates that 

the most efficient SMA actuator response, predicted by both models occurs 

at about K s =  3 x 10~2 (the corresponding dimensional spring stiffness is 

K a =  43.6N/mm). This points to the possibility that when an SMA actuator 

is integrated into a structure, the passive components of the structure may 

play a key role in determining the optimum energy efficiency with which the 

active component (i.e., the actuator) will activate the structure.
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3.6 Conclusions

This paper has considered a specific boundary value problem of an electri

cally actuated SMA linear actuator, subjected to a spring-loaded boundary 

condition at its ends. Within the context of this boundary value problem, 

the SMA actuator response has been evaluated based on two sharp phase 

front-based constitutive models proposed by Abeyaratne and Knowles [3] 

and Bruno et al. [7] and the differences due to the two models have been 

analyzed. The computational component of the work has been completed 

using the MBFEM-based numerical approach proposed by Stoilov et al. [2]. 

The paper has also analyzed the performance specific work output and the 

energy efficiency of the actuator by both models. Interestingly, both models 

predict an optimum spring stiffness corresponding to which the efficiency of 

the actuator is at its maximum. This raises the possibility that when an SMA 

actuator is integrated into a structure, the passive components of the struc

ture may play a key role in determining the optimum energy efficiency with 

which the active component (i.e., the actuator) will activate the structure.
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Description Simbol Value

Length of the bar L 31.75 x 10~3m

Perimeter of bar cross-section P 3.3528 x 10“ 3m

Area of bar cross-section A 0.8942 x 10- 6 m 2

Mass density P 6450k g /m 3

Specific heat c 465J /{ k g K )

Coefficient of therm al expansion a 1 0 -B jf - l

Young’s modulus E 51.6G Pa

Uniaxial phase transform ation strain eT 0.06

Latent heat of phase transform ation A T 1.8733 x 107J / k g

Convective coefficients hh S.3757W/(m 2 K )

0

Therm al conductivity k VTAWj (m K )

Ambient tem perature 80 27 C

Equilibrium tem perature 0 T 12 C

Mobility coefficient A-AM R i 2.1058269 x 10~10m 3/(iVs)

Mobility coefficient M —»A R 2 4.7381105 x 1 0 -10m 3/(ATs)

Driving force, A-»M h 8791125AT/m2

Driving force, M->A h 6722625N / m 2

Initial pre-stretch of the spring Ss 0.13 m m

Initial phase boundary position so L

Electric current density J 2 A / m m 2 K

Electrical resistivity Pe 6.3242 x 1 0 -4n m m

Time increment r 1.73 x 10- 3 s

Number of elements N 100

Tolerance Stal 10~B

Table 3.1: List of all material and computational parameters.
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2L

Figure 3.1: A schematic of linear SMA actuator.
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Figure 3.2: A flowchart depicting the decision process for the phase trans

formation based on Leo et. al. [1] approach.
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Figure 3.3: A flowchart outlining the MBFEM-based numerical approach of

Stoilov et. al. [2] adapted to implement Leo et. al. [1] theoretical model.
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Figure 3.4: A flowchart depicting the decision process for the phase trans

formation based on Abeyaratne and Knowles’ [3] approach.
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Figure 3.5: Non-dimensional phase boundary position, s, with respect to 

non-dimensional time, t.
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Figure 3.6: Non-dimensional stress, a, with respect to non-dimensional time,

I
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Figure 3.7: Non-dimensional phase boundary velocity, s, with respect to 

non-dimensional time, t.
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Figure 3.8: Non-dimensional specific energy output of SMA actuator, Wact, 

with respect to non-dimensional spring stiffness, K s.
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Figure 3.9: Energy efficiency of SMA actuator, rj, with respect to non- 

dimensional spring stiffness, K s.
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Chapter 4 

A One-dimensional Theoretical 

Framework for Sharp Phase 

Fronts in Shape Memory Alloys

4.1 Introduction

One-dimensional (ID) phase front-based continuum models(Abeyaratne and 

Knowles [3, 4], Bruno,Leo and Reitich[5j) assume that a phase front in the 

ID domain always separates a fully austenitic phase from a fully martensitic 

phase. Abeyaratne and Knowles[3, 4] proposed an initiation criterion for the

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



phase boundary motion and a kinetic relation for its evolution, which is then 

determined from experiments (by tracking the motion of phase boundaries 

in SMA wires). On the other hand, Bruno, Leo and Reitich[5] proposed an 

empirical equation (relating the phase boundary stress and temperature) for 

the phase boundary motion. Experimentally tracking ID phase boundary 

motion is a direct but difficult approach and will definitely become more 

challenging if 2D phase boundary motion needs to be tracked. Using an em

pirical relation is a somewhat indirect but easier approach as it involves start 

and finish transformation temperatures that are more easily measurable. In 

view of these difficulties and in order to satisfy the objectives outlined in 

Section 1.4, we have proposed a complete 3D theoretical framework and the 

numerical approach for 2D phase front computational models of SMA phase 

transformation in Chapter 5. The key ingredient in that development is the 

assumption that the chemical potential of either phase is identical at the 

phase boundary, from which a generalized Clausius-Clapeyron equation may 

be derived. Such an approach will then render unneccessary the need to 

determine phase front velocities from experiments. It is however essential 

to demonstrate that the ID implementation recover some of the known fea

tures of the ID SMA phase transformation before the 2D implementation is
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attempted.

In this chapter, we propose a theoretical framework for modeling ID sharp 

phase fronts in SMAs. The formulation is based on finite deformations, in

cludes inertia (leading to a stress jump at the phase front), assumes the 

continuity of temperature and chemical potential at the phase front. The 

continuity of chemical potential is reducible to an identity that relates the 

stresses and temperature to a jump in entropy at the phase front. We refer to 

the resulting identity as the generalized Clausius-Clapeyron equation. The 

formulation is based on the Helmholtz free energy of each phase and thus 

is general enough to incorporate the constituent material response. The ad

vantage of this approach is that if the Helmholtz free energy of each phase is 

explicitly known (and its parameters completely determined), the complete 

framework (including the generalized Clausius-Clapeyron equation) reduces 

to an explicit system of equations with completely characterized parameters. 

The velocity of the phase front does not have to be determined from ex

periments. Such an approach can then be generalized to the 2D case, and 

still be tractable. Analytical results are given for two sample Helmholtz free 

energy functions: a sixth order polynomial [6] and a trilinear function [3]. 

The framework is then specialized to small deformations, deformation gra-
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dients and negligible inertia. In that context, we demonstrate that for the 

special case of a trilinear Helmholtz free energy function with identical ma

terial properties for both phases (except the inelastic transformation strain), 

the generalized Clausius-Clapeyron equation reduces to a form similar to the 

empirical one used by Leo, Shield and Bruno [7]. The entire system of equa

tions resulting from the theoretical framework are coupled and nonlinear, the 

solution of which is obtained by using the MBFEM - based numerical ap

proach developed by Stoilov, Hiev and Bhattacharyya[8] and given in Chap

ter 2 . The numerical solution is then used to predict experimental data 

on SMA single and polycrystals subjected to uniaxial loading. The chap

ter is organized into five sections. Section 4.2 introduces the sharp phase 

front-based theoretical framework for shape memory alloys, Section 4.3 gives 

the quasistatic, small strain approximation and the SMA hysteretic response 

whereas Section 4.4 gives the results and discussions. Conclusions are given 

in Section 4.5.
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4.2 The sharp phase front-based theoretical

framework

We shall focus on phase transformations in a spatially ID shape memory alloy 

bar subjected to uniaxial loading; see schematic in Fig. 4.1. The interface in 

the deformed configuration separating the austenite and martensite is taken 

to be located at x = xs(t). Quantities that are defined per unit volume of the 

reference configuration will be referred to as “specific”, i.e. “specific entropy” 

will mean “entropy per unit volume of the reference configuration” .

4.2.1 Conservation Laws

In absence of body forces, the conservation of linear momentum at all loca

tions away from the phase boundary is written as

da dV  . , .
d X  = Po~dt X ^  Xs  ̂ ’ ’ I4 -1)

where the co-ordinate, X,  is the location of a particle in the reference con

figuration, t is time, a =  a(X, t) is the uniaxial first Piola-Kirchoff stress 

(also referred sometimes as the “nominal stress”), p0 =  A>P0 is the mass 

density in the reference configuration, and V  is the particle velocity. The 

material derivative of V  is dV/dt  which, in turn, is related to its partial
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derivative through dV/dt =  dV/dt  +  VdV/dx  (where x is the co-ordinate 

in the deformed configuration of a particle that was at X  in the reference 

configuration). The conservation of energy is 

dq dF du ^
d X  +  a !kt +  PoT =  ~db Xs^  ’ (4-2)

where q is the heat flux, F  is the deformation gradient (defined below),

r  =  r(X, t) is the heat source per unit mass and u is the internal energy per

unit volume of the reference configuration. In particular, we define

dw
F  =  1 +  -3—, where w ~  x — X  , (4.3)

O.A

w being the displacement of a particle from its reference configuration. The 

conservation of mass is stated as

% +  P”  =  0 at x ±  x8(t) , (4.4)
dt ox

where p is the mass density in the deformed configuration. Denoting a jump 

in a quantity, A,  at the phase boundary as [*4] and defining it as [.A] =  

limA-).o A{xs +  A ,t) ~  liniA^o A (x a — A, t) ,  where A > 0, the conservation 

of linear momentum, energy and mass at the phase boundary (x = xs (t)) 

respectively imply the following jumps

[o-J =  -A>[V}V, , [?] =  - [«  +  ift,V'2] K - [ l / <7] , [V] = -V,[F] , (4.5)

where Vs = dxs/d t  is the phase boundary velocity.
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4.2.2 C onstitutive Equations

We shall focus on the class of materials for which the stress, a, the specific 

entropy, rj, and the specific internal energy, u, are dependent on the La- 

grangian strain, e, and the temperature, 9, while the heat flux, q, is given by 

the Fourier’s law of heat conduction. These relations are respectively stated

as

3 0
a =  a(e, 9) , q = q(e, 9) , u = u(e, 9) , q =  , (4.6)

where the Lagrangian strain follows from the deformation gradient, F, as

t =  \  (F 2 -  l)  , (4.7)

and the parameter, k, in the last of Eq.4.6 is the thermal conductivity. In 

particular, the stress, entropy and the internal energy may be derived from 

a specific Helmholtz free energy function, ip =  ip(e, 9), as [9]

<T=(^)» ’ n = ~ i W ,  ’ u = i , + e n ’ (48)

where the subscript ”9” in the first of Eq.4.8 implies that the partial deriva

tive, has been taken while keeping 9 fixed. The condition for the phase 

boundary evolution is given next.
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4.2.3 The Generalized Clausius-Clapeyron equation

For two phases to co-exist in thermodynamic equilibrium, the stress (<r), the 

temperature (9) and the chemical potential (/i), have to be continuous at 

their interface [9]. Here, we propose that for irreversible processes not too 

far away from thermodynamic equilibrium, the latter two quantities remain 

continuous at the phase boundary, or equivalently, their jumps vanish. Thus

Denoting 9(xs(t)) = 9S, the latter of Eq. 4.9 is differentiated with respect to 

9S: resulting in

boundary temperature and stress are given by the Maxwell relations ([9])

where e, vp and r)p are the strain, volume and entropy per particle respectively.

Therefore it is reasonable to assume that there is no volume change between 

the two phases, thus [vp] =  0. Using this assumption alongwith Eq. 4.11,

[9] = 0 , [fj, (a, 9)] = 0 at x =  x s (t) . (4.9)

(4.10)

The partial derivatives of the chemical potential with respect to the phase

(4.11)

The phase transformation in most SMAs is primarily a shear process [10].
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Eq. 4.10 becomes

=  -[rj\ at x  =  x s(t) , (4.12)

where we have used the relation, 77 =  %/vp in arriving at Eq.4.12. We 

shall refer to Eq.4.12 as the generalized Clausius-Clapeyron equation. The 

commonly used empirical relation of a one-to-one correspondence between 

the stress and temperature at the phase front (represented by the clas

sical Clausius-Clapeyron equation) cannot be obtained. Note that if the 

Helmholtz free energy is completely characterized, so is the entropy, 77, (sec

ond of Eq.4.8), and the Clausius-Clapeyron equation too (Eq.4.12). Exper

imentally tracking the ID phase boundary motion to characterize a consti

tutive relation for phase boundary motion is thus not necessary. This ID 

approach is useful not only in its own right but also as a precursor to a 2D 

generalization of the theory. In the next two sections, we give explicit forms 

of Eq.4.12 corresponding to two sample Helmholtz free energy functions.

A sixth order Helmholtz free energy polynomial

Based on the Landau-Devonshire theory of the phase transformations, Falk [6] 

suggested the following explicit definition of a sixth order Helmholtz free
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energy polynomial

ip(e, 9) =  cue6  -  /9e4  +  (56* -  7 ) e2  +  V’o (0) , (4.13)

where a, /?, 7  and 5 are positive constants and ipo (0 ) is the chemical free 

energy. For the special case of a material having identical material parame

ters, the chemical free energy can be derived from the definition of the heat 

capacity, Ce, at constant strain[1 1 ] as

where we have assumed that Ce is temperature-independent, 9q is referred 

as the equilibrium temperature (i.e. at which the driving force vanishes in 

absence of stress, or /(0 ,0 O) =  0) and ^ > 0 is a constant parameter. Us

ing Eq.4.13, the explicit expressions for stress, entropy and internal energy 

(Eq.4.8) and the generalized Clausius-Clapeyron equation (Eq.4.12) as

(4.14)

9
a =  fifre5 — 4/3e3 4- 2 (SB — V) e . r? =  —5c2 4- CAn—

x = xs(t) . (4.15)
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A trilinear Helmholtz free energy function

In this section, we derive the explicit form of the generalized Clausius- 

Clapeyron equation based on Abeyaratne & Knowles’s[3] formulation of the 

Helmholtz free energy function, which qualitatively is the trilinear approxi

mation of the sixth order polynomial discussed in the previous section. The 

reader is referred to Abeyaratne and Knowles’[3] Eq.32 for the expression of 

the Helmholtz free energy that leads to the intermediate (unstable) portion 

of the a-e curve. The low strain and high strain segments of the trilinear 

Helmholtz free energy function can be collectively represented by

■0 =  —E  (e — €t )2 — E a  (e — 6t ) (9 — 0q) +  Ce9 ^1 — /rt—^ +  Ar ^ +  (̂{4-

where E, a, Ce and are the Young’s modulus, coefficient of volumet

ric thermal expansion, heat capacity and a reference Helmholtz free energy 

respectively. These will take different values depending on whether the con

sidered phase is austenite or martensite. As well, the parameters, er and At, 

will take the following phase-dependent values

0 Austenite
, A T = 4

eph Martensite

0  Austenite
, (4.17)

APh Martensite

in terms of the transformation strain, eph, and the latent heat of phase trans

formation, Xph, respectively. Using Eq.4.16, the expressions for stress, en-
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tropy and internal energy (Eq. 4.8) and the generalized Clausius-Clayperon

equation (Eq.4.12) follow as

a  =  E  { (e  -  eT) -  a  (9 -  0O)} , V = E a  (e -  eT) +  CJn^-  -  ^  ,
UQ (70

u =  —E(e — €t)2 +  E'er (e — ey) 0o +  Ce6 — Xt  +  ifio jZ

e^ T  =  ~ [£ a (e ~ er)] -  [cy at X  = x 8(t) . (4.18)
OUg  J  C7q (70

4.2.4 Second Law of Therm odynam ics

The second law of thermodynamics stipulates that the rate of entropy pro

duction during a dissipative process like the phase transformation in SMA 

will always be non-negative, resulting in (Abeyaratne and Knowles [4])

f V a > 0 , where /  =  \g\ and g =  if} — ere ; (4.19)

The quantity, [g], is the jump of the specific Gibbs free energy at the 

interface. Abeyaratne and Knowles [4] proposed a constitutive relation for 

Vs in such a way that Eq.4.19 is always satisfied. Since we do not make 

an explicit choice here, the inequality (Eq.4.19) should always be verified 

numerically.
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4.3 The quasistatic, small strain approxima

tion and the SMA hysteresis

4.3.1 The quasistatic, small strain approximation

While the formulation based on finite deformations and inertia is the com

plete one, often a practical and reasonable approach is the quasistatic, small 

strain approximation. However, the sequence of assumptions that lead from 

the complete to the approximate theory is not always obvious nor have we 

found those explicitly stated in the literature. We state these assumptions 

here clearly. These are: (i) uniform and identical density for both phases, i.e. 

dp/dt — 0 (refer Eq.4.4) (reasonable for most SMAs), (ii) negligible inertia, 

i.e. \p0dV/dt\ «  \do/8X\  (refer Eq.4.1), (iii) small particle velocity, V, such 

that dV/dt & dV/dt,  (iv) small deformations such that d o /d X  & do/dx,  (v) 

small deformation gradients (i.e. g  «  1), using which, Eqs.4.3 and 4.7 can 

be used to show that F  «  1 +  e. With these assumptions, the conservation 

equations (Eqs.4.1, 4.2, 4.4) in the domain (x ^  x s(t)) become

g  =  0 a =  o{t) , § | +  <7 §f +  pQr = §f , =  0 . (4.20)
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The simplifications in the jump conditions are: (i) The small strain approx

imation (F «  1 +  e) is invoked, such that [F] = [e], (ii) the last of Eq.4.5 

in the first of Eq.4.5 yields [a] — PqV^[F]; we assume that the inertia term, 

PoVg[F], is substantially smaller than the stress on either side of the phase 

boundary, i.e. \p0V*[F]\ «  \a(xf , t ) \ , \a(xj  ,t)\ where x+ =Jm (a:s +  A), 

x j  = lim (xs — A) and A > 0. With this assumption, the jump in theA—>0

stress at the phase boundary vanishes, i.e. [<x] =  0, (iii) the outcome of 

the assumption (ii) may be used to write the second of Eq.4.5 as [q] =  

—([«] -f po\V2)/2 — <r[F])ys. We assume that the particle velocities are small 

enough such that |po(V2]/2| < <  |cr[F]|. To summarize, Eqs.4.5 reduce to

[a] =  0 , [q] = (-[u] +  a[e])Vs , [V] =  - V s[e} . (4.21)

Eqs.4.20-4.21 constitute the quasistatic, small strain approximation. Note 

that the first of Eq.4.20 and 4.21 assure that the stress is spatially uni

form. With this outcome, the generalized Clausius-Clapeyron equation re

duces from Eq.4.12 to

=  ~ M  at x = x$W ’ (4-22)o9s [ej

from which one can derive a one-to-one correspondence between a and 9S for 

the phase front evolution. For the sixth order and trilinear Helmholtz free
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energy functions, the right hand side of Eq.4.22 has the following explicit

forms

—6 ^  for a sixth order Helmholtz free energy polynomial
(4.23)

[g{*(̂  er )j _|_ _  I*sl for a trilinear Helmholtz free energy function

The first of Eq.4.23 follows from Eq.4.15, and the second of Eq.4.23 follows 

from Eq.4.18. The a  vs. 9S relation that follows from the integration of 

Eq.4.22 will be, in general, non-linear and therefore is qualitatively similar to 

experimental observations; see Horikawa et al.[l] for SMA single crystals and 

Shaw and Kyriakides[12] for SMA polycrystals. Eq.4.22 may be integrated 

for the A  -» M  and the M  A  transformation respectively as

where Ms(oq) and A s(<7o) are the start temperatures for the A —> M and the 

M —¥ A transformations respectively, at the stress, <r0. For a material with a

both phases, Eq.4.18 may be written as [er] =  E  {[e — er] — a[9 — 9q]} at the

the first of Eq.4.9 and the first of Eq.4.21. Therefore, the second of Eq.4.23
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trilinear Helmholtz free energy function and identical material properties for

phase boundary; this equation simplifies to [e — eT\ =  0 (or [e] =  [er]) due to
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reduces to

3 ct Xph at x = x a(t) . (4.25)
dds r -pii O’j

Eq.4.25 is a linear a  vs. 9S relation and, in that sense, such an outcome is 

similar to Bruno et al.’s[5] approach (see Eq.8 of their paper). They propose 

that the linear stress-temperature equation be determined directly from ex

periments. The difference is that in our case, the right hand side of Eq.4.25 

is already known as long as the material parameters of Eq.4.16 are known.

4.3.2 The SM A hysteretic response

The SMA response during a closed cycle of thermomechanical loading is 

hysteretic. The resulting entropy generation, Fs, for the entire bar is [4]

r  . = A $ ^ d t ,  (4.26)

where A  is the area of cross-section of the ID bar under consideration. While 

an explicit evaluation of Eq.4.26 is not possible in general, it reduces to simple 

explicit expressions, derived below for a SMA with a trilinear Helmholtz free 

energy function and identical material properties (i.e. [E] =  0, [a] =  0, [C£] =  

0) during a — (i) constant temperature, stress-induced phase transformation, 

and (ii) constant stress, temperature-induced phase transformation. These
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outcomes will now be demonstrated for a ID bar with length, L, having a 

phase distribution where austenite always exists in the domain, 0 < x < 

xa (t), and martensite exists in the remainder of the bar. Even if the phase 

distribution was reversed, the outcome of the analysis will remain unchanged. 

The driving force, / ,  follows from Eqs.4.16, 4.18 and 4.19 as

=  ^ { 0 3 -  M®) , <7m~+a (0s) = -  A°s) . (4.28)
VQtph VQCph

C onstan t temperature, stress-induced phase transformation

Consider the pseudoelastic response of the ID bar initially in a fully austenitic 

state and at an uniform temperature, identical to that of the environment. 

We shall also assume that the temperature of the environment, 0amb, is 

greater than A® (to assure a pseudoelastic response on loading and unload

ing). At all times, the deformation rate is slow enough such that the temper

ature of the bar practically does not change from that of the environment, 

Oamb', thus, 9(x,t) & 9ams, and therefore 0S ~  Oamb- Note that Eq.4.27 and 

the first of Eq.4.28 can be used to demonstrate that /  =  Ap/l(M°/0o — 1)

(4.27)

whereas Eqs.4.24 result in
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and /  =  Xph(AQs/80 -  1) during the A  -» M  and M  A  transformations 

respectively. As well, Eq.4.19 dictates that Vs < 0 during the A-+  M  trans

formation (since /  < 0) and vice-versa. Thus, Eq.4.26 becomes T89amb/A  =  

I a -+ m  f i  d x 8 +  /m - ^ a  Io' d x s . This outcome, along with Eq.4.28, results in the 

specific entropy

Ts   [&A~~>M{9amb) @M̂ tA {9amb}] €ph / A
A L ~  ~ 9 ^  ' ’ }

in terms of the specific mechanical work done on the bar (numerator on

right of Eq.4.29); it is identical to the area enclosed by the closed loop of

an isothermal, pseudoelastic uniaxial stress-overall strain curve of the SMA

bar. Note that if M8 =  A®, it implies that ffA-+M(0amb) — &M-^A{8amb) (by

Eq.4.28), and the specific entropy (and hence the dissipation) vanishes.

Constant stress, temperature-induced phase transformation

Consider a SMA bar initially in a fully martensite state, subjected to a con

stant stress, aamb (< tJM-+A(0amb)) and at an initially uniform temperature 

identical to that of the environment, 9amb. This restriction guarantees that 

the M  —*• A  transformation will not set in at the chosen initial stress and 

temperature, aamb and 9amb, respectively. The temperature of the environ

ment is gradually raised until the M  -» A  transformation is complete and
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then decreased until the A M  transformation is complete. At all times, 

the temperature rate (at which the environmental temperature is changed) 

is kept low enough so that temperature gradients along the bar are also low, 

to the extent that 9(x,t) ~  Oamb, and therefore 08 «  0amb, is an excellent 

approximation. Within this context, Eqs.4.26-4.28 reduce to 

r  (  d i _ i  M l - i  \
s ~  \  I _______ ^0________________________ ^0_____________  J 2 Q \

AL  1 A 0 —U &amb@Q£ph A 0 i &am b8p€pk I ?
V VIs ^  ^  APh J

The specific entropy (Eq.4.30), and hence the dissipation, vanishes when 

M ° , = A l

4.4 R esults and Discussion

In this section, we use the theory to predict two experiments: (i) stress- 

induced phase transformation at constant deformation rate of a SMA single 

crystal uniaxial test specimen, and (ii) constant stress, temperature-induced 

phase transformation of a SMA polycrystal wire. The boundary value prob

lems (BVPs) corresponding to both experiments are based on the quasistatic, 

small strain approximation with a trilinear Helmholtz free energy function. 

The governing equations reduce from the second of Eq.4.20 and the second
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of Eq.4.21

k ^ ~ a 0 % - ^ T ( e -  e" * >  +  P e J 2  =  (c< +  B“ 29) f t

k *
dx

= _  ( I  [£(e _  er)2] +  [£a  (e -  eT)] 0„) Vs -

([Ce]0s - [ X T]-a[e})Vs , (4.31)

for a trilinear free energy function and either of Eq.4.24. Note that the heat 

source term (p0r) in the second of Eq.4.20 has been replaced by the third and 

fourth term on the left side of the first of Eq.4.31. The third term represents 

the heat that is exchanged between the environment and the SMA specimen 

along its length whereas the fourth term represents the fact that the M  -» A 

transformation may be driven by electrical (or joule) heating. The parameter, 

hi,  is a convection coefficient, P  and A  are the perimeter and the area of 

the specimen cross-section respectively, pe is the electrical resistivity of the 

considered phase and J  is the density of the electrical current, I, flowing along 

the length of the specimen (defined as J  — I/A).  The mechanical boundary 

conditions are now given. The left end of the bar is always taken to be fixed 

(thus excluding rigid body displacements) and, motivated by the experiments 

to be modeled, either one of two boundary conditions (deformation or load
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control) will be imposed at x — L. These are

ii/(0, £) =  0 , w(L,t) =  WL(t) or a(L,t) = ai(t) . (4.32)

An adiabatic boundary condition and a temperature-dependent linear bound

ary condition are taken at x = 0 and x — L  respectively, i.e.

q(Q,t) =  0 , q(L,t) =  - h B{9(L,t) -  6amb) . (4.33)

The initial conditions are taken as

ct(0) =  a1 , 9(x, 0) =  9T(x) , xs(0) = xTs , (4.34)

where a1, 9I (x) and x[ are parameters to be specified for a given simulation. 

The first and second of Eq.4.32 are invoked for the first BVP whereas the first 

and third of Eq.4.32 are invoked for the second BVP. The BVPs are solved 

using a moving boundary finite element method (MBFEM)-based numerical 

approach outlined in Chapter 2 [8].

The uniaxial stress-strain response during a phase transformation of a 

Copper-Aluminium-Nickel (CuAINi) single crystal from the /3\ austenitic 

phase to the martensitic phase [1] is modeled here. The mass percent of 

Aluminium and Nickel are 14.1 and 3.9 respectively. The specimen is 2 cm. 

in length with a rectangular cross-section (2 mm. by 3 mm.). The numerical
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approach to address this problem is summarized in the flowcharts of Figs. 4.2 

and 4.3 respectively. Note that the parameter, cr*, used in these figures rep

resent the value of a(t) at the end of the kth time increment of the temporal 

discretization (a similar correspondence for the remaining parameters in the 

flow charts is implied). Three sets of experiments have been modeled and 

in all these cases, the initial conditions (Eq.4.34) of the problem are taken 

as a1 =  0, 0J(x) =  282 K (Fig. 4.4), 274 K (Fig. 4.5), 243 K (Fig. 4.6) and 

xJs — 0. Based on the experimental data, the Young’s modulus was taken 

to be identical for both phases. All necessary material, geometric, numerical 

and input parameters of the problem have been summarized in Table 4.1. 

Among the necessary parameters given in Table 4.1, a total of five had to 

be determined - these are Hl, hs, E  and k (for both phases). Ideally, the 

determination of five parameters from a limited set of experimental data 

often turns out to be a non-trivial optimization problem. For simplicity, 

we have set hs — 0 (a reasonable assumption for end grips in a laboratory 

experiment) and determined by trial and error a combination of the remain

ing four parameters that gave a reasonable simulation of the a — e curve 

at 9amb — 282 K.  This has been shown in Fig. 4.4. With the determined 

parameters, the predictions of the single crystal SMA pseudoelastic response
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at 6amb =  274 K  and the shape memory response at 6amb = 243 K  have been 

shown in Figs. 4.5 and 4.6 respectively. A common feature in the results is 

the failure of the model to capture stress peaks during loading (Figs. 4.4, 4.5 

and 4.6) and the valleys during unloading (Figs. 4.4 and 4.5). These features 

in the experimental data are believed to be due to the relative absence of 

defects in a single crystal as opposed to a polycrystal [13]. Defects act as 

sites for local stress concentration; thus, for example, a relative absence of 

defects will make it difficult for the A —¥ M  transformation to initiate (and 

hence the stress peak during the loading process). These peaks are usually 

not observed in polycrystals. In the context of the current model, the impli

cation is that one will have to come up with a Helmholtz free energy function 

that reflects the stress peaks (and valleys) for stress-induced transformations 

more appropriately.

Next, we model the temperature-time response during a cycle of heating 

and cooling of a polycrystalline Nickel-Titanium (NiTi) SMA wire subjected 

to a constant load of 2 kg (and the stress will be assumed to be constant 

and spatially uniform). The material properties are given in Table 4.1, and 

the Clausius-Clapeyron equation is linear (Eq.4.25). With a constant stress, 

Eqs.4.25 will give the constant temperature, 9S, at which the phase boundary
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needs to be at, for the A —> M  or the M  —¥ A  phase transformation to occur. 

Due to this reason, the numerical approach is considerably simpler. The is

sue reduces to the determination of the velocity, V8, of the phase boundary 

during either transformation. At every time instant, the spatial temperature 

profile in either phase can be calculated separately using the first of Eq.4.31 

since 9S is known and then the second of Eq.4.31 is used to calculate Vs. Fur

ther details of the numerical approach are not being given here for brevity. 

The experiment, reported by Faulkner, Amalraj and Bhattacharyya[2], was 

done in air while the SMA wire was exposed to free convection. The heat

ing of the wire was done electrically. The electrical current was switched off 

during the cooling portion of the cycle and the free convection of air was 

allowed to cool the wire back to the ambient temperature. The experiment 

was carried out to reasonably ensure the symmetry of the problem about the 

center of the wire. It is at the center that the origin of the ID co-ordinate 

system is taken. All necessary parameters are given in Table 4.1. The ini

tial conditions (Eqs.4.34) for this problem are taken as a1 =  173.86 MPa, 

9T(x) =  294 K  and x{ =  L. The first and third of Eq.4.32 represent the me

chanical boundary conditions (where we set a ^ t )  =  173.86 MPa). Since the 

material state of a SMA wire is usually non-uniform during a phase trans-
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formation, Faulkner, Amalraj and Bhattacharyya[2] developed experimental 

procedures to determine the thermal conductivity and electrical resistivity 

of the austenite and martensite phase of the SMA wire. The heat capaci

ties of either phase were determined using a differential scanning calorimeter 

(DSC) experiment. The experimental data given in Fig. 4.7 was not used by 

Faulkner, Amalraj and Bhattacharyya[2] in the determination of the phase- 

dependent material properties; hence, any model that uses their properties 

to predict the data in Fig. 4.7 (discussed in the next paragraph) is truly a 

prediction.

The temperature, 8(0, t), of the wire at its center, x — 0, is given with 

respect to time, t, in Fig. 4.7; the experimental data points have been shown 

as the “squares”. Notice the distinctive “plateaus” in the experimental curve 

during the heating and cooling. Each plateau corresponds to the latent heat 

evolution during the phase transformation. An obvious item of interest is 

that the phenomenological model (dotted line) predicts the experiment far 

better than the current sharp phase front-based model (solid line); espe

cially, notice how “well” the plateaus have been modeled by the phenomeno

logical model. This contrast is due to a fundamental difference in the way 

the conservation of energy is written in the two models. We shall high-
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light this difference for the special case of a SMA with identical material

properties undergoing a thermally induced transformation at constant stress

{dojdt  =  0). After invoking these assumptions, the second of Eq.4.31 is in

corporated into the first of Eq.4.31 using a delta function, S(x — xa), defined 

— x s)g{x)dx = g(xs), where g(x) is any arbitrary function. Fur

ther, approximating E a 20 ps E a 2Oo, “order-of-magnitude” calculations show 

that C J ( E a 280) ps 3902 (using austenitic values for material parameters). 

As a consequence, we write

On the other hand, Lagoudas, Bo and Bhattacharyya [14] represent the mate

rial state using an internal variable known as the martensite volume fraction, 

£ (= limAv-x) AVfcf/AF) where AV is the volume of material around a con

tinuum point and AVm is the component of AV that is in the martensitic 

state. For the current problem, their conservation of energy reduces to[14]

where the last term, d^/dt  =  —p{Q)dQ/dt for (dd/dt > 0) and d^/dt  =  

g(8)dd/dt for {dO/dt <  0). The functions, p(6) and g(9), can be determined 

from DSC measurements of the latent heat evolution in a stress-free SMA
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undergoing the M  A  and the A  —> M  transformation respectively. Now 

compare Eqs.4.35 and 4.36. Both are identical except the second term on 

the right side of either equation. Thus, these terms are responsible for the 

significant contrast in the predictions by the phenomenological model and the 

current sharp phase-front model based on the trilinear Helmholtz free energy 

function. An improvement in the predictions of both sets of experimental 

data by the current theory may be attempted by using candidate Helmholtz 

free energy functions other than the trilinear one.

4.5 Conclusions

In this chapter, a one-dimensional (ID) sharp phase front-based theoreti

cal framework for shape memory alloys has been given. The assumption 

of an equality of the chemical potential at the interface leads to a gener

alized Clausius-Clapeyron equation. The theoretical framework is general 

enough to incorporate any Helmholtz free energy function, and if this func

tion is completely characterized, then so is the system of equations including 

the condition for the evolution of the phase front. The small strain, qua

sistatic approximation of the general framework in conjunction with a trilin-

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ear Helmholtz free energy function has been used to predict the following two 

experiments: (i) Constant deformation-rate phase transformation in a SMA 

single crystal, and (ii) Constant load, temperature-induced transformation 

in a SMA polycrystalline wire.
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Load A Martensite Austenite \ -> Load

x,(t)

Figure 4.1: A schematic of the spatially one-dimensional (ID) phase trans

formation.
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Known:

— ° k  > ®.^+i ~  ® i(x »,t )> ^.,k+i ~  X

Yes No

No

YesNo

Yes No

Yes
Solve for

° k + l ’ ® k + l(X)> S s,k+1

assuming Ol+1 =<JM_*A (0,.v+l). 
using flowchart in Fig. 3

Solve for

® k + l’ ® k + l(X )> X j.k+i>

assuming V, = 0 . 
using flowchart in Fig. 3

No
Solve for

^ k k l  ’ ®k+l ( X 1  X s,k+1

assuming o t+1= o Â M (6 a+1). 
using flowchart in Fig. 3

Yes

No

°k +i =  ■ e a n  =  e k (x . , i )- V.,i+t =  V5,k

Yes
Update k 
k f— k+1

Figure 4.2: The decision-making process based on which either of Eq. 4.24 is 

used.
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Known:

= fli(xa )  • 9k+i(x)=6i

Calculate Va+t from third of Eq.4.41

X,.tH =  X«.k + ^ + 1

Calculate 6V+Une*. (x) from Eq. 4.53 and 
Eq. 4.54 using MBFEM-based 

numerical approach

No
-e. < £

Yes

Stop

Figure 4.3: The flowchart in Fig. 4.2 requires the calculation of the field 

variables using the MBFEM-based numerical approach. This calculation is 

summarized in this flowchart.
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Figure 4.4: Simulation of an experimental pseudoelastic stress-strain curve 

of a CuAINi single crystal, uniaxial test specimen tested at 8am), = 282K  [1].
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Figure 4.5: Prediction of an experimental pseudoelastic stress-strain curve 

of a CuAINi single crystal, uniaxial test specimen tested at 6amb = 274K  [1].
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Figure 4.6: Prediction of an experimental shape memory stress-strain curve 

of a CuAINi single crystal, uniaxial test specimen tested at 9am& =  243K  [1].
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Figure 4.7: Prediction of the temperature-time response at the center of a 

NiTi SMA polycrystalline wire undergoing a thermal transformation while 

subjected to a constant load [2 ].
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P a ra m e te r S ym bol N iT i P o ly c ry s ta llin e  w ire C uA IN i S ing le  c ry s ta l  

sp ec im en

V alue Ref. V alue R ef.

L e n g th L 0 . 0 8 m [15] 0 .02  m [1]

P e r im e te r  o f  th e  c ro ss-sec tio n P 0 .0012m [15] 0 .0 0 1 m [1]

A re a  o f  th e  c ro ss -se c tio n A 1.14 x  1 0 ~ 7 m 2 [15] 0 .0 0 3  X 0 .0 0 2 m 2 [1]

M ass d e n s ity PQ 6 4 5 0 % / r a 3 [11] 7120 k g / m 3 [16]

H e a t c a p a c ity 5.92 x  10e j y ( m 3 JC) [15] 2 . 7 0 7  X 10e J / ( m s K ) [17]

C  M a r t e n s i t e 4.50  x  106 J / ( m 3 /C) [15] 2 .819  X 10® J / ( m a K ) [17]

C oeffic ien t o f  th e rm a l  e x p a n sio n a 10“ 5 JC“ i [11] i o - 5 * : - 1 [11]

Y o u n g ’s m o d u lu s E 5 1 .6 G P o [11] 4 7 .5 G .P a *

U n iax ia l p h a se  tr a n s fo rm a tio n s p h 0.06 [15] 0 .06 [1]

s tr a in

L a te n t h e a t o f  p h a se  tr a n s fo rm a tio n ^ p h 0 .1 2 1 G J /m 3 [15] 0 M S G J / m 3 [18]

T h e rm a l c o n d u c tiv i ty k  A u s t e n i t e 1 4 W / ( m K ) [15] A 3 W / ( m K ) *

k M a r t e n s i t e 2 8 W / ( m K ) [15] 3 0 W / ( m K ) *

E q u ilib r iu m  te m p e ra tu re #0 3 2 6 .4 K [15] 217.5 K [1]

A m b ie n t te m p e ra tu r e @ a m b 294K [15] 282I f ,  2 7 4 i t ,  243K [1]

C onvec tive  coefficien ts 7 7 W f  (m 2 K ) [15] 1 1 0 W 7 (m 2 K ) *

4 5 0 W 7 (m 2 K ) [15] 0 *

A p p lie d  lo a d l 7 3 . 8 6 M P a [15] - -

A p p lie d  d e fo rm a tio n  r a te w - - 8 .4  X 10 - ® t o / s [1]

E le c tric  c u r re n t I 0.9 [15] - -

E le c tr ic a l re s is tiv ity A u s t e n i t e 8.371 x  10“ 4 f im m [15] - -

M a r t e n s i t e 9 .603  X 1 0 ~ 4 n m m [15] - -

T im e  in c rem en t T 8.1 X 10_ 4 s - 3 .2  X 10 - 4 « -

N u m b e r o f  e lem en ts N n o - 144 -

T o le ran ce e t o l
10- s - 10- 5 -

Table 4.1: List of material, geometric, numerical and input parameters. The 

symbol, indicates that the corresponding parameters follow from the 

simulation in Fig. 4.4
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Chapter 5

A Three-dimensional 

Theoretical Framework for 

Sharp Phase Fronts in Shape 

Memory Alloys

5.1 Introduction

The theory presented here is a natural extension of the ID theory developed 

in Chapter 4. The suggested theoretical framework is based on three main
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components: conservation laws, constitutive equations and continuity of the 

chemical potential on the interface between the different phases. The conser

vation laws represent the fundamental balance relations valid for any physical 

system undergoing fist order phase transformation. The constitutive equa

tions introduce the characteristics of the specific material into the model. 

The combination of the conservation laws and the constitutive equations is 

the basis of all known theoretical models of phase transformations in ther

moelastic solids. However, as it was shown by Abeyaratne and Knowles [2], 

a model based only on conservation laws and constitutive relations do not 

render a unique solution of the phase transformation problem. Different 

approaches have been suggested to complete the model.

Abeyaratne and Knowles [3, 4] suggested the introduction of a semiem- 

pirical relation between the phase boundary velocity and the intensive ther

modynamical quantities(stress, temperature). The semiempirical nature of 

the approach requires fitting experimental data. An alternative to the Abe

yaratne and Knowles’ approach was developed by Bruno,Leo and Reitich[5]. 

They completed the model with an experimentally determined relation be

tween the stress and phase transformation temperature. Both approaches, 

although applied successfully to ID problems, are practically inapplicable to
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problems in two and three dimensions. The third component of the model 

is the introduction of the continuity of the chemical potential on the phase 

boundary - representing an equilibrium condition in systems close to phase 

equilibrium. This formulation of the model renders a complete description 

of the physical problem of the first order phase transformations. The formu

lation is general enough to accept any form of constitutive equation.

In the following section we present a detailed derivation of the general 3D 

theory of phase transformation. Later the derived model will be applied to 

2D problem of biaxial loading of SMA thin film and the simulation results will 

be compared to the experimental data obtained by Fang et. al. [1 ] for similar 

system. In the chapter we also introduce a description of a novel numerical 

algorithm developed for the implementation of the proposed model to the 

2D problem. The developed algorithm is based on 2D FEM for solving the 

coupled thermo-mechanical problem. The algorithm is second order accurate 

in time and space. The phase front tracking is accomplished by constant 

update of the spatial discretization (mesh) and the computational data is 

transferred from the ’’old” mesh to the ’’new” mesh by non-oscillatory 2D 

interpolation. The accuracy and stability of the suggested algorithm were 

validated by comparing the results of the simulations to two thermal and
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one mechanical test problems with analytical solution.

5.2 The 3D theory for sharp phase fronts in 

shape memory alloys

5.2.1 Conservation laws and entropy production

Consider a body occupying the region R(t) at time, t\ see Figure 5.1. Trac

tions and displacements are prescribed on the surface of the body. Further, 

Sp(t) is a regular surface in R(t) across which thermomechanical and kine

matic quantities may be discontinuous. The conservation laws for all particles 

not on Sp{t) are listed below. The conservation of mass is

where p is the mass density in the deformed configuration. The conservation 

of linear momentum is

where T a  is the first Piola-Kirchhoff stress tensor and b  is the body force. 

The conservation of angular momentum is

p + p div v =  0  , (5.1)

div T r  +  b  =  pv, (5.2)

T r F t  =  F T r , (5.3)
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where F is the deformation gradient tensor. The conservation of energy is

tr(T RF) +  div q +  pr = u, (5.4)

where q is the heat flux vector, r  is the heat source per unit mass and u is 

the specific internal energy per unit volume of the reference configuration. 

The deformation gradient tensor , F, is defined as

F =  1 +  V <g> w , (5.5)

where w  is the displacement vector of a particle. The jump discontinuities

in mass, linear momentum, energy and deformation gradient across Sp(t) are 

given by [4]

N ]  =  -V n[[F}]n, (5.6)

[[Tr,h.]] =  -p[[v]]Vn, (5.7)

[[q-n]] =  - [ [ v - T r h ] ]  -  u + ^ p \ v \ 2 Vn, (5.8)

[[F]]m =  0, (5.9)

where [[*]] indicates a jump, Vn is the normal component of the interface

velocity, and n and m are normal and tangential vectors at a given location

on Sp(t).
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Any dissipative process will result in entropy production. The Clausius- 

Duhem inequality away from S p ( t ) is given by

div  G O + j  -
(5.10)

where 0 is the temperature and rj is the specific entropy. The jump in specific 

entropy across Sp(t) has to satisfy the inequality

q n

i

Ml < Vn

5.2.2 C onstitutive equations

Based on a specific Helmholtz free energy function, ip

iP =  iP ( F , 0 ),

(5.11)

(5.12)

the constitutive relations for the stress, specific entropy and internal energy 

follow as

T r  =  dpip , rj — —d$ip , u = ip + 6rj. (5.13)

The heat flux is given by Fourier’s law of heat conduction

q =  -K V 0  ,

where K is the tensor of thermal conductivity.
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5.2.3 Generalized Clausius-Clapeyron equation

The coexistence of two phases in thermodynamic equilibrium requires the 

continuity of stress, temperature and the chemical potential at the inter

face [6 ]. Here we propose that for dissipative processes not too far away 

from thermodynamic equilibrium, the temperature 9 and specific chemical 

potential (fi) remain continuous, or their jumps vanish. Therefore,

[[9]]= 0 , [[/i(TR,6*)]]=0 at x c  Sp(t). (5.15)

From the second of Eqs. 5.15,we can write

[[%/ +  t r ( d cfeTRT)]j =  0 . (5.16)

The Maxwell relations (refer Appendix C.3) are

den =  Tfp , 3 rR/i =  - v pF . (5.17)

Phase transformation in SMAs is primary a shear process [7]. We assume 

there is no difference in volume for a particle which exists either in the austen- 

ite or the martensite phase, i.e. [[up]] =  0. Using this assumption along with 

Eqs. 5.17, Eq. 5.16 becomes

M ] = ~ [ M F d(?T£)]] at x C Sp(t), (5.18)
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where we have used the relation for specific entropy, 77 =  ^  in arriving at 

Eq. 5.18. We shall refer to Eq. 5.18 as the generalized Clausius-Clapeyron 

equation.

5.3 The 3D theory, based on a quasistatic, 

small strain approximation

The transition from the complete theory (Sec.5.2) to the simpler theory based 

on a quasistatic, infinitesimal strain approximation is given in this section, 

and is made by invoking the following assumptions: (i) constant, uniform 

and identical density for both phases, i.e. p  = 0, (ii) negligible inertia,

i.e.|pv| < <  |div T rJ, (iii) small particle velocity, v , such that v  dtv, (iv) 

small deformation gradients (i.e.V ® w  < <  1), such that div T r  «  div T  

where T  is the Cauchy stress tensor. Further, the Lagrangian strain tensor, 

E =  1(Ft F — 1), reduces to the infinitesimal strain tensor, E

(5.19)

With these assumptions, Eqs. 5.1-5.4 become

div v =  0, (5.20)
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div T =  0, (5.21)

T  =  T t , (5.22)

tr (T  dtE) +  div q +  pr =  dtu . (5.23)

The jump conditions are now simplified: (i) Eq. 5.6 in Eq. 5.7 yields [[Tan]] =  

pV2 [[F]]n. We assume that the inertial term, pV^[[F]]n, is vanishingly small 

, leading to [[Tan]] =  0, (ii) with this result and Eq. 5.6, Eq. 5.8 becomes 

[[q • n]] =  —[[u +  |p |v | 2  — F n  • Tan]]F„. We assume that particle velocities 

are small enough such that §p|v | 2  < <  F n  • T Rn. As well, we use the identity 

F n  • T a n  =  tr(T F ) =  ir(TE). With these assumptions, Eqs. 5.6-5.9 reduce 

to

[[vj] =  -K [[F ]R  (5.24)

[[Tn]] =  0, (5.25)

[[F]]m =  0, (5.26)

[[q • n]] =  [[« -  tr(TE)]]K- (5-27)

The generalized Clausius-Clapeyron equation Eq. 5.18 becomes

M ] = -tr([[E]] deT) at x C  Sp(t). (5.28)

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.4 The generalized Clausius-Clapeyron equa

tion in the quasistatic, infinitesimal strain 

theory with a trilinear Helm holtz free en

ergy function

The generalized Clausius-Clapeyron equation (Eq. 5.28) will now be special

ized for a trilinear Helmholtz free energy function. The infinitesimal strain 

approximation implies that Eq. 5.12 now becomes ip = ip(E,9) in terms of 

the infinitesimal strain tensor. A 3D generalization of the Helmholtz free 

energy function available in [8 ] is adopted

^  =  ^(E , 6) = ^ r ( E te£ E te) -  *r(Ete£A)(0 -  60)+

Cs0 ^ 1  -  In -  Ar ^1 -  + const. (5.29)

where E te is the thermoelastic strain tensor, C is the fourth-order tensor of

elastic moduli, A is the tensor of the coefficient of thermal expansion, 90 is

a reference temperature, Ce is heat capacity at constant strain and At  is the 

latent heat of transformation. The thermoelastic strain tensor is defined as

Ete — E — Ex, (5.30)
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where E t  is the phase transformation strain of a product martensitic phase 

with respect to a parent austenitic phase. We define

0 Austensite
E t  — * (5.31)

Eph *th variant of martensite

0  Austensite
At =  { (5.32)

Aph ith variant of martensite

noting that while the value of E t will be different depending on the par

ticular martensitic variant, At will have the same value for any martensitic 

variant. With Eq. 5.29, the stress, entropy and internal energy will follow

from Eq. 5.13. Note that, due to the small strain approximation, the first of

Eq. 5.13 becomes T r  =  Thus, we have

T =  £[Ete — A(0 — 0O)], (5.33)

r, = tr (Ete£A ) + Cs ln ^  (5.34)
VO vo

u =  — tr(E tejCEte) +  tr (Ete/^A)(9 — 0#) -I- Ce9 — At ~1~ const. (5.35)
&

The generalized Clausius-Clapeyron equation (Eq. 5.28) for a trilinear Helmholtz 

free energy function reduces to

-«r([[E]] a„T) = [(ir(E*£A)]] + [[C,)l In f  -  4[[AT]] , (5.36)
vo vo
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where Eq. 5.33-5.35, have been used. Eq. 5.36, is, in essence, the stress- 

temperature relationship at an interface between two phases. If, in particular, 

the interface is between two martensitic variants, then [[<7e]] =  0, [[Ay]] =  0 

and Eq. 5.36 simplifies to

M[[E]] deT) = —*r[[Ete£A)]] . (5.37)

5.4.1 Variant selection criterion

Different martensitic variants can be realized during the phase transforma

tion in SMAs. The appearance of a specific martensitic variant is determined 

by the local value of the thermal and mechanical fields as well as the material 

characteristics of the variant (i.e. transformation strain, elastic moduli etc.). 

From thermodynamical point of view, the variant that should appear must 

lead to formation of a stable system at thermomechanical equilibrium. This 

state of equilibrium is achieved when the local thermal and mechanical fields 

satisfy the conditions in Section 5.2.3. Since the first two equilibriums con- 

ditions(equality of the local stress and equality of the local temperature) are 

trivially satisfied, the Generalized Clausius-Clapeyron equation (Eq. 5.18) is 

the natural choice for a variant selection criterion. Based on the reasoning 

above the variant selection criterion adopted in this work can be formulated
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as follows: The ith martensitic variant appears in a system undergoing or 

is about to undergo phase transformation, at each location, x ,  where the 

local temperature, 6, local stress, T r , and the ith variant material properties 

satisfy Eq. 5.18. In the infinitesimal strain approximation Eq. 5.18 must be 

replaced by Eq. 5.36 and/or Eq. 5.37.

5.5 The finite element m ethod and the nu

merical approach

5.5.1 The governing equations in a Cartesian reference 

frame

In order to prepare for the finite element implementation, the symbolic form 

of the governing equations presented in Section 5.4 will be converted into 

indicial form. A Cartesian reference frame is adopted, wherein e; is the ith 

unit vector (i = 1, 2 , 3). The Cartesian representation of some pertinent 

tensorial quantities are

T T ( j (e, ® ©j) , Ete — ® ©j) , A  =  a(e; ® ©j) ,

£  =  L ijki ( e i ® ej ® ek <8> ei) . (5.38)
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With Eq. 5.38, we then make a transition to a matrix and vector formulation

for finite element implementation. A second order tensor, e.g., E te, will be

written as a vector, e.g. Ete , whereas a fourth order tensor , e.g. £  , will be 

written as a matrix and denoted as [£]. A dot product between two vectors, 

T  and Ete, will be denoted as T  • Ete. The components of T, A  and [£] 

have been listed in Appendix C.l. The matrix of elastic compliances, [M], 
will follow from the inverse of [£], i.e.

[M] = [£]->. (5.39)

Eq. 5.21 and Eq. 5.33 to 5.35 respectively become

div f  =  0, (5.40)

Ete = [M]T + A ( 9 - 9 0), (5.41)

i) = Eu ■ [C]A + Ct In 4  -  ^  (5.42)
U 0 t>0

u = -Ete * [£]Ete +  Efe • [£]A(0 — 0g) +  Ce9 — \ t +  const. (5.43) 

With Eqs. 5.41 and 5.43, Eqs. 5.23 and 5.27 become respectively

div q + pr = T  • A6 + (A  ■ [C]A9 +  (7e) 9, (5.44)

[[q • n]] =  V„ ( i  T ■ [[ \M] ]] f  -  T ■ [[!)]«„ +  T ■ [& .] ] )  -

K  ( j [ [ ^ • IC]A]W  -  + {{C,\}B, -  [[Ar ]]) . (5.45)
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Finally, the generalized Clausius-Clapeyron equation (Eq. 5.28) becomes

= T -[[i]]  +  [[A -[£]l]](9 .-«„) +  [[a]] (5.46)

Phase transformation in shape memory alloy thin films may be effectively 

modeled by assuming a two-dimensional state of stress (in the plane of the 

film). The predictions using the approximation become more accurate as the 

thickness of the thin film decreases, and are exact in the case of vanishing 

film thickness. We take the plane of the thin film to coincide with the X\ — x<i 

plane. The components of T, Ete, A  and [£} for the 2D plane stress problem 

are listed in the Appendix C.2 .

5.5.2 Variant selection

The variant selection is based on the criterion outlined in Section 5.4.1 and 

Eq. 5.46. For each martensitic variant, the required phase transformation 

temperature at each location is determined using Eq. 5.46 and the known 

stress field. Thus, for a specific location, the obtained set of possible phase 

transformation temperatures is

o* < n < < . . . ,  (8.47)
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where indices i, j ,  k represent the ith, j th, k th variants respectively. The 

selection criterion implies that a variant p will appear if the local temperature, 

9, is equal to the required phase transformation temperature, 9pa, i.e.

9 = 9P . (5.48)

However, due to the discrete character of the numerical solution for 6 and 

9P, the condition in Eq. 5.48 may not be exactly attainable. Therefore, we 

propose that the variant p  will appear if for two consecutive time increments, 

n and n +  1 , one of the following transitions occurs

9n < 9p 9n+1 > 9p ,

9n > 9p -4 9n+1 < 9p .
O —  S3

5.5.3 Num erical algorithm

Eq. 5.40 along with Eqs. 5.44-5.46 constitute the non-linear, time-dependent, 

coupled system of equations describing the evolution of phase transformation 

in SMAs. Solving this system of equations numerically is not a trivial prob

lem. That is mostly due to the strong coupling between the stress and tem

perature fields and the presence of moving heat source. The spatial discretiza

tion of the equation was perform by applying Finite Element Methods (FEM):
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functional minimization and weighted residuals(Gelerkin method). Three dif

ferent time discretization schemes has been implemented: first order explicit, 

first order implicit and second order semi-implicit (Crank-Nicholson). Time 

stepping in the case of explicit scheme is relatively simple but a condition 

of the type At < C A x2[9] must be satisfied in achieve convergence. That 

kind of stability problems are avoided with the implementation of implicit 

or semi-implicit time discretization schemes. The result of the discretiza

tion of Eq. 5.40 and Eqs. 5.44-5.46 in space and time by applying FEM and 

implicit/ semi-implicit schemes is a system of nonlinear algebraic equations. 

To solve this system the following iterative sequence has been implemented. 

It is summarized below

1 . Guess the new phase boundary velocity, Vn

2. Update the phase boundary velocity

3. Calculate the new position of the interface at the (i +  l) th time step, 

based on its position at the ith time step, x 1̂ 1 =  x*g + VnA t

4. Update the mesh

5. Transfer(interpolate) the old 9 and T  onto the new mesh
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6 . Calculate the stress, T, using Eq. 5.40 on the new mesh

7. Calculate the phase transformation temperature, 9S, from Eq. 5.46

8 . Calculate the temperature field, 9, from Eq. 5.44

9. Calculate the new phase boundary velocity

10. Check if the old velocity (step 1) and new velocity (step 9) are close 

enough (i.e. within a certain tolerance). If ”yes” finish the iterations, 

otherwise go to step 2 .

A detailed description of the specific numerical method used in steps 4-9 is 

given in the next sections.

5.5.4 M echanical Equilibrium Equation

The finite element formulation of the mechanical equilibrium problem(Eq. 5.40) 

is based on the first variational theorem of elastostatics[1 0 ].

Theorem  1  A domain occupying a region, R, has displacements and trac

tions prescribed on its surface, S, (see Fig. 5.1) i.e.

w =  w 0  (x ) , where x e  ,

T n  =  to (x ) , where x £ S^2\  (5.49)
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such that U = S. For this mixed boundary value problem, the defor

mation field, w =  w0  (x) is a solution if and only if the first variation of the 

functional

J (w) =  A -  Wp (5.50)

vanishes for all variations 5w such that Sw =  0 on .

In Eq. 5.50, A is the total elastic strain energy of the system. The pa

rameter Wp is the work done by the applied loads, and is defined as

Wp = W f  + WpD + WpB , (5.51)

where Wp , Wp and Wp are the work due to applied concentrated loads,

applied distributed loads on the surface and the body forces respectively.

The total elastic strain energy is given by

A = l- j v T - E eld V ,  (5.52)

where the elastic strain

Eei =  E  — Etp and E^ = Et -f- A{6 — Of). (5.53)

If the domain V  is discretized into N  elements, each with a volume, Vn , 

Eq. 5.52 becomes

N  I N

A =  E Ai = o E  T • Eei dVi. (5.54)
j=l 1 i=l JV i
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Within each element, each continuous quantity, x, can be approximated by 

using its corresponding nodal values, Xa, and the shape function, ipk as

N n o d e s

X = Y ,  VkXk, (5.55)
&=i

where N nodes is the number of nodes. With Eq. 5.55, the components of the 

displacement, w ,  can be written in terms of the nodal displacements, {U},

as

w =  N {U } (5.56)

where N  is the matrix of shape functions. From Eq. 5.56 the strain, E, 

follows by the application of Eqs. 5.5 and 5.19 as

E  =  B{U}. (5.57)

The strain energy, Aj, for a single element can be written as

A< =  \  !v,  ( { u } TB , T S iB i { U }  -  2 { U } TB ,T +  { B s , }r S i { B S)} )  dVi.

(5.58)

A node is placed at the point of action of a concentrated force on the surface.

If {-Pq} denotes the vector of nodal force components, the work performed is

given by

K  =  W r { a } , (5.59)
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This definition assumes that the forces have been resolved into components

parallel to the displacement components. The work done by the distributed

loads that act on the surface is

WpD = /  w • to dS2. (5.60)

With Eq. 5.56, Eq. 5.60 is rewritten as

(5.61)

where {to} is the vector of nodal components of the distributed load. The 

work done by the body forces is given by

where {b} is vector of the components of the body force. The Eqs. 5.59, 5.61 

and 5.63 are inserted in Eq. 5.51. The Eq. 5.51 and Eq. 5.52 are then put 

into Eq. 5.50. The extremum value of the functional J(Eq. 5.50) in terms of 

displacements is found by setting its first derivative with respect to {U} to 

zero

(5.62)

which may be written as

(5.63)

(5.64)
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where the stiffness matrix k is represented by the volume integral

N

* =  E [  dVi , (5.65)

and the force vector {/} is the sum of the other three integrals 

N  r  ~ N r
{ / }  =  -  E  /  Bi Si{Etp] d V i - J 2  Ni W  W

i = 1 J V i  i =  1 J v *

N  r  -  t
-  E  /  ^  { t0} dS2,i -  {P0} • (5.66)

i = 1

Once the displacements are determined, the strain field can be easily calcu

lated by using Eq. 5.57 and the stress field will follow from Eqs. 5.41 (along 

with Eq. 5.30).

5.5.5 Energy Conservation Equation

The spatial discretization of Eq. 5.44 is done by using Galerkin method. The 

reason is that no functional for the considered problem can be found due to 

its nonlinearity and stress coupling. If <pk denotes the set of shape functions

on the discretized region, the weak form of the Eq. 5.44(after replacing [£]

with [S]) reads

k J  ipk 8 d V  — j  (p ^T jA jO d V  +  J BQipf.QdV -f-

Ce Jv OykdV + Cjy 8<PkdV -  <£0o J  V>kdV (5.67)
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where B = SijAiAj and Eq. 5.14 has been invoked, assuming an isotropic 

solid with respect to heat conduction (i.e. the tensor K has been replaced 

with a scalar k). If the Green’s theorem

Js7<P‘ S7if> dV  +  Jv ^ V 2 V dV -  ^ ~ d S  (5.68)

is applied to the LHS term in Eq. 5.67 it becomes

- k J y S / 0  ■ s /ip kd V  +  k j s  V k ^ d S  =  T jA j(p k6 d V  +

B J  ipkQOdV + CeJv BcpkdV +  C Jv VhOdV -  £00 Jv <fkdV . (5.69)

The second term on the LHS in Eq. 5.69 represents the heat flux through 

the volume boundaries. In the specific problem there are two types of bound

aries for each phase: external and internal (phase) boundaries. The heat 

flux on the external boundaries is taken as zero(thermally insulated). At this 

stage of implementation of FEM, the zero heat flux condition will be imposed 

on all volume boundaries, including the internal ones. The nonzero heat flux 

on the phase boundaries will be taken into account later in the matrix formu

lation, by imposing the phase transformation temperature calculated from 

Eq. 5.46 as a boundary condition, replacing the heat flux condition. By 

setting

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and utilizing Eq. 5.55, the discrete formulation of Eq. 5.69 can be rewritten

as

-k6i J2  f  VW • V<PkdV =
e •'V e

T j A f t i  J 2  [  W i d V  +  B 9 i J 2 f  <Pk<Pi(<PpOp)dV +
g Jv-  g Jv-

Ceft/L, f  VWkdV + £0iJ2 [  <PWidV -  t f o Y l  [  VkdV (5.70)
e J V  e J V -  e J V -

In matrix format, Eq. 5.70 is given by

-kR {9 ]  =  {T JA jQ ie}

+  («5<» +  C,q ) {9} +  ««{«} -  £0„{F°} (5.71)

where the global matrices are defined as follows

&ik = Y l  f  e • VVkdV  (5.72)
e J V e

Qik = Y1 [  e VktyidV (5.73)
e J V e

Q* =  E L  v m i v A W  (5.74)
e  */ ^ e

=  E L V k d V  (5.75)
e

The temporal discretization of Eq. 5.71 is implemented based on constant

time increment,r. The total time elapsed at the end of the ith increment is

defined as

ti = ir  , i > 1 
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The value of an arbitrary parameter A(x, t) at the end of the ith time incre

ment is defined as

A i =  A(ti) (5.76)

whereas the time derivative of the same quantity is approximated by

dA  _  A i+1 -  A i 
d t  t

Utilizing Eq. 5.77, Eq. 5.71 can be rewritten as

(5.77)

( b c <3>+ c , q )  = ^ e{C }  -

( ! - ( , ) [ { 7 j } ,+1 -  {Tj } ' a .q  + k j i  +  _

t  + k ii  + {0} ‘ + 1  . (5.78)

Three different time discretization schemes were tested

a) First order explicit scheme, g =  0,

b) First order implicit scheme, 0 = 1 ,

c) Second order semi-implicit scheme, g — 0.5(Crank-Nicholson).

The numerical experiments carried out with the three schemes above showed 

that scheme c) is the most effective as regards to numerical stability and 

required CPU time. Therefore all numerical results obtained during the 

simulations are based on Crank-Nicholson time discretization scheme.
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5.5.6 Energy Conservation at the Phase Boundary

The weak form of Eq. 5.45 is

~ j s <Pkn- (kMv e M -  kAVdA)dS  =  

j s -  T|[[A]]«o +  Tje" +  XT) <pkVni S  -

\llSijAAj]] (Js V t V ^ d S  - e l j s VkV„ds) -  [[CJ] j s VkV„9,dS (5.79)

The integration is performed over the phase boundary, S,  with normal vec

tor, ft. The element formulation of Eq. 5.79 on the discretized boundary is 

obtained after applying the finite element approximation (Eq. 5.55) of the 

phase boundary velocity, Vn, and phase boundary temperature, 8S.

- n  • (kM -  kA)0s,i J2  f  WkVvidS =
e  J S e

-  D M f l )  +  T,e1 +  A t)  V„,, £  fs, V W id S  -

3jp̂ s,m ] £  j ge ym W m d S  - 0 l^ 2 j se <Pk<PidS

[[Ce]]Vn,iOs,p f  <Pk<Pi<PpdS(5.80)
e

Here the subscript ”,” is used to separate the summation index from the ab

breviation of the variable (14 is the normal component of the phase boundary 

velocity whereas Vn:i is the normal component of the phase boundary velocity
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in node i). With the definition of the following matrices

Lu = Y . f  ' V<PidS  (5-81)
e  J s e

Pu = Y . [  n V ld S  (5.82)
e  ■ '5 *

n (,p =  E /  w # p «  <5-83)
e JSe

Piklm =  Z ) /  VmVpVrndS (5.84)
e ■/s e

Eq. 5.80 becomes

—L ■ (lfcM -  * * )  { » ,}  =  ( iT j t tM j J p i  -  rj[[A]]»o +  Tie!1 +  AT)  P {V „ } -

\llSiiAA,]] ( { 9 ,} { e >}P'"» -  «02P )  { K }  -  [[C J]{0,}P<3> { v y  . (5.85)

5.5.7 Finite elem ent selection and spatial integration

The different nature of the thermal and mechanical problem imposes strict 

constrains on the selection of the type of finite elements used in the numeri

cal implementation. The discontinuity in the first derivative of the tempera

ture (due to moving heat source) implies the use of linear (C°) elements(i.e. 

slope continuity is not required). On the other hand for the thermomechan

ical problem such restriction does not exist. However, the extensive work 

done on characterization of the thin plates in structural mechanics show that
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the choice of suitable elements is limited. In particular, quadrilateral ele

ments turn out to have complications related to smoothness as illustrated in 

Dhatt [1 1 ]. A comparison of different plate bending elements can be found in 

Zienkiewics and Taylor [12] and a comprehensive performance evaluation of 

triangular elements is summarized in Batoz et al. [13]. In the present work we 

adopt a linear(Cf0) triangular element (Zienkiewics and Taylor [12]), which 

easily satisfies the specific requirements for both thermal and thermoelastic 

problems. The shape functions for the selected linear triangular elements are

<pi =  i  -  c -  0  ,

^ 2  =  ( ,

<£3 = 7? . (5.86)

It was found that the spatial integrals encountered can be evaluated with 

sufficient accuracy by using a third order Gaussian quadrature [11]. The 

calculated values agreed with those obtained by direct integration. More

over, the element and the integration scheme passed the test of uniform 

convergence for several problems with respect to an analytical solution (see 

Section 5.6.1).
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5.5.8 Interpolation

The front tracking in the specified problem is achieved by refining/updating 

the mesh at each time step. The refining/updating the mesh is done in such 

a way so that the phase front always lies on mesh nodes. Because of the 

transient nature of the problem, the data from the previous time step should 

be available on the new updated mesh. The data transfer from the old mesh 

to the new one is accomplished by two-step interpolation sequence. From 

numerical point of view the interpolation on insufficiently smooth functions is 

difficult and some times impossible. In the considered problem the additional 

complication is the jump in the first derivative of the temperature (heat flux) 

at the phase boundary. Due to this jump the order of interpolation close 

to the phase boundary cannot be more than first. On the other hand the 

simple linear interpolation introduces artificial fluctuations close to the plane 

of discontinuity. A solution to this problem is the use of Nonoscillatory 

interpolation schemes. The first step in the interpolation sequence is Linear 

Finite element interpolation. The main purpose of this step is to transfer 

data from the unstructured triangular mesh on a structured quadrilateral 

one, suitable for Nonoscillatory interpolation schemes.

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Finite element interpolation

The Finite Element Interpolation is based on the idea of mapping an element 

with irregular shape to an element with regular one. Let F* be a set of values 

of the variable P at the nodes of a selected element and F0  is the value of 

the same variable at (xo,y0) that is to be determined. Utilizing the finite 

element approximation (Eq. 5.55) the coordinates of F0  can be expressed as

*0 =  E  tPk((o,tio)xk (5.87)
*=i

N n o d e a

2/o =  £  Wb(Co,0o)sfc (5.88)
fc = l

where <fk is the set of shape functions for the chosen type of elements (for 

linear triangular elements see Eq. 5.86). The mapped coordinates of F0, 

Co,‘do can be determined from Eq. 5.87 and Eq. 5.88. Once the mapped 

coordinates are known P q can be calculated from

Nnodea
Po= £ " M O > ,* o)P* (5.89)

k=i

The order of interpolation depends on the order of the selected shape func

tions within the elements. For linear elements (linear shape functions) solv

ing Eq. 5.87 and Eq. 5.88 for Co>$o is straight forward. In case of second 

and higher order elements the solution of the equations must be computed 

numerically.
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N onoscillatory Interpolation

The equations describing the phase transformation in SMAs constitute a 

non-linear system with moving heat source, and hence smooth initial data 

gives rise to data with discontinuous first and higher order derivatives in 

finite time during the evolution. As a consequence classical finite element 

methods present important deficiencies when dealing with such systems. 

Typically first order accurate schemes are too dissipative across disconti

nuities (excessive smearing), and second order(or higher) schemes produce 

spurious oscillations near discontinuities, which do not disappear as the grid 

is refined. There are two approaches to obtain high-order oscillation-free ac

curate representation of discontinuous solutions: Artificial damping [14, 15] 

and TVD(Total Variation Diminishing) schemes. The interpolation scheme 

used in the presented work is based on the later group of methods.

The TVD schemes utilize the concept of preventing any values being 

generated at location x that lie outside the range of those present in close 

vicinity of x. The main criterion, which determines the efficiency of the TVD 

schemes, is the total-variation defined as:

TV =  X > i+1- Uj| . (5.90)
j
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A numerical scheme is said to be a TVD scheme if the total variation, TV, is 

bounded for any initial data. The basic ingredient of the TVD interpolation 

schemes is a flux splitting technique [16]. A one-dimensional interpolation in 

general can be written as

u(xi + 5) = u(xi) + SiS , (5.91)

where S; is the slope of a piecewise linear distribution of data over the inter

mediate finite element around each grid point. The slope corresponding to 

Roe’s Superbee [17] scheme can be interpreted as:

gSuperbee =  (O , < +1/2 -  Uh Uj -  < _ 1/2Uj -  Uj-1 , Ui+l -  Uj)  ^  ^

where

ut+1/2 =  \ { ui +  « i+ i) an d  =  u(xi) .

The median of three quantities is evaluated as follows

median(a, b,c) = a + minmod(b — a, c — a) , (5.93)

minmod(a,b) = sign(a)max(0, sign(ab)min(\a\\b\)) , (5.94)

while the median of five quantities is evaluated as

median(a, b, c, d, e) = median(A, B, e) , (5.95)
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where

A = median(a, b, c) ,

B  =  a +  b +  c +  d — ma x  (a, b, c, d)  —  min(a,  b,c,d)  —  A .

5.5.9 Linear Algebraic Equations 

Biconjugate gradient method

The conjugate gradient methods [18] provide a general means for solving the 

linear system

A - x  =  b , (5.96)

where A is a matrix, b and x  are vectors.

The attractiveness of these methods for large systems is that they refer

ence A  only through its multiplication of a vector, or multiplication of its 

transpose and a vector. These two operations can be very efficient for prop

erly stored sparse matrix. The simplest conjugate gradient algorithm solves 

Eq. 5.96 only in the case that A  is symmetric and positive de&nite^-A-x1̂ > 0  

for every nonzero x).  It is based on the idea of minimizing the function

f (x )  = ^-x • A ■ x  — b • x ,
Ad
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which is equivalent to

V / ( f )  =  I  ■ x  -  b =  0 .

The minimization is carried out by generating a succession of search direc

tions Pk and improved minimizers Xk- At each iteration a quantity is 

found that minimizes /(a?*. + otkPk), and Xk+i is set equal to the new point 

Xk+oikPk- The sequences of Pk and Xk are built in such a way that Xk+i  is also 

a minimizer of /  over the whole vector subspace of directions already taken 

(jpi,p2 , --Pk)- For the specific problem considered in the paper a generalized 

form of the conjugate gradient method is used, called the biconjugate gradi

ent method. The main advantage of the biconjugate gradient method over 

the ’’ordinary” conjugate gradient methods is that it solves linear but not 

necessarily positive definite or symmetric equations. The biconjugate gradi

ent algorithm can be summarized by the following iterative sequence [18]

fk • rk
«k -  - ........  T

P k ' A 'Pk

rk + 1 = rk -  akA  • pk 

rk + 1  = r k -  akAT ■ pk

r k - r k

Pk+l = ^ k  +  PkPk
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Pk+i = rk + PkPk (5-97)

The sequence of vectors satisfies the biorthogonality condition

fi • f j  — f i - f j  = 0 , j  < i (5.98)

the biconjugacy condition

P i-A -p j = p i -A T -pj = 0  , j  < i (5.99)

and a mutual orthogonality

n  • Pj =  n  - pj = 0 . j  < i (5.100)

To use the algorithm (Eq. 5.97) to solve the system Eq. 5.96, an initial guess

Xi for the solution should be made. Vector r\ is the residual

f \  — h — A  • Si (5.101)

and f i  = f\. Then the sequence of improved estimates

Xk+i = Xk + Oipk (5.102)

should be formed while carrying out the recurrence Eq. 5.97.

The outlined conjugate gradient method works well for matrices that are 

well-conditioned, i.e., ”close” to the identity matrix. This suggest applying
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these methods to the preconditioned form of Eq. 5.96 ,

(E~l ■ A) ■ x = E~x • b (5.103)

The idea is to find E  close to A, in which case E~l -A «  1, allowing the al

gorithm to converge in fewer steps. The matrix E  is called a preconditioner, 

and the following scheme is known as the preconditioned biconjugate gra

dient method or PBCG. For efficient implementation, the PBCG algorithm 

introduces an additional set of vectors 4  and zk defined by

E  • Zk = Tk and E T • zk = f k (5.104)

and modifies the definitions of a*,/?*, pk and pk in Eq. 5.97.

=  ~Jk (5-105)
P k 'A 'Pk

/3k = Vkt ' ? + 1  (5.106)
Tk'Zk

Pk+i =  4  +  PkPk (5.107)

Pk+i =  4  +  PkPk (5.108)

5.5.10 Preconditioning

Incomplete Cholesky (ILLT) factorization is a robust, well-understood pre

conditioning technique, and has been extensively documented [19, 20]. We
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start the description of the IL L T with the complete Cholesky factorization 

followed by techniques for discarding the fill-in entries.

The Cholesky factorization is an efficient, triangular decomposition of 

symmetric and positive definite square matrix A. Instead of seeking arbitrary 

lower and upper triangular factors L  and U as it is in LU decomposition, the 

Cholesky factorization constructs a lower triangular matrix L whose trans

pose LT can itself serve as the upper triangular part. In other words the 

matrix A  can presented as

L - L T = A. (5.109)

This factorization is sometimes referred to as ’’taking the square root” of the 

matrix A. The values of the components of the factor L can be calculated 

using the following relations

-  £  W ) ’ (5-110)
k = l  /

~  ( T i  -  ! > « £ in') (5-111)
L H \  k - l  )

j  = i + l; i  + 2; ...; N  (5.112)

Criteria for discarding the fill-in entries that occur during the factoriza

tion are generally based on the graph of the matrix (levels of fill) [2 1 ], the 

magnitudes of the entries (drop tolerance) [22], or both. There is a standard
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definition of a level-based ILL?  [20], whereas a drop tolerance IL L T can vary 

according to the form of the dropping criterion. Dickinson et. al. [20] have 

shown that for linear elasticity applications, a drop tolerance ILL?  generally 

outperforms a level-based ILL?  having the same number of non-zero entries. 

The drop tolerance is also the technique that was implemented in the present 

work.

We denote by the matrix obtained after (k — 1) stages of elimination. 

In this work, a fill-in entry A\j +1̂  during the kth stage will be discarded if

l 4 ‘+I)l < e/»ll4,t+1)| (5.113)

where Sfm 6  [0,1] is the drop tolerance parameter. Note that using a drop 

tolerance of Sfm — 0  gives a complete factorization, whereas using a value 

£fui =  1 permits very few fill-in entries to remain in the preconditioner. The 

appropriate value for Sfm should be chosen to suit the needs of the problem; 

for example, solving ill-conditioned problems requires a finer drop tolerance 

(to ensure good convergence) than is necessary for solving well-conditioned 

problems.
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5.6 Algorithm Validation

In this section we present a verification of the numerical algorithm devel

oped in Section 5.5.3. There are several direct methods for investigating the 

accuracy and stability of a numerical scheme. Most of these method are 

well defined for finite difference method on a uniform mesh [23], whereas the 

only test method for finite element method(unstructured mesh) is the ’’patch 

test” [1 2 ]. The patch test for nonlinear problems is based on linearization 

of the problem to a problem, which has an analytical solution. The results 

from the analytical solution are compared to the numerical predictions on a 

very coarse mesh (set of several elements). Unfortunately for the 2D prob

lem considered here, the linearization does not render an analytical solution. 

Therefore we accepted a slightly different approach based on the investigation 

of the behavior of three different 2D test problems, which allow derivation of 

a closed form solutions. Two of the selected problems are transient thermal 

problems and one steady state thermomechanical problem. The problems 

are:

a) Circular cylinder with time dependent thermal boundary conditions;

b) Circular cylinder with time dependent heat source;
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c) Thermal Stresses in thin hollow disk.

The selection of the test problems listed above was done to allow validation 

of the following three aspects of the algorithm respectively:

a) solution of the thermal problem when strong, time dependent thermal 

gradients are applied close to the boundary;

b) solution of the thermal problem in the case of strong, time dependent 

nonlinear heat source;

c) solution of the thermoelastic problem when the applied temperature 

field has discontinuous first derivative (implying presence of heat source).

We start the section with a description of the test problems and the analyti

cal methods used to obtain the corresponding close form solutions. It will be 

followed by discussion on the stability and accuracy of the numerical algo

rithm based on comparison between the analytical results and the numerical 

predictions.

5.6.1 Verification problems

The analytical solutions for the thermal test problems will be derived by ap

plying the Forward Laplace transformations and the corresponding Inversion
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Theorem. The forward Laplace transformation is defined as

fO O

L{v(r,t)} = v =  /  e~ptv(r,t)dt , (5.114)
Jo

where p  is a number whose real part is positive and large enough to make the 

integral defined with Eq. 5.114 convergent. Once the solution of the problem 

is obtained in the {r,p} space, the Inversion Theorem (Eq. 5.115 ) is to be 

applied
I  / - 7 - H oo

v (r, t) = ^  eP v { f  ,p )dp , (5.115)
ZTTl J'y-’ioo

where 7  is to be large enough so that all singularities of v lie to the left of 

the line ( 7  — zoo, 7  +  zoo).

For both problems below consider an infinitely extended cylinder with 

circular cross section. Due to the symmetry of the problems, the solutions 

will be obtained in the cylindrical coordinate system, (r, (f>, z), where z axis 

is taken along the cylinder axis, r is the radial coordinate( 0  < r < a, a is the 

radius of the cylinder), and (/> is the azimuth angle.

Circular cylinder with tim e dependent thermal boundary condi

tions

Consider the thermal problem of a stress-free circular cylinder subjected to 

time dependent thermal boundary conditions. The conservation of energy

195

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(or heat conduction) equation is

m  i d o  i d o  . .

dr* + r d r ~  a d t  ’  ̂ ^

where a = -ĵ r, CE is the heat capacity and k is the thermal conductivity. The 

boundary condition is

0(a,t) =  £ i , (5.117)

where £ is a constant parameter. Applying the Laplace transformation (Eq. 5.114) 

to Eqs. 5.116 and 5.117 results into

d20 180 2- ,

S(a,p) =  ^  , (5.119)

where q2 = The obtained Bessel equation (Eq. 5.118) has a simple solution 

which satisfies the inhomogeneous boundary condition(Eq. 5.119), i.e.

Q(r’P) = V r r \ -  (5 .1 2 0 )P h\qa)

Therefore the Inversion Theorem applied to a properly chosen contour of the 

integration and taking into account the double pole at p =  0  yields

Q ( r  t \  _  £  L  _  fl2 ~ r2N\ +  2^ y '  c - a l % t  M r p n )  /5 121\
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where /?„ are the positive roots of Jo (a/3) =  0. The results from the numerical 

simulation with material data

a — 0.3 to, a = 5.4 x 10~ 4  m 2/s, k = 21.9 W /(m K ), £ =  10.0 K /s

are shown in Fig. 5.2. Temperature profiles at three different instances were 

extracted from the numerical solution and compared (Table 5.1) to the profiles 

calculated analytically using Eq. 5.121. It was found that the numerical 

results are within ~  4.5% of the analytical predictions(Nelm = 618, r  =  

0 .1 2 s). Also the mesh density distribution in the domain has very significant 

effect on the accuracy of the numerical simulation. A gradual increase of the 

mesh density close to the boundary with the time dependent condition(the 

region with the highest thermal gradients) showed an improved accuracy and 

stability in the numerical scheme. Based on the computational experiments 

on this specific problem an empirical criterion for the local mesh refinement 

was developed and used later in the simulations of the phase transformations 

in the SMA thin films (see Section 5.6.2).

Circular cylinder w ith tim e dependent heat source

Consider the thermal problem of a stress-free cylinder with circular cross- 

section with time dependent heat source and subjected to isothermal bound-
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ary conditions. The conservation of energy equation is

&e i m  a  _ xt _  i m
dr2  r dr k 6 a dt (5.122)

where A0 is a constant. The isothermal boundary condition is

8(a, t) =  0  . (5.123)

By applying the Laplace transformation (Eq. 5.114) to Eqs. 5.122 and 5.123, 

we obtain the corresponding ordinary differential equation in the (r, p) space

d28 1  dd o*
a ?  +  r  ! f r - * e =

A q

k(p + X)

0(a,p) =  0  .

(5.124)

(5.125)

The solution of the inhomogeneous Eq. 5.124 which satisfies Eq. 5.125 as well

is

9(r,p) = aA0
1  -

I0(qr)'
(5.126)

kp(p + A) \  I0(qa) J '

The Inversion Theorem is applied to Eq. 5.126 to obtain the temperature 

field

/  T /_  /TV \
0(r,t) = ^ e~xt

kX

‘IA qOL
ak n = l

_  i

( a ' A )

Jo irPn)
A M 3 W 5 ’

(5.127)

198

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where /?„ are the positive roots of Jo(a^) =  0. The presence of the heat 

source in the consider problem (Eq. 5.122), allows us to investigate the influ

ence of a strong nonlinearity on the performance of the numerical algorithm. 

Several numerical experiments, for different values of the power, A0, and time 

constant, A, of the heat source, were carried out. It was found that the time 

step, t ,  must be chosen inversely proportional to the rate of change of the 

heat source

1

|A|A0 e~At

in order to obtain optimal computational performance(lowest CPU time). 

The material data used in the calculation is

a — 0.3 m, a  =  5.4 x 10~ 4  m 2/s, k — 21.9 W /(m K),

A =  1.0 s_1, A0 =  1.0 W /m 3 .

Results from the numerical simulations are presented in Fig. 5.3. The nu

merical solution is compared to the analytical one (Eq. 5.127) in Table 5.2. 

The observed averaged computational error is ~  4%(Neim =  618, r  =  0 .1 2 s).

Thermal Stresses in thin hollow disk

Consider a thin hollow disk of a linearly elastic, isotropic solid with inner 

radius a  and outer radius b. We assume an axisymmetric temperature dis-
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tribution, 6 =  0(r),  as well as the following mechanical boundary conditions

<jrr(a,t) — T0 , aTT{b, t) =  0 . (5.128)

We shall solve the problem assuming small strain and applying the plain

stress approximation. The governing law describing the static problem above 

is the equilibrium equation (Eq. 5.40), which in the case of axisymmetric 

problems can be expressed in cylindrical coordinates as

i  + Srr . ~ = 0 . (5 .1 2 9 )
dr r '

Eq. 5.129 accepts a solution in the form

/T -  t(Jrr --
r

dip
fftjup =  - j -  , (5.130)dr

where cp =  <p(r) is an axisymmetric stress function. Using the Hooke’s law 

for thermoelastic isotropic solids, the strains err and e ^  are written as

Ej>r (crrr 4“ OiAO ,h

ew = -  varr) +  a A 9 , (5.131)hi

where u is the Poisson ratio and a  is the volumetric coefficient of thermal 

expansion. Following the definition of err and

duT
£ t t  ", jdr
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and eliminating the radial displacement uT from Eqs. 5.132 we obtain a sim

plified compatibility relation

d
dr

(5.133)

Eq. 5.133 with Eqs. 5.130 and 5.131 result in the following equation for the 

stress function (p.

d ( l  d . A n d , .
(5.134)

The solution of the Eq. 5.134 is

a E  f r , . . Ci C2 . _ j j A 9 ) r d r + Y  +  l s

aw = a E — (A9) + \  [  (A6) rdr 
r* Ja

Ci C2 
+  — +  ^ - . (5.135)

2 r 4

where the constants Ci and C2 are determined from the boundary conditions 

Eqs. 5.128

2
Ci =

Co =

—  ^ - a 2T0 +  aE  J* (A9) rdr^j 

b2TQ- a E  j \  A0) rdr J
I P - a 2

The following temperature profile, Ad, is chosen

dampi r < c

(5.136)

A0 = (5.137)
Oampi e^2c- r-°) r  >
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Notice from Eq. 5.137 that AO is a continuous function throughout the do

main, a < r  <b,  whereas its first derivative suffers a jump at r = c. This cor

responds to a possible physical problem where there is a line heat source/sink 

at r =  c. The explicit form of Eqs. 5.135 is obtained after the integration of 

temperature distribution profiles (Eq. 5.137).

The test problem described in this section is intended to verify the accuracy

selected thermal field mimics the presence of a heat source (the first derivative 

of the temperature suffers jump at r = c). The material parameters used in 

the calculations are

(5.138)

where

h(r)  =  ( e * -° > (A r  -  1) -  (Aa -  1)) ,

M r )  = M r )  -  ^  (ei(c- r)(Ar +  1) -  (Ac+ 1)) . (5.139)

of the two dimensional thermoelastic part of the numerical algorithm. The

a = 0.3 m, b = 0.5 m, a  =  7.0 x 10 6 K  1, E  =  1.0 x 107 Fa,

T0 =  -500 Fa, 0ampl = 100.0 K , A =  10.0 m~l .
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Figures s 5.4, 5.5 and 5.6 show the numerically calculated stress/ temperature 

distributions for three different locations of the heat source, c =  0.35 m,c  = 

0.40 m,c = 0.45 m. In Table 5.3, the numerical results (TV^ =  618, r  =  

0 .1 2 s) for the three different locations of the heat source are compared to the 

analytical solution defined with Eqs. 5.136, 5.135 and 5.139.

5.6.2 Accuracy and stability of the algorithm

The accuracy and stability analysis will be carried out on 2D test problems 

described above. Two of the problems are transient problems, and our goal 

is to investigate the accuracy and stability of the time stepping and space 

discretization schemes.

In Section 5.5.5 we defined three time discretization schemes for the 

heat conduction equation: explicit (p =  0); i m p l i c i t =  1) and Crank- 

Nicholson(CN) ( 0  =  0.5). For the three schemes stability conditions can 

be derived by applying the linear von Neumann stability analysis (see Ap

pendix C.4). In the case of explicit scheme((p =  0)) the stability condition 

is defined with Eq. C.24 in Appendix C.4. The other two cases, the implicit 

and the CN schemes are unconditionally stable (see Appendix C.4). Note that 

the CN scheme(p =  0.5) satisfies the lower limit for unconditional stability,

203

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



therefore the result derived through the von Neumann linear analysis is ex

act only for the conditions at which it was obtained (finite differences method 

and uniform mesh in x and y directions). For the considered problem the 

stability of the CN scheme will be verified by numerical experiments on the 

solutions of the test problems. The results presented here are obtained us

ing the first test problem - circular cylinder with time dependent boundary 

condition. This problem was selected as the transient problem closest to the 

real thermal problem in SMA phase transformation. To verify the order of 

discretization (truncation error) and the convergence of the rate of the CN 

scheme the average computational error, err, must be computed as function 

of the magnitude of the time step, r , (see Fig. 5.7). The averaged error err 

is defined as

where &i and Qf*° are the nodal values of the computed and theoretical 

temperatures and N  is the total number of nodes. The computations were 

carried out at constant number of elements Ndm =  2404. Clearly the error 

decreases as the time step decreases. The obtained data was fitted with a 

second order polynomial represented by the solid line in Fig. 5.7.

The special discretization is the other factor that influences the accuracy
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and stability of the numerical algorithm. The numerical experiments per

formed here are intended to investigate the influence of the mesh density on

the averaged computational error(Eq. 5.140). In the considered 2D problem 

the characteristic element size is

where Sa is the averaged area of a single element. By using the relation

Obviously an algorithm of order 0 (h n) should lead to hyperbolic error de

crease as the number of elements increases. In the case of n =  2 should 

behave as 0(1 /N eim). A plot of the averaged error as a function of Neim 

is shown in Fig. 5.7. As the number of elements increases the error drops 

quickly until the Neim reaches 1000 elements, beyond that value the error 

decreases rather slowly. The time step used in the calculation presented in 

Fig. 5.7 is r  =  0.12s.

(5.141)

Stot

one can easily obtain
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Refinement criterion

The computations involved in the test problems are relatively inexpensive, 

and therefore they were used for determining a criterion for mesh refinement. 

The derived empirical relation between the element size and the local gra

dients was used later as mesh refinements tool for code optimization. In an

optimal mesh the distribution of the local error should be equal between all

elements. Thus if the permissible error is specified, errp, the ratio,

6  =  —  , (5-142)errp

can be used as a refinement criterion. The refinement should take place 

whenever

& > 1 .

Recall that the local error is related to the characteristic element size as

erri ~  h" , (5.143)

where n is the order of approximation. Next, Eq. 5.142 combined with 

Eq. 5.143 yields [12]

hTw = h  (5.144)
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For 2D problems the application of the criterion in Eq. 5.144 is more conve

nient in the form

S T  =  4  , (5.145)

where S', is the area of the ith element. The final step in determining the 

refinement criterion is the derivation of an empirical correlation between the 

local error, err,, and the physical fields in the specific problem. In the phase 

transformations in SMA, the temperature gradient close to the phase bound

ary is of crucial importance for the velocity of the phase front propagation. 

This is the physical field that is used to estimate the local error, err,.

erri =  . (5.146)

After expanding err, into series up to a linear term, Eq, 5.146 reads

ern =  o|'V0| +  h , (5.147)

where the empirical constants a =  3.7054 x 10~4 m / K  and b =  0.0062 were 

determined from the first test problem and invoking the following definitions 

of local error and temperature gradient

e r r i =  ^  e tMo 1 lW l =  ^  ■

All the simulations presented in the next section were performed by apply

ing the criterion defined with Eqs. 5.147, 5.145 and 5.142. At each mesh
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regeneration an error limit of errp =  2.5% was imposed.

5.7 Simulation and prediction of the pseu

doelasticity and reorientation in SM A thin  

films

In this section we use the theoretical framework developed in Sections 5.2- 

5.4 to simulate and predict the stress-strain response of SMA thin films. 

The numerical solution of the resulting mathematical problem utilizes the 

algorithm described in Section 5.5.

5.7.1 M aterial Param eters

In the simulations described below, we consider a square plate of Cu-13.7%A1- 

4.18%Ni(wt%). A list of the material parameters used in the simulation is 

given in Table 5.4. The values of the components of the phase transformation 

strains of the 24 martensitic variants are taken from Fang et. al. [1], and 

are given in Table 5.5. The values in Fang et. al. [1] are specified in the 

coordinate system , (e0), of the parent phase(austenite). In order to obtain
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the phase transformation strains in the laboratory coordinate system , (en), 

the law for transformation of second order tensors must be used

■E'ij —  P i r f t j s E irs 5

where is the transformation tensor determined as

Pij — f'n(i) ' &o(j) —

/  \  
-0.0925 0.3698 0.9245

0.4268 0.8536 -0.2988

\ /

(5.148)

(5.149)

-0.8996 0.3669 -0.2368 

and the directional cosines of the basis vectors, en, in austenite basis , (eo),

are

e„(i) =  (-0.0925,0.3698,0.9245) ,

en(2) =  (0.4268,0.8536,-0.2988) ,

4 {3) =  (-0.8996,0.3669,-0.2368) .

The values of the austenitic and martensitic elastic constants (see Ap

pendix C for the notation) follow from the experimental measurements of 

Robertson [24].

1. Austenitic Parent phase, cubic(BCC)

Ann =  T =  141 GPa , Aim =  II =  125 GPa , A2323 =  97 GPa
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2. Martensitic phase, orthorhombic

Ami =  205 GPa , A2 2 2 2  =  189 GPa , A3 3 3 3  =  141 G Pa ,

A2 3 2 3  =  62.6 GP a , A1 3 1 3  =  54.9 GPa , A1 2 1 2  =  19.7 GPa ,

A1 1 2 2  == 45.5 GP a , A1 1 3 3  =  125 GP a , A2 2 3 3  =  124 GP a .

The stiffness tensor for any other variant is obtained from the one above 

with corresponding orthogonal transformations [1]. Once the components of 

the stiffness tensor for each variant are calculated in the coordinate system 

of the parent phase, they should be transformed to the laboratory coordinate 

system. A detailed description of the transformation procedure of the fourth 

order tensor is given in Appendix C.l.

5.7.2 Results and discussion

The sequence of events underlying all of the calculations to be described be

low is as follows: we consider a thin plate with thermally insulated ends that 

is initially entirely in one phase. The initial phase is austenite in the case of 

pseudoelasticity (PE) due to A—>M phase transformation, and predetermined 

variant of martensite in the case of PE due to reorientation. The initial tem

perature is uniform and is the same as that of the surrounding environment.
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The averaged global stress on the thin film in x and y directions are denoted

as
1 f^v

®xx ~  7 I &xx(Ijxi y) dyLy Jo

and

1
&yy =  I <Jyyix î -Jv) ^x  >

1jx  j o

where Lx and Ly are the undeformed lengths of the edges of the thin film 

in x and y directions. A similar definition for the averaged strain, exx and 

eyy, is used. The plate is uniformly pre-stressed(tensile stress) in y direc

tion and subjected to a constant deformation rate A > 0 in x direction. At 

some later instant Eqs. 5.40 and 5.46 are satisfied and a martensitic variant 

is nucleated at the center of the plate(for the implementation of the variant 

selection criterion see Section 5.5.2). The shape of the formed nucleus is as

sumed to be circular with radius 1/100 of the characteristic dimension of the 

plate. The formed phase boundary propagates outwards as the deformation 

increases. When the deformation reaches a predetermined value the unload

ing takes place. The unloading is carried out at constant deformation rate 

—A. The temperature of the surrounding environment remains fixed during 

the process.

Now we turn to the predictions of the thermomechanical response of the a
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single crystal CuAINi plate by the theory developed in Sections 5.2-5.4. The 

presented results include calculations of the overall stress-strain curves for 

three different pre-stress values of ayy. The three values of ayy are 0 MPa,  

40 M Pa  and 160 MPa. At the first two values of ayy the SMA plate is 

initially in austenitic phase, whereas at ayy — 160 M Pa  the plate is initially 

in martensitic phase (variant No. 14, see Table 5.5). Figs. 5.9 and 5.12 show 

comparison between the predicted and experimentally measured [1] stress- 

strain curves for ayy = 0 M Pa  and ayy — 40 M P a  respectively. In both cases 

the stress increases linearly from zero to the stress at which the formation 

of martensite is detected. Based on the selection criterion (see Section 5.5.2) 

the martensitic variant, which is detected, is variant No. 9(Table 5.5). The 

shape of the initial inclusion is a circle, which quickly evolves into ellipse 

with high Ry/Rx  ratio (Rx and Ry are the semimajor and semiminor axes 

respectively). For example, see Figs. 5.15 and 5.16 for the shape of the 

martensite at exx = 1.0% and 3.5% respectively, both at ayy = 40 MPa.  

As the deformation increases, the stress remains almost constant (Figs. 5.9 

and 5.12) until the phase boundary gets close to the geometrical boundaries 

x = 0 and x =  3.0. Because of the thermal insulation conditions applied to 

the boundaries the local temperature increases, which requires higher stress,
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in order to continue the transformation. As a result, an increase in the stress 

at the end of the transformation can be observed. Once the deformation 

is reversed the system goes through a stage of elastic relaxation, followed 

by reverse transformation at almost constant stress until the martensitic 

phase has completely transformed to austenite. For both pre-stress values, 

ayy =  0 MPa  and ayy = 40 M P a , the results from the numerical simulation 

are in a good agreement with the experimental data(see Figs. 5.9 and 5.12)). 

In both cases the formation of one variant of martensite, i.e. variant No 

9, was detected. The formation of the same single variant at the specified 

conditions agrees with the analytical results reported by Fang et. al.([l]).

The martensitic volume fraction, defined as Vm/Vt0t(Vm is the total vol

ume of martensite, 1 is the total domain volume), is presented as a function 

of axx in Figs. 5.10 and 5.13. In both cases about 65% of the austenite was 

transformed to martensite. Beyond this stage, a continuation of the defor

mation leads to exponential increase in the stress and arrest of the phase 

transformation (AVm «  0). This phenomenon reflects the constraint im

posed by the film edges to further transformation.

Although the presence of pre-stress (ayy — 40 MPa)  does not affect the 

total transformation to martensite significantly, it reduces the time for com-
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pleting a loading-unloading cycle and also the stresses at which the transfor

mations occur. In the particular case, when tensile forces are applied in y 

direction (ayy =  40 MPa)  the time necessary for completing a cycle of trans

formation is reduced by ~  13% and the transformation stresses by ~  5 M Pa  

(Figs. 5.11 and 5.14).

Figures 5.17-5.30 show two series of 3D plots which depict various ther

momechanical characteristics of the phase transformation of the pre-stressed 

thin film (ayy — 40 MPa)  at two instances - when exx =  1.0% and exx =  

3.5%, during the A -» M transformation. When exx = 1.0% the phase 

transformation boundary did not reach the geometrical boundaries at y = 0 

and y =  3.0 (Fig. 5.15). The elliptical martensitic inclusion, strained by 

St  is accommodated by the parent phase, which creates significant concen

trations of axx within the SMA film and especially close to the top(ymax) 

and bottom (ymj„) of the inclusion (see Fig. 5.17 and 5.18). Further, high 

stresses at the top and the bottom of the inclusion, induce high velocity of 

propagation of the phase boundary in y direction. As well, the computed 

distributions of ayy and axy are presented in Figs. 5.19-5.22. We noted in 

Section 5.4 that the A—>M phase transformation is accompanied with release 

of latent heat. The presence of moving heat source increases the temperature
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within the inclusion forming a characteristic ” top hat” profile(Figs. 5.23 and 

5.24). When exx =  3.5%, the martensitic inclusion reached the geometrical 

boundaries at y =  0 and y — 3.0, and spans the whole film in y direction(see 

Fig. 5.16). For this specific shape of the inclusion, oxx is almost uniform in 

”y” direction (see Figs. 5.25 and 5.26). The accommodation of the strained 

inclusion in y direction leads to significant compression (see the plot of aw in 

Figs. 5.27 and 5.28) and relatively high shear stress close to the geometrical 

boundaries (see Figs. 5.29 and 5.30).

In the simulations considered so far, the tensile stress, ayy, was not high 

enough to induce phase transformation before axx was applied. However, 

when dyy is increased up to 160 MPa,  a phase transformation is observed. 

As a result of this phase transformation, the SMA plate is entirely in the 

martensitic phase (variant No. 14, Table 5.5) even before any deformation in 

x direction is imposed. As a deformation rate in x direction is imposed, a 

formation of new variant of martensite is observed. This process is known 

as ’’reorientation” . The results of the simulation of the reorientation and 

comparison with experimental data [1] is presented in Fig. 5.31. The reori

entation process starts with an appearance of a new martensitic variant - No 

15. The observed M l4 —¥ M 15 transformation(” M” implies martensitic vari-
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ant) is relatively fast with small transformation strain in x direction. As the 

deformation increases further the appearance of another variant of martensite 

No 9 is detected. In the three component system MIA, M 15, M 9 the trans

formation process MIA —► M15 is practically stopped and only M 15 -» M 9 

transformation is observed. During unloading, the reverse transformation 

takes place. The transformation M 9 —¥ M 15 leads to disappearance of the 

M 9 followed by M 15 —>■ MIA  and eventually the whole SMA film is restored 

to its initial martensitic state - variant MIA. If the tensile deformation 

is reversed to compression another reorientation transformation is observed 

MIA —» M 5. In this case the further increase in the deformation does not 

induce a third variant and the forward and backward transformations are 

between MIA and M 5. The detected variants in the simulations coincide 

with the ones analytically predicted by Fang et. al. [1].
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Figure 5.1: Schematic of a thermoelastic system undergoing phase transfor

mation
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Figure 5.2: Numerical simulation of the temperature field 9 in circular cylin

der with time dependent boundary conditions
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r, m t = 10s t = 25s t = 40s

Analytical Numerical Analytical Numerical Analytical Numerical

0.0 0.5024 0.5245 26.6390 28.1120 98.5209 102.2211

0.03 0.6305 0.6724 28.0573 29.6072 101.0305 104.8303

0.06 1.0810 1.1655 32.4227 34.1610 108.6305 112.6312

0.09 2.0705 2.2415 40.0637 42.0911 121.5306 125.8102

0.12 4.0166 4.3124 51.5164 54.0150 140.0697 144.8301

0.15 7.6103 8.2921 67.5063 70.5790 164.7001 169.9863

0.18 13.8923 15.1280 88.9215 92.7331 195.9663 201.9251

0.21 24.3031 26.1770 116.7759 121.4103 234.4796 241.1320

0.24 40.6760 43.2050 152.1641 157.7211 280.8892 288.2653

0.27 65.1501 68.5980 196.2079 202.0201 335.8516 343.0867

0.3 100.0 100.0 250.0 250.0 400.0 400.0

Table 5.1: Numerical and analytical values of the temperature, 0(deg C), in 

circular cylinder with time dependent boundary conditions
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Figure 5.3: Numerical simulation of the temperature field 9 in circular cylin

der with time dependent heat source
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r, m t —30s t = 60s t = 90s

Analytical Numerical Analytical Numerical Analytical Numerical

0.0 26.6475 26.0150 30.6651 29.6081 26.58281 25.4861

0.03 26.4434 25.8051 30.3579 29.2992 26.2995 25.2033

0.06 25.8218 25.1712 29.4359 28.3800 25.4519 24.3672

0.09 24.7549 24.0882 27.8975 26.8521 24.0457 22.9842

0.12 23.1985 22.5041 25.7411 24.7020 22.0912 21.0551

0.15 21.0949 20.3732 22.9653 21.9460 19.6028 18.6083

0.18 18.3772 17.6220 19.5715 18.5741 16.5997 15.6511

0.21 14.9739 14.1931 15.5642 14.6053 13.1059 12.2210

0.24 10.8155 10.0163 10.9536 10.0466 9.1505 8.3408

0.27 5.8401 5.1155 5.75694 4.9948 4.7684 4.1128

0.3 0.0 0.0 0.0 0.0 0.0 0.0

Table 5.2: Numerical and analytical values of the temperature, 0(deg C), in 

circular cylinder with time dependent heat source
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Figure 5.4: Numerical simulation of the stress, Trr, and temperature A9 

distribution within a hollow disc with heat source at c =  0.35 m .
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Figure 5.5: Numerical simulation of the stress, Ttt , and temperature A0 

distribution within a hollow disc with heat source at c =  0.4 m  .
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Figure 5.6: Numerical simulation of the stress, Tt t , and temperature A9 

distribution within a hollow disc with heat source at c =  0.45 m .
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r, m c — 0.35 m c =  0.40 m c =  0.45 m

Analytical Numerical Analytical Numerical Analytical Numerical

0.3 -500.0 -500.0 -500.0 -500.0 -500.0 -500.0

0.32 -486.5509 -488.9836 -146.8271 -147.8548 291.7956 294.7205

0.34 -573.4282 -576.8687 47.8503 48.2809 849.9928 854.2427

0.36 -727.7065 -730.6173 97.7294 98.1203 1204.5050 1209.3230

0.38 -780.0437 -783.9439 8.6900 8.8334 1373.2770 1378.7701

0.4 -741.1822 -744.1469 -219.8290 -221.3678 1364.8720 1371.6963

0.42 -642.5104 -646.3654 -415.1502 -416.8108 1180.0350 1184.7551

0.44 -505.9490 -508.4787 -445.7150 -448.8350 812.5319 815.7820

0.46 -346.7986 -348.5325 -363.6191 -365.8008 317.2563 318.5253

0.48 -175.7005 -176.5790 -206.1507 -207.5937 51.6833 52.0967

0.5 0.0 0.0 0.0 0.0 0.0 0.0

Table 5.3: Numerical and analytical values of Trr(Pa) at three different lo

cations of the heat source.
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Figure 5.7: The averaged computational error as a function of the magnitude 

of the time step, r  (Neim =  2404).
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Figure 5.8: The averaged computational error as a function of the number

of elements, Ndm (r =  0.12s).
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Parameter Symbol Value Ref.

Length 0.03 m -

Mass density Po 7120 k g / m 3 [25]

Heat capacity GAustenite 2.797 x 106 J / ( m 3K ) [26]

GMartensite 2.819 x 106 J / ( m 3K ) [26]

Coefficient of thermal ex

pansion

a 10 -5 K ~ l [8]

Latent heat of phase 

transformation

Aph 0.063 G J / m 3 [27]

Thermal conductivity kAustenite 47 W / [ m K ) *

kMartensite 35 W / ( m K ) *

Equilibrium temperature 80 253.5 K [1]

Ambient temperature 8amb 300 K -

Convective coefficients hh 93 W / ( m ? K )

hb 0 *

Applied deformation rate &PE 2.1 x 10-7  m / s *

A reor 1.1 x 10~8 m / s -

Time increment T 2.2 x 1 0 -5 s -

Number of elements N ~  20000 -

Tolerance £tol 10“5 -

Table 5.4: List of material, geometric, numerical and input parameters. The 

symbol, indicates that the corresponding parameters follow from the 

simulation in Fig. 5.12
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V ariant No E p h l l  ® p h l 2 E p h ,2 2  E p h i z  & p h 2 3  & P k , 3 3

1 4.61625 X IQ” 4 -6 .8 6 2 7 4  X 10~4 -1 .0 5 7 9 2  X 10” 1 6.84996 X 1 0 " 3 -8 .6 6 5 7 2  X 10“ 3 1.01624 X 10” 1

2 4.61625 X 10” 4 6.86274 X 10“ 4 -1 .0 5 7 9 2  X IQ” 1 6.84996 X 10” 3 8.66572 X 10” 3 1.01624 X 10” 1

3 4.61625 X 10” 4 6.86274 X 10“ 4 -1 .0 5 7 9 2  X 10” 1 -6 .8 4 9 9 6  X 1 0 " 3 -8 .6 6 5 7 2  X IQ” 3 1.01624 X 1G” 1

4 4.61625 X 10” 4 -6 .8 6 2 7 4  X 10” 4 -1 .0 5 7 9 2  X 10” 1 -6 .8 4 9 9 6  X 1 0 " 3 8.66572 X 10” 3 1.01624 X 10” 1

5 4.61625 X 10“ 4 6.84996 X 10~3 1.01624 X 1 0 - 1 -6 .8 6 2 7 4  X 10” 4 -8 .6 6 5 7 2  X 10“ 3 -1 .0 5 7 9 2  X 10” 1

6 4.61625 X 1 0 " 4 -6 .8 4 9 9 6  X 1G” 3 1 .01624 X 10- 1 -6 .8 6 2 7 4  X 10” 4 8.66572 X IQ” 3 -1 .0 5 7 9 2  X 10” 1

7 4.61625 X 10” 4 -6 .8 4 9 9 6  X 1 0 " 3 1.01624 X 10” 1 6.86274 X 10” 4 -8 .6 6 5 7 2  X 10” 3 -1 .0 5 7 9 2  X 10” 1

3 4.61625 X 10“ 4 6.84996 X 1 0 " 3 1.01624 X 10” 1 6.86274 X 10” 4 8.66572 X 10“ 3 -1 .0 5 7 9 2  X 10“ 1

9 -1 .0 5 7 9 2  X 10” 1 -6 .8 6 2 7 4  X 10“ 4 4.61625 X 10“ 4 -8 .6 6 5 7 2  X 1 0 " 3 6.84996 X 10” 3 1.01624 X 10” 1

10 -1 .0 5 7 9 2  X 10” 1 6.86274 x  10“ 4 4.61625 X 10” 4 -8 .6 6 5 7 2  X 1 0 " 3 -6 .8 4 9 9 6  X 10” 3 1.01624 X 10” 1

11 -1 .0 5 7 9 2  X 10” 1 6.86274 X 10 ” 4 4.61625 X 1Q“ 4 8.66572 X 10” s 6.84996 X 10” 3 1.01624 X 10” 1

12 -1 .0 5 7 9 2  X 10” 1 -6 .8 6 2 7 4  X 1G“ 4 4.61625 X 10” 4 8.66572 X IQ” 3 -6 .8 4 9 9 6  X 10“ 3 1.01624 X 10” 1

13 -1 .0 5 7 9 2  X 10” 1 -8 .6 6 5 2 7  X 10“ 3 1.01624 X 10” 1 -6 .8 6 2 7 4  x  1 0 " 4 6.84996 X 10” 3 4.61625 X 1 0 " 4

14 -1 .0 5 7 9 2  X 10” 1 8.66527 X 10“ 3 1.01624 X 10” 1 -6 .8 6 2 7 4  X 10” 4 -6 .8 4 9 9 6  X 10” 3 4.61625 X 1 0 " 4

15 -1 .0 5 7 9 2  X 10” 1 8.66527  X 10“ 3 1.01624 X 10” 1 6.86274 X 10“ 4 6.84996 X 10“ 3 4.61625 X 10~ 4

16 -1 .0 5 7 9 2  X 10” 1 -8 .6 6 5 2 7  X 10” 3 1.01624 X 10” 1 6.86274 X 10” 4 -6 .8 4 9 9 6  X 1 0 " 3 4.61625 X 1G“ 4

17 1.01624 X 10” 1 6.84996 X 10” 3 4.61625 X 10“ 4 -8 .6 6 5 7 2  X 10- 3 -6 .8 6 2 7 4  X 1 0 " 4 -1 .05792  X 10” 1

18 1.01624 X 10” 1 -6 .8 4 9 9 6  X 10” 3 4.61625 X 10” 4 -8 .6 6 5 7 2  x  10“ 3 6.86274 X 10” 4 -1 .0 5 7 9 2  X 10” 1

19 1.01624 X 10” 1 -6 .8 4 9 9 6  X 10” 3 4.61625 X 10” 4 8.66572 X 10~3 -6 .8 6 2 7 4  X 10” 4 -1 .0 5 7 9 2  X 10” 1

20 1.01624 X 10” 1 6.84996 X 10” 3 4 .61625  X 10~4 8.66572 X 10” 3 6.86274 X IQ” 4 -1 .0 5 7 9 2  X 10” 1

21 1.01624 X 10” 1 -8 .66572  X IQ” 3 -1 .0 5 7 9 2  X 10” 1 6.84996 X 10” 3 -6 .8 6 2 7 4  X 10” 4 4.61625 X 10” 4

22 1 .01624 X 10” 1 8.66572 X 10” 3 -1 .0 5 7 9 2  X 1G” 1 6.84996 X 10~3 6.86274 X 10” 4 4.61625 X 1Q“ 4

23 1.01624 X 10” 1 8.66572 x  10“ 3 -1 .0 5 7 9 2  X IQ” 1 -6 .8 4 9 9 6  X 1 0 " 3 -6 .8 6 2 7 4  X 10” 4 4.61625 X 10“ 4

24 1.01624 X IQ” 1 -8 .6 6 5 7 2  X 1Q“ S -1 .0 5 7 9 2  X 1 0 " 1 -6 .8 4 9 9 6  X 10” 3 6.86274 X 1 0 " 4 4.61625 X 10“ 4

Table 5.5: Transformation strains of the 24 variants [1]
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Figure 5.9: Average stress, axx, vs. average strain, exx, comparison with 

experimental data [1], ayy =  0 MPa.

230

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0 .7 -|
< V = 0 .0 M P a

0.6-

0.5-

0 . 4 -

O

2 f
E

>
0.2 -

0.0
T TT T T

70  8 0  90 1 0 0  110

V xx, MPa

Figure 5.10: Martensite volume fraction, Vm/Vtot as a function of the average 

stress, axx, ayy =  0 MPa.
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Figure 5.11: Average stress, axx, evolution, ayy =  0 MPa.
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Figure 5.12: Average stress, axx, vs. average strain, exx, comparison with 

experimental data [1], ayy =  40 MPa.
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Figure 5.13: Martensite volume fraction, Vm/Vtot as a function of the average 

stress, axx, ayy — 40 MPa.
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Figure 5.14: Average stress, axx, evolution, ayy =  40 MPa.
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Figure 5.15: Shape of the martensitic inclusion when exx =  1.0% during

A—t-M transformation, ayy = 40 MPa.
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Figure 5.16: Shape of the martensitic inclusion when exx = 3.5% during

A-*M transformation, ayy =  40 MPa.
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Figure 5.17: Distribution of cr^M Pa) when exx =  1.0% during A—>M trans

formation, Oyy =  40 MPa.
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Figure 5.19: Distribution of <rw (MPa) when exx =  1.0% during A-*M trans

formation, ayy =  40 MPa.
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transformation, ayy =  40 MPa.
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Figure 5.21: Distribution of <7  ̂(MPa) when exx 

formation, ayy =  40 MPa.

242

1.0% during A-*M trans-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



, M
Pa

x = 0  c m

—  x=0.3102 cm 
 x=0.6204 cm
—  x=0.9306 cm
—  x=1.2408 cm
-—  x=1.5510 cm

150-

100-

5 0 -

0-

-50-

-100-

T ■r T V T TT T T
0 .0  0 .5  1 .0  1.5 2 .0  2 .5  3 .0

Y, cm
Figure 5.22: Cross-sectional profiles of axy when exx =  1.0% during A-^-M 
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Figure 5.23: Temperature, 9, distribution when exx 

transformation, ayy =  40 MPa.
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Figure 5.25: Distribution of cr^M Pa) when Exx — 3.5% during A—>-M trans

formation, oyy — 40 MPa.
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Figure 5.27: Distribution of <JTO(MPa) when exx =  3.5% during A—»M trans

formation, oyy — 40 MPa.
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formation, G y  y  = 40 MPa.
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Chapter 6

Conclusions

This thesis addresses two fundamental issues of modeling the thermodynam

ical response of single crystal SMAs: a) theoretical description (model) of 

SMAs with sharp phase fronts; b) numerical method (algorithm) for ade

quate solution of the corresponding mathematical problem. The theoretical 

model and the numerical algorithm were initially developed for one dimen

sional SMA systems (Chapters 2 and 4) and generalized for three dimensional 

problems in Chapters 5.

The theoretical model consists of two parts: conservation laws (mass, 

linear momentum, angular momentum and energy) and constitutive rela

tion (Helmholtz free energy). As it has been shown by Abeyaratne and
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Knowles [1], this formulation does not render a unique solution for SMA 

systems with sharp phase fronts. The theoretical model developed in this 

thesis completes the system of equations describing the phase transforma

tion in SMAs with sharp phase fronts by introducing the notion of continuity 

of the chemical potential at the phase boundary. The suggested theoretical 

framework is general enough to incorporate any Helmholtz free energy func

tion of the SMA, and therefore if this function is explicitly known, then so is 

the entire set of governing equations (including that for the phase boundary 

evolution). The validity of the developed theoretical model was verified by 

comparing the theoretical predictions with experimentally measured data in 

one and two dimensional cases([2],[3]).

The second component of the research involved development of numeri

cal methods/  algorithms for solving the mathematical problems arising from 

the suggested theoretical models. A MBFEM-based numerical approach was 

developed to address BVPs for SMAs with ID phase fronts [4]. The algo

rithm implements front tracking, based on introduction of an additional mesh 

point at the location of the phase boundary. The nonlinear algebraic sys

tem of equations resulting from the FE discretization was solved by invoking 

Newton-Raphson iterations. The algorithm has been found to be accurate
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and unconditionally stable when compared to an analytical solution for a 

purely thermal transformation. The accuracy of the algorithm was also val

idated in comparison with experimental data [2] and in simulation of the 

thermomechanical response of linear SMA actuators [5].

The solution of the mathematical problem of phase transformation in 

SMAs in 2D domains (i.e. SMA thin films) was addressed by developing a 

new numerical algorithm, which utilizes the finite element method (FEM). 

In this algorithm the phase front tracking is based on permanent update of 

the mesh so that the phase boundary always lies on mesh nodes. The data 

from the ’’old” is transferred to the ’’new” by non-oscillatory 2D interpola

tion (Super Bee [6]). It is shown that the algorithm (O(h2, r 2)) is stable and 

adequately accurate by comparing the predictions of the model with analyt

ical solutions for purely thermal and thermomechanical problems as well as 

with the experimental results of Fang et. al. ([7]) for the pseudoelasticity in 

SMA CuAINi thin films [3].
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Appendix A

MBFEM

A .l  Non-dimensional variables

The non-dimensional variables (included below with a ”tilde”) may be ob

tained by application of the Buckingam n theorem [1]. We give a list below 

where every non-dimensional variable is preceded by a physical description 

of the quantity being non-dimensionalized:

- length: x  =  j^x,

- phase boundary position: xpb =  j;xpb,

- displacement: 5 =  ^5,
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- time: t ~

- temperature: 8 =

- stress: a =  j â,

- coefficient of thermal expansion: a = adamb,

- convection coefficients: h =  ^ r h ,

- latent heat:Ay =

- mobility parameter: i? =  ^ R ,

- driving force: /  =  ^ / ,

- Boltzman constant: i f  =  ,

- martensitic start temperature: Ma =

- austenitic start temperature: As =  j ” ,

- current density: J  =  L ^ j J .
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A .2 Discretization of Eq. 2.29 in absence of

the jump condition, Eq. 2.30

The matrices K, M, M* and the vector F  resulted from the discratization of 

Eq. 2.29 in the absence of the jump condition, Eq. 2.30. We now give their 

non-vanishing components. The non-zero components of K  are

K n  = ~ K u  =  Z Z ’

K e e —l  =  2 ^ e e  =  K ee+ 1 =  ^  ̂ ; 2 <  e <  N ,

K n + i n  =  —K n + i n + i =  ( A . l )

The non-zero components of M  are

A L
M\l — 2Ml2 — “g")

1 A L
Mee- i  = —Mee = Mee+1 = , 2 <  e <  N ,

4 o

A T /v + u v  =  - A f i v + i i v + i  =  - g — ■ ( A . 2 )

The non-zero components of M* axe

M l+ i =  ^  J >  2 <  e <  A ,
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M^-+uv — - j
a l  (e*N +  0*N + l

MN+1N+1 —

The components of F are

Fi — Fn+i — Fe — AL, 2 < e < N, (A.4)

A.3 M odification of Eq. 2.40 due to  the jump  

condition, Eq. 2.30

A .3.1 Phase boundary lies between two nodes

In order to incorporate the effect of the jump condition, the global tem

perature vector will now have N + 2 components because the temperature, 

9%pb,corresponding to the node at the phase boundary will have to be intro- 

duced. This is done by introducing a new teperature vector, 0* (without the 

subscript ”UN”) with N + 2 components, with the components defined as

— ®UN,k (1  <  & <  p )

©1 =  0 ^  ( p + 2 < k < N  + 2). (A.5)

The components of the matrix A 1 are
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A®   4®^km N̂ km
1 < k < p — 1, 1 < m < p ,

1 < k  < p — 1, p + 2 < m < N  + 2,

A% _  A i
**k m  UN ,k —l m —i

p + 3 < k < N  + 2, 1 < m < p ,

p + 3 < k < N  + 2, p + 2 < m < N  + 2, 

The remaining components of the matrix A 1 follows as

(A.6)

(itip_ +  A L)

Ai = 2rWP- Ai
W-l ? PP

cicr*
9~dt + ^  +  wp~(wp-  +  ^ X 1 +  a9dp)

p p + i 2r, A*p+ip ^ p+j ^p+ip+iAi -AT, A;p + lp + 2  ~  W p - >

A;P+2p+l 2  t , a:
2rmp+

4p+2p+2 -  [2r +  ^P+(WP+ +  AT)

p + 2 .p + 3 A L

do1
q  — 1_ h
y dt

T +

wp+(wp+ + AT)(1 +  crig0*+l)\ . (A.7)

Any components of A1 that have not been mentioned in the above list should

—* .

be zero. The components of vector B 1 are

B k k  ~  & UN,k  (1  — k  <  p  — 1 ) ,

B lk = B}jN,k-i (p + 3 < k < N  + 2). (A.8)

The remaining components are

B l -p -wrj-  (wp-  +  AL) ( l +  agOp'j 6p +  r(h  +  J 2)J
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B lp+2 =  - w p+(wp+ + AL) [(1 +  ag9*+l)9%p+1 +  r{h  +  J 2) . (A.9)

A .3.2 Phase boundary lies on node

The components of the temperature vector are

© I =  ®\jN,k (1 < k < p ,  p + 2 < k < N  + l),

e; +1 = e;b- (A-10)
>■>. .  .

All components of A1 and B l are identical to A lUN and B lUN, respectively,

except the following listed below

A p + i p  =  \ + \ P + i  =  A p + i p + 2  =  B P + 1  =

(A.11)

A.4 The com ponents of the Jacobian,

The Jacobian, introduced in Eq. 2.49 has components which are devel

oped in the following manner. We first define an auxiliary Jacobian, ,

as

ji(m) = T K +  M  +  r  ( g ^  + h \M  + N i{m) (A.12)
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The auxiliary Jacobian , may be constructed once matrices K, M  and 

Ni(m) gj.g known_ The component of K and M  are given in Section B.l of 

Appendix B whereas the non-zero components of are given bellow

jV?r> =  ag
AZ, i(m). (

M m)pp ag

R ( 3 * 0  +  e D  -  = ?{& ! +  f l r )o Iz

^ ( < ” )) + + K~l)

+  6 0 f  > + 0*?) -  +  60*- 1 +  0J;\)

p-ip =  ag

A/-*M _  
iVp + ip  — a 9

AL_ ($ * » > ) +  -  _ (0J-* +  A ft)

-‘vjv+ ijv + i  — a y
AL

AL.
p + :

(3<">) + as©  -  ^(0V‘ + afri) (A.13)

Once the auxiliary Jacobian, is constructed , the actual Jacobian 3^m\

follows below.

A.4.1 Phase boundary lies between two nodes

When phase boundary lies between two existing nodes, a new node is intro

duced. The components of the Jacobian in such case are

1 < k < p — 1, 1 < s < p,

l < k < p — 1, p +  2 < s < A r +  2,

p + 3 < k < N  + 2, 1 < s < p ,  

p + 3 < k < N  + 2, p + 2 < s < N  + 2,

j i {m)  _  p ( m )  
J ks ~  J k °ks

pM  _  f*(m)
" k s  ~  J k - l s - l
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wP4 w p-  +  A L ) ( l  +  2 a e ; W ) +  w p- ( w p-  +  A L ) a g 9 lp l ,

ji{m) _  „  ji{m)  _
" p p + 1  ■ " ' )  " p + l p  '* 'p+>

2t w p+ji{m)  _  _  A r f M  _  .. .  r*M _  9 r*(m) _
J p + lp + l iA-O, *'p+lp+2 W p -i  J p+2p+l z ‘ iJ p + 2 p + 3

j :i(m) _
p+2p+2 2r ( 1 +  AL )  +  +

dcr* 
5^  +  /l

r  +

Wp+(wp .̂ -j- AL)(1 +  2ag9ip+i) + wp+(wp+ + AL )a g 9 lp+\  . (A. 14)

A.4.2 Phase boundary lies on a node

When the phase boundary coincides with an existing node, all the compo

nents of the Jacobean are identical to the corresponding components of the 

auxiliary Jacobean except those listed below

(A.15)
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Appendix B

Linear SMA Actuators

B .l  List of relevant non-dimensional param

eters

Non-dimensional phase boundary position

s

Non-dimensional time

_ _  k 
pcL2 *

Non-dimensional stress

a
a =

E et
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Non-dimensional phase boundary velocity

 ̂ p cL .

Non-dimensional specific energy output

Woci
W,act Ee2T

Non-dimensional spring stiffness

k
K s ~  AE
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Appendix C 

A 3D Theoretical Framework

C .l 3D state of stress

The stress and the elastic strain tensors are written in vector form as

1 \
d ll

(  \
ef[

d"22 e22

< 3̂3
> E a  ~

e33

d23 2^23

d l3 2 4

! v 2 4  >
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The forth order elasticity tensor, £ , has 36 independent components, and is 

written as a 6 x6  matrix. As well, an isotropic thermal expansion tensor is 

also replaced by a vector. These are

f

£ =

\
Ai

V

A 1133 A 1123 A1113 A1112

A2233 A2223 A 2213 A2212

A3333 A3323 A3313 A3312

A 2323 A2313 A2312

A l313 A 1312

A1212

a

/  \
1

1

1

0

0

/ \ 0 /
(C.2)

In SMA crystals wide variety of lattices with different types of symmetries 

can be observed. The parent phase, austenite, is usually represented by a 

high order of symmetry lattice (cubic), whereas the order of symmetry of the 

matensitic variants vary from trigonal to monoclinic[2]. Here we will specify 

the stiffness matrix only for crystals with cubic and orthorhombic symmetry 

characteristic for CuAINi {3X —> 7  ̂ transformation.
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a) orthorhombic symmetry [3]

A,

£orth _

V

b) cubic symmetry [3]

A1122 A1133 0 0 0

A2222 A2233 0 0 0

A3333 0 0 0

A2323 0 0

A1313 0

A1212

Cc =

^ 1 1 1 1

t  n n 0 0 0

T n 0 0 0

T 0 0 0

0 0

s  0

=  A3333, n

w

A1122

/

(C.3)

(C.4)

'1133 — ^3311

A2233 =  A3322 a n d  S  =  A2323 =  A1313 — Ai2i2-

The matrices in Eqs. C.3 and C.4 are defined in the coordinate system 

of the parent phase(austenite). In different coordinate system defined by the
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corresp ondence

<Sn(X) ec( 1) 

en(2 ) e0(2)

ew(3) ea(3)

the components of £(Eq. C.2) must be calculated using the law of transfor

mation of the fourth order tensor

\klm  ~  fiinftkpfilrfims^nprs i (C,5)

where the transformation tensor — en^  • e0 (j).

C.2 2D state of stress

The state of plane stress of a body is such that 0 1 3  =  023 =  °33 — 0 and 

on  =  On(xi, x2), oX2 =  o12(a;i, *2 ) and o2 2  =  o22(x1,x 2) are taken to depend 

on the xi and x2  coordinates only. In view of this simplification, the stress 

and the elastic strain are written as:

T  =

( \
on

o22

\ CTi2 /

eil

f el
22

2e?j

(C.6 )
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The elastic components e33, ef3 and ef3  which are omitted in the elastic strain 

vector can be obtained as functions of the other three non-zero components, 

efl 5  6 3 2  and ef2. These relations follow from Eq. C . 6  and the Hooke’s law, 

f  =  C-Eel, as

A3 3 3 3 C3 3  +  2A3323C23 +  2A 33i3€®3  =  — A 3 3 n e fx — A3 3 2 2 C2 2  — 2A 33i2 fi2

A 3323 ̂ 33 +  2 A2323C23 +  2 A 2 3 i3 e f3 =  — A 23 iiC f,1 — A 2322C22 — 2A 2312e i2

A 2333 €33 +  2  A 1323^23 +  2 A i3 i 36®3 =  — A isu C ® ^  — A 1322^22 — 2 A i 3 i 2 e f 2 ( C . 7 )

Eq. C.7 can be used to determine the 2D analog of Eq. 5.41, where [Ai] is

replaced by [S']-1, and [5] is a 3x3 symmetric matrix.

/  Sn  S l2 S l3 N

S = >22 *->23

V S:33

(C.8 )

Note that Sij are fourth order polynomials involving the non-zero components 

of £  in Eq. C.2 .

The the vector of thermal expansion coefficients in both symmetries is

(  \
1

As =  a (C.9)

\ 0 /
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C.3 Maxwell Relations

For a particular phase (austenite or martensite) with a volume V and uniform 

temperature 9 the Gibbs free energy (thermomechanical potential) of the 

phase is defined as [4]

G  = U  — S 9  — Vir (TRF), (C .10)

where U and S  are total internal energy and entropy of the phase. The 

differential form of Eq. C.10 is

dG = dU -  0dS -  S d d  -  tr (T Kd(FV)) -  t r((dTn )(FV)).  (C .ll)

A thermodynamical quasistatic process implies [5]:

9dS = d U -  pdN -  t r (Tn d(FV)),  (C .12)

where fx is the chemical potential and N  is the total number of particles in 

the phase(a ’’particle” maybe defined as a ’’subunit” of the phase, such that 

all particles are identical to one another). With Eq. C.12, Eq. C .ll reduces 

to

dG = jidN -  Sdd -  tr((dTn )(FV)).  (C .13)

Since G is a continuous function, following relations can be invoked

drRdivG = dj^drRG , d$d^G — d^d$G. (C .14)
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Using Eq. C.13 and Eq. C.14, the following partial derivatives are determined

$T]r9nG =  8t r h , dodxG — —F d^V  ,

3$8n G =  Qe/x , disrd$G =  —d ^ S  . (C.15)

Defining dNV  = V p and 9^5' =  % as the volume and entropy per particle, 

Eq. C.15 along with the identities of Eq. C.14 result in

del* = ~Vp , drRV = -V PF . (C.16)

C.4 von Neumann stability analysis

In this section we present the von Neumann linear stability analysis for the 

2D linear heat conduction equation with Dirichlet boundary conditions. The 

finite difference scheme on uniform mesh in x and y directions (hx =  hy =  h) 

looks as follows:

k t
f vi-t-l rj-4-1 n-L 1 ^, n + l    n  n + l  , n + 1 , . n + l    o  n - f l  . . .n + 1  \

* u i j  +  , u i j + 1 T  \ ,

“■ v s 5 s 5 j

(1 -  g) ^ ± M - ~ +  . (C.17)
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To find the necessary condition for stability, we will investigate the behavior 

of particular solution [6]

unk,i =  qnei{kv>+1̂  , (C.18)

where i is the unit imaginary number, q is a complex number, which must 

be defined, and <p and ip are arbitrary real numbers. The solution Eq. C.18 

will be stable if

|g n e i(Jfc*+l*)| <  |^Oe i(fc¥>+J^)| _  | _  2 _

The condition above easily reduces to

|, | < 1 . (C.19)

After substitution of solution Eq. C.18 in the Eq. C.17 and canselation by

we get

C v q -  1 ( e *  -  2 + e - *  -  2 +  e ~ ^ \¥~r~ = wl— ^ J  +
( fiv — 2 4- p'^ -  2 +  \

w + ~ l ^ ~ )  ■ <a20>

Finally, using trigonometric identities, we obtain

_  1 ~ 0- -  (s in 2 (f)  + ( f) )

9 1 + (sin2 (2) + sin2 (I))
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From Eq. C.21 is clear that q is a real number and the stability condi

tion (Eq. C.19) can be replaced with

- 1  < q < 1  . (C.22)

The right hand side nonequality in Eq. C.22 is trivially satisfied(see Eq. C.21),

whereas the left hand side nonequality specifies the required stability condi

tion. Using that

_ 1 < _  1 ~  (1 ~  (Sin* (*) +  Sin2 (%)) < 1 ~  ~
~ 9 1 +  0 0  (sin2 ( 2 )  +sin2 ( 2 ) )  ~~ 1 + S0 2

the parameter g can be expressed as

(C.23)
e  ~  2 S k r  v 1

Obviously the nonequality in Eq. C.23 is always satisfied for g > | .  If g — 0 

the stability criterion reads

kT < 7 . (C.24)Cph2 “  4

Recall that g =  0, g =  0.5 and 0 = 1  correspond to the three time discretiza

tion schemes in Section 5.5.5. Based on the results above the implicit( 0  =  1) 

and Crank-Nicholson (g = 0.5) schemes are unconditionally stable, where as 

the explicit scheme ( 0  =  0) must satisfy the condition Eq. C.24 in order to 

be stable.
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