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Abstract

A set representation of a graph is an assignment of sets to the vertices of a graph in such 

a way that the sets assigned to two vertices satisfy a given relation if and only if the ver­

tices are adjacent. The relations of intersection, overlap, and containment are studied, with 

emphasis on the number of elements required to form a representation.

The complexity of several combinatorial problems on the classes of graphs having small 

intersection representations that satisfy the Helly property, or equivalently, few maximal 

cliques, is studied. Also examined is the problem of extending set representations, with a 

proof of the computational hardness of extending overlap and containment representations. 

In addition, algorithms are given to find minimum intersection, overlap, and containment 

representations for some classes of graphs. Also presented are upper and lower bounds on 

the number of elements needed in these representations for graphs of various classes.
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Chapter 1 

Introduction

1.1 Overview

Representing the vertices of a graph by sets is a natural way to encode the adjacency infor­

mation of the graph into local vertex labels. In many cases these representations can allow 

for both compact graph representations and efficient adjacency testing with only informa­

tion stored locally with the vertices of the graph. If we seek such an efficient representation 

we are naturally concerned with the size of the representation, which is the problem we 

primarily study here.

The types of representations we concern ourselves with are those in which the vertices 

of a graph are assigned sets that have some property that determines whether the vertices 

of the graph are adjacent. As an example, we might insist that the sets assigned to vertices 

intersect if and only if the vertices are adjacent. This restriction forms an intersection rep­

resentation, and we can form overlap and containment representations by requiring the sets 

of a representation to have other relations that determine the adjacency of the vertices in the 

represented graph. These are the three types of representation that have received the most 

attention in the literature and the three most obvious set relationships to consider, and so 

these are the three representations that we study here.

1.2 Preliminaries

In this section we present some notation that will be used throughout the thesis. A graph is 

an ordered pair of sets, typically written G — (V , E),  where the first set contains the vertices 

of the graph, and the second set, the edge set, contains unordered pairs of vertices. We will 

often use n  — \V\ and m  = \E\ to be the number of vertices and edges in a graph. We 

will say that two vertices u, v & V  are adjacent if there exists a pair (u, v ) € E. We define

1
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the degree of a vertex to be the number of edges containing that vertex as the first element, 

or equivalently, the number of vertices that are adjacent to the vertex. N{v)  denotes the 

open neighbourhood of the vertex v, that is, the set of all vertices v is adjacent to. The 

closed neighbourhood is this set with the addition of the vertex v, and is denoted N[v], 

In addition, all graphs we will consider are finite and simple, that is having no loops or 

multiple edges. Unless stated otherwise, the graphs we consider will be undirected, which 

is (u , v) G E  if and only if (v, u) G E,  but we will on occasion consider the directed case. 

The complement of an undirected graph G =  (F, E),  is the graph G = (V, E),  where 

E  — {(u, v) : u, v G V, (u, v ) $  E}.

Given a graph G = (Vi, E\),  a graph H  = (V2, E 2 ) is called a subgraph of G if F  Q 

V] and E ‘i C E i, and further, H  is an induced subgraph if £2 =  {(u, v) G E\  : u, v  G V2}. 

If S  C V  is a subset of the vertices of a graph G =  (V, E),  then G[S'] denotes the subgraph 

of G induced on the vertices in S. A complete graph is a graph in which every pair of 

vertices is adjacent. We denote by the term clique a complete graph, or a complete induced 

subgraph when we refer to a clique of a graph G. A clique is maximal if it cannot be made 

into a larger clique with the addition of one more vertex of the graph. The clique on n 

vertices is denoted by Kn. We will occasionally use /C(G) to denote the set of all maximal 

cliques in G. In addition to cliques, we can define an independent set to be a set of vertices 

such that no pair of them is adjacent, that is, the complement of a clique. We will use a(G) 

to denote the size of the maximum independent set in the graph G.

We refer to a vertex of a graph that is adjacent to all other vertices as a universal vertex. 

Similarly, a vertex is an isolated vertex if it is not adjacent to any other vertices. In a graph 

G =  (V,E),  a set S  of vertices that have identical neighbourhoods in V  \  S  is called a 

module. In other words, a set of vertices is a module if for every vertex outside of the set, 

that vertex is either adjacent to all vertices of the set, or none of them.

We define a path as a graph with an ordered vertex set, such that each vertex is adjacent 

to the vertices that are immediately before or after it in the ordering. In addition, we require 

that the vertices on a path be distinct. A path on n  vertices has exactly n  — 1 edges. More 

formally, a path on n  vertices is defined as Pn =  ((iq, v%,. . . ,  vn), {(«*, Ui+i) : I < i < 

n}). A cycle of length n, denoted Cn, is a path on n vertices, where we add an edge between 

v\ and vn.

We define the distance (or shortest path distance) between two vertices u and v as the 

length of a shortest path starting at u and ending at v. This is denoted by d(u, v ). By 

definition, we have d(v, v ) =  0, for all vertices v. If there is no path between two vertices

2
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u and v, then by definition d(u, v) =  oo.

A graph G is connected if there is a path between any two vertices, or equivalently, if 

there are no two vertices u and v  such that d(u, v) =  oo. A graph is called disconnected if 

it is not connected, and the maximal connected subgraphs are referred to as the components 

of the graph.

For graphs G\ = (Vi, E\),  G2 =  (V2, E 2 ), with V\ fl V2 =  0, we define the union of 

G\ and G2 to be the graph formed by taking G\ and G2  without adding any connecting 

edges between them. More formally, we have G± U G2 =  (V] U V2 , -Ej U E 2). The union 

operator is a type of addition, hence we can make use of multiplicative notation to represent 

iterating this operator some natural number of times. To this end, for a graph G, and t  e  N 

we can define, for t  > 1, tG  =  G  U (t — 1 )G, where 1G = G.

A graph G == (V, E)  is covered by a set C of cliques if for each vertex in v € V  there 

is some clique S  6  C of G with v € S. Such a set C is called a clique cover, or a vertex 

clique cover, of G, and the minimum number of cliques in any clique cover is the clique 

covering number of G, denoted 0(G). A similar concept is the edge clique cover, which is 

also a set C of cliques, but in this case we require, for every (it, v) 6  E  that there is some 

clique S  G C of G such that u, v € S. In other words, there must be some clique covering 

each edge of G. Such a set is called an edge clique cover of G, and the minimum number 

of cliques in any such cover, called the edge clique cover number of G, is denoted Q,(G).

With these basic graph notions defined, we can begin introducing the classes of graphs 

that we will refer to, which is done in the next section.

1.2.1 Graph Classes

In this section we examine some of the classes of graphs that we will encounter later. 

This survey is by no means complete, and the interested reader is referred to the book 

of Brandstadt, Le, and Spinrad [5] that includes more information on all of the classes of 

graphs discussed here. We have already seen, in the previous section, some simple classes 

of graphs, such as paths, cycles, cliques, and independent sets. Many of the known contain­

ment relationships for the graph classes discussed here are shown in Figure 1.1.

The first class of graphs we introduce is also among the simplest. A graph is a tree if 

it is connected and acyclic. The leaves of a tree are those vertices with degree one. A tree 

is rooted if there is a specific node, the root of the tree, that specifies an orientation of the 

tree, with all edges directed away from the root. In such a rooted tree, the children of a node 

are those nodes it is adjacent to via edges directed away from the node, and the parent of

3
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Perfect

Comparability1 Chordal Cocomparability

Bipartite Cographs

Trees

Caterpillars Threshold

Figure 1.1: Containments between the graph classes discussed here.

the node is the node that can be reached by travelling up an edge in the opposite direction 

to its orientation. The root node has no parent, but all other nodes have a unique parent. 

Similarly, the leaves of a tree have no children, but all other nodes do. A forest is a graph 

whose connected components all form trees, that is, an acyclic graph that is not necessarily 

connected.

A subclass of trees are the caterpillars. Caterpillars are formed from paths by adding 

leaves. More formally, a caterpillar is a graph consisting of degree one vertices and a path. 

This path is called the spine of the caterpillar. It is of note that caterpillars are cocompara­

bility graphs, but trees are not, where the cocomparability graphs are a class of graphs we 

will encounter later in this section.

The bipartite graphs are those graphs that do not contain odd cycles, including the three 

cycle K%. This causes them to contain the class of trees. This definition is equivalent to the 

usual definition, in which a graph G =  (V, E) is bipartite if there is a partition of V  into 

U and W  such that every edge in E  has one endpoint in each of U and W . This class of 

graphs is interesting since it does not contain A3 , which also forbids any cliques larger than 

K 3.

Another class of graphs with limits on the types of induced cycles is the class of chordal 

graphs. These are the graphs that do not contain induced cycles of length more than three. 

In other words, a graph is chordal if it does not contain Q. for any k > 4. One interesting 

property of the chordal graphs is that the vertices can be ordered in such a way that the 

neighbours of any vertex that appear after the vertex in the ordering form a clique. Such 

an ordering is known as a perfect elimination ordering, and the chordal graphs can be 

characterized as exactly those graphs that have perfect elimination orderings.

The threshold graphs are also a class of graphs that can be characterized by an ordering

4
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on the vertices of the graph. In this case, the vertices are ordered in such a way that when 

they are added, in order, to the empty graph, with a restriction on the edges added, the 

original threshold graph is obtained. The restriction on the added edges is that when adding 

a new vertex to the graph it must either be a universal vertex or an isolated vertex. This 

restriction can make problems easy to solve on threshold graphs, as local operations can 

often be used to maintain the optimality of a solution through the addition of a new vertex.

The graphs without P4 as an induced subgraph are known as the cographs. This char­

acterization, while simple, ignores the feature of cographs that is most often exploited al­

gorithmically. This feature is the fact that any cograph with at least two vertices can be de­

composed into two cographs that are either disjoint or completely connected to each other. 

This structure permits many combinatorial problems to be solved by divide and conquer 

algorithms on this class of graphs.

The cographs are contained in both the comparability graphs and the cocomparability 

graphs. The comparability graphs are the graphs whose edges have a transitive orientation, 

where the notion of a transitive orientation is given by the following definition.

Definition 1.1. Given an undirected graph G =  (V, E ), a directed graph H  =  (V, E )  is a 

transitive orientation of G if E  C  E  and the following two conditions are satisfied

1. If {(w,u), (v , u)} C E  then |{(u, v), (v , u )} fl E'\ =  1

2. If (u, v ) G E ' and (v , w) G E ' then (u , w) G E '

The first of these two conditions ensures that H  is an orientation of G, which is, each 

undirected edge of G is oriented in exactly one of two possible ways. The second condition 

ensures that this orientation is transitive.

Since we have defined the comparability graphs, we can define the cocomparability 

graphs. These graphs are exactly the complements of the comparability graphs, that is, the 

graphs whose non-edges can be transitively oriented. We will encounter these classes of 

graphs when studying containment representations, since a graph has a containment repre­

sentation if and only if it is a comparability graph.

An important class of graphs that contains the comparability graphs, the cocomparabil­

ity graphs, and the chordal graphs is the class of perfect graphs. A graph G is perfect if for 

any induced subgraph G  of G the size of the maximum clique in G  is equal to the mini­

mum number of colours in any colouring of G, where a colouring of G  is an assignment of 

colours to the vertices of G  such that no two adjacent vertices are assigned the same colour.

5
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An excellent survey of some of the more famous classes of perfect graphs, including many 

of those that we have discussed, is the 1984 survey by Duchet [13].

One other class of graphs that we will use are the planar graphs. The simple description 

of this class is that these are the graphs that can be embedded on a plane in such a way that 

no two edges cross. One graph that is not planar is the graph K5 , and we will see later that 

this limits the number of maximal cliques in any planar graph, which will be the reason that 

we consider this class of graphs.

These are not all of the classes of graphs that we will consider, but we delay the intro­

duction of the classes of graphs defined in terms of set representations until Section 1.3.1, 

which will allow us to formally introduce the notions of intersection, overlap, and contain­

ment representations of graphs.

1.2.2 Computational Complexity

This section briefly discusses the notions that we will use from the theory of computational 

complexity.

The class P  contains all those problems solvable by a deterministic algorithm in time 

polynomial in the size of the input. This class contains all of the “easy” problems, or prob­

lems for which there exist efficient algorithms that find solutions. A superclass of P  is NP, 

which informally contains those problems for which solutions can be efficiently verified. 

More formally, NP consists of those problems that can be solved with a nondeterministic 

algorithm that can guess the solution to a problem, and then verify, in polynomial time, that 

the solution is correct. Another way to view this is that any problem in NP is a problem 

in P  with an extra existential quantifier that asserts there is some guessable solution that a 

deterministic polynomial time algorithm can solve.

The hardest problems in NP are the NP-complete problems which can be solved by a 

polynomial time algorithm if and only if all other problems in NP can. The problem of 

finding a satisfying truth assignment for a boolean formula is the canonical NP-complete 

problem. An exposition of these concepts, as well as some of the hardness results used 

later, can be found in [21 ].

The remainder of this section is a quick and informal discussion of some of the larger 

complexity classes that we will encounter. For a more thorough discussion of these classes 

see [41]. The known containment relationships between the complexity classes we will 

encounter here are given as Figure 1.2. None of the containments listed here are known to 

be proper, but it is believed that many of them are.

6
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Figure 1.2: Containments between the complexity classes discussed here.

We will encounter problems that appear to be even harder than the NP-complete prob­

lems. These problems are counting problems, such as counting the number of valid 3- 

colourings of a given graph. The class of such problems, introduced in 1979 by Valiant [63], 

is known as #P. More formally, #P is the class of functions that count the number of so­

lutions to combinatorial problems. Since #P is a class of functions, and other complex­

ity classes contain problems, which are represented as sets, the class #P cannot appear in 

Figure 1.2, except as I^p which, as we discuss later, is the class of problems solvable in 

polynomial time with the ability to call to a function in #P. Fortunately we will be able to 

simply view #P as the class containing all counting problems associated with some rela­

tion that can be decided in polynomial time. The canonical #P-complete problem is that of 

computing the number of truth assignments that satisfy a boolean formula.

In order to understand the size of the class #P, we must introduce another group of 

complexity classes: the polynomial hierarchy. The polynomial hierarchy, introduced in 

1972 by Meyer and Stockmeyer [38], is an extension of the class NP. Recall that NP can 

be thought of those problems is P  with an added existential quantifier. Informally, the 

polynomial hierarchy is constructed of levels, where the kth level of the hierarchy consists 

of those problems in P  with the addition of k nested quantifiers. It is believed that this 

hierarchy is infinite, with each level properly containing the previous levels, but proving 

such a result would be a major breakthrough in complexity theory. The class PH denotes 

the union of all levels of this hierarchy.

The complexity classes we consider are bounded by the class of problems that can 

be computed in a polynomially bounded amount of space, using potentially an exponential 

amount of time. The class of all such problems is known as PSPACE, and is only important 

here as an upper bound on the complexity of some of the problems we consider. This class 

is known to contain PH [54] and any function in #P can be computed in PSPACE [63] as

7
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well.

An important theorem in complexity theory, known as Toda’s Theorem [57], states that 

PH is contained in a complexity class that is closely related to those problems that can 

be solved by a deterministic polynomial time algorithm with access to an oracle that can 

compute a function in #P. The class of problems solvable by such an algorithm is denoted 

P*1*. A further consequence of this theorem is that there is such an algorithm that makes 

only one call to the function in #P. This seems to indicate that the class #P is much larger 

than the class NP, in terms of computational difficulty.

1.3 Set Representations

In order to introduce the different types of set representations of graphs that we will ex­

amine, we need to introduce the relationships between sets that will be used to build these 

representations.

Definition 1.2. For two sets A  and B, we define the following set relationships:

• A  and B  intersect if A  fl B  0,

• A  and B  overlap if A  n  B  ^  0 and neither A C  B  nor B  C A,

• A  and B  have a containment relationship if A  C B  or B  C A.

We will refer to a set of sets as & family, and we will use collection to refer to a mul­

tiset of sets. When forming set representations of graph we usually allow the same set to 

be assigned to multiple vertices, and thus it is natural to consider the representation as a 

collection.

The next definition is a property that we will apply to set representations of graphs. It 

is called the Helly property, as it is similar to Helly’s Theorem that, as described in [65], 

states that for any family of sets in W1 such that any d + 1 have nonempty intersection, 

the intersection of the entire family must also be nonempty. In the definition of the related 

property, the attachment to W1 is relaxed and we consider only those subfamilies that have 

pairwise nonempty intersection. A definition of this property follows.

Definition 1.3. A collection of sets satisfies the Helly property if for any subcollection that 

intersects pairwise, there is a common element in all sets of the subcollection.

Given this property and the set relationships of Definition 1.2, we can introduce the 

notion of a set representation for a graph. There are three major representations we will

8
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concern ourselves with, mirroring the three set relationships introduced earlier. These are 

intersection, overlap, and containment representations. These three forms of representation 

are special cases of the following general definition.

Definition 1.4. Given a graph G =  (V, E), a collection C = {S„ : v € V}, and a relation 

R  C C x C, the collection C forms an R-representation of G if

(Su, Sv) € R  if and only if (u , v ) € E.

If, in addition, C has the Helly property, we say that C is a Helly R-representation for G.

From this definition, we can immediately define intersection, overlap, and containment 

representations by using one of the relations defined in Definition 1.2 in place of R. Note 

that since we have defined containment relationship to be the symmetric closure of the 

usual containment representation, any graph having intersection, overlap, or containment 

representation is necessarily undirected, as each of these set relationships, in the context of 

a representation for a graph, are defined in a symmetric manner.

It should also be noted that when specifying an ^-representation C for a graph G = 

(V, E) we implicitly associate with the vertex v the set $•. This is done as a notational 

convenience, as it allows us to avoid the introduction of a specific mapping from V  to C. 

This does not imply that the sets associated with different vertices are distinct. As C is a 

collection, we may have, for u ^  v, Su = Sv, as we consider this set, in the collection, to 

have multiplicity at least two.

The parameter of an ^-representation that we will be most concerned with is the size 

of a representation, or more precisely, we will study the size of a minimum representation 

for a given graph.

Definition 1.5. Let G =  (V, E) be a graph, and C an .R-representation of G. The size of C 

is given by

U  •
svec

The minimum size of an R-representation of a graph G is called the R-number of G. The 

Helly R-number of a graph G is the minimum size of a Helly R-representation of G.

Notice that from this definition, if we have an R-representation for G, then we can 

form an R-representation for an induced subgraph of G by simply taking the sets of the R- 

representation that correspond to the vertices of the subgraph. This implies that any induced 

subgraph of G has R-number no larger than the R-number of G.

9
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Once again, the specific cases that we will examine are the intersection number, overlap 

number, and containment number. Since we will repeatedly encounter these graph parame­

ters we introduce notation for them.

Definition 1.6. Let G  be a graph. The intersection number of G is denoted by 0e(G), the 

overlap number of G  is given by <p(G), and the containment number of G  is denoted by

m -

It is these three parameters, and the computation of them, that is the primary focus 

of this thesis. It is no coincidence that the intersection number and the edge clique cover 

number of a graph are denoted by the same symbol, since we will see in Chapter 2, where 

we study intersection representations, that these two parameters are in fact equal. Overlap 

representations of general graphs and specific classes of graphs will be examined in Chap­

ter 3. As will be seen in Chapter 4, where we study containment representations, not every 

graph has a containment representation, and so, if a graph G does not have such a repre­

sentation we define £{G) — oo. Every graph does, however, have overlap and intersection 

representations.

1.3.1 Representations by Restricted Families of Sets

In this section we introduce some classes of graphs that are defined in terms of intersection 

and overlap representations of restricted families of sets. In Definition 1.4 we allowed the 

sets of a representation to be arbitrary, but here we will require that all sets of a representa­

tion are drawn from some family of sets.

The first and arguably most famous class of graphs that we will consider are the interval 

graphs. These are the intersection graphs of intervals on a line. This is another class of 

graphs for which we will be able to find a bound on the number of maximal cliques.

Generalizing interval graphs are the boxicity k graphs, introduced by Roberts [48], 

which are the intersection graphs of fc-dimensional “boxes” that are required to be axis- 

aligned. These objects are a natural generalization of intervals to ^-dimensions, and by 

definition, the interval graphs are exactly the graphs of boxicity 1.

Another generalization of interval graphs are the circular-arc graphs. These are the 

intersection graphs of arcs on a circle. Clearly an interval graph can be represented as arcs 

of a circle, but there exist circular-arc graphs, such as cycles of length at least four, that 

cannot be represented as intersection graphs of intervals.

Related to the circular-arc graphs are the circle graphs. These graphs are usually defined 

as the intersection graphs of chords of a circle. By observing that two chords intersect if

10
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and only if the arcs they subtend overlap (choosing an arbitrary arc for those chords that 

cross the center of the circle), these graphs are exactly the graphs that can be represented as 

overlap graphs of arcs on a circle.

One class of graphs that we have already seen, the chordal graphs, can also be defined 

in terms of intersecting objects of a restricted family of sets. This is the result of Gavril [22] 

that shows that a graph is chordal if and only if it is the intersection graph of subtrees of 

some tree, where subtrees are taken to be sets of vertices that induce subtrees of the given 

tree. This is an interesting result that demonstrates the power of the idea of set representa­

tions for graphs, as a class of graphs defined in terms of forbidden subgraphs turns out to 

be exactly a class of graphs defined in terms of set intersection.

1.4 Survey of Results

In this section we survey the original contributions of this thesis, in approximately the order 

that they appear.

The first of these contributions is the determination of the intersection number for the 

octahedral graphs. These graphs are the complements of perfect matchings, which in turn 

are the graphs consisting of a collection of disjoint edges. This result is shown by con­

necting any intersection representation for such a graph to an overlap representation for 

a clique. These results appear in Section 2.3.4. Due to the connection shown between 

intersection representations of these graphs and overlap representations for cliques, this 

problem can be solved with the application of a theorem from combinatorics that can also 

be used to find the size of a minimum overlap representation for a clique, which is done 

in Section 3.2.1. Any minimum overlap representation for a clique can be converted into a 

minimum overlap representation for a complete A;-partite graph. This conversion is demon­

strated in Section 3.2.2. The bounds on the size of these representations are then converted 

into an algorithm by finding asymptotically tight bounds on the quantities involved, which 

is done in Section 3.2.3.

Another contribution is the study of the problem of extending a representation. Infor­

mally, this is the problem of, given a representation for a graph, can we extend this repre­

sentation to include an extra vertex without increasing the size of the representation? In the 

case of intersection representations, there is an efficient algorithm to decide this problem, 

which is discussed in Section 2.3.5. In contrast, as discussed in Sections 3.3.1 and 4.3.1, 

the corresponding problems for overlap and containment representations are NP-complete.

11
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These results lend evidence to the hypothesis that computing overlap and containment rep­

resentations are at least as difficult as computing intersection representations.

In Section 2.5 the number of maximal cliques in a graph is shown to be the size of 

a minimum Helly intersection representation. This fact is not new, as it can be shown 

via a classical theorem on hypergraphs. The hardness of various combinatorial problems, 

given as input a Helly intersection representation, is, however, something that has not been 

studied before. By the result on hypergraphs, this is exactly the study of these combinatorial 

problems on graphs with a polynomially bounded number of maximal cliques, which have 

been introduced by Prisner [43], but a detailed analysis of the hardness of various problems 

on these graphs is a contribution of this thesis.

Computing overlap representations of various types of graphs is considered in Sec­

tion 3.2. The problem of finding the overlap number for a graph in most classes of graphs 

remains open, but we are able to find overlap numbers for cliques, paths, cycles, and cater­

pillars. The primary difficulty in showing the optimality of these representations is showing 

a lower bound on the size that any overlap representation must have, as once we have shown 

a tight lower bound, it is usually trivial to construct a representation that achieves the bound. 

We also present, in this section, a constructive proof that can be seen as an efficient algo­

rithm for a method of finding a minimum overlap representation for a disconnected graph, 

given minimum overlap representations for each component of the graph.

In addition to these algorithms for computing overlap representations, we are able to 

show the hardness of the problem of finding an overlap representation that is allowed to 

have only k  containment relationships among the nonadjacent vertices, for any nonnegative 

constant k. This lends further evidence to the conjecture that computing the overlap number 

is computationally difficult. These results appear in Section 3.3.

There are upper bounds known for the intersection number of any graph, and in Sec­

tions 3.4 and 4.4 we consider upper bounds for the overlap and containment numbers, re­

spectively. We observe that for the cocomparability graphs, and some classes of graphs 

contained in them, the size of the overlap and containment numbers must be linear in the 

number of vertices of the graph, while there are graphs in these classes that have intersec­

tion number that is quadratic in the number of vertices of the graph. We are also able to 

extend the upper bound on the intersection number given by the number of maximal cliques 

in a graph, with only an additive increase in the upper bound. This technique produces a 

linear upper bound on the overlap number of any planar graph.

In addition to these bounds, we show, in Section 4.4.1, a relationship between the over-
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lap number of a graph and the containment number of the complement graph. Using this 

bound we are able to find lower bounds on the containment number for the complements of 

paths and caterpillars. Armed with this lower bound we need only to construct a represen­

tation with the correct size, which we are once again able to do.

13
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Chapter 2

Intersection Representations

2.1 Introduction

Intersection representations are the set representations for graphs that have received the 

most study, although most of this study has been focused on intersection representations 

made up of sets from some restricted family, such as intervals on a line or subtrees of a tree. 

To formalize the notion of an intersection representation, we use the following definition.

Definition2.1. Given agraph G =  (V, E ), acollection C = {5„ : v E V }  is an intersection 

representation for G if for every u .v  E V  we have

(u , v) € E  if and only if Su Pi Sv ^  0.

We define the size of a representation as the number of elements in the union of all sets in 

the collection, which is

\ J s v ,

vev
and we let the intersection number, 0e(G), be the size of a minimum intersection represen­

tation for the graph G.

One feature of this definition is that we allow an intersection representation to assign 

the same set to multiple vertices. This will allow for compact representations of vertices 

that are both cliques and modules. In other words, given any two adjacent vertices that have 

identical adjacency with the rest of the graph, we can always assign the same set to both 

vertices. As an example, the graph in Figure 2.1 has a minimum intersection representation 

with different vertices assigned the same set. Stated another way, the intersection number of 

a graph does not increase under vertex expansion, which replaces a vertex by two connected 

vertices that are adjacent to exactly those vertices that the original vertex was. This is 

summarized by the following lemma.

15
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Figure 2.1: Example of a minimum intersection representation.

Lemma 2.2. I f  H  can be obtained from G by vertex expansion, then 6e(G) =  0e(H).

Proof. Since G is an induced subgraph of H, we immediate have 6e(G) < 0e(H),  since 

we can simply restrict a representation for H  to the vertices of G.

In the other direction, let C =  {S„ : v € V }  be an intersection representation for G, and 

let A v be the set of all vertices in H  that a vertex v of G is expanded into. If we assign the 

set Sv to all vertices in A y, then two vertices u ,w  of H  are adjacent in the representation 

if and only if they are in the same set Ay for some v, or if they are in sets Av and A z such 

that Sv fl Sz ^  0. This second condition is exactly the adjacency condition for G, so the 

constructed representation is a valid intersection representation for H,  which proves that

ee(G) = ee{H). □

The notation, 9e(G), that we use for the intersection number is also notation that is 

commonly used for the minimum number of cliques needed to cover the edges of the graph. 

This is no accident, as we will see in Section 2.3.1 that the intersection number is exactly 

the edge clique cover number. This equivalence often allows the intersection number to be 

easily computed. We will also see in Section 2.3.1 a method to find the edge clique cover 

by forming a vertex clique cover of a different graph. Some of the known algorithms to 

find the intersection number exploit the fact that for many classes of graphs, a vertex clique 

cover for the graph that is constructed by this technique can be found in polynomial time.

Like overlap representations, but unlike containment representations, every graph has 

an intersection representation. This was noted in 1945 by Marczewski [56]. One way to 

see this is to notice that if to each vertex we assign the set of all edges incident to it, then 

two vertices will have intersecting sets if and only if they are endpoints of some edge. 

This representation is quite large, but we will see results in Section 2.4 that show that the 

intersection number is often required to be quadratic in the number of vertices of the graph.

The classes of graphs that are intersection graphs of some family of sets are character-
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ized in [50]. Here it is shown that any class of graphs that is hereditary, closed under vertex 

expansion, and has a composition sequence is exactly the class of graphs that have inter­

section representations consisting of sets of some family. A class of graphs is hereditary 

if any induced subgraph of a graph in the class remains in the class. The second condition 

appears because any graph with an intersection representation as sets from a family we can 

form a similar representation, using the technique of Lemma 2.2, for any graph that can be 

reached by vertex expansion. The final condition in the characterization is more esoteric. 

A composition sequence for a class of graphs is a sequence of graphs Gy, G2 , ■ ■ ■ such that 

each graph in the sequence is in the class, each graph Q  is an induced subgraph of Gj+i, 

and for any graph G in the class, there is some i such that G is an induced subgraph of Q. 

Many of the properties of intersection graphs can be seen in these conditions.

The remainder of this chapter is organized as follows. In Section 2.2 we examine some 

of the problems related to intersection representations that are known to be NP-complete. 

We follow this with a discussion, in Section 2.3, of the problems on intersection representa­

tions that are known to have polynomial time algorithms. We then examine, in Section 2.4, 

some upper bounds on the size of intersection representations. The case of Helly intersec­

tion representations is studied in Section 2.5, where we tie the size of a minimum Helly 

intersection representation to the number of maximal cliques in a graph. We also examine, 

in this section, the complexity of several problems where we are given a Helly intersection 

representation, or equivalently, where the number of maximal cliques in the input graph is 

bounded by some polynomial in the input size.

2.2 Hardness Results

In this section we examine the known hardness results related to the problem of finding a 

minimum intersection representation. Finding such a representation is closely related to the 

problem of covering a graph with cliques. As we have seen in the previous section, every 

graph has an intersection representation, as we can simply take as the set for each vertex 

all edges incident to it. A natural question to ask, given a graph, is: how many elements 

are required to form an intersection representation? A formalization of this is given by the 

following problem.

Problem. T h e I n t e r s e c t i o n  N u m b e r  p ro b lem  is  d e fin ed  as:

Instance: A graph, G =  (V, E), and an integer k.

17
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Question: Is there an intersection representation C — : v e  V}  of  G such that

U  Sv < k?  
vev

We will defer the discussion of the hardness of this problem until after we have intro­

duced some other hard problems related to it, as the number of elements in the union of 

the representation is not the only measure of size that we might consider. One other option 

for the size measure is given by what we refer to here as the U n ifo r m  I n t e r s e c t i o n  

N u m b e r  problem, where we seek the minimum k such that we can form an intersection 

representation using only sets of size k. This notion is also studied in relation to hyper­

graphs [44], where a graph has uniform intersection number at most k  if and only if it can 

be represented as the intersection graph of a fc-uniform hypergraph that may have duplicate 

edges, which is simply a collection of sets of size k over some set of elements. This prob­

lem is equivalent to the variant of the problem where we allow the sets in the representation 

to have size at most k as defined in [42]. These problems are clearly equivalent, as we can 

add new elements to any sets that are not of the correct size to transform one representation 

to the other. A formalization of the problem follows.

Problem. The U n ifo r m  I n t e r s e c t i o n  N u m b e r  problem is defined as:

Instance: A graph, G =  (V, E), and an integer k.

Question: Is there an intersection representation C — {Sv : v E V }  of G with, for all

v e  v,
|S„| < fc?

We can also define the ^ -U n ifo r m  I n t e r s e c t i o n  N u m b e r  problem, which is sim­

ply the U n ifo r m  I n t e r s e c t i o n  N u m b e r  problem, with a fixed value of k. In the liter­

ature this problem is often referred to as the A ;-I n te r s e c t io n  N u m b e r  problem, but we 

add “Uniform” to the name of the problem in order to avoid ambiguity with the problem 

of finding a p-intersection representation where the vertices associated with two sets are 

considered adjacent only if the size of their intersection is at least p.

Problem. The /c -U n ifo rm  I n t e r s e c t i o n  N u m b e r  problem is defined as:

Instance: A graph, G = (V , E).

18
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Question: Is there is an intersection representation C =  {^, : v E V }  of G with, for all

v e v ,

|S„| <  k?

In 1981 these two problems were shown to be NP-complete by Poljak, Rodl, and 

Turzfk [42]. These hardness results appear as the following theorems.

Theorem 2.3 (Poljak, Rodl, and Turzfk [42]). The U n i f o r m  I n t e r s e c t i o n  N u m b e r  

problem is NP-complete.

The hardness of £;-U n iform  I n t e r s e c t i o n  N u m b e r  is only shown for k  =  4 in 

[42], but by a simple application of one of the techniques used in the paper, the addition 

of pendant vertices attached to all vertices in the graph, we can easily reduce /c -U n ifo rm  

I n t e r s e c t i o n  N u m b e r  to {k +  1 ) -U n ifo r m  I n t e r s e c t i o n  N u m b er . To see this, 

we create, from the graph G =  (V., E ), the graph G  =  (V  U V', E  U E'), where V ' =  

{v1 : v E V }  and E' =  {(?;, v') : v  E V}; that is, we copy each vertex, and make the copy 

adjacent only to the original vertex. The claim is that the uniform intersection number of G 

is one more than that of G. In one direction, given an intersection representation C = {$  : 

v E V }  of sets having size at most k for G, we can form the representation C =  {S'v =  

Sv U {u} : v € V }  U {S'v, = {w} : v' G V '}. Notice that C  preserves the representation 

on G, and correctly represents the new edges in E  as well. In the other direction, let C 

be a k + 1-uniform intersection representation for G. Let v' E V', and notice that the 

set S'v, associated with v' E V ' must be disjoint from all sets of the representation, with 

the exception of S'v. Thus, since S'v, is nonempty, if we remove it, and the elements in it 

from S'v, we obtain a representation for the graph G  with the vertex v' removed, and the 

set S'v is at least one smaller. Doing this for all vertices, we construct the representation 

C =  {S',, — S'v \  S'v, : v E V }  for the graph G, and for all v we have \SV\ < k, since there 

was at least one element in the intersection of Ev and S'v,. Thus, the uniform intersection 

number of G' is one more than the uniform intersection number of G. Implementing this 

transformation as a reduction, noting once more that this technique was given in [42] but 

not applied to this theorem, we can extend the hardness of ^ -U n ifo r m  I n t e r s e c t i o n  

N u m b e r  to all k > 4.

Theorem 2.4 (Poljak, Rodl, and Turzfk [42]). For any k > 4, the A ;-U n ifo r m  I n t e r ­

s e c t i o n  N u m b e r  problem is NP-complete.
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Also in [42] are proofs of the hardness of some similar problems, such as the U n i­

fo r m  I n t e r s e c t i o n  N u m b e r  problem where the sets are required to be distinct, or 

more strictly, where any two sets can have intersection of size at most one. Even deciding 

whether the uniform intersection number is equal to the uniform intersection number when 

we require the sets to be distinct is NP-hard, even though we can transform any uniform 

representation to a distinct one with sets at most one larger by simply adding a new element 

to each set.

Having discussed a few variants of the problem, we are now prepared to present the 

hardness result of Kou, Stockmeyer, and Wong [34], which shows that the INTERSECTION 

N u m b e r  problem is NP-complete. The first step of this result is showing that the problem 

of finding a minimum edge clique cover is equivalent to the problem of finding a minimum 

intersection representation. This forms the following theorem.

Theorem 2.5 (Kou, Stockmeyer, and Wong [34]). For any graph G, the intersection 

number o f G is equal to 0e{G), the edge clique cover number ofG.

Proof. Take any edge clique cover C = {Ci, C'2, . . . ,  C*} of G = (V., E) having size k. 

Consider the collection given by

V  = {Sv = {C  E C : v E C}  : v E V}.

If two vertices u, v E V  are adjacent, then the edge between them will be covered by some 

C EC, and thus, in the representation we have Su CiSv f  On the other hand, if u, v E V  

are not adjacent, they cannot be in the same clique, and so Su and Sv will be disjoint. Thus 

V  is an intersection representation for G using k  elements.

In the other direction, let V  =  {Sy : v E V }  be an intersection representation with k 

elements, given by { 1 ,2 , . . . ,  A;}. Consider the collection given by, for each 1 <  i < k,

C =  {{v : % E Sv} : 1 < % <  k}.

Each set in the collection represents those vertices whose set representation has a specific 

element i. Thus, these vertices must all be adjacent and C is a collection of cliques in G. In 

addition, for every edge (u, v) E E  there is some element i E Su fl Sv, and so there is a 

clique in C that covers this edge. Thus there is an edge clique cover using k cliques, and so 

we have shown that a minimum edge clique cover is equivalent to a minimum intersection 

representation. □
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Also, notice that the transformations used in the proof of this proposition can be imple­

mented in time linear in the size of a description of the representation. That is, this can be 

done in time linear in the sum of the sizes of all sets in the representation, or the sum of 

the sizes of all cliques in an edge clique cover. This fact will be useful in Section 2.3 when 

we consider algorithms to solve the intersection number problem on restricted classes of 

graphs.

It is also shown in [34] that any instance of the vertex clique cover problem can be 

transformed into an instance of the edge clique cover problem, by adding m  +  1 additional 

universal vertices, where m  is the number of edges in the graph. With the NP-completeness 

of the vertex clique cover problem [32] and the previous proposition, this implies the NP- 

completeness of the I n t e r s e c t i o n  N u m b e r  problem.

Theorem 2.6 (Kou, Stockmeyer, and Wong [34]). The I n t e r s e c t i o n  N u m b e r  problem 

is NP-complete.

2.3 Algorithms

The problem of finding a minimum intersection representation for a general graph, as we 

have seen in Section 2.2, is NP-complete. There are, however, classes of graphs on which 

we can find efficient algorithms to generate minimum intersection representations. In this 

section, we examine algorithmic results on some of these classes of graphs.

One immediate example of a class of graphs for which we can efficiently find a mini­

mum intersection representation are the triangle free graphs. A minimum edge clique cover 

for a triangle free graph is given by the collection of all edges in the graph, as each edge is 

contained in exactly one clique. Thus, if we take the set of all edges incident on each vertex 

as the sets of the representation, we obtain a minimum intersection representation for any 

triangle free graph. This can be performed in linear time.

Before examining any further algorithms for finding the intersection number, we will 

need to introduce the concept of an edge clique graph, which we do in Section 2.3.1. This 

concept will allow us to relate the problem of finding an edge clique cover to the problem 

of finding a vertex clique cover. We will see in Section 2.3.2 an algorithm that, using the re­

sults in Section 2.3.1, can be applied to the class of chordal graphs, which contains the class 

of triangle free graphs discussed above. We will also see, in Section 2.3.3, an algorithm to 

find a minimum intersection representation for a subclass of the comparability graphs, and 

we will examine, in Section 2.3.4, a method to find a minimum intersection representation
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G K(G)

Figure 2.2: A graph and the edge clique graph obtained from it.

for a specific class of comparability graphs that are not in covered by the previous result. 

The study of intersection representations for this class of graphs will lead to the study of 

overlap representations on cliques, which is a discussion we defer to Section 3.2.1. Finally, 

we will examine a polynomial-time algorithm to decide if an intersection representation can 

be extended to add an additional vertex without adding additional elements to the represen­

tation. This is in contrast to similar problems for overlap and containment representations, 

which are NP-complete, as we will show in Section 3.3.1 and Section 4.3.1.

2.3.1 Relation to the Edge Clique Cover Problem

An important building block in an algorithm to find the intersection number of a graph is 

the concept of an edge clique graph. This concept appears implicitly in the proof of the 

hardness results in [34], and it was first studied explicitly in [1]. Edge clique graphs have 

since received considerable study, both in terms of characterizations [10 , 12], and in terms 

of edge clique graphs of restricted classes of graphs [6,11,45,46].

Definition 2.7. For a graph G =  (V ,E ), the edge clique graph of G is denoted K(G ), 

and is given by the graph K{G) =  (E ,F ), where for any distinct q , e2 G E  we have 

(ei, 62) G F  if and only if the vertices that make up the endpoints of (\ and e2 form a 

clique in G.

Notice that the vertices of the edges ei and e2 need not be distinct. As an example, a 

graph and its edge clique graph are shown in Figure 2.2. We can also view AT as an operator 

on graphs. The class of edge clique graphs, which are those graphs G for which there exists 

a graph H  such that K (H )  =  G, are characterized in [10], but it remains unknown if this 

class can be recognized in polynomial time.

Having defined the edge clique graph operator, we motivate it with the following propo­

sition, shown in [34], which we will make use of when considering algorithms to find the 

intersection number of a graph.
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Proposition 2.8 ([34]). For a graph G, the size o f a minimum edge clique cover o f G is 

equal to the size o f a minimum vertex clique cover o f K(G).

Proof Take any vertex clique cover of K (G ). Each clique in this cover forms a collection 

of edges in G, each pair of which is in a common clique of G. This implies that these edges 

are contained in some maximal clique in G, and since the cover of K{G) covers all of the 

vertices, the resulting cover by these maximal cliques must cover all edges of G.

Consider any edge clique cover of G. Each clique in this cover, forms a clique in K (G ) 

when we consider the edges of the clique in G. Since the edge clique cover of G covers 

each edge, it can be transformed into a clique cover of all vertices of K(G ). □

As described in the next section, the preceding result was used by Raychaudhuri [46], 

to find an efficient algorithms to find minimum intersection representations of the chordal 

graphs.

2.3.2 Chordal Graphs and Related Classes

The following theorem shown by Raychaudhuri [46] shows that for an intersection graph 

G, K (G ) is also an intersection graph of the same family, provided two conditions are 

satisfied. This theorem, with proof, is presented here.

Theorem 2.9 (Raychaudhuri [46]). I f  G is an intersection graph o f sets belonging to a 

family IF o f sets that is closed under intersection, such that there is an intersection repre­

sentation o fG  as sets o f F  with the Helly property, then K (G ) is also an intersection graph 

o f sets belonging to IF.

Proof Let G =  (V, E) be a graph, IF a family of sets closed under intersection, and let 

C =  {Sv € F  : v € F} be an intersection representation for G that satisfies the Helly 

property. Let K (G ) =  (E , H ) be the edge clique graph of G, and set V  =  fi Sv € IF : 

(u, v ) 6 E}. We claim that V  is an intersection representation of K(G ).

Consider any two vertices (u , v), (z, w) of K (G ), where not all of these vertices of G 

need be distinct. These vertices are adjacent if and only if the vertices u. v, z, and w are 

contained in a common clique of G, which is true if and only if (Su fl Sv) fl (Sz fl Sw) /  0 

since C has the Helly property. Thus, V  is an intersection representation of K (G) as sets of 

F .  □

Using this theorem, we can show that many classes of graphs are closed under the 

edge clique graph operator simply by identifying those classes of graphs that have Helly
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intersection representations as sets in some family that is closed under intersection. The 

primary class of graphs we shall examine in this manner are the chordal graphs, which, 

by a result of Gavril [22], are exactly the intersection graphs of subtrees of a tree. To use 

Theorem 2.9, we first need the following well-known proposition that subtrees of a tree 

have the Helly property. This result can be found, for example, in [26].

Proposition 2.10. I f T  is a family o f subtrees o f a tree, then any collection o f sets o fT  has 

the Helly property.

Proof Assume on the contrary that C =  { lj, T?,. . .  ,Tn} is a minimal collection of sub­

trees of a tree T  that does not have the Helly property. By minimality, C \T f  has the Helly 

property, and notice that we must have n > 3, as a collection of two or fewer sets always has 

the Helly property. Since C is minimal, the elements of C must be pairwise intersecting, as 

otherwise, there would be elements of C that we could remove, and still obtain a collection 

without the Helly property. Consider the nonempty set given by
n —1

s =  f l r <-
i—i

As this subcollection of C has the Helly property it must be the case that XI fl S' =  0, and 

also, no T{ C S', as this would imply that Tn is not disjoint from S. S  forms a subtree of T  

since the intersection of any two subtrees remains connected.

Let u, v be any two vertices at distance one from S. If no such vertices exist, then any 

subtree that intersects S  must either be contained in S', or must contain a common vertex 

w, as there must be at least one vertex outside of S. Since we have argued that no subtree is 

contained in S, the first case cannot occur, and the second implies that all subtrees except 

Tn contain w, and so we would have w  £ S, a contradiction. Thus, we can take u, v to be 

distinct vertices at distance one from S.

Since u and v are at distance one from S, which is a subtree of T, there is a path from 

u to v though S'. Also, since Tn is disjoint from S’, we can either find a path from u to v 

through Tn, or there is some other vertex, w, at distance one from S' that is on the path from 

u to Tn and the path from v to Tn. In either case, we find two paths from either u to v or 

from w to v, and this forces a cycle in T, which is a contradiction. Thus any collection of 

subtrees of a tree must have the Helly property. □

Then, using this proposition, we can apply Theorem 2.9, as is done in [46], to show 

that the edge clique graphs of chordal graphs remain chordal. This is given as the following 

theorem. This result is also shown using different techniques in [1] and in [45].
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Theorem 2.11 ([1,45,46]). I f  G is chordal, then K(G)  is chordal.

Proof. By a result of Gavril [22], the chordal graphs are exactly the intersection graphs of 

subtrees of a tree. By Proposition 2.10 the subtrees of a tree have the Helly property, and 

so by Theorem 2.9, the edge clique graph of a chordal graph is also the intersection graph 

of subtrees of a tree, as the intersection of two subtrees remains a subtree. □

Finally, using this theorem and Proposition 2.8, we can apply a vertex clique covering 

algorithm on chordal graphs to obtain a minimum intersection representation of G. This is 

the approach taken by Raychaudhuri in [45], where an algorithm of Gavril [25] is applied 

to solve the problem. This process can be applied, for any family of sets T  that is closed 

under intersection, to the class of graphs that have Helly intersection representations as sets 

in T , as long as the class of graphs admits a polynomial time clique covering algorithm. 

An example of such a class is the Helly circular-arc graphs that do not have a pair of arcs 

that cover the circle. These graphs, by definition, have Helly representations as arcs. With 

the added restriction that no two arcs cover the circle, the intersection of any two arcs in a 

representation remains an arc. This added restriction does not affect the construction used 

by Raychaudhuri in the proof of Theorem 2.9, and so we may conclude by this theorem 

that for any G  that is a Helly circular-arc graph with no two arcs that cover the circle, the 

graph K  (G) is also a circular-arc graph. Finally, we can apply a clique covering algorithm 

for circular-arc graphs [29] to find a minimum intersection representation for the graph G.

2.3.3 Comparability Graphs and Related Classes

In order to find a minimum intersection representation for a general perfect graph, we could 

attempt to use a similar technique to the chordal graphs. If the edge clique graphs of perfect 

graphs were perfect, we could use the ellipsoid algorithm for semidefinite programming 

to find a minimum vertex clique cover for the edge clique graph of a perfect graph, as 

is done by Grotschel, Lovasz, and Schrijver in [28]. This approach has one fatal flaw: 

unlike chordal graphs, the edge clique graphs of perfect graphs need not be perfect. In fact, 

Figure 2.3 gives a minimum example of a cograph whose edge clique graph is not perfect. 

The edge clique graph of this graph, with the odd chordless cycle that demonstrates that it 

is imperfect, is also given. Since cographs are contained in the comparability graphs, this 

example rules out the direct application of this approach for that class of graphs as well.

A similar approach can be used to find an algorithm for the intersection number of 

comparability graphs that do not contain W4 , the wheel on four vertices, as an induced
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G K(G)

Figure 2.3: A minimum cograph G with edge clique graph that is not perfect. The white 
vertices of K (G ) form an odd chordless cycle.

subgraph. The graph W4  is given as Figure 2.4. It is shown in [46] that the edge clique 

graph of any W4 -free comparability graph is weakly 9-perfect, which is the condition that 

the vertex clique cover number, 6 (G), is equal to the independence number, a(G). This 

condition is not directly used in the construction of the algorithm for finding the intersection 

number of the W4 -free comparability graphs. Instead the W^-free condition is used to argue 

the correctness of a minimum-flow based algorithm that finds a minimum edge clique cover 

of the input graph.

2.3.4 Octahedral Graphs

In this section we investigate the size of a minimum intersection representation for the 

complement of a perfect matching on 2n  vertices. This graph is interesting since it contains 

an exponential number of maximal cliques, which as we will see later, requires that any 

intersection representation that has the Helly property must have size exponential in the 

number of vertices in the graph. Following [43], we denote this graph Qt. An example of 

these graphs is given in Figure 2.5. Due to the structure of this graph, we will see that an 

intersection representation of On is closely related to an overlap representation of a clique. 

To see this connection, we extend the notion of overlapping, from Definition 1.2, to binary

Figure 2.4: The graph W4 , the wheel on four vertices.
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Figure 2.5: The graph O3 , the octahedral graph on three vertices.

sequences.

Given a binary sequence, { a over {0,1}, we can associate it with the index set 

{i : a,i = 1} C {1 ,2 , . . . ,  m}. Using this association, we define the following set notions 

on binary sequences.

Definition 2.12. A pair of binary sequences overlap if the sets associated with them over­

lap. If the complements of the sequences, 3 and overlap, then the two

sequences are said to have overlapping complements. If two sequences overlap, and have 

overlapping complements, we say that they are dually overlapping. We will also consider 

subsets of {1 , 2 , . . . ,  m} to be dually overlapping if they overlap, and their complements, 

with respect to {1 , 2 , . . . ,  m}, also overlap.

Having introduced the notion of overlapping sequences, we can show that an intersec­

tion representation for On immediately maps to a collection of binary sequences with an 

overlapping property. This will allow us to use the results that will follow in Section 3.2.1 

to solve the problem of finding an intersection representation for Oa. The following lemma 

shows that an edge clique-cover of On is equivalent to a collection of dually overlapping 

binary sequences.

Lemma 2.13. For any n, 9e(On) is the smallest m  such that there exists a collection o f n 

binary sequences o f length m  that are pairwise dually overlapping.

Proof. Given an edge clique covering of On, we can arbitrarily extend each clique in the 

cover to a maximal clique, forming a collection C =  {(4, C2 , . . . ,  Cm}. For each nonad- 

jacent pair of vertices in On, each Ci will contain exactly one vertex of the pair, by the 

maximality of the C*. If we apply an arbitrary ordering on these pairs, we obtain a binary 

sequence of length m, for each pair of vertices, given by 1; where b{ is zero if and 

only if the smaller vertex of the pair is in clique i. Since C forms an edge clique cover, 

each vertex in the graph will be in some clique with each other vertex in the graph, with
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the exception of the single vertex it is nonadjacent to. This fact ensures that for any pair 

of binary sequences there is some index where both sequences are zero, and another where 

both sequences are one. In addition, if one sequence contains another, in the sense that the 

set of indices of nonzero elements of one sequence contains such a set constructed from 

the other sequence, then the smaller vertex of one pair cannot be in the same clique as the 

larger vertex of the other, contradicting the assumption that C forms an edge clique cover. 

Thus, from an edge clique covering we can construct a set of 8e(On) binary sequences that 

pairwise dually overlap.

The same construction also functions in reverse. Given a set of n  binary sequences that 

are dually overlapping, B =  : 1 < j  < n ), we can construct an edge clique cover

for On. To do this, where the vertices of On are { 0 , . . . ,  2n — 1}, and the nonadjacent pairs 

are given by (k, k +  1), for even k , we form the ith clique by

Q  = {2j  + bji : 0 <  j  < n  -  1},

for all 1 < i < m. Notice that, once again, since any two of the sequences overlap, 

and so do their complements, each vertex will be adjacent to both halves of each other 

nonadjacent pair, forming an edge clique cover for On with size given by the length of the 

binary sequences.

Thus, since an edge clique cover can be transformed into a set of binary sequences with 

the desired property, of the same size, the length of the binary sequences we need to form a 

collection of n  such sequences is exactly 6e(On). □

We can reduce the problem of finding a collections of dually overlapping binary se­

quences to yet another problem: the problem of finding a minimum overlap representation 

for a clique. Phrased in terms of binary sequences, this problem seeks a maximum collec­

tion of overlapping binary sequences.

Lemma 2.14. A maximum set o f binary sequences o f length m  +  1 that are dually overlap­

ping has the same size as a maximum set o f binary sequences o f length m  that are pairwise 

overlapping.

Proof. Given a set of binary sequences that are pairwise overlapping and complement over­

lapping, notice that we may take the complement of any sequence without affecting the 

overlapping properties. We can then find a collection of the same size where the first bit of 

every sequence is 0, and so the remaining m bits in every sequence form a collection that is 

pairwise overlapping.
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In the other direction, given any set of binary sequences of length m  that are pairwise 

overlapping, we can add a 0 to the end of every sequence to obtain a set of binary sequences 

of length m  +  1 that pairwise dually overlap. □

Next we simply view the binary sequences as characteristic vectors of subsets of the 

set { 1 ,2 , . . . ,  m }, and we are able to apply the results of Section 3.2.1 to the problem of 

finding the minimum intersection representation for On. Corollary 3.5, which is proven 

independently of the results in this section, regarding the size of the minimum overlap 

representation of Kn, and the previous lemma immediately imply the following corollary.

Corollary 2.15. For any n  >  1,

Proof. By Lemmas 2.13 and 2.14, any intersection representation of On can be used to 

form a collection of dually overlapping sequences, of length m , of the same size, which can 

in turn be used to form an overlap representation for Kn_i, as we can view the overlap­

ping binary sequences of Lemma 2.14 as characteristic vectors of subsets of {1 ,2 , . . . ,  m}. 

These transformations also function in reverse, and so, the minimum intersection represen­

tation for On has size given by the minimum overlap representation of K n-1, which is, by 

Corollary 3.5,

which is given by Definition 3.3. The equivalence of these two quantities is shown by 

Milner’s Theorem, which is stated here as Theorem 3.4. In addition to these definitions, 

using the results of Section 3.2.3, we can immediately apply Theorem 3.10 to show that 

9e(On) € 0 (logn). Furthermore, as we can construct an overlap representation for Kn-1  

in linear time, as discussed in Section 3.2.3.3, and the transformations in Lemmas 2.13 

and 2.14 can be performed in linear time, we can find a minimum edge clique cover, and 

thus a minimum intersection representation of On, in linear time.

2.3.5 Extending an Intersection Representation

Given an intersection representation for a graph, it is simple to decide if we can, given a ver­

tex to add to the graph, extend the intersection representation without increasing the size of

min

min < m  : n  — 1 <

as desired. □

In the language of Section 3.2.1, the quantity (̂ ^1+2 j ) is given by the function 5(1, m), 
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the representation. While this may seem to be an uninteresting problem, the complexity of 

the problem forms a contrast to the NP-completeness results that we obtain in Sections 3.3.1 

and 4.3.1 for the overlap and containment versions of this problem, respectively. A more 

formal version of the problem, which parallels the problems we shall encounter later, is 

given by:

Problem. The I n t e r s e c t i o n  E x t e n s io n  problem is defined as:

Instance: A graph, G = (V ,E), an intersection representation C =  {Sy : v e  V }  of G, 

and a set A  C V.

Question: Is there is a set S  C (Jugy Sv that intersects Sv if and only if v E A1

This problem is quite restrictive. We are unable to alter in any way the intersection 

representation given as part of the input. We can use this inflexibility to build a polynomial­

time algorithm that decides the problem. The crucial observation is that, given any element 

in the representation, we can only add this element to the set S  if the new vertex we are 

adding is adjacent to all other vertices that also have this element in the set associated with 

them. In terms of an edge clique cover this is simply the observation that we cannot add a 

vertex to a clique unless it is adjacent to all vertices in the clique. Since there is no penalty 

in the problem for making the set S  needlessly large, we can take the greedy approach of 

adding every element we are able to add to the set S. This construction can be performed 

in polynomial time in the size of the representation and the size of the graph, as we can, 

for each element in the representation, decide if we can add it to the set S  by scanning 

all sets of the representation, and the set A, which forms the neighbourhood of the new 

vertex. More formally, for G, C, and A  as given in the problem, we consider each element 

in Uugv ^ v' F°r element i, the set JVj =  {v : i e  Sv} forms a clique in S, and we can 

only add i to S  if N{ C A, which is exactly the condition that the vertex we are extending 

the representation with also extends the clique of G given by A|. This condition is satisfied 

if and only if we can add the element i to S, and it can be verified in time polynomial in 

the size of the representation and the size of the graph. After we have done this for each 

element in the representation, we simply need to examine each of the edges that adding the 

new vertex will create, to ensure that the sets assigned to each endpoint intersect. If there 

is an edge that we have not covered in this manner, the algorithm rejects, as we have added 

every element possible, without altering the rest of the representation, to the set S. If there 

are no uncovered edges, the algorithm accepts, as we have found a set S  that satisfies the 

requirements of the problem.
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2.4 Bounds on the Size of an Intersection Representation

Minimum intersection representations, in general, can have size quadratic in the size of 

the graph. A tight upper bound on the number of elements needed in any intersection 

representation is given in a 1966 paper of Erdos, Goodman, and Posa, and the statement of 

the theorem appears below.

Theorem 2.16 (Erdos, Goodman, and Posa [16]). I f  G is any graph with n vertices, then 

there is an intersection representation o f G with at most |/i2/4j elements. Furthermore, 

[n2/4 j is the smallest such number.

The bound in this theorem is tight, as the number of cliques required to form an edge 

clique cover of a complete bipartite graph, as shown in [16], is given by the number of 

edges in the graph. For even n, if each partition has n /2  vertices, any representation must 

have exactly n2/4  elements. If n  is odd, if one partition has (n — l ) /2  vertices, and the 

other (n +  l) /2,  then any intersection representation must have exactly

elements. The complete bipartite graph, as we will see in Sections 3.4 and 4.4, has an 

overlap number of three, and containment number that is at most linear in the number of 

vertices in the graph.

In the next section, we examine the size of an intersection representation that must also 

satisfy the Helly property. This will turn out to be directly related to the number of maximal 

cliques contained in a graph, which will lead to the study of those classes of graphs that have 

a polynomially bounded number of maximal cliques.

2.5 Representations with the Helly Property

An interesting group of graph classes that has received relatively little study are those 

classes that have a polynomially bounded number of maximal cliques. The study of these 

classes of graphs was initiated by Prisner in [43], where they are referred to as the graph 

classes with few cliques. Many of the graph classes that are commonly studied admit such 

a bound, and so general results about these classes of graphs can be applied in many places.

One of the essential properties of the interval graphs and the chordal graphs is that they 

have intersection representations that satisfy the Helly property. This property underlies 

many of the properties that these graphs have, and so it is natural to consider those repre­

sentations for graphs that have the Helly property, as from these representations we may be

(n +  1 )(n -  1) 
4

n 2 — 1 n 2
4 T
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able to infer properties of the graphs they represent. We have seen in Section 2.1 that any 

graph has a Helly intersection representation but unfortunately some of these representa­

tions may be quite large. We obtain interesting classes of graphs if we restrict our attention 

to those graphs that have “small” Helly intersection number.

Surprisingly, as we will see in Section 2.5.1, if we restrict our attention to those classes 

which have polynomial sized intersection representations that satisfy the Helly property, we 

obtain exactly the same graphs as those with a polynomially bounded number of maximal 

cliques. In addition, by using an algorithm to find all maximal cliques in a graph in time 

polynomial in the number of maximal cliques, such as the algorithm in [31] or [61], we can 

obtain a minimum intersection representation satisfying the Helly property in time polyno­

mial in the size of the representation, which may be exponential in the number of vertices 

of the graph. Solving problems on graphs with few cliques is then polynomially equivalent 

to solving the same problems on graphs where we are given as input a Helly intersection 

representation, provided this representation is not exponentially large in the size of the in­

put graph. We can omit the case where the Helly intersection number is of size exponential 

in the number of vertices in the input graph, as the complexity questions we consider are 

uninteresting in this case. This is because given as input to an algorithm a graph and an 

exponentially large Helly intersection representation, we can run an algorithm that takes 

time exponential in the size of the graph, while still using time that is polynomial in the 

size of the input. Since the problems we consider are in NP, and a nondeterministic algo­

rithm can be simulated by a deterministic one in exponential time, the problems we will 

consider will all be “efficiently” solvable if we are given an exponential sized Helly inter­

section representation. In addition to this, the hardness results we will show will be for the 

class of all graphs containing no more than some bounded number of maximal cliques. If 

we increase this bound to allow graphs with exponentially many maximal cliques the same 

results will still apply, as the hard instances from the smaller class are still contained in the 

larger class. Thus, the complexity of the problems we consider is effectively independent 

of those graphs with exponential Helly intersection number, and so we consider only the 

case where the number of maximal cliques is bounded by some polynomial in the size of 

the graph.

As we will see in Corollary 2.22, the size of a minimum Helly intersection representa­

tion for a graph is exactly equal to the number of maximal cliques in the graph. We will 

be primarily concerned, however, with graphs that have a polynomially bounded number of 

maximal cliques, as we feel that the results we present are more naturally phrased in this
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Problem Complexity Bound
C l iq u e 0 (nm p(n))

C o l o u r a b il it y NP-complete An2

D o m in a t in g  S et NP-complete § n - 6
E d g e  C l iq u e  C over NP-complete (m  +  1 )n 3

E d g e  Cl iq u e  £;-Co v er 0 {n2p{n)k)
H a m il t o n ia n  C y c l e NP-complete I n  — 6  

5 n -  6H a m il t o n ia n  Path NP-complete
In d e p e n d e n t  S et NP-complete An2

/c-C l iq u e  Pa r t it io n NP-complete nk
fc-COLOURABILITY NP-complete I n - 6

V er tex  C l iq u e  C over NP-complete n 3
V er t e x  C l iq u e  A;-Co ver 0 (n2p(n )k)

V e r tex  C l iq u e  ^-Pa r t it io n 0 {n2p(n)k)
V er tex  Cl iq u e  Pa r t it io n NP-complete n 3

V er tex  C o ver NP-complete An2

W e ig h t e d  C l iq u e 0 (nm p(n ))

Table 2.1: Complexity results on graphs with n  vertices, m  edges, and no more than p(n) 
maximal cliques. The NP-completeness results hold for the class of graphs that do not have 
more maximal cliques than the given bound.

manner. These results will include both polynomial time algorithms and reductions from 

NP-complete problems for the class of graphs with no more than some given number of 

maximal cliques.

The problems that are solvable in polynomial time on graphs with a polynomial number 

of maximal cliques are ones that might be expected: the problems C liq u e ,  W e ig h t e d  

C liq u e , and V e r t e x  C l iq u e  & -C over. In contrast, many problems remain hard on this 

class, including I n d e p e n d e n t  S e t ,  C o l o u r a b i l i t y  , even if the number of colours is 

restricted to a constant, and, somewhat surprisingly, E d g e  C l iq u e  C o v e r  and V e r t e x  

CLIQUE C o v e r . This last fact implies that it remains hard to find a minimum intersection 

representation, even when given a minimum Helly intersection representation. Table 2.1 

lists the complexity results on these problems considered here, for graphs with few cliques.

Many of these problems, such as C liq u e ,  C o l o u r a b i l i t y ,  and I n d e p e n d e n t  S e t  

are well known, and are not defined here. The definitions of these problems can be found 

in [21] or in Appendix A.

Some of these results are due to the wide range of graph classes which turn out to have 

a polynomial bound on the number of maximal cliques, and thus a polynomially bounded 

Helly intersection representation. These classes include chordal graphs, interval graphs, 

graphs of boxicity k, and planar graphs. From this range of classes, it is apparent that
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many problems are NP-complete on graphs with a polynomial number of maximal cliques, 

simply due to known NP-completeness results for graph classes which have this property.

Previous work on graphs with a polynomial number of cliques is sparse. Prisner [43] 

gives bounds on the number of maximal cliques in classes of graphs, and provides a char­

acterization for any hereditary class of graphs with a polynomially bounded number of 

maximal cliques. Balas and Yu [2] prove a similar bound, but they do not consider charac­

terizing those graphs which have a polynomial number of maximal cliques, as their focus 

is on solving a different problem. Predating these works is a 1965 paper by Moon and 

Moser [40], which gives an upper bound of maximal cliques for any n vertex graph, 

and provides a tight example to show that this bound is achieved.

In order to make a reasonable definition of the graphs with a polynomial number of 

maximal cliques, we follow [43] in defining this concept only on classes of graphs.

Definition 2.17. A class Q of graphs has few cliques if there is a polynomial p(n) such that 

for any G € Q with n  vertices, there are no more than p(n) maximal cliques in G.

Notice that, by this definition, any finite class of graphs has few cliques. We will also use 

the notion that a class of graphs has polynomially bounded Helly intersection representation 

in order to refer to a class of graphs with few cliques, as we will show in Section 2.5.1 

that these notions are equivalent. As examples of graphs in these classes, Kn, the clique 

on n vertices, has only a single maximal clique, and n  maximal independent sets, each 

consisting of a single vertex. Thus, the class of complete graphs has few cliques (and also 

few independent sets). Similarly, any clique in a triangle free graph is simply an edge of 

the graph. Since trees and bipartite graphs are triangle free, we see that there are exactly 

n  — 1 maximal cliques in any tree on n  vertices, and there are no more than ( 2 ) maximal 

cliques in a bipartite graph. These bounds demonstrate that these classes of graphs have 

few cliques.

In the next section we will see more classes of graphs which have few cliques, as well as 

some characterizations of those classes of graphs that have few cliques. The following sec­

tion, Section 2.5.2, uses these characterizations to find some classes of graphs which have 

such a bound on the number of maximal cliques. Section 2.5.3 presents some complexity 

results which include both polynomial time algorithms and NP-completeness results for 

graphs with a polynomially bounded number of maximal cliques.
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Figure 2.6: The complement of this graph on n vertices contains Z1/ 2 maximal cliques.

2.5.1 Characterizations of Graphs with Few Cliques

An early bound on the number of maximal cliques in a graph was demonstrated in a 1965 

paper by Moon and Moser [40], where they show that a graph cannot have more than sfra/3l 

maximal cliques. In addition, Moon and Moser also show that this bound is tight, by pro­

viding a graph with 3ra/3 cliques, which is simply the complement of the graph consisting 

of n /3  disjoint triangles. This bound leaves open the problem of determining which classes 

of graphs do admit a polynomial bound on the number of maximal cliques in any graph in 

the class. When examining the structure of graphs with a large number of maximal cliques, 

it seems to be the case that induced subgraphs of a particular form are a particular problem. 

These are the graphs of the form Ot =  for some i e  N. This graph can be obtained 

by taking the complement of a perfect matching on 21 vertices. To find a maximal clique 

in such a graph, we select one of each pair of matched vertices. Since there are 2 ways to 

choose one vertex from each matched pair and since every maximal clique contains exactly 

one vertex from each matched pair, there are exactly 2  maximal cliques in the graph Of.

In order to extend an algorithm for the maximum weighted clique problem, Balas and 

Yu [2] prove the following bound on the number of maximal cliques a graph can have, based 

on the largest induced subgraph of the form 0 L.

Theorem 2.18 (Balas and Yu [2]). For any connected graph G =  (V, E), where 8  is the 

number o f pairs (u, v) € V  x V  with d (u ,v ) =  2, and t is the largest integer such that 

G contains an induced subgraph isomorphic to Q, the number o f cliques in the graph is 

bounded by

2* <  \K{G)\ <<2 +  1.

Notice that there can be no more than r? pairs of vertices at distance two, and so, in 

the case that t  is bounded by some constant for a class of graphs this theorem demonstrates 

that there is a polynomial bound on the number of maximal cliques in graphs in the class. 

One immediate example of this is the class of chordal graphs. This theorem can be applied, 

as 0 - 2  is exactly a chordless cycle of length four. In this case we can have 5 as large as
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(n -  l )2, by noticing that K i>n- i ,  a star on n vertices, contains no cycles, so it is a chordal 

graph, and that any two vertices neither of which is the center of the star are at distance two. 

A simple counting argument shows that this also provides an upper bound in the number of 

pairs at distance two. Then, applying the theorem we obtain, for any chordal graph

2 < |/C(G)| <  (n — l ) 2 +  1 < n2,

and so we know that the chordal graphs have few cliques. In fact, this bound is far from 

tight, as the following proposition, first noted in 1965 by Fulkerson and Gross [17], demon­

strates.

Proposition 2.19 ([17]). I f  G is a chordal graph with n vertices, then \IC(G)\ < n.

Another partial characterization of the graph classes with few cliques, similar to The­

orem 2.18 is shown by Prisner in [43], where he considers classes of graphs where Q is 

a forbidden induced subgraph, deriving upper bounds on the number of cliques in such 

graphs. A corollary to these bounds, which is simpler to state, characterizes the hereditary 

classes of graphs which have few cliques.

Theorem 2.20 (Prisner [43]). A hereditary class C has few cliques if and only if for some 

constant t, Ot $  C.

As Prisner observes in [43], this theorem implies that the free graphs have few 

cliques. This class is clearly hereditary, as removing a vertex cannot add an induced to 

the graph. In addition, the graph Ot contains an induced K t (in fact, it contains 2* of them), 

so the graph Ok =  kK 2 is not Kk free. Hence, we can conclude by the theorem that this 

class of graphs has few cliques. The same result can be obtained by a counting argument.

In addition to these results relating the number of maximal cliques in a graph to the 

subgraphs of the form Ot, we can turn, as promised in the previous section, to the intersec­

tion representation of a graph in order to obtain a characterization of the classes of graphs 

which have a polynomially bounded number of maximal cliques. To do so, we consider 

the minimum size of any intersection representation which satisfies the Helly property. In 

order to relate the number of maximal cliques in a graph and the size of a Helly intersection 

representation, we turn to a theorem on hypergraphs. The hypergraph definitions used here 

can be found in [3] and [5]. A hypergraph H  =  (F, £) is a generalization of a graph, where 

the elements of the edge set £, are now permitted to be arbitrary subsets of the vertices of 

the graph, in contrast to the case for graphs, in which the edges are subsets of size two.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The dual of a hypergraph H  = (V,, £) is given by H* =  (£, {Ev : o e  V}), where E v is 

the set of hyperedges in £  that contain the vertex v. The 2-section, ( H \  of a hypergraph 

H  =  (V, £) is the graph G = (V ,E), where (u, v) e  E  if and only if there is an edge 

e € £  such that u, v € e. We will say that a hypergraph H  =  (V, £) is Helly when the edge 

set £  satisfies the Helly property. Another property we will need is that of conformality; a 

hypergraph H  is conformal if each clique of (H )2 is contained in an edge of H. Having 

introduced this notation, we can introduce a theorem which can be found in [3], although it 

is there attributed to Gilmore without a reference.

Theorem 2.21 (see Berge [3, page 396]). A hypergraph is Helly if and only if its dual is 

conformal.

At first glance this theorem might not seem to relate to the notion of a minimum Helly 

intersection representation of a graph, but since the 2-section of the dual of a hypergraph 

H  is simply the graph formed by the intersection of the hyperedges of H , and we can see 

the hyperedges of H  as sets in an intersection representation, Theorem 2.21 shows that all 

cliques of the intersection graph must be contained in sets of any Helly intersection repre­

sentation of that graph. Furthermore, by the theorem, we know that the set of all maximal 

cliques of the graph will suffice, as this will yield a conformal hypergraph, when the edges 

of the hypergraph are simply the maximal cliques of the graph. This is summarized in the 

following corollary to Theorem 2.21.

Corollary 2.22. For any graph G, the number o f maximal cliques in G is equal to the Helly 

intersection number o f G.

Using this corollary, we see that a class of graphs has at most p(n) cliques if and only 

if there is an intersection representation that satisfies the Helly property using at most p(n) 

elements, for any member of the class. This can be used in both directions. We can use this 

to show that classes of graphs have few cliques, or we can use this to find an intersection 

representation of a class of graphs. For example, this gives an intersection representation 

that satisfies the Helly property for Kk free graphs. In addition to this, we can generate 

this representation in polynomial time. For any graph G = (V, E), with n  =  |V| and 

m  =  \E\, we can find all maximal cliques in 0 (n m  \1C(G)\) time, using an algorithm 

from [31] or [61]. We can then build the set of cliques a vertex is contained in within 

time polynomial in the number of cliques and vertices in the graph. Since there is some 

polynomial p(n) which bounds |/C(G)|, this algorithm runs in time polynomial in the size 

of the graph.
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Using these results, we can identify several classes of graphs which have few cliques. 

These classes will be used later when discussing the complexity of a few problems on 

classes of graphs with few cliques. The next section presents some of these classes.

2.5.2 Graph Classes with Few Cliques

Many classes of graphs admit a polynomial bound on the number of maximal cliques that 

any member of the class may contain. In the next section we will see some complexity 

results for any class of graphs with few cliques, but first, in this section, we list many of the 

common classes of graphs with few cliques.

As we have already seen, it is clear that the complete graphs Kn for any n  have a single 

maximal clique, which is the one containing all the vertices of the graph. Another class 

of graphs which has few cliques are the Kf~ free graphs. Notice that in such a graph there 

cannot be any cliques of size larger than k, as these cliques would have K  as an induced 

subgraph. Then, a crude bound on the number of cliques (maximal or not) is obtained by 

taking the number of ways to choose fewer than k  vertices from the n  vertices in the graph. 

This is given by

and so there is a polynomial bound on the number of cliques in the A* free graphs. A

the maximum degree of any vertex in the graph, which is still 0 (rfr~l ) in the case that 

A € O(n).

This result can be used to bound the number of cliques in several classes of graphs. 

Trees and bipartite graphs are triangle free, and so there are at most a quadratic number of 

maximal cliques in any graph in these classes. More precisely, the cliques in a triangle free 

graph are exactly the edges of the graph, and so there are n — 1 maximal cliques in any tree, 

and no more than (”) maximal cliques in any bipartite graph. One more class of graphs 

we can apply this to are the planar graphs. Since these graphs are K  free (this is a trivial 

consequence of Kuratowski’s Theorem [36]), we know immediately that there are at most 

0 (n 4) maximal cliques in a planar graph, by the preceding argument. Once again, a more 

careful analysis produces a better bound, and in this case a much better bound. The results 

of this analysis is given as the following theorem.

Theorem 2.23 (Prisner [43]). IfG  is a planar graph with n vertices, then \ JC(G) | <  | n —6.
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We have already seen the case of chordal graphs, but armed with Corollary 2.22, we are 

provided with another method of showing that this class has few cliques. Once again, by a 

result of Gavril [22], the chordal graphs are exactly the intersection graphs of subtrees in a 

tree. Also, as we have seen in Proposition 2.10, subtrees of a tree have the Helly property, 

which implies, by Corollary 2.22, that the chordal graphs have a polynomial bound on 

the number of maximal cliques they can contain, since the subtree representation can be 

constructed using a polynomial sized tree. The interval graphs are a subclass of the chordal 

graphs, and so we know that this class of graphs also has few cliques.

We can extend this idea to a generalization of the interval graphs. The graphs of boxicity 

k, introduced in [48], are those graphs that can be represented as the intersection graphs 

of axis-aligned ‘boxes’ in k dimensional space. The case of primary interest here is the 

class of boxicity-2 graphs, which can be represented as the intersection graphs of axis- 

aligned rectangles in the plane, since an NP-completeness result on this class will be used 

in Section 2.5.3. It is noted in [52] that there are at most 0{rft) maximal cliques in a 

graph of boxicity k, as boxes in Rk have the Helly property. We can be more specific by 

noticing that to form an intersection representation for a graph with boxicity k, we need only 

include in our representation the points in that are vertices of boxes. This uses (2n f  

points, and so there are at most this many maximal cliques in any graph with boxicity k, by 

Corollary 2.22.

Using the fact that these classes of graphs have a polynomially bounded number of 

maximal cliques, we can immediately conclude that several problems are hard on graphs 

with few cliques. This is done in the next section.

2.5.3 Complexity Results on Graphs with Few Cliques

Before introducing some specific complexity results we make some general remarks, in 

Section 2.5.3.1, on the form that such results must take. We consider recognizing a graph 

that satisfies a given bound on the number of maximal cliques, and we also specify exactly 

the class of graphs that we can find NP-completeness results for. After introducing the 

notions we will use, we present a number of complexity results in Section 2.5.3.2.

Some interesting problems on classes of graphs with a polynomially bounded number of 

cliques are the clique partitioning and covering problems. When considering these problems 

on graphs with few cliques, we can examine whether the hardness of the problem lies in 

finding cliques in an exponentially large collection, or in choosing the cliques to build 

a minimum partition from a polynomially sized set. As we will see in Sections 2.5.3.3,
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2.5.3.4, and 2.5.3.5, the majority of these problems remain hard with a restricted number of 

maximal cliques.

2.5.3.1 Recognition, Robustness, and NP-completeness

The problem of recognizing a graph that satisfies a particular bound is simply, given some 

polynomial bound p(n), does the input graph have no more than p(n) maximal cliques? 

We can equivalently ask, by Corollary 2.22, if a graph has a minimum Helly intersection 

representation of size no more than p(n). Without abound, counting the number of maximal 

cliques in a graph is #P-complete, which is shown implicitly for general graphs in [63], 

and explicitly for some restricted classes of graphs in [62]. These results indicate that the 

decision version of the problem is likely not contained in NP, since by Toda’s Theorem [57], 

as mentioned in Section 1.2.2, this inclusion would collapse the polynomial hierarchy.

Fortunately, while this is a hard counting problem, if we are also given a polynomial 

bound p(n), it is in fact solvable in polynomial time, by using an algorithm that enumerates 

all maximal cliques in a graph. If the algorithm we use has what is referred to in [31] as the 

polynomial delay property, then we will be able to simply run the algorithm to enumerate 

the cliques, and stop if we find more than p(n) cliques. The polynomial delay property 

that allows us to do this is simply the property that the length of time before the first clique 

is generated and the length of time between the algorithm generating any two successive 

cliques are each bounded by a polynomial in the size of the graph. Since polynomials 

are closed under multiplication, within a polynomial amount of time we will then either 

have generated too many cliques, whence we would stop the computation and reject, or 

we will have enumerated all of the cliques in the input graph, at which time the algorithm 

accepts. Fortunately, the algorithm found in [61] has this property, as does the much simpler 

algorithm found in [31], which can be asymptotically slower than the more complicated 

algorithm.

We can use this recognition algorithm to ensure that any polynomial time algorithm for 

graphs with few cliques is robust, in the sense introduced in [52], where a robust algorithm 

is one that when given input not in the class of graphs the algorithm is designed for, the 

algorithm will either notice this and reject, or continue computing the correct output, even 

though the graph is not of the expected class. This addition of robustness, however, only 

works if we are provided with a specific polynomial bound, p{n), on the number of maximal 

cliques in any member of class of graphs the algorithm is to operate on. Since all the 

algorithms we present begin with generating all maximal cliques of the input graph, we can
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simply modify this step, by generating at most p(n) cliques, and indicating that the input 

was not in the class of graphs if we generate more than p(n) cliques. This satisfies the 

requirement of a robust algorithm, and so, given in advance a polynomial bound, which is, 

given a class of graphs with few cliques to operate on, and a bound on the number of cliques 

in any graph in the class, we can modify any of the algorithms that follow to produce robust 

algorithms.

In addition to these considerations, we must be precise about exactly which classes of 

graphs that we provide NP-completeness results for. We consider the class of all those 

graphs containing not more than p(n) maximal cliques, for a given polynomial p(n). It is 

important to note that we cannot provide NP-completeness results for every class of graphs 

with no more than p(n) cliques, as, for instance, the class of graphs containing only the 

single graph K \ has few cliques, but since it contains only a single graph of constant size, 

there exist trivial algorithms that can be used solve any decision problem on this class of 

graphs in constant time. Since the graph classes we have shown to have few cliques are 

contained in the class of graphs with not more than p{n) cliques, for some choice of p(n), 

NP-completeness results for these classes will directly imply the NP-completeness of the 

same problem on the class of graphs with not more than p(n) cliques. This is a strategy 

employed to show the hardness of several problems in the next section.

2.53.2 Simple Complexity Results

Having argued that a number of graph classes have few cliques, we can now present a num­

ber of NP-completeness results on graphs with few cliques. However, before discussing 

NP-complete problems, there are two problems which are rendered trivial by the existence 

of a polynomial bound on the number of maximal cliques in an input graph. These prob­

lems are C l i q u e ,  the problem of finding the largest clique, and W e i g h t e d  C l i q u e ,  the 

problem of finding the clique with the largest weight in a vertex-weighted graph. In order 

to solve these problems, on a graph G, given that there is a polynomial bound p(n) on 

the number of maximal cliques in G, we can simply apply the algorithm in [61] to find 

all maximal cliques in time 0(nm p(n)), since ]/C(G)| < p(n). The algorithm does not 

need to have access to this bound, but it cannot be made robust if the bound p(n) is not 

known. Then, to solve the maximum clique problem we can simply iterate over the list of 

all maximal cliques, selecting the largest one. Calculating the size of a clique in the list can 

easily be done in O(n) time. Thus, the total time required to scan the list is bounded by 

0 (n p (n )) as there are at most p{n) cliques in the list. This has total cost bounded by the
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maximal clique finding algorithm, which is 0(nm p(n)). A very similar algorithm solves 

the vertex-weighted maximum clique problem. We again build a list of all maximal cliques. 

Then, for each clique in the list we examine the vertices in the clique, discarding any that 

have negative weights, and for the resulting list of cliques we choose the one with largest 

weight. If the process of removing vertices leaves us with only empty graphs, we instead 

search for the vertex with maximum weight in the graph and use this single vertex as the 

output clique. This removal process can be completed in 0{np(n )) time, by considering 

each vertex of every clique, and finding the maximum can also be completed in 0 (np(n)) 

time. Thus, the total time for this algorithm is also bounded by the time to find the maximal 

cliques of G, which can be done in 0 (n m p (n )) time. This algorithm will correctly find the 

maximum weighted clique, as the maximum weighted clique must be contained in some 

maximal clique of the graph. This is because any vertex with nonnegative weight will not 

decrease the weight of a clique, and so by removing vertices with negative weights, we will 

not overlook a maximum weighted clique, as such a clique cannot contain any vertices with 

negative weights, as long as G has a vertex of positive weight. If all vertices of G have 

negative weights, we can choose the vertex with largest weight as the maximum weighted 

clique. These results are summarized in the following proposition.

Proposition 2.24. If Q is a class o f graphs with few cliques, and G G Q has n vertices, 

m  edges, and weights associated with the vertices, then there is an algorithm to find the 

maximum weighted clique o fG  in 0 (n m  |/C(G)|) time.

In (widely believed) contrast to these problems that are solvable in polynomial time 

on classes of graphs with few cliques, there are problems which are NP-complete on these 

classes of graphs. Many of these NP-completeness results can be trivially seen by providing 

a class of graphs with few cliques for which it is known that the problem is NP-complete. 

Such a class is the class of boxicity-2 graphs, which have no more than 4 cliques, as 

observed in [52]. For this class of graphs it is known that the problem C o l o u r a b i l i t y  

is NP-complete [37] and the problem I n d e p e n d e n t  S e t  is NP-complete [47]. These 

results imply the NP-hardness of these two problems for any class of graphs that includes 

the boxicity-2 graphs, such as those graphs with no more than 4n? maximal cliques. These 

problems are also NP-complete for this class, as they are in NP for general graphs, so the 

same algorithms can be used to decide them in the case of any restricted class of graphs.

Once we know that the maximum independent set problem is NP-complete for a class 

of graphs, then immediately we know that V e r t e x  C o v e r  is also complete for the same
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class of graphs, as it is well-known (see [64], for example) that the size of a minimum vertex 

cover is given by n  — a(G).

There are three other problems we can obtain the NP-completeness of without sig­

nificant effort. These problems are HAMILTONIAN CYCLE, HAMILTONIAN P a th , and 

D o m in a t in g  S e t .  The NP-completeness of the Hamiltonian cycle and Hamiltonian path 

problems on planar graphs is shown in [20], and the dominating set problem on planar 

graphs is shown NP-complete in [21]. Thus, by the bound in [43] which limits the number 

of maximal cliques in a planar graph to | n  — 6 we know that these problems are NP- 

complete for the class of graphs with no more than | n  — 6 maximal cliques, where once 

again, we have containment in NP by the NP-completeness of these problems for general 

graphs.

2.5.3.3 fc-Colourability

In Section 2.5.3.2, we saw that having a polynomial bound on the number of maximal 

cliques does not help the problem of finding the minimum colouring of a graph; in this sec­

tion, we consider the problem of colouring a graph with no more than some constant num­

ber of colours, k, where k > 3. This is formalized as the well-known fc-COLOURABlLlTY 

problem, which is defined in Appendix A.

3 - C o lo u r  a b i l i t y  is known to be NP-complete on planar graphs [19], and thus, by 

the bound given in [43], the problem is also NP-complete for the class of graphs with no 

more than | n  — 6 maximal cliques, where n  is the number of vertices in the graph. This 

result does not extend, on planar graphs, to values of k  larger than 3, as it is known that 

any planar graph can be coloured using only four colours. However, if we are willing to 

lose planarity we can, without sacrificing the bound on the number of maximal cliques, use 

a simple reduction to reach larger values of k. We will reduce fc-colourability to k  +  1- 

colourability, and thus, by induction on k, we can show the following theorem.

Theorem 2.25. A > C o lo u r a b il i ty ,  for k >  3, is NP-complete on the class o f graphs with 

no more than \ n  — 6 maximal cliques.

Proof We can use a simple reduction from the /c-colouring problem to the k  +  1-colouring 

problem to form an inductive proof, as the 3-colourability problem is NP-complete for 

planar graphs. We take a graph G — (V, E ), an instance of the /c-colourability problem, 

and create a graph G' by adding a single universal vertex. That is, where v is a vertex not in 

V, we create the graph G' — {V ', E '), where V ' =  V U{u} and E' =  EU {(u, v) : u E V } .
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To see that |/C(G)| =  |/C(G')|, notice that any maximal clique in G forms a maximal clique 

in G' when we add the new vertex, and that any maximal clique of G  must contain the 

vertex v, as it is adjacent to every vertex in the graph, and since this clique is maximal, it 

must form a unique maximal clique in G when the vertex v is removed. In addition, the 

construction of the graph G  can clearly be performed polynomial time.

To see that this reduction is correct, take an instance of the /c-colourability problem 

that is colourable with no more than k  colours. We can colour the vertex added by the 

transformation with a new colour, and we will end up with a valid k +  1-colouring of 

the graph. On the other hand, consider any k +  1-colouring of the instance given by the 

transformation. The universal vertex that was added must be coloured with a unique colour, 

as it is adjacent to every vertex of the graph, and so if we remove this vertex, we obtain 

a fc-colouring of the remaining graph, which is exactly the instance of the /c-colourability 

problem that was used as input for the transformation. Therefore, by induction on k, for 

k > 3, this demonstrates the NP-hardness of the /c-colourability problem on the class of 

graphs with not more than In  — 6 maximal cliques, for any constant k > 3 and we have 

NP-completeness on this classes of graphs, by the NP algorithm for the problem on general 

graphs. □

2.5.3.4 /c-Clique Partition

In this section we examine the problem of partitioning the vertices of a graph into disjoint 

cliques of size k, for some constant k.

Problem. The Zc-C lique P a r t i t i o n  problem is defined as:

Instance: A graph, G =  (V, E).

Question: Can the vertices of the graph G can be partitioned into cliques of size Zc?

This problem can be shown to be NP-complete, for any k > 3, by a similar reduction 

to the one used in Section 2.5.3.3. The case k = 3 can be shown NP-complete by a 

reduction from the exact cover by 3-sets problem. This is done by Garey and Johnson 

in [21], where the exact cover by 3-sets problem is used to show the NP-completeness of 3- 

C liq u e  P a r t i t i o n  (which they call the triangle partition problem), but most importantly 

for our purposes, the reduction they use produces a K4  free graph. Thus, this result can be 

immediately extended to the 3 - C liq u e  P a r t i t i o n  problem on graphs with no more than 

p(n) cliques, for some cubic polynomial p(n), since there no more than rt3 cliques in a K 4  

free graph.
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Theorem 2.26. A > C liq u e P a r t i t io n ,  for k  >  3, is NP-complete fo r the class o f graphs 

with no more than nk maximal cliques.

Proof. We can apply a simple transformation to reach from the case k = 3 to the case 

k = A, and in general, from the case k  to the case k + 1. For a graph G = (V , E ) which is 

an instance of the /c-clique partition problem, we construct the graph G =  (V7, E'), where 

we obtain G' from G by adding \V \/k  vertices, each connected to every vertex of G.

Notice that a graph cannot be partitioned into disjoint fc-cliques unless k divides |F | =  

n, and so, if this is not the case, we can simply output a trivial no instance, such as the 

one vertex graph, which cannot be partitioned into /c-cliques for any k > 1. If on the other 

hand, k  divides n , we construct V' and E ' as

V  = V  U {Wi : 1 < i <  n /k }

E ' =  E  U {(wi, v) : v 6  V, 1 < i < n /k } .

This can clearly be done in polynomial time. Notice first that, as long as we do not output 

the trivial no instance, we know that k  +  1 divides \V \. We can prove that the reduction is 

correct by induction on k, the base case, for /c =  3 is the triangle partition problem [21]. 

For fc >  3, we build a graph G' using the transformation given above. If we take a /c-clique 

partition for G, we can extend it to a k  +  1 clique partition for G, as we must use n /k  

/c-cliques to partition G, so we can take one of the new vertices into each k clique to form a 

k + 1 clique, as the new vertices are connected to all vertices in G. Similarly, for the other 

direction, any k + 1  partition of G  must use one of the new vertices in each clique, as no two 

of the new vertices are adjacent. Also there are exactly n /k  new vertices, and since there 

are (n + n /k ) /{ k  +  1) =  n /k  cliques in any k + 1  clique partition of G, so we will use all 

of the newly added vertices. Thus, we can simply remove the new vertices from the clique 

partition to obtain a /c-clique partition of G. Thus, by induction on k, this reduction reduces 

the 3-clique partition problem to the /c-clique partition problem for all k > 3. Notice also 

that at each step of the induction we increase the number of maximal cliques by a factor of 

n /k .  Hence, the number of cliques in the final graph is bounded by r f ~ 3p(n), if p(n) is a 

bound on the number of cliques in the instance of the 3-clique partition problem, and since 

one possible choice for p(n) is n3, as the initial instance of the triangle partition problem

was K 4  free, the constructed instance of the /c-clique partition problem has no more than

nk cliques, which is polynomial in n , for fixed k. Thus, by the NP-completeness of the 

3-clique partition problem on graphs with a polynomial bound on the number of cliques
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they may contain, we have the NP-hardness of the /c-clique partition problem on the same 

graphs. We also have containment in NP, by the simple algorithm that guesses a /c-clique 

partition and then verifies that the guessed partition does not include any vertex more than 

once, and that the guessed sets of size k  are actually cliques. Thus, the problem of finding 

a /c-clique partition is NP-complete for the class of graphs with fewer than rfc cliques. □

2.5.3.5 Clique Partition and Clique Cover

Having shown the NP-completeness of Zc-C lique P a r t i t io n ,  we can easily show the NP- 

completeness of V e r t e x  C l iq u e  P a r t i t io n .  This problem asks, for a graph G and an 

integer k, does G have a partition into k or fewer disjoint cliques? A formalization of this 

problem follows.

Problem. The V e r t e x  C l iq u e  P a r t i t i o n  problem is defined as:

Instance: A graph, G =  (V., E), and a natural number K .

Question: Can the vertices of graph G can be partitioned into k  or fewer cliques?

In addition to this problem, we also have the closely related vertex and edge clique 

covering problems, which we will also consider in this section.

Problem. The V e r t e x  C l iq u e  C o v e r  problem is defined as:

Instance: A graph, G = (V , E), and a natural number K .

Question: Is there a collection of cliques, C =  {Ci, C2 , . . . ,  Cr}, with r < k, such that 

for each v € V  there is some i such that v £ Q ?

Problem. The E d g e  C l iq u e  C o v e r  problem is defined as:

Instance: A graph, G = (V, E), and a natural number K.

Question: Is there collection of cliques, C — {Ci, C2 , C r}, with r < k, such that for 

each (u, v) e  E  there is some i such that u G Q  and v E Cp.

Notice that, by Theorem 2.5, the problems E d g e  C l iq u e  C o v e r  and I n t e r s e c t i o n  

N u m b e r  are effectively the same problem, since edge clique cover number 0e(G) is equal 

to the intersection number. In this section we will refer to the problem as the E d g e  C l iq u e  

C o v e r  problem, as in this form it is more closely related to the other problems we consider 

here.
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We can show that V e r t e x  C l iq u e  P a r t i t i o n  is NP-hard by reducing an n -vertex 

K,4 free instance, G, of 3 -C liq u e  P a r t i t i o n  to it. The reduction is trivial. The instance 

of V e r t e x  C l iq u e  P a r t i t i o n  is the graph G and the integer given by [n /3 j. We can 

partition the graph into at most |n /3 j cliques if and only if we can partition the graph 

into triangles, since the graph is K4  free. A potential complication arises on an instance 

where 3 does not divide n, but such an instance cannot be partitioned into triangles, so the 

reduction can output an arbitrary no instance of the clique partition problem. Once again, 

the reduction from the the exact cover by 3-sets problem to the 3-clique partition problem 

in [21] provides such instances of the problem which remain NP-complete, and yet K± free, 

which proves the NP-completeness of V e r t e x  C l iq u e  P a r t i t i o n  for the class of graphs 

with no more than n3 cliques.

Once we have shown the clique partition problem to be NP-complete we can easily ex­

tend the result to V e r t e x  C l iq u e  C o v e r  problem. This is because the size of a minimum 

vertex clique cover is equal to the size of a minimum vertex clique partition, as given any 

minimum clique cover we can simply remove vertices which are covered by more than one 

clique from all but one of the cliques in the cover containing them. This process produces a 

clique partition that is no smaller than the minimum clique cover, and by observing that any 

clique partition is also a clique cover, we see that the size of a minimum vertex clique cover 

is equal to the size of a minimum vertex clique partition, and so the problem of finding a 

minimum cover or partition are clearly equivalent, on any class of graphs.

In addition to the NP-completeness of V e r t e x  C l iq u e  C o v e r , we also have the NP- 

completeness of E d g e  C l iq u e  C o v e r  for graphs with a polynomially bounded number 

of maximal cliques. This result comes directly from a result in [34], where the vertex 

clique cover problem is reduced to the edge clique cover problem by taking an instance 

G of V e r t e x  C l iq u e  C o v e r , and adding m  +  1 vertices to the graph that are adjacent 

to all the vertices of G, where m  is the number of edges in G. If G has no more than 

p(n) maximal cliques, then the resulting instance of the edge clique cover problem has no 

more than (m +  1 )p(n) maximal cliques. Thus, using this reduction, we have the NP- 

completeness of the edge clique cover problem, that is, the intersection number problem, 

for graphs with no more than (m +  l)n 3 maximal cliques.

2.5.3.6 Clique A;-Partition

Finally, we encounter a problem that is solvable in polynomial time on graphs with few 

cliques. This problem is simply the A > C o lo u r a b i l i t y  problem in the complement graph,
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as any clique becomes an independent set, and we are seeking to partition the graph into 

cliques instead of independent sets, as done in the colouring problem. This problem is 

formally defined below.

Problem. The V e r t e x  C l i q u e  ^ -P a r t i t i o n  problem is defined as:

Instance: A graph, G = (V, E).

Question: Can the vertices of graph G can be partitioned into k or fewer cliques?

Related to this problem are the problems of covering the vertices and edges of a graph 

with at most k cliques. These problems are defined here as well.

Problem. The V e r t e x  C l i q u e  & -C o v e r  problem is defined as:

Instance: A graph, G = (V. E).

Question: Is there a collection of cliques, C — {Ci, C2 , . . .  ,C r}, with r < k, such that 

for each v e  V  there is some i such that v € Cp.

Problem. The E d g e  C l i q u e  & -C o v e r  problem is defined as:

Instance: A graph, G =  (V, E).

Question: Is there a collection of cliques, C =  {Ci, C2 , , Cr}, with r < k, such that

for each (u, v) € E  there is some i such that u € Q  and v e  Cp.

A polynomial time algorithm for these problems for a graph G with no more than p(n) 

maximal cliques is given in this section. The essential idea is that if we can cover a graph 

with cliques, we can also cover the graph with the same number of maximal cliques, by 

simply enlarging each of the cliques to some maximal clique, and so we can simply consider 

all collections of k maximal cliques.

For a graph G =  (V, E), with |V| =  n  and \E\ = m, we first compute the set of all 

maximal cliques of G, !C(G) = {Ci, C2 , . . . ,  Cr}, using the algorithm in [61], which runs 

in 0 (n m r ) time. Then we consider each of the ({) sets of k maximal cliques of G. If any 

of these forms a clique cover, we output yes. If none of these are clique covers of G, we 

output no. Checking if each set is a clique cover can be performed in 0(ri?) time, for a total 

runtime of 0 (n2 ({)) =  0 (n2p(n)k) where p(n) is a polynomial bound on the number of 

cliques, and so we have a polynomial time algorithm for the clique A:-cover problem for 

graphs with a polynomially bounded number of maximal cliques.
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Once again, by the equivalence of the V e r t e x  C l i q u e  C o v e r  and V e r t e x  C l i q u e  

P a r t i t i o n  problems, this algorithm solves the ^-partitioning problem as well, and since 

we can form a minimum edge /c-clique cover from maximal cliques by using the same 

approach, we have a polynomial time algorithm, for any class of graphs with few cliques, 

for the edge /c-clique cover problem. This problem is exactly the problem of determining 

for a graph G if there is an intersection representation for G of size at most k, for constant 

k.
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Chapter 3

Overlap Representations

3.1 Introduction

Overlap representations have received considerably less study than intersection representa­

tions, even though overlapping is a very natural relation on pairs of sets. In order to discuss 

overlap representations formally, we present the following definition of an overlap repre­

sentation, which is simply a formal version of the statement that an overlap representation 

of a graph is an assignment of sets to vertices such that vertices are adjacent in the graph 

if and only if the sets they are assigned intersect and neither set contains the other. This 

definition produces the interesting property that if we assign two vertices identical sets then 

they will have identical neighbourhoods, but will not be adjacent. This allows us to “clone” 

elements of an overlap representation, which can be useful for such vertices as the leaves 

of trees or members of the same partition of a complete bipartite graph.

Definition 3.1. Given a graph G =  (V, E ), a collection C =  {Sv : v € V }  is a p-overlap 

representation for G if for any u, v € V  we have

(u, v) e  E  if and only if |Su fl Sv \ > p ,S u £  Sv, and Sv <2 Su.

We refer to a 1-overlap representation as simply an overlap representation. We also de­

fine the size of a representation as the number of elements in the union of all sets in the 

collection, which is

\ J s v ,
v&V

and we let the overlap number, <p(G), be the size of a minimum overlap representation for 

the graph G.

As can be seen from the definition, an overlap representation has many similarities to 

an intersection representation: sets assigned to adjacent vertices must intersect and disjoint
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{1 ,3 }  {3 ,4 }

{1,2,3}

{2,3}

Figure 3.1: Example of a minimum overlap representation.

sets map to nonadjacent vertices. In the overlap case, however, the situation appears to be 

more complex, as not only do we need to ensure a stronger condition than intersection for 

adjacent vertices, we have a choice of representation, for every non-edge, of disjointedness 

or containment. As an example, consider the representation given in Figure 3.1, where there 

are nonadjacent vertices represented in each of these ways.

This added complexity causes the loss of many techniques that apply to intersection 

representations. Foremost among these losses is the notion of the edge clique graph, which 

was discussed in Section 2.1. In the case of an intersection representation, if we take an 

element of the representation and examine all those sets it is contained in, we find that the 

vertices associated with them form a clique. Doing the same in an overlap representation 

once again leaves us with a collection of vertices with intersecting sets, except here we may 

have non-edges represented by containment, and so, since the orientation implied by set 

containment forms a partial order, we can map elements of the representation to cocompa­

rability graphs. Unfortunately, while covering all edges of a graph with cliques leads to an 

intersection representation, if we simply cover the edges of a graph with cocomparability 

graphs, we do not generally end up with a valid overlap representation. As an example, 

most cocomparability graphs do not have overlap number of one, even though they can 

be covered by a single cocomparability graph. This loss seems to indicate that no simple 

technique, such as vertex clique covering an edge clique graph, will yield a characterization 

of the problem of finding the minimum overlap representation. Nonetheless, a significant 

amount of structure appears to remain in an overlap representation, a structure that we will 

explore in the following sections.

Every graph has an overlap representation. To see this, we can take an intersection 

representation for a graph, and add a new element to each set. Sets will overlap in this 

representation if and only if the corresponding sets have nonempty intersection in the cor­

responding intersection representation. This construction also preserves the Helly property,
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and so all graphs have both overlap and Helly overlap representations.

One strategy for forming an overlap representation is to represent as many non-edges 

as possible using containment. This idea has some merit; we shall see in Section 3.4 that 

we can form an overlap representation of any cocomparability graph in such a way that all 

non-edges are represented by containment, and furthermore, this can be done using only 

a linear number of elements. In contrast, if we represent all non-edges by disjointedness, 

we obtain a restricted intersection representation, and there are graphs, as we have seen 

in Section 2.4, that require a quadratic sized intersection representation. While there does 

appear to be some benefit to making use of containment in an overlap representation, we 

cannot apply it blindly; for example, if we seek an overlap representation of the graph in 

Figure 3.1 where there are no disjoint sets, we find that we require one more element than 

the minimum representation given. One such minimum disjointedness-free representation 

can be obtained by replacing the set {3,4} with the set {1,2,5}.

An interesting property of overlap representations is that the size of the representation 

required to cover a graph does not increase when the vertices of the graph are multiplied, 

where vertex multiplication is expanding a vertex into an independent set, such that the 

expanded vertices have the same adjacencies as the original vertex. This is stated formally 

as the following lemma, which we will use when constructing algorithms to find overlap 

representations.

Lemma 3.2. I f  H  can be obtained from G by vertex multiplication, then ip(G) = <p(H).

Proof. Since G is an induced subgraph of H, we immediately have <p(G) < p(H ), since 

we can simply restrict a representation for H  to the vertices of G.

In the other direction, let C = : v e  V }  be an overlap representation for G =

(V ,E ). Each vertex v of G is mapped by vertex multiplication to an independent set (pos­

sibly of size one) in H. Let Ay be the set of all these vertices that represent v. Each vertex 

of H  is in exactly one set Ay. We form the representation given by the following collection, 

for each vertex u of H,

V = { S 'u = Sv : u e  A v}.

Each vertex of Ay is assigned the same set, Sv, and so the sets associated with them do not 

overlap. For any two vertices w ,z  of H  with w € Ay and z € Av, where u /  v, the sets 

S'w and S'z overlap if and only if Su and Sv do, which is exactly as required, since w  and 2 

are adjacent if and only if the vertices u and v they are expansions of are adjacent. Thus V  

is a representation for H  of the same size as C. In addition, since the sets of V  interact in
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the same way that the sets of C do, V  is a p-overlap representation or a representation with 

the Helly property if and only if C is. □

Golumbic and Scheinerman established necessary and sufficient conditions in [27] for a 

class of graphs to be an overlap class of graphs of some family of nonempty sets. This char­

acterization is very similar to the one given by Scheinerman [50] for intersection graphs. 

Any class of graphs that is hereditary, closed under vertex multiplication, and has a com­

position sequence is a class of overlap graphs of some family of sets. The only difference 

between this and the characterization of intersection graphs discussed in Section 2.1 is that 

vertex multiplication replaces vertex expansion. The reason for this is clear, in light of 

Lemma 3.2.

Unlike intersection graphs, where intersection representations of many families of sets 

have been studied, the only specific case of overlap representations that has received con­

siderable attention are the circle graphs, which are usually defined as the intersection graphs 

of chords in a circle. These graphs can also be seen as the overlap graphs of intervals on 

a line, as is done by Gavril in [23]. To see how this transformation can be accomplished 

notice that, given any representation as intersecting chords, two chords intersect if and only 

if the arcs they subtend overlap. Notice also that in forming an arc from a chord, we may 

move around the circle in either direction, and either choice results in a valid overlap repre­

sentation of arcs on a circle. This freedom allows us to make the final step, as if we choose 

the arcs in the representation in such a way that there is a portion of the circle that appears 

in no arc, then if we cut the circle at any point in this portion, we obtain a representation 

of the original circle graph as an overlap graph of intervals on this line. The algorithms in 

[23] for circle graphs operate essentially by exploiting this overlap representation. Cenek 

and Stewart [9] find a polynomial-time algorithm for the maximum independent set prob­

lem, given a general overlap representation and assuming that the weighted independent 

set problem for the associated class of intersection graphs is solvable in polynomial time. 

They also give a polynomial-time algorithm for the maximum clique problem, here with 

only the assumption that an overlap representation with the Helly property is given. Gavril, 

in [24], made similar observations for the more general classes of C7-mixed graphs, which, 

for a class of graphs G, are graphs that allow the edges to be decomposed into El and E 2 

such that the graph with edge set E\ is in Q, the graph with edge set £2  is a comparability 

graph, and these sets satisfy the additional property that if (w, v) is a directed edge in E2, 

and (u , v) 6  E \ then (u, w) e  E \ as well. A similar property also holds in the case of
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overlap graphs, where if Sv C Sw, and Su overlaps Sv, then since Su must also intersect 

Sw, if Su does not overlap Sw, it must be the case that Su C Sw. We will make extensive 

use of this property of overlap representations in the following sections.

3.2 Algorithms

In this section we examine some of the graphs for which minimum overlap representations, 

or the size of these representations, can be found. These relatively simple graphs are, at 

present, the only graphs that have known polynomial time algorithms to find minimum 

overlap representations. While these examples are not complex, the problems of finding 

minimum overlap and containment representations appear to be much harder than the prob­

lem of finding minimum intersection representations. As an example, it is simple to decide 

the extension problem for an intersection representation, as we have seen in Section 2.3.5, 

but we shall see in Sections 3.3.1 and 4.3.1 that this problem is NP-hard for overlap or 

containment representations.

In Section 3.2.1 we will study the size of an overlap representation for a clique by relat­

ing this problem to previous research in combinatorics. We will then see, in Section 3.2.2, 

how we can also apply these results to the case of complete A:-partite graphs. These results 

will provide exact values for the size of a minimum representations of these graphs, but we 

delay the study of algorithms for computing these representations to Section 3.2.3, where 

we will prove some bounds on these values that will enable us to show that the algorithms 

we use are efficient. After examining these algorithms, we will change directions and study 

overlap representations of some simple graphs in Section 3.2.4. We will conclude the study 

of these algorithmic results in Section 3.2.5, where we will examine how we can take min­

imum overlap representations for the connected components of a graph, and use them to 

find a minimum representation for the whole graph.

3.2.1 C liques

It should be noted that, as we seek to find a minimum overlap representation of a clique, 

we are concerned only with those overlap representations where no set contains any other. 

This is a severe restriction for an arbitrary graph, but in the case of a clique, as each pair 

of vertices is adjacent, any overlap representation must have this property. In the absence 

of containment, an overlap representation forms exactly a containment-free intersection 

representation. Thus, any overlap representation of a clique is also a containment-free 

intersection representation.
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In order to find the minimum number of elements required to form an overlap repre­

sentation for K n, we can apply a theorem of Milner to find the maximum size of such 

a representation. We seek the maximum size of a collection of intersecting sets, none of 

which is contained in any other, or in the language of combinatorics, we seek the maximum 

size of an intersecting antichain. We introduce notation for this value, as we will meet it in 

several places.

Definition 3.3. The maximum size of a family, C, of subsets of {1 ,2 , . . . ,  m }  satisfying, 

for p >  0 ,

1. If A, B  E C, with A=f B , then A<jLB,

2. If A, B  E C, then \A fl B\ > p, 

is denoted S(p, m).

The value of the function S(p, m ) is exactly the quantity given by Milner’s Theorem, 

first published in 1966. This theorem is stated below.

Theorem 3.4 (Milner [39]).

Some values of this function, for different values of m  and p are given as Table 3.1. 

From the table it can be observed that this function grows quite quickly with m, an obser­

vation that we will make more formal in Section 3.2.3.1.

Also noted by Milner [39], is that it is easy to construct a collection that achieves this 

bound, by simply choosing all subsets of {1 ,2 , . . . ,  m} of size [(m + p + 1)/2J. This, 

reformulated in the language of overlap representations, is precisely the content of the fol­

lowing corollary.

Corollary 3.5. A minimum p-overlap representation for Kn has size given by

Proof. Consider any p-overlap representation, B, of Kn. Any two elements of B  must have 

intersection of size at least p, and no element can contain any other, as each pair of vertices 

in K n forms an edge. Thus, we have satisfied the conditions of Definition 3.3, and so

m+p+l

min {m : n  <  S(p, m )}

\B\ < S (p ,m ), where m  =  |LU eB^|-
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5(0, m) 5(1, m) 5(2, m) 5(3, m) 5(4, m)
m =  1 1 1 0 0 0

2 2 1 1 0 0
3 3 3 1 1 0
4 6 4 4 1 1
5 10 10 5 5 1
6 20 15 15 6 6
7 35 35 21 21 7
8 70 56 56 28 28
9 126 126 84 84 36

10 252 210 210 120 120
11 462 462 330 330 165
12 924 792 792 495 495
13 1716 1716 1287 1287 715
14 3432 3003 3003 2002 2002
15 6435 6435 5005 5005 3003
16 12870 11440 11440 8008 8008
17 24310 24310 19448 19448 12376
18 48620 43758 43758 31824 31824
19 92378 92378 75582 75582 50388
20 184756 167960 167960 125970 125970

Table 3.1: Values of the function 5(p, m) for some values of m  and p.

For any m , consider the collection given by Cm =  {A  C  {1,2, . . .  , m} : |A| =  

L(m + p +  1)/2J}. As we have [(m +  p  +  1)/2J >  [m /2 ], any two elements of Cm form 

an intersecting pair, and furthermore, no element is contained in any other, as they all have 

the same size. Counting the number of ways to form subsets of {1,2 , . . . ,  m}, we obtain

\Cm\ =  ^ m+p+1 ^ =

Then, to find the minimum representation, we seek the minimum m  that leaves enough 

room to form a p-overlap representation. This is because any p-overlap representation using 

m  elements must be no larger than the collection Cm, and so we can simply choose any n 

elements of Crn to obtain a p-overlap representation on the same number of elements. Thus, 

the size of the minimum p-overlap representation for Kn is given by the smallest m  such 

that

n < \Cm \ = 5(p,m),

as desired. □

In addition to the p-overlap representation, we can demand a representation that sat­

isfies yet another property. We can restrict our attention to those collections where any
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intersecting subcollection contains some common element. This is the Helly property, as 

given in Definition 1.3, and we refer to any p-overlap representation satisfying this property 

as a Helly p-overlap representation. It turns out that we can easily find the minimum size of 

a Helly p-overlap representation for a clique as well, using the same theorem of Milner, or 

in the case that p =  0, the theorem is usually known as Spemer’s Theorem [51], the proof 

of which was initially published in 1928.

Proposition 3.6. I f  C is a maximum collection o f p-overlapping subsets o f {1 ,2 , . . . ,  m }  

that satisfies the Helly property, then

\C\ = S { p -  l , m -  1).

Proof. Consider any collection C of p-overlapping subsets of {1,2 , . . . ,  m }  that satisfies 

the Helly property. Notice that each set must have size at least two, since a one element 

set does not overlap any other set. Also, since each two elements of C overlap, they must 

intersect, and so by the Helly property, there must be an element in the intersection of all 

members of C. Without loss of generality, let this element be m. Consider the collection 

B = {A  \  {m } : A  G C}. As m  is present in every element of C, and every element of C 

has at least two elements, this does not create any duplicate sets in B that were not already 

duplicated in C. If any element of B is contained in any other, then there are two sets, in 

C, that do not overlap, which contradicts the definition of C. Similarly, if there are any two 

elements in B that do not have a common intersection of size at least p — 1, then we can find 

sets in C that do not p-overlap. Thus, we have constructed B, which is a p — 1-overlapping 

collection of subsets o f { l , 2 , . . . , m  — 1}, and so we have

\C\ = \ B \ < S ( p - l , m - l ) .

To see that this bound can be achieved, we can simply take a p—1-overlapping collection 

of subsets of {1 ,2 , . . . ,  m  — 1} of size S(p — 1, m  — 1), which must exist by Milner’s 

Theorem. If we add the element m  to each set in this collection, we have a p-overlapping 

collection of size S(p — 1, m — 1) that satisfies the Helly property. □

Once again, this can be immediately applied to find the minimum number of elements 

needed to form a representation for Kn.

Corollary 3.7. A minimum Helly p-overlap representation for Kn has size given by

min {m : n < S(p  — 1, m  — 1)}
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3.2.2 Complete A-Partite Graphs

Using the ideas developed in the previous section, we can immediately find the mini­

mum number of elements needed to form overlap representations of the complete A;-partite 

graphs. It is interesting that while the minimum number of elements needed to form a 

A;-overlap representation for a complete bipartite graph is not difficult to find, the prob­

lem of finding the number of elements needed for a ^-intersection representation appears 

to be much more difficult [15, 18]. It should also be noted that here the connection to 

a containment-free intersection representation does not hold. Our overlap representation, 

which can be derived from the proof of Lemma 3.2, will make use of containment, albeit in 

a rather simple way, and so it will not form a containment-free intersection representation.

Proposition 3.8. Let G =  {X\ U X 2 U • • • U X^, E ) be a complete k-partite graph. I f  

C is a minimum p-overlap representation o f G, then the number o f elements used by C 

is the number o f elements required to form a minimum p-overlap representation o f Kk. 

Furthermore, a minimum Helly p-overlap representation uses the same number o f elements 

as a minimum Helly p-overlap representation for Kk-

Proof. Since G can be obtained from Kk by vertex multiplication, we can apply Lemma 3.2 

to show that a minimum overlap representation for G has the same size as a minimum 

overlap representation for Kk. By the remarks at the end of the proof of this lemma, this 

construction also preserves the Helly property, and representations with overlap of size

p. □

By observing that the graph Ot is simply a complete f-partite graph, with two vertices 

in each partition, we can find an optimal p-overlap representation for this graph as well, by 

the preceding proposition.

3.2.3 Computing a Representation of K n

In this section we investigate some computational issues involved in finding overlap rep­

resentations of cliques and fc-partite graphs. This is done by first finding bounds on the 

quantity S(p, n ) in the size of the graph, in Section 3.2.3.1. Using these bounds we exam­

ine, in Section 3.2.3.2, the complexity of computing the value of S(n , m) that determines 

how many elements are in the minimum overlap representation for a clique on n vertices, or 

an n-partite complete graph. Finally, using these results, as well as the constructive proofs 

of Section 3.2.1, we give, in Section 3.2.3.3, a simple algorithm to produce a minimum 

overlap representation of Kn.
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3.2.3.1 Bounds in the Size of the Graph

In order to gain a more useful view of the size of the required representation for a given 

graph, we seek to unwind the expression

nun |  m : n <

to obtain a more useful bound on m  in terms of n and k. In order to do this, we give 

up precision, obtaining asymptotically tight bounds. We will make heavy use of Stirling’s 

Approximation, which can be found in [4] as well as many other places,

V 2 irn(n/e)n < n! <  e1^ 12n'>y/2 im (n /e)n. (3.1)

Armed with this identity, we have the following simple corollary, which is obtained by 

simply substituting the above into the expansion of the binomial coefficient.

Lemma 3.9. For 1 < k < n,

' n \  _ I 1 / n \ k (  n  x> J J L  ( rt ) '  
\ k j  -  V 8trk \ k J Kn — k y

Proof. By simple, but tedious, expansion, using Equation (3.1) we have

n \  _  n\ y/2 ttn (n /e)n
k )  k\(n — k)\ 27re1/ ( 12fe)+ 1/ ( 12(n \Jk{n — k )(k /e )k ({n — k )/e )n~k

> 1 I n"

e1/ 6 Y 2 irk{n — k ) kk{n — k)^n — k )

- n  / n \ k /  n
— k ) \ k )  \ n  — k

n —k

>

2 Y 2 -Kk(n — k) \ k /  \ n  — k /

•a — k  / n \ /  n  ' n~k 
8 7rk(n — k ) \ k )  \ n  — k

~ T  / n \k  (  n  '  n~k©87tA: Vk / \ n  — k /

as in the statement of the lemma. □

Using this lemma, we can bound the size of the minimum overlap representation of the 

graphs we have considered. The proof here is simply a calculation.

Theorem 3.10. Let 0 <  k < n, with k not depending on n, and let m  be the size o f a 

k-overlap representation for a complete graph on n vertices, which is given by

m  =  m in j x : n <  =S( fc , a ; ) j .

Then we have m  € Q(k +  log n).
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Proof We can show a simple lower bound by noticing that there are only 2™ potential 

subsets of { 1 , 2 , ,  m } ,  and so we must have n  <  2"\ which implies that m  G fl(logn). 

We will show a better lower bound later, but we will need this crude one to notice that as 

we consider large values of n, we also must consider large values of m.

Turning to an upper bound, notice that, by the definition of m, we have

m  — 1
< n <

m
(3.2)

Using this, and Lemma 3.9, we have

n  >

>

m 1

>

> 2r

I 2 / 2 ( m - l ) \ (m+fc)/2 / 2 (m —l ^ (m~ fc)/2

87T (m + k) \  m  + k )  \  m  — k

m  — 1

47r(m +  k) \ m  +  k

(m +k ) / 2 m_ l yrn-fe)/2 
m  — k )  ’

(3.3)

and focusing on the final two terms, we further obtain

m  — 1 

m  + k

(m+ k ) / 2 m — 1 \  
m  — k )

(m—k ) / 2

>

>

(m — 1)T

m +  fc)fc ((m  + k)(m  — k))^m k ^ 2 

(m -  l)m
m  + k)k(m 2  — &2)(m~*0/2 

(m -  l )m
m +  &)fc(m2)(m-fc) /2 

(m  -  l ) m
m +  k)km m~k 
m  — 1 )mm k

>  2

(2 m )km m
/  -i \  m

-fc f 1
m

(3.4)

Then, since we are interested in the asymptotic behaviour of m , if we take n large 

enough to require that m  > 4, and noticing that log((m — l ) /m)  > log(3/4) >  —1/2, we
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may substitute (3.4) into (3.3), and take logarithms to obtain

log n > log I 2m/4tt (m + k) \  m

m  — k —
m  — 1

m

> m  — k —
log (47r(m +  k)) m

2 2 
log(47r(m +  k))

2

The second last line is due to the fact that, for m ,k  > 1, we have m  + k < 2m k. These 

last two lines are not valid for k = 0 , but in this case we can reach the same conclusion, 

without the log k term, and the remainder of the analysis will be the same, since the log k 

term is not significant. Once more, we can take n  large enough to require m  large enough 

so that logm <  m /2, we then have, by the above, and setting C  =  log(47r ) /2 ,

and so we have m € 0 (k + log n), as desired.

A lower bound, tighter than the previous lower bound, can be demonstrated more easily. 

Using Stirling’s Approximation, given as Equation (3.1), we have the observation, which 

can be found in [4], that

logn >  (m /2) — k — {m/4) — log k — C = {m/4) — k — log A; — C,

which is,

(m /4) <  k + log n + log k + C,

We can immediately apply this to the task at hand, obtaining

m+fc+l
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Notice then that, by the previous weaker lower bound, we can take n  large enough to require 

m large enough so that m  — k > m /2. Applying this, we have

( \ (m—k ) / 2 /  \  (m—k) / 2
———r )  < (2 e)(m~kV2  ( ) =  (4e)(m- fe)/2,
TTfl a  /  \  Tfl f  J!i J

which, taking logarithms, gives

log n +  ^  log(4e) < y  log(4e).

This immediately implies the desired bound of m  € fl(k  +  log n). □

3.23.2 Calculating S(p,m)

We are now in position to build an efficient algorithm to find, for a given n, the minimum 

m  such that n < S{p,m ). We will do this in a straightforward way, by computing values of 

S{p, k) for increasing values of k, until we find a value that is larger than n. We will be able 

to use the bounds of Section 3.2.3.1 to show that this process does not generate too many 

intermediate values, as well as some dynamic programming to speed up the computation of 

S(p, k ). This will turn out to be simpler, and as efficient as the alternate strategy of using 

binary search to find the minimum m. In order to demonstrate this algorithm, we will first 

show how to compute S(p, m ) in terms of S{p, rn — 1). To do this, we will need to make 

use of the well-known identity

which can be found, for example, in [33]. Using this, we can directly show the desired 

relationship.

Proposition 3.11. Let 0 <  p < m, then, i fm  + p is even,
0,771

S(p, m) =  m _  S(p, m  -  1),

and ifm  + p is odd,

S (p ' m) = m T / +  l S(?>’m ~ 1)-

Proof. If m +  p  is even, we have
2m m +  p n , ...

-S(p, m  — 1) =  S(p, m  — 1) H S(/p, m  — 1)m  — p m — p

-  or 1 \ ^ m + P f  m ~ 1 \  
m - p \ ( m + p ) / 2/
(m + p) (m  — 1)!

=  S (p ,m  — 1 )+  

=  S(p, m  — 1) +

(m — p) (m  — 1 — (m +  p ) /2 )!((m + p ) / 2 )\ 
(m + p) (m  — 1)!
{m — p) {{m — p ) / 2 -  l )!((m +  p ) / 2)!’
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at which point we can divide both the (m +  p) and (m — p) terms by two, and apply them 

to the factorials in the denominator of the final term, obtaining

2 m  , ,  (m  — 1)!-S(p, m  — 1) =  5(p, m — 1) +
m - p  ’ ((m — p ) /2 )!((m +  p ) / 2  — 1)!

m — 1 \  /  m — 1

,(m  +  p)/2J  + V(m +  p ) /2 -  1,

Finally, we apply Equation (3.5) to this to show that

2 m  . . /  m — 1 \  (  m  — 1 \  /  m \
(p, m — ) - y {m + py 2)  + { (m  + py 2 _ 1 ) - = [ ( m + p y 2 ) - S (P’m )-

The other case, when m  + p  is odd, is similar, and so, proceeding in the same manner, we 

have

- 5 ( p , m - l )  =  S ( p ,m -  1) H  ------ S ( p , m -  1)
m + p + 1 m + p + 1

. m  — p — I f  m — 1 
=  S(p’ro -  !) +  ^ i^ T T  Urn + p -  l)f t)  ’

and once again, we can divide each of the terms m  — p — 1 and m +  p + 1  by two, and work 

them into the expansion of the binomial coefficient, exactly as in the even case. Doing this, 

we obtain

2m -.N ry t ( m — 1)!
m +  p +  1 m — ) -  S (P’m ~  ) +  ( ( m _ p _ i ) / 2 _ i ) ! ( ( m + p + i ) / 2)!’

m — 1 \  /  m — 1

(m +  p +  l ) / 2  -  1/  +  \(m  +  p +  l ) / 2

which, again by Equation (3.5), shows that

2m /  m
-S fo  m — 1) =  ((m +  ” +  1)/2) =  S(P, m),m +  p +  1

as required. □

Using this relation, we can compute the smallest m such that n < S(p, m) by simply 

starting with S(p, p), as it is clear that for sets to have intersection of size p, there must be at 

least p elements in the union of all the sets. The value of S(p, p) is also trivial to compute, 

as we have

S ( P ’ P ) =  ( l(P +  P + i ) / 2 j )  =  (p )  = 1 ’ 
where we assume p >  1. If p =  0 we use 5(0,1) =  1 as the base for the recurrence. Thus,

for a given n,  to find the size of the smallest overlap representation for Kn we can start with

S(p,p) =  1 or 5(0,1) =  1, and then, by Proposition 3.11 we can find, given 5(p, m), the

value of 5(p, m +  1), we continue in this way until we find m such that n < S(p ,m ).
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By Theorem 3.10, this process must terminate, as there is an upper bound on the size of 

the required to. Furthermore, by this theorem, we require the computation of only Q(p +  

logn) successive values of S(p, m ). Treating p  as a constant, this produces an algorithm 

with runtime in O(logn), in the unit-cost model, which we feel is reasonable in this case, 

as the size of m is only logarithmic in n, and so is likely to fit within the word size of the 

machine performing the computation. This produces a polynomial time algorithm, given n, 

to find the size of a minimum intersection representation of On, and the size of a minimum 

p-overlap representation for Kn on a complete n-partite graph.

3.2.3.3 Finding a Representation

We have now assembled all of the required pieces to compute a minimum p-overlap repre­

sentation for a clique on n vertices, a p-overlap representation of a complete n-partite graph, 

or an intersection representation for the graph On, which was examined in Section 2.3.4.

An algorithm to find a p-overlap representation of Ka begins by computing m, the 

minimum size that such a representation must have, which is the smallest m such that 

n < S(p ,m ). This is done in O(logn) time, by iteratively applying the recurrence in 

Proposition 3.11, as discussed in Section 3.2.3.2. Once this value has been calculated, 

to find a minimum representation for Kn, as noted in the proof of Corollary 3.5, we can 

simply take any n  of the subsets of {1 ,2 , . . . ,  m} of cardinality (m +  p +  l)/2 . Since 

m € O(logn), n of these subsets can be found in O(n) time, by constructing recursively 

all subsets of {1 , 2 , . . . ,  to} while keeping track of the number of elements in each set, so 

that only those sets of the correct cardinality are produced as output. Thus, we can find, in 

linear time, a p-overlap representation for Kn.

In order to find a p-overlap representation of Kn that satisfies the Helly property, we 

may do essentially the same thing. Here we once again compute the minimum size that 

such a representation must have, which is the smallest to such that n < S(p  — 1, n — 1). 

We can then find a (p — 1)-overlap representation for Kn of this size, before adding a new 

element to each set of the representation. This can be done, using the previous algorithm, 

in O(n) time, and the representation produces is minimum, by Corollary 3.7.

These algorithms can also be immediately extended to find representation for complete 

n-partite graphs, as a minimum representation for such a graph is obtained by simply finding 

a minimum representation for K n, and assigning to the vertices of the ith partition of the 

graph the set assigned to the ith vertex of Kn. This produces, in 0 (n ) time, an optimal 

representation, by Proposition 3.8.
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In addition to this, as noted in Section 2.3.4, we can use the algorithm to find a p-overlap 

representation for a clique Kn_i to find an intersection representation for On. First we find 

a 1-overlap representation for Kn~ i, which is simply an overlap representation. If the sets 

used in this overlap representation are subsets of {1, 2 ,m  — 1}, we instead view them 

as subsets of {1 ,2 , . . . ,  m }, which reverses the transformation applied in Lemma 2.14. 

Finally, we apply the construction from the proof of Lemma 2.13, building m  maximal 

cliques, which will each contain one vertex of each nonadjacent pair, as specified in the 

lemma. These cliques will form a minimum edge-clique-cover for On, by taking, for each 

vertex, the set of all cliques in the cover that contain it, we have a minimum intersec­

tion representation, as discussed in Section 2.3.1. The time used for these constructions is 

0 (n  log n), as we must construct 0 (log n) cliques, each of linear size.

3.2.4 Paths, Cycles, and Caterpillars

The problem of finding a minimum overlap representation for a path would at first appear 

to be a trivial problem. A minimum intersection representation is simple to find, as there 

is only one possible edge-clique-cover, the one consisting of each maximal clique, which 

is simply each edge on the path. While it is essentially no harder to find an overlap repre­

sentation of a path, proving the optimality of the representation is more difficult. Once we 

have shown the size that an overlap representation of a path must have, we can immediately 

apply the result, with a little bit of work, to the case of cycles and caterpillars. In order 

to prove such a lower bound, we make use of a simple observation, which is given as the 

following lemma.

Lemma 3.12. I f  A, B ,C  are three sets such that A  C C, A  overlaps B, but B  does not 

overlap C then B  C C .

Proof. Since A  and B  overlap, B  has nonempty intersection with C. If B  does not overlap 

C  then either C C B  or B  C C. If A  C C C B , then A  and B  must not overlap, which is 

a contradiction that shows that B  C C .  □

We can amplify this lemma to the following stronger lemma that we will use to argue 

bounds on the size of an overlap representation for a graph based on the size representations 

for the components of the graph, in Section 3.2.5.

Lemma 3.13. Let G = (V ,E ) be a graph, X , Y  C V  such that G[X\ and G\Y] are 

connected induced subgraphs o fG  such that there are no edges (x , y) E E  with x  € X  and
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G Y, and let C — {Sv : v £ V } be an overlap representation for G. Let U = \ f xeX S* 

be the set o f all elements in the representation for X . I f  for some x  G X  and some y G Y, 

Sx C Sy then for any v G Y  either U C Sv or U D Sv = 0. Furthermore, if this is the case, 

then no set Sx for x  G X  contains any set Sy for y £ Y .

Proof Let x \  G X  and y G Y  such that SXl C  Sy. We will first show that U C  Sy. To 

see this, let Xk G X ,  and let x \, X2 , ■ ■ ■, Xk be a path from x\ to in G[X], We then have 

S Xl C  Sy, SX2 overlaps SXl, and SX2 does not overlap Sy since x<i and y  are not adjacent. 

Applying Lemma 3.12, we see that SX2 C  Sv. This argument can then be repeated, with 

X'2 in place of x\, since these vertices are both in G[X], and so we also have SX3 G Sy. 

Continuing in the fashion, it must be the case that SXk C  S y, and as x^ G X  was arbitrary, 

we have U C  Sy, as desired.

To complete the proof of the theorem, notice that y G Y was chosen to be an arbitrary 

element of Y  such that there is some x  G X  with Sx C  Sy. Let x  G X  and v G Y  be two 

vertices such that Sx and Sv intersect. We will show that Sx C  Sv. Since x  and v are not 

adjacent, we need only to rule out the case that Su C Sx. If this is the case, then by applying 

the previous argument with X  and Y  reversed, Sx contains Sy> for all y1 G Y . In particular, 

Sx contains the set Sy that contains U, the set of all elements used in the representation of 

G[X}. This implies that U C  Sy C  Sx, and so Sx contains all other sets Sx> for x  G X ,  

which is a contradiction, since G[X] is connected. Thus we have shown the last sentence 

of the theorem, and also that any set Sy for v G Y  is either disjoint from all Sx for x  G X ,  

or there is some x  G X  such that Sx C  Sv, which implies by the previous argument that

This lemma, while powerful, is rather awkward to use. In this section we will use the 

following simplification of it to argue bounds on the overlap number for paths, cycles, and 

caterpillars.

Lemma 3.14. Let G =  (V ,E) be a graph, and let C =  {Sv : v G V } be an overlap 

representation o f G. Fix v G V, and let, for u  G V  \  IV [v], Av(u) be the vertex set o f the 

connected component o f G{V \  N[w]] that contains u. I f  SyC  Sv, then

U C  Sv. □

Proof. Let X  =  A v(u) and Y  =  {u}. Applying Lemma 3.13 gives

U SW = U Q S V,
wGAv(u)
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since Su C Sv, so Sv is not disjoint from U. □

With this lemma in hand, we can show a lower bound on the size of an overlap repre­

sentation for the graph Pn, the path on n  vertices. This lower bound will be matched by a 

simple construction, given as part of the proof, that can be immediately transformed into a 

efficient algorithm for generating an overlap representation of This theorem does not 

hold for P2, as = 3.

Theorem 3.15. For n > 3, we have p(Pn) — n.

Proof For n =  3, we observe that {{1,2}, {2,3}, {1,2}} is a minimum overlap repre­

sentation, since we need at least three elements to represent a single edge. For n  >  4, 

we label the vertices of Pn from the set {1 ,2 , . . . ,  n} in increasing order, and let C =  

{Si, S2, ■■■, Sn} be a minimum overlap representation for Pn, with vertex i corresponding 

to the set S*. We can then observe that one of two cases must hold: either Si contains 

none of {S3 , S4 , . . . ,  Sn}, or it contains each S* for i >  3. This is due to the fact that if Si 

contains Sj for any i > 3, then it must contain St for all 3 <  k < n, by Lemma 3.14, since 

these are exactly the vertices of f^[{3,4 , . . .  ,n}\. Notice also that these two cases collapse, 

as if Si contains all Sj for i > 3, then in particular, Sn C Si, and so, if we consider the 

reversal of the path, we find that Sn contains none of the other sets, as n  >  4, which forbids 

the case that Si =  Sn, and so we need only consider the first case.

To this end, let the representation, without loss of generality, be such that S  contains 

none of {S 3 ,... Sn}. Notice that with the exception of S2, the elements of Si are either 

all contained in one of the other sets, or none of them are. We will form a representation 

for Pn- i  where these elements are compressed into a single element. We consider the 

collection given by C  =  {S2 U Si, S3, . . .  Sn}. As Si and S2 share at least one element, 

this enlarging of S2 will not cause S& to overlap S2 U Si for any k > 4. To see this, we 

consider two cases. The first case is that Si C Sk, but then, by Lemma 3.12, we have 

S2 C Sj, as well, which implies that Si U S2 C Sk, as desired. In the other case we have Sl 

disjoint from Sk, but in this case we can observe that S2 <2 Sk, as this would imply, again 

by Lemma 3.12, that Si C S&. Since S2 % Sk, it is either disjoint from Sk, in which case 

Si U S2 is as well, or Sk C S2, which implies that S& C Si U S2, as required. Similarly, 

in the collection C" =  {S2 \  Si, S3 , . . . ,  S„}, the set S2 \  Si will not to overlap any set 

Sk for k > 4. To see this, notice that, since we reduce the size of S2, and Si and S2 

overlap, so IS2 \  S i| > 0, the only troublesome case is when Sy- C S2. If S2 \  Si overlaps 

Sk, but Sk C S2, then Si and Sk have nonempty intersection, which forces Si ^  S^.
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Applying Lemma 3.12 we see that S2 C  Sk as well, which implies that S2 =  Sk, which is 

a contradiction as S2 overlaps S i, but Sk does not. Thus the set S2 \  S i must not overlap 

Sk for any k > 4.

Thus, we need only verify that one of these two collections preserves the overlap be­

tween S3 and the replacement for S2. To see that at least one suffices, let C  fail to be an 

overlap representation for Pn- i ,  which implies that S3 C  S^U-Si, as we have only enlarged 

S'<2. This implies that 5j  fl S3 7̂  0, as S3 is contained in neither Si or S2, but it is contained 

in their union. Then, since Si does not contain any other set in the representation, we must 

have Si C  S3 as these two vertices are not adjacent in the path. Notice also that, since S  

is contained in Si U S2, and S3 is not contained in Si, we must have S3 fl (S2 \  S i) 7̂  0. 

Seeking a contradiction, we assume that S3 and S2 \  Si also do not overlap. Since C is an 

overlap representation for Pn, we must have S3 S2 \  S i C  S2, as the vertices associated 

with S2 and S3 are adjacent. This leaves only one way for S3 to fail to overlap S2 \  Si, 

which is (S2 \  Si) C  S3. If this is the case, then we have S2 C  S3, as we know that 

Si C  S3, which we derived from the failure of C . This contradicts the fact that C is an 

overlap representation for Pn, and so we have shown that if C  is not a valid representation 

for Pn- 1, then C" must be. Notice then that in both of these representations, each set either 

contains Si or is disjoint from it, and so there is no loss in replacing the elements of S  

with a single element. This reduces the size of the representation by at least one, as a set 

needs at least two elements to overlap another set. Hence, we have formed a representation 

for Pn_i from a representation of Pn, and this new representation has size at least one less 

than the old. By induction on n,  we have shown that

I (J Sk = <p(Pn) >  1 +  ‘p(Pn-i) — l  + n — l  = n. 
skec

This demonstrates that <p(Pn) > n, and so to show the desired equality, it is sufficient 

to build a representation of this size. This is simple to do. Consider the representation for 

Pn given by, for 1 < * < n  — 1,

Si =  {*,* + 1}

Sn = { 1 , 2 , . . . ,  n  — 1}.

Notice that in this representation, on the first n  — 1 vertices, the set S  overlaps only the 

sets Si- 1 and S,;+i and is disjoint from the other sets, with the exception of Sn. Also, Sn 

contains all sets except Sn- 1, which it overlaps, and so this is an overlap representation for 

Pn using n  elements. This proves that <p(Pn) — n, as desired. □
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The representation used in the proof of the theorem is optimal in the number of ele­

ments used, and can be constructed in 0 (n) time, which is asymptotically optimal, as a 

representation needs to have linear size. Thus we can view this construction as an efficient 

algorithm to find an overlap representation of a path.

Having found the overlap number of a path, we can find immediate lower bounds on the 

size of the overlap representation for some other simple graphs. The first of these is Qt, the 

cycle on n  vertices. Once again, the lower bound will be matched by a simple construction, 

which can be transformed immediately into an algorithm with running time linear in n. 

This theorem will not hold for C3 , as we have <p(Cz) =  3, by taking for the representation 

the three sets that can be formed by choosing two of three elements.

Corollary 3.16. For n > 4, we have (p(Cn) = n — 1.

Proof. To see that ip(Cn) > n  — 1 we simply observe that by Theorem 3.15, the size of the 

representation for any n  — 1 of the n  vertices is at least n  — 1, and so it remains only to 

construct a representation using n — 1 elements. We do this by setting, for 1 < i <  n  — 2,

Si =  {i, i +  1},

which forms an overlap representation for a path of n  — 2 vertices, using n  — 1 elements. 

We add to this representation 1 =  { 1 , 2 ,3 , . . . ,  n  — 2} and Sn =  {2,3 , 4 , . . . , , n  — 1},  

noting that Sn- i  overlaps only Sn and Sn- 2, containing the other sets, and that Sn overlaps 

only Sn- i  and S i as it contains all other sets in the collection. Thus, the collection C = 

{S'i, 6 2 , . . . ,  Sn} forms an overlap representation for Cn using n — 1 elements, proving that 

p(Cn)  =  n  -  1 . □

The next simple class of graphs we can find a minimum representation for are the cater­

pillars, which are trees with a very simple structure. A definition of these graphs, equivalent 

to the one given below, can be found in [64].

Definition 3.17. A tree T  =  (V, E ) is a caterpillar if the non-leaf vertices form a path, 

known as the spine of the caterpillar.

With the definition in hand, we can use Theorem 3.15 to find a lower bound on the size 

of an overlap representation for a caterpillar. We will once again be able to pair this with a 

simple construction to show that the bound is tight. This constmction will then lead to an 

efficient algorithm for finding an overlap representation.
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Corollary 3.18. For T  — (V, E) a caterpillar with spine containing k > 1 vertices, we 

have p(T ) =  k +  2.

Proof. We will show that the size of a minimum overlap representation for a caterpillar 

has size determined by the size of the overlap representation for the longest path in the 

caterpillar. Let T  be a caterpillar, and label the vertices of the spine in order {1,2 , . . . ,  A;}, 

and let Li be the leaves connected to vertex i of the spine. Notice that any longest path in T  

has a vertex in L\ and a vertex in as endpoints, with the remaining vertices being those 

of the spine. This allows the above labelling scheme to be implemented in linear time, as 

a longest path in a tree can be found in linear time. Also notice that the longest path in T  

contains k  +  2 vertices, and so Theorem 3.15 provides a lower bound of <p(T) > k + 2.

To show a tight bound, we need only find a representation of the correct size. The 

representation used is very similar to the one used in the proof of Theorem 3.15. For T  a 

caterpillar, with nodes labelled 1, 2, . . .  k  that form the spine, with node i  adjacent to nodes 

i  — 1 and i  + 1, and Li the set of leaves adjacent to vertex i ,  consider the representation 

given by, for 1 < i < k,

Si =  {* +  1, i +  2}

SLi = {1 ,2 , . . . ,  * H-1},

where the set S i t is associated with all vertices in I4 . This representation coincides with the 

one previously given for paths, since viewing a path on n  vertices as a caterpillar produces 

a caterpillar with n  — 2 vertices on the spine, and two leaves, one on each end of the path. 

To see that the given representation is correct, notice that two vertices of the spine i  and 

j  overlap if and only if \i — j\ = 1. Notice also that the sets assigned to two leaves will 

never overlap, as overlaps all S l } for j  < i. In addition, S l, overlaps only Si, since 

S l ,  contains Sj for j  < i, and SiH is disjoint from Sj for j  > i .  Thus we have constructed 

an overlap representation for T  using k + 2 elements. This proves that for any caterpillar T  

with k > 1 vertices on the spine, <p(T) = k  + 2. □

The sum of the sizes of the sets of the overlap representation produced by the construc­

tion in the proof is quadratic. This representation can be efficiently constructed in the sum 

of the sizes of the sets of the representation, which is 0 (n k ). This yields an algorithm that 

may not be asymptotically optimal, as a lower bound stronger than Cl(n) on the sum of the 

sizes of the sets of a representation for a caterpillar is not known.
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3.2.5 Connected Components

In this section we examine the size of a minimum overlap representation for a disconnected 

graph based on the sizes of minimum overlap representation of each of the connected com­

ponents of the graph. For general components, this does not produce any new algorithms, 

but it does allow us to find the minimum overlap representation of a graph composed of 

the pieces we have already studied. The results here can allow for a divide and conquer ap­

proach when trying to find the size of an overlap representation for graphs such as threshold 

graphs and cographs that can be defined in terms of decomposition schemes. No such al­

gorithms are known, but it is hoped that these results can eventually lead to algorithms for 

these problems.

To show the desired result, we will make use of a lemma that is an immediate con­

sequence of Lemma 3.13, but is more focused on the present goal. This lemma will be 

essential to the proof of the theorem that follows, and we will also use it as to demonstrate 

the hardness of a problem related to finding the overlap number of a graph, which will be 

done in Section 3.3.3.

Lemma 3.19. I f  Bi,B<z are two connected components o f a graph G such that \B±\, {B^l > 

2, then in any overlap representation C =  {<% : v G V } o f G, for some i G {1,2} no set 

Svfor v G Bi contains any set Swfor w G B^-i- Furthermore, where U =  U^eBj v̂> any 

set Sw with w G Bz~i either contains U, or is disjoint from it.

Proof If for any x  G B \ and y G B 2 the sets Sx and Sy are disjoint, then there is nothing 

to prove. We will assume, without loss of generality, that there is x G B  and y G B<i such 

that Sx C  Sy. Setting X  = B \ and Y  — _B2, a direct application of Lemma 3.13 yields the 

desired result. □

With this lemma, we are able to prove a theorem relating the overlap number of a graph 

to the overlap numbers of the components of the graph.

Theorem 3.20. I f  G is a graph with connected components I f ,  B%,. . . ,  B^

k

<p(G) = '52<P(Bi) - ( k - l ) .
i= 1

Proof. If k = 1, the theorem is trivially true. We will assume that all components of 

G = (V, E) have size at least two, as isolated vertices can be added to a nonempty graph 

without increasing the size of the overlap representation, by simply assigning the isolated
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vertex a set consisting of any single element. In the case that G consists only of isolated 

vertices, the theorem is also trivially true. To prove this theorem we will first, as before, 

show a lower bound, and then argue that a representation achieving this lower bound must 

exist.

In the case that k = 2, we can use Lemma 3.19 to immediately obtain a lower bound. By 

the lemma, the two components must either be independent, with no elements in common in 

the overlap representation, or some sets of one component can contain the sets of the other. 

If the two components are independent then the size of a minimum overlap representation 

is clearly given by <p(G) > '-p(Bi) + (p(B2). In the other case, we assume that not only 

the sets associated with vertices of B 2 may contain sets associated with vertices of B y, but 

that in doing so, by Lemma 3.19, any set associated with a vertex of B2 that intersects 

the set U  of elements in the union of the sets associated with the vertices of By, must 

contain the all of TJ. In this case the elements of U  act as a single element, without any 

further restrictions, and so given a minimum overlap representation for G, we can take 

the representation restricted to B 2 and replace the elements of U  by a single new element, 

resulting in an overlap representation for G of size <p(B2 ) < <p(G) — <f (By )  +  1, which 

yields the desired bound of

<p(G) >  <p(B!)  +  v { B 2) -  1 .

In the case that k > 3, we consider a minimum overlap representation C =  :

v G V }, and we will once again show a lower bound on the size of C. Take any three 

components, and, for clarity, let the vertex sets of these components be A ,  B ,  and C .  If 

some set associated with a vertex of A  is contained in a set, Sb for b G B ,  and some set 

associated with not necessarily the same vertex of A  is contained in ^  for c  G C ,  then, by 

Lemma 3.19 the sets Sb and Sc must contain U aeA &a- 1°  particular, Sb and Sc intersect, 

and so one set must contain the other, as they are sets associated with nonadjacent vertices 

in G. This forces a containment relationship between B  and C ,  so that the set associated 

with any vertex of A  is forced to be contained in the sets associated with the vertices of one 

of B  or C  by transitivity. To see how this observation is useful, we build a graph F ,  where 

the vertices of the graph are components in G, and two vertices A  and B  are connected 

by a directed edge if there is some vertex a € A  and b G B  such that Si C  Sb in C. 

Notice that by Lemma 3.19, each pair of vertices is either nonadjacent, or connected by one 

directed edge. The above observation is then simply the observation that no vertex, v, of F  

is connected to two nonadjacent vertices by edges directed away from v. This implies that
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if we take the transitive reduction of F ,  we obtain a graph with no cycles, and this graph 

remains acyclic even if we discard the orientation of the edges. Let F  be the directed forest 

resulting from this transitive reduction. Since the edges of F  represent containment and no 

vertex is connected by directed edges to two nonadjacent vertices, each tree has a unique 

root that all edges of the tree are directed towards.

As in the case that k = 2, if two components Sj and B j are related by containment such 

that Si C S j  for some i £ Bi, j  £ B j, the elements of U =  LbeBi function as a single 

element in the representation for the vertices of Bj, which is otherwise unrestricted. Thus 

if we take an overlap representation of these two components we are able to find a repre­

sentation that is at most one element smaller than the representation of the two components 

by disjoint sets. Notice that we can save this one element once for every edge of F, as these 

edges count exactly the containment relationships that are not forced by transitivity. The 

largest number of edges F  can have is one fewer than the number of components of G, as 

there must be some root vertex that is not connected by a directed edge to any other vertex. 

This provides the following lower bound,

k

y>(G) >  -  (fc -  1). (3.6)
i = l

To show that a representation exists that achieves this bounds, we take a minimum over­

lap representation for each component Bi of G, such that any two of these representations 

are disjoint. We then, for each i in increasing order, create a containment relationship be­

tween Bi and Bi+1, by choosing an arbitrary element of the representation for B+i and 

replacing it with the union of all elements used in the representation of B ■ The resulting 

representation is a valid overlap representation for G, as we have replaced elements in such 

a way as to not affect the overlapping properties within a component, and, given any two 

components, if two sets of the representations associated with them have nonempty inter­

section, then one set must contain the other, so that there are no adjacencies created between 

components. Notice that this representation has size given by Equation (3.6), as we have 

taken optimal representations for each component, and removed exactly k — 1 elements, 

and so this is an optimal overlap representation for G, of s i z e ^ =1 <p(Bi) — (k — 1), which 

proves the theorem. □

From this theorem, we extract the following corollary, which considers the case of the 

disjoint union of two graphs. The proof of this corollary is a direct application of the 

theorem.
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Corollary 3.21. I f  G and H  are graphs, and G + H  is the disjoint union o fG  and H, then

<p(G + H ) = p(G) + p{H ) -  1.

Proof Let A \, A% . . . , be the components o f  G and let Bi, S 2, • • • > Bk2 be the com ­

ponents o f  H. We have, by Theorem 3.20, the follow ing two equations

fci
<p(G) = — (fci — 1), (3.7)

2=1

^ 2

<p(H) =  ^ ^ - ( f e a - l ) .  (3-8)
i= 1

A lso by this theorem, since the components o f  G +  H  are exactly the components o f  G and 

H , we know that

fci k2
ip(G +  H ) =  p(A i) + p{Bi) — (fci +  fc2 — 1),

i=l  i= 1

and by combining this with equations (3.7) and (3.8), w e obtain

<p(G + H ) = tp(G) + 'p ( H ) - l ,  

as desired. □

3.3 Hardness Results

In this section w e w ill examine som e NP-com pleteness results for problems related to find­

ing the minimum overlap representation o f a given graph. This problem is not known to be 

hard, but given the hardness o f  these related problems, and the relationship between over­

lap and intersection representations, for which this problem is known to be hard, it would  

be unusual for the problem to admit a polynom ial-tim e algorithm. For com pleteness, a 

formalization o f  this problem is given below.

Problem . The Ov e r l a p  N u m b e r  problem is defined as:

Instance: A  graph, G =  (V, E), and an integer fc.

Question: Is there an overlap representation C =  {<% : v £ V )  of G with

IJ Sv < fc?
v e v
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In Section 3.3.1 we will see that the problem of extending an overlap representation 

is NP-complete, in contrast to the polynomial-time algorithm for the related problem on 

intersection representations, which was presented in Section 2.3.5. In Section 3.3.2, we 

will show the hardness of the problem of finding a minimum overlap representation with no 

containment between the sets of the representation, by relating this problem to the problem 

of finding a minimum intersection representation. We will then conclude this section with 

Section 3.3.3, where we will show that this problem remains hard if we allow a constant 

number of containment relationships in the representation.

3.3.1 Extending an Overlap Representation

A natural approach to finding the overlap number for a graph is to employ a greedy strategy, 

adding one vertex at a time, and only making changes to the set associated with the newly 

added vertex. Unfortunately, this is not a feasible approach for a general graph, as the 

problem of deciding whether or not a new element needs to be added to the representation 

is NP-complete, even in the case that all sets of the representation share a common element. 

A formalization of the problem of deciding if the new vertex can be represented without 

adding any elements, or altering the given representation of the other vertices, is given 

below.

Problem . The O v e r la p  E x t e n s io n  problem is defined as:

Instance: A graph, G = (V, E ), an overlap representation C =  {Sy : v € V }  of G, and a 

set A  C V.

Q uestion: Is there a set S  C [ jv&v Sv that overlaps Sv if and only if v £ A?

The S t a r  O v e r la p  E x t e n s io n  problem is defined in the same way, except we re­

quire that all sets in C U S  have an element in common. Both of these problems are NP- 

complete, even in the case that A  — V, as the reductions that follow will show. Before 

presenting the first of these reductions, we must introduce the problem that we will reduce 

an instance of OVERLAP EXTENSION to. This is the NOT-ALL-EQUAL 3SAT, which is 

similar to the usual 3SAT problem, except that we seek a satisfying truth assignment where 

no clause has all true literals. This problem is defined in Appendix A, and is known to be 

NP-complete [49].

Using the N o t - A l l - E q u a l  3SA T  problem, we can show the NP-hardness of the 

O v e r la p  E x t e n s io n  problem by demonstrating a polynomial time transformation to
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instances of the overlap problem from the satisfiability problem that produces a positive 

instance of the satisfiability problem if and only if the instance of the overlap problem is 

also solvable. This is done in the proof of the following theorem.

Theorem  3.22. O v e r la p  E x t e n s io n  is 'HP-complete.

Proof. Given an instance (G, C, A), and a set S, we can easily check, in polynomial time, 

if S  satisfies the required conditions, and so the problem is clearly in NP.

For the reduction, we will transform an instance of N o t - A l l - E q u a l  3SAT into an 

instance of O v e r la p  E x t e n s io n .  Let (U, F) be the instance of N o t - A l l - E q u a l  3 SAT, 

where U =  {x i,X 2 , . . . ,  x n} is the set of variables, and F  =  {q , eg,. . . ,  Cm} is the set 

of clauses, where we have, for each i, |q | =  3. In the case that n < 4, we examine 

all possible truth assignments to determine if there is a solution to the N o t - A l l - E q u a l  

3SAT instance. If there is a solution, we output the instance where G =  (V, E) is a path of 

length two, and C — { { 0 ,1}, {1,2} } ,  with A  =  V, as this instance has solution S  =  { 0 ,2 } .  

If, on the other hand, there is no solution to the satisfiability problem, we output the instance 

where G =  (V, E) consists of a single vertex, C =  { { 0 } } ,  and A  =  V, as there is no set S  

that overlaps {0 } , so this is also a no instance of O v e r la p  E x t e n s io n .

In the case that n > 4, we will construct a graph G =  (V, E), an overlap representation 

C of G, and a set A, to form an instance of O v e r la p  E x t e n s io n .  The vertices in the 

graph we construct are given by

V  =  {vi : 1 <  * < n}  U {wi : 1 <  i < m},

where each vertex q  will be associated with a variable x,t € U, and each vertex wt will 

be associated with a clause q € F. Having vertices, we can then introduce the overlap 

representation, C, in the instance of O v e r la p  E x t e n s io n ,  which is given by

C = {SVi = {xi,~ixi} : Xi E U} U {SWi = a  :Ci £ F}.

The sets associated with vertices mL are simply the clauses of the satisfiability problem, 

which are sets of three literals, and the sets associated with vertices q contain both literals 

connected to the associated variables in U.

Having defined the vertices and the overlap representation, we simply set the edge 

set to the set of edges that agrees with the overlap representation C, which is given by 

E  — {(u, v) : Su and Sv overlap}. Finally, we take A  — V  and G =  (V, E), to form an 

instance (G, C, A) of O v e r la p  E x t e n s io n .  This transformation can clearly be computed
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in polynomial time. Notice that this instance is a yes instance if and only if there is some 

set S  of literals in the satisfiability problem such that S  overlaps Si for all v e  V. We will 

show that such any such S  forms a satisfying truth assignment for (U, F ) in which each 

clause has at least one false literal.

To see this, let S  C U U {-nr : x  € U} be a set that overlaps all elements of C. Since 

S  overlaps each SVi = [x{, -iXj}, S  must contain exactly one element of SVi. This forces 

S  to choose a truth value for each variable oq, as we can consider the truth assignment that 

sets every literal in S  to true. In addition, we know that S  overlaps each SlUi =  q , which 

forces at least one, but not all, of the literals in q to be contained in S. Viewing S' as a truth 

assignment, it must make true at least one, but not all, literals of the clause q, which proves 

that if the instance of O v e r la p  E x t e n s io n  is a yes instance, then the initial instance of 

N o t - A l l - E q u a l  3SAT is also a yes instance.

In the other direction, we take any truth assignment T  that satisfies the original N o t-  

A l l - E q u a l  3SAT instance without making all literals in any clause true, and set S  to be 

the set of all literals made true by T. Since T  is a truth assignment, for each 1 < i < n, S  

contains exactly one of oq and -iXi, and so S  overlaps SVi for all i. Furthermore, since T  is 

a satisfying truth assignment, S  must intersect each In addition, S  cannot contain any 

SWi, as this would imply that T  satisfies all literals of clause q.  Finally, |5Wi| =  |q | =  3, 

and | S'| =  | U \ > 4, so SWi cannot contain S  for any i. This implies that S  overlaps S!Wi 

for all 1 <  i < m, and so S’ is a solution to the instance of O v e r la p  E x t e n s io n .  We 

have shown that there is a solution to the original instance of N o t - A l l - E q u a l  3SAT if 

and only if there is a solution to the constructed instance of O v e r la p  E x t e n s io n ,  and so 

we conclude that, since the first problem is NP-hard, the O v e r la p  E x t e n s io n  problem 

is NP-complete. □

In the case of an overlap representation where there is an element common to each set, 

we can prove a similar theorem. In this case we will present a reduction to this problem from 

the well-known 3SAT problem. This problem is defined in Appendix A, and is also known 

to be NP-complete [32], Using the 3SAT problem, we can show that the S t a r  O v e r la p  

E x t e n s io n  problem is NP-complete, which is the content of the following theorem.

Theorem 3.23. S t a r  O v e r la p  E x t e n s io n  is NP-complete.

Proof. Once again, this problem is clearly in NP, as we can, given a set S, verify that it 

overlaps with the desired sets of the given overlap representation, and check that there is 

an element in S  that is common to each set of the representation. To show the hardness of

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



this problem, we will use a reduction similar to the one used in the proof of Theorem 3.22. 

We will transform an instance, (U, F ), of 3SAT, where U is the set of variables and F  is 

the set of clauses, to an instance (G, C, A) of S t a r  O v e r la p  E x t e n s io n .  Once again 

we separate the case where \U\ =  n  <  4, by testing all possible truth assignments to 

the variables to determine the satisfiability of the given 3 SAT instance. If the instance is 

satisfiable, we output the instance of S t a r  O v e r la p  E x t e n s io n  given by two connected 

vertices, with overlap representation given by {{0,1,2}, {0,1,3}}, where A  consists of 

both of the vertices of the graph. The set S  — (0,2,3} then satisfies the requirements of 

the S t a r  O v e r la p  E x t e n s io n  problem. If the given instance of 3SAT is not satisfiable, 

we output the instance given by a single vertex, with associated set in the representation 

{0}, where the set A  contains this vertex. As no set will overlap {0}, this instance is a no 

instance of S t a r  O v e r la p  E x t e n s io n ,  as desired.

Given an instance ([/, F) of 3SAT, where the set U — {x\ ,x 2, ■ ■ ■, x n} for n > 4, and 

F  =  {ci, C2, . . . ,  cm} such that |c*| =  3 for all i, we construct an equivalent instance of 

S t a r  O v e r la p  E x t e n s io n  as follows. We will use the same vertex set as in the proof of 

Theorem 3.22, so that

V  = {V!,V2, • • • , vn} U {wi,U>2 , . . . ,w m},

where the vertex Vi will be associated with the variable Xi and the vertex Wi with the clause 

Ci. We also form the overlap representation C in a similar way, where we let L  =  17 U {->aj : 

Xi € 17} be the set of all possible literals formed from the variables in U, and we set

SVi = {0 , x u -ixi}

SWi = {0}U ( L \ Ci),

where, once again, C — {SVi : 1 <  i < n} U {SWi : 1 < i < m}. As before, we 

let E  be the edge set determined by this overlap representation, setting E  — {(u ,v) : 

Su and Sv overlap}. Finally, we set G  =  (V, E ) and A  = V, so that we have an instance 

(G. C, A) of S t a r  O v e r la p  E x t e n s io n .  This transformation is clearly polynomial-time 

computable.

To see that (U, F ) is satisfiable if 5  is a set that both overlaps and shares a common 

element with all sets of C, we let S  be such a set. Since {0} =  fl SVj for any i /  j ,  

we must have 0 e  S  as the element in common to all sets of C. Then, since S  overlaps 

Sv. — {0, Xi, -ixi}, and 0 € S, we cannot have both of Xi and -ia?* in S. This allows us to 

once again form a truth assignment that makes true all literals in S. This truth assignment is,
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in general, not complete, but we can extend it to all the variables in U by making arbitrary 

choices for those variables not in S. Since S  overlaps each 5 ^  =  {0} U ( L \ q ) ,  there must 

be some element in S  that is not in L  \  q ,  and so we have S' n  q  /  0 for all clauses q .  This 

is exactly the requirement that the truth assignment defined by S  satisfies all clauses of the 

3SAT instance, as desired.

Given a satisfying truth assignment for (U, F ), the instance of 3S AT, we can find a set S  

that satisfies the requirements of the S t a r  O v e r la p  E x t e n s io n  problem. We do this by 

taking S  to be the set of literals made true by the satisfying assignment, plus the element 0 to 

ensure that there is a common element in each set of the overlap representation. Since a truth 

assignment cannot make both x* and ->Xi true, S  cannot contain any set {0, aq ->Xj} =  SVi, 

and S  cannot be contained in such a set as there are at least four variables in the 3 SAT 

instance. Thus S  overlaps SVi for a l i i  Also, S'cannot be contained in SVJi — {0}U ( L \ q ) ,  

since if it was, the truth assignment would not satisfy the clause q, and SWi cannot be 

contained in S, as there is some i such that aq and -ixj belong to SWi, since |q | =  3, and 

there are at least four variables in U. Thus S must also overlap SUJ.t for all i. This proves 

that the instance (U, F) of 3SAT is satisfiable if and only if (G, C, A) is a yes instance of 

S t a r  O v e r la p  E x t e n s io n ,  and so, since 3SAT is NP-hard, we have shown that S t a r  

O v e r la p  E x t e n s io n  is NP-complete. □

3.3.2 Containment-Free Representations

In this section we show the hardness of the problem of finding a minimum containment-free 

overlap representation. This problem is formalized as follows:

Problem. The C F -O v e r la p  N u m b e r  problem is defined as:

Instance: A graph, G =  (V, E ), and a natural number k.

Question: Does the graph G have a containment-free overlap representation of size k l

In order to show the hardness of finding a minimum containment-free overlap repre­

sentation, we can make use of the observation that the containment-free overlap represen­

tations are exactly the containment-free intersection representations. This is because, in the 

absence of containment, the definitions of set overlap and intersection coincide. We can 

then apply a simple reduction from the problem of finding a minimum intersection repre­

sentation, given as I n t e r s e c t i o n  N u m b e r  in Section 2.2, to show the NP-hardness of 

the problem of finding a minimum containment-free overlap representation.
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Theorem 3.24. C F - O v e r la p  N u m b e r  is NP-complete.

Proof. We will show the NP-hardness of this problem by reducing the problem I n t e r s e c ­

t i o n  N u m b e r  to it, which is shown to be NP-hard in [34], as we saw in Section 2.2. Given 

an instance G = (V, E) and k  of I n t e r s e c t i o n  R e p r e s e n t a t io n ,  where n — \V\, we 

construct the graph G' by adding, for each v € V, a vertex f  that is only connected to v. 

More formally, we construct <7 =  (V U V ', E  U E') where

V ' =  {v' : v e  V }

E ' = { ( v , t / ) : u G F } .

The instance o f  C F -O v e r la p  N u m b e r  is then given by G  and k +  2n.

Notice that, by the comments preceding the theorem, any containment-free overlap 

representation forms a containment free intersection representation. Notice further that 

in any containment-free intersection representation for G, the sets Sv and Sv> associated 

with a vertex v G V  and if £ V ’ must share a common element, as these vertices are 

connected, and furthermore, since tf is not connected to any other vertex, this element will 

only be found in Sv and Sv>. The set Sv> must also contain at least one other element, to 

prevent it from being contained in Sv, and notice once again by the fact that r/ is adjacent 

only to v, this element is unique to Sv>. Then, since for each v € V, these two elements 

are only contained in Stl and Svi, we ensure that any intersection representation of G  is 

containment-free. This leaves the remaining elements of the representation to form an 

intersection representation for G. Furthermore, since any intersection representation will 

do, a minimum containment free representation for G  will have size given by 6e{G) + 2n, 

where 0e(G) is the size of a minimum intersection representation for G. Thus G has an 

intersection representation of size k if and only if G  has a containment-free intersection 

representation of size k  +  2n.

This transformation can clearly be performed in polynomial time, and, given a graph 

G — (V, E) and a collection C =  {Sv : v € V }, it is easy to check in polynomial time 

whether C forms a containment-free overlap representation for G. □

3.3.3 Overlap Representations with Limited Containment

In this section, we consider the problem of finding, for a given graph, a minimum overlap 

representation with not more than a given number of containment relationships between 

sets of the representation. Without the constant bound on the number of containment re­

lationships that we impose, this would be a more general problem than that of finding a
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minimum overlap representation, in which the only bound on the number of containments 

is given by the number of non-edges of the graph. Formalized as a decision problem, we 

consider the following problem. The factor of 1/2 appears since the non-edges (u, v) and 

(v, u) are both counted, and so to count containment relationships we halve the number of 

pairs of non-edges with intersecting sets.

Problem. The L -C o n ta in m e n t  O v e r la p  R e p r e s e n t a t io n  problem, for any natural 

number L, is defined as:

Instance: A graph, G =  (V, E), and a natural number k.

Question: Is there is some collection C =  : u e V }  that forms an overlap representa­

tion, satisfying |(Jwgy Sv \ < k  and

^ |{(u,v) g  E  : u ^ v a n d S u n S v ^<b}\ < L?

These restrictions are merely that the number of elements in the representation must be 

at most k, and there can be at most L  non-edges represented in the overlap representation by 

containment. This problem, when L = 0 is exactly the C F -O v e r la p  N u m b e r  problem, 

and so it is NP-complete in this case, by Theorem 3.24. We can also show that this problem 

is NP-complete for any value of L. A  simple Turing reduction from the C F -O v e r la p  

N u m b e r  problem is given by making 2L + 1  copies of the input graph, and then finding an 

overlap representation with no more than L  containments, which, by the pigeonhole prin­

ciple, must leave at least one copy of G containment free, both internally, and with respect 

to other components of the graph. Furthermore, if we have a minimum representation, then 

this representation for G must also be minimum, as the sets associated with the vertices of 

this copy of G are disjoint from the sets associated with vertices in any other copy. We 

can then output the size of the representation restricted to this copy of G, which is a mini­

mum containment-free overlap representation of G. With a little more work, we can find a 

many-one reduction from the C F -O v e r la p  N u m b e r  problem, by adding to the graph G 

extra components where a minimum representation will be compelled to “spend” all L  set 

containments, leaving G with a containment-free representation. If we are careful, we can 

do this in such a way that we can track the number of elements these extra components will 

add to the representation, so that we find the size of a minimum containment-free overlap 

representation of G. To show this, we will make use of Lemma 3.14, which will allow us 

to show an upper bound on the number of elements we will be able to save by allowing 

containment relationships between components of the constructed graph.
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Vi, 1 Vit 2 Vit 3 Vit 4 ^i,6 ^i,7  ^i,8 ^i,9 ^i,10

Figure 3.2: Example of L?j with n = 4.

Theorem  3.25. For o/ry L e N ,  L -C o n ta in m e n t  O v e r la p  R e p r e s e n t a t io n  is N P- 

complete.

Proof. As mentioned above, we will reduce the C F -O v e r la p  R e p r e s e n t a t io n  problem 

to the L -C o n ta in m e n t  O v e r la p  R e p r e s e n t a t io n  problem. To this end, we let G = 

(V, E) and k be an instance of the containment-free overlap representation problem. We set 

n  =  | Vj, and we consider only cases where n >  4, as smaller cases can be solved as part 

of the transformation by searching all possible representations and producing as output a 

trivial yes or no instance. In the instance we construct, we add 2 L  components to the graph 

G. Each of these components is given by the graph I f  = (Vi, Ef), which is constructed 

from n + 1 disjoint edges, with three nonadjacent universal vertices, as shown in Figure 3.2. 

More formally, the vertices of each component are

Vi = {vitj : 1 < j  < 2n +  2} U {xh yh Zi},

and the edges are given by

Ei = {(vi)2j - i ,  Vi,2j)  : 1 < j  < n  +  1} U

{(xi, Vij), (yi, Vij), (Zi, Vij) : 1 < j  < 2n +  2}.

The graph in the constructed instance of L -C o n ta in m e n t  O v e r la p  R e p r e s e n t a t io n  

is then given by a disjoint union, H  = G + B\ + E? + ■ ■ ■ + _B2x,, of 2L of these new 

components with the graph given as part of the C F -O v e r la p  N u m b e r  instance. The 

value k! that also makes up the constructed instance is set to

k ' = fc +  3L(n +  l)  +  4 L ( n + l ) ,  (3.9)

to complete the instance of L -C o n ta in m e n t  O v e r la p  R e p r e s e n t a t io n .  This instance 

can clearly be constructed in polynomial time.
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Before showing that the given instance of the C F -O v e r la p  R e p r e s e n t a t io n  prob­

lem is equivalent to the constructed instance, we first make some observations about overlap 

representations of the graphs £*. In any containment-free overlap representation for the ver­

tices Vij of Bi, we must use at least 3 ( n + 1) elements, as each edge (ts,2,7- 1, vi,2j)  requires 

at least three elements, and all of these edges are disjoint, so the sets associated with these 

edges cannot share any elements. Thus, any minimum containment-free representation uses 

exactly three elements for each edge vi,2j)- By the structure of an overlap repre­

sentation, these three elements are arranged into an element unique to the set associated 

with an element unique to SVi2j, and an element in the intersection of these two

sets. We can then extend such a minimum representation to the vertices aj and yi without 

increasing the size of the representation. To do this, we set SCi to be the collection of all 

elements in the intersection of the sets associated with the edge, that is

l < 7< n + l

and, having set SXi to the elements common to the representation of each edge, we can set 

to the elements that are unique to each vertex, obtaining

By construction, these two sets must be disjoint, and also, each of these sets must intersect 

the set associated with each t>,y. Furthermore, since n + 1 > 2, these sets will not be con­

tained in any of the sets associated with the vertices rjj.  Thus, without increasing the size 

of the representation, we can extend a minimum containment-free overlap representation 

for the to also include the vertices x% and y,. In the case that we allow containment be­

tween SXi and SZi , we can then set SZi =  SXi to form a minimum overlap representation for 

Bu  of size 3(n + 1), subject to the restriction that the non-edge (xi, Zj) is the only non-edge 

for which containment is allowed in the representation.

If we seek a containment-free overlap representation for B  the situation is more bleak, 

as we still must use three unique elements to represent each edge vi,2j) ,  but with

only three elements representing an edge, one unique to each endpoint, and one common 

element, the only three nonempty disjoint subsets we can choose to represent aj, j/j and zt 

are single elements, but two of these sets will not intersect both endpoints of each the edges 

we consider. Thus we will need to use at least four elements for each of the n +  1 edges 

of the form (ui,2j - i ,  This number also suffices, for if we introduce a new element

aj to each set SV i2 jl , SVi2j, which doubles the number of common elements in each of

l < j < 2 n + 2
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these sets, we can use the same representation as before for aj and yu and we can now 

set S« = {aj : 1 <  j  < n  +  1} to form a containment-free overlap representation for 

Bi. Thus, if we are allowed only one containment, we can reduce the number of elements 

needed to represent Bi from 4(n +  1) to 3(n +  1), which will be the key to the proof that 

the constructed instance of L -C o n ta in m e n t  O v e r la p  R e p r e s e n t a t io n  is equivalent 

to the given instance of C F -O v e r la p  N u m b er .

If C is a minimum L-overlap representation for H , of size no more than ti = k+ 3L(n+  

1) +  4L(n +  1), we will show that G has a containment-free overlap representation of size 

not more than k. We claim that, as C is minimum, the representation C when restricted to 

G is already containment-free, and to show this, we will examine the potential cases for a 

non-edge to be represented by containment.

The first such case we consider is any containment within the representation of G, which 

is, two vertices u and v such that Su C Sv. We will replace Sv with n — 1 new elements, 

ai, 02 , . . . ,  an- 1, to obtain S'v =  {oi, 02 , . . . ,  an_ 1}. This removes the containment rela­

tionship between u and v, and forces ffv not to contain any other set in the representation. 

In order to ensure that the representation still forms a valid overlap representation for H , we 

will need to modify the sets associated with some of the other vertices. There are exactly 

three ways a set can interact with S*v: we can have the set we consider contain Bv, the two 

sets can be disjoint, or the two sets can overlap. We cannot have the case that any other 

nonempty set is contained in S J,, as it contains only elements new to the representation. We 

will consider, for each of these three interactions, how to alter the set to maintain a valid 

overlap representation of H . For any vertex w  with S y C  Sw, we replace the set Sw with 

the set S'w =  Sw U S'v, to ensure that this containment relationship is not altered. This 

alteration does not affect the overlap, containment, or disjointedness relations of the set Su> 

as these are new elements, and by transitivity, we have added these new elements to any set 

that contains Sw. If w is a vertex such that Sw and Sv are disjoint, then Sw and S'v must also 

be disjoint, and there is nothing to do in this case. If w is such that Su, and Sv overlap, then 

we have S'v n  Sw = 0, which we correct by setting S’w =  Sw U {aj}, for an element a* G S !v 

that we have not already used for this purpose. This will force Sw and S ' to overlap, as the 

conditions that n  >  4 and Sw overlaps the set Sv ensure that there are least two elements in 

each of these sets. We must also add the element aj to any set that contains Sw, to preserve 

this containment relationship. This will not affect the representation of any vertex but v, as 

the sets that the element a,; is being added to must also intersect Sv. One potential problem 

is that we may add all of the Oj to a set that should not contain Sv, but since there are at
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most n  — 2 vertices that are adjacent to v, we can have only this many sets overlapping Sb, 

and so the element a ^ - i will be present only in the set S'v, and those sets that also contain 

Sv. This also ensures that we will not run out of elements £ S'v when making this change 

to Sw. Thus, we can remove at least one containment relationship from G, by adding n — 1 

new elements to the representation. Since there are 2L  components Bi, and only L  — 1 re­

maining containments, there must be some i  for which the vertices of are involved in no 

containment relationships. We can use the containment we just removed from G to reduce 

the size of the representation for Bi from 4(n +  1) to 3(n +  1), which, in total, will save 

n  + 1 — (n — 1) =  2 elements from the representation, contradicting the assumption that C 

was minimal. Thus, the vertices of G are not involved in any containment relationships in 

C.

The second case of a containment relationship is one internal to one of the components 

Bi. If this containment is between two vertices \ j  and v^k, we can simply replace the 

representation for u y  and the vertex Vjj+i it forms an edge with (we assume, without 

loss of generality, by relabelling if necessary, that t y  and vy+ i are adjacent). This is 

done by setting SVij = {01,03,04} and SVi j = {02,03,04}, where the elements o* are 

new to the representation. Finally, we add ai and 02 to SXi, 03 to - V  and 04 to SZi, 

being careful to add these elements to any set that contains these elements (which will 

preserve the representation of these other elements, since set containment forms a partial 

order). If preserving these containment relationships results in all of {q, 02,03,04} being 

contained in one of SXi, Syi, or SZi, which will happen if between each pair of Xj, y,, and z-i 

there is a containment relationship, then we simply add 03 to each of SXi, SVi and SZi, and 

remove a\ , 02, and <34 from these sets, once again being careful to preserve any containment 

relationships. This replacement removes the containment between n.j and v ^ ,  and leaves 

a valid overlap representation. As the cost of this alteration was only four elements, and 

we can apply the freed containment relationship to some other component Bj to save n + 1  

containments, this case also contradicts the optimality of C.

The only remaining case for a containment internal to Bjt is one between two of X4 , yi, 

and Zi, as these vertices are adjacent to all other vertices of B . We must also consider the 

case that between the vertices Xi, yi and Zi there are two or more containments, but since 

given any containment-free representation of the remaining vertices of B,, we can find an 

overlap representation for all of Bi using no new elements and only one containment, this 

also contradicts the optimality of C, as each extra containment can be used in some other 

component to save n  +  1 elements.
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The final case we must consider is a containment relationship between two vertices 

in differing components of H. Let U and W  be the vertex sets of the two components, 

where for some vertex u € U and w € W  we have Su C Sw. By Lemma 3.13 the set 

Sm contains all sets associated with vertices of U, and furthermore no set associated with 

a vertex of U can contain any set associated with any vertex of W . Let A  =  (Ju€U Su. 

This lemma implies that for any vertex in v € W , either contains A  or it is disjoint 

from it. The elements of A  then, within W , act as a single element. This allows these 

elements to be replaced with a single new element, where once again, whenever we add 

a new element to a set we must be careful to also add this new element to any sets that 

contained the original set. After this replacement has been made, we have removed at least 

one containment relationship, at a cost of one new element in the representation. In the 

resulting representation, we have used at most L  — 1 containment relationships, and there 

are 2L  components Bi, so once again, by the pigeonhole principle, there is some component 

to which we can apply the containment relationship to save n + 1  elements, and once again, 

this contradicts the optimality of C.

Thus, a minimum L-containment overlap representation for H  uses containment only 

between the vertices x.-Ll yi, and Zi, and uses at most one containment per triple of vertices. 

Thus, in a minimum overlap representation, we have a containment-free overlap represen­

tation for G, and L of the components given by and we have an overlap representation 

using only one containment for the remaining L  of the B,. By the preceding argument, 

where we let r  be the containment-free overlap number of G, this representation has size 

r +  4L(n +  1) +  3L(n +  1), which by Equation (3.9) is less than U only when r  <  fc, as 

desired.

Fortunately, the other direction is simple. If we take any containment-free overlap 

representation for G of size no more than fc, we can form the representations discussed 

above for each Bi, by simply using three elements per edge (+ 2j - i ,  Vi,2j)  for L  of the Bi 

and four elements per edge for the remaining L. Placing the containments in appropriate 

places, we can find an L-containment overlap representation for H  of size no more than 

fc +  3L(n  +  1) +  4L(n +  1) =  fc', as required. □

3.4 Bounds on the Size of an Overlap Representation

In this section we examine upper bounds on the size of any minimum overlap representa­

tion. In contrast to the intersection case, here we do not know of any graphs that require a

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



quadratic number of elements, as is required in the intersection case by a theorem of Erdos, 

Goodman, and Posa [16], which is given here as Theorem 2.16.

It is interesting to note that while the adding Helly property limits the number of cliques 

in an intersection graph, if we consider an overlap graph, no such limitation occurs. As an 

explicit example, we construct a small Helly overlap representation for On/ 2 , the comple­

ment of a perfect matching, where a perfect matching is simply the union of n /2  disjoint 

edges, an example of which appears as Figure 2.6. To do this, we will take 2n  vertices, 

{1, . . . ,  2n}, and separate them into two groups. To vertex i, where 1 <  i < n, we assign 

the set {0, i}. To vertex i +  n, where again 1 < i < n, we also assign the set {0, i}. Then, 

in the overlap graph, vertices i and i +  n  are adjacent to every vertex j  or j  +  n, for j  ^  i, 

since the intersections of the two sets contain the element 0, and j  is not included in the set 

for vertex i or i + n. Also, since the sets assigned to the vertices i and i + n  are the same, 

they are not adjacent in the overlap graph. Thus, each vertex in this graph is adjacent to all 

but one vertex, and these nonadjacent vertices are paired together. This graph is exactly the 

complement of a perfect matching, or in the notation of Section 2.5, this is exactly the graph 

On/ 2, so we know that it contains 2ra/2 maximal cliques, and yet it has overlap number no 

larger than n  +  1. While the number of cliques may remain unbounded by a polynomial 

in terms of the length of the overlap representation, there is an algorithm for finding the 

maximum clique of an overlap graph with an overlap model with the Helly property, with 

runtime polynomial in the size of the representation, as shown in [9].

In Section 3.4.1 we will examine the connection between the size of a minimum inter­

section representation and the size of a minimum overlap representation for any graph in a 

given class of graphs. This will allow us to find several bounds on the maximum size of a 

required overlap representation for several classes of graphs. The case of cocomparability 

graphs, which we will study in Section 3.4.2, will require a different technique. This is an 

interesting case, as the graph used to prove that some graphs have quadratic intersection 

number is a cocomparability graph, and as we shall see, all cocomparability graphs have 

overlap representations using only a linear number of elements.

In fact, the graph with maximum intersection number, as shown in [16], is a complete 

bipartite graph. This graph does not have quadratic overlap number, however, as by Propo­

sition 3.8, any complete bipartite graph has overlap number given by the overlap number of 

K-2, which is three.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.4.1 Relation to the Size o f an Intersection Representation

In this section, we examine a simple method to transform any intersection representation 

to an overlap representation. We will be able to do this by adding only a linear number of 

elements. While these representations will rarely be minimum overlap representations, they 

do allow us to make asymptotic bounds on the size of the required overlap representations 

for many classes of graphs. This simple method is given as the following proposition.

Proposition 3.26. I f  a graph G with n vertices has an intersection representation o f size k, 

then the minimum overlap representation o f G has size at most k + n.

Proof. If we let G = (V, E) have intersection representation C =  {S,j : v  € V }, we build 

the representation V  — {S' =  Sv U {u} : Sv € C}, where we assume the elements v that 

we add are new to the representation.

As C is an intersection representation, we have fl Sv =  0 if and only if (u, v) € E. 

However, since we have added a new element to each set Su to form the set S ', S'u and S'v 

are still disjoint if and only if Su and Sv are. Also, if Su and Sv intersect, then so must S'u 

and S'v, and in fact, they must overlap, as for any w .z  G V  we have w G Sv if and only if 

z = w, which eliminates any set containment from the representation. □

Using this proposition, we can immediately apply bounds on the number of maximal 

cliques from Section 2.5.2, which must bound the maximum size of any minimum inter­

section representation, to find bounds on the maximum size of any minimum overlap rep­

resentation in a given class of graphs. The first of these results is a bound on the size of a 

minimum overlap representation for any chordal graph.

Corollary 3.27. I f  G is a chordal graph, then G has a minimum overlap representation of 

size at most 2 n.

Proof. By a direct application of Proposition 3.26 to the bound of n on the number of

maximal cliques in any chordal graph in Proposition 2.19, we obtain the desired bound of

2 n. □

Another class of graphs for which we can very easily state a linear bound on the overlap 

number is the planar graphs.

Corollary 3.28. I f  G is a planar graph, then G has a minimum overlap representation of 

size at most - jn  — 6.
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Proof We will once again apply Proposition 3.26, in this case to the bound of Pilsner [43], 

given in Theorem 2.23. This bound limits the number of maximal cliques in any planar 

graph to | n  — 6, which serves as an upper bound on the size of a minimum intersection 

representation. The application of Proposition 3.26 to this bound produces the bound of

f  n  -  6. □

More generally, Proposition 3.26 allows us to show the following bound, which we have 

no evidence to show is asymptotically tight.

Corollary 3.29. I fG  is any graph, then G has a minimum overlap representation o f size no 

more than

Proof. By the theorem of Erdos, Goodman, and Posa [16]], given here as Theorem 2.16, we 

have abound on the intersection number of any graph of [n2/4 j . Applying Proposition 3.26 

to this bound gives the bound in the statement of the corollary. □

We can also use this technique to bound the overlap number of any tree, as any in­

tersection representation for a tree on n  vertices must have size exactly n — 1, as this is 

the number of cliques in any edge clique cover, since each edge is in exactly one maximal 

clique. Using Proposition 3.26 we obtain a bound of 2n — 1. This bound is not optimal, 

however, as we can show the following bound, which is met by the tree on two vertices, 

but is not necessarily asymptotically optimal. A family of trees that does not require n + 1  

elements in an overlap representation is given by the caterpillars, which, by Corollary 3.18, 

never require more than n elements.

Proposition 3.30. Let T  be a tree on n vertices, then the size o f a minimum overlap repre­

sentation for T  is at most n +  1.

Proof. Let T  be a tree; we will form an overlap representation of size n +  1 for T. The set 

Sv of the representation we will construct will be assigned to the vertex v in the tree. To 

form this representation, we first choose a root, r, arbitrarily, from which we will explore 

the tree in depth-first order. We assign to the root the set Sr =  {1,2}, and we will refer to 

the element 2 as the “new” element of S. We then perform a depth-first search, assigning 

to each vertex a set containing a new element, and the element that was new in the set 

associated with the parent vertex. As an example, we assign to the first child of the root the 

set {2,3}, where 3 is the new element in this set. This will ensure that adjacent nodes in 

the tree have overlapping sets, and that nodes that do not share the same parent are disjoint.
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This does not quite produce an overlap representation of the graph, however, as any 

two children of the same node will have overlapping sets assigned to them. We can repair 

this defect with a small modification to the construction of the representation. When we 

assign a set to a vertex, v, with siblings (nodes with the same parent) u\. W2 , ■ ■ ■, we 

also include in Sv any element assigned to any set in a subtree rooted at any of the that 

have already been visited. This removes the overlapping of siblings in the tree, as each 

successive sibling will contain all elements assigned to the subtree of the previous siblings. 

The children of the node v are not affected by this, as they will contain only elements that 

did not appear in any set that has previously been assigned.

This representation thus forms an overlap representation for T, and since there is one 

“new” element introduced for each vertex, and one other element assigned to the root, we 

have used exactly n +  1 elements, as desired. □

3.4.2 Cocomparability Graphs

The case of cocomparability graphs is interesting, due to the fact that the intersection num­

ber of a cocomparability graph can have quadratic size. In contrast to this, we can prove a 

linear bound on the overlap number of any cocomparability graph.

Theorem 3.31. I f  G is any cocomparability graph, then G has overlap number at most 

n  +  1.

Proof. Given a cocomparability graph G, we will find an overlap representation of size 

n +1. To do this, we transitively orient the non-edges of G. We then construct a topological 

ordering of G, which is a removal ordering of the vertices of G such that each vertex in the 

ordering is a source in G when it is removed (vertex with all adjacent non-edges directed 

outwards). Such an ordering can be constructed for any cocomparability graph.

We next take the topological ordering and reverse it, to obtain an ordering, ti, V2 , ■.., vn 

of the vertices of G that allows us to add them to the graph one at a time, so that each newly 

added vertex is a source, with respect to the transitive orientation of the non-edges of G. 

We will construct the overlap representation in the order given by the reversed topological 

ordering in such a way that the transitive orientation of the non-edges is respected by con­

tainment relationships between the sets of the representation. To the first vertex we assign 

the set SVl =  {0,1}. For each successive vertex Vi, we assign it the set SVi = {0, i}, and 

for each vertex Vj with j  < i that is not adjacent to Vi, we set SVj =  SVj U {i}.
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To see that this is a correct representation, we note first that the representation for the 

graph containing only v\ with the set {0,1} is a valid representation, with set containment 

along all directed non-edges of the graph. Then, we assume by induction that the sets we 

have assigned to all vertices up to i \ - i ,  for any i > 1, forms a correct overlap representation 

for the graph induced on the vertices Vi, V2 , • • •, « i-i, and furthermore, for any two vertices 

that are not adjacent, the sets assigned to these vertices have a containment relationship, in 

agreement with the orientation of the non-edge, that is, if (yj,Vk) is a directed non-edge, 

then SVj C SVk. To see that the changes to the representation we make when adding q leave 

a valid representation, notice that any vertex Vj not adjacent to must have a directed non­

edge of the form (v{, Vj), and by construction, since all sets share the element 0, we have 

SVi C 5  . Also, for any vertex Vj adjacent to i>j, we have 0 € SVi fl SVj, and each set has 

an element not in the other set, since j  0  SVi and i ^  SVj, so these sets overlap. Since vi is 

a source in the graph, these are all the cases we must consider regarding set interaction with 

SVi. The only remaining property to verify is that the overlap representation of the previous 

i — 1 vertices has not been affected. Since we have only added an element that is new to 

the representation to some of the sets, we cannot have affected any overlap relationships, 

and by construction there are no disjointedness relationships in the representation. This 

leaves only containment relationships, which can only be affected if SUj C SVk before 

adding the element i to SVj and not SVk. This, however, is a contradiction, as in this case 

we have the directed non-edges (vj, Vj) and («j, vk), but not (vj, vk), which violates the 

requirement that we have a transitive orientation of the non-edges of G. Thus, we have a 

correct representation after adding vertex q to the graph, and so, by induction, we have a 

valid overlap representation for G after we have added v̂ , to the graph.

This representation has size given by n + 1, as we added one new element for each vertex 

after v\, and two elements with the first vertex. This proves the required upper bound. □

This bound is tight in at least the case of i?>, a single edge, which has overlap number 

three. We will see another method to prove this bound in Section 4.4, where we will see 

both upper bounds on the size of any containment representation, and a method to transfer 

upper bounds on the size of the containment number of G to upper bounds on the size of 

the overlap number of G.
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Chapter 4

Containment Representations

4.1 Introduction

Containment representations are another representation that has not been studied as thor­

oughly as intersection representations, despite the fact that set containment is a natural 

means to represent the edges of a graph. In order to provide a formal treatment of contain­

ment representations we make use of the following definition of a containment represen­

tation of a graph. This is merely a formalization of the notion that vertices in a graph are 

adjacent if and only if, for the sets of a representation associated with them, one set contains 

the other.

Definition 4.1. Given a graph G = (V, E ), a collection C =  {Sv : v € V }  is a containment 

representation for G if for any u, v G F  we have

(it, v) E E i f  and only if Su C Sv or Sv C Su.

We define the size of a representation as the number of elements in the union of all sets in 

the collection, which is

LK ,
vev

and we let the containment number, £(G), be the size of a minimum containment represen­

tation for the graph G.

Once again, in such a representation we do not require that different vertices be as­

signed different sets. This allows the same set to represent all vertices of a clique that is 

also a module. In other terms, we can assign two vertices the same set, provided that they 

are adjacent, and they have identical adjacencies with the remainder of the graph. This 

property of containment representations allows for compact representations of cliques, col­

lections of universal vertices, and other subgraphs that contain many similar vertices, or any
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graph that can be build primarily using vertex expansion. We have the following lemma for 

containment representations, which is identical to Lemma 2.2 on intersection representa­

tions.

Lemma 4.2. If H  can be obtained from G by vertex expansion, then £(G) =  £(H).

Proof Since G is an induced subgraph of H  g(G) <  i(H ),  by restricting a representation 

for H  to the vertices of G.

In the other direction, let C =  {Sv : v G V }  be a containment representation for 

G = (V, E). Each vertex v of G is mapped by vertex expansion to a clique in H. Let 

Cv be the clique resulting from the expansion of vertex v, where |CJ,| may be one. Each 

vertex of H  is in exactly one clique Cv. We form the representation given by the following 

collection, for each vertex u of H,

V  = {S'u = Sv : u £  Cv}.

Each vertex in Cv is assigned the same set, Sv, and since Sv C Sv this is a correct rep­

resentation of these vertices. For any two vertices w and 2 of H , where w G and 

z  G Cv, the sets S'w =  Su and 5 ' =  Sv have a containment relationship if and only if u 

and v are adjacent in G. Thus V  is a containment representation for H, which proves that 

£(i?) <  £(G). □

From the definition, containment representations are quite similar to intersection and 

overlap representations. Like overlap representations, in building a containment represen­

tation we seem to be forced to make a choice for each non-edge. This choice is between 

representing the non-edge as disjoint or overlapping sets, and similar to the case of overlap 

representations, this appears to make the problem of finding a minimum containment rep­

resentation much more difficult than finding a minimum intersection representation. As an 

example, notice that there are non-edges in Figure 4.1 represented in both of these ways.

An arbitrary graph does not, in general, have a containment representation. This is in 

contrast to the cases of intersection and overlap representations, where a representation can 

be found for an arbitrary graph. The restriction on the graphs that have containment repre­

sentations comes from the fact that any containment representation of a graph necessarily 

produces a transitive orientation of the edges of a graph, since we can order the edges by 

set containment. This does not handle those vertices assigned the same set, but in this case 

we can simply treat these vertices as one vertex when finding a transitive orientation. Once 

such an orientation is found, we can decide an arbitrary total ordering of these vertices and
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Figure 4.1: Example of a minimum containment representation.

replace the single vertex we had used in place of them, duplicating the edges attached to 

this single vertex. Since these vertices form both a clique and a module this process will not 

destroy the transitive orientation, and so we can construct a transitive orientation for any 

graph that has a containment representation. This forces such a graph to be a comparability 

graph.

This necessary condition is also sufficient, as noted in [27]. To see this, given any 

comparability graph, we choose an arbitrary transitive orientation, and assign each vertex 

v  the set Sv = {u : (u, v) £ E }  U {t»} of all vertices that are endpoints of edges directed 

toward v, plus the vertex v. To see that this forms a containment representation, let u, v 

be any two vertices, with Su and Sv the sets associated with them. If Su C Sv then we 

have u £ Sv, which implies that (u, v ) is a directed edge of the transitive orientation. If 

Su and Sv are disjoint, then the vertices u and v must not be adjacent as a  ^  and 

v g  Su. If, on the other hand, Su and Sv overlap, but neither is contained in the other, 

and we assume for contradiction that u and v are adjacent, then there is some x  £ Si with 

x  ^  u  and x $  Sv, and so, if (u,v) is a directed edge of the representation, we have 

(x, u) and (u, v) in the transitive orientation, but not (x, v), which is a contradiction that 

shows that (u , v ) is not an edge of the graph, since we can reverse the roles of u and v 

to show that (v, u) is not an a directed edge in the orientation of the graph. Thus, this 

construction produces a valid containment representation for any comparability graph, and 

so the graphs that have containment representations are exactly the comparability graphs. 

It is also noted in [27] that the comparability graphs are exactly the graphs that can be 

represented as containment graphs of the subtrees of a tree, and this can be seen by taking 

any containment representation and arranging the elements as the leaves of a star. The sets 

of leaves are formed into subtrees by adding the root of the star to each set. Then, one of 

these subtrees will contain another if and only if one set of leaves contains the other, which 

happens exactly when one of the original sets in the containment representation contained
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the other.

There is little previous work on finding minimum containment representations. Repre­

sentations of graphs by containment of restricted families of sets has been considered, but 

there has been little investigation into the case where the family of sets being considered 

are all subsets of {1 , 2 , . . . ,  m }  for some m.

Golumbic and Scheinerman have also established necessary and sufficient conditions 

in [27] for a class of graphs to be a containment class of graphs of some family of sets. Any 

class of graphs that is hereditary, closed under vertex multiplication, and has a coherently 

transitively orientable composition sequence is a class of containment graphs of some fam­

ily of sets. It is important to note, however, that in [27] two identical sets are not considered 

to have a containment relationship. Since here we do consider these sets to have a contain­

ment relationship, we can replace the requirement of closure under vertex multiplication 

with closure under vertex expansion. Having made this replacement, the only difference 

between this and the characterization of intersection graphs discussed in Section 2.1 is that 

the composition is required to be coherently transitively orientable, that is, the graphs of the 

sequence can be transitively oriented in such a way that for each graph Q in the sequence of 

oriented graphs, the orientation on Gi agrees with the orientation on Gj+i for those vertices 

of G{+1 that are a part of the induced subgraph that forms a copy of the graph Q.

The remainder of this chapter is organized as follows. Section 4.2 discusses some di­

mension notions on partially ordered sets that will be useful when examining containment 

representations of graphs. We examine hardness results related to the problem of finding 

a minimum containment representation in Section 4.3. In Section 4.4 we examine some 

bounds on the size of the containment number, and a connection to the overlap number, 

which we will use in Section 4.5 where we see some classes of graphs for which it is known 

how to efficiently construct a minimum containment representation.

4.2 Embedding a Partial Order into a Hypercube

A notion related to a containment representation of a graph is the notion of embedding a 

partial order into a hypercube. The elements of the partial order are associated with ver­

tices of an m-dimensional hypercube. The vertices of this hypercube can be thought of 

as characteristic vectors of {1 ,2 , . . . ,  m }, ordered by set containment. Since this yields a 

containment representation of the partial order, the task of minimizing the dimension of 

this hypercube thus seems to be related to the task of minimizing the size of a containment
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representation for a graph. As an example, consider the graph K\. We can take any tran­

sitive orientation of this graph to obtain a partial order on four elements. Considering the 

transitive reduction of this partial order we have a directed path on four vertices, and so we 

seek the smallest hypercube into which we can embed a directed path of length three. Since 

any path of length three in a two dimensional hypercube, which is exactly a transitively 

oriented C4 , must use edges that are oriented in opposite directions, the smallest hypercube 

we can embed K$ into is a three dimensional cube. The vertices of the hypercube we might 

embed the vertices of K 3 into could be 000,001,011, and 111. The sets associated with 

these vertices are 0 , {1}, {1, 2 }, and {1 , 2 ,3}, and taking these sets forms a containment 

representation for the graph K4. In Section 4.2.1 we will examine some notions from the 

theory of partially ordered sets, so that we can later apply some of them to the problem 

of finding the containment number of a graph. We conclude with Section 4.2.2, where we 

discuss some complexity issues related to computing the size of the smallest hypercube we 

can embed a partially ordered set into.

4.2.1 Partial Order Dimension Theory

In this section we introduce some definitions and results from the theory of partially ordered 

sets that will be useful when examining containment representations for graphs. This is by 

no means a complete introduction to this large area of study. For more background than is 

given here, see [60].

A partially ordered set, or poset, is given by a pair (17, <) containing a set U of elements, 

and a partial order relation on U, given by <, which is a reflexive, antisymmetric, and 

transitive binary relation. All posets we will consider will be finite.

Given a partially ordered set P  =  (U, <), we have the associated comparability graph 

G = (U, E ) on the elements of the poset, where (u, v) € E  if and only if u < v or v < u 

in the partial order P. This graph is simply an undirected representation of P, and it is 

appropriate to call it the comparability graph of P, as the transitive orientation given by 

the partial ordering of P  forms a transitive orientation of the vertices of G. In a similar 

way, given a comparability graph G =  (V, E), we may take any transitive orientation, and 

construct a poset P  = (V. <), where u < v if and only if there is a directed edge from u to 

v in the chosen transitive orientation of G. Notice that a poset has a unique comparability 

graph, but since a comparability graph may have many possible transitive orientations, there 

may be many posets associated with a comparability graph. We call a property of a poset P  

comparability invariant if it is shared by all posets associated with the comparability graph

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of P.

A chain in a poset is a set of elements that are pairwise comparable. In other words, in 

the comparability graph of a poset, this set forms a clique. The height of a poset P , given 

by h(P), is defined to be the size of the maximum clique in the comparability graph of the 

poset. This height of a poset is clearly comparability invariant, as any partial ordering of 

the vertices of a clique produces a chain of the same size.

A linear extension of a poset P  is a totally ordered set Q on the same set of elements 

that is consistent with the partial ordering of P , that is, if u < v in P  then we have u < v 

in the order given by Q as well. Using linear extensions we can build a representation of a 

poset. To represent a poset P , we take linear extensions Ql, Q2 , . . . ,  Qm such that for each 

pair of incomparable elements u and v in P  there are Qi and Qj such that u < v in Qi 

and v < u in Qj. These linear extensions form a representation, since we can reconstruct 

P  given only Qi, Q2 , . . . ,  Qm, by noticing that for each pair of elements u ,v, u < v in 

each Qi if and only if u < v in P . The smallest m  that allows such a representation is the 

dimension of the poset P , denoted dim (P). This notion of dimension was introduced in 

1941 by Dushnik and Miller [14], It is also known that the dimension of a partial order is a 

comparability invariant [58], and it is NP-complete to determine if the dimension of a poset 

is k, even for fixed k >  3 [66],

As an example of the dimension of a poset, consider the poset given by the divisors of 

the number 6. More precisely, the elements of this poset are 1,2,3,6,  with a < b if and 

only if a  divides b. The dimension of this poset is two, since if we attempt to represent it 

with only one linear extension, we notice that we must have either 2 <  3 or 3 < 2 in the 

representation, but since neither of these is true in the poset under consideration, we need 

at least two linear extensions of the poset. If we use the two linear extensions given by 

1 <  2 <  3 <  6 and 1 <  3 <  2 < 6, we obtain a representation of the poset, and so this 

poset has dimension two.

The definition of the dimension of a poset P  of size n is concerned with embedding P  

into linear extensions, which form chains of size n. This embedding is then an embedding 

into the product of chains of length n. The product of two partial orders P  and Q is an 

order of pairs in P  x  Q, with (a, c) < (b, d) in the product if and only if a < b in P  and 

c < d in Q. A natural means of extending this definition is to bound the size of the chains 

that we embed the poset into. This is the approach taken by Trotter [59], who defines the 

fc-dimension as the minimum number of chains of length k required to represent a poset P , 

denoted dimjt(P).

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



{1} {1}

Figure 4.2: Tw o transitive orientations o f  the sam e graph w ith differing 2-dim ension .

A special case of considerable interest is the 2-dimension of a poset, denoted dirr^(P). 

This case is also studied in [59], where it is observed that if a poset P  is embedded into a 

product of m  chains of length 2, then we can treat this embedding as an embedding into 

subsets of {1 ,2 , . . . ,  m }, where if u < v in P, then we have Su C Sv, where Su and Sv 

are the subsets associated with u and v by this embedding. The reason that the elements 

of products of chains of length two can be seen as sets is that in the product, for each 

element in the partial order, each of these chains corresponds to a bit, and so if we view 

these bits as characteristic vectors, we obtain an embedding into subsets of a set. Finding 

the 2-dimension is thus equivalent to finding the dimension of the smallest hypercube that 

a partial order can be embedded into.

The 2-dimension is thus of interest in the study of the size of a containment represen­

tation of a graph G, but there are obstacles to the direct computation of the containment 

number by the 2-dimension. The first of these obstacles is that the embedding into a prod­

uct of chains given by the ^-dimension is required to be injective, which forces different 

elements of the poset to be associated with different sets. This is a restriction that we have 

not made on containment representations, and there are cases when it can have a large ef­

fect. For example the 2-dimension of a clique on n  vertices is n whereas the containment 

number of any clique is zero. The second, and perhaps more serious, obstacle is that the 

2-dimension is not a comparability invariant. This is demonstrated by Figure 4.2, where 

the 2-dimension is given by providing an embedding into subsets of {1 ,2 , . . . ,  m }  for min­

imum m. The containment number of a graph G, where we require that no two vertices are 

assigned the same set, is thus given by the minimum over all transitive orientations of the 

2-dimension of the associated partially ordered set. Despite these obstacles, there are some

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



special cases where we can apply results concerning the 2-dimension to the containment 

number of a graph.

We conclude with one such case. The following theorem of Trotter [59] that bounds 

the size of the 2-dimension for any partially ordered set, will be used to upper bound the 

containment number in Section 4.4.

Theorem 4.3 (Trotter [59]). For any poset P  with n elements,

logn <  dim2(P) < n.

4.2.2 Complexity of Calculating the 2-Dimension

In this section we examine many of the known complexity results related to the 2-dimension 

of a partially ordered set. These results indicate that the 2-dimension is a difficult quantity 

to compute, and we will see that it is also difficult to approximate.

The NP-completeness of the problem of calculating the 2-dimension of a poset is briefly 

argued by Stahl and Wille [53]. A more thorough argument is given by Habib et al. [30], 

where the analysis is done carefully so as to show the following non-approximability result, 

which is quite a strong non-approximability result.

Theorem 4.4 (Habib, Nourine, Raynaud, and Thierry [30]). For all e >  0, all k > 2,
and all partial orders P, there is no polynomial time algorithm approximating dinfc(P) 

within (^(n1/21-6) unless P =  NP.

In addition to this theorem, Habib et al. show that it is computationally difficult to 

determine if the height of a poset is equal to its 2-dimension. The height forms a lower 

bound on the value of the 2-dimension, as a chain on n  elements has 2-dimension n, and 

so, the following theorem shows that it is hard to determine, for an arbitrary poset, if this 

lower bound can be achieved.

Theorem 4.5 (Habib, Nourine, Raynaud, and Thierry [30]). Deciding ifd im a(P ) = 

h(P ) for any order P  is NP-complete.

In addition to these hardness results, there are few classes of posets for which it is known 

how to, in polynomial time, compute the 2-dimension. Considerable effort [7,8,30,35] has 

been applied to the case of partially ordered sets whose transitive reduction forms a tree, as 

this problem has applications in the representation of multiple inheritance hierarchies for 

object oriented programming languages. Despite this interest, the best performing algo­

rithm, which is given in [30], is only able to approximate the 2-dimension of these posets
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within a factor of 4. This paper also contains the conjecture that the 2-dimension of these 

posets can be computed in polynomial time.

4.3 Hardness Results

While one might expect that the hardness of calculating the 2-dimension of a partially or­

dered set would easily imply the hardness of the problem of calculating the containment 

number of a graph this does not appear to be the case. The construction used in [30] to 

show the NP-completeness of the 2-dimension problem is heavily dependent upon the spe­

cific partial order, and it is not clear that finding the minimum 2-dimension over all transitive 

orientations of a graph is a difficult problem. The 2-dimension problem adds evidence that 

the problem of computing the containment number is NP-complete, but as in the case of the 

overlap number, the problem remains open. Once again, the problem of finding a minimum 

containment representation appears to be more involved than finding a minimum intersec­

tion representation, as we must make a nontrivial choice between disjointedness and overlap 

for each non-edge of the graph. For completeness, the following is a formalization of this 

problem.

Problem. The C o n t a i n m e n t  N u m b e r  problem is defined as:

Instance: A graph, G =  (V, E), and an integer k.

Question: Is there a containment representation C — {<% : v € V}  of G such that

[ j S v < k l
vev

We show the hardness of the problem of extending an overlap representation in the next 

section.

4.3.1 Extending a Containment Representation

We consider once more the problem of deciding if a representation can be extended to 

include an additional vertex without increasing the size of the representation. As in the 

case of the overlap representation, which we saw in Section 3.3.1, this problem is hard for 

containment representations, unlike the case for intersection representations for which we 

saw a polynomial-time algorithm in Section 2.3.5. In order to demonstrate the hardness of 

the problem, we consider the following formalized version of the problem of extending a 

containment representation.
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Problem. The C o n t a in m e n t  E x t e n s io n  problem  is  defined as:

Instance: A  graph, G = (V , E ), a containment representation C =  {<5̂  : v €  V }  o f  G, 

and a set A  C V.

Q uestion: Is there a set S  C [}veV Sv such that either S  C Sv or Sv C S  i f  and only if

v €  A?

We can show that this problem is hard by reducing an instance o f  3 SAT to it. This 

w ill be done in a similar way to the proof o f  the hardness o f  S tar  Ov e r l a p  E x t e n s io n , 

where adding an element to the representation for the new vertex w ill have the effect o f  

setting the truth value o f  a variable in the 3 SAT instance. This reduction is presented in the 

proof o f  the next theorem.

Theorem  4.6 . C o n ta in m e n t  E x t e n s io n  is NP-complete.

Proof. Once again, demonstrating that the problem is in N P  is easy, as given a set S,  we  

can check, in polynom ial time, by considering each pair o f  vertices, and each elem ent in 

the representation, whether S  satisfies the requirements o f  the problem.

To show the NP-hardness o f  the problem, w e w ill reduce a given instance o f  the N P- 

complete 3SA T  problem to an instance o f  the C o n ta in m e n t  E x t e n s io n  problem. To 

this end, let (U, F ) be an instance o f  3SA T, where U = {xi ,X2 , , x n} is a set o f  n  

variables, and F  =  { c i ,  C2 , . . . ,  c m }  is a set o f  m  clauses, each containing three literals. 

We w ill restrict our attention to the case where n > 4, which can be done without loss o f  

generality by simply solving any smaller instances and producing as output o f  the reduction 

a trivial yes or no instance o f  C o n ta in m e n t  E x t e n s io n .

From (U, F),  w e construct a graph G = (V, E)  with containment representation C = 

{Sv : v €  V}.  The vertices o f  the graph are given by

V  =  {Vi : 1 <  i < n}  U {wi : 1 <  i <  m }  U {z},

where the vertices V{ w ill be associated with variables in U, the vertices u\ w ill be asso­

ciated with clauses in F,  and the vertex z is used to ensure that an extension o f the repre­

sentation forms a truth assignment to the variables o f  U. I f  w e set L  =  IJi=i ( XL ^ x i}> the 

set o f  all literals, the containment representation that w ill be part o f  the instance o f  CON­

TAINMENT E x t e n s io n  is given by the collection C consisting o f  the follow ing sets, for all
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1 < i < n  and 1 <  j  < m,

SVi = {xi, ^Xi}

Sm = ( U \ c i )  U { 0 }

Sz = {0}.

The sets, SVi, of the representation associated with the vertices q will be used to force an 

extension of the containment representation to choose only one truth value for each vari­

able, while the sets SWj, associated with the Wj, will ensure that the choices made satisfy 

the clauses of the 3SAT instance. The remaining set of the representation Sh =  {0}, which 

is associated with the vertex z, is used only to ensure that any set extending the contain­

ment representation must intersect the sets representing the clauses of the 3 SAT instance, 

as this will force the constructed representation to satisfy these clauses. To complete the 

construction of the instance of C o n ta in m e n t  E x t e n s io n ,  we set A  =  {z}, the set of 

neighbours of the vertex associated with the set 5, and we set E, the edges of the graph to 

be those edges implied by the containment representation C. This construction can clearly 

be performed in polynomial time.

To see that the reduction is correct, consider any truth assignment to the variables of 

U that satisfies the clauses of F. Consider the set S  given by the literals that the truth 

assignment makes true, and the element 0. Sz =  {0 }  C  5, which satisfies the condition 

that the vertex associated with S  is adjacent to z. Also, for any variable aj, S  contains 

exactly one of x* and -ixu  which implies that SVi % 5, and in addition, since n > 1, there 

are at least two variables, so that S' % SVi. Thus the sets associated with the vertices 

have the desired relationship with the set 5. If we take any SWi ~  ( L \  q )  U {0 } , there is 

some literal in q  that is made true by the truth assignment, and this literal does not appear 

in SWi, so we have S  % Sm . In addition, since we have imposed the restriction that n > 4, 

and c; contains exactly three literals, there is some variable Xj such that Xj and -iXj both 

appear in Svh , but if both of these variables are in S, then 5^ C  S, which we have already 

shown is not the case. Thus Sm % S, and the set S  has the properties required by the 

C o n ta in m e n t  E x t e n s io n  problem.

In the other direction, we consider any set, S, that is a yes instance of CONTAINMENT 

E x t e n s io n .  Since S  forms a containment relationship with Sz — {0 } , we must have 

0 6  S', as otherwise we have S  C  {0 }  C  SWi for any i, which contradicts the choice of 

S, as the set S  does not have a containment relationship with SWi for any i. Since we have 

0 6  5, the set 5  intersects SWi for all i, and since there is no containment, there must be

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



an element in each set that is not in the other. The only elements of the representation not 

in SWi, for each i, are the literals that satisfy the clause q, and so there are literals in S  that 

satisfy each clause. Also, since SVi =  {xi, -<Xi} % S, for all i, there is no variable in S  that 

appears in both plan and negated form. Thus, we can choose a partial truth assignment that 

makes true all the literals of S, and this assignment will also satisfy the instance of 3SAT. 

This assignment may not assign truth values to all variables, but this is easily remedied 

by assigning arbitrary truth values to the remaining variables. We have thus shown that the 

instance of 3 SAT is satisfiable if and only if there is a set S  that satisfies the requirements of 

the constructed instance o f  C o n t a i n m e n t  E x t e n s i o n . Since this problem is contained 

in NP, as argued above, we have shown that C o n t a i n m e n t  E x t e n s i o n  is NP-complete.

□

4.4 Bounds on the Size of a Containment Representation

In Section 4.2.1 we have seen both upper and lower bounds on the size of the 2-dimension 

for any partially ordered set. If we consider the 2-dimension problem to be the problem of 

embedding a partial order into a collection of sets ordered by containment, there is still one 

critical difference between this problem and the problem of finding a containment repre­

sentation. This difference is that in embedding a partial order into a collection of sets for 

the 2-dimension problem, we only consider embeddings that are injective, which is, each 

vertex of the partial order is assigned a distinct set. In a containment representation we do 

not make this restriction, and this will cause us to lose the lower bound of Theorem 4.3, 

which can be verified by noting that the containment number of a clique is zero. We are 

still able to extend the upper bound of this theorem to containment representations. This is 

given as the following corollary.

Corollary 4.7. If G is a comparability graph with n vertices, then £ (G) < n.

Proof. Let P  be the partially ordered set formed by any transitive orientation of G. Notice 

that any embedding of P  into a hypercube will also form a containment representation for 

G. Thus, by Theorem 4.3, we have £(G) < dim2(P) <  n. □

This bound is tight for small values of n, as an independent set of size two has con­

tainment number two, and the bound used on the two dimension is tight, as a chain on n 

vertices, which is a clique in the language of graph theory, has 2-dimension n. It is not 

known, however, if this tightness is dependent on the fact that the embeddings of partial
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orders into hypercubes are required to be injective, and since we have not made this restric­

tion in the case of a containment representation, it is not known if the bound in the above 

corollary is tight for all values of n.

This bound is in contrast to the quadratic bound given on the intersection number in 

Theorem 2.16, since the example graph that achieves the quadratic bound is a comparability 

graph. This is similar to the bound for overlap representations given as Theorem 3.31, and 

we will study a relationship between containment and overlap representations in the next 

section.

4.4.1 Relation to Overlap Representations

In this section we examine the relationship between the size of a minimum overlap repre­

sentation for a graph, and the size of a minimum containment representation for the com­

plement. On the surface, it is a surprise that these two quantities have any relationship 

at all, given that there does not seem to be a straightforward method to convert overlap 

representations to containment representations.

In order to study this relationship between overlap and containment representations, it 

is helpful to examine a restriction of the problem of finding a general representation. The 

representations we seek must satisfy the additional property of having no disjoint sets. We 

introduce notation for these concepts, letting <f(G) and £'((?) be the minimum size of 

disjointedness-free overlap and containment representations of the graph G. This restric­

tion, as we show in the next lemma, forces any containment representation to also be an 

overlap representation of the complement graph. This lemma also implies that the min­

imum disjointness-free overlap representation for G  has the same size as the minimum 

disjointness-free containment representation for G.

Lemma 4.8. Let G =  (V, E ) be a comparability graph. The collection C =  {Su : v £ V }  

is a containment representation for G with no disjoint sets if and only if C also forms an 

overlap representation for G with no disjoint sets.

Proof. Consider C a disjointedness-free set representation for a graph with vertices V. The 

collection C is a containment representation for G if and only if (u, v) € E  implies Si C  Sv 

or Sv C  Su, and ( u ,  v) g  E  implies that Su and Sv overlap. This occurs exactly when C 

forms an overlap representation for G. □

With this lemma, we can prove a relationship between the overlap and containment 

numbers without the disjointedness-free restriction. The proof is a simple application of
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this lemma and an observation about containment representations.

Theorem 4.9. For any comparability graph G,

<p(G) < £(G) +  1

Proof. Lemma 4.8 proves that for any comparability graph G, we have if(G) = £'(G). 

Since a disjointedness-free overlap representation is an overlap representation, we have

p ( G ) < !p ' ( G ) = ? ( G ) .  (4.1)

We then notice that from any containment representation, we can form a disjointedness- 

free representation by adding a single new element to all sets of the representation. Thus, 

we know that £(G) < £(G) +  1, and combining this with Equation (4.1) yields the desired 

bound. □

This theorem, with the result of Theorem 4.7, provides a different proof of Theo­

rem 3.31, but it can also be used to take an upper bound on the size of a containment 

representation for any subclass of comparability graphs to a corresponding upper bound for 

an overlap representation on the complementary class of graphs.

4.5 Algorithms

There are few classes of graphs that have known algorithms to find minimum containment 

representations. This is perhaps not a surprise when we consider the scarcity of algorithms 

to compute the 2-dimension of a partial order, as we have seen in Section 4.2.2.

Despite this scarcity, we will present algorithms to find minimum containment represen­

tations for a few classes of graphs. These results are primarily translations of some results 

on the overlap number to the containment number for the complement classes of graphs. 

In Section 4.5.1 we will see a scheme to find minimum containment representations of in­

dependent sets, and in Section 4.5.2, we will examine containment representations for the 

complements of paths and caterpillars.

4.5.1 Independent Sets

One small class of graphs for which we can find a minimum containment representation 

is the class of independent sets. While these graphs are rather trivial, we still require the 

application of deep combinatorial results to find the minimum size of such a representation.
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The maximum number of subsets of {1,2 , . . . ,  m} in a collection such that no set in 

the collection contains any other is given by Spemer’s Theorem [51], which is given here 

as the case where p  = 0 of Theorem 3.4. As we are considering independent sets, no 

two vertices may be assigned the same set, since this implies a containment relationship. 

For this reason, the number of elements needed to form a containment representation for n 

independent vertices is given by the quantity in Spemer’s Theorem. This quantity can be at 

most one smaller, and no larger, than the overlap number for a clique on n vertices, which 

can be observed either from the structure of the function S(p, m),  or Table 3.1. If we apply 

Theorem 4.9 to the p  =  1 case of Corollary 3.5, we obtain a bound that is never more than 

one higher than the bound given by the following corollary.

Corollary 4.10. A minimum containment representation for an independent set on n ver­

tices has size given by

Proof. By Theorem 3.4 5(0, m) =  (L(r7X+i)/2j) *s the maximum number of subsets of 

{1,2 , . . . ,  m} such that no set contains any other, and so, where m  is the minimum value 

satisfying the minimum in the theorem, a containment representation must use at least m 

elements.

To construct such a representation, we take the value m  from the theorem, and consider 

all subsets of size {(m +  1)/2J. Since these subsets all have the same size, none will be 

contained in any other, and counting them we find that there are

such sets, and so we may form a containment relationship for an independent set on n

In order to actually find such sets, we can use the results in Section 3.2.3 to compute 

the minimum value m  such that n  < S'(0, m) in linear time. From this value, we simply 

produce n arbitrary subsets of {1 ,2 , . . . ,  m}, which can be done in time exponential in m; 

since m  €  O(logn), by Theorem 3.10, this can be performed in time linear in the size of 

the graph. Thus we have a linear algorithm to find a minimum containment representation 

of an independent set.

min {m  : n  <  5(0, m )}

vertices by choosing any n  of them. □
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4.5.2 Complements o f Paths and Caterpillars

In Section 4.4.1 we have seen a relation between the overlap number of a graph and the 

containment number of the complement. Specifically, Theorem 4.9 enables us to translate 

upper bounds on the overlap number to lower bounds on the containment number. In this 

section we will make use of it to show some tight lower bounds on the complements of paths 

and caterpillars. These bounds will be shown tight by providing a scheme for constructing 

a minimum containment representation for one of these graphs. The first of these results 

enables us to construct a minimum containment representation for the complement of a path 

on n vertices.

Corollary 4.11. For n  > 2, we have £(Pn) = n — 1.

Proof. By Theorem 3.15, <p(Pn) — n  for n > 3. Theorem 4.9 lets us transfer this to a 

lower bound on a containment representation of I f ,  so we have £(-Pn) > n  — 1, and so 

it is sufficient to construct a containment representation of the correct size. To observe the 

desired lower bound on the P2 , notice that we require two sets such that neither contains 

the other, which requires that they each have a unique element.

To construct a representation that achieves this lower bound, we let {1 ,2 , . . . ,  n} be the 

vertices of Pn. Consider the sets given by, for 3 < i < n,

51 =  {1}
5 2 =  {2}

Si = {1,2, — 2} U {*}

Sn =  {1 ,2 , . . . ,  n  — 2}.

This representation, by construction, has size n — 1. It can also be transformed into an 

overlap representation for Pn if the element n  is added to each set. Notice that for any i 

and j ,  we have Si C S j  if and only if i < j  — 1, as the set S', contains only elements 

in {1 ,2 , . . . ,  i}, while for any j  > i +  2, the set S j  contains the set {1,2, . . .  , j  — 2} D 

{1,2 , . . . ,  i). Thus, if for each i we associate the set Si with the vertex i in the containment 

representation given by C = {§;}, vertices i and j  are adjacent if and only if they are at 

distance at least two in Pn, which is exactly the adjacency condition in Pn. □

Since this proof is constructive, we can use the obvious algorithm to construct a mini­

mum containment representation of Pn in 0 ( n 2) time. The size of the constructed repre­

sentation, in terms of the sum of the number of elements in each set, in this case is required
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to be quadratic, as all containments in the representation must be proper if we have n  >  3. 

Since the containments are proper, and we can find a chain of [n/2] of them, we require at 

least i E f l (n2) elements in the sum of the sizes of the sets representing this chain.

Thus, this algorithm is optimal in both asymptotic run time and the size of the constructed 

representation.

Having extended the overlap number of a path to the containment number of the com­

plement of a path, we can also extend in a similar way the bounds on the overlap number 

of a caterpillar, which, as given in Definition 3.17, is a tree with the restriction that all non­

leaf vertices form a path, called the spine of the caterpillar. In determining the containment 

number of the complement of a caterpillar, we can use as a lower bound either the above 

bound on the containment number of the complement of the spine, or we can once again 

use Theorem 4.9 to obtain a bound from the value of the overlap number for the caterpillar. 

The containment number of a caterpillar will be one smaller than the overlap number of the 

complement, as we can once again remove a single element from an overlap representation.

Corollary 4.12. For T  =  (V, E) a caterpillar with spine containing k > 1 vertices, we 

have £(T) =  k +  1.

Proof. By Corollary 3.18, which is the statement for overlap representations of caterpillars, 

and Theorem 4.9 we know that £(T) > k + 1, and so we need only construct a representation 

that matches this bound.

In order to construct such a representation, we let T  be a caterpillar, with u for 1 < 

i < k the vertices of the spine in order, and we let U, be the set of all leaves adjacent to tfc. 

Consider the representation given by

SVi = { l , 2 , . . . , t - l } U { *  +  l}

SLi = {1,2

where we assign to each vertex the set SVi and to each vertex in Lj we assign the set S^.  

Once again, this forms an overlap representation for T  if we add the element k +  2 to each 

set. To see that this containment representation for T  is correct, notice that for any i < j  we 

have SiH C fix, and this is the correct relationship between the leaves of the caterpillar, 

as in the complement these leaves are all adjacent. If we consider the relationship between 

the leaves and the vertices on the spine, notice that if i < j  we have 5^ C SxJj and 

— Svj, which correctly represents the edges between any leaf and vertex of the spine it 

is not adjacent to in T.  We also have, for any i, an overlap between the sets £(,. and Sx,* as
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the elements i +  1 and i are unique to these sets, respectively. Thus in the complement of 

the caterpillar, a leaf will correctly not be adjacent to the corresponding vertex on the spine. 

Finally, we consider the case of any two vertices on the spine; since this representation is 

identical to the one used in the proof of Corollary 4.11, we know that C  SVj if and only 

if i < j  — 1, and this correctly represents the complement of the spine of the caterpillar. □

Once again, this representation takes quadratic space to specify, as the sum of sizes 

of the constructed sets is quadratic in k, the length of the spine of the caterpillar. Thus, 

the simple algorithm that produces this representation runs in time 0 (f?), which is again 

asymptotically optimal as we require at least Vl($) space to specify a containment repre­

sentation for just the vertices forming the complement of the spine of the caterpillar.
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Chapter 5

Conclusions and Open Problems

We have seen that the study of the sizes of set representation for graphs contains many 

interesting results and has deep ties to elegant areas of mathematics. These ideas are also 

useful in the broader context of representations of graphs, which makes this an important 

area of study.

In addition to the problems we have considered, there are problems on set represen­

tations that remain unsolved. In this section we state some of the open problems related 

to the results presented here. The primary open problem is formulated as the following 

conjecture.

Conjecture 5.1. O v e r la p  N u m b e r , the problem of determining if an input graph has an 

overlap representation of a given size, is NP-complete.

This problem is clearly in NP, as it is a simple matter to verify that a given represen­

tation is both correct and of the appropriate size. The justification for conjecturing that 

the problem is NP-complete is that many problems on overlap representations appear to be 

harder than the related problems on intersection representations, and the I n t e r s e c t i o n  

N u m b e r  is known to be NP-complete. Intersection representations are equivalent to edge- 

clique covers, but no similar equivalence is known for overlap representations where each 

element in the representation forms not a clique, but a cocomparability graph. The prob­

lem of extending an overlap representation is also NP-complete, but the same problem on 

intersection representations admits an efficient algorithm.

These reasons also apply to containment representations, where the extension problem 

is also NP-complete, and elements of the representation form comparability graphs and not 

cliques. In this case, however, a similar conjecture may not be appropriate. The reason 

for this is that for a graph to have a containment representation it must be a comparability
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graph, and so there is some hope that since we consider only a restricted class of graphs the 

following open problem may be resolved by an efficient algorithm.

Open Problem 5.2. What is the complexity of C o n ta in m e n t  N u m b e r , the problem of 

determining if an input graph has a representation of a given size?

From these more general problems, we can consider the problem of finding a minimum 

representation for a restricted class of graphs. One such class of graphs is the cographs, for 

which no efficient algorithm is known to find the intersection number. This is unusual, as 

cographs have a simple recursive structure under the modular decomposition that allows for 

a simple vertex clique covering algorithm, but it is not known how to extend this to the case 

of an edge-clique covering algorithm. Cographs are also a relatively small class of graphs, 

and since they contain no induced F |, they are almost chordal. The intersection number 

problem is solvable on the chordal graphs, and the cographs that are not chordal are only 

those that contain C4 as an induced subgraph. This implies that there is a relatively small 

class of graphs that an algorithm for finding the intersection number of a cograph needs to 

consider. Despite this, no such algorithm is known, and the technique of clique covering 

the edge-clique graph, used in the chordal case, does not seem to extend to cographs. This 

problem is given as the following open problem.

Open Problem 5.3. Is there an efficient algorithm to find a minimum intersection repre­

sentation for any cograph?

The last two open problems we present are the problems of finding minimum overlap 

and containment representations for the class of trees. Despite the apparent simplicity of 

this class, no algorithms are known to find the overlap and containment numbers of graphs 

in this class. An algorithm is known for the overlap number of caterpillars, but it does not 

appear to extend to the class of trees.

Open Problem 5.4. Is there an efficient algorithm to find a minimum overlap representation 

or a minimum containment representation for any tree?

From this list of open problems it can be seen that the study of these set representations 

for graphs is far from over. There are many more interesting and relevant problems that 

have yet to be solved.
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Appendix A

NP-complete Problems

In this appendix we give the definitions of some NP-complete problems that were not in­

cluded in Section 2.5. These problems can be found in the book by Garey and Johnson [21].

The first of these problems is one that was one of the first problems known to be NP- 

complete. It is the 3 SAT problem, shown to be NP-complete by Karp [32]. A definition of 

this problem follows.

Problem. The 3 SAT problem is defined as:

Instance: A set U of variables, and a collection F  of clauses over these variables, each 

containing exactly three literals.

Question: Is there is some truth assignment to the variables in JJ that satisfies all clauses 

in F I

A variant of this problem, which is also known to be NP-complete [49], is a restricted 

version of 3 SAT where we require not only a satisfying truth assignment, but one that does 

not make all the literals in any clause true.

Problem. The N o t - A l l - E q u a l  3SAT problem is defined as:

Instance: A set U of variables, and a collection F  of clauses over these variables, each 

containing exactly three literals.

Question: Is there is some truth assignment to the variables in U such that there is no 

clause of F  with all three literals assigned the same truth value?

The next problem we introduce is also among those shown to be NP-complete in [32], 

This is the problem of determining if a graph contains a clique of a given size.

Problem. The C l iq u e  problem is defined as:
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Instance: A graph, G =  (V, E),  and an integer k.

Question: Is is a subgraph of G?

The weighted version of C liq u e  is also NP-complete. This is because setting all 

weights to one results in the C liq u e  problem. This problem is as follows.

Problem. The W e ig h t e d  C l iq u e  problem is defined as:

Instance: A graph, G =  (V, E),  a function w : V  —» Z, and an integer k.

Question: Is there is a set of vertices S  that induce a complete subgraph G such that

The C liq u e  problem is clearly equivalent to finding an independent set of the same 

size. The reduction is simply to complement the graph being considered. Thus, this problem 

is also NP-complete.

Problem. The I n d e p e n d e n t  S e t  problem is defined as:

Instance: A graph, G =  (V, E), and an integer k.

Question: Is there is a set S  C V  such that \S\ =  k and S  induces a subgraph of G that is 

an independent set?

The next problem we introduce is another famous problem. This is the problem of 

determining the minimum number of colours needed to colour a graph such that no two 

adjacent vertices are assigned the same colour. This problem is also shown to be NP- 

complete in [32].

Problem. The C o l o u r  a b i l i t y  problem is defined as:

Instance: A graph, G =  (V, E ), and an integer k.

Question: Is there a function c : V  —> {1,2 , . . . ,  k} such that for any (u,v) £ E  the 

function satisfies c(u) ^  c(w)?

The next problem we introduce is C o l o u r  a b i l i t y  with a fixed constant value of k. 

This restriction of the problem is still NP-complete, as shown by Stockmeyer in [55],

Problem. The / c - C o lo u r a b i l i t y  problem is defined as:
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Instance: A graph, G = (V, E).

Question: Is there a function c : V  —> {1 ,2 , . . . ,  k}  such that for any (u, v) £ E  the 

function satisfies c(u) ^  c(v)l

The problem of choosing the minimum set of vertices in a graph such that each edge is 

incident to some vertex of the set is also known to be NP-complete [32]. A formalization 

of this problem is the V e r t e x  C o v e r  problem.

Problem. The V e r t e x  C o v e r  problem is defined as:

Instance: A graph, G =  (V, E ), and an integer k.

Question: Is there is a set S  C V  such that |5j =  k  and for each (u, v) £ E,  at least one 

of u and v is in S I

The problem, similar to V e r t e x  C o v e r , of finding a set S  of vertices such that all 

vertices not in the set are adjacent to a vertex in S. This problem is shown to be NP- 

complete in [21]. This problem is formalized as the D o m in a t in g  S e t  problem.

Problem. The D o m in a t in g  S e t  problem is defined as:

Instance: A graph, G =  (V, E),  and an integer k.

Question: Is there is a set S  C  V  such that |Sj =  k  and for each v £ V  \  S  there is some 

u £ S  with (u, v) £ E l

The final two problems that we introduce are the problems of finding a Hamiltonian 

path or a Hamiltonian cycle, where a path or cycle is Hamiltonian if it visits all the vertices 

of the graph, without repeating any vertices. The HAMILTONIAN CYCLE problem is shown 

to be NP-complete in [32].

Problem. The H a m ilt o n ia n  C y c l e  problem is defined as:

Instance: A graph, G =  (V, E).

Question: Is there is an cycle in the graph that visits each vertex exactly once?

The H a m ilt o n ia n  P a th  problem is not shown to be NP-complete in [32], although 

this fact is generally attributed to this paper. A hardness proof for a restricted version of the 

problem appears in [19].

Problem. The H a m ilt o n ia n  P a th  problem is defined as:
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Instance: A graph, G =  (V, E).

Question: Is there is a path in the graph that visits each vertex exactly once?
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