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. _ ABSTRACT

v

The characteristic and effective 1mpedances for an experlmentaﬂy tested

" shell theory model of an' arterial pathway with branchmg are calculated The;

/

. 1nﬂuence of v1scoelast1c1ty, ﬂuld v15cosxty, and geometry on these qu’antities' is'ex-".‘

amined’ in detail for a broad range of frequencies. Followmg thlS we compute the§

‘ mput 1mpeda.nce for an a.ssembly of branchmg ﬂuxd ﬁlled dlsten51b1e tubes havmg

]

<dlscrete reflection sites for pressure and/or ﬂow waves. The effects of architec-

o
- g

!

- ture, v1scoelast1c1ty and,:ﬂmd viscosity are inVestigated over' a ﬁat’uralifrequenc'y”

rangé occuring in thbe cardiac outpﬁt of experimehtal animals. All the numeri¢al -

.

results are depicted graphically and cOmparisons.with'in vivo measurements are

made.

-~
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.

fecting wave propagation .in arteries.

CHAPTER I
) Introduction

Pulsatile bloo,dvﬁovw is generated i 5h§ arteries by the pumping a'.ctionvof E

the heart and the intera‘ction‘otc blo@d with the’arteria.l ‘walls. The t{heory_ .of’_ :

‘ bulse wave propagation in arteries is a special case of the general theory of one-
RS v : ‘ o > .

/

dimensional waves in fluids. .That means the character of the wave propagation

is determined by the balance between the resisting force and the inertia of the

fluid.. -
PuIseS"propagatirlg from the heart to the periphery consist of forward di-

rected wa;ves_;and backward travelling reflected waves, whose particular features

" have been recognized to depend on geometrica.l and p}{ysical aspects' of the circu-'
<1atory system The dlstenmblllty of the wall, the lumen area, the viscous effects

‘of the blood and tube wall, and arterial branchmgs are the major elements af—

L4

In a series of recent papers ([1]-[4]), the propagation and reflection of a

transient pressure impulse in a viscoelastic tube was inve‘stigated experimentally,

/

. using both water-filled latex rubber tubing and the aorta of anaesthetxsed dogs

?

In the experlments reported in these artlcles a single pulse of very short duration,

?

~roughly 5 ms, was generated in the system, rnakir{g it possible to observe the

incii‘ient pulse in isolation from its reflections. - The frequency spectrum of such

‘impulses is much broader than that-of the naﬁtu_rz;l arterial pulse in humans or

" dogs: - the artiﬁciall_y_ "ge_'nerated pilses contain frequencies in the range 0-250 Hz

. . - \ [

N
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2
whereas the frequency content of the natural pulse 18 llmlted to the range 1-10

Hz in humans and 2-20 Hz in dogs.

Mathematical models of wave pfopagatlonrlcan contribute to the qu‘antita—

tive analysis of the arterial wall’s mechanical properties, the effect of chemical
agents on the vasculature, the detection of vpa.tho‘logi‘cal alterations (like stenoses

«

or aneurysms) in blood.uessels-and the gtudy of the role and ;vorkiniif the
cardiovascular system’s regulatory rnechanlsnns. .For tlﬁ{l;‘:purpose, the availal)ility
of an accurate ma.therne,tical 'descriptli'on of pulse W’alre transmission in ar’-cies
represents a -useful. support to lnvestigate la.rge‘portions of the arxéria.l tree,; a.s
often requlred by both clmlcal pra.ctlce and. physuologlcal mvestlgatlon

The usual mathematical analyses of wave propagation in the cardiovascular
system are based on a line_ar long wavelength (LLW) theoi'y (5] (LLW theory was
| first introduced by Young [6] Lxghthlll [7], (8] and othefs improved and extended

thlS theory to apply 1n a variety of sxtuatlons representive of the cardiovascular”

system.) The wavelengths of the' frequency components present in a given pulse

are assumed to be much greater than}the radius of the tube involved. In the case

of the natural arterial pulse, thls_assumption is a reasonable one. This theory,
however, usually fails to model‘adequately the transmission characteristics of the
pulse in the experiments cited abovg/./ In these experiments the lengths of the

shorter waves in the impulses are of the : same order of magnitude as the radii of

' the tubes.

iy

1
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A model of préssure pulse propa.gati;n in liquid-filled distensible tubes that
has av range of Qalidity beyond that of the LLW theory was presented recéntly
bylMoodie et. al. [9]. This model is based on a linear medium wavelength
(LMW) theory and includes not only the effects of the circﬁmférentiai stiffness

of the tube wall and the :.xial inertia of the fluid but also the radial inertia of
theh tﬁbe wall and the radial inertia of the fluid. Experiments conducted to test.
the model demon;trate.that it is successful in’;;redicting the transmission char-
acteristics observed in a pressure impulse g.enerated at the entrance of a very
long water;ﬁlled latex rubber tube [9]. Employi'ng this *model, Sawatzky and
Moodie [10] explore‘d the .reﬂection chara;:teristics of wavés af:; a junction beﬁween
two mechanically dissimilar tubes. They noted that the LMW theory,' unlike. the/
LL\'?'V th'éory, predicts such reflection to be f;equéncy depenéent, although the
variation with frequency of the reflections is not large enough to be obsérved in
' experirfxents until frequencies in excess of 100 Hz are reached. In subsequent in-
veéstigations, Sawatzky and Moodie [11], [12], examineé the role of fluid viscosity
in the propagation of pressure impulses of the sort generated in the experiments
of [1)-[4] and derived formulae for the reflection coefficients at a jﬁnction befween
"two dissimilar tubes. Their work ;onﬁrmed that the dominant dissipative mecha-
nism in- .Iv..d in the propagé.tioh of such pulses is that of wall viscoelasticity; but

fluid vis >sity causes a modest reduction in the peak amplitude of the pressure -

pulse and this attenuation is very sensitive to the '-d_egree of viscosity.



’

The concepts of chara.ctenstxc and effectlve 1mpedance ha.ve proved useful
\

in vascular studies ([5],[8], [13] (14],[15],[164]. - The characterlstxc 1mpedance of a
unlforil"ﬁuid-ﬁlled tube is geﬁne.d,.as the ratio of oscillatory pressure to ﬂow rate
in a tune wherr a single wave is travelliné elong it ;an‘d take§ the same cbnstanf
value at every po@_@iﬂle tube. In the preé'Ence of wave 'reﬂecti()ns the measured
ratio of escillatory pressure to flow rate is then celled the,effeci_:ive irnpedan_ce. As’
silch?" eﬂ'ective impedance values pr?)vide a rneasu\re of the’ resistance to 'r)'nlsatile‘
ﬂov;/ of a given system and, in the case of fﬁe"functieningﬁebardiova.sc(uler system,
provide a vmeasure of the work performed by the heart in driving snch flows. ,
P Yective impedance is also called input'impedance of the system distal to the.
-sight of Ineasurement [14]; (15]. -

In this thesis, we shall incorporate the experimentally tested LMW model -
([9], [11]) for impulse propagation in a tube into deﬁmtlons o/bo’fh the charac-
teristic and effective 1mpeda.nce~1n order to ¢ examine their dependence upon the
various pa.rameters of the system‘v over a wide range of frequencies. Furthermore,
the 'input impedance of a system of branching tubes with multiple reﬂectien sites
is investigated over the physiological frequency range. This input imp&:danee will
then be evaluated as a function of freque{u:y and discussed in the light of certain

™

physiological observations.

(24



‘CHAPTER TI °
The Model S e
f .A'é,“a‘ Cbpééquehqé o~f the a.‘na.:lys‘is and the svubégquent experimenta' confirma-
tion carried out m (9], !we 'také as the ‘é“quaktion of dioﬁon for th= .ucompressible

“tethered” tube wall

r

a % 7% o
W = .
4G, (1 + i_?r P—~yh—~ FToR (2.1)

3 /

A

;where W xs,the radxal dlsplacement bf the tube wall, GC is the equllbrlum shear

n

-modulus t the tlme, R the tube radlus h the wall thxckness ¥ the density of the

:wall? 7 the retardat,gon time for ‘the wa.ll \matemal, p_t'he'denSLty of'_th‘e. ﬂu’id‘, andv.

P the net radial stress across the tube wall directed Outwardly} which is defined
¢ ‘ "

- ) .
o . -

as.
P =o0; —0o,, - (2.2) :

Cow , e . _ ' —
here o; is the normal stfess inside the tube, called the internal fluid stress, &,

is the stress actihg ’_onb the outside of the tube, called the extdrnal pressure loa.d.
We assume that vpev'i‘s tonstapt‘an‘d equ'z'il' t’o.t.,he undistu-rbed fluid pressure within
the tube, that is,:m = 0. '_ N

The fluid equé.;ions are ‘the li‘ﬁe;rized Navief-Stokés' equations, together with

-
7

the’ continuity equation. Their axi(symmetricvforms are

\av_,. _ 10p v, 108v, v, 8%v, \
3 ~ por o Gt e Tt et (23)
dv;  19p [620,, 18v, 0%vyq .
ot poz v a2 T+ r or dz? } (2'4)



'z the. axial coordinate, and v the kinematic viscosity of the fluid.

- Ovg av;‘ v,
‘ 61: + or

+-= =0, - (25)

-where v, is the radia' fluid velocity, t}z the axial fluid velocity, p the fluid pressure

and p(R,z,t) = p;, r the radial coordinate measured from the axis of the tube,
S ) .

1

_ N . , , _
At the interface betgveen the fluid and the solid, the ‘conditions are\@-—con-

tinuify of radial and axial components of velocity and the continuity of \pressure:

[‘. - o ‘ \" vy (R,z.t) EYa (2.6)
) “:;‘: /
| v (R,z,t) = 0, (2.7)
- R - av, . 4
v _ P(z:t) = [P~ 2wp—"lr=r — pe(z,1)
. o A i
=[p— 2gpa—'i],%3. , o (2:8)

‘The fluid and tube wall are to be set in motion by a rise in pressure at

z =0. It is convenient to prescribe the disturbance at z = 0 in terms of p,,, the

-

fluid pressure averaged over the tube’s cross section, and to express the soldti_pn

in terms of. py, and v, (the axial fluid velocity averaged over a cross section).

These quantities are then given by

1 . ’ i
vm (z,t) = Z/ /vz(r, z,t)dA, -~ (2.10) .
A ‘

.where A is the area of the tube’s cross section.

pm(@) =7 [ [oinzoas o)

<



I - ‘ ) 7
It is -qonvehient to express the problem in nondimensional variables. To
P - T '

a this ‘end, we iptr_‘oduce the following dimensionless quantities:
—~ e~ ! e LS CO
(I.,f, W) = (xa T,W)/R, (t‘l T) = (t’T)E’
| , ' ' (2.11)
*",// : ‘(i’\za%\r,ﬁm) :(Uz,vr,vm)/co,(ﬁspaﬁm) = (pvPapm)/pC(Z)
~In the sequql‘gt"}v_le'follc‘)wihg nondimensional quantities appear as well:
Vot | k=kR, O=wR/co, (2.12)
0 and
, ( 1 ~h '

~wherein hats are employbd to denote nondimensional quantitiés, co is the Korteweg-

Moens wave speed for a “tethered”, incompressible, viscoelastic, thin-walled ;cir-

cular cylinder, that is,

I 'co=,(2G°h)§, | | (219)

pR
k and w are the wave number énd circular frequency fo; .a‘W%ve c'oq:_lpon_e‘r;xt and
m is a Reynolds nﬁmber. ‘In thek the abseﬁcé of a natural velocity scale ar'is‘h.ig
from the Tﬂow, the .t}'pical velqcity used in the fo;glula for m is the one associated-‘

with the pressure disturbance.
Y

After substitution of the appropriate nondimensional quantities from the
. : . &

above equatians into the wall equation (2.1) and the fluid-equations (2.3)-(2.5),

the following nondimensional governing equations are obtained

P +h OW S



dvr _ _§£+_"_[Lz"' 19v, v Lz”'] (2.16) “
ot 20r  coRLAr? "y 3r 27 Fgz " "
v, ~lap v [azv, 13y, azv,J (2.17) §
ot~ 9z Rlae Trar T ezl ‘
‘ vy 8 -
5:”£+%=mwf o (2.18)
or o _
- 8- | 1, 0w e
Aro, + YW =P —2(n - I Arr i (2.19),
_ v,  dp  17d%, 1dv, v, 8%, T
ot —_Efm[ar +r r  r2° 3:1:2}’ (2.20)
Ov, dp 1 [821)1 1 0v, 'azv,] > \c
= —— 4 — —_—— .21
ot - 61:-+ ml 9r2 + r Or + ozt |’ o (2.21)
‘ 3 v, v, PR '
Set e+ Lo, 0 222

(

where,‘;‘the hats have been dropped from the nondimensiopal vafia;.bles' for conve-

nién;:e, and will be dropped in the suCceeding equations as well. © ‘

The intérface conditions Egs. (2.6)-(2.8)'beqome . IR
BW(x,t) ‘
(Lz,t) = —=— : 2.
vl z,t) = — o (223)
" . 02(1) Ivt) = Oa ‘ ) (224)
29 ‘
P(z,t) = [p - = v'] . (2.25)
r=1 . .

m Or

The mean fluid pressure and the averaged axial veloc.i'tvy’v are then given by
Pm(z,t) = 2/ rp(r,z,t)dr, S (2.26)
Jo , K - :

— 1 ’ .
ﬁ"/ \ il ‘ Um(z,1) = 2/ rvg (7, z,t)dr, » (2.27)
e vm( ) 0 “(” ’) o | ( )
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‘ . . . - ¢
’ ) . .

Since the model includes dissipative mechanisms, the -dispersive waves are

usually recognized by existence of the elementary solutions in the form of

] {Pﬂpm,vm,vmvnW} = {ﬁ’ ﬁM)t_}m,ﬁ.’rnﬁ;’aW} eXP(ikI - zwt), ‘. (228)
- " where p(r), pm(r), Um (r) Uz ( (r) )0 (r are the amphtudes -
. _ L
) o Substituting these equations intg the governmg equa.tlons (2.19)-(2.22), the

interface condltlons (2. 23 2 25 and Eqs. . 2 26 (2. 27), we obtain

T ' p,‘,,(x,'t)’: 24 ")a1 exp'(ik:c_,—z"wt), | | (2.29)
P vm(z,t.)‘ = 2Iij(k)[1 : 11:;‘1((}72))]&1 exp(tkz — iwt), (2.30)

wherei;i a; is an arbitrary constant, F is.defined in terms of the modified Bessel

fuactions as’,

F(z) = zIy(2) /21, (2), ’ | (2.31)

i andwb'I,1 denotes the 'm’Odi@’Q}d Bessel function of the first kind of order n, n =0,1,
and K is given‘ as ’ .

K = (kK —imw)}. e (2.32)

. COn the otherhand, after substit‘ﬁting the elementary solutions into the wall

' equation (2.19), the dispersion relation takgé the form

N
>

where

A{w) =1 —\iw‘r —win o (2.34)



The approximate solutions for the roots of Eq. (2.33) are given as

k = +w(Fy(Ko)A)~4 [1+ %('Fs(Ko) __Ai(Ko) )w2] +O[w], (2.35)

Fy(Ko)A ~ (F2(Ko)A)? F§(Ko)A?
k wherein

Ko = (mw)te %, (2.36)
| 4 (2) = (R (2) - )/F (), (2am)
Fi(z) = [Fe)(1 - F(2))/2*] + 413 . (2.38)
, Fy(2) = 1 - 1/F(2), - (2.39)

. »5. " . '
| Fs(z2) = 1@ +g  Ffs) (2.40)

Fiz) &

- The- approximation is ﬁniformly valid throughout the range of ir'1terest, in the
frequency w and the kinematic fluid viécosity v, except at fhe point w=0, ¥ =0
where the dependence of k upon w and v is nonuniform. The entire frequenéy
range considered her_e are éslsociatet'i with the dimensionless interval 0 < w < 1.5.

j The general solutions for p,,, v,; can be constructed directly from the above
equations By melans of Fourier integrals [17]. Since -he dispersion relation pos-
~

sesses a pair of roots +k given by Eq. (2.35) the Fourier integrals will contain

two terms corresponding to each of the two roots. Thus the genera] solution for

N _(,)

-

Pm s
1

pr(et) = - [ @t b e e, (2

and the general solution for v,, is _

Vm (2, 1) =‘§1; [o 5[1 . %’Z))-] [p* (w)e™ — p~ (w)e = et 4oy, (2.42)
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here p* and p~ are chosen to fit the boundary conditions corresponding to +k{w).

and —k(w), respectively.

\ .
Suppose that the prescribed disturbance is given by

Pm(o’t) = ¢(t)a . (2'43)

where #(t) is a function which rises steadily after ¢ =%0-from zero to a maximum

value of one and then decgzases steadily bé.ck to zero. Then,
P (w) = é(w),p~ (w) =0, (2.44)
where @(w) is the Fourier transform of ¢(t), that is,
—_ m .
(w) = / o(t)e* dt. (2.45)
0

“Thus, the solution satisfying all of the prescribed conditions including quiescent

initial and regularity condi‘ns imposed as £ — oo or t — oo may be expressed

Pm(z,t) = % _: é(w) éxp[i(kz — wt)]dw, (2.46)
o) = 21” /_ : gq—ﬁ(w) [1- FF ((2)} expli(ks —wi)ldo.  (247)



S

CHAPTER IT 4

Analysis of an N-furcation

" The larger systernatic arteries, shown in Fig. 2.10 of McDonald [14], con-
'duct’the blood from the heart to the peripheral organs antl their dimensions are
given in Table I of Caro et al. [18]. This ﬁgulre shows that arteries proéressively
divide end subdivide in the precess of arborfzatidn. 'Exc'ept for the aortic areh,
the other arteries have an 'appvroxi_mately eonstant diameter between junctions.
.The total arterial cross-sectional area increases progressively as it branches. This
increase is‘believed to be necessaljy to offset the loss in pressure due to increased
frictio.n’consequent'upqn the expanging initial surface as the arteries dichotomize.
We now show how the preceding experimentally tested theory mz;y be
adapted‘to cotnpute the effective impedance t'or a configuration of tubes resem-

bling a typical junction found in the mammalian cardiovascular system.

~

B

<A > Calculatien

" Consider a bra.nchmg system cofmposed of N tubes meetmg in the “com-
pact” (8] junction B located at z = ¢ as shown in Fig. (3.1). A pressure irﬁpulse
of the sort used in the experiments of [1]-[4] is generated at z = 0 and travels
along Tube 1 toward the junction, We enote the pa.rameters asseriated with the
ve.rious tubes by R(®) , h("), '7(’0 , G’g"), T("), c((,"_) , n(n) , and rﬁ("). According to
the prescrlbed model it is natural to define the characterlstxc impedence Z(®) of

Tube n as the ratio of the ‘averaged normal stress in the axial dxrectlon to the

12
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N—————71—

X

et .
Fig. 3.1 Illustrating a trifurcation

13
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volume flow [19], that is,

ZMm) = [pn) _ r(RM)2y™ | n=1. N, 3.1
m m®) 9z m

in dimensionless form, where Pm and v,, wére deﬁxie_d _in Egs. (2.26) and (2;.27)
and gfven explicitly by Egs. (2.46)-(2.47). In order to maintai-n consistency, it
is necessary to make all variables nondimensional ernploymg the‘parameters of -
one of the tubes We choose those of Tube 1. It then follows from Egs. (3.1),

(2 46)-(2.47) that

Q) ,={1 _ 2i(k)? [1 _. F(k) R( /R() } }

m(l) . F(K(R)

R(n) 0 k(n). F(k(n) R(n) /R(l)) -1
{"(R(l)) w [1‘ F(K™) J} :
n*—-l)...,.}V. : ‘ ' ) (3.2)

where

P

."( .
K =02 (R (k{43

1+ “’l( BT 4 k™) )(R(n) o )2]
2 \FR, (K(g") JA(n) (F, (Ko(n) )A) )2/ \R(Y) cén) )

(5:3)
A wr® _ 2 (B2 |
=1 —wr — W (R(I)C(()n)) n ) (34)
L - R(n) 2 . R(n) c(l)u % g
oKk ARV Y Sl —im® (2% 3 3.5
= [() (7) -(R(l)vc(gn).)‘]‘ | (3.5)
V (n) ¢ (1) 3
W [, (B —if
K = [ “’(R(l) 01)” e (36)

-




~ BN N BT
It is “now‘ ;evident. ;hat Z() are fu‘nction‘s of'ffequency, wall viscoelaéticity, ﬂui;l‘
viscosity, and geometﬂr‘ic:' dimensib‘ns; but '.a.‘ré ‘in.depen_élent of the position invb‘the
tube. - |

A

" When the pressure or flow pulse arriyes at the Junctxon part of it is re-

" ﬂected back to the parent tube and part transmltted down the. daughter. tubes,,

n =2, ,...,“N. T,,hesev_mmdent, reﬁected,and transmitted pressure waves take
- 7
“the form
i R 1 . » o ~_ -
o (220) = 3= [ 8(0) explilk) s — w5
1 [ ' o
= — / Pr (6, w) e-xp[i'(k(l) T — wt)|dw
27 J_o - E .
1 [® . S
= Py (z,w)e™ dw, . L (3.7
o |, P (B o, )
Pt (2,8) == [ @7 (w) expli(—kM) z — wt)|dw
o oo 2l » ‘“
1 [ '
" = o [ P (Gw) expli(—kM) z — wit)|dw
2T o .
1 [ ot
. -1 B (2. w)e " du 3.8
a7 |, P (3.5)
- L oo S |
P (z,8) = - a, (w) exp[i(k(")'z —wt)|dw =
. 2 _ -
. ' 1 0o
- - -2_ / ﬁtml (e)w) exp[z(k(") I._" wﬁ]dw
LI : . .
1 [ ot | ‘ L ‘
= Zr' pmn (I w) - dDJ v ' o ' (39)

wherein @(w) is determined by the incident waveform and a"(w), @ (w) are de-

terrn_ined' from the boundary conditions at the junction. Similarly,. the.incivdent,

o o
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reflected, and transmitted veloc impulses take the form

Vit (2,2) ='2i7r _: #&(w) [1- f,((}’;“((?)))] expli(kM z — wt)]dw
= 5 [ (€0 explieV z ~
- % _: T (2, w) e du, (3.10)
ha (@) = o [~ E a1 - Fﬂ((,’;%))] expli (k) z — wt)] o
=L _°° Ty (&) expli(—kD z — wi)]d
— % _: O (2,)e ™ s, o )
'ufn,, (o.1) = _21? /—: ki’}‘) 2 () [1 B F(R(;)(l;('(*’)l)/)R(l) )} expli(k™ - cz;t)]dw
=57 | s ) expli(k) 2 — s
= % : 5t (2, w)eiut du: | | | (3.12)

~

The boimda.ry coqditions at the junction are derived from the continuity of -

the averaged normal stress in the axial direction and the volume flow across the

junction. These are

; 20k . 2k
ﬁml (Z’w) - mﬁ_ml (e7w) + ﬁm.l (Z’w) + m(l) 6ml (E,w)
,. 21k ' ' |
= ﬁtmn (e, w) - __—rn(T—i}:hn (Z,w), ' (313)
and
(RO [0 (80) + 0y (G,0)] = S (RW )2t (e,0). (3.14)
T n.=_2' )
° [y

i)
'
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For convenience we introduce the ratio of axial velocity to pressure, that is,
B = ﬁm(x,w)/ﬁm(z,w)v'

in the incident, reflected,and transmitted waves. Hence we have.the quantities

-

”, o 0 Wy,
1 _ Ym (e,W) _ _Ym (e,w) _ k B F(k ) ‘
t | (n) (n) (n) (1) :
() = T (60) _ K 1 (k™) RO /ROD)
) ) g ﬁf’nn (8 w)\ W [1 F(}G(n) ) ] (3.16)

/J
Deﬁmng the reflection coefﬁment R. and the transmission coefﬁments Ten by

~Rc — Pmi (eaw) Tc;x — pmn (8 w)

B (&,w) Py (E,w) (317

we may express Egs. (3.13) and (3.14) in the form

( .
(1 +Rc)[1 2"“ 8w ] =Tpn [1 2’k1) oS (3.18)
Y (1 - R) = (R™ /R )28 T, (3.19)
n=2

The solution of these N equations is

1- A,
R, = 20)
= I (3.20)
1 2:‘1:(”_ (1) 2
. Tcn = 2:7;('1) IB ’ n = 2, . e N, ) (3.21)
where .

p Ae =y + Ay +om Ay = D A, (3.22)
) (R(n) >é 3 [1_ kg0 } 023)

L= | ‘ 3.2

T \RM)/ g0 Lkm)__ﬂ(n o

0
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w

' ‘Here A, is the disc‘antinuity coefficient of the junction as the whole whereas A,

characterizes the discontinuity between the ;;arent and each of the daughter tubes

(n ='2,3,...,N). It is a straightforward matter to show that

Aen = 20 17(m) | C o (3.24)
: - 2 N
~and o \\ : '
| Ae=2W/zg, | (3.25)
‘w(rlllieré‘ - ‘ ' ) , &
(25)7 = (Z9)7 + (2®) 7 4 20y (326)

Thus Zp represents the total impedance of all the daughter tubes lumped to-

gether. The reflection coefficient R. may also be expressed in terms of charac~’

teristic impedances, that is,

A
\

. 1-2z0) /7
R_l Z\Y | Zp

_ M. r - - 7
1+ 20) )z - (3.27)

The above formul.a,é'show that the response of a wave to a single junction may

be expressed in terms of the char: teristic impedances of all tubes meeting at

Y

the junction. *However, should a reflected ‘wave be present then for that tube

. carrying such a wave its characteristic impedance must be replaced by its effective

'impedance in the above formulae.

4

The rdte of energy transfer in the reflected wave relative to that in the

incident wave is

E* W(R(l))zﬁrl(ﬁ;nl — T ) — <ﬁ:"1 )2 = RZ. (3.28)
- _— - _‘. - . B C . | .
B (RO Ly (o — ) Vo) |
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The rate of energy transfer in the transmitted wave to that in the incident wave

is

. ) : e
N Et _ EnN=2 71'( ( )) (pmn &,,%m_vsnn)

B n(RO o, (G — ot 2)
N , B 2_’2‘(%’_5(1)‘ 4 .‘\
, =§;(R(1 1>[ _mgg’rg(n)](luc)?
Y i 3.29
&l +g\c) . (3.29)

Thus, the energy flow equation is

o

E'r E't . . .
. 7 g , - ( )
or P
2ik(n) ﬁ ' o
2 2
R + Z Acn [‘—W] T, = 1. (3.31)
n=2 m

This shows that no energy is lost at the junction.

The transmission properties of Tube 1, when reflected waves from the -

junction at z = £ are present, may be cHaracterized in terms of the effective

impedance Z(ﬁ) , where . ‘ »
— _2 duyy .
(1) _ Pm1 mil az ‘
\ . Zeff (I, w) - W(R(l) )2vm1 ‘) i (332)
with .
Pl = Piy (£,8) + ploy (2,2), (3.33)

Umi = Vi (2,8) + vl (231). " (3.34)
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It follows from Eqs. (3.7), (3.8), (3.10), (3.11), (3.32)-(3.34) that,

1 —r ) ikl =1
20 (5, ) = P (£20) + P (z100) — 2k ’n‘) (95 (2,) = P (2, 0)]
e ’ . T

m(RW 2[5, (2,w) + py (z,0)] (3.35)

Thus, when z 7’5, &

: +k(1) '1) (1
W (4,0) = 5 1+R - ﬂ‘ar(ﬂ + 80 R,)]
For (6] = P (6 m(R())20%, (6,w)(1 — R.) .
(1+°R.)[1 - ) 50 :
~ (1- R)x(RM)za0) (3.36)
or

29 (tw) = 2s. )

Thus the effective impedance in Tube 1 at the junction is equal to the.total

or

impedance presented by the complete network of da.ughter tubes. When =0,

pml(m [HM 2t (M ;.:d(_)L)}

Z(tlf) (0 w) — Py (4w) Py (Lw)
n(R(l))zv‘ (€)1 + L))
L+ R - B (50 4 g0) )
7RO )00 (1 - Ry |
CF14 By -
_ (l) ]
= ( T )z )
where
= i’vml (f, w) 2¢k(1) 4
=D =R, '3.39
P (6,) (5.39)
- Thus we may write ‘
1— i) tan (k)72 ~
Ze(é’)‘(ov ) = [1 tA. tan (k 8)} (1) (3.40)

Ae — 1 tan (k(l)ﬁ)

v
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-

This formu'= . r the effective impdance shows clearly its dependence\\gon the
distance to the reflection site, the frequency, and the mechanical and geometrical
parameters of the system. These dependences will be explored in the following

~

section.

< B > Analysis of Results '

The characteristic impedance Z(‘)\or Z(") presented ir1 Eq. (3.2) are func-
tiorrs of frequency and their frequency dependence varies with the parameters
‘m and 7. The dependence of the modulus, '|Z(1)f{, and the phase angle, ¢,
of Z(1) on the dimensionless frequency w is displayed in Figs. (3.2)-(3.5). Here
we have chosen R(V) = 0.4cm c(()l) = 833cm/3 and n() = 0.173125. Thus the
frequency in Figs. (3.2) - (3. 5) corresponds to the range from 0 to 500 Hz. The
rralues of mm and () for which Z(1) is plotted are indicated in the figure cap-
tions. T}re choice m(1) = 1666 refers to a hypothetical liquid of high viscosity,
rn(l) = 87% represents blood at'37°C,_ and m(i) = 33088 corresponds to wate:
at 20°C.‘\ a

It is seen in Figs. (3.2) a.nd (3.4) that the modulus is a decrea.smg runctlon
of frequency over the range 0 @500 Hz. In the low frequencey range, | | is
observed to fall rapidly with i increasing frec;uency and at all frequencies the .more
viscous liquid presents a higher impedence modulus aithough the sensitivity of’
the quantlity to charlges in viscosity-is not great over the majority of tile frequency
range. The greatest variation of moduius with viscosity bei'ng observed >at ‘the

lower end of the fre uency spectrurg. Sensitivity of this quantity to changes
q _ % q
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Y

in wall viscoelaétﬁcity appears to be even less with the only noticeable changes
i I )

takix{g place at the high freaquency end. With the phase angle, ;s shown in ;Figs.
(3.3) and (35), the situation is somewhat different in that a greuter sensitivity
to changes in both Viscosity and visocelasticity is observed. In particular it is
seen that for higher reta.rdatitn times, the flow leads the pressufe over a greater
i)ercentag\e of t};e frequency spectrum.

In-order to compare the reflection broperties of junctions we have intro-
duced thédiécontinui?y coefﬁcient; A¢, reflection coefficient R., and transmission
coefﬁcient_Tc,,. Because A, is a complex valued funetion of w, we defined a junc-
fion to be’ “closed” when || < 1 and “open” when [A.| > 1. This agrees with
the purely elastic case in that- closed junctions produce positive reﬂectlons for
press;re impulses and- open Junctlons produce negative ones [3]. Fo;' definitions
in our calculations we have considered a trifurcation (N = 4)" with A1) = p(n)
'7(1) = ~(n) ’, n= 2,3,'4, a.r\ld taken each of the dau.ghter tubes to have the same ra-
dius and Tetardation time. The variations of |A] Wif:h frequency are illustrated

Iy
~

in Figs. (3.6) and (3.7) for closed and open junctions, respectively. Although

there are variations with w and m, |A;| remains uniformlly les‘s than 1 in Fig.
(3.6) (closed), and greater than 1 in Fig. (3.7) (oﬁen).

For these two cases we have exammed the freque—ncy dependence of the
effectlve impedance at’ A (z = 0) in Tube 1. The effective impedanee‘ at A, given -

By Eq. (3.38) or (3.40), is the ratio of oscillatory normal stress in the axial °

direction to the corresponding oécillatory ow both measured at location A. As

3 -
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Y

such it is a measure of the resistance to osciilatory flow presented by the system
shown iﬁ Fig.» (3.1). Numerical resulﬁs for a closed junction are presented in Figs‘.

' (38) - (311) while those for an open junctiqn are given ifi Figs. -.(3.12)4(3.15).
It is seen in Fig. (3.8) that the modulus |Ze(flf)| is h‘i\gh at low freq.uencies
but fétllg rapidly with increasing frequency :FQ reach the first. minimum when the
. length of Tﬁbe 1 is approximately orlxevqua.rter’of a 'w"avelength. It then rises to

'a maximum when £ is one half of a wavelength, falling to the second minimum
, St

at three quarters of a wavelength, after which it exhib'ité. succéeding maxima

and minima at a whole number of half Wavelengths .a.nd at an ‘oclldv nqmber of
a .quarter wavelengths. In Fig. (3.12)‘ it is seen that ﬂthe mo_dulusv ]nglf)[ r;a_che-'t

the first maxi.murn when the I*éi?é’th of Tube 1 is approximately one Fquarter of a .

4

wavelength, and then decreases to a minim’um when £ is one hal't; of.a Wavelengtﬂ, «

" after which i-t ex/bjbit's su'ccgedi‘ng mﬁxfnia and minima at an oda number of

/y/’qua}rter Waveléngths'and at a whole nl;mbe'r of half wavelengths. It shows that
the bscillato;y behaviour' of"fhe ‘modulus IZeEtlr) | fdr the closed and open ju"nctions
hf;ls the phase~differénce 7 . On thé othe_fhand, by combariﬁg Flgs‘ (3.8) arhld\
(3;12) we see that for a closed junctioh the minima of the impedance modulus are

always/ greater than those for the open junction: We also observe in these two

figures the diminution of maxima and minima. of '|Ze(flf)] with increasing viscosity
of the fluid. This is especially prominent in the “strongly” open and closed cases

‘ Which are not included here. Since our system inicludes di'ss'i}.)ati_ve'effects, energy

supplied at the origin (x.hz 0) is lost in passage along‘the. tube and in addition
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may escape intb the daughter tubes at the junction (z = ). These f:;,ctors’imply
‘ tha;t‘ the wave from the right is always of smaller modulus than that from the left
a,nd‘_can never cancel it so that the developrﬁent of the true nodes is pre:cluded.
In Figs. (3.9) and (3.13) the phase angles- of the effective in;pedance are
plotted as-functions of frequenéy. They exhigit an oscillatory beha‘viour.with
ampiitude decreasing ’with increasing' viscosity. Again, the opeﬁ junction case
exhibits a greater sensitivity to change in viscosity. Also, in both cases, the
phase angle is zero when the modulus is at_a minimum.
In Figs.(3.10) and (3.14) we have plotted the modulus of the effective
impedance (at z = 0) for the closed and open junctions (at z = £) as a function

of frequency while va.r;,ing the length £ of Tube 1. In Fig. (3.10) we see clearly
the characteristic initial drop in quulus with frequ;néy and ol_)serve that this
fall is less rapid with increasing ¢. >The same is true of the data presented in
Fig. (3.14) but scaling did not permit us to display the low frequency end. In
both of these. cases we also obser;re a decrease in amplitude of the .peaks with
increasing £.

i Figures (3.12) and (215) providg the phase angles corresponding to the
moduli displayed in Fig.. (3.10) aﬁd (3.14). The same general rerharks as were

-made before concerning the relation of minima for the moduli to zero values of

the phase apply.



CHAPTER IV
Analysis of an Asseﬁbly of Tdbes

P Theri,,,lf overwhelming evidence of pulse wave reflection - and of strong
reflection - in the arterial tree of experimental animals and man [20]. These
. reflections arise frqm rela.i;ively isolated sites of mechaniéal and/or geometriéal
mismatch. Fluctuations of impedance’ modulus and phase are the most pfecise
indicators of this and analysis of impedance patterns provides information on
position, intensity, and mechanics of reflections prdvided_résults are interpreted
in the» light of an accurate model of pulse wave p%opagation and reflection. We
now incorporate the previously developed and tested model for pulse propagation
in a tube into a representation for the input impedance of a syste.;n pf branching

tubes with multiple reflection sites.

- < A > Calculation

x

Consider an assembly of tubes.as depicted in Fig. (4.1) where the properties
of each individual tube are based on the experlmentally tested shell theory model
of Chapter II. It has been -suggested [16] that such a parallel architecture may
be employed to represent the systemxc circulation with éhe short limb (B — D)
representing all arteries supplying the upper body and with the long limb (B-C)
representing the descending aorta and lower limb arteries.

The geometric and mechanical parameters of the Tubes 1 a.nd 2 are assumed
to be the same and denoted by‘RQu_), R(1) , '7(1) , Ggl) , () , r)(l)., and’m(l) | The

properties of [Tube 0 are the same as those of Tubes 1 and 2 except for R()

A : .
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Fig. 4.1 Tube assembly for calculating impedance.



41
and ¢, where R and ¢ are defined as: RO = 1.29R(M) | cg))v = 0.78c(()1), ,

and the cross-sectional area ratio at junction B is 1.2 [21]. The parair}etersv

b )

- associated with the various terminal tubes are deﬁoted by R() h(h),, ~(n) , GE_")

() c(()") , n(m) and m(® . According to the prescribed model and the definition

of the characteristic impedance Z(™ in Eq. (3.1) we obtain the nondimensional

expfession of Z(nl

. T = ,
ENZ e R R /Rl -
o ={i- i~ F(kp(ixn)/)R [ |
! n) n n n - .
() - ™)

* where all variables are nondimensionalized with respect to the paramefers of Tut
1 and n = 0, for Tube 0, n = 1 for Tubes 1 and 2,and n =2,...,N; %+ 1 for

the da;ughter tubes meeting at junction ¢, and n = 2,... N, + 1, for those at D.<

Also
() — % (D)) -4
k :w—a)—(Fg(Ko )A )
o
R G I LE
2 Fz (Kén) )A(”) ' (F2 (K(gn) )A(n) )2 R(l) C(()n) » (42)
' (n) (1)
AR — 1= iwr(") —? (R c(on) )Zn("’) , » .

K : [(k(n))2<R_(nl)2 ﬁim(n)'w<M)]l/2 . (4.4) |

| RO) RO Y
OO 7
(n) — (n) R o —im/4 ) :
V K5 [m w(—~—R(l) Ho) )] e - (45)

0

When reflected waves from the junctions C,D and B are present the transmis-

sion properties of the tubes 0,1 and 2 may be characterized iby the effective
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, impedances. It then follows from Eq. (3.40) that the effective impedance in

42

‘Tube 1 at position B is

MW gy — 1 = 1) tan(k 1). D P

Zeﬁ' ( ) . [ Acc _ 1tan(k(1) el) ] ’ ( - )

wherein Ace is the diséontinuity coefficient of the junction C, defined as -

) Ni+1 o ) . L
T A= Y A, (4.7)-
n=1
where ,

N L (1) -
._Acn. - (R(l) ) ﬂ(l) [ _ 21k(") ﬂ(n)J ) . (4.8)

‘By calculatxons which are essentxaly the same as for Tube 1 we may express the

' 'eﬁ‘ectlve impedance at B in Tube 2 as- ' "

1- I.ACD‘tan(k(Z) 22)]

(2)
Z (B) ,: Aep — itan(k(2) £2)

where Acp is the discontinuity coefﬁcient of the junction D, defined as
: v N2+1 - )
. Acp = Z Aens . (4.10)

n=2

wherein -

):c_" (R(n >2ﬁ(n [ _l*l‘(;)_ﬂ()]

@ ﬂ(g 20k PO : (‘4 11)

The effective impedance at 4 i in Tube 0, called also the mput impedance, is then
' ‘ : 1~1)cp tan(k(o) €)1 .
Z':Z(O)Az[b ](O)

n = Zes (4) Xep — itan(kO ¢) | 2

), - (4.12)
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where Acp is the discontinuity coefficient of the junction B w’ﬁich can be written

in the equivalent form:

where

1

/

- 709 / .
Aep = =—, ¢ 4.13)
sAep = - ‘ (4.13)
. \
1 1 1
7. zQ(B) 2P (B) 419

'Z,-n of Eq. (4.12) represents the input impedance’ of the whole system distal

to. the starting site. It shows clearly that the 'i-ﬁpu't impedance is dependent on

the frequency, the conﬁgﬁration of discrete .reﬂe‘cting sites, and the mechanical

parameters of the system. These dependences will be discussed in the following

part.

Y

< B > Analysis of Results

The input impedance Z;,, as presented in Eq. {4.12), is a." con}élex'v‘alue'd

-

© function of frequency depending ypon parameters associated with the architecture

(physical dimensions) of the system and the snechanical properties of the fluid

. and tube wall. In the previous chapter, we have défned two types of junct‘ibn‘s: _. B

“closed” and«fopen”, which produce positive and negative reflections for pressure

impulses; respectively. We now consider the appropriat:e closed and open cases

| |'Z,~n |, and

(4.2)-(4.5). Eere we aave chosen R = 0.4cm, ¢V = 833cm/s, and n(l) =

for the junctions C and D in Fig. (4.1) and plot the 'dependencé of the modulus,

‘ase ‘angle, d)z',_of Zin on the dimensionless frequency w in Figs.

0

0.173125 so that the frequency range in these corresponds to 0 — 20 Hx. At

b
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junction B, the cross-sectional area ratio, that is, the ra"cio of the sum of the
cross-sectional areés» of Tubes 1 and ‘2 to }hat of Tui)e 0, is 1.2. The 'wave speed
in Tube 0, cgo), is chosen such that m(® = m1) = m® | and the two values
of m(t) thatl' we use, that is, m(!) = 8791 and m®) = 33088 correspvond to
blood atr 37°C and water at 20°C, respectively. By this specification we have
also that 70 = +(0) = 7(3) | For the peripheral junctions at C and D, we assume
thaf each of the daughter tubes has the same radius, wall thickness, density of
wall material and retardation time. Thus we have an asymmetrical arrangement.
This is analogous to the termination of the arterial system [20].

In Figs. (4.;‘2)e(4.5), when N; = N; =3, the modulus of the discontinuity-?
coefficient of j;unc,tion. C;', |Acc:|, and the counterpart of junction D, |Acpl, are’
the éame, and approximately équal to 0.72 (less than 1) so both junctions ‘are’
~closed; when Ny = N, = 5, [Acc| = MCD' ~ 1.2, and both are open.

. JIt is seen in Figs. (4.2) and (4.4) that the modulus |Zin| falls steeply to

a minitmum at approximately 4 Hz in Fig. (4.2) and approximately 1.5 Hz in

| Fig. (4.4). The general pattern followed by the modulus of the input impedance
over the range depicted in our figures (0-20 Hz) bears a remarkable resemblance
to the measured‘ values of aortic impedance modulus in dogs as presented in

Fig. 13.1_3 of McDonald [14]. In fact, the local minima and maxima of |Zjp|
uepicted in our Fig. (4.4) occur at precisely the same frequencies as they do for

the experimentally determined plot of [14]. The two distinct minima appearing

there at w = 2,6 Hz were explained on the basis of the separate reflection effects
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from the fore-part and the hind-part of the arterial tree. This broad agreement

w _,A%?befween theory and observation lends some support fpr the validity of the quel.
o Gpon exa:’rrlination of Figs. (4.3) and (4.5) we observe another phenomenon'rthav.t
has bgéﬁoted in exp;rimental :studies, ﬁamely, phase crossovers correspond to
maxima and minima of the impedance modulus. '

In Figs (4.6, - (4.9) we have examined some of those factors which influence
the input impeda.ncé. It is seen first from Figs. (4.6) and (4.7) th‘at when ¢;
is shortened so that £,/£; = 2 there i; a single broad minimum occuring at the
frequency of approximately 5 Hz and the phase has only one zero cqrrespbﬁding
to fhis minimum. We here see the influence of the closed junctions at C andv
D. In their absence the first minimum of' |Z;,| would occur at a frequency of
approximately 20 Hz.:

‘Figures (4.8) and (4.9) when corﬁpared to Figs. (4.2) and (4.3) enable us
to rpake some comments c.oncerning the influence of the initial segment of length

SN e
R

Zg;;;;(f%émparmg Figs. (4.8) and (4.2), we see that increasing £, has the effect

of shifting the first minimum to a lower frequency value. The usual correlation
between modulus and phase may be observed in Figs. (4.8) and (49) Finally?
the effect of body size is displayed in Figs. (4.10) and (4.11), w};ere all plots
are for r(1) = 0.15, m(l) = 5791 and Ny = N; = 3. The shift to the right with

decreasing body size is clearly discernible. :
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CHAPTER V
' Conclusions

"In th1s thesis we haye employed an experlmentally tested model of ‘wave
propagatlon in ﬂ‘hxd filled tubes to study the influence of varxous factors such as
the V1scoelast1c1ty of the tube wall, fluid v1scosxty, and geometry of the system
on both characterlstlc and effective 1mpedances over a broad frequency spect‘rurn
In contrast to what was found for the'reﬁection' coe_ﬂicients [12] we ﬁnd~that both
modulus and phase of the effective 1mpedance are 51gn1ﬁcantly 1nfiuer{ced by ﬂuld
'v1sc031ty We also found that there was a marked dlﬁerence ln éhe‘sensltlwty to |
changes in v15cosxty of these quantntles when calculated for the ,closed”_ and

“open” junction w1_th the open dlsplaying“‘the greater sensitivity

B{ased on these results we further studied the frequency dependence of the .
mput 1mpedance for a nearly symmetrlcal branchmg system over a frequency ‘

>range found in dogs. After examlmng the influence of various factors on the _

>y input 1n:lpedance we have found that the characterlstlcs and positions of reﬂectxng
1) L e i . . .
“. '“ é‘; 51tes have srgmﬁcant effects on both modulus a.nd phase of the lnput unpedance
"{.ﬂ‘.l GJ E";'Cornpared with the experlmental study of dog’s ascending aortlc impedance [14],
? v [16], [20] our numerlcal results demonstrate that the patterns of input 1mpedance :

are attrxbutable to the 1ntera.ct1ng effects of two separate networks, one being

closer to the mput than the other, and that there was a marked sensxtlvxty

to changes in body sxze“\"‘It is seen that our model gives rea.sonable qualitative

, agreement w1th certam expernnental results S \: ST : o~
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