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Abstract

Diffusion-weighted magnetic resonance imaging (DWI) is a non-invasive MRI

technique that is sensitive to the diffusion of water molecules within the

body. Its ability to encode water displacements enables it to detect changes

in neural microstructure, such as those due to normal healthy aging or even

those caused by pathological conditions. Diffusion MRI sequences will be less

or more sensitive to diffusion depending upon the time that they encode or

measure these displacements, known as the diffusion time. For instance, the

oscillating gradient spin echo (OGSE) diffusion sequence encodes water

diffusion within the frequency spectrum of its gradient oscillations. As the

frequency is increased, the diffusion time decreases and water molecules will

reach less cellular boundaries over larger spatial scales. With less restrictions

to diffusion, measurable changes in diffusion parameters can be detected,

such as an increase in mean and radial diffusivities (MD and RD,

respectively). Hence, OGSE can unmask spatial-dimension tissue differences

(e.g. such as axon diameters) and achieve unique imaging contrast

mechanisms related to cell size, as found previously in animal models.

However, translating OGSE to human applications is highly challenging due

to hardware constraints (such as limited gradient strength) in clinical

scanners. Consequently, there are only a few OGSE studies in healthy human

brain, using frequencies in the range of f = 18-63 Hz. In this work, OGSE

was evaluated in human brain on a 3T clinical MRI system with oscillation
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frequencies of f = 40 – 50 Hz. The acquired images provided adequate data

quality and greater OGSE MD values relative to the MD from the

conventional diffusion sequence pulsed gradient spin echo (PGSE).

Nonetheless, raw OGSE and PGSE scans demonstrated image artifacts such

as Gibbs ringing (GR) that affected the accurate estimation of diffusion

metrics, necessitating image acquisition optimization.

Fluid-attenuated inversion-recovery (FLAIR) was implemented for the first

time with OGSE in acquisition to suppress the sharp signal intensity

transitions at cerebrospinal fluid (CSF)/tissue boundaries causing the

ringing. FLAIR was found effective in preventing GR as compared to

remedial post-acquisition correction methods, as it substantially increased

image quality in OGSE/PGSE DWIs and provided homogeneous MD maps.

Region-of-interest analysis was then performed on several white matter tracts

and two deep gray matter structures in eight subjects on OGSE FLAIR -

PGSE FLAIR diffusion maps. Results from the OGSE-PGSE difference

maps showed significantly elevated MD and RD with shorter diffusion time

in the corticospinal tract, superior longitudinal fasciculus, and posterior limb

of the internal capsule, that was greater than in the other white matter

tracts and both gray matter regions.

OGSE FLAIR, although characterized by lengthy scan times, proved a reliable

and effective method to investigate potential axon-scale differences in healthy

white matter, with potential to explore changes in tissue microstructure in the

mechanisms of disease.
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It would not be much of a universe if it wasn’t home to the people you love.

– Stephen Hawking

Excellence is an art won by training and habituation: we do not act rightly

because we have virtue or excellence, but we rather have these because we

have acted rightly. . . we are what we repeatedly do. Excellence, then, is not

an act but a habit.

– Will Durant
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1 | Introduction to Diffusion MRI

Magnetic Resonance Imaging or MRI is a non-invasive medical imaging

technique that can capture in vivo anatomical images of the body,

particularly useful for soft tissues. Additional to imaging structures, this

technology expands our understanding of human physiology in both health

and disease, providing information regarding normal bodily processes as well

as being a valuable diagnostic tool to examine the mechanisms behind

different pathologies.

However, the basic contrast mechanisms available for standard MRI, namely

T1, T2, and proton density, offer limited or no information on structural

connectivity of the brain. Diffusion weighted imaging (DWI) is an MRI

technique that overcomes such limitations. It constitutes not only a

methodology to image the structure, but also a tool to estimate axonal

connections and orientations while additionally allowing the quantification of

diffusion parameters relevant to depict healthy and abnormal conditions (e.g.

ischemic stroke). The characteristic capabilities of diffusion MRI arise from

its sensitivity to the displacement of water molecules within biological

cellular compartments. Based on the time allowed for molecules to diffuse,

they are expected to reach different hindrance levels. Hence, a comparison of

the obtained diffusion parameters as a function of diffusion time can reveal

more detailed information from the underlying microstructure.

Over the past few years, an approach has been increasingly used in animal

models (and more recently in few human studies) to image at short diffusion

times: the Oscillating Gradient Spin Echo (OGSE) diffusion sequence. Due
1



to the nature of the oscillating gradients, the OGSE method is able to

explore smaller-scale diffusion restrictions, enabling a greater insight and

understanding of tissue organization in vivo. However, human brain OGSE

acquisitions face numerous limitations, including problematic hardware

restrictions that hamper the use of desired scanning parameters and degrade

image quality. The aim of this research then is to design a viable OGSE

protocol at 3T to obtain high-quality human brain images at short diffusion

times and through the measurement of diffusion metrics, infer details on the

composition of the intricate brain microstructure.

1.1 Self-Diffusion of Water Molecules

Every particle, being liquid or gas, experiences molecular diffusion at a

temperature above zero on the Kelvin scale due to thermal energy. Robert

Brown first made this observation in 1827 when he detected a self-diffusing

motion of pollen particles suspended in water [1], thereupon identifying the

phenomenon with the term Brownian motion. Molecules present in an

isotropic medium (i.e. free diffusion, such as in a water container) diffuse

unobstructed and collide only with other adjacent water molecules.

Therefore, they exhibit an equal probability of diffusing in any direction

under a specified amount of time.

That is, for a hypothetical case of a particle diffusing in one dimension, it has

an equal probability of moving either one step forward (+1) or one step

backward (-1). If the experiment was repeated multiple times, after a time t,

the molecule’s average traveled distance would equal zero and its

displacement could effectively be modeled using a Gaussian distribution (i.e.

consequentially also termed Gaussian diffusion). However, no useful

information can be extracted from a zero net displacement. To overcome this

shortfall, Albert Einstein later developed a mathematical model based upon

Brown’s observations to describe the molecules’ displacement as a mean
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squared displacement [2]:

⟨x2⟩ = niDt (1.1)

where x2 is the mean-squared displacement (MSD) of the diffusive particle, ni

is a constant dependent on the particle’s dimensionality of displacement (i.e.

ni = 2, 4, and 6 for dimensions 1 (along x, or i=x), 2 (along y, or i=y), and 3

(along z, or i=z), respectively), D is the diffusion coefficient (itself reliant on

a frictional coefficient, Boltzmann’s constant, and the absolute temperature of

the medium), and t is the diffusion time. An alternative terminology that has

been used to describe the unpredicted molecular diffusions is ‘random walk’,

as illustrated in Figure 1.1 for a particle moving in a three-dimensional space.

Figure 1.1: Random walk. Simulation of path traveled by random walk of
a water molecule in a three-dimensional space after N = 100 steps.

Such valuable work led to many important applications, including the

foundation for diffusion effects in Nuclear Magnetic Resonance (NMR) in the

1950s [3–5] and its later implementation in human studies, discussed in the

next section.
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1.2 Diffusion Imaging in MR

1.2.1 The Diffusion Encoding Scheme

The human body is composed of approximately 60% water [6]. As discussed

before, water molecules are in constant movement and interact with

surrounding elements, spreading in unpredicted directions. Important

information can be extracted from this characteristic random walk within the

body by sampling tissue microstructure using Diffusion MRI. It all started in

1965, when Stejskal and Tanner developed the Pulsed Gradient Spin Echo

(PGSE) method to measure the diffusion of spins by applying a pair of

pulsed gradients [7] on a simple spin-echo sequence [3]. Recalling the basics

of MRI, a linear gradient alters the spins’ frequency of precession by spatially

varying the magnetic field they perceive (i.e. slightly adding and/or

subtracting from the static magnetic field), as of the Larmor equation:

ω(r) = γ(B0 + G · r) (1.2)

where ω is the precessional frequency, γ is the gyromagnetic ratio unique for

every nuclear species (i.e. for hydrogen 2.675× 108 rad/s/T or 42.58 MHz/T),

B0 is the strength of the main magnetic field, G is the applied magnetic field

gradient parallel to B0, and r is the position of the spins. After the first

diffusion gradient is applied subsequent to the excitation radiofrequency (RF)

pulse, the spin phase coherence becomes disrupted dependent on the spin

locations. Explicitly, as the gradient varies the magnetic field, some protons

will precess at a slightly faster speed than others. Therefore, by the end of

the first ‘dephasing’ gradient, protons will be out of phase (Figure 1.2A). A

second gradient set after the refocusing pulse will essentially reverse the phase

incoherence, causing the slower protons to precess more rapidly and vice versa.

By the end of the ‘rephasing’ gradient, spin phase coherence will be restored

and the full diffusion-weighted MR signal can be acquired (Figure 1.2A).

The previous scenario assumes that the spins remained static during the

application of the diffusion-sensitizing gradients. However, in reality this is
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never the case. As mentioned previously, water molecules are in constant

motion due to thermal energy. To illustrate an example, one can simplify the

explanation by referring to an individual diffusing spin. Initially, the spin

will experience the dephasing gradient and precess at a different frequency

than its fellow neighbors. After a diffusion time Δ, the spin will disperse and

perceive a different ‘unexpected’ magnetic field in its new location, causing it

to change phase. Considering that all water molecules have also diffused, the

rephasing gradient will fail to converge the transverse magnetization (bulk

dephasing) inducing a collective loss of signal (Figure 1.2B).

Figure 1.2: Diffusion gradients. Schematic of typical application of
diffusion pulsed gradients in an environment with A) static spins, and B)
diffusing spins. Adapted from Patterson et al., 2008. [8]

In brief, Diffusion MR is able to measure diffusion of spins by ‘tagging’ them

with phase and measuring the difference in signal reduction. It is important

to note that the gradient pairs only spatially encode water displacement

along the predetermined axis, thus they are conventionally applied in all

three orthogonal directions: X-gradient (encodes diffusion from left to right),

Y-gradient (encodes diffusion in the anterior-posterior direction) and

Z-gradient (encodes diffusion superior-inferior).
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The pair of diffusion gradients is formally known as the pulsed gradient spin-

echo (PGSE) diffusion sequence, which has been the gold-standard method

to measure molecular motion. An equal amplitude G, duration δ, and time

interval between the two gradient pulses (known as the diffusion time) define

both gradients (Figure 1.2). A combination of these parameters governs the

amount of signal attenuation due to diffusion according to the Stejskal-Tanner

equation [7]:

Ln
(︃

S1
S0

)︃
= −γ2G2δ2D

(︃
∆ −
δ

3

)︃
(1.3)

where the signal attenuated by diffusion is denoted by S1, S0 represents the

signal without diffusion encoding (no diffusion gradients applied), γ is the

gyromagnetic ratio, G and δ are the gradient-pulse amplitude and length, D is

the diffusion coefficient, and (Δ-δ/3) is the effective diffusion time (eff), namely

the time during which water displacement is sampled. In DWI, a selection of

the parameters from equation (1.3) are grouped into a single element defined

as the b-value:

b = −γ2G2δ2
(︃
∆ −
δ

3

)︃
(1.4)

where b is the b-value in units of s/mm2 that indicates a measure of diffusion

weighting or of how sensitive the signal is to diffusion. The greater the b-

value, the greater the diffusion weighting and induced signal loss. Simplifying

equation (1.3):

Ln
(︃

S1
S0

)︃
= −bD (1.5)

It was not until 1984 that the diffusion coefficient (formerly named

translational molecular self-diffusion coefficient) was measured for the first

time through in vitro MRI experiments of various fluids [9], followed by a

similar NMR study in 1985 [10].
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1.2.2 Tissue Compartmentalization Impact on Diffusion

1.2.2.1 Restricted and Hindered Diffusion

Until now, the word diffusion has exclusively been used to refer to a free

diffusion regime. Nonetheless, there remains two additional types of diffusion

that should be discussed in order to understand the relevance of DWI in

biological systems. Within tissue, one can find numerous types of cellular

compartments such as membranes and organelles that act as barriers to

water diffusion. Diffusion under these circumstances is then considered to

transition from a free state to a restricted or hindered environment. In the

case of impermeable membranes such as inside cell boundaries, water

molecules are strictly confined and their dispersion is limited solely within

the compartment’s perimeter; this type of intracellular diffusion is known as

restricted diffusion (Figure 1.3).

Figure 1.3: Restricted and hindered diffusion. Illustration depicting
color-coded random water molecule displacements for restricted diffusion (red)
inside impermeable cellular membranes and hindered diffusion (blue) naturally
occurring in the interstitial fluid.

However, inside the interstitial fluid surrounding cell bodies (otherwise

known as the extracellular space), the diffusion of water molecules is not

entirely restricted but only partially obstructed by the multiple interactions

with nearby cellular structures. Water molecules will technically be able to

travel any distance (only in a longer amount of time), meanwhile colliding
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with each other as well as bumping back and forth between cellular

membranes. Diffusion under this setting is identified as hindered diffusion

(Figure 1.3).

With a displacement now dependent on the nature of microstructure

compartmentalization, both restricted and hindered diffusion types now fall

into a non-Gaussian distribution. Intuitively, the diffusion coefficient D will

also vary between free, hindered, and restricted diffusion; that is, if it were to

be plotted as a slope, D would decrease as it shifted from a free regime to a

restricted regime (Figure 1.4).

Figure 1.4: Mean squared displacement (MSD) depicted for different
diffusion regimes as a function of time. By adjusting the slope (i.e. the
diffusion coefficient D), one can represent free (green), hindered (blue), and
restricted (red) diffusion regimes. Notice that for restricted diffusion, the MSD
reaches a maximum limit as diffusion time increases.

1.2.2.2 The Apparent Diffusion Coefficient

Revisiting Einstein’s diffusion equation (1.1), for a free water diffusion

coefficient of D = 3 × 10−3 mm2/s at 37° and diffusion time t=40 ms on a

typical PGSE MRI study, the one dimensional displacement covered by a

8



water molecule approximates 15 µm. Upon previous analyses, however, it is

evident that for biological tissues the diffusion coefficient is strongly

dependent on the geometric properties of the medium as well as of the time

that water molecules are allowed to probe it. In the case of restrictions,

molecular diffusion is strictly confined within a perimeter. During the same

time frame of t= 40 ms for an axon diameter of 5 µm, water molecules will

long have reached the bounds of the cellular compartment and will thereafter

diffuse only within the limited available area, causing a reduction of the

diffusion coefficient.

Additionally, other factors regarding biological tissues must be considered.

Le Bihan and others[11] observed that perfusion – blood microcirculation in

the capillaries – could potentially simulate molecular water diffusion effects

collected by diffusion MRI and slightly overestimate the calculation of the

diffusion coefficient, particularly for very small b-values (<180 s/mm2) [12].

Le Bihan and collaborators then identified this phenomenon and any additional

incoherent fluid motions inside a single voxel as intravoxel incoherent motions

(IVIM)[11].

Under the past contemplations, the diffusion coefficient term D no longer

holds, but is replaced by a more inclusive designation, the apparent diffusion

coefficient (ADC) [11]. Correspondingly, the term D in equation (1.5) is simply

substituted by the term ADC ; rearranging the equation yields:

Ln(S1) = Ln(S0) − b · ADC (1.6)

Clearly, there exists a linear relationship between the natural logarithm of the

attenuated signal S1 and the b-value, where the ADC represents a negative

slope. In order to calculate the ADC, measurements from two different b-values

are required, as shown by the simplified equation (1.7):

ADC =
Ln(S0) − Ln(S1)

b1 − b0
(1.7)
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where S1 and S0 are measured signal intensities from a diffusion-weighted

image with b1 and a non-diffusion weighted image b0 (b-value = 0 s/mm2),

correspondingly. Figure 1.5 displays an example of signal dependence on b-

value for three different slopes. As the slope becomes steeper, greater signal

loss is expected at a given b-value, which is reflected as a higher ADC (i.e.

red= low ADC, blue= neutral ADC, green= high ADC).

Figure 1.5: Ln(S1) as a function of b-value. The ADC slope will
determine the level of signal loss at each b-value; a high ADC reflects more
signal loss (i.e. green line) compared to a low ADC (i.e. red line).

Knowledge of the ADC can help infer the level of water restriction and

uncover micrometer-scale differences within tissue, helping to understand

diffusion processes in both health and disease [13].

1.2.2.3 Isotropic vs. Anisotropic Diffusion

Molecular water diffusion is directly determined by the physical nature of

the medium in which it diffuses. In cerebrospinal fluid (CSF) or say in a

simple glass of water, water molecules can disperse freely in any direction.

Furthermore, water is able to diffuse in any direction equally if the environment

presents an arbitrary, incoherent distribution, such is the case of gray matter

(GM) [14, 15]. This kind of diffusion is known as isotropic diffusion.
10



Nonetheless, in the white matter (WM), water molecules are constrained

inside and around numerous, tightly packed parallel fibers: the axons. These

coherent neural projections force water molecules to move predominantly

along the axon as opposed to perpendicular, with a diffusion as much as four

times slower for the latter [16]. Consequentially, a deviation from the

intrinsic diffusion coefficient D is observed. When diffusion undergoes this

type of directionality, it is termed anisotropic diffusion [17] (Figure 1.6).

Figure 1.6: Isotropic vs anisotropic diffusion. Left: Isotropic diffusion
in a glass water sample; molecules experience a random walk and diffuse freely
with no particular direction. Right: Anisotropic diffusion in myelinated nerve
fibers; water travels predominantly along the axon.

For a long time it was believed the primary element that governed diffusion

anisotropy in nerve fibers was the myelin sheath, additional to the axonal

membrane and cytoskeleton (neurofibrils such as neurofilaments and

microtubules). An investigation on garfish nerves uncovered that both

nonmyelinated and myelinated axons sustained a comparable amount of

anisotropy, proving myelin is not a determining factor [18]. Moreover, a

subsequent study of the giant axon of the squid concluded that the

longitudinally oriented neurofilaments did not significantly contribute to

water anisotropy in the axon; hence, the axonal membrane was determined

as the main source of axonal anisotropic diffusion [19].
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Recalling diffusion MRI basics, an important aspect of diffusion gradients is

that they are sensitive to diffusion only along their axis of application. This

characteristic is not as relevant under isotropic diffusion conditions, since

water diffuses equally in any direction. However, in a living system with

complex tissue organization that features anisotropic diffusion, a need to

efficiently quantify diffusion along specific directions emerges. Axonal fibers

are now coercing water to move in a particular path; therefore, the MRI

scanner should be capable of acquiring signal in any given direction. By

applying orthogonal diffusion gradients on the X, Y, and Z axis (or a

combination of them), anisotropy-guided tissue properties unique to the

underlying structures can be explored through signal intensity variations

(Figure 1.7). Rather than being a drawback, anisotropy presents an

advantage by serving as a means to investigate the configuration of the

intricate brain microstructure, giving insight into the anatomical

organization.

Figure 1.7: DWI images using X, Y, and Z diffusion gradients.
Raw DWI images acquired with three orthogonal gradients. Areas circled
in red highlight the principal direction of diffusion for underlying brain tissue
(portrayed as a lower signal intensity). Left: X-gradient, higher diffusion in
the genu of the corpus callosum. Center: Y-gradient, higher diffusion around
the anterior region of corona radiata. Right: Z-gradient, higher diffusion in
the corticospinal tract.

In summary, biological compartments (such as axonal membranes, fibers,
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organelles, etc.) introduce barriers that hinder/restrict water diffusion, which

in turn offer a peculiar advantage. MRI studies of anisotropic water diffusion

in the brain facilitate the understanding of the complicated processes

occurring in the underlying microstructure by way of exploring a wide range

of diffusion times and calculating the diffusion coefficient for different levels

of restriction to infer the anatomic distribution of the environment at a

sub-micrometer scale. The methodology through which diffusion MRI

processes this information is discussed in the next section.

1.3 Diffusion Tensor Imaging (DTI)

Diffusion tensor imaging (DTI) is a diffusion MRI technique that not only

quantifies, but models the main direction of diffusion as a 3-dimensional tensor,

as first proposed in 1994 [20]. The importance of this technique lies in its ability

to noninvasively characterize diffusion in anisotropic settings, and added to

the anatomical and physiological information it reveals of biological tissues

(i.e. such as the healthy macroscopic orientation of axon fibers in the nervous

system, and any observed changes in the mechanisms of disease) through a

variety of calculated diffusion parameters. The following sections expand on

the DTI practice further.

1.3.1 The Diffusion Tensor: Mathematical Modeling

In isotropic conditions, the mean squared displacement of thermally driven

water molecules remains equal in all directions; therefore, diffusion can be

represented by a sphere (Figure 1.8A). Conversely, anisotropic diffusion is

otherwise characterized by a dominant direction of diffusion, as seen along the

nerve fibers in white matter [14, 16–18] and any coherently oriented barriers

(i.e. cardiac muscle [21] and skeletal muscle [22]); this type of diffusion can be

modeled as an ellipsoid (Figure 1.8B). The mathematical model behind the

diffusion ellipsoid estimates and quantifies fiber-oriented anisotropic diffusion

in every voxel of DWI images, and receives the name of the diffusion tensor

D [23].
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Figure 1.8: Modeling the diffusion ellipsoid. A) Isotropic diffusion can
be mathematically modeled as a sphere. B) Anisotropic diffusion, such as that
along nerve fibers in white matter is modeled as a diffusion ellipsoid.

For complex anisotropic media, a reformed version of (1.6) is mandatory to

model diffusion as a 3-dimensional tensor. Hence, the tensor D is calculated

for every voxel upon signal measurements from the DWIs in combination with

the applied gradients in terms of the corresponding b-matrices [20, 24]:

Ln
(︃

S1
S0

)︃
= −

3∑︂
i=1

3∑︂
j=1

bi j Di j (1.8)

= −(bx x Dx x + 2bx yDx y + 2bx zDx z + by yDy y + 2by zDy z + bz zDz z)

where bij is a component of a symmetric b-matrix (a more inclusive b-factor

that considers all applied gradients specific to the sequence) and Dij is an

element of the diffusion tensor D. It was proved previously that the ADC in

diffusion imaging is calculated from the measured signal intensities of two

DWIs and the b-value (b-factor) using simple linear regression equation (1.7).

Likewise, for the case of diffusion tensor imaging a set of DWIs and affiliated

b-matrices are utilized instead to estimate the diffusion tensor D using

weighted multivariate linear regression [25]. The diffusion tensor D can then

be reconstructed as a 3×3 array:
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D =

⎡⎢⎢⎢⎢⎣
Dxx Dxy Dxz
Dyx Dyy Dyz
Dzx Dzy Dzz

⎤⎥⎥⎥⎥⎦ (1.9)

Since the matrix is symmetric (Dxy=Dyx, Dxz=Dzx, Dyz=Dzy) it contains

only six unique components, and each one of them relies on the specific

diffusion characteristics of the tissue. With six unknown elements of the

diffusion tensor, a minimum of seven DWIs are required for the calculation

–a b0 image and at least six DWIs– with each DWI acquired at a different

non-collinear gradient direction [20, 26] (Figure 1.9). However, the greater

the amount of acquisitions, the less susceptible the tensor is to noise,

achieving a more robust estimation [27].

Figure 1.9: Comparison between DWI and DTI. In the manner that
DWI estimates an ADC and a signal intensity value per voxel using two DWIs
along one direction, DTI estimates a 3×3 diffusion tensor and a signal intensity
value per voxel utilizing at least seven DWIs along non-collinear gradient
directions. Figure from Peter J. Basser 1995 [28].
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The diagonal tensor elements Dxx, Dyy, and Dzz correspond to the ADC

values along the orthogonal axes x, y, z, respectively. In the case of isotropic

diffusion, the diagonal elements not only equate to the ADC, but are

additionally equivalent to each other (i.e. Dxx=Dyy=Dzz=ADC). Whenever

the tensor is aligned completely along the principal directions x, y and z, the

off-diagonal elements become zero. However, in anisotropic conditions where

the principal direction of diffusion might not be aligned to the fixed axes but

instead change from voxel to voxel, the off-diagonal elements do not have a

straightforward significance. They do not indicate ADC values along oblique

directions, but instead represent a covariance measure (or correlation of

random displacements) between each pair of axes (i.e. xy, xz, yz) [29]. To

define a more intuitive representation of the tensor independent of the

tissue’s fiber orientation, the diffusion ellipsoid model comes at hand [23].

In turn, the diffusion ellipsoid requires at least six parameters to fully represent

the tensor, namely the orthogonal unit vectors ε1, ε2, and ε3 or eigenvectors

(indicate orientation of the tensor, aka the principal directions of diffusion)

and the corresponding magnitudes, the eigenvalues λ1, λ2, and λ3 (denote the

size and shape of the tensor, aka the amount of diffusion) (Figure 1.10).

Figure 1.10: Diffusion ellipsoid. The tensor is represented by a diffusion
ellipsoid, characterized by six elements: the perpendicular eigenvectors ε1,
ε2, and ε3 that represent the principal orientation of the tensor, and the
eigenvalues λ1, λ2, and λ3 that denote the size and shape of the ellipsoid.
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Mathematically, the diffusion tensor D can be rewritten in terms of the

eigenvectors and eigenvalues by its multiplication with an eigenvector,

resulting in the same eigenvector multiplied by the eigenvalue as of equation

(1.10) [23]:

Dεi = λiεi for i = (1,2,3) (1.10)

in matrix form:

DE = ΛE (1.11)

where E is the eigenvector matrix created by arranging the eigenvectors as

column vectors, and Λ is the eigenvalue matrix. Since the eigenvectors are

orthonormal –all three are unit vectors and mutually orthogonal– E shares

the properties of a rotation matrix [30]:

E−1 = ET (1.12)

Therefore, equation (1.11) can be used to calculate the diffusion tensor D:

D = EΛET (1.13)

Substituting equation (1.13) in matrix notation yields:

D =

⎡⎢⎢⎢⎢⎣
ε1x ε2x ε3x
ε1y ε2y ε3y
ε1z ε2z ε3z

⎤⎥⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎢⎣
λ1 0 0
0 λ2 0
0 0 λ3

⎤⎥⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎢⎣
ε1x ε1y ε1z
ε2x ε2y ε2z
ε3x ε3y ε3z

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
Dxx Dxy Dxz
Dyx Dyy Dyz
Dzx Dzy Dzz

⎤⎥⎥⎥⎥⎦
(1.14)

1.3.2 Key Diffusion Metrics

Equation (1.14) allows the interpretation of the diffusion tensor D as a 3 × 3

symmetric covariance matrix based on eigenvectors and eigenvalues that now

directly represent the shape and size of the tensor as well as its orientation.

Both eigenvectors and eigenvalues are paired (i.e. ε1 with λ1) and the

eigenvalues specify the ADC estimates along the direction of the associated

eigenvector.
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Moreover, the eigenvalues are typically ordered from largest to smallest as

λ1≥ λ2≥ λ3, where the largest eigenvalue represents the principal direction of

diffusion of the ellipsoid (since water molecules are coerced to move primarily

along the fiber, ε1 indicates the local orientation of the tissue). The same

eigenvalue λ1 defines one of the core diffusion parameters, the axial diffusivity

(AD) otherwise referred to as λ∥, parallel, or longitudinal diffusivity:

AD = λ1 = λ∥ = ADC∥ (1.15)

Essentially, AD reflects the apparent diffusion ADC parallel to the tissue

fibers. On the other hand, the apparent diffusion perpendicular to the main

orientation of the fibers is characterized by radial diffusivity (RD), also

termed perpendicular or transverse diffusivity, and is calculated from the

smaller second (λ2) and third (λ3) eigenvalues:

RD =
λ2 + λ3

2
= λ⊥ = ADC⊥ (1.16)

A metric that describes the global diffusion per voxel as a nondirectional

measure is the mean diffusivity (MD) and is derived by taking the mean of

the three eigenvalues, or performing a simple operation between the parallel

and perpendicular ADCs:

MD =
λ1 + λ2 + λ3

3
=

Trace
3
=

ADC∥ + 2ADC⊥

3
(1.17)

All three diffusion metrics AD, RD, and MD are usually set in units of mm2/s.

Fractional anisotropy (FA) is an additional central diffusion parameter; it is a

scalar, unitless measure aimed to quantify the disparity level between parallel

(λ∥) and perpendicular (λ⊥) diffusivities. In other words, FA encompasses the

degree of anisotropy [28]:

F A =

√︃
3

2

√︄
(λ1 − MD)2 + (λ2 − MD)2 + (λ3 − MD)2

λ21 + λ
2
2 + λ

2
3

(1.18)
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and ranges between a value of 0 (isotropic) and 1 (anisotropic). Recall that

for isotropic diffusion, the ADC values along the three orthogonal axes are

equal (i.e. λ1=λ2=λ3) and hence diffusion can be modeled as a sphere. As

diffusion transitions to a more anisotropic condition, the eigenvalues become

more dissimilar (i.e. λ∥ increases to a greater extent compared to λ⊥), causing

a gradual uniaxial prolongation of the sphere towards the diffusion ellipsoid

model (Figure 1.11).

Figure 1.11: Transition from isotropic (low FA) to anisotropic (high
FA) diffusion. An increment of axial diffusivity and/or a decrement of
radial diffusivity cause an increase in FA, as they both move further from the
mean. The four cases shown here maintain a constant MD at 0.7×10-3 mm2/s.
Axial and radial diffusivities are both in units of 10-3 mm2/s. Adapted from
Christian Beaulieu from Diffusion MRI: From Quantitative Measurement to
in Vivo Neuroanatomy, Chapter 8, pg. 158 [31].

The estimation of the aforementioned diffusion parameters in each voxel

allows the calculation of quantitative diffusion maps that reveal valuable

tissue properties (i.e. they support the study of normal and abnormal

conditions such as pathological restricted diffusion in ischemic stroke).

Additionally, since the FA map outlines tissue with high anisotropy (shown

as bright gray on a typical FA map), it delineates the underlying white

matter tracts. On the contrary, the darker gray areas depict tissue with low

anisotropy (i.e. isotropic diffusion such as in gray matter and CSF, or the

case of crossing fibers). Figure 1.12 displays a standard map for axial, radial,

and mean diffusivities (AD, RD, and MD, respectively), as well as for

fractional anisotropy (FA).
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Figure 1.12: Diffusion maps. Standard maps for axial, radial and mean
diffusivities (AD, RD, and MD, respectively) along with a fractional anisotropy
(FA) map of a healthy subject. The bright signal (i.e. white) in the AD, RD
and MD maps indicates a high amount of diffusion, as observed in the regions
containing CSF such as the ventricles. The bright gray areas in the FA map
depict a high degree of anisotropy, (i.e. white matter tracts), whereas areas of
low anisotropy are shown in dark gray.
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Furthermore, an informative color-coded FA map can be created that

illustrates both water diffusion directionality and the amount of anisotropy.

This calculation involves the multiplication of the FA map with a

directionally-encoded color map produced from the first eigenvector of the

tensor. By convention, tracts with a left-right orientation are colored in red,

superior-inferiorly oriented tracts are colored blue, and finally white matter

tracts extending anterior-posteriorly are colored green [32], as shown in

Figure 1.13.

Figure 1.13: Color-coded FA map depicting the orientation of the
white matter tracts in a healthy human brain. Red indicates left-
right orientation, blue is superior-inferior, and green shows anterior-posterior
direction.

1.3.3 DTI Data Analysis

Currently there are multiple approaches available to analyze DTI data, and

the correct method to use will depend on the expected outcomes and the type

of data acquired. A few of the standard approaches will be discussed in this

section.
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1.3.3.1 Fiber Tractography

Tractography emerged for the first time in 1999 when Susumu Mori and

colleagues managed to track anisotropy-guided nerve fiber bundles in a fixed

rat brain [33]. Subsequent, non-invasive in vivo human brain studies also

accomplished neuronal fiber tracking through different mathematical

algorithms that linked voxels based on the direction of the principal

eigenvector by way of an FA threshold [34], seed points and termination

points [35], and the Frenet equation which defined the evolution of the fiber

tracts [36]. In general, tractography or fiber tracking is a technique that

reconstructs an approximated 3D model of the white matter axonal

pathways in the brain in vivo. However, it must be mentioned that it does

not by any means constitute a replica of individual axons or yet a precise

model of whole axon bundles, but simply a fair estimation of axonal fiber

connectivity. Two tractography methodologies will be discussed.

Deterministic Tractography

Deterministic tractography, otherwise known as deterministic streamline

tractography is a fiber tracking approach based on the step by step

propagation of a single streamline per user-established source point or

so-called seed point up to a termination point on the principal eigenvector

field (Figure 1.14A) [37]. The streamlines are interconnected subject to the

orientation of the first eigenvector of the diffusion tensor and a choice of

interpolation method.

The adjacent-voxel interpolation approach is based on the pioneered fiber

assignment by continuous tracking (FACT) algorithm and consists of the

tracking of continuous vector fields from neighboring voxels to infer the

pathway of the fiber, up until an unexpected discontinuity in fiber

direction [33]. The tract termination guidelines involve specified thresholds

such as a low FA (i.e. FA<0.2) that may implicate a transition to GM tissue

or a large angle variation between succeeding steps [37].
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Probabilistic Tractography

The probabilistic tractography method is not based on the orientation of the

main eigenvector of the diffusion tensor like the affiliated deterministic

approach, but rather estimates a probability distribution of potential tract

orientations per voxel. It attempts to overcome the deterministic limitations

by estimating a probability density function (PDF) that creates a

distribution of the possible directions the track can undertake for each step

of the algorithm, predicting several neural connections from each seed point

(Figure 1.14B) [37]. In summary, probabilistic tractography does not reflect

the physical connection of the white matter tracts, but merely calculates a

probability distribution of tract orientations.

Figure 1.14: Deterministic vs probabilistic tractography. A)
Deterministic tractography. Different seed points were placed across the genu
of the corpus callosum (i.e. red area) and the corticospinal tract (i.e. blue
area). Based on the direction of the principal eigenvector in each voxel,
the algorithm bidirectionally propagated white streamlines that represent
nerve fibers. B) Probabilistic tractography. Image depicts 1000 projections
computed by the probability density function (PDF) originating from a single
seed point, showing the user a broad map of possible tract orientations. Figure
from Jacques-Donald Tournier et al. 2011 [37].

1.3.3.2 ROI Analysis

The region of interest (ROI) analysis consists of encircling a particular region

on MR-acquired images to extract informative parameters from the selected

voxels such as the mean, standard deviation, number of pixels, volume, etc.
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The ROI should be drawn on images that facilitate the visual localization

of the area under study, for instance T1 and T2-weighted images for overall

structural organization, DWI and MD for stroke lesions, and FA and colored-

FA for white matter tracts. In some cases, it may be helpful to make use of

more than one image/map simultaneously to define an ROI, as long as the

images are registered and all structures are perfectly aligned.

Examining a specific WM or GM structure through ROI analysis requires

prior knowledge of the anatomy to accurately define its boundaries. For the

case of lesions such as a stroke or tumor, however, a careful delineation of the

affected area will suffice, and a contralateral ROI of healthy tissue can be

traced to compare the acquired parameters. The ROI can be drawn either

manually or via an automated segmentation method depending if the studied

region is anatomic-specific (former and latter cases) or if it contains

non-specific structures (i.e. lesions; former case). Additionally, ROIs can be

placed in single or several slices to incorporate the entire structure and aim

for a more robust measurement.

1.3.4 DTI Applications

One of the main drivers in current conducted research in the field of DTI is

its potential to apply it in clinical settings. To this day and for the many

reasons described in the next section, however, it is difficult to rely on the

tool’s accuracy of the brain’s white matter pathway reconstructions.

Nonetheless, due to its innate sensitivity to diffusion fluctuations, an

assessment of microstructural organization can be achieved in both health

and disease. A few of the most prominent DTI applications will be discussed.

To begin with, DTI has been predominantly used to non-invasively

investigate white matter connections in the brain in vivo, such as to study

normal brain development with aging [38–43]. These studies have allowed a

better understanding of brain WM and even GM maturation over a lifespan,

setting the basis for natural age-related diffusion changes. Secondly, white

matter fiber tractography has opened new doors for surgical planning, both
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preoperatively [44] and intraoperatively [45, 46] aiming for higher precision of

the image-guided removal of tumors while simultaneously prioritizing the

preservation of undisturbed healthy tissue.

Third, DTI has played an important role in the diagnostics of brain lesions

and disorders. Namely, it has been useful in the characterization of ischemic

stroke, as the lesion depicts clear decreases in ADC and can be easily

identified as a ‘dark’ region on an MD map [47–49]. Additionally, DTI has

made possible the measurement of alterations and abnormalities in white

matter organization in disease processes, specifically in Alzheimer’s

disease [50–52], multiple sclerosis [53–55], epilepsy [56], and Parkinson’s

disease [57, 58]. The focus of these investigations relies on identifying

biological markers that can lead to a practical distinction between

pathologies as well as in complementing clinical evaluations for a prompt

non-invasive diagnosis.

1.3.5 DTI Limitations

Although a very revolutionary and valuable technique, DTI holds a number

of limitations that cannot be ignored. To start, it stems from DWI which is

confounded by low resolution (typically 2 – 3 mm), long scanning times (∼5 –

10 min) partially due to the echo planar imaging (EPI) readout (discussed later

in Chapter 2), low signal-to-noise ratio (SNR) – which is inversely proportional

to the amount of diffusion weighting, – and high sensitivity to patient motion

(therefore prone to artifacts). All previous factors are of great importance, as

the quality of the acquired data has a direct influence on the correct estimation

of the tensor.

The low-resolution aspect imposes a great amount of difficulty on the

interpretation of the diffusion-derived measurements of microscopically

organized structures that are averaged over a voxel because the acquired

parameters can be misleading. That is, a voxel can contain multiple

non-coherently oriented fibers and yield a low FA; however, a low anisotropy

outcome is not necessarily realistic as diffusion in nerve fibers is highly
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anisotropic [17], yet these are not adequately aligned to aggregate their

effect. In a similar manner, the cortex has shown a small degree of

anisotropy of FA=0.2 [59] due to the arrangement of the smaller-scale axons

and dendrites (compared to a typical FA≥0.5 in coherent white matter).

Similarly, if there are two or more WM crossing fibers within a voxel that

have different directions, their averaged principal orientation will more likely

fit the spherical tensor model and generate a low FA (that in this case does

not translate to isotropic diffusion). Even if these two fibers happened to steer

in similar directions and the voxel exhibited a high FA, the direction of the

principal eigenvector of the diffusion tensor of that particular voxel would not

accurately represent the microstructure underneath. In short, the DTI model

cannot define more than one nerve fiber orientation per voxel and the user

should never assume that the orientation of the first eigenvector represents

the truthful orientation of the underlying fibers in that voxel unless the axons

are perfectly coherently aligned [25]. Even when acquiring more than the

minimum of six measurements along different non-collinear gradient directions,

the diffusion tensor remains an eminently oversimplified, albeit useful, model

of the intricate neural architecture.

Furthermore, although DTI is well suited to model free Gaussian diffusion it

becomes inaccurate in restricted diffusion regimes such as in cellular

compartments where water diffusion does not occur in a random fashion [25].

Additionally, DTI acquisitions are subject to long scanning times, for the

most part due to the diffusion gradients pulses that prolong the echo time

(TE) which in turn prolongs the repetition time (TR) for a given number of

2D slices. This is particularly troublesome in the clinical setting where the

available scan time per patient is limited, and fast cost-efficient imaging and

diagnostics are crucial. Moreover, DTI is incapable of distinguishing between

efferent and afferent nerve fibers, as it can only characterize the trajectory of

water molecular motion.

The aforementioned DTI caveats drive the ellipsoid tensor model to be
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commonly recognized as a less accurate method, and dubious to extrapolate

to clinical applications. Nonetheless, many of the downsides can be corrected

and/or ameliorated. For example, higher image resolution can improve the

precision of the tensor, since smaller voxels are expected to contain less fiber

populations (though decreasing SNR). Low SNR can be counteracted by

acquiring more signal averages (extending scan time). A long scan time can

be reduced by using single-shot echo-planar imaging (SS-EPI) that in fact

has its own limitations (i.e. predisposed to B0 susceptibility effects,

eddy-current induced distortions and low spatial resolution), however these

can be reduced by utilizing parallel imaging and partial Fourier to reduce the

readout train in the acquisition [37].

As demonstrated, DTI can appear overwhelming with countless parameter

combinations and approaches to be selected. Nevertheless, the possibility to

adjust numerous variables can be seized as an advantage to optimize the

imaging protocols and expand the limits of the technique.

1.4 Oscillating Gradient Spin Echo (OGSE)

1.4.1 Introduction

Recalling characteristic diffusion in white matter, water travels a distance of

8 µm during the typical PGSE diffusion time of eff= 40 ms. Since myelinated

axons in the central nervous system (CNS) have diameters that range

between 0.2 – 10 µm [60], in 40 ms water molecules will long have

encountered cellular barriers for any axon with a diameter below 8 µm (in

essence the great majority). Consequently, the ADC will be reduced for both

small and large axon diameters that fall under this particular caliber (Figure

1.15A). Imaging at such long diffusion times therefore elucidates only a small

percentage of the microstructure’s long-sought features and it becomes

impossible to distinguish axon sizes since barriers are encountered in all

cases.
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If the MRI measurement was acquired in a much shorter diffusion time (i.e.

eff= 5 ms), water molecules would come across less boundaries and thus

become less hindered over larger spatial scales such as in large axons,

exhibiting an increase in ADC (Figure 1.15B). Hence, imaging within a

smaller time frame can unmask spatial-dimension differences between small

and large axons enabled by a measureable change in water diffusion with

ADC. This scanning modality holds a promising standpoint to uncover

smaller structural differences in nervous tissue that can lead to achieving a

unique imaging contrast mechanism useful to study nerve cells both in

healthy and pathological states.

Figure 1.15: Diffusion time effects in microstructure differentiation.
A) At long diffusion times (i.e. eff= 40 ms), water molecules have enough
time to come across cellular barriers in both large and small axons, indicating
restricted diffusion due to a reduced ADC. B) Imaging at short diffusion times
(i.e. eff= 5 ms) only allows water to encounter barriers for smaller axons. In
large axons, however, water remains unrestricted and features an increase in
ADC.

Before the use of oscillating gradients, earlier studies using strong insert

gradients observed diffusion-time effects on diffusion parameters in several

animal models [61–64]. Nonetheless, the implementation of a shorter
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diffusion time with the standard PGSE diffusion imaging sequence has been

particularly challenging. Revisiting the Stejskal-Tanner equation (1.3), in

order to considerably decrease the diffusion time while maintaining a

sufficient degree of diffusion weighting (i.e. b-value) one would need to image

with much higher gradient amplitudes that are unattainable with current

clinical MRI systems. Therefore, this strict unavoidable hardware limitation

urges for the employment of an alternative approach to study short diffusion

time effects in brain tissue.

The oscillating gradient spin echo (OGSE) diffusion sequence meets these

requirements. Gross and Kosfeld first introduced the oscillating gradient

methodology theoretically in 1969 [65]. More than a decade later, Stepisnik

further advanced their work by conducting a frequency spectral analysis of

different magnetic field gradients using a density matrix calculation, and

together with Callaghan mathematically characterized the attenuated signal

as [66, 67]:

S1 = S0 exp
(︃
−
1

π

∫ ∞

0
F(ω)D(ω)F(ω) dω

)︃
(1.19)

where S1 represents the signal after the application of the diffusion-weighted

gradient, S0 is the echo signal devoid of diffusion weighting, D(ω) is the tensor

denoting the diffusion spectrum, and F(ω) is the frequency spectrum derived

from the Fourier transform of the time integral of the gradient waveform [68,

69], defined as:

F(ω) =
∫ ∞

−∞

dt′ eiωt ′
∫ t ′

0
dt′′ γg(t′′) (1.20)

where g(t) is the amplitude of the diffusion sensitizing gradient and γ is the

gyromagnetic ratio. The OGSE sequence replaces the two gradient pulses

characteristic of PGSE with cosine gradients that encode water diffusion in

tissue within the course of brief time intervals enabled by the frequency

spectrum of the oscillations, as depicted in Figure 1.16.

Higher frequencies will accommodate microstructure sampling with shorter

diffusion time periods (i.e. as oscillating frequencies increases, eff
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Figure 1.16: PGSE vs OGSE. Comparison of typical PGSE rectangular
pulses (shown in blue) and the characteristic OGSE cosine waves (colored in
orange). Both diffusion sequences measure water molecular motion during
the eff; however, due to the nature of the OGSE gradients, increasing their
oscillation frequency allows to sample tissue during very short eff and therefore
investigate shorter microstructural spatial scales.

decreases) [70–72]. However, the effective diffusion time and b-value

calculation for OGSE sequences will vary depending on the type of sinusoidal

waveform used (i.e. sine or cosine) and the number of periods per waveform,

denoted by N. For a general sine-modulated OGSE waveform, the diffusion

weighting is calculated as [69]:

b =
3

8

(︃
γG
πN

)︃2
T3 (1.21)

where T is the duration of the gradient waveform. Alternatively, for a standard

apodized cosine-modulated OGSE waveform (i.e. apodized by replacing the

start and end 1
2 cosine lobes of each waveform with a complete sine lobe at

double the frequency to smooth out the abrupt cosine pulse margins), the

b-value resolves to [69]:

b =
1

8

(︃
γG
πN

)︃2
T3

(︃
1 −

1

8N

)︃
(1.22)
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Since the waveform duration is equivalent to T= 2πN /ω and ω= 2π/τ where

τ denotes the period, the effective diffusion time eff for a sine-modulated

waveform can be calculated by rewriting equation (1.21) as [69]:

∆e f f =
3

8
τ =

3

8 f
(1.23)

where f is the frequency of the oscillations. Similarly, for a cosine-modulated

waveform [69]:

∆e f f =
1

4
τ =

1

4 f
(1.24)

Equations (1.23) and (1.24) illustrate the inverse relationship between the

effective diffusion time and the oscillation frequency of the gradients; hence,

greater frequencies achieve shorter diffusion times. Utilizing cosine -

modulated waveforms has its advantages over sine-modulated, as unlike

PGSE and OGSE-sine, OGSE-cosine does not have its peak frequency at f =

0 Hz and can therefore segregate the different frequencies. On the other

hand, since PGSE is centered at 0 Hz, it masks the diffusion-time

dependence of the ADC. [68, 72, 73]. Additionally, an even greater benefit

can be observed when using trapezoid-cosine waveforms, since they produce

a substantial increase in spectral amplitude which in turn allows for greater

b-values [74] (Figure 1.17).

Having discussed the relevance of oscillating gradients, the next section will

focus on reviewing previous OGSE applications, beginning with phantom

studies and simulations, followed by pre-clinical and human studies.
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Figure 1.17: PGSE, OSGE-sine (OGSE-S), OGSE-cosine (OGSE-C),
and OGSE trapezoid-cosine (OGSE-TC) waveforms (first column)
shown alongside their diffusion gradient modulation spectrums
(second column). Unlike PGSE and OGSE-sine, both OGSE-cosine
waveforms do not have its frequency component centered at 0 Hz, which is
key for OGSE diffusion-time experiments as it increases the specificity to
discriminate between frequencies. Notice the spectral amplitude for OGSE-TC
is considerably larger than OGSE-cosine. Adapted from Van et al., 2014. [73].

1.4.2 Previous OGSE Studies

1.4.2.1 Phantom Studies and Simulations

The first OGSE MRI experiment was conducted in 1995 on water saturated

random packings of monodisperse glass spheres [75]. Since then, several

OGSE experiments have been conducted to compare the effects of short

diffusion times on the displacement of water for different levels of restriction.

For instance, Schachter and collaborators analyzed OGSE-derived ADC

values from five samples: one sample tube filled exclusively with water and

the remaining four test tubes filled with water and closely packed polystyrene

beads of a particular diameter each, namely of 2.8 µm, 9.1 µm, 25 µm, and
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46 µm, for diffusion times ranging from ∼5 ms to 30 ms (Figure 1.18) [76]. It

can be observed in Figure 1.18 that at very short diffusion times (i.e. eff=5

ms) the different-sized beads yield contrasting ADC values that allow them

to be discriminated by their dimensions. On the other hand, at long diffusion

times (i.e. eff=30 ms) the diffusing water encounters more barriers and the

ADC gap between different bead calibers becomes less apparent.

Figure 1.18: ADC variations as a function of diffusion time. Contrast
in ADC values between five different samples for varied diffusion times. The
sample tube with pure water features no restrictions to diffusion and therefore
bears an ADC that remains consistent between diffusion times. Contrarily,
the effects of diffusion time become apparent in the presence of hindrances; a
distinct variation in ADC is observed for short diffusion times as opposed to a
minimal ADC change for long diffusion times. Adapted from Schachter et al.
2000 [76].

Multiple additional OGSE models have been developed and simulated to study

ADC changes as a function of the gradient oscillation frequency. A summary

of four studies is depicted in Figure 1.19, where the models shown represent

A) diffusion between two impermeable parallel planes with different levels of

separation [72]; B) diffusion in spheres of different diameters [72]; C) diffusion
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in an array of non-permeable infinitely long cylinders [72, 77]; and D) diffusion

in closed-packed spherical cells [72, 77].

Figure 1.19: ADC variations as a function of frequency. OGSE models
depicting calculated ADC dependence on oscillation frequency for A) diffusion
between two infinite impermeable planes of varied separations, B) restricted
diffusion in spheres of varied diameters, C) diffusion in an array of impermeable
infinitely long cylinders, and D) diffusion in closely packed compartmentalized
spherical cells. Note that these simulations were conducted on a scale of
frequencies up to 10 kHz. Adapted from Gore et al [72].

The key takeaway from Figure 1.19A, B, lies in the clear ADC differentiation

that can be made between different-sized structures with increasing

frequency, especially between the smallest and largest cellular frameworks

(although requiring considerably high frequencies up to 10 kHz as shown

here). This valuable feature is capable of creating fine image contrast in MD

maps to highlight distinct regions. Figure 1.19 B, C, shows a clear ADC

increase with increasing frequencies for both simulations as water has less

time to probe its environment and comes across less obstacles. Another

simulation study of a white matter model with nonpermeable cylinders found
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that OGSE provides higher sensitivity than PGSE to investigate deeper into

smaller axonal configurations [78].

ADC variations in diverse models with oscillating gradients have therefore

proven to be a promising tool to explore microstructural spatial scale

differences in biological tissue to ultimately infer important brain cell

characteristics such as size, tortuosity, and surface-to-volume ratios [76].

1.4.2.2 Animal Studies

Numerous animal studies implementing the OGSE sequence have been

acquired in the past years to investigate diffusion time-dependence properties

of tissue, some of which are summarized in Table 1.1 organized by author

and year of publication, specifying frequency of oscillation, diffusion times

attained (shown only for oscillating gradients to correspond with alongside

frequencies), and a brief summary of the work.

In agreement with the aforementioned simulations, animal studies with

oscillating gradients found overall significant ADC increments as eff was

reduced [68, 79–88]. In fact, one of the studies showed greater ADC changes

with increasing frequencies in rat spinal cord regions where histology

indicates larger axons, suggesting that diffusion time differences and axon

calibers are related [86]. Additionally, tensor eigenvalue increases concurrent

with a decrease in FA were observed, as compared to imaging with the

conventional PGSE sequence. As per some cases, the difference between

these diffusion metrics can create an advantageous source of contrast from

different cell types, such as seen for specific layers of the cerebellum and

hippocampus [81, 85]. These studies covered an investigation of GM and

WM of mice/rat brains in health, disease (i.e. tumor treatment response),

and after the onset of stroke.
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Table 1.1: Summary of previous OGSE animal studies.

Paper
f
(Hz)

eff

(ms)
Core Finding

Does et al.,
2003 [68]

- 9.75–0.375 Normal and globally ischemic rat brain study of GM
showed an ADC increase up to 24% in vivo and 50%
postmortem subject to the oscillating waveform used.

Colvin et al.,
2008 [79]

30–240 ∼ 8.3 − 1 In vivo OGSE rat brain imaging showed greater
contrast between tumor and healthy tissue with
increasing frequency (48% increase in ADC at 240 Hz)
as compared to the PGSE method.

Colvin et al.,
2011 [80]

120, 240 ∼ 2.1,1 An improved method for imaging gliomas in rat brain
using oscillating gradients allowed the detection of
tumor changes after treatment as early as 24 h.

Aggarwal
et al., 2012 [81]

50, 100, 150 5, 2.5, 1.67 OGSE imaging of fixed mouse brain depicted enhanced
contrast in specific cell layers of the cerebellum and
hippocampus with increasing oscillation frequency
(ADC, λ⊥, and λ∥ increased while FA decreased).

Kershaw et al.,
2013 [82]

33.3–133.3 7.5–1.88 In vivo rat brain imaging using oscillating gradients
showed significant increases of MD and the eigenvalues
for cerebellar GM and WM regions, additional to a
significant decrease of FA in WM.

Portnoy et al.,
2013 [83]

67-1000 3.75–0.25 A magnetic resonance microscopy study was conducted
on a rat hippocampal specimen with similar eff for
both PGSE and OGSE, which at low b-values yielded
comparable ADCs that later diverged at high b-values.

Pyatigorskaya
et al., 2014 [84]

64.5, 129 3.8, 1.9 OGSE in vivo imaging of healthy rat brain cortex
concluded that even at the shortest diffusion time
studied (eff= 1.25 ms), diffusion was not free.

Wu et al.,
2014 [85]

50, 100
150, 200

5–1.25 In vivo and ex vivo OGSE imaging of normal and
hypoxia-ischemic mice brains showed frequency-
dependent ADC increments in the cortex and
hippocampus, as well as improved ADC contrast
between specific cell layers in cerebellum at f>100 Hz.

Xu et al.,
2014 [86]

50–250 5–1 Temporal diffusion spectroscopy study of rat spinal WM
tracts described histology-validated models to map mean
axon diameters and intra-axonal volume fractions, showing
ADC/frequency dependencies in regions with large axons.

Wu et al.,
2017 [87]

50–300 5–0.83 In vivo healthy mice brain imaging study with oscillating
gradients detected microcirculatory flow effects on
diffusion measurements acquired at low b-values. An
alternate method to suppress the effects is proposed.

Bongers et al.,
2018 [88]

200 1.25 OGSE imaging of mice glioblastoma showed 30%-50%
ADC increase compared to surrounding WM; during
radiation treatment, a ∼ 15% ADC increase was also
observed in the tumor.
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1.4.2.3 Human Studies

Only a few OGSE human brain studies have been published to this day, which

comes as no surprise considering the ineluctable hardware restraints posed by

human scanners. A summary of the work is described in Table 1.2 (showing

diffusion times for OGSE alone, to correspond with oscillation frequency).

Table 1.2: Summary of previous OGSE human studies.

Article
B0

(T)
b-value
(s/mm2)

f
(Hz)

eff

(ms)
Core Finding

Van et al.,
2014 [73]

3 200 18, 44, 63 12, 6, 4 First study to implement the OGSE
sequence for healthy human brain applications.
Reported frequency-dependent ADC increase
in the genu and splenium of the corpus callosum
using an optimized trapezoid-cosine waveform.

Baron et al.,
2014 [74]

4.7 300 20, 50 7.4, 4.1 First healthy human brain DTI study using
oscillating gradients found significant increases
of λ⊥ and λ∥ in 7 WM regions (up to 40% and
20%, respectively), additional to FA decreases, all
at eff=4.1 ms compared to the PGSE eff=40 ms.

Baron et al.,
2015 [48]

4.7 300 50 4.1 OGSE diffusion-encoding was used to image
ischemic stroke patients for the first time. On
average, WM stroke lesions showed an MD decrease
of 37% for PGSE compared to only 8% for OGSE.
The study provides insight into WM microstructural
behavior after stroke.

Xu et al.,
2016 [89]

3 400 20, 40 12.5-6.25 Study of the healthy human corpus callosum
showed that the diffusion dispersion rate
perpendicular to axon bundles (DDR⊥) correlated
well with the mean axon diameter (AxD) whereas
the diffusion coefficient (D⊥) didn’t, indicating
that DDR⊥ is a potential indicator of mean AxD
in human imaging.

Boonrod et al.,
2018 [90]

3 1000 - 6.5-35.2 Stroke study on brain and brain stem reported
four lesions with reduced visualization of the
infarctions on DWI with the shorter eff.

Iima et al.,
2018 [91]

3 700 50 4.3 Study demonstrated that a measurable ADC-
diffusion-time dependence was useful to distinguish
malignant from benign head and neck tumors.

Maekawa et al.,
2019 [92]

3 1000 30 6.5 Choroid plexus cysts yielded higher ADC values
at the shorter eff=6.5 ms (OGSE) vs eff=35.2 ms
(PGSE), but also showed lower ADC values compared
to those in CSF with eff of 35.2 ms and 6.5 ms.

Arbabi et al.,
2019 [93]

7 450 30, 45, 60 - Demonstrated evidence of linear dependence
of ADC on the square root of OGSE frequency in
healthy human WM and enabled full-brain maps
of the apparent diffusion dispersion rate.
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Further OGSE human brain studies are required, even more so at higher

frequencies. However, the OGSE implementation for human applications is

not straightforward. A deeper analysis of the encountered limitations will be

further discussed in the section below.

1.4.3 OGSE Limitations in Human Brain Applications

Any MRI protocol is directly limited by the specifications of the imaging

hardware. For the case of human brain applications, the available technology

and hardware capabilities are far more restricting than that in animal

scanners. Due to the compact size of animal scanner systems, they can be

designed to have a far greater field strength and gradient amplitudes that

allow an incredible high resolution and image quality, and greater diffusion

sensitivity with a minimum TE.

Nonetheless, one of the greatest limiting parameters for OGSE acquisitions

is the maximum gradient strength. First, in order to achieve very short eff

diffusion times while simultaneously preserving a constant b-value one would

need to increase either the gradient strength G or the number of cycles per

waveform N. Since the former is subject to hardware constraints, augmenting

the latter would increase TE resulting in an overall SNR loss and also elongate

the total acquisition time (TA). An SNR loss could be compensated either by

increasing the number of excitations (NEX) (however further extending TA) or

by decreasing the resolution. Nevertheless, none of the previous possibilities

is optimal. Additionally, accommodating a long TE generates heavily T2-

weighted images with high CSF signal that cause Gibbs ringing (GR) artifacts

and partial volume effects. Yet, bound by the maximum gradient amplitudes

on scanner systems in the clinical (or even research) setting, the only course of

action remains to settle for a long TE and TA or to settle with a lower b-value.

A recent publication discussed the advantages of microstructure imaging on a

human MRI system with high gradient strengths of 300 mT/m, applicable for

axon diameter distribution mapping, microstructural parameter estimation,
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and cancer/tumor imaging treatment response, among others, that in general

enabled a higher SNR and shorter TE for a given b-value [94]. The article

debates that the benefit of using such high gradient amplitudes with OGSE

remains only on the possibility to achieve higher b-values for lower frequencies,

and not as much on potentiating towards higher frequencies.

Table 1.3 depicts a comparison between an animal scanner and the limiting

features of a typical human MRI system. Note that the much stronger

magnetic field strength and gradient amplitudes achieved by the animal

system maintain a short TE for a given b-value, in addition to allowing

shorter effective diffusion times and a higher resolution for this example.

Table 1.3: Comparison between an animal scanner and our current 3T
Siemens Prisma. The estimates on the human Prisma system arise from our
available OGSE sequence in the advanced diffusion WIP and are stated for
one b-value alone, not suggesting any ideal settings.

Animal Scanner [81] Human Scanner

Field strength 11.7 T 3 T

Max Gradient 1000 mT/m 80 mT/m

Slew rate - 200 T/m/s

TE at b= 700 s/mm2 50 ms (f =150 Hz; eff= 1.67 ms) 144 ms (f =50 Hz; eff= 4.3 ms)
529 ms (f ∼100 Hz; eff= 2.6 ms)

Resolution 78 µm × 78 µm 1.72 mm × 1.72 mm

In summary, the principal advantage of imaging with oscillating gradients

remains that the OGSE acquisition method (although challenging to apply in

human brain) achieves shorter effective diffusion times than its counterpart,

the conventional PGSE diffusion imaging sequence.
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2 | Overview of Methodology
and Preliminary OGSE
Experiments at 3T

2.1 Introduction

As mentioned in Chapter 1, there are currently as little as four OGSE studies

in healthy human brain, one of which was conducted by a former student from

our lab here in University of Alberta, using a 4.7T MRI system [74]. The

aim of the following studies in this chapter focuses on the implementation and

base testing of OGSE on our 3T Siemens Prisma and evaluating the options for

expanding previous findings. One goal was to explore higher frequencies (most

wanted to achieve very short diffusion times) and higher b-values (i.e. >300

s/mm2). These experiments were collected on a 3T MAGNETOM Prisma

scanner with high-amplitude gradients (maximum of 80 mT/m) using a 64-

channel head coil (Siemens Healthcare, Erlangen, Germany) and a prototype

2D ss-EPI sequence (Advanced Diffusion WIP 918 & 919C). Note that the

primary novel experiment and results are presented in Chapter 3.

A numerous amount of scanning parameters come into play when designing the

imaging protocols. The MRI scanner allows certain degrees of freedom in the

choice of TE, TR, NEX (i.e. signal averages), field of view (FOV), voxel size

and slice thickness (i.e. resolution), b-value, inter-slice gap, gradient encoding

directions, phase partial Fourier, parallel imaging technique and acceleration

factor, interpolation, among others.
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Given the great number of possible parameter arrangements, the primary

objective was to find a balance between them to acquire OGSE data at the

highest frequency that allowed good image quality, resolution, adequate

SNR, and a large b-value, whilst maintaining TE and TA as short as

possible. In the paragraphs below, the choice of some parameters for the

experimental acquisitions is discussed.

b-value

High b-values allow greater precision and detail in the modeling of white matter

tracts, since the sequence becomes more sensitive to the diffusion of water

molecules and can better characterize their displacement, even more so for

smaller structures. However, scanning at greater b-values has a drawback: it

is accompanied by an increased signal decay (i.e. SNR loss), and overcoming

this disadvantage will likely affect other parameter selections such as voxel

size or NEX. Additionally, higher b-values increase the TE when the gradient

amplitude has reached its maximum, since the gradient will need to be applied

for a longer time to achieve the specified diffusion weighting (i.e. b-value),

thereby further decreasing SNR. Therefore, there is a cumulative effect of b

and TE - as will be shown in the next section. Nonetheless, the experimental

acquisitions in this chapter aim to balance SNR limitations at higher b-values

to explore the feasibility of b≥ 400 s/mm2.

Gradient encoding directions

It is well known that acquiring more than six gradient directions provides

additional information for the calculation of the diffusion tensor, making the

estimation less susceptible to errors [27]. The use of >6 directions like 20 or

30 results in all three gradients being applied simultaneously and penalizes

the OGSE acquisition with a longer TE for a given b-value. To provide

evidence in regards to the previous argument, an OGSE FLAIR (discussion

of FLAIR coupled with DTI later) experimental study was acquired

comparing two different setups: (1) 6 gradient directions with 3 signal

averages (i.e. 18 diffusion-weighted images), and (2) 20 gradient directions

with 1 signal average (i.e. 20 diffusion-weighted images); all other parameters
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were kept consistent between scans (Figure 2.1).

Figure 2.1: Comparison between acquisitions of 6 and 20 directions.
OGSE FLAIR non-diffusion weighted b0s (both shown for a single signal
average): acquired at 6 directions and 3 averages, yielding a TE= 83 ms
and SNR∼131.7 (left) and acquired at 20 directions and 1 average, yielding a
TE=133 ms and SNR∼62 (right). From visual inspection, it is evident that
the TE increment of the image on the right caused a substantial signal decay
and therefore SNR loss.

The effect of the application of all three gradients gradients in scenario (2)

increased the TE by 50 ms from TE= 83 ms to 133 ms. The lengthening

of the TE subsequently provoked a substantial SNR loss from SNR∼131.7 to

62 (both measured from the first b0 image as the mean signal in brain tissue

divided by the standard deviation of the background noise). In summary and

for the particular purposes of these studies, trading a 6-direction scan for a

20-direction scan is nonviable due to the considerable TE increment and the

more than two-fold SNR loss.
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SS-EPI and Parallel Imaging

Since DWI measures displacements it is sensitive to subject motion. It is

imperative that the imaging acquisition technique acquires fast high-quality

data while simultaneously being able to acquire all the images needed in the

lengthy DWI protocol. The single-shot echo planar imaging (SS-EPI)

sequence meets these requirements by acquiring all k-space data after a

single RF excitation, hence reducing total scanning time and sensitivity to

motion. As a result, most DWI/DTI investigations use SS-EPI, and as such

it was also the preferred method for all conducted experiments in this thesis.

However, like all modalities, SS-EPI has a number of disadvantages: it is

prone to image distortions from eddy currents induced by the rapid switching

of the gradients and B0 susceptibility effects, low spatial resolution, and

blurring due to the T2* decay during the prolonged image readout.

Fortunately, parallel imaging techniques can be used in conjunction with

SS-EPI to reduce susceptibility artifacts and the echo time (TE), thereby

reducing the total acquisition time. The parallel imaging technique used here

for all acquired experiments, Generalized Autocalibrating Partially Parallel

Acquisitions (GRAPPA), collected under-sampled k-space data in the

phase-encoding direction in order to accelerate the acquisition, as specified

by the acceleration factor R. For all scans, an acceleration factor of R= 2 was

employed.

2.2 Feasibility of OGSE Protocol

Having set the basis of important parameter considerations, an MRI protocol

was designed to test the feasibility of OGSE acquisitions on our 3T Siemens

Prisma. More specifically, the use of different b-values and OGSE frequencies

is investigated for their effect on the acquisition parameters such as TR and

TE, and to then estimate the expected signal loss, as will be discussed in the

following sections.
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2.2.1 OGSE Experimental Protocol

The protocol consisted of OGSE and PGSE DTI with: partial Fourier at

75%, GRAPPA R=2, 10 slices of 2.5 mm isotropic voxels (no gap), 1 signal

average, FOV 220 mm, 88×72 acquisition matrix, and 6 diffusion encoding

directions (optimal for shortest TE and highest b-value) with a total scan

time of 30 min. Different b-values ranging from b= 200-700 s/mm2 were set

at different OGSE frequencies depending on the maximum acceptable

frequency allowed for each b-value, starting from 40 Hz. The frequency

dictated the minimum TE and repetition time (TR) for each acquisition.

Table 2.1 summarizes the protocol parameters for b= 400-500 s/mm2 at

varying frequencies. The estimated percentage of residual WM signal after

an acquisition is also shown assuming a T2 in frontal white matter of

T2WM= 58 ms at 3T [95]. Notice how as frequencies are increased, the TE

increases substantially leading to a significant signal loss, such as seen at

higher frequencies of f = 70 - 90 Hz. Therefore, these frequencies remain

infeasible for OGSE acquisitions with current hardware.

Table 2.1: OGSE protocol describing acquisition parameters for b= 400
s/mm2 and b= 500 s/mm2. The estimated percentage of remaining signal in
WM relative to tissue is shown (assuming a T2WM= 58 ms, but not accounting
for diffusion effects). Note that the TR shown is for 10 slices only; a much
longer TR would be needed for a full-brain acquisition. Moreover, although
there was no change in TE for f = 40 Hz and 50 Hz across both b-values, the
TR increased, possibly due to high duty cycles from the oscillating gradients.

OGSE b-value= 400 s/mm2 b-value= 500 s/mm2

f
(Hz)

eff
(ms)

TR
(ms)

TE
(ms)

WM
signal

TR
(ms)

TE
(ms)

WM
signal

40 5.1 2200 73* 28% 2700 73* 28%
50 4.3 3300 101* 18% 4100 101* 18%
60 3.7 4700 127 11% 5800 161 6%
70 3.3 6200 168 6% 7700 196 3%
80 2.9 8000 219 2% 10000 269 1%
90 2.7 10100 286 1%
* TE remained the same between b=400-500 s/mm2 because the

gradients had not reached their maximum strength limit.
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Figure 2.2 shows a bar graph of the minimum OGSE TE values obtained at

different b-values and oscillation frequencies. It can be observed that as both

the b-values and frequencies were increased, the TE also increased

considerably. In fact, the echo times at f = 80, 90, and 100 Hz at high

b-values of b= 600 – 700 s/mm2 became too large to be considered. Even at

70 Hz for b= 500 s/mm2, the TE came to be ∼200 ms. Assuming the

T2WM= 58 ms, such an unreasonably long echo time would cause an

immense signal intensity reduction, down to an estimated ∼3% (considering

that the average SNR in the diffusion weighted image is usually around 30%

of that in the non-diffusion weighted b0 [25]). Hence, any data acquired

around these values would be deemed impractical and no useful information

could be derived from it. Evidently, OGSE acquisitions become very

challenging at short diffusion times.

Figure 2.2: OGSE TE values as a function of b-value. Bar graph
depicting minimum TE values obtained as a result of increasing OGSE
frequencies at varying b-values. The TE for higher frequencies, namely TE
at f =100 Hz for b400, f =90-100 Hz for b500, f =80-100 Hz for b600, and
f =80-100 Hz for b700 were infeasible, therefore they were not included in this
depiction.
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2.3 Phantom Validation Experiment

After analysing practical OGSE parameters on our 3T scanner, a phantom

experiment was needed to verify their feasibility prior to testing it on a human

subject. The following section will describe the conducted phantom validation.

2.3.1 Introduction

The phantom of choice consisted of N-Dodecane (CH3(CH2)10CH3), an oily

liquid alkane hydrocarbon that was placed inside a small 250 ml cylinder-

shaped plastic container to carry out the experiments. The motivation behind

the phantom of choice stemmed from the similarity of its diffusion coefficient to

the diffusion coefficient of white matter in the brain, as N-Dodecane has a D=

0.783×10 -3 mm2/s at 20C (∼ 0.8×10-3 mm2/s in WM). Therefore, scanning

this particular phantom should, in theory, provide an indication of feasible

parameters for OGSE experiments and yield similar results as expected from

a human subject.

In addition, it was of utter importance to ensure that the diffusion

measurements from both OGSE and PGSE remained consistent throughout

different b-values and frequencies in a free diffusion environment, and the

way to do that was to scan a phantom with no restrictions to diffusion. In

fact, a previous study on multiple n-alkane phantoms using PGSE and

OGSE at different diffusion times found no dependency of ADC values on

eff [96], demonstrating its practicality. Hence, the phantom study provides a

legitimate approach to confirm there are no systematic differences between

the diffusion sequences.

After the previous analysis discussed in section 2.2, a more limited range of b-

values and frequencies more adequate for realistic echo times was considered for

this experiment. The following subsections describe the acquisition parameters

and methodology.
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2.3.2 Methods

MRI Protocol

OGSE/PGSE DTI acquisition parameters were as follows: 10 3 mm slices

(no slice gap), 2×2 mm2 in-plane resolution zero filled to 1×1 mm2, 88×72

acquisition matrix, 6 signal averages (one b0 for each), FOV of 176 mm, partial

Fourier at 75%, GRAPPA R=2, 6 diffusion encoding directions of b= 200 – 500

s/mm2. The acquired OGSE frequencies were f= 40 (eff=5.1 ms), 50 (eff=4.3

ms), and 60 (eff=3.7 ms) Hz, whereas the PGSE diffusion time was eff=40 ms.

TE/TR were kept consistent between sequences, and total acquisition times

for both OGSE and PGSE was TA= 56:58 min.

It was the goal at first to equalize the TE values throughout the different

frequencies for the same b-value to achieve the same level of signal attenuation.

However, the innate programing of the pulse sequence in the scanner made it

impossible to increase the OGSE TE but for a few milliseconds (i.e. for b=

300 s/mm2 at 40 Hz, the maximum TE is 83 ms, whereas at 60 Hz the TE is

120 ms). Therefore, there was no alternative but to utilize different echo times

throughout the different frequencies, dictated by the minimum achievable TE

for the OGSE sequence. Scanning parameters are detailed in Table 2.2.

Table 2.2: OGSE protocol parameters for phantom study. OGSE
frequencies were set at f = 40-60 Hz for b-values in the range of b= 200-500
s/mm2.

OGSE b200(s/mm2) b300(s/mm2) b400(s/mm2) b500(s/mm2)
f

(Hz)
TR
(ms)

TE
(ms)

TR
(ms)

TE
(ms)

TR
(ms)

TE
(ms)

TR
(ms)

TE
(ms)

40 1200 73 1700 73 2200 73 2700 73
50 1700 71 2500 100 3300 101 4100 101
60 2400 87 3500 120 4700 127 5800 161

Image Analysis

Diffusion maps were processed using ExploreDTI and ROI analysis was

performed with ITK-SNAP. Figure 2.3 depicts OGSE and PGSE MD maps
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at b= 500 s/mm2 shown for one slice. The mean diffusivity maps can be seen

to remain consistent for both sequences in the unrestricted medium,

regardless of differences in diffusion time.

Figure 2.3: N-Dodecane OGSE/PGSE MD maps. It can be seen that
mean diffusivity maps remain uniform throughout different diffusion times
(shown for b= 500 s/mm2).

2.3.3 Results

Mean OGSE and PGSE MD measurements from three different slices are

plotted in Figure 2.4 for b= 200 – 500 s/mm2. On an important note, such

plots appear to compare the sequences at varying frequencies; however, it

must be clarified that PGSE is not characterized by oscillating gradients

(hence, has no frequency). Instead, both sequences are paired with the same

TE as allowed by each of the OGSE frequencies.
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Figure 2.4: N-Dodecane MD measurements. MeanSD of OGSE and
PGSE MD measurements in three different slices. A) b= 200 s/mm2; notice
the unstable MD values at different frequencies (most likely due to the very
low b-value), particularly for OGSE. B) b= 300 s/mm2; MD measurements
between sequences become more similar. C) b= 400 s/mm2; except for f =
50 Hz, the rest of the frequencies show good correlation between OGSE and
PGSE MD values. D) b= 500 s/mm2; great correlation of MD values between
sequences throughout varying frequencies. Note: The independent variable in
the graphs is set to be the frequency for better visual representation; however,
in reality both OGSE and PGSE sequences are paired by the TE.

At the low b-value of 200 s/mm2, the MD presents great variability between

OGSE and PGSE among all frequencies, proving a persistent systematic effect.

However, as the b-value is increased, the MD measurements for both sequences

become more uniform. The best agreement between OGSE and PGSE can be

seen for b-values of 400 s/mm2 and 500 s/mm2, especially the latter, at any

oscillation frequency. The meanSD MD values for a b= 500 s/mm2 with OGSE

at f= 40, 50, and 60 Hz were 0.800.008×10-3 mm2/s, 0.810.006×10-3 mm2/s,

and 0.830.008×10-3 mm2/s, respectively; corresponding PGSE meanSD MD
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values were 0.800.02×10-3 mm2/s, 0.820.02×10-3 mm2/s, and 0.840.001×10-3

mm2/s, respectively. All MD values are in close agreement with the expected

D= 0.783×10 -3 mm2/s (at 20C) for this phantom, where the slight variations

might be due to a different temperature at the time of the scan.

Having obtained the best agreement between OGSE MD and PGSE MD for

b= 400 and 500 s/mm2, it was decided that both values were feasible and

provided confidence to investigate diffusion time effects in human brain scans.

2.4 OGSE Human Brain Experimental Data

This section will cover three different OGSE human brain pilot studies where

acquisition parameters were varied to investigate their effect on the quality

of the derived diffusion maps and on the quantitation of diffusion metrics in

different white matter tracts. These preliminary studies were acquired on one

healthy human subject only, as to establish the basis for the main OGSE

human brain experiment discussed in Chapter 3.

2.4.1 Pilot Study 1

2.4.1.1 Introduction

As a brief overview, the following experiment was acquired at 2.5 mm isotropic

resolution (no interpolation) with a b-value of b= 400 s/mm2.

2.4.1.2 Methods

MRI Protocol

OGSE and PGSE DTI were acquired in one healthy volunteer (25 years old,

female) with 2.5 mm isotropic voxels, 20 slices (no gap), matrix size 88×88,

FOV 220 mm, b= 400 s/mm2, 6 gradient encoding directions, phase partial

Fourier at 75%, GRAPPA R= 2. Similar to previous experiments, OGSE

determined the minimum TE/TR and such parameters were maintained

consistent with PGSE. The acquired oscillating frequencies ranged from f =
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40 – 60 Hz; NEX was increased for f = 60 Hz, however practical

considerations limited the acquisition of more averages to maintain the same

SNR across frequencies (60 Hz alone would require 16 NEX to achieve a 28%

residual signal, with a total scan time of >40 min for that frequency only).

Table 2.3 depicts the protocol parameters, including TA (shown as the

scanning time required for a single sequence) and percentage of expected

residual WM signal, considering the effects of diffusion, signal averaging, and

T2 (T2WM= 58 ms).

Table 2.3: Pilot study 1: protocol parameters. OGSE and PGSE
protocol parameters are shown for b=400 s/mm2 using a 2.5 mm isotropic
resolution for 20 slices.

OGSE PGSE b= 400 s/mm2

f
(Hz)

eff
(ms)

eff
(ms) NEX TR

(ms)
TE
(ms)

TA
(min)

WM
signal

40 5.1 40 2 4300 73 1:24 28%
50 4.3 40 2 6500 102 2:03 16%
60 3.7 40 3 9200 128 3:56 12%

Image Analysis

Raw DWIs were visually inspected for motion artifacts and a common

total-variation (TV) GR correction was applied using ExploreDTI

v4.8.6 [97]. The aforementioned software was additionally utilized to produce

MD and FA diffusion maps. ROI analysis was performed in ITK-SNAP for

the following structures: genu of the corpus callosum (gCC), superior corona

radiata (SCR), corticospinal tract (CST), and anterior corona radiata

(ACR). Each ROI was placed in one slice that better defined the structure of

interest.

2.4.1.3 Results

Calculated MD OGSE and PGSE maps are shown in Figure 2.5 for all

acquired frequencies. MD maps at f = 40 Hz had an acceptable quality

between OGSE and PGSE, whereas the maps at 50 Hz and 60 Hz began to
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show MD inconsistencies, as can be observed in the enlarged region around

the anterior horns of the lateral ventricles (outlined in yellow).

Figure 2.5: Pilot study 1: OGSE/PGSE MD maps. Images were
acquired at oscillating frequencies of f = 40-60 Hz for b= 400 s/mm2 with a
2.5 mm isotropic resolution. As frequency was increased, the TE increased
causing a deterioration in image quality. The zoomed-in region highlights the
noise and artifacts surrounding the lateral ventricles.

Figure 2.6 depicts the MD measurements for the above-mentioned ROIs placed

in the gCC, SCR, CST, and ACR. OGSE MD is greater than PGSE MD in

the SCR and CST for all frequencies, but only greater than PGSE at f = 50

Hz in the genu and ACR.
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Figure 2.6: Pilot study 1: OGSE/PGSE MD measurements for
f = 40-60 Hz. PGSE MD is expected to remain constant (as seen mostly
in the CST and ACR) whilst OGSE MD should increase with frequency.
Measurements were collected from four different ROIs as follows: A) Genu
of the corpus callosum; the OGSE MD increases across all three frequencies,
however PGSE appears to have a greater MD value at 60 Hz compared to
OGSE. B) SCR; OSGE MD values seem to remain reasonably constant while
PGSE MD slightly decreases. C) CST; MD values for both frequencies appear
consistent throughout frequencies. D) ACR; OGSE MD values increase with
frequency.

2.4.2 Pilot Study 2

2.4.2.1 Introduction

Given the results obtained from the previous experiment, the current protocol

was designed with a higher resolution of 2 mm isotropic and f = 40 – 60 Hz.

Moreover, the b-value was increased to b= 500 s/mm2.
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2.4.2.2 Methods

MRI Protocol

OGSE and PGSE DTI were acquired in one healthy volunteer (25 years old,

female) at a spatial resolution of 2×2×2 mm3 isotropic for 20 slices (no

interslice gap), 6 averages with one b0 each, 6 gradient encoding directions of

b= 500 s/mm2, 88×88 matrix, FOV = 180 mm, 75% phase partial Fourier

and GRAPPA R= 2. Acquired oscillating frequencies were f = 40 – 60 Hz,

which determined the minimum attainable TE/TR for OGSE. To keep

OGSE and PGSE sequences comparable, the PGSE TE/TR values were

increased to match those for OGSE. Protocol parameters are summarized in

Table 2.4, depicting an estimated percentage of WM residual signal after the

effects of diffusion, signal averaging (SNR ∝
√NEX), and T2WM= 58 ms.

Table 2.4: Pilot study 2: protocol parameters. OGSE and PGSE
acquisition parameters using b= 500 s/mm2 and 2 mm isotropic resolution
for 20 slices. OGSE effective diffusion times for corresponding frequencies are
shown, while PGSE was set at typical eff= 40 ms. Total acquisition time (TA)
corresponds to a single diffusion sequence for the given TE/TR. Total scan
time for the complete study was 39:18 min.

OGSE PGSE b= 500 s/mm2

f
(Hz)

eff
(ms)

eff
(ms) NEX TR

(ms)
TE
(ms)

TA
(min)

WM
signal

40 5.1 40 6 5400 73 4:15 43%
50 4.3 40 6 8200 102 6:24 25%
60 3.7 40 6 11600 162 9:00 7%

Image Analysis

Visual inspection of the raw DWIs was performed for motion artifacts. It was

decided that no motion correction method from an imaging software package

would be applied in order to avoid unnecessary blurring and smoothing of the

images, since if a motion artifact was detected, the data would be corrupt

anyhow. Standard TV Gibbs ringing correction and processing of diffusion

maps was executed using ExploreDTI. ROI analysis was completed on a single

slice that best portrayed the structure of interest using the software ITK-
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SNAP, for the regions: gCC, CST, SCR, and superior longitudinal fasciculus

(SLF).

2.4.2.3 Results

Increasing the b-value from b= 400 to b= 500 s/mm2 (i.e. compared to the

previous experiment) enlarged the TE by 34 ms for the frequency of 60 Hz,

while having no effect on f = 40 and 50 Hz. An attempt to compensate for

this considerable TE increment was made by acquiring more signal averages,

but a total of ∼72 NEX would have been needed to even achieve the same

percentage of residual WM signal as f = 50 Hz, which is not practical with

respect to scanning time.

The calculated OGSE and PGSE MD maps are shown in Figure 2.7 for the

acquired oscillation frequencies; PGSE and OGSE are paired by TE. The

MD maps for f = 40 and 50 Hz have adequate image quality and show an

improvement from the previous pilot study, however as the frequency

increases the maps show more heterogeneity for both sequences, with clear

image artifacts and erroneous values at f = 60 Hz.

Figure 2.8 illustrates OGSE and PGSE color-coded FA maps for all

acquisitions. FA maps at frequencies of f = 40 and 50 Hz appear to have

reasonable quality, however the higher frequency of 60 Hz is inaccurate.

ROI analysis performed on OGSE and PGSE MD maps for four different

WM structures is presented in Figure 2.9 (i.e. OGSE/PGSE are paired by

their TE, however frequency is plotted as the independent variable). As the

frequency is increased, the MD values in the genu increase for both sequences;

this is because of low SNR at the higher TEs for both PGSE and OGSE.

Nonetheless, OGSE MD values are constantly greater than PGSE MD for f =

40-60 Hz in the CST, SCR, and SLF (Figure 2.9B, C, D, respectively), which

is encouraging as the findings are in-line with expectations. In contrast with

the previous experiment shown in section 2.4.1, the additional NEX acquired

in this study substantially increased the SNR and allowed a better estimation

of MD maps.
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Figure 2.7: Pilot study 2: OGSE/PGSE MD maps. Images at f = 40
and 50 Hz appear to have decent quality overall, however the MD maps at f =
60 Hz have notable artifacts and erroneous MD values, partially due to the
low SNR.
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Figure 2.8: Pilot study 2: OGSE/PGSE colored-FA maps. As TE
increased with frequency, the colored-FA maps progressively became noisier,
especially at f = 60 Hz due to low SNR.
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Figure 2.9: Pilot study 2: OGSE/PGSE MD measurements for f =
40-60 Hz. ROI analysis performed was for: A) Genu; both OGSE and
PGSE MDs increase with oscillation frequency, whereas PGSE should remain
constant. B) CST; OGSE MD is higher than PGSE MD, however it does not
show an increase with frequency. C) SCR; similar to CST, OGSE MD values
are constantly larger than those of PGSE across all frequencies. D) SLF;
OGSE MD shows a constant increase with frequency, however PGSE MD at
f = 60 Hz also increased, possibly due to low SNR.

2.4.3 Pilot Study 3

2.4.3.1 Introduction

Considering the SNR problems from the previous pilot study, specifically for

the frequency of f = 60 Hz, and seeing that it was not duable to increase SNR

by increasing the NEX, it was decided that the following experiment would

require a different strategy. Hence, thicker slices of 3 mm were acquired at an

in-plane image resolution of 2×2 mm2 (zero-filled to 1×1 mm2) with a smaller

b-value of b= 400 s/mm2 (i.e. to reduce the TE at f = 60 Hz and improve

the diffusion tensor calculation at this frequency). In this manner, SNR was
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substantially increased and scan time was reduced by more than half (since

less slices were required for an acceptable brain coverage) as compared to pilot

study 2 discussed in section 2.4.2.

2.4.3.2 Methods

MRI Protocol

OGSE and PGSE DTI were acquired in one healthy adult (25 years, female)

at 2×2 mm2 in-plane spatial resolution zero-filled to 1×1 mm2, 10 3 mm

slices (i.e. less slices needed given the slice thickness), no inter-slice gap,

GRAPPA 2, 6 averages (1 b0 for each NEX), 75% phase partial Fourier, and

6 diffusion encoding directions of b= 400 s/mm2. The protocol was originally

designed with a FOV= 144 mm and 72×88 acquisition matrix for all

experiments, however during the acquisition, there was an unexpected FOV

alteration and images were acquired at FOV= 144 mm and 72×88 matrix for

the OGSE f = 40 Hz only, with a swapped FOV= 176 mm and 88×72 matrix

for the rest of the protocols; nonetheless, this incident had no negative effect

in any of the acquisition parameters. The minimum achievable OGSE TE

(and therefore TR) was regulated by the oscillation frequencies acquired (f =

40-60 Hz); PGSE TE/TR were set to match the exact values. Table 2.5

describes the protocol parameters for the experiment, additionally showing

an estimated residual WM signal after the process of diffusion weighting,

signal averaging, and T2WM= 58 ms.

Table 2.5: Pilot study 3: protocol parameters. OGSE and PGSE
acquisition parameters for b= 400 s/mm2 at a 2×2×3 mm3 resolution zero-filled
to 1×1×3 mm3 for 10 slices. Total acquisition time (TA) shown corresponds
to a single diffusion sequence for the given TE/TR.

OGSE PGSE b= 400 s/mm2

f
(Hz)

eff
(ms)

eff
(ms) NEX TR

(ms)
TE
(ms)

TA
(min)

WM
signal

40 5.1 40 6 2200 73 1:47 51%
50 4.3 40 6 3300 101 2:36 32%
60 3.7 40 6 4700 127 3:40 20%
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Image Analysis

The first step of the analysis stage consisted in performing a visual inspection

of the raw DWIs that confirmed motion-free images, followed by standard TV

GR correction and generation of diffusion maps using ExploreDTI. ROIs for

different WM structures were placed on a single slice that best contained the

particular tract, namely on the genu and splenium of the corpus callosum

(sCC), CST, posterior limb of the internal capsule (PLIC), and SCR.

2.4.3.3 Results and Discussion

A great improvement in image quality, resolution, and noise-reduction can be

observed in Figure 2.10A as compared to the previous two pilot studies

discussed in this chapter (sections 2.4.1 and 2.4.2). The MD maps for both

diffusion sequences depict good homogeneity, even for the highest acquired

frequency (i.e. f = 60 Hz). However, it is notable that image quality degrades

as the oscillation frequency of the diffusion gradients rises, and Gibbs ringing

artifacts are apparent around areas of abrupt contrast differences such as

CSF/tissue boundaries for all OGSE frequencies and PGSE. Figure 2.10B

illustrates the earlier OGSE (f = 50 Hz) human brain study acquired at

4.7T [74] for comparison. The 4.7T images were acquired at a 2×2×2.5 mm3

resolution (zero-filled to 1×1×2.5 mm3), b= 300 s/mm2 with 6 diffusion

encoding directions, 6 averages, oscillation frequency of f = 50 Hz, and TA=

10 min. It is notable that these earlier images contain marked Gibbs ringing

(GR) artifacts throughout the entirety of the MD maps (Figure 2.10B).

Figure 2.11A, B depicts colored-FA maps for this OGSE/PGSE protocol,

alongside colored-FA maps of the aforementioned earlier OSGE human brain

study at f = 50 Hz [74]. It is clear that the maps in Figure 2.11A hold

superior quality and present an improved WM definition in comparison to

the analogous 4.7T study in Figure 2.11B.

60



Figure 2.10: Pilot study 3: OGSE/PGSE MD maps and their
comparison to previous study at 4.7T. A) Calculated MD maps for
the current protocol at b= 500 s/mm2 with 2×2×3 mm3 resolution (zero-
filled to 1×1×3 mm3) and gradient oscillation frequencies of f = 40 – 60
Hz. A considerable quality improvement can be observed from the previous
conducted pilot experiments. Maps appear more homogeneous, although GR
artifacts are present, especially for f = 50-60 Hz. Note that images seem to be
cropped due to the FOV shift. B) Previous OGSE human brain study acquired
in a 4.7T system with 2×2×2.5 mm3 resolution (zero-filled to 1×1×2.5 mm3),
b= 300 s/mm2, and an oscillation frequency of f = 50 Hz. Both OGSE and
PGSE MD maps depict pronounced GR artifacts shown as dark ripples (false
impression of low diffusivity values). MD Maps from Baron et al., 2014. [74]
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Figure 2.11: Pilot study 3: OGSE/PGSE colored-FA maps and their
comparison to previous study at 4.7T. A) Calculated FA maps for current
acquired protocol at b= 500 s/mm2 with gradient oscillation frequencies of f =
40 – 60 Hz. Compared to previous acquisitions, the maps show a significant
quality improvement, reduced artifacts, and a clearer definition of the WM
tract boundaries. Similar to MD maps in Figure 2.10A, the FOV inadvertently
changed, affecting the phase-encoding direction. B) Previous OGSE human
brain study acquired in a 4.7T system with b= 300 s/mm2 and an oscillation
frequency of f = 50 Hz. Both OGSE and PGSE FA maps have reduced
resolution and quality, as major WM structures appear to ‘blend’ with one
other. Maps from Baron et al., 2014. [74]
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Figure 2.12 shows the computed plots from the ROI analysis for five different

white matter structures (note that once more the frequency is depicted as

the independent variable for simple visualization). Overall, there was an

approximately 10% difference between OGSE MD compared to PGSE MD in

most WM tracts with increasing OGSE frequencies (as was expected from

the difference in diffusion times), with the exception of the genu at f = 40 Hz

that showed no differences between sequences (presumably due to Gibbs

ringing artifacts). These small, but noticeable OGSE MD increases confirm

an improvement in the current acquisition protocol with higher SNR.

Nonetheless, the OGSE MD increase is yet to be seen growing at higher

frequencies relative to PGSE.

In addition, a qualitative examination of OGSE/PGSE MD maps from Figure

2.10A revealed problematic Gibbs ringing artifacts that could be particularly

appreciated with increments of the gradient oscillation frequency. A more

comprehensive discussion on the characteristic GR artifact, its implications on

DWI and DTI derived measures, and available approaches for its correction is

examined in the next section.
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Figure 2.12: Pilot study 3: OGSE/PGSE MD measurements for f =
40 – 60 Hz. A) Genu; OGSE MDs are higher than PGSE MD with the
exception of f = 40 Hz. The ROI analysis in the splenium, CST, PLIC, and
SCR (plots B, C, D, and E, respectively) all revealed larger OGSE MD values
compared to PGSE MD.
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2.5 The Gibbs Ringing Artifact

2.5.1 What is Gibbs ringing?

Recall that the MRI scanner acquires signal in the form of spatial frequencies

encoded in k-space. Following the acquisition, an image can be reconstructed

from k-space data using an inverse Fourier transform. However, the image can

only be perfectly reconstructed if all infinite k-space frequencies were acquired,

which in practice is not possible due to sampling constraints. Therefore, during

an acquisition one is effectively “truncating” or sampling only a finite amount

of k-space, resulting in a loss of information from the periphery.

In fact, the outer k-space regions (i.e. high frequencies) describe the fine details

and edges of an image. If part of that high-frequency information is missing,

signal ripples in the form of overshoots and undershoots (Figure 2.13) will

cause a “ringing effect” in the reconstructed image. These rings will commonly

occur within the image around areas with sharp edges or abrupt contrast

transitions, appearing in the form of parallel dark bands. Among the scientific

community, this image artifact is more generally known as Gibbs ringing (GR),

named after J.W. Gibbs who described the phenomenon in 1898 [98].

Figure 2.13: Gibbs ringing oscillations. Periodic rectangular pulse
function (blue) and its approximation with a finite summation of a Fourier
series (black). Notice the overshoots and undershoots around discontinuity
points.
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2.5.2 Gibbs ringing implications on DTI-derived data

The first study to qualitatively assess the effects of GR on DWI data was by

Barker et al. in 2001 [99]; they observed that in human brain images, the

range of sharp signal intensities at the interface of CSF/tissue would greatly

vary between the non-diffusion weighted b0s and the diffusion-weighted images,

causing different Gibbs ringing artifacts for each b-value that could potentially

confound diffusion parameter estimations. Indeed, the GR artifact is more

prominent on the b0 image due to the steep contrast differences arising from

bright CSF immediately adjacent to lower-signal tissue, as seen in Figure 2.14.

Figure 2.14: Intensity profile across the genu of the corpus callosum
shown for non-diffusion weighted b0 (left) and a diffusion image
at b500 s/mm2 (right). The black arrows on the intensity profile plot
emphasize the marked signal undershoots characteristic of Gibbs ringing on
the b0 image, whereas the b500 is less impacted by the artifact.
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Since diffusion metric maps are calculated from a combination of both non-

diffusion and diffusion-weighted images, they are liable to suffer from the GR

artifact and their accuracy is compromised. Figure 2.15 illustrates PGSE

b0 images and corresponding MD maps across several slices with typical GR

artifacts surrounding the ventricles and even some reduced MD values adjacent

to the cortex.

For a long time the MRI society mostly neglected the influence of GR on the

estimation of diffusion measures until recent years, when physically

implausible signal (PIS) maps revealed erroneous FA values in

GR-contaminated voxels [37]. Furthermore, quantitative studies began to

assess the effects of the artifact on additional DTI parameters such as MD,

RD, and AD. For instance, a study showed that (1) simulations with GR

undershoots all caused the underestimation of MD, RD, and AD measures,

but an overestimation of FA (contrary to GR overshoots that produced the

opposite outcome); and (2) similarly, in real human data: mean MD, RD,

and AD were found to be significantly lower and FA significantly higher

before GR correction in the splenium of the corpus callosum [100]. Another

realistic simulation study indicated that the contrasting signal intensities

between b0s and DWIs caused a concave-like signal decay (rather than

convex) with increasing b-values, resulting in the intensification of GR in

parametric maps; even moderate over- and undershoots substantially affected

the ADC estimation towards non-physical values [101].
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Figure 2.15: Gibbs ringing in DWI. Axial slices across the brain showing
marked GR artifacts as dark bands surrounding the ventricles and proximate
to the cortex in non-diffusion weighted b0 images (left) and mean diffusivity
(MD) maps (right), as pointed out by yellow arrows. The artificially reduced
MD values in these regions (i.e. lateral ventricles) range from ∼0.14-0.67×10-3

mm2/s relative to the expected 0.8×10-3 mm2/s.
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Clearly, the Gibbs phenomenon has proven to be a powerful confounder in the

accurate estimation of diffusion measures and it is of vital interest to remove it

in favor of revealing the long-sought small diffusion-time differences expected

at high OGSE frequencies discussed in this chapter.

2.5.3 Gibbs ringing correction methods

Several GR post-acquisition correction methods have been proposed in the

past few years (since 2015-2016 for diffusion MRI) to alleviate the

problematic artifact, such as image filters (i.e. Gaussian or Lanczos) that

however simultaneously create image blurring and reduce spatial resolution.

Other approaches include the Gegenbauer reconstruction (based on piecewise

reconstruction of smooth data) that efficiently maintains tissue integrity,

although it is rather computationally costly [102]; the widely used total

variation (TV) method that corrects for both noise and signal

oscillations [100, 101, 103, 104], and the local subvoxel-shifts GR removal

technique [105].

It is worth emphasizing that prior knowledge (i.e. pre-acquisition) of a

weighting factor ‘λ’ is essential to carry out optimal TV corrections, and its

exact value can only be calculated through simulations as it relies on the

data’s SNR and the acuteness of GR artifacts. That being said, it is

impossible to eliminate GR effectively post-acquisition through this

approach. Secondly, there is an important consideration to be made for the

local subvoxel-shifts GR removal method: it assumes symmetric k-space

data. Essentially, this feature indicates the method does not function

properly on zero-filled (ZF) acquisitions with phase partial Fourier (PPF), a

common technique used in diffusion MRI and throughout the work of this

thesis to reduce TE. This situation can be observed in Figure 6 of Kellner

MRM 2016 [105], where the GR correction method fails to avoid artificially

low MD values in PPF-acquired human brain b0 images and MD maps.

The performance of the TV method (implemented on ExploreDTI) and the

subvoxel-shifts correction technique (implemented on MRtrix3) was evaluated
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on non-ZF (Figure 2.16) and ZF data (Figure 2.17) for both no-PPF and

PPF acquisitions to test their efficacy on the removal of the GR artifact for

OGSE/PGSE derived MD maps.

Figure 2.16: Evaluation of GR correction methods (non-ZF). MD
maps with no GR correction (column 1), TV GR correction (column 2), and
local sub-voxel shifts GR correction (column 3) are shown for non-zero filled
full Fourier space (A, C) and 75% PPF (B, D) for PGSE (A, B) at eff= 40 ms
and OGSE (C, D) at 40 Hz, eff= 5.1 ms for a healthy volunteer (25 year old
female). Despite the use of full Fourier space and no zero filling, GR is still
present post-correction, although less marked compared to PPF.
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Figure 2.17: Evaluation of GR correction methods (ZF). MD maps
with no GR correction (column 1), TV GR correction (column 2), and local
sub-voxel shifts GR correction (column 3) are shown for zero-filled full Fourier
space (A, C) and 75% PPF (B, D) for PGSE (A, B) at eff= 40 ms and OGSE
(C, D) at 40 Hz, eff= 5.1 ms for a healthy volunteer (25 year old female). Low
MD bands characteristic of GR are consistent after post-correction methods,
mostly around the ventricular area.
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Although both methods seem to perform better on non-ZF full k-space data,

marked dark bands are still visible in both OGSE and PGSE MD maps in the

periventricular area, compromising the measurements of true diffusion metrics

as mainly seen in this slice for the genu and splenium of the corpus callosum,

a universally studied white matter tract. Evidently, it is of utter importance

to address the GR artifact in DTI acquired data as it corrupts any derived

measures. Specifically, even the slightest MD underestimations can lead to

obscuring very small, but measurable OGSE-PGSE differences.

All above-mentioned GR removal approaches are designed as post-acquisition

remedial measures and yet do not adequately remove the artifact. Ideally,

one would initially acquire data without the likelihood of developing the GR

artifact. If the ringing is mainly originating from the sharp signal intensity

jumps in the non-diffusion weighted b0s at CSF/tissue boundaries, then if

one were to suppress that high signal, it is likely the GR artifacts would be

prevented in the first place. Fluid-attenuated inversion recovery (FLAIR) is

an MRI sequence used to null fluids (i.e. CSF) by means of an inversion

time (TI) measured between the application of a 180° inversion pulse and a

90° excitation RF pulse, and was first implemented in the clinical setting in

1985 [106].

Since then, the inversion recovery sequence has proven beneficial in brain

studies for different applications, such as to reduce the appearance of flow

artifacts [107, 108], in conditions such as traumatic brain injury [109], and

even multiple sclerosis [110, 111]. In addition, FLAIR has been widely

incorporated with diffusion studies for the main reason of removing CSF

partial volume effects [38, 112–116]. Nonetheless, to the best of my

knowledge, FLAIR has never been applied before for the sole prevention of

GR artifacts in diffusion MRI. Therefore, an assessment of its feasibility in

the generation of artifact-free, high quality data is required as to properly

investigate the very small OGSE-PSGE differences. However, FLAIR

acquisitions do considerably increase the TR and hence the total acquisition

time.
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Chapter 3 provides an in-depth evaluation of the viability of FLAIR

OGSE/PGSE acquisitions and its efficacy in the removal of the Gibbs

ringing artifact to uncover the true diffusion parameter estimations as a

function of diffusion time in healthy young adult human brain.
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3 | Fluid-Suppressed Oscillating
Gradient Spin-Echo DTI
Demonstrates Variable
Diffusion Time Dependency
Across the Human Brain

3.1 Introduction

The apparent diffusion coefficient or mean diffusivity (MD) can be calculated

from diffusion-weighted imaging (DWI) based upon the time water molecules

are allowed to assess their surroundings, also known as the effective diffusion

time (eff) [117]. At long diffusion times (i.e. eff= 40 ms for typical human

studies), water molecules will have dispersed far enough in both small and

large axons to be impeded by characteristic cellular barriers such as the

axonal membrane, resulting in a similar measure of the diffusion coefficient

despite the different-sized axonal calibers. However, if water molecules were

only permitted to travel for a very short time (i.e. eff≤5 ms), diffusion would

become less restricted for wider axons as they would have less time to reach

these boundaries, whilst it would remain restricted for thinner axons. The

latter approach enables a measurable change of the diffusion coefficient that

can provide insight into the varying micro-scale tissue differences within the

brain. The well-known Pulsed-Gradient Spin-Echo (PGSE) has been the gold

standard DWI sequence to image diffusion of water [118]. Nevertheless, its

typically long diffusion time (eff= 40 ms) is not particularly sensitive to
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explore tissue in the smaller spatial scale (i.e. <5m), and it would require

very high gradient amplitudes to achieve shorter diffusion times.

Conversely, oscillating-gradient spin-echo (OGSE) diffusion tensor imaging

(DTI) facilitates shorter diffusion times that can yield insight into the

aforementioned micro-structural scale restrictions of water diffusion [72, 76].

OGSE maximizes current hardware components by trading the pulsed

gradients characteristic of PGSE for two oscillating, periodic waveforms,

sampling the diffusion spectrum by adjusting the frequency range of the

sinusoidal diffusion-weighted gradients. The higher the frequency, the shorter

the diffusion times attained. There have been several OGSE simulations [71,

78, 119, 120] and animal studies [68, 80–84, 88, 121] that examine the

advantages of short diffusion times for the elucidation of microstructural

features in brain tissue (not an exhaustive list). However, there have been

limited OGSE human studies on healthy brain [73, 74, 89, 93], stroke [48,

90], and tumours/cysts [91, 92], mostly due to unavoidable hardware

limitations (i.e. maximum gradient strength) in current clinical scanners. In

addition, only one study examined the tensor parameters in multiple white

matter tracts and two gray matter regions, where 7 tracts showed significant

increases of up 20% and 40% in parallel (i.e. AD, λ∥) and perpendicular (i.e.

RD, λ⊥) diffusivities, respectively, as well as a significant decrease of FA in

4/8 tracts [74]. One other whole-brain study at 7T analyzed different white

matter tracts through diffusion dispersion imaging [93], whereas the other

two healthy brain studies only measured the corpus callosum [73, 89]. An

alternative high b-value method of investigating the brain microstructure

with AxCaliber type modelling suggested differences of axon diameters

between various tracts with the corticospinal tract (CST), superior

longitudinal fasciculus (SLF), and forceps major having the largest

diameters, albeit with data acquired using very long scan times of 55 min on

a high-performance gradient Connectome 3T [122].

Probing the nerve cell microenvironment in the human brain is one key to

understanding biological processes in both health and disease. To achieve
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this, though, it is essential to obtain high quality images to ensure the

derived measurements are reliable. As a low-resolution technique, DWI data

is particularly sensitive to noise and image artifacts such as Gibbs ringing

(GR) and partial-volume effects. The problematic GR artifacts arise from

sharp contrast differences between areas with bright cerebrospinal fluid

(CSF) (on non-diffusion-weighted b0) and brain tissue, causing marked dark

rims to form on MD maps around these tissue boundaries, such as adjacent

to the ventricles [123]. Consequentially, the ringing can obscure the

quantification of small diffusion parameter differences between OGSE and

PGSE sequences.

Even so, the GR artifact has long been overlooked and underestimated by

the diffusion MRI community. The previous OGSE human brain study that

performed a tract-based analysis on several white matter tracts depicted a

voxel by voxel OGSE – PSGE difference map for both the parallel and

perpendicular eigenvalues [74]. Although displaying an increment for both

eigenvalues at the shortest diffusion time, the difference map does not appear

to highlight any specific regions as was expected from the quantitative

analysis, possibly due to the contribution of image artifacts such as GR,

notwithstanding the already very small OGSE – PGSE differences involved.

It has been previously shown that GR creates signal intensity undershoots

and overshoots that cause erroneous diffusion parameter estimations such as

lower MD, axial diffusivity (AD), and radial diffusivity (RD), as well as

higher fractional anisotropy (FA) [100, 101]. The Gibbs ringing artifact has

therefore attracted attention with various corrective strategies in the

post-acquisition stage to overcome problems in diffusion estimations,

although the algorithms often need full Fourier space (or else it still fails to

avoid generating low MD regions at the periventricular area) [105] or a priori

knowledge of an optimal lambda value (obtained uniquely through

noised-based estimations [101] and simulations [100]). All three methods,

though, agree with one fact: GR is a function of the amount of diffusion

weighting and its severity will depend on the degree of signal intensity
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variations between CSF/tissue interfaces.

Facing the challenges around the artifact removal during post-processing, a

straightforward solution is to null CSF in the acquisition. Numerous

diffusion MRI studies in the past have applied inversion recovery sequences

to suppress CSF contributions with a primary focus on reducing partial

volume effects and not necessarily to avoid GR, such as in cortical gray

matter [112], DTI [114], tractography [115], and stroke [113], as some of

these earlier investigations were acquired at low spatial resolution and SNR.

The focus of this work is, for the first time, to avert the artifact by acquiring

fluid-attenuated inversion-recovery (FLAIR) [106] OGSE DTI data to

investigate diffusion-time effects throughout the brain. The application of

the inversion recovery sequence nulls the signal originating from CSF,

preventing the appearance of the abrupt bright signal boundaries in the

image. This methodology provides numerous advantages, as it enables the

estimation of uncorrupted, high quality, consistent diffusion maps. However,

scans become somewhat longer with the addition of the inversion time (TI)

and more averages are required to compensate for signal loss. The purpose

here is to evaluate the efficacy of FLAIR OGSE (versus FLAIR PGSE) for

assessing potential differences of diffusion time dependencies in various white

matter and gray matter regions in healthy adults.

3.2 Methods

3.2.1 Image Acquisition

Eight healthy volunteers (mean 263 (23-30) years old, 4 males/4 females)

were recruited to participate in this study and provided written informed

consent. Magnetic resonance images were acquired on a 3T MAGNETOM

Prisma (Siemens Healthcare, Erlangen, Germany) with a 64-channel head

coil using an Advanced WIP 919C (single-shot echo-planar imaging (EPI)

sequence prototype). The four-scan protocol (26 min total) incorporated

PGSE and OGSE (trapezoid and trapezoid-cosine diffusion sensitizing
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gradients, respectively) both with and without CSF suppression. Acquisition

parameters were as follows: 48 3 mm thick slices to cover whole-brain and

cerebellum with no slice gap at 1.7×1.7 mm2 in-plane resolution (zero filled

to 0.85×0.85 mm2), field of view (FOV) 220 mm, matrix size 128×128,

anterior-to-posterior phase-encoding, 3 averages, GRAPPA acceleration

mode with a factor of 2, phase partial Fourier (PPF) at 75%, and b-value 500

s/mm2 using 6 diffusion sensitizing gradient directions. The TR for OGSE

was nearly double as that for PGSE in both FLAIR and non-FLAIR scans,

presumably due to the high duty cycle of the oscillating gradients. Scanning

time parameters are detailed in Table 3.1 (TE was kept nearly equivalent for

both OGSE/PGSE between non-FLAIR and FLAIR protocols to discard T2

effects).

Although acquiring the data with a greater number of gradient encoding

directions would be ideal, the TE for FLAIR would increase from 83 ms to

130 ms by shifting from 6 to 10 directions, which would be associated with

SNR loss. Further, the focus here is on low b-value and tensor analysis. The

PGSE effective diffusion time, duration, and separation were eff = 40 ms, eff=

3.9 ms, and sep= 41.4 ms, respectively. The OGSE diffusion time was much

shorter with eff = 5.1 ms at f= 40 Hz, accommodating 4 lobes on either side

of the refocusing pulse. The current 3T study utilizes a higher b-value of 500

s/mm2 and lower frequency of 40 Hz relative to our previous 4.7T OGSE

study [74](b= 300 s/mm2, 50 Hz). The SNR measurements collected from

the b0 images (i.e. calculated as the ratio of the mean signal intensity in the

genu divided by the standard deviation of air in the background) were ∼104

and ∼95 for the OGSE and PGSE FLAIR sequences, respectively, and ∼110

and ∼105 for the OGSE and PGSE non-FLAIR acquisitions, respectively.
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Table 3.1: PGSE and OGSE acquisition parameters for typical non-FLAIR
and FLAIR.

Protocol TE (ms) TR (s) TA (min) TI (s)

PGSE Non-FLAIR 80 5.6 2:33 -
OGSE Non-FLAIR - 40 Hz 80 13.1 5:41 -
PGSE FLAIR 83 12.8 5:33 2.3
OGSE FLAIR - 40 Hz 83 27 11:28 2.3

3.2.2 DTI Region of Interest Analysis

Post-processing included Total-variation (TV) Gibbs ringing (GR) correction

and subsequent calculation of Mean, Fractional, Radial, and Axial Diffusivity

maps (MD, FA, RD, and AD, respectively) on ExploreDTI v4.8.6 [97]. OGSE-

PGSE difference maps were calculated per voxel for all diffusion metrics, and

an automated brain masking approach in ExploreDTI was applied to remove

the skull and adjacent noise voxels. Given the lack of artifacts with FLAIR

preparation (discussed in Results), manual region of interest (ROI) analysis

was performed (ITK-SNAP [124]) on only the FLAIR OGSE-PGSE difference

maps for every diffusion parameter (guided by the directionally encoded FA

maps) to evaluate nine white matter regions, namely the anterior limb of the

internal capsule (ALIC), posterior limb of the internal capsule (PLIC), corpus

callosum (CC) subdivided into three main regions (genu CC, body CC, and

splenium CC), inferior fronto-occipital fasciculus (IFO), superior longitudinal

fasciculus (SLF), corticospinal tract (CST), and white matter portions of the

cerebellum, as well as two deep gray matter structures (thalamus and caudate)

for comparison purposes. ROIs were delineated only on slices that had a

good depiction of each structure (and on both left and right hemispheres for

bilateral regions: ALIC, PLIC, IFO, SLF, CST, cerebellum, thalamus, and

caudate - which were averaged as one measurement) to yield one value per

region per participant, which were then averaged over the eight subjects. Two

non-parametric tests were used: a sign test to compare whether the OGSE-

PGSE diffusion differences differed from zero and a Wilcoxon signed rank test

to examine differences between compared regions (p<0.05).
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3.3 Results

3.3.1 Improved DTI Map Quality with FLAIR

The standard non-FLAIR on both PGSE and OGSE displays focal and marked

artifacts on the MD maps caused by Gibbs ringing in regions near CSF, for

example the zoomed-in area of the genu and lateral ventricles (as pointed out

by the arrows in Figure 3.1A, 3.1C), despite the use of Gibbs ringing correction

in post-processing [100]. This problematic artifact is prone to cause bias in the

diffusion parameter estimations and measurements due to the low MD in this

and other brain regions. The use of FLAIR for attenuating the bright CSF

signal on the b0 images (and an additive effect with diffusion-weighting on the

b500 images) avoided these dark MD regions (as low as 0.64×10-3 mm2/s on

non-FLAIR DTI versus 0.89×10-3 mm2/s in the same CC region on FLAIR)

characteristic of Gibbs ringing and lead to the expected uniform MD maps, as

well as good-quality FA maps, for both PGSE and OGSE (Figure 3.1B, 3.1D).

Given the more accurate diffusion maps with CSF-suppression, only FLAIR

acquisitions were utilized for subsequent diffusion parameter analysis across

brain regions. Voxel-by-voxel OGSE-PGSE difference maps were calculated

and color-coded to visually inspect the areas with highest diffusion-time

dependence, as shown in Figure 3.2 for MD (note that the MD difference

map has been overlaid on an FA map for anatomical reference). It is evident

that such areas are clustered mainly within white matter regions, with some

of the greatest OGSE-PGSE MD increases (some voxels with MD>0.1×10-3

mm2/s in this example) in the core tracts such as corpus callosum, PLIC,

CST, and SLF.

As expected, MD from the shorter diffusion-time OGSE was significantly

greater than that derived from the longer diffusion-time PGSE for all nine

white matter regions, but not for the two deep gray matter structures

(Figure 3.3). The highest MD diffusion-time dependences was found in the

CST (OGSE MD - PGSE MD= 0.060.01×10-3 mm2/s), followed by the
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Figure 3.1: PGSE and OGSE with/without FLAIR. Mean images at
b= 0 s/mm2 and 500 s/mm2 and FA and MD maps are shown for the standard
non-FLAIR (A, C) and FLAIR (B, D) DTI protocols for PGSE (A, B) at eff=
40 ms and OGSE (C, D) at 40 Hz, eff= 5.1 ms for a healthy volunteer (25 year
old female). Notice the pronounced Gibbs ringing artifact (as pointed out by
the arrows) for the non-FLAIR MD maps around the lateral ventricles near
the genu and its absence in the FLAIR MD maps. Note that the detrimental
Gibbs ringing artifact can go unnoticed if visualized only on the FA maps.

PLIC, SLF, and splenium CC. FA presented a significant decrease in the

CST (-0.030.01) and an increase in ALIC (0.030.02), whereas the rest did not

differ between OGSE and PGSE. RD showed a distinct elevation in the CST

(0.060.01×10-3 mm2/s), SLF, PLIC, and IFO comparable to the observed

increases in MD across the eight subjects. All the white matter structures
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displayed increments in AD, especially higher for all callosal subcomponents

(up to 0.100.02×10-3 mm2/s in the splenium) and the PLIC, whereas the two

gray matter regions showed no change.

Figure 3.2: Voxel-by-voxel subtraction of OGSE MD - PGSE MD
shown for nine axial slices in one healthy volunteer (25 year old
female). Note that an FA map is employed as an overlay for anatomical
reference. MD diffusion-time dependences can be observed throughout the
whole brain white matter regions, notably higher in core tracts.
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Figure 3.3: OGSE - PGSE diffusion parameter differences for FLAIR
DTI over eight healthy subjects (mean SD) for nine white matter
regions and two deep gray matter structures. Significant diffusion-
time dependences can be observed for both (A) MD and (D) AD for all nine
white matter regions at shorter diffusion times (i.e. eff= 5.1 ms). (C) Radial
diffusivity increases in 4/9 tracts, remaining consistent with those that show
highest differences in MD (e.g. CST, SLF. PLIC). (B) FA shows a notable
decrease in only one tract (CST), as well as an increase in one tract (ALIC).

OGSE – PGSE diffusion parameter differences per tract for all eight subjects

are depicted in Figure 3.4. In agreement with Figure 3.3, the MD differences

were highest in the CST for most subjects, while the thalamus and caudate

had the lowest MD values. OGSE RD - PGSE RD differences were greatest

in the CST for all subjects. Similar to MD, the lowest AD differences were

found in the two deep gray matter regions for all subjects.
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Figure 3.4: OGSE - PGSE differences of absolute diffusion
parameters for FLAIR DTI per studied region (i.e. 9 WM/2 GM)
for eight healthy subjects (S1-S8). Notice that both deep gray matter
structures have the lowest (A) MD and (D) AD diffusion differences at shorter
diffusion times (i.e. OGSE eff= 5.1 ms) relative to longer diffusion times (eff=
40 ms). (C) Radial diffusivity in the CST was the highest across all subjects,
followed by the SLF and PLIC. (B) In 7/8 subjects, the CST had the lowest
FA differences and ALIC the highest.

Significant OGSE – PGSE diffusion metric differences between paired regions

are shown in Figure 3.5. Excluding one another, the CST, PLIC, and SLF

MD differences were significantly higher from the other regions, whereas the

ALIC, thalamus, and caudate had significantly lower MD values compared to

all other studied regions. Confirming previous analysis, FA was lowest in the

CST and highest in ALIC in comparison to other structures. The CST had

significantly higher RD differences than all other studied regions, followed by

the SLF and PLIC higher than 8 structures. Both deep gray matter structures
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had lower AD differences than those found in all WM tracts.

Figure 3.5: Cross table of OGSE - PGSE diffusion parameter
differences showing significant differences between paired structures
(using the Wilcoxon signed rank test [p<0.5]) in eight healthy
subjects. A) Exclusive of one another, CST, PLIC, and SLF had significantly
higher MD, while ALIC and both GM structures had the lowest, compared to
all regions. B) FA in the CST had the lowest OGSE-PGSE differences. C)
CST had the highest RD from all regions, next to SLF and PLIC in 8/10. D)
Thalamus and caudate showed significantly lower AD than all studied WM
tracts.
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Normalized OGSE-PGSE % differences of diffusion metrics averaged across

eight healthy subjects are presented in Figure 3.6 for the 9 white and 2 gray

matter structures. Radial diffusivity showed the highest % increases of any of

the diffusion parameters, namely 11.8%, 9.5%, 8.3%, and 7.6% for the CST,

PLIC, SLF, and splenium CC, respectively. Similar findings were observed for

MD in the same structures, with increments of 7.9% (CST), 7% (PLIC), 6.8%

(SLF), and 5.8% (splenium). Axial diffusivity showed increases of up to 5.8%

which were quite consistent across 8/9 white matter tracts, but was the least

changed in the caudate, thalamus and IFO. FA showed minimal changes for

most regions.
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Figure 3.6: Pictorial representation of relative (%) OGSE- PGSE
differences of diffusion metrics averaged (left and right combined
for calculation) over eight healthy subjects for nine white matter
regions and two deep gray matter structures , displayed in their
corresponding maps. Radial diffusivity had the largest % increases of any
of the diffusion metric, with the CST, PLIC, SLF, splenium CC, and IFO
being the most evident. Similar to RD, mean diffusivity showed considerable
increases in the CST, PLIC, and SLF of around 8% with the least changes in
the deep gray mater. Axial diffusivity also showed notable increases of up to
6% with the lowest % changes in the two gray matter regions and the IFO.
Note that data shown was normalized to PGSE FLAIR.
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3.4 Discussion

The purpose of this study was to improve the ability to measure diffusion

time effects with OGSE in the human brain by using CSF-suppression with

FLAIR preparation and then to use this methodology to investigate

differences in diffusion time sensitivity across various white matter tracts in

the healthy young adult brain. Eliminating CSF signal on the b0 images with

FLAIR minimized Gibbs ringing artifacts and improved the quantitative

diffusion maps which is necessary to measure the small differences between

OGSE and PGSE, by removing erroneous values which were most noticeable

on MD in regions near CSF/brain interfaces. Using an OGSE frequency of 40

Hz, with an effective diffusion time of 5.1 ms compared to PGSE with 40 ms,

a voxel-by-voxel subtraction of diffusion parameters showed OGSE-PGSE

differences predominantly in white matter regions, but not in deep or cortical

gray matter. The MD and RD diffusion-time dependences differed between

tracts and was greatest for the corticospinal tract, posterior limb of the

internal capsule, and the superior longitudinal fasciculus. Notably AD was

elevated on OGSE for all 9 white matter tracts, with significantly higher

OGSE-PGSE differences from those in both deep gray matter regions.

The previous OGSE human brain studies, albeit limited in numbers, all have

evident Gibbs ringing artifacts in the ADC/MD maps shown in their

publications – often seen as regions of abnormally low diffusivity at the

brain/CSF interfaces [123] (e.g. see Figure 4 in Baron MRM 2014 [74],

Figure 6 in Van MRM 2014 [73] Figure 1 Boonrod Neurorad 2018 [90],

Figure 1C,D Maekawa MRI 2019 [92], Figures 2, 5, and 7 Arbabi MRM

2019 [93]). While this may be less of an issue when examining OGSE vs

PGSE in ischemic lesions or tumours with large diffusion time effects, these

quantitative parameter errors will deleteriously impact white matter studies

which have much smaller diffusion time effects. Early implementation of

OGSE here on a state-of-the-art Siemens Prisma 3T (relative to our earlier

healthy white matter study on a Varian Inova 4.7T [74]) also showed these
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problematic Gibbs ringing artifacts, prompting the current FLAIR strategy.

It should be noted that the FA or color-encoded FA maps do not

demonstrate these artifacts as readily (as seen in Figure 3.1), and thus

examination of the other diffusion parameter maps is necessary. Recent

publications have proposed strategies to remove Gibbs ringing artifacts in

post-processing of the output images (i.e. not on the raw k-space), but these

did not entirely alleviate these errors either for the case of non-interpolated

nor interpolated data (i.e. Figures 2.16 and 2.17 in Chapter 2 of this thesis,

respectively). In fact, these regions of incorrect low diffusion are still evident

after Gibbs ringing correction when 6/8 partial Fourier is used in acquisition

(see Figure 6 in Kellner MRM 2016 [105]), as is commonly done like in this

study (note: non-interpolated data was not acquired in the group of 8

subjects). CSF suppression with FLAIR removes these quantitative diffusion

artifacts in acquisition by providing the same contrast between CSF spaces

and the brain on both non-diffusion-weighted (b0) and diffusion-weighted

(b500) images. The limitation with FLAIR of course is the reduced SNR in

the brain tissue and the longer scan time to allow for the inversion recovery.

Nonetheless the scan time of 5.5 min for the whole brain FLAIR PGSE is

reasonable, and the much longer 11 min scan time for the whole brain

FLAIR OGSE was driven mainly by vendor-set hard limits for a very much

longer minimum TR of 27 sec (versus 13 sec in FLAIR PGSE) presumably to

minimize gradient duty cycle and heating. The overall long scan time would

limit the application of the FLAIR OGSE/PGSE pair to clinical populations,

although scan times could be reduced by limiting slice coverage and

determining strategies to reduce TR for the OGSE. The current study is the

first time FLAIR has been incorporated into OGSE acquisition and a higher

b-value of b= 500 s/mm2 (relative to previous studies at b= 200 s/mm2 [73],

300 s/mm2 [74], 400 s/mm2 [89], or 450 s/mm2 [93]) was used for greater

diffusion sensitivity.

Using a higher frequency of 50 Hz (and shorter effective shorter diffusion

time of 4 ms), a previous healthy human brain study reported much larger
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OGSE – PGSE differences of 8-20% for AD (i.e. λ∥) and 13-40% for RD (i.e.

λ⊥) in 7/8 white matter tracts identified with tractography [74], with the

exception being the body of the corpus callosum. The rank order of RD

increases with OGSE in that study was 30-40% (genu and splenium of corpus

callosum, superior longitudinal fasciculus), 20-30% (corticospinal tract,

inferior longitudinal fasciculus), and then 10-20% (inferior fronto-occipital

fasciculus, cingulum). Here, using 40 Hz OGSE, only 4/9 white matter

regions showed increased RD by 7-12%, namely the CST, SLF, PLIC, and

IFO. However, all 9 white matter regions showed elevated MD (2-8%),

mainly due to the fact that AD was elevated (3-6%) with OGSE in all white

matter regions. FA on the other hand did not differ between OGSE and

PGSE for 6/8 regions suggesting proportional AD and RD changes, but FA

went down for the CST and up for the ALIC given differential changes in AD

and RD with diffusion time. Of the six regions that overlapped between the

two studies, 3/6 showed RD increases in both studies (SLF, CST, IFO), 1/6

did not show RD increases in both (body CC), whereas the genu and

splenium of the corpus callosum regions showed RD increases in the previous

50 Hz work but no RD changes with the current 40 Hz. That said, the genu

and splenium of the corpus callosum did show marked diffusion time effects

for AD in both studies. The proportional changes were much less in the

current study, but it is unclear if such differences are related to the lower

OGSE frequency here, or whether CSF artifacts (Gibbs ringing, pulsatility,

partial volume) had any influence in the earlier work.

Further studies are needed to examine higher OGSE frequencies while avoiding

Gibbs ringing artifacts. Notably the two deep gray matter regions of the

thalamus and caudate showed no diffusion time dependencies for MD, FA

or AD, but the thalamus did show an elevated RD although it was only by

∼0.01×10-3 mm2/s between OGSE and PGSE. The earlier 4.7T human study

showed elevations of RD and AD in the thalamus with OGSE [74]. There are

few pre-clinical OGSE studies of the healthy brain white matter, but one study

on excised, fixed mouse brain showed elevated MD (ADC), AD, and RD with
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OGSE frequency (show 50 Hz and up) in the genu and splenium of the corpus

callosum, and the cerebellar peduncles [81]; note that our study also shows

elevated MD and AD in the cerebellum WM. An in vivo rat brain study has

also shown diffusion time differences in cerebellar WM and CC [82]. However,

much of the focus in the pre-clinical studies has been on gray matter.

It has long been known that the alteration of the diffusion time can be used

to examine cell size and barrier separations [125]. For ordered axonal

systems, the slope of change of RD (i.e. perpendicular diffusivity) with

shorter diffusion time, given by higher OGSE frequency, is greater with

larger axon diameters in excised rat spinal cord [86, 89]. Thus, the white

matter tracts with the greatest OGSE RD – PGSE RD changes would

presumably be expected to have the largest axons of those tracts examined.

The CST/PLIC and SLF showed the greatest RD increase at the shorter

diffusion time, where histological studies indicate the presence of large

diameter axons: CST is composed of 90% 1 – 4 µm, 7% 5 – 10 µm, and 3%

10 – 22 µm axon diameters [126], while the axons in SLF are ∼0.63 – 1.34

µm [127] in diameter. The OGSE-PGSE RD findings agree with a high b

connectome study in healthy adults that has reported a larger axon diameter

index in the corticospinal tract compared to adjacent white matter

tracts [122]. A multiple contrast MRI study in healthy adults showed higher

values of magnetization transfer ratio, quantitative susceptibility mapping,

myelin water fraction, FA, mean kurtosis, and intra-cellular volume fraction

along the CST (relative to frontal white matter) reflecting thicker myelin

sheaths and tightly packed and larger fibres [128]. In our study, only 4/9

white matter tracts (CST/PLIC/SLF/IFO) showed significant differences of

OGSE 40 Hz - PGSE RD, perhaps due to the lack of sensitivity to small

axons in the other tracts suggesting the need for shorter diffusion times with

higher OGSE frequency [78, 129]. Higher frequencies such as 50 Hz and 60

Hz will be attempted in future using similar FLAIR preparation - as shown

previously in Chapter 2 (Figure 2.10) to be feasible with decent MD map

quality, but they have the challenge of imparting greater TE for a given
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b-value; even higher frequencies would be very challenging given hardware

limitations on a clinical scanner resulting in unreasonably long TE and low

SNR. In contrast to limited tracts with RD OGSE changes, axial diffusivity

was elevated on short diffusion time OGSE in all 9 WM tracts examined,

agreeing with previous work showing AD diffusion time dependency over

much longer diffusion times (i.e. 45-600 ms) in stimulated echo DTI studies

of healthy human brain [130]. Certainly the length scales are longer along

the length of the axons, regardless of the axon diameter, making the

axial/longitudinal diffusivity measurement more sensitive to diffusion time

differences that have been interpreted in that paper to be present due to

short-range disorder along the axon length (e.g. undulating axonal

membranes – see Figure 5B in Alexander DC NMR Biomed 2017 [131]).

3.5 Conclusions

Oscillating gradient spin-echo FLAIR acquisitions have proven to eliminate

problematic Gibbs ringing artifacts a priori in the acquisition process,

allowing the estimation of diffusion metrics that unveiled potential

micro-scale tissue differences at reduced diffusion times. Although

challenging to acquire, the OGSE technique remains a promising tool to

study healthy brain microstructure and the mechanisms of disease.
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4 | Conclusions

Molecular water diffusion provides an additional non-invasive tool to improve

our understanding of human brain anatomy and physiology in vivo. By

varying the time allowed for molecules to diffuse and measuring key diffusion

parameters, one can infer micro-scale tissue properties. The oscillating

gradient spin echo (OGSE) diffusion sequence enables shorter effective

diffusion times than its counterpart pulsed gradient spin echo (PGSE),

effectively providing a means to discriminate between small and large axon

diameters. The conducted work outlined in this thesis was centered on

unveiling these small OGSE-PGSE differences in human brain at 3T by

imaging at short diffusion times.

As discussed in Chapter 2, constrained by hardware limitations, the

implementation of high OGSE frequencies on our current 3T system was

challenging, explaining still the limited number of healthy human brain

studies by four independent groups [73, 74, 89, 93]. Penalized by long

scanning times and very low signal, images with OGSE frequencies of f>60

Hz were infeasible to acquire. Nonetheless, after several iterated experiments,

an optimization of scanning parameters led to higher-quality diffusion images

and derived maps for f = 40 - 50 Hz, where mean diffusivity (MD) values

showed increments for the OSGE acquisitions relative to PGSE in several

white matter tracts, as expected with the differences in diffusion time.

Visual inspection of the data revealed the presence of Gibbs ringing (GR),

an image artifact that would compromise the accurate estimation of diffusion
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parameters across multiple brain regions, such as by introducing artificially

low MD values near CSF ventricular spaces. Therefore, it became a priority

to eradicate the artifact and obtain homogeneous MD maps, since the expected

OGSE-PGSE differences would likely be masked under these low MD regions.

Attempts were made to correct for GR with conventional GR removal methods

(i.e. TV and sub-voxel shifts), however they both failed to eliminate the

artifact entirely.

In search of a solution, Chapter 3 examined the application of

fluid-attenuated inversion recovery (FLAIR) – a sequence widely used to

attenuate the bright signal from cerebrospinal fluid (CSF) – as an addition to

the imaging protocol discussed herein and was found to effectively avoid the

detrimental GR artifact from the start, as it suppressed the steep signal

intensity transitions at CSF/tissue interfaces seen in the non-diffusion

weighted images (and on a smaller scale in diffusion-weighted images) that

originated the ringing. Image quality increased considerably with FLAIR,

however at the cost of nearly double the scan time.

With a substantial improvement in image quality and derived OGSE/PGSE

diffusion maps, the FLAIR method was used to better investigate

OGSE-PGSE differences between brain regions in a small sample of healthy

young adults (n=8). The findings included significant elevations of mean and

radial diffusivities in the corticospinal tract, superior longitudinal fasciculus,

and posterior limb of the internal capsule, among others, in OGSE-PGSE

difference maps. As expected, the results obtained through this method were

in agreement with previous histological and scientific literature that indicate

larger axons in these regions.

In brief, FLAIR was found to be extremely effective but not time-efficient, in

avoiding the formation of GR. Therefore, it is recommended to implement the

use of FLAIR as a GR prevention method taking into consideration its time

limitation.

As for future directions, further hardware advancements in human scanners
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(such as increased gradient strength) are necessary in order to explore

molecular water displacements within shorter time-scales using oscillating

gradients. Furthermore, the OGSE method should be applied in a larger

sample size to investigate potential axon diameter differences with

demographics, such as age and sex, as these factors could highlight

microstructural distinctions between groups. Additional OGSE human brain

studies are necessary overall to explore changes in diffusion processes beyond

ischemic stroke, as these OGSE-PGSE differences could act as a potential

biomarker and shed light upon other neurological disorders and disease

mechanisms such as multiple sclerosis, benign and malignant tumors, and

brain injury.
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