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Oil Sands Research and Information Network 

The Oil Sands Research and Information Network (OSRIN) is a university-based, independent 

organization that compiles, interprets and analyses available knowledge about managing the 

environmental impacts to landscapes and water affected by oil sands mining and gets that 

knowledge into the hands of those who can use it to drive breakthrough improvements in 

regulations and practices.  OSRIN is a project of the University of Alberta’s School of Energy 

and the Environment (SEE).  OSRIN was launched with a start-up grant of $4.5 million from 

Alberta Environment and a $250,000 grant from the Canada School of Energy and Environment 

Ltd. 

OSRIN provides: 

 Governments with the independent, objective, and credible information and analysis 

required to put appropriate regulatory and policy frameworks in place 

 Media, opinion leaders and the general public with the facts about oil sands 

development, its environmental and social impacts, and landscape/water reclamation 

activities – so that public dialogue and policy is informed by solid evidence 

 Industry with ready access to an integrated view of research that will help them 

make and execute environmental management plans – a view that crosses disciplines 

and organizational boundaries 

OSRIN recognizes that much research has been done in these areas by a variety of players over 

40 years of oil sands development.  OSRIN synthesizes this collective knowledge and presents it 

in a form that allows others to use it to solve pressing problems. 
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REPORT SUMMARY 

Industrial contaminants are one of the leading causes of pollution worldwide.  It has been shown 

that 13 elements considered priority water pollutants by the US Environmental Protection 

Agency are present in the Athabasca River and are found in oil sands process-affected water.  

There are likely natural and anthropogenic sources of these toxins in the receiving environment.  

To protect ecological environments and aquatic species in Alberta, it is necessary to assess the 

risk of toxins to aquatic organisms, and find important factors that determine the persistence and 

extirpation of populations or species. 

While previous work has considered the effect of a toxin on the population dynamics of a single 

trophic level, such as fish, we focus on the impacts of toxins on the population dynamics of 

aquatic food webs to understand possible outcomes. 

Mathematical models have been widely applied to perform chemical risk assessments on all 

levels of the biological hierarchy, from cells to organs to organisms to populations to entire 

ecosystems.  Here we develop a toxin-mediated predator-prey model that includes population 

dynamics.  We use the model to evaluate the flow of toxins through the aquatic food web into the 

aquatic ecosystem and study how the transfer of toxins between trophic levels changes the food 

web dynamics.  We analyze the model by studying the existence and stability of steady states 

and the effect of toxin level in the environment on steady states. 

The model is then connected to experimental data via model parameterization.  In particular, we 

consider the toxic effects of methylmercury on rainbow trout (Oncorhynchus mykiss) and its prey 

(small fish or aquatic insects) and obtain an appropriate estimate for each model parameter.  The 

results of model parameterization and model analysis are used to numerically solve the model, 

and the results of the effect of the methylmercury on the end behavior of rainbow trout and its 

prey (small fish or aquatic insects) are provided. 

From our analysis and numerical exploration of the food web toxin model we found that 

different toxin concentrations affect organisms at different trophic levels in many different ways.  

For example, high toxin concentrations in the environment are harmful to both species, and may 

lead to extirpation of both species.  However, low toxin concentrations produce counterintuitive 

results.  That is, contaminant effects on predators can actually lead to increased abundance of the 

prey. 

The existence of limit cycles, where both population levels fluctuate around coexistence 

equilibrium, is found in most classical predator-prey models.  Our findings show that increasing 

toxin level may reduce and prevent populations from fluctuating when the predator and the prey 

are exposed simultaneously to a toxin.  Unlike most standard predator-prey systems, where 

populations will eventually tend toward only one stable state, our findings indicate that with a 

toxic effect, predator-prey systems may lead to multiple possible long-term outcomes.  In this 

scenario, the initial population level will determine the final fate. 
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1 INTRODUCTION 

There is increasing global concern over the effects of anthropogenic and natural environmental 

toxins on ecosystem health.  Industrial toxins are one of the leading causes of pollution 

worldwide.  In the United States, for example, the Environmental Protection Agency estimates 

that up to 50% of the nation’s pollution is caused by industry
1
.  Industrial toxins may arise as a 

result of air emissions, water releases, water seepage, air deposition or disposal and leaching of 

solid waste.  Toxins of concern may also be transported through natural systems as a result of 

weathering or leaching.  The US Environmental Protection Agency has designated 126 priority 

pollutants
2
 and the Canadian Council of Ministers of the Environment has a list of priority 

chemicals of concern for the protection of aquatic life
3
.  These priority substances include metals 

and organic compounds. 

The oil sands in Northeastern Alberta represent one of the largest oil deposits in the world.  

Production from the oil sands has reached 1 million barrels per day, and is predicted to increase 

five-fold by 2030
4
.  It has been shown that 13 elements considered priority water pollutants by 

the US Environmental Protection Agency are present in the Athabasca River at low 

concentrations and also can be found in oil sands process-affected water (Kelly et al. 2010). 

The Athabasca River bisects the surface mineable area.  The river accumulates toxins due to 

leaching from exposed oil sands seams along the riverbank; in addition, there are likely 

anthropogenic sources of toxins from seepage or air deposition.  However, there has been no 

release of process-affected water to date. 

The combination of natural and anthropogenic sources of toxins present challenges with respect 

to the protection of local freshwater resources throughout the lower Athabasca River basin.  To 

protect ecological environments and aquatic species in Alberta, it is necessary to assess the risk 

to aquatic organisms exposed to toxins, and find relevant factors that determine the persistence 

and extirpation of organisms. 

1.1 Model Selection 

Over the past several decades, mathematical models have been widely applied to perform 

chemical risk assessments on all levels of biological hierarchy, from cells to organs to organisms 

to populations to entire ecosystems.  These models include population models (scalar abundance, 

life history, individual-based, and metapopulation), ecosystem models (food-web, aquatic and 

terrestrial), landscape models, and toxicity-extrapolation models (Bartell et al. 2003, Galic et al. 

2010, Pastorok et al. 2001, 2003).  The selection of specific models for addressing an ecological 

risk issue depends on: the habitat; endpoints and chemicals of interest; the balance between 

                                                 

1 See http://www.epa.gov/ 

2 See http://www.epa.gov/ 

3 See http://www.ccme.ca/  

4 See http://www.energy.gov.ab.ca/89.asp 

http://www.epa.gov/
http://www.epa.gov/
http://www.ccme.ca/
http://www.energy.gov.ab.ca/89.asp
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model complexity and availability of data; the degree of site specificity of available models; and, 

the risk issue (Pastorok et al. 2001).  A comprehensive review of the realism, relevance, and 

applicability of different types of models from the perspective of assessing risks posed by toxic 

chemicals is provided by Bartell et al. (2003) and Pastorok et al. (2001). 

In practice, toxin-dependent individual-based models and matrix population models are widely 

used to evaluate the ecological significance of observed or predicted effects of toxic chemicals 

on individual organisms and population dynamics.  Literature search results show that relatively 

few differential equation models have been developed to describe population-toxin interactions 

(e.g., Freedman and Shukla 1991, Hallam and Clark 1983, Hallam et al. 1983, Luna and Hallam 

1987, Thieme 2003, Thomas et al. 1996).  These interactions are usually described by a system, 

which contains components representing the population density, the concentration of toxin in an 

organism, and the environmental concentration of toxin. 

Recently, we developed a toxin-dependent model given by a system of differential equations, to 

describe the impact of contaminants on fish population dynamics (Huang et al. 2013).  Given 

that the concentration of biomass of the population, in reality, is usually very low, the 

concentration of toxin in the environment therefore is not affected significantly by death or 

metabolic processes of the population.  In other words, the concentration of toxin in the 

environment is mainly determined by external conditions, such as the exogenous input of toxin, 

decomposition by sunlight or hydrolysis.  Unlike the above-mentioned population-toxin 

interaction models, our toxin-dependent model assumes that the population does little or no 

regulation of toxin in the environment.  The concentration of toxin in the environment hence is 

treated as a parameter.  The model was connected to literature-sourced experimental data via 

model parameterization.  In particular, we considered the toxic effects of methylmercury on 

rainbow trout (Oncorhynchus mykiss) and obtained an approximate range or value for each 

model parameter.  The parameter estimates were then used to illustrate the long-term behavior of 

rainbow trout population.  The numerical results provide threshold values of concentration of 

methylmercury in the environment to maintain the population and prevent extirpation.  The 

findings are consistent with Alberta Provincial surface water quality guidelines (Alberta 

Environment 1999). 

It is significant that all above-mentioned differential equation models are single-species models 

in which populations were assumed to uptake toxin only from exposure to water.  However, it is 

well recognized that the primary route of toxin uptake in higher-trophic level organisms 

(predators) is via food ingestion.  As one organism eats another, it also eats the pollutants in its 

prey.  The higher up the food chain, the more pollutants that are eaten and stored.  The build-up 

of toxic pollutants is called bioaccumulation (Arnot and Gobas 2004, Mackay and Fraser 2000, 

Mathew et al. 2008).  Bioaccumulation means that the non-linear effects observed in ecosystems 

cannot often be described or understood through looking at species individually because food 

web interactions need to be considered (e.g., Kidd et al. 2007). 

In this report we evaluate the flow of contaminants through the aquatic food web into the aquatic 

ecosystem and study how the transfer of contaminants between trophic levels changes the food 

web dynamics.  We do this by extending the single-species toxin dependent model in Huang et 
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al. (2013) to a toxin-mediated predator-prey interaction.  The model consists of four equations.  

The first and second equations describe the prey and the predator growth rates, respectively, 

where the birth and death rates are explicit functions of body burdens.  The third and fourth 

equations are the balance equations for the body burden of the two species, which describes the 

accumulation, the dilution of toxin in the organism tissue, and the transfer of toxin from prey to 

predator. 

If there is no toxin, our toxin-mediated predator-prey model reduces to a classical predator-prey 

model whose dynamics are well studied.  The main objective of this study is to investigate how 

the balance of the classical predator-prey dynamics will change when the toxin level in the 

environment varies from zero to a high level. 

1.2 Toxin Selection 

Under Schedule I of the Canadian Environmental Protection Act (Government of Canada 1999), 

mercury is considered a toxic substance.  Mercury may be released into the aquatic environment 

in states of relatively low toxicity, but will be transformed into a highly toxic state, namely 

methylmercury.  Methylmercury’s harmful effects on fish include death, reduced reproduction, 

slower growth and development, and abnormal behavior (Eisler 1987).  Methylmercuy is of 

special concern, not only because of its toxicity, but also because of its tendency to biomagnify 

in upper trophic levels of aquatic food webs (Canadian Council of Ministers of the Environment 

2003).  The Canadian water quality guidelines for methylmercury for the protection of aquatic 

life were developed based on the CCME protocol (Canadian Council of Ministers of the 

Environment 1991). 

Rapid expansion of crude oil production from the Alberta oil sands has generated widespread 

concern regarding the potential impact of oil sands development on the Athabasca River and its 

watersheld.  During the processing and upgrading of oil sands, mercury is released through 

coking, coke combustion, and through the production of wastes and fly ash that contain mercury 

(Environment Canada 2014).  Environmental organizations have claimed tailing ponds leak an 

unknown volume of tailings wastes that contain mercury and other contaminants of concern 

directly into the Athabasca River (Price 2008).  In recent years, the Alberta government and oil 

sands companies indicated that oil sands development did not contribute substantial loadings of 

mercury to the region and that any increases in mercury in the Athabasca River and its tributaries 

were due to natural erosion of oil sand formations.  To investigate further, an assessment of 

mercury concentrations water of the Athabasca River, its tributaries, the Athabasca Delta and 

Lake Athabasca was conducted by Radmanovich (2013).  The results of the study by 

Radmanovich (2013) indicate that concentrations of mercury in some snow and waters samples 

from tributary and Athabasca River sites near development exceed guidelines for the protection 

of aquatic life, and oil sands upgrading facilities are a sigificant source of mercury within the 

Athabasca watershed. Li et al. (2014) also discuss the toxicity of mercury and note that 

concentrations in oil sands process-affected water range from <0.02 µg/L to 0.17 µg/L, which 

are generally higher than CCME guidelines (0.026 µg/L). 
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The toxic effects of methylmercury exposure in fish and wildlife species are well documented 

(reviewed by Sandheinrich and Wiener 2011).  The United States Geological Survey (USGS) 

developed the National Descriptive Model for Mercury in Fish (Wente 2004) to partition 

variation in methylmercury concentration due to size, species and sample type across space and 

time.  The Canadian Fish Mercury Database includes over 330,000 records representing 

104 species of freshwater fish collected from over 5,000 locations across Canada between 1967 

and 2010 (Depew et al. 2013). 

1.3 Predator and Prey Selection 

We use rainbow trout (Oncorhynchus mykiss) as our representative predatory fish.  This species 

is commonly used for toxicology studies and is well studied, not only for mercury, but also for 

the effects of oil sands contaminants (e.g., Gorelick 1990).  Therefore there is good toxicological 

information on rainbow trout that allows us to parameterize our model.  Although we treat these 

as a representative fish, where detailed physiological information is available, this species of 

trout is not common to the oil sands area.  Therefore, the report should not be interpreted as 

making specific predictions about oil sands toxins on natural rainbow trout populations.  Rather 

it should be interpreted as developing a comprehensive framework for understanding impacts of 

toxins on multitrophic population dynamics, with the view that future studies can be used to 

parameterize the model more thoroughly for fish found commonly found in the oil sands area 

such as walleye (Sander vitreus), lake whitefish (Coregonus clupeaformis), northern pike (Esox 

lucius) and lake trout (Salvelinus namaycush) (Evans and Talbot 2012). 

By way of background information on biogeography and status of rainbow trout within Alberta, 

there are two primary strains, introduced and native Athabasca rainbow trout. Athabasca rainbow 

trout are considered “at risk” by the General Status of Alberta Wild Species (Alberta 

Environment and Sustainable Resource Development 2014), due to potential habitat loss, 

hybridizations with introduced rainbow trout and competition with Eastern brook trout.  The 

Athabasca rainbow trout are distributed throughout the headwaters of the Athabasca River 

system, with an extent of occurrence of approximately 20,000 km
2
 (Rasmussen and Taylor 

2009).  This range includes the Athabasca River itself, as well as its major tributaries, including 

the Mcleod, the Wildhay/Berland, the Sakwatamau and the Freeman rivers.  The range includes 

siginificant portions of Jasper National Park (Ward 1974), including the mainstem Athabasca 

River watersheld downstream of Sunwapta Falls, and the lower reaches of the Snaring, Maligne, 

Rocky and Snake Indian river systems downstream of majors waterfalls, and the majority of the 

Miette River watersheld. 

Rainbow trout routinely feed on larval, pupal and adult forms of aquatic insects (typically 

caddisflies, stoneflies, mayflies and aquatic diptera), and small fish up to one-third of their 

length
5
.  Caddisflies are an order, Trichoptera, of insects with approximately 12,000 described 

                                                 

5 See http://www.env.gov.bc.ca/wld/documents/fishfacts/rainbowtrout.pdf 

6 See http://www.uky.edu/Ag/CritterFiles/casefile/insects/caddisflies/caddisflies.htm 

http://www.env.gov.bc.ca/wld/documents/fishfacts/rainbowtrout.pdf
http://www.uky.edu/Ag/CritterFiles/casefile/insects/caddisflies/caddisflies.htm
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species.  In most temperate areas, caddisflies complete their life cycles in a single year, from egg 

to larva, to pupa, then adult.  Most caddisfly larvae (caddis worms) live about one year in the 

aquatic environment before pupating.  The adult stage of caddisflies, in most cases, is very short-

lived, usually only 1 to 2 weeks.  Caddisfly adults live just long enough to mate; they do not eat 

and focus only on reproduction (Willis and Hendricks 1992).  Each adult female can lay up to 

800 eggs.  Willis and Hendricks (1992), in a study of the life history and production of 

hydropsychid caddisflies in Mill Creek, Virginia, found that only about 0.5% of the original eggs 

survived to adulthood.  This finding is in close agreement with the findings of Elliott (1981, 

1982) that survival to reproduction in Philopotamus montanus was 0.4% and survival from egg 

to imago in Potamophylax cingulatus was 1% to 2%. 

1.4 Structure of this Report 

The rest of this report is organized as follows.  In Section 2, we develop the toxin-mediated 

predator-prey model.  In Section 3, we parameterize the model using experimental results in the 

literature.  In Section 4, we reduce the dimensionality of the model using a quasi-steady state 

approximation.  We then analyze the existence and stability of extirpation and coexistence 

equilibria based on the quasi-steady system.  In Section 5, we show possible asymptotic 

dynamics of the model.  In Section 6, we study how toxin level (mercury) in the environment 

affects the long-term behavior of the populations.  In Section 7, we apply the results of model 

parameterization and numerical simulations to consider the toxic effects of mercury on rainbow 

trout and its prey (small fish aquatic insects).  Finally a brief discussion section completes the 

report. 

2 MODEL FORMULATION 

Since we are interested in an aquatic environment, we formulate the model in terms of 

concentration of population biomass, concentration of toxin in the population, and concentration 

of toxin in the environment.  In this study, we let 

                     
,

lives population  thet whereenvironmen aquatic  total theof volume

population  theof mass total
=

biomass population ofion Concentrat

 

,
tenvironmen aquatic  total theof volume

population in the contained toxin of mass total
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The state variables of the model are: 

 )(= txx , the concentration of prey biomass in g/L at time t ; 

 )(= tyy , the concentration of predator biomass in g/L at time t ; 

 )(= tUU , the concentration of toxin contained in the prey in µg/L at time t ; 

 )(= tVV ; the concentration of toxin contained in the predator in µg/L at time t ; 

 )(= tuu , the body burden of the prey in µg/g at time t ; and 

 )(= tvv , the body burden of the predator in µg/g at time t . 

A mathematical model that describes the effect of toxin on the predator-prey system is given by 

                           




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 (1) 

with appropriate initial conditions, which describe the initial concentrations of prey and predator 

biomass and toxin concentrations. 

The first equation presents a generic description of the growth of prey under the influence of the 

toxin.  The second equation describes the growth of predator under the influence of the toxin.  

The third and fourth equations are balance equations for the concentrations of the toxin contained 

in the individuals of prey and predator, respectively. 

The function ),( xub  represents the biomass gain rate of the prey due to reproduction and 

growth; )(1 ud  denotes the biomass loss rate of the prey due to death; )(2 vd  represents the 
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biomass loss rate of the predator due to death; )(xp  is the predator functional response that 

specifies the rate at which prey are consumed, per predator, as a function of the prey density; 

)(ve  is the conversion efficiency.  We will introduce specific expressions for the functions 

),( xub , )(1 ud , )(2 vd , )(xp , and )(ve  at the end of this section. 

The toxin uptake rates by the population from the environment, Txa1  and Tya2 , are modeled 

according to the Law of Mass Action and are proportional to both the concentration of toxin in 

the environment, T , and the concentration of population biomass.  In this model 1a  and 2a  are 

the uptake coefficients for the prey and the predator, respectively.  The positive constants 1  and 

2  are the toxin depuration rates of the prey and the predator, respectively due to metabolic 

processes.  The death of an individual leads to not only a loss of population biomass, but also a 

loss of population toxin concentration.  This leads to the term xud )(1  in the first equation and 

the term Uud )(1  in the third equation.  The predation of prey by predator leads to both a loss 

of the prey biomass and a gain of the predator biomass; accordingly, it leads to a transfer of toxin 

from the prey to the predator.  This results in the term yuxp )(  in the third equation and the 

term yuxp )(  in the fourth equation. 

From the first two equations of the model (1), we notice that the direct influences of toxin on the 

growth of populations are implemented through their body burdens u  and v .  This motivates us 

to write down the equations describing the rate of change of u  and the rate of change of v .  As 

we will see, this allows us to study an equivalent system involving four state variables and four 

equations, instead of the model (1) which includes six state variables and six equations. 

From the fifth equation of (1), we have 

 
x

x

x

U

x

U

dt

du 



=  (2) 

 Substituting the first equation and the third equation of (1) into (2), we obtain 

  

.),(=

)(
)(),(

)(
)]([=

11

1111

uxubuTa

u
x

yxp
udxubu

x

yxp
uudTa

dt

du














  (3) 

 Similar calculations in terms of the last, second and fourth equations of (1) gives 

 ])([)(== 22 vveuxpvTa
y

y

y

V

y

V
v 





    (4) 
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 Combining the first two equations of (1) and equations (3) and (4), we have 

                                 

.])([)(=

,),(=

,)()()(=

,)()(),(=

22

11

2

1

vveuxpvTa
dt

dv

uxubuTa
dt

du

yvdyxpve
dt

dy

yxpxudxxub
dt

dx












                                                    (5) 

We now introduce specific forms for the functions ),( xub , )(1 ud , )(2 vd , )(xp , and )(ve .  

Following Huang et al. (2013), we let 

 
x

u
xub

3

21

1

}{0,1max
=),(








 (6) 

with positive constants i  1,2,3)=(i .  Here the term )/(1 31 x  , which is a decreasing 

function with respect to prey biomass, represents a density-dependent per unit biomass gain rate.  

The term }{0,1max 2u , which is a fraction between 0 and 1, represents a linear dose response 

for the gain rate.  If there is no toxic effect (body burden 0=u ), then 1=}{0,1max 2u , hence 

the gain rate of prey biomass is given by )/(1 31 x  .  If the body burden u  reaches a threshold 

level 21/ , then the individuals in the prey stop reproduction and growth, hence the gain rate of 

prey biomass is 0 .  A derivation of the expression (6) from a resource-consumer model via a 

time scale argument is presented in Thieme (2003). 

In 1992, the committee on toxicology of the National Research Council recommended the use of 

a power law to study the relationship between toxin concentration and mortality rate since it has 

been shown to fit the data well (Miller and Janszen 2000).  Here, for model analysis, we assume 

a special case of power law with power one.  That is, we assume that mortality rates )(1 ud  and 

)(2 vd  linearly depend on their body burdens u  and v .  Thus, taking natural mortality rates into 

account, we let 

                                                 111 )( mukud  ,  222 )( mukud                                             (7)                       

where 2211 ,,, mkmk  are positive constants.  The predator functional response describes a 

predator’s per capita feeding rate.  Here we use a Type II functional response (Holling 1959) 

which is more realistic than Type I (e.g., Polis et al. 1989) as it incorporates predator satiation 

through the assumption that predators have a prey handling time.  In this case, the per capita 

feeding rate of the predator is given by a function of the form 

                                               
hx

x
xp





1
=)(                                                                              (8) 

where   is the encounter rate (or capture efficiency) and h  is the handling time. 
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For convenience, many researchers rewrite the above Type II functional response as 

 
x

x
xp




=)(  (9) 

where h1/=  and )1/(= h (Kot 2001).  Since /2=)( p ,   is referred as the half-saturation 

constant.  In this study, we chose (9) as the expression of the functional response. 

We assume that the dependence of the reproduction efficiency of the predator on its body burden 

v  is given by 

 }{0,1max=)( 21 vve     (10) 

where 1<<0 1 .  The term }{0,1max 2v  represents a linear dose response for the 

reproduction efficiency.  If there is no toxic effect (body burden 0=v ), then 1=}{0,1max 2u , 

hence the reproduction efficiency is 1 .  If the body burden v  reaches a threshold level 21/ , 

the reproduction efficiency is 0 , which means that predators stop reproduction and growth. 

Therefore, in this study we  propose the following toxin-mediated predator-prey system 
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
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
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






































        (11) 

In the absence of a predator, the model (11) reduces to the one species toxin-mediated model 

studied in Huang et al. (2013). 

3 MODEL PARAMETERIZATION 

While our toxin-mediated predator-prey model (11) is general, we apply it to consider the effect 

of a toxin on the dynamics of fish and its prey.  In this section, we first describe the 

parameterization of the model (11) by choosing rainbow trout as the predator and small fish or 



 

10 

aquatic insects as the prey.  The results of model parameterization are then used to understand 

the impact of methylmercury on the dynamics of rainbow trout and its prey (small fish or aquatic 

insects). 

As we mentioned earlier, in the absence of the predator, the toxin-mediated predator-prey system 

(11) reduces to a one species toxin-dependent model which we developed in Huang et al. (2013).  

Therein, we considered the toxic effect of methylmercury on rainbow trout (Oncorhynchus 

mykiss) and obtained an approximate range for each model parameter.  To parameterize the 

current model (11), we first apply the parameter estimates in Huang et al. (2013) to those 

predator-related parameters in the model (11).  We then estimate the prey (aquatic insects)-

related parameters using literature-derived experimental results. 

3.1 Predator (Rainbow Trout)-Related Parameter Estimates 

The parameter estimates in Huang et al. (2013) were given by certain ranges (intervals), and here 

we take the midpoint of the intervals as the corresponding parameter values and obtain: 

 33.41=2  g/ g, 

 0.00398=2k  g/ g/day, 

 0.00057=2m  day 1 , 

 0.1733=2a  L/g/day,  and 

 0.0062=2  day 1 . 

The carrying capacity of rainbow trout was estimated as 0.00091=  g/L, hence we take the 

half-saturation constant 0.000455=  g/L.  The maximum growth rate of rainbow trout is 

estimated as 0.0047  day 1 .  This corresponds to the term 
x

x



1  in (11).  For simplicity, letting 

0.0047=1

x

x




 as x , we get 0.0047=1  day 1 .  It is commonly assumed that transfer 

efficiency between trophic level is 0.1 (Bax 1998). Letting 0.1=1 , we obtain 0.047=  day 1 . 

3.2 Prey (Aquatic Insects)-Related Parameter Estimates 

It is difficult to find experimental results for one species of aquatic insects to estimate all model 

paprameters.  In what follows, we choose data for several related species to roughly estimate the 

parameters in the model (11). 

We chose caddisflies to estimate maximum reproduction rate 1  and the natural mortality rate 

1m  for the prey.  By assuming 1:1 female-male ratio we chose the maximum reproduction rate of 

caddisflies 4/365=0.01/3650.5800=1   day 1 .  We take the natural mortality rate 

1/365=1m  day 1  by assuming that the average natural life span of caddisfly is 365 days. 
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We estimate the crowding effect parameter 3  by using the estimated carrying capacity of 

aquatic insect populations in the literature (Gilpin and Ayala 1973).  The carrying capacities of 

two species of Drosophila were estimated by fitting two analytic models to experimental data.  

The mean of the carrying capacities of two species, denoted by K , is 0.0011  g/L.  We  use the 

carrying capacity, K ,  to the crowding effect parameter 3  as follows. 

If there is no toxin or predation, the first equation of (11) becomes 

 
x

x
K

x
m

xm
xdt

dx

3

11

1

3

1

1

))(1(
=

1
=
























 (12) 

 with 

 
31

11=




m

m
K


 (13) 

Notice that 11 m  is always positive from the estimated values for 1  and 1m .  It is not difficult 

to check that K  plays the role of the carrying capacity with the logistic equation.  Using the 

above equation and taking the estimates of 1  and 1m  into account, we obtain 330,1=3  L/g. 

Next we estimate the toxin-related parameters in the model (11) for aquatic insects.  There is 

much evidence which indicates that aquatic insects are much less sensitive to mercury than 

rainbow trout.  For instance, the maturity percentage and percentage of hatched eggs of the fruit 

fly are approximately 100% in 10 µg/L of mercury (Table 1 in Abnoos et al. 2013).  An aquatic 

insect, the southern house mosquito (Culex quinquefasciatus: Diptera), still has high survivor 

rate at methylmercury concentrations as high as 1 µg/L (Table 1 in Jensen et al. 2007).  

However, for  aquatic life, the Alberta provincial interim acute guideline is 0.002  g/L and the 

chronic guideline is 0.001 µg/L (Alberta Environment 1999).  Our findings in earlier work 

(Huang et al. 2013) estimated that the threshold value of methylmercury for rainbow trout 

extirpation is around 0.0045 µg/L.  The toxic effect on the prey (aquatic insects) can be ignored 

if the external toxin level is sufficiently low such that the predator (rainbow trout) can survive.  

Therefore, we chose the parameter 0=2 , which measures the effect of toxin on reproduction, 

and the parameter 0=1k , which measures the effect of toxin on mortality. 

The uptake rate constants and depuration rates for mercury by four aquatic insect species (two 

caddisflies and two mayflies) were estimated by Xie et al. (2009).  We chose the uptake 

coefficient of the prey (aquatic insects) to be the mean of the four uptake rate constants and 

obtain the estimate: 0.55=1a  in L/g/day.  We chose depuration rate of aquatic insects to be the 

mean of the four depuration rates and obtain the estimate: 0.12=1  in day 1 . 

We consider two predator-prey scenarios.  Firstly, we assume that the small fish prey have the 

same vital rates and same sensitivity to mercury as the trout, and directly apply the results of 

model parameterization in Huang et al. (2013) to those prey-related parameters in the 
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model (11).  Secondly, we regard rainbow trout as the predator and aquatic insects as the prey.  

We use the model parameterization in numerical simulations of model (11) in Sections 5 to 7.  

We list rainbow trout- and aquatic insect-related parameter estimates in Table 1. 

 

Table 1. Rainbow trout- and aquatic insect-related parameters. 

Symbols                      Definitions        Estimates values 

   1  Maximum reproduction rate of aquatic insects     4 /365  day 1  

   2  Effect of toxin on the growth of aquatic insects         0 

   3  Crowding effect of aquatic insects     1330   L/g 

   1k  Effect of toxin on the mortality of aquatic insects          0 

   1m  Natural mortality rate of aquatic insects       1/365 day 1  

     Per capita feeding rate       0.047 day 1  

     Half-saturation constant      0.000455 g/L 

   1  Reproduction efficiency of rainbow trout         0.1 

   2  Effect of toxin on the reproduction of rainbow trout        33.41 g/ g 

   2k  Effect of toxin on the mortality of rainbow trout     0.00398 g/ g/day 

   2m  Natural mortality rate of rainbow trout      0.00057 day 1  

   1a  Uptake coefficient for aquatic insects      0.55 L/g/day 

   1  Depuration rate for aquatic insects       0.12  day 1  

   2a  Uptake coefficient for rainbow trout       0.1733 L/g/day 

   2  Depuration rate for rainbow trout       0.0062 day 1  

 

4 MODEL ANALYSIS 

We expect that the dynamics for the depuration due to metabolism of toxin will operate on a 

much faster time scale than the dynamics of population biomass growth.  This means that the 

body burden equations may approach a quasi-equilibrium state where uptake of toxin and 

depuration balance out on a fast time scale.  To investigate this process mathematically we define 

11/=   to be a small parameter.  For example, we find that 091.0=  from the parameter 

estimates for aquatic insects and rainbow trout (See Table 1). 
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4.1 Nondimensionalization and Non-negativity 

To simplify the problem and facilitate analysis, we rescale the system (11) by introducing the 

nondimensional quantities 
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 (14) 

Dropping the tildes for notational simplicity, we rewrite the system (11) in its dimensionless 

form: 
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 (15) 

We first show that solutions of system (15) behave in a biologically reasonable manner.  That is, 

the population densities at any time, which are given by the solutions of the model at time 𝑡, are 

always nongeative but not arbitrarily large. 

Theorem 4.1  Each component of the solution of system (15) with non-negative initial 

conditions remain bounded and non-negative for all 0>t . 

See Appendix 1 for the proof. 

4.2 Quasi-Steady System 

Because the model (15) is a high dimensional system, the stability analysis of model (15) is 

challenging.  We simplify it to a two-dimensional system via the quasi-steady state 

approximation.  Since   is introduced as a small parameter, letting 0  in (15), we have 
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2

2

=,=  (16) 
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Substituting (16) into the first and second equations of (15), we obtain the following quasi-steady 

state system 

 

ym
x

xTcT
k

x

x

xTcT
xy

dt

dy

x

xy
xmTk

x

T

dt

dx











































2

2

2

2

2
2

2

2

1

11

}{0,1max

=

1

}{0,1max
=
















 (17) 

Throughout this paper, we assume that 

 }/{1,min<and1< 21 cTm   (18) 

These mean that the natural loss rate of the prey biomass due to death is less than its maximum 

gain rate due to birth and growth, and that the environmental toxin levels are low enough that the 

prey can reproduce and grow.  If either of these conditions are violated then the prey cannot 

persist and both prey and predator are extirpated (Appendix 1). 

We also assume that 

 12 < m  (19) 

This means that the natural loss rate of the predator biomass due to death is less than its 

maximum gain rate due to birth and growth.  If this condition is violated then the predator is 

extirpated, and the system (17) reduces to a one species model (Appendix 1). 

With these assumptions, the nondimensionalized system (17) can be rewritten as 
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4.2.1 Existence of Equilibria 

To investigate the long-term behavior of the system (20), we look for the steady states 

(equilibria) where neither, one or both species survive.  These can be found by finding the 

intersections of prey and predator zero-growth isoclines (or null-clines), where either prey or 

predator growth rate is zero.  We summarize the existence of extirpation and coexistence 

equilibria and corresponding conditions required in Table 2.  The detailed discussion is provided 

in Appendix 1. 

 

Table 2. The existence of equilibria. 

 
Mathematical conditions  Equilibria Biological interpretations 

 

A 

 



0> TT   

  

(0,0)=0,1E   

System only has extirpation 

equilibrium if the external 

toxin level is high enough 

that neither population 

persists (top left panel of 

Figure 2) 

 

B 

 

                  

0< TT   

 

0,1E  and 

,0)(= 00,2 xE  

System has extirpation and 

prey-only equilibria if the 

toxin level is low enough 

that prey can survive but 

predator cannot (top right 

panel of Figure 2) 
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Figure 2) 
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System has two coexistence 

equilibria when the toxin 

level lies within a certain 

range and the half-saturation 

constant is sufficiently low 

such that both populations 

can coexist (top panel of 

Figure 4) 
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In Table 2, 
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As shown in Table 2, the conditions of the existence of equilibria are given by the restriction 

conditions with respect to the toxin level in the environment T  and the half-saturation constant 

  that is related to the capture efficiency.  Note that the quantities 

3210 ,,, TTTT  are not 

dependent on T  and  , if we assume that these quantities are constant, then the magnitudes of 

toxin concentration in the environment and half-saturation constant determine the number of 

equilibria. 

It is worth mentioning that in row C of Table 2, the condition },,{min< 210

 TTTT ) guarantees 

that 0>0x  and 1<1 , hence 0>/ 010 xx   and the condition 010/< xx   plays a role. 

Row D of Table 2 implies that very strict conditions are required to guarantee the existence of 

another coexistence equilibrium 2E .  The first condition, },{min<},{max 1032

 TTTT  allows for 

the possibility that the toxin level lies within the range ( }),{min<<},{max 1032

 TTTTT .  The 

condition },{min< 10

 TTT  guarantees that 0>0x  and 0>2 .  The condition },{max> 32

 TTT  

guarantees that 1<2 .  Thus, 0>/ 020 xx   and it is possible that the last condition 

020/< xx   can be realized. 
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Recall that the half saturation constant )1/(= h  (see equations (8) and (9)), where   is the 

encounter rate (or capture efficiency) and h  is the handling time).  If we assume that the 

handling time h  is constant, then a small half-saturation constant means a high capture 

efficiency and a large half-saturation constant corresponds to a low capture efficiency.  Thus, the 

conditions 010/< xx   and 020/< xx   in Table 2 can be interpreted as the predator 

requiring sufficientlyhigh capture efficiencies. 

Figure 1 illustrates several possible null-clines where either the prey or predator growth rate is 

zero.  At the intersection of the prey and predator null-clines, we find equilibria points.  In all 

panels of Figure 1, the conditions },{min<},{max 1032

 TTTT  and 

},{min<<},{max 1032

 TTTTT  are satisfied, hence the boundary equilibria 0,1E  and 0,2E  

always exist. 

As shown in Figure 1, depending on the values of   which determine the intersections of the 

null-clines, the system may have zero, one or two coexistence equilibria.  In the left panel, 

010/> xx  , the system has no coexistence equilibrium.  In the middle panel, 

010020 /<</ xxxx   , the system has only one coexistence equilibrium .1E   In the right 

panel, 020/< xx  , the system has two coexistence equilibria 1E  and 2E . 

4.2.2 Stability of Equilibria 

To analyze the stability of an equilibrium, we may use the Jacobian matrix if the eigenvalues of 

the Jacobian evaluated at the equilibrium have nonzero real parts.  The Jacobian matrix for 

system (20) is 

 












)()(

)()()(
=

xgyxg

xyxxf
J


 (24) 

To assess the stability of extirpation equilibrium 0,2E , we need another quantity measuring the 

external toxin level, that is, 

 
2

221

222212212222121

4
)(

))((4)2(
:=





kc

kmmcmkc
T




 (25) 

 



 

18 

 

Figure 1. Possible null-clines for system (20) with the parameter values, T = 0.2, 1k = 1, 1m

= 0.1, 1 = 1, 2 = 4, c = 1.5, 2  = 1, 2k = 0.2, 2m = 0.02, and different values of  : 

(Top left)  = 7, (Top right)  = 3,  (Bottom)  = 0.5. 

Solid curves are the prey null-clines and dashed lines are the predator null-clines.  

Circles indicate equilibrium points. 

 

We make the following conclusions regarding the stability of extirpation equilibria.  The proof is 

provided in Appendix 1. 

Theorem 4.2  (1) The extirpation equilibrium (0,0)=0,1E  is globally asymptotically stable if 

1))/((1> 11  kmT .  0,1E  is an unstable saddle point if 1))/((1< 11  kmT . 
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(2) The prey-only equilibrium ,0)(= 00,2 xE  is locally asymptotically stable if one of the 

following conditions is satisfied: 

1. 


41 << TTT , 

2. 


1< TT  and 010/> xx  , and 

3. },{min<},{max 1032

 TTTT , },{min<<},{max 1032

 TTTTT , and 0

2

0< x
x




 . 

The mathematical results in Theorem 4.2 can be interpreted as follows: 

1. If the external toxin level is sufficiently high ( 1))/((1> 11  kmT ), then from 

Table 2, we see that the extirpation equilibrium (0,0)=0,1E  is the only stable state of 

the system.  Hence the solutions of the system must tend towards this equilibrium, 

which means that both populations are extirpated. 

2. In the following scenarios, the prey can survive but the predator cannot: 

a. If the external toxin level lies falls within a certain range (


41 << TTT ), only the 

prey can persist because the toxin level is sufficiently low (


4< TT ).  However, it 

is too high ( TTT <> 1


) for the predator to persist. 

b. The toxin level is sufficiently low ( 


1< TT ) such that the prey can persist.  The 

predator is extirpated because the half-saturation constant is too large 

 ( 010/> xx  )(i.e., the capture efficiency is too low), which leads to a low 

growth rate of the predator. 

For coexistence equilibria, we have the following results.  The proof is provided in Appendix 1. 

Theorem 4.3  The equilibrium 1E  is locally asymptotically stable if either 1  or both 

conditions 1<<0   and 2

1

11
)(1

))(1(1
>

x

T
mTk







 are satisfied.  The equilibrium 2E  is always an 

unstable saddle point. 

Combining the condition of existence of equilibria (Table 2) and the condition of stability 

(Theorem 4.3) of coexistence equilibrium 1E , we find that the both populations can coexist in 

the following two scenarios: 

1. Both populations coexist at the equilibrium 1E  if the half-saturation constants lie 

within a certain range ( 0

1

0<1 x
x



 ) (i.e., the capture efficiency lies within a 

certain range) and the toxin-dependent mortality rate of the prey is sufficiently low 

( ))(1(1< 111  TmTk ).  This is because of the condition of the existence of 1E , 
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0

1

0< x
x



 , the condition 1  plays a role only when 1>0

1

0 x
x



, which is 

equivalent to ))(1(1< 111  TmTk . 

2. Both species coexist at the equilibrium 1E  if the half-saturation constants are 

sufficiently small ( 1<<0  )(i.e., the capture efficiencies are sufficiently high) and 

the prey has an intermediate mortality rate (
1

112

1 1

1
<<

)(1

))(1(1

x

T
mTk

x

T









).  This 

is because we can equivalently rewrite the condition of the existence of 1E , 

0

1

0< x
x



 , as 

1

11
1

1
<

x

T
mTk




 .  Thus, from Theorem 4.3, we see that both 

populations are able to coexist at 1E  if both conditions 1<<0   and 

1

112

1 1

1
<<

)(1

))(1(1

x

T
mTk

x

T









 are satisfied. 

From the discussion in this section, we know that the quasi-steady system (17) has at most two 

boundary equilibria 0,1E (both extirpation) 0,1E (only prey) and two interior (coexistence) 

equilibria 1E  and 2E  which depends on the intersections of the null-clines.  We also show that 

the stability of these equilibria can be guaranteed if the toxin level T  and half saturation constant 

  satisfy certain conditions. 

5 NUMERICAL OBSERVATIONS OF ASYMPTOTIC DYNAMICS 

In this section, we show a variety of long-term asymptotic dynamics that the system (17) may 

exhibit based on the results of the existence and stability of equilibria.  To do so, we plot phase 

portraits (Figure 2) using the existing open MATLAB program pplane8.m by choosing different 

parameter values.  The phase portraits illustrate different types of eventual behavior of the 

populations. 

As we observe from Figures 2 to 5, the asymptotic dynamics (i.e., the eventual behavior of the 

populations) can be grouped into six general structures: 

 extirpation of both species (extirpation equilibrium 0,1E  is globally asymptotically 

stable); 

 prey-only extirpation (extirpation equilibrium 0,2E  is globally asymptotically 

stable); 

 coexistence at an interior equilibrium point (coexistence equilibrium 0,2E  is globally 

asymptotically stable); 

 coexistence with periodic population oscillations which decrease in amplitude as T

increases (system has a globally asymptotically stable limit cycle); 
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 bistability where both the extirpation equilibrium 0,2E  and the interior equilibrium 

point 1E  are locally asymptotically stable; and 

 bistability where the system has a stable limit cycle and a stable prey-only 

equilibrium. 

Figure 2 shows several types of global stability: 

 The top left panel of Figure 2 shows that both species are extirpated when the toxin 

level in the environment T  is high and leads to high population mortality rates and 

low population growth rates. 

 The top right panel of Figure 2 shows that the prey excludes the predator when half 

saturation constant   is large.  In this scenario, the system has no interior 

equilibrium (i.e., both species cannot coexist) even though the toxin level T  is low. 

 In the bottom panel of Figure 2, both species are able to coexist at interior 

equilibrium because the predation benefits the predator but is not too harmful to the 

prey when the toxin level T  is low. 

Figure 3 shows that both species coexist but the population levels oscillate periodically around 

the unstable interior equilibrium 1E .  With limit-cycle oscillations, Figure 3 clearly illustrates 

that the prey is reduced to extremely low levels yet recovers while the predator biomass remains 

above a certain level even at the lowest prey population level. 
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Figure 2.  Phase portraits of the predator density versus the prey density with various values of 

T and  . 

Units for prey and predator densities are dimensionless as described in equation 

(4.1). 

In each case, extirpation or coexistence equilibria are globally asymptotically stable 

(GAS). 

(Top left) Extirpation equilibria 1,0E = (0, 0) is GAS with T  = 0.5 and    = 1. 

(Top right) Extirpation equilibria 2,0E = (1.67, 0) is GAS with T  = 0.2 and   = 7.  

(Bottom) Coexistence equilibrium 1E  = (0.84, 0.51) is GAS with T  = 0.2 and  = 3. 

The other parameters for these three panels are the same as those in Figure 1. 

Circles indicate equilibrium points. 

 

 



 

23 

         

Figure 3. System shows globally stable limit cycle. 

(Left) Phase portraits of the predator density over the prey density. 

(Right) Solution curves (solid curve represents the prey density and dashed curve is 

the predator density). 

System has only one coexistence equilibrium 1E  = (0.028, 0.16) which is an unstable 

spiral source, both boundary equilibria 1,0E = (0, 0) and 2,0E  = (0.80, 0) are 

unstable saddle points. 

Circles indicate equilibrium points. 

T  = 0.1,   = 0.4, 1m  = 0.4, other parameters are the same as those in Figure 1. 

 

In the previous section, we proved that 2E  is always an unstable saddle point when the system 

has two interior equilibria 1E  and 2E .  Figures 4 and 5 show that the system has two alternative 

stable states (bistability) when both interior equilibria 1E  and 2E  exist.  The initial conditions 

determine which steady state the system will tend towards.  The stable manifolds of the unstable 

interior equilibrium 2E  indicates the edges of the basin of attraction for each steady state.  The 

bistability shown by Figure 4 means that either the prey excludes the predator or both species 

coexist at the interior equilibrium 1E  depending on the initial population levels. 

Figure 5 shows another type of bistability.  That is, the system has two alternate stable states: 

either the prey excludes the predator or both species coexist but with oscillating population 

levels.  When both species coexist but with oscillating population levels, both equilibria 1E  and 

2E  are unstable.  The system will tend towards a stable limit cycle only when the initial 

populations fall in a small domain which is the basin of attraction of the limit cycle. 
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Figure 4. System shows bistability with a locally stable coexistence equilibrium 1E and a 

locally stable extirpation equilibrium 2,0E . 

The trajectories either converge to 1E  or converge to 2,0E .  Circles indicate 

equilibrium points. 

(Top row) Phase portraits of the predator density versus the prey density. (Bottom 

row) Solution curves.  The solution with initial condition (0.1,0.2) converges to 1E  

(Bottom left).  The solution with initial conditions (0.1, 0.5) converges to 2,0E  

(Bottom right).  The system has two coexistence equilibria 1E  = (0.28, 0.42) which 

is stable spiral node and 2E  = (0.84, 0.25) which is an unstable saddle point, 

boundary equilibria 1,0E  = (0, 0) is an unstable saddle point, boundary equilibria 

2,0E  = (1.67, 0) is stable node.  The parameters:   = 1, other parameters are the 

same as those in Figure 1. 
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Figure 5. System shows bistability with a locally stable limit cycle and a locally stable 

extirpation equilibrium 2,0E . 

The stable manifold of the limit cycle and the stable manifold of 2,0E are depicted by 

bold curve.  (Top row) Phase portraits of the predator density versus the prey 

density. Circles indicate equilibrium points.  (Bottom row) Solution curves.  The 

solution with initial conditions (0.1, 0.2), which belongs to the stable manifold of the 

limit cycle, oscillates periodically as shown by the limit cycle (Bottom left).  The 

solution with initial conditions (0.2, 0.2), which is outside the limit cycle, converges 

to 2,0E = (1.67, 0) (Bottom right).  The system has two coexistence equilibria 

1E  = (0.14, 0.26) which is an unstable spiral source and 2E  = (0.42, 0.24) which is 

an unstable saddle point.  Boundary equilibrium 0,0E  = (0, 0) is an unstable saddle 

point, boundary equilibrium 2,0E  = (1.67, 0) is a stable node.  The parameters:   = 

0.5, other parameters are the same as those in Figure 1. 
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6 EFFECT OF TOXIN ON POPULATION DYNAMICS 

The goal of this section is to study how the balance of classical predator-prey dynamics will 

change as the concentration of a toxin increases from zero to higher level.  To do so, we first 

present the results of classical predator-prey dynamics associated with our toxin-mediated 

predator-prey dynamics.  We then plot bifurcation dynamics for the toxin-mediated system by 

regarding the external toxin level T  as a bifurcation parameter.  The bifurcation figures will 

clearly illustrate how the external toxin changes the long-term asymptotic behavior of the prey 

and the predator. 

6.1 A Traditional Predator-Prey System 

If there is no toxin ( 0=T ), then system (17) reduces to the following prey-predator system: 
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 (26) 

Regarding the existence and stability of the system (26), we have the following results: 

Lemma 6.1  Let 1<<0 1m  and 12 m . 

        (i) The boundary equilibrium 1,0)(1/= 10,2 mE  exists.  0,2E  is globally asymptotically 

stable if 
21

211 ))((1
>

mm

mm  
 . 

       (ii)  If 
21

211 ))((1
<

mm

mm  
 , then system (26) has only one interior equilibrium 
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Assume that the interior equilibrium 1E  exists, then 1E  is globally asymptotically stable if either 

1  or both the conditions 1<<0   and 12

221

2

21 <
)(

))((1
m

mm

m








 are satisfied. 

We interpret the mathematical results in Lemma 6.1 as follows.  First of all, the condition 

1<<0 1m  means that the loss rate of the prey biomass due to death is less than its maximum 

gain rate.  If this condition is violated then both populations are extirpated.  The condition 

12 < m  means that the loss rate of the predator biomass is less than its maximum gain rate.  If 

this condition is violated then the predator is extirpated and the system (26) reduces to a single 

species model. 
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If the half-saturation constant is sufficiently large (
21

211 ))((1
>

mm

mm  
 )(i.e., the capture 

efficiency is sufficiently low, assuming that the handling time is constant), then the prey-only 

equilibrium 0,2E  is stable, which means that the prey persists and the predator is eventually 

extirpated. 

Combining the conditions of existence and stability of coexistence equilibrium 1E , we find that 

the both species coexist in the following two scenarios: 

1. Both populations coexist at the equilibrium 1E  when the half-saturation constant is 

relatively large (
21

211 ))((1
<1

mm

mm 



 )(i.e., the capture efficiency is relatively 

low) and the mortality rate of the predator is sufficiently low ( 112 )(1< mm  ).  This 

is because if 
21

211 ))((1
<1

mm

mm  
, which is equivalent to 112 )(1< mm  , then both 

populations are able to coexist if the condition 
21

211 ))((1
<1

mm

mm 



  is also 

satisfied. 

2. Both populations coexist at the equilibrium 1E  if the half-saturation constant is 

sufficiently small ( 1<<0  )(i.e., the capture efficiency is sufficiently high) and the 

prey has an intermediate mortality rate (







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).  

This is because we can equivalently rewrite the condition of the existence of 1E , 
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<
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mm  
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, then both populations are able to 
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are satisfied. 

Lemma 6.2  If 1<<0   and 
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
, then the system has a coexistence 

equilibrium 1E  which is unstable, and the system (26) possesses a unique limit cycle which is 

stable. 

Lemma 6.2 implies that both species coexist, but their densities fluctuate periodically if the half-

saturation constant is sufficiently small ( 1<<0  )(i.e., the capture efficiency is sufficiently 

high) and the mortality rate of the prey is sufficiently low (
2
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Similar to most standard predator-prey systems, system (26) possesses three possible globally 

asymptotically stable states: prey only, coexistence at an equilibrium point, and coexistence at a 

limit cycle. 

6.2 Dependence of Stable Population Density on External Toxin 

In what follows, we are concerned with how different toxin concentrations in the aquatic 

environment affect the predator-prey dynamics.  To this end, we turn to the toxin-mediated 

system (20) and analyze the sensitivity of asymptotically stable states (equilibria) with respect to 

toxin level T .  This sensitivity analysis illustrates how the stable densities of prey and predator 

vary when the toxin level in the environment increase from zero to a higher level.  

Mathematically, this can be done by treating stable equilibria (including the stable prey and 

predator densities) as a function of T , then calculating the rate of change of stable prey and 

predator densities with respect to T  (see Appendix 1). 

We know from Table 2 and Theorem 4.2 that system (20) has a stable prey-only equilibrium 

,0= 00,2 xE  if external toxin levels are sufficiently high.  The results of our sensitivity analysis 

imply that the prey density 0x  decreases as the toxin level T  increases.  That is, high 

concentrations of toxin in the environment are always harmful to the prey.  If the external toxin 

levels are sufficiently low, say },,{min< 210

 TTTT  (Table 2), and the half-saturation constants 

satisfy certain conditions (Table 2 and Theorem 4.3), then the system has a stable coexistence 

equilibrium ),(= 111 yxE .  For this scenario, our analysis shows that 1y  is always a decreasing 

function of T , which means that the toxin is always harmful to the predator, increasing toxin 

levels lead to decreasing predator density.  However, the toxin affects the asymptotic prey 

density in a different way: 1x  increases as the toxin level T  increases from 0 to },,{min 210

 TTT  

until the system shifts from the stable coexistence state to the prey-only state when the toxin 

level reaches the threshold value },,{min 210

 TTT .  This threshold value determines whether a 

given toxin level is beneficial or harmful to the prey.  The bifurcation dynamics shown in 

Figure 6 in the next subsection illustrates our results of asymptotic analysis  regarding the 

relationship between the stable population density and  the toxin level in the environment. 

6.3 Bifurcation Dynamics 

To further understand the effects of the toxin on predator-prey dynamics, next we plot the 

bifurcation dynamics of the system with respect to the toxin concentration T .  In particular, we 

chose a set of parameters such that both species coexist at an interior equilibrium or limit cycle 

when there is no toxin ( 0=T ).  We then examine how these stable population densities will vary 

as T  increases from zero to higher concentration. 

Figures 6 to 9 illustrate that the toxin concentration in the environment affects the population 

dynamics in many different ways.  In Figure 6, when 0=T , both species coexist at interior 

equilibrium.  As T  increases but  still at a low concentration,  the  prey benefits since the stable 

predator density decreases.  That is, contaminant effects on predators release the prey from 
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predation, which lead to increased abundance of the prey.  As T  continues to increase , the 

stable prey level decreases and the predator is extirpated.  Finally, if we increase T  further, both 

species are extirpated.  The results indicate that the low toxin concentration provides a benefit to 

the prey by reducing the predator abundance. 

 

  

                

 

               

Figure 6. Bifurcation diagram with respect to toxin level T  – both species coexist at interior 

equilibrium. 

Parameters: 0.6=1m , 0.2= ,  0.75=1 , 0.4=2m , 1=1k , 1=2k , 1=2 , 1=2 , 

1=c .  Here,  0.200=0

T , 0.147=1

T , 0.2=2

T ,  0.2=3

T  (see Table 2). 

In Figure 7, when 0=T , both species coexist but oscillate around an unstable interior 

equilibrium.  As T  increases but still at low concentration, population densities oscillate but with 

decreasing amplitudes until they reach a stable state at an interior equilibrium.  As we continue 

to increase ,T  further similar dynamics to those in Figure 6 are displayed.  The unstable 

asymptotic behavior of the populations can be stabilized by increasing T . 



 

30 

 

       

                      

Figure 7. Bifurcation diagram with respect to toxin level – both species coexist but oscillate 

around an unstable interior equilibrium. 

This shows the highest and lowest values of x -coordinates and y -coordinates of 

stable limit cycles (dot curves), x -coordinates and y  -coordinates of unstable 

coexistence equilibria (thin solid curves),  x -coordinates and y -coordinates of 

stable coexistence equilibria and prey-only equilibria (thick solid curves).  

HB: (super-critical) Hopf bifurcation.  0.45=1m .  Other parameters are the same as 

those in Figure 6.  

Here,  275.0=0

T , 147.0=1

T , 100.0=2

T ,  231.0=3

T  (see Table 2).  

Figures 8 and 9 show that the populations have alternative stable states over a certain range of .T   

In Figure 8, the types of stable states vary in order as T  increases.  When 0=T , both species 

coexist at an interior equilibrium.  As T  increases but at low concentration, it benefits the prey 

since the stable predator density decreases.  As we continue to increase ,T  the population 

densities tend to move to alternative stable states: either to a prey-only state or coexistence at an 

interior equilibrium.  As T  increases further, the coexistence state disappears and the population 

densities tend to a prey-only state.  Finally, if we increase T even further, the stable prey density 

decreases until both species are extirpated. 
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Figure 8. Bifurcation diagram with respect to toxin level T- the system has two coexistence 

equilibria. 

Stable equilibria (thick solid curve).   Unstable equilibria (thin solid curve). 

Parameters:  = 1.5, 1  = 1, 1m =0.1, 2m = 0.02, 1k  = 1, 2k  = 0.2, 2  = 1, 2  = 

4, c = 1.5.  Here,  450.0=0

T , 208.0=1

T , 149.0=2

T ,  097.0=3

T  (see Table 2).  

Note that the condition },{min<},{max 1032

 TTTT  is satisfied, the system has two 

coexistence equilibria. 

When 0.193<T <0.208, the system has bistability, which is highlighted at the top-

right corners of the panels. 

In Figure 9, both species coexist at a limit cycle when 0=T .  As T  increases, population 

abundances continue to fluctuate but with decreasing  amplitudes until they reach a bistable state: 

a stable limit cycle and a prey-only equilibrium.  As we continue to increase ,T  the limit cycle 

disappears and another type of bistability appears: a stable coexistence equilibrium and a prey-
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only equilibrium.  As  T increases further, coexistence state disappears and the population 

densities tend to prey-only state.  Finally, if we increase T even further, the stable prey density 

decreases until both species are extirpated. 

                

 

              

Figure 9. Bifurcation diagram with respect to toxin level T- the system has two typies of 

bistabilities. 

The highest and lowest values of x-coordinates and y-coordinate of stable limit 

cycles (dot curves), x-coordinates and y-coordinates of unstable coexistence 

equilibria (thin solid curves), x-coordinates and y-coordinates of stable coexistence 

equilibria and prey-only equilibria (thick solid curves).  Parameters:  =0.12, 1 = 

0.75, 45.01 m , 2m = 0.1, 1k = 0.1, 2k = 0.1, 2 = 1, 2 = 2,  c = 0.5. Here,  

500.0=0

T , 388.0=1

T , 306.0=2

T ,  210.0=2

T  (see Table 2). Note that the 

condition },{min<},{max 1032

 TTTT  is satisfied, the system has two coexistence 

equilibria.  When 0.352<T <0.388, the system has bistability, which is highlighted at 

the top-right corners of the panels. 
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Figures 6 to 9 highlight several key points: 

1. High toxin concentration in the environment is harmful to both species – it may lead 

to extirpation of both species. 

2. The population dynamics is counterintuitive when both the prey and the predator are 

exposed in environment with low concentration of toxin.  That is, low toxin 

concentration benefits the prey because the bioaccumulation of toxin in the predator 

reduces the predator abundance, which releases its prey from predation. 

3. The amplitude of population oscillation around the unstable coexistence equilibrium 

can be reduced until it stabilizes at a coexistence equilibrium, as the toxin 

concentration increases. 

4. Certain toxin levels may lead to more than one asymptotic population density of 

either the prey or the predator.  In this scenario, the initial population density of the 

prey or the predator determines its eventual population density. 

7 APPLICATION 

In what follows, we use the parameter estimates from Section 3 to numerically solve the toxin-

mediated predator-prey model (11).  Our purpose is to understand how the concentration of a 

toxin in the environment affects the long-term biomass of rainbow trout and its prey.  We make 

numerical simulations by considering two scenarios. 

In the first scenario, we regard the rainbow trout as the predator and small fish as the prey.  We 

plot the stable biomass of prey and predators as the concentration of methylmercury T  increases 

from 0 to 0.09 µg/L in Figure 10.  As we see, the bifurcation dynamics are similar to that in 

Figure 7. 

In the second scenario, we regard the rainbow trout as the predator and aquatic insects as the 

prey.  We apply the results of model parameterization from Section 3 to the model (11).  We then 

describe the bifurcation dynamics as the concentration of methylmercury in the environment T  

changes from 0 to 0.03  g/L (Figure 11).  As shown in Figure 11, the stable predator biomass 

decreases as the concentration of methylmercury increases which leads to the stable prey 

biomass increasing until it reaches its environmental carrying capacity. 
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Figure 10. The stable biomass of the prey (small fish) and the predator (rainbow trout) when the   

concentration of methylmercury in the environment changes from 0 to 0.09 µg/L. 

x-coordinates and y-coordinates of unstable coexistence equilibria (thin solid curves) 

x-coordinates and y-coordinates of stable coexistence equilibria and prey-only 

equilibria (thick solid curves). 
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Figure 11. The stable biomass of the prey (aquatic insects) and the predator (rainbow trout) 

when the concentration of methylmercury in the environment changes from 0 to 

0.03 µg/L. 

8 CONCLUSIONS AND RECOMMENDATIONS 

Contamination by toxic pollutants is a significant problem in water management.  The effect of a 

toxic contaminant can, in principle, be exerted on all levels of the biological hierarchy, from cells 

to organs to organisms to populations to entire ecosystems.  Mathematic models are useful tools 

for evaluating the ecological significance of observed or predicted effects of toxic chemicals on 

individual organisms and population dynamics.  Most toxin-mediated single-species models 

assume that populations take up contaminants from water and ignore bioaccumulation 

(contaminant uptake, excretion, and contaminant transfer through aquatic food chain ).  These 

single-species models cannot predict the effects of toxin on species interactions, nutrient cycling, 

or contaminant flow in aquatic systems. 

8.1 Conclusions 

In this study, motivated by the fact that many aquatic organisms take up contaminants both from 

water and from food (their prey), we developed a toxin-mediated predator-prey model that 
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consists of four differential equations.  To facilitate model analysis, we approximate the model 

with a two dimensional system because population metabolism takes place over a much faster 

time scale than population growth does.  We then analyze the existence and stability of 

extirpation and coexistence equilibria based on the two dimensional system.  The conditions that 

guarantee the existence and stability of equilibria provide meaningful biological interpretations.  

For instance, high toxin concentrations in the environment lead to the extirpation of prey and 

predators, and low toxin concentrations lead to the coexistence of both populations.  However, 

intermediate toxin concentrations result in two alternative stable states: a prey-only equilibrium 

and coexistence of prey and predators.  In this scenario, the initial conditions determine which 

steady state the populations will tend towards.  The results of model analysis are then used to 

show all possible asymptotic behaviors of the system.  To do this, we plot a series of phase 

portraits to identify possible outcomes.  These outcomes suggest that our toxin-mediated system 

has richer dynamics than traditional predator-prey system due to the existence of two interior 

equilibria and bistability. 

Predator-prey interactions have been one of the central themes in ecology.  The dynamics of 

traditional predator-prey systems have been well documented.  The main aim of the present 

study is to investigate how the balance of a traditional predator-prey system (without a toxin 

effect) will change when the prey and the predator are exposed in an aquatic environment where 

toxins may be present at low levels.  To this end, treating toxin level T  as a bifurcation 

parameter, we plot many bifurcation dynamics.  The results imply that sublethal contaminant 

effects on predator-prey interactions are counterintuitive.  That is, increased toxin level has a 

positive effect on prey persistence even though it has a negative effect on predator persistence.  

This is because the bioaccumulation of toxin in the predator reduces the predator abundance, 

which releases its prey from predation.  In addition, our findings indicate that an increasing toxin 

level reduces the amplitude of population cycle oscillations, which often occur in traditional 

predator-prey systems.  In other words, the toxin has a stabilizing effect on population cycles. 

8.2 Recommendations 

For model analysis, we mainly focus on local stable analysis of equilibria.  As we observed in 

Section 5.1, the system has several types of phase portraits.  We believe that the global dynamics 

will provide more clear insights into the effects of a toxin on long-term behavior, but this is 

challenging and is left for future work. 

Species in different trophic levels may have different sensitivity to each toxin.  We hope to 

encourage the connection of  the model data on fish species common in oil sands areas and to 

other species and contaminants of interest in other areas.  Then the bifurcation analysis in 

Section 5.2 will provide threshold values of toxin concentration in the environment for the 

persistence of one or both species.  The threshold value for shifting the system from one stable 

state to another can also be observed.  This will help consider acute and chronic guideline 

developments for target species and chemicals. 

Our model assumes that concentration of the toxin in the environment is a constant.  In reality, 

the toxin concentration may vary over time (and space, if sediment and plant uptake and release 
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are considered) due to a variety of factors.  In addition, we have only considered the interaction 

between one predator species and one prey species.  When toxins flow across multiple prey and 

predators, the outcome can be more complicated.  Our model also assumes that the capture rate 

in the Holling’s type II function response is a constant.  In practice, contaminant-induced 

changes in a population’s behavior may also lead to abundance changes in prey and predator 

populations.  For example, the dynamics might be very different if predators prefer “toxic" prey 

(because they are slower, sicker, easier to catch) versus if they avoid toxic prey (because they 

taste bad or they know that the toxin is bad for them).  Further consideration of these factors in 

the model framework are required to investigate this problem.  We expect that the main results 

we obtained in this study are robust, even though the details will certainly change if we include 

these factors in the model. 

Although our toxin-mediated predator-prey system is developed based on an aquatic 

environment, the model and the results in this study are applicable to predator-prey systems in 

terrestrial ecosystems. 
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10 GLOSSARY 

10.1 Terms 

Bifurcation Dynamics 

In mathematics, particularly in dynamical systems, bifurcation dynamics show the possible long-

term values (equilibria/fixed points or periodic orbits) of a system as a function of a parameter in 

the system. 

Bioaccumulation 

The accumulation of substances, such as pesticides, or other organic chemicals in an organism. 

Bioaccumulation occurs when an organism absorbs a toxic substance at a rate greater than that at 

which the substance is lost.  Thus, the longer the biological half-life of the substance the greater 

the risk of chronic poisoning, even if environmental levels of the toxin are not very high. 

Bistability 

In a dynamic system, bistability means that the system has two locally stable equilibrium states. 

Body Burden 

The accumulated total of chemical toxins in the body.  The precise definition is given by a 

fraction in the beginning of Section 2.  

Boundary Equilibrium 

It is also called extirpation or extinction equilibrium, at which at least one species is extirpated or 

goes extinct.  In this study, the equilibrium  (0,0)=0,1E  and )0,(= 00,2 xE are boundary equilibria 

(see Table 2). 

Carrying Capacity 

The carrying capacity of a biological species in an environment is the maximum population 

density of the species that the environment can sustain indefinitely, given the food, habitat, water 

and other necessities available in the environment. 

Coexistence Equilibrium 

A stable state at which both species are able to coexist. 

Depuration 

The process by which toxins are digested and excreted due to the metabolism of individuals. 

Differential Equation Model 

Differential equation models relate functions of dependent variables with their derivatives.  In 

this paper the derivatives are taken with respect to time. 

Extinction 

In biology and ecology, extinction is the end of an organism or of a group of organisms (taxon), 

normally a species. 
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Extirpation 

Local extinction, in which is the condition of a species (or other taxon) that ceases to exist in the 

chosen geographic area of study, though it still exists elsewhere. 

Globally Asymptotically Stable 

An equilibrium point 
x  is said to be globally asymptotically stable if the solutions with all 

nonnegative initial conditions will tend towards 
x  as t . 

Half-Saturation Constant 

The half-saturation constant represents the population density at which half of the maximum per 

capita feeding rate is reached.  In the predator functional response 
x

x
xp






)(  (equation (9)), 

 is referred as the half-saturation constant, since
2

)(


 p ; that is, per capita feeding rate is the 

half of the maximum rate when the population density x  . 

Interior Equilibrium 

It is also called coexistence equilibrium, a stable state  at which both species are able to coexist. 

In this study, the equilibrium ),(= 111 yxE  and ),(= 222 yxE are coexistence equilibria (see 

Table 2).  

Isocline and Null-cline 

The term isocline derives from the Greek words for "same slope."  For a first-order ordinary 

differential equation ),(=' yxfy , a curve with equation Cyxf ),(  for some constant C is 

known as an isocline.  An isocline with constant 0C is called a null-cine. 

In population dynamics, a null-cline refers to the set of population densities at which the rate of 

change, or partial derivative, for one population in a pair of interacting populations is zero. 

Lemma 

A minor result whose sole purpose is to help in proving a theorem.  It is a stepping stone on the 

path to proving a theorem. 

Limit Cycle 

In the study of dynamic systems with two-dimensional phase space, a limit cycle is a 

closed trajectory in phase space having the property that at least one other trajectory spirals into 

it as time approaches infinity or as time approaches minus infinity. 

Locally Asymptotically Stable 

An equilibrium point 
x  is said to be locally asymptotically stable if 

x  is locally stable, and 

futhermore, all solutions starting near 
x  tend towards 

x  as t . 
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Locally Stable 

An equilibrium point 
x  is locally stable if all solutions that start near 

x  (meaning that the 

initial conditions are in a neighborhood of 
x ) remain near 

x  for all time. 

Manifold 

For the purposes of this paper, a manifold can be considered a surface contained within a higher 

dimensional space.  The full mathematical definition is more complex. 

Nondimensionalization 

Nondimensionalization is the partial or full removal of units from an equation involving physical 

quantities by a suitable substitution of variables.  This technique can simplify 

and parameterize problems where measured units are involved.  It is closely related 

to dimensional analysis.  Nondimensionalization can also recover characteristic properties of a 

system.  For example, if a system has an equilibrium, or limit cycle, nondimensionalization can 

recover these values.  

Parameter 

A constant or variable term in a mathematical function that determines the specific form of the function 

but not its general nature, as a in axxf )( , where a determines only the slope of the line described by

)(xf . 

Parameterization 

Parametrization (also parameterisation) is the process of deciding and defining 

the parameters necessary for a complete or relevant specification of a model. 

Phase Plane 

A visual display of certain characteristics of certain kinds of differential equations. 

Phase Portrait 

A phase portrait is a geometric representation of the trajectories of a dynamic system in the phase 

plane. 

Quasi-Steady State Approximation 

The quasi-steady-state approximation is a standard procedure in the study of high dimensional 

systems where certain state variables change over a faster time scale than other state variables. 

By introducing a small parameter and making nondimensionalization for the system, then letting 

the small parameter be zero, one can reduce the dimension of the system. 

Saddle Point 

A saddle point is an unstable equilibrium point at the intersection of unstable and stable 

manifolds. 
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Solution Curve 

A solution curve is a graph that describes how the population density changes with respect to 

time. 

State Variable 

A state variable is one of the set of variables that are used to describe the mathematical "state" of 

a dynamic system.  Intuitively, the state of a system describes enough about the system to 

determine its future behavior.  Models that consist of coupled first-order differential equations 

are said to be in state-variable form. 

System 

A system is a set of interacting or interdependent components forming an integrated whole.  It is 

a set of detailed methods, procedures and routines created to solve a problem. 

Theorem 

A mathematical statement that is proved using rigorous mathematical reasoning.  In a 

mathematical paper, the term theorem is often reserved for the most important results. 

Threshold 

The point that must be exceeded to begin producing a given effect or result or to elicit a 

response. 

Toxin 

A toxin is a substance poisonous to living cells or organisms. 

Toxin-Mediated 

In this report, a biological process that is affected by, or controlled by, a toxin in the environment 

or in an organism. 

Uptake 

The act of taking in or absorbing, especially into a living organism. 

10.2 Acronyms 

GAS Globally Asymptotic Stable 

HB Hopf Bifurcation 

OSRIN Oil Sands Research and Information Network 

SEE School of Energy and the Environment 

USGS US Geological Survey 
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APPENDIX 1:  Supporting Information about the Model 

Proof of Theorem 4.1 

Proof.  Positivity obviously holds for the system (15).  Let )()(=)( 1 tytxtz   and 

differentiating z  once yields 
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Hence, we have 
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which implies 
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On the other hand, from the third equation of the system (15), we have 

 uT
dt

du
  (30) 

Similar to the argument on ),(tz  we can conclude that )(tu  is ultimately bounded. Therefore, 

from the fourth equation of the system (15), we obtain 

 vTcTuvcT
dt

dv
2222    (31) 

 which indicates that )(tv  is also ultimately bounded. 

 

Argument about the assumptions (18) and (19) 

Clearly, if 11 m , then for any 0x  and 0T , 
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thus 0,=)(lim txt   which will lead to 0.=)(lim tyt   

If 1T , then   01,0max T , thus 0=)(lim txt  , 0=)(lim tyt  . 

Similarly, if 2cT , then 0=))}(/(/{0,1max 222 xTxcT   , thus 0.)(lim  tyt
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If 12 > m , then for any 0x  and 0,T  
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thus, 0,=)(lim tyt   and the system (17) reduces to a single species model. 

 

Existence of equilibria 

The prey x -nullclines are 

 
)(

)(
=0,=

x

xf
yx


 (32) 

 and the predator y -nullclines are 

 0=,0=)( yxg  (33) 

From the intersections of the nullclines, we find that the system has only one extirpation 

equilibrium (0,0)=0,1E  if  011 :=1))/((1 TkmT , and the system has an extirpation 

equilibrium 0,1E  and a prey-only equilibrium ,0)(= 00,2 xE  if 

0< TT  with 

1))/((1= 110  mTkTx . 

The interior equilibria (coexistence equilibria) can be found by setting 

 0>
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=and0=)(

x

xf
yxg


 (34) 

Noticing that )(x  is an increasing positive function on )(0, , we require 
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that is, 

0< TT  and 011 =)(:=1))/((1<<0 xFmTkTx  .  The second condition is equivalent 

to 

 )(<)( 0xx   (36) 

Also, if TcTx 22 )/()(   , then 0.=})/(/{0,1max 222  xTcT    In this case, 0<)(xg . 

Hence, we require 
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When (37) holds, function )(xg  becomes 
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 (38) 

Therefore, system (20) has coexistence equilibrium if and only if the quadratic equation with 

respect to )(:= x  

 0=])([ 2222221

2

21  mcTkTkcTT   (39) 

has at least one positive root which satisfies 
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 Let 

 )(4])([:= 22221
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2221  mcTkTTkcT   (41) 

Notice if 0 , the quadratic equation (39) has either two positive roots (when 

0>)( 2221 TkcT   ) or two negative roots (when 0<)( 2221 TkcT   ). 

Thus, we require that (39) has two positive roots.  We also find that (39) has two positive roots 
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 if and only if the following condition holds: 

 )(2>)( 222212221  mcTkTTkcT   (43) 

Next, we equivalently rewrite the condition (43) into a restriction condition with respect to .T  

Firstly, the condition (43) implies that 0>)( 2221 TkcT   , which is equivalent to 

 
221

21<
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kc
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
 (44) 

Secondly, if we introduce a function G  with respect to T , 

 )(2)(=)( 222212221  mcTkTTkcTTG   (45) 
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Then G  is a decreasing function of T .  Solving 0=)(TG , we can get a threshold value of T , 

which is 
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Clearly, 0<))/(( 22121  kcG  , since 0=)( TG  and )(G  is a decreasing function, so 

)/(< 221211  kcT 


. 

Therefore, a combination of (44) and (46) yields that the condition (43) is equivalent to 
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1< TT  (47) 

We now require 1  and (or) 2  satisfy the condition (40). We notice that 
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 In fact, we have 
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which is true. Thus, the existence of coexistence equilibrium depends on whether or not 

)(< 01,2 x . 

Noticing that 1<)/(=)(<0 000 xxx   and 1  and 2  do not depend on   (see eq.(9.11)), we 

can choose an appropriate   such that )(< 01,2 x  if 1<1,2 . 

From (42), we find that 21 <1<   if 
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and 1<< 21   if 
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 TTT , (51) 

where 
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Therefore, if },,{min< 210

 TTTT  and 010/< xx  , then system (20) has only one coexistence 

equilibrium )
)(

)(
,(=

1

1
11

x

xf
xE


, where 1x  is given by )(= 11 x .  More precisely, since 

)/(= 111 xx  , we have )/(1= 111  x . 

If },{min< 103

 TTT , then system (20) has two coexistence equilibrium 1E  and )
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2
22
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xE


 

with )/(1= 222  x  when },{min<< 103

 TTTT  and 020/< xx  . 

 

Proof of Theorem 4.2 

Proof.  At 0,1E , where both prey and predator are extirpated, the Jacobian is 
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 and the eigenvalues are the components on the diagonal, 
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2
2111 =,1= m
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
  (54) 

If 1>11 TmTk  , then 0,1E  is a stable node because both eigenvalues of )( 0EJ  are negative. 

Moreover, only the boundary equilibrium 0,1E  is feasible when 1>11 TmTk  . Because 

solutions are bounded, solutions must converge to 0,1E .  If 1<11 TmTk  , then 0,1E  is a 

saddle point because the two real eigenvalues are of opposite sign. 

The Jacobian at 0,2E , where only the prey survives, is 
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 and the eigenvalues are 
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The condition of the existence of 0,1E , 1<11 mTkT  , implies that 0<1 .  Thus, the stability 

of 0,1E  can be determined by the sign of eigenvalue of )( 0xg .  That is, 0,1E  is a stable 

(unstable) node (saddle point) if (>)0<)( 0xg . 
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Next, we investigate the condition 0<)( 0xg  further under which 0,1E  is a stable node.  Let 

)/(= 000 xx  , using (38) and (39) we find that 0<)( 0xg  is equivalent to 

 0>)(:=])([ 022202221

2

021  FmcTkTkcTT   (57) 

 Using the same discriminant   as in (41), we consider the following cases: 

1. If 0< , then )( 0F  represents a parabola which opens upward and does not 

intersect the 0  axis, then 0>)( 0F  for any 0 .  From the discussion about the 

existence of equilibria (see  Existence of equilibria of equilibria), we can easily find 

that 0<  is equivalent to 
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2. If 0>  and 0<)( 2221 TkcT    (i.e., )/(> 22121  kcT  ), then )( 0F  

represents a parabola which opens upward and intersects negative 0  axis, then 

0>)( 0F  since 0>0 .  Again, from the discussion about the existence of 

equilibria, we know that 0>  is equivalent to 


1< TT  and )/(< 221211  kcT 
. 

Therefore, the condition 0>  contracts the condition 0<)( 2221 TkcT   . 

3. If 0>  and )/(< 22121  kcT   (note that 0>  is equivalent to 


1< TT  and 

)/(< 221211  kcT 
), then )( 0F  represents a parabola which opens upward and 

intersects positive 0  axis, 0=)( 0F  has two positive roots 1  and 2  ( 21 < ). 

Thus, 0>)( 0F  when 10 <  (i.e., 010/> xx  ) or 20 >  (i.e., 020/< xx  ). 

From (1) to (3), we conclude that the prey-only equilibrium 0,2E  is locally asymptotically stable 

if one of the following conditions is satisfied: 

 
  41 TTT , 

 


1< TT  and 010/> xx  , 

 


1< TT and 020/< xx  . 

Note that the condition plays a role only when the conditions },{min<},{max 1032

 TTTT  and 

},{min<<},{max 1032

 TTTTT  are satisfied (see subsection 3.1.1). 
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Proof of Theorem 4.3 

Proof.  At coexistence equilibria iE 1,2)=(i , where both prey and predator coexist, the Jacobian 

is 
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 (60) 

and the characteristic equation is 
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For the equilibrium 1E , simple calculation gives 
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Since the quantities )( 1xg  and )( 1xf  are positive, the Routh-Hurwitz criterion guarantees that 

equilibria 1E  is stable if 
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Note that 
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and 0>)( 1x , condition (53) is equivalent to 
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Simple calculation yields 

 )(
)(1

))(1(1
=

)(

)(
112

11

1 mTk
x

T

x

xf














 


 (66) 



 

52 

Clearly, if 1> , then condition (65) is satisfied, 1E  is stable. If 1< , then (65) is equivalent to 
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Therefore, 1E  is stable either 1  or both conditions 1<<0   and 
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satisfied. 

 

Analytical Calculations on the Sensitivity of Stable Population Density to Toxin level 

If the system (20) has a stable prey-only equilibrium ,0)(= 00,2 xE  with 

1))/((1= 110  mTkTx , then the stable prey density decreases as the toxin level T  increases 

because 0x  is a decreasing function of T . 

If the condition 
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is satisfied (here  ′ denote the derivative with respect to x), then the system (20) has a stable 

coexistence equilibrium ),(= 111 yxE  with 
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1
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y , where 1  is given 

by the following quadratic equation (see equation (39)): 
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 Differentiating both sides of the above equation with respect to T , we have 
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 Thus, 
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 Applying equation (41) to the above equation, we have 
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Therefore, 
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since 0>/ 11 x  is obvious from )/(1= 111  x . 

That is, if the system stabilize at the coexistence equilibrium ),(= 111 yxE , then the stable prey 

density always increases as the toxin level T  increases. 

From (68) and (73), we obtain 
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That is, if the system stabilize at the coexistence equilibrium ),(= 111 yxE , then the stable 

predator density always decreases as the toxin level T  increases. 
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