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ABSTRACT

Long dry spells (sequences of dry days) are rare events, but they are important because they correlate significantly
with the area burned during bad wildfire years. Previous attempts to mode! the frequency of dry spells have
been successful for spells of short duration, but have failed for prolonged dry spells. .

In the current study, an empirical method has been developed that yields a realistic estimate of the probability
of a spell of any duration. The theoretical framework proposes that the data can be explained partly by the
dichotomy of weather into blocked and nonblocked westerly flows. A bimodal distribution of dry consecutive

days is a consequence of this dichotomy.

The transitional probability of a dry day following k dry days generally peaks at k = I, declinestoa shou_xlder
for small k values, and then rises slowly to an asymptotic value that must be estimated from sparse and highly

irregular data.

1. Introduction

During a study of the relationship between various
meteorological variables and the area burned by wild-
fire on a monthly basis by province (Flannigan and
Harrington 1988), it was discovered that the area
burned correlated significantly with the duration of dry
spells, but did not correlate with precipitation. Con-
sequently, a statistical analysis of the duration of dry
spells at forested stations in Canada was carried out in
an attempt to estimate the return period of long dry
spells indicative of “bad” fire years.

The literature on the probability of sequences of rain
days or dry days is voluminous. A brief review begins
here with the pioneering work of Newnham (1916),
who showed that the probabilities of rain or no-rain
days were not constants, but depended on the condition
on the previous day. For example, the transitional
probability of rain after a dry day at Aberdeen, Scot-
land, was 0.50, but increased to 0.67 if the previous
day had been wet. After two wet days at Aberdeen; the
probability of rain rose to 0.70 and after three wet days
it was 0.76, remaining constant thereafter. Probabilities
that take the preceding weather into account are called
transitional probabilities. For Aberdeen, the transi-
tional probabilities can be written as p(r| d) = 0.50,
p(r(rd) = 0.67, p(r|rrd) = 0.70, and p(r|rr- - - rd)
= (.76.

A number of models have been devised in an attempt
to predict the occurrence of rare events. Eggenberger
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and Polya (1923) modified the Poisson series in a
manner that allowed the mean to increase slowly with
dry spell duration. Their model succeeded in fitting
rare events, but failed to provide a good fit to the data
when the sequences were not rare events.

Williams (1947) found that a logarithmic series
conformed closely to the distribution of dry-day se-
quences, but not to wet-day sequences. However, his
curves show that even for dry-day sequences, the fit
becomes poor when the sequence becomes long.

Markov chain'! models were first used to estimate
the distribution of wet- and dry-day sequences by Ga-
briel and Neumann (1957, 1962). They were able to
show that a first-order Markov chain adequately de-
scribed the distributions of wet- and dry-day sequences
during the rainy season in Tel Aviv, Israel, but failed
for the dry-day sequences during the summer dry
season.

Berger and Goossens (1983) compared the adequacy
of a number of models in their description of the dis-
tribution of dry-day sequences at Uccle, Belgium. The
models tested were the modified Poisson series of Eg-

. genberger and Polya (1923), the logarithmic series of

Williams (1947), a geometric series used by Neumann
(1955), a Markov chain model described by Eriksson
(1965), and a modified Markov chain rhodel derived

. by Dingens et al. (1970). Berger and Goossens ( 1983)

found that the model of Dingens et al. (1970) provided

! A first-order Markov chain is one in which the probability of the
occurrence of a dry day, for example, is dependent only upon whether
the previous day was wet or dry. A second-order Markov chain is
one in which the two previous days must be considered, and so forth.
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the best fit, but did not significantly improve upon the
simple Markov chain model of Eriksson (1965).
Goossens and Berger ( 1984 ) determined that the order
of the Markov chain providing the best fit to data from
15 stations in Belgium lay between three and five, de-
pending on the location of the station.

A similar method was applied by Chin (1977) to
data from climatological stations across the United
States. He divided the year into winter and summer
seasons and found that the best fit to the data was ob-
tained with a first-order Markov chain in winter and
a second-order Markov chain in summer.

The models of both Eriksson (1965) and Dingens
etal. (1970) were applied by Harrington and Flannigan
(1987)to 28 years of data (1953-80), collected during
the forest fire season, April to September inclusive,
from 41 stations located in forested regions of Canada.
The order of the Markov chain providing the best fit
to the data is shown in Fig. 1. Although the Markov
chain models fit most of the data at a confidence level
of greater than 95%, it became apparent that the models
were consistently underestimating the transitional
probabilities of long periods of drought. This failure to
predict the frequency of long droughts, also noted by
Gabriel and Neumann (1957), made the simple Mar-
kov chain models inappropriate for estimating the
likelihood of bad forest fire years.

This paper demonstrates an empirical method for
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estimating transitional probabilities for long dry spells
and offers a theoretical framework for the method.

2. Preparation of data

Data from the 41 stations shown in Fig. 1 were clas-
sified as rain days or dry days depending on whether
rainfall amounted to more or less than 1.5 mm, re-
spectively, during the regular 24-h observation period.
The 1.5-mm threshold for precipitation had been found
to be more significant for fire prediction than the 0.25-
mm threshold used by most authors. In forested areas,
much of the first 1.5 mm is lost through interception
by the trees (Flannigan and Harrington 1988). Use of
the 1.5-mm threshold rather than 0.25 mm led to an
increased frequency of longer dry-day sequences.

Transitional probabilities of a dry day following k
dry days were computed using the equations

_NEED
PR "Ny KT (1)

and
p(0) = P(d|r) = 102l dry spells 2

total rain days ’

where N(k) is the cumulative occurrence of all dry
spells of k or more days duration. A five-point binomial

FIG. 1. Forested stations in Canada. Numbers indicate the order of the Markov chain providing
the best fit to the distribution of transitional probabilities for sequences of dry days.
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filter was applied to smooth all of the transitional prob-

abilities with the exception of the first three points.
Data for North Battleford, Saskatchewan, are pre-

sented in Table | and a typical plot of the transitional

TaBLE 1. Observed sequences of exactly k dry days, cumulative
frequencies of k or more dry days, and the transitional probability
of at least one more dry day during the period from April to September
inclusive at North Battleford, Saskatchewan, 1953-80.

Transitional

Spell probability
duration (k) Exact n Cumulative N p (k)
1 133 674 0.803
2 94 541 0.826
3 72 447 0.839
4 57 375 0.848
5 64 318 0.799
6 42 254 0.835
7 31 212 0.854
8 34 181 0.812
9 17 147 0.884
10 21 130 0.838
11 13 109 0.881
12 15 96 0.844
13 9 81 0.889
14 8 72 0.889
15 7 64 0.891
16 7 57 0.877
17 11 50 0.780
18 5 39 0.872
19 4 34 0.882
20 1 30 0.967
21 2 29 0.931
22 2 27 0.926
23 6 25 0.760
24 3 19 0.842
25 3 16 0.813
26 0 13 1.000
27 0 13 1.000
28 2 13 0.846
29 0 11 1.000
30 2 11 0.818
31 0 9 1.000
32 1 9 0.889
33 0 8 1.000
34 1 8 0.875
35 1 7 0.857
36 1 6 0.833
37 0 5 © 1.000
38 0 5 1.000
39 0 5 1.000
40 0 5 1.000

41 0 5 1.000 -

42 0 5 1.000
43 3 5 0.400
4 0 2 1.000
45 0 2 1.000
46 0 2 1.000
47 1 2 0.500
48 1 1 0.000

Total dry spells: 674
Total rain days: 945

pld/r) = 0.7132
Total days: 5124

Total dry days: 4179
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FiG. 2. Transitional probability of a dry day following k dry days
at North Battleford, Saskatchewan.

probability of a dry day following k dry days is shown
in Fig. 2. The transitional probability of a dry day fol-
lowing a rain day is quite low at 0.7132. After one dry
day, it climbs to 0.803 and after two dry days to 0.826,
where it reaches a shoulder. Subsequently, it climbs to
higher values. As the data become sparse toward longer
dry spells, the transitional probabilities become more
and more erratic, eventually losing all significance as
predictors.

Suppose that a third-order Markov chain was found

'~ to be valid for North Battleford dry-day sequences. In

that case, the probability of 40 or more dry days fol-
lowing a rain day would be 0.000715, that is,
[p(d|r)p(d| dr)p(d| ddr)p(d| ddd)*"] from Table 1.
During the 28 years of observations, there were 945
rain days and, therefore, a likelihood of 0.67 occur-
rences if the third-order Markov chain model is ac-
cepted. In fact, five occurrences were observed. The

. general rising trend in transitional probability with se-

quence length illustrated in Fig. 2 and consequent un-
derestimation of the probability of the occurrence of
long sequences was observed in all but 6 of the 41 da-
tasets. Thus, the single Markov chain model was in-
adequate for the purpose of this study, namely to de-
termine the probability and return period of long se-
quences of days without rain.

In the following sections, a simple theoretical expla-
nation is offered for the observed rising trend in tran-
sitional probability with increasing duration and an
empirical curve that provides an adequate fit to the
data is developed based on the theory.

3. Theory

To explain the rising trend in the transitional prob-
ability of dry-day sequences, it is proposed that the
curves are composed of two Markov chains. One chain
corresponds roughly to low-amplitude westerly flows
of relative frequency f. The other chain corresponds
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F1G. 3. Frequency distribution of the amplitude of the wave packet
(in geopotential meters) formed from very long waves in westerly
flows. Redrawn from Hansen (1986).

roughly to high-amplitude ridges in the westerlies or
blocking conditions of relative frequency 1 — f. The
fraction f, however, is not to be considered fixed by
nature but will be allowed to vary from close to 1.0 for
short periods and down toward zero for the longer per-
sistence of dry days. The existence of bimodal flow
patterns in the westerlies has been amply demonstrated
by Sutera (1986) as shown in Fig. 3.2

Under ideal conditions, that is, when there is a pure
bimodal distribution of flow patterns, the probability
of a dry day following a rain day can be written as

p'inf+p"dlr(l - f) = p(1), (3)

where the single prime, double prime, and circumflex
denote normal flows, blocking flows, and observations,
respectively. Suppose that both Markov chains are third
order. In that case, p'(d| ddd) and p”(d| ddd) will be
constants throughout the recorded time series. The ra-
tio of the two, p”"(d| ddd)/p'(d| ddd) = «, should also
be a constant. Hence,

p’(d| ddd) [g + 1 —f] =pk), k=4. (4)

If p(3) is measured and the asymptotic value
p"(d| ddd) estimated, then the term in square brackets
is known and

2 The very long waves referred to in the caption for Fig. 3 have
wavenumbers 2-4, that is, there are two to four waves encircling the
globe. When the wave amplitude is high, the winds tend to have
strong components from the north or south and storm systems move
slowly eastward. When the amplitude is low, the westerly component
is stronger and storm systems proceed eastward more rapidly. Over

North America, the high pressure ridge aloft is generally centered

between the West Coast and the eastern side of the Rocky Mountains.
An upper-level trough usually lies over eastern North America. The
high-amplitude phase associated with strong ridging or blocking has
a characteristic time scale of 10 days.
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f{ﬁ’ and f= Pa

where 8 =1—(6/v),6 = p(3),and v = p"(d| ddd).

Suppose, for example, that 6 for North Battleford is
estimated to be 0.830 and vy to be 0.925, then 8 will
be 0.1027 and the value of « for various values of f
will be as shown in Table 2.

The frequency of normal flows fcannot be constant
in this model because if it were, Eq. (4), now used for
prediction, would reduce to p(k) = p'(d| ddd), a con-
stant. At this point, we resort to empiricism. Our as-
sumption of a double Markov process forces « to be
constant. Therefore, if (k) is to increase with increas-
ing k, f, the fraction of nonblocking flows, must grad-
ually decline, approaching zero as p(k) approaches its
asymptotic value. It is reasonable to assume that the
decline in f'is inversely proportional to « and that «
must be adjusted by a factor to account for the fact
that meteorological circulations are not completely bi-
modal. Let

o =

&)

a—1"

A

e

S (6)

where e is the value of k at the shoulder where measured
transitional probabilities are known with a fair degree
of confidence, and « — ¢ is arbitrarily adjusted to fit
the observations.

The predicted transitional probability that a day will
be dry given a preceding sequence of k dry days will
then be

p(k) = 7[1 —L], )

( o — t)k’-e
where 8 = 1 — (6/+) as for Eq. (5) and 6 is the tran-
sitional probability at the shoulder, where k = ¢. For
values of k < ¢, the observed transitional probabilities
were accepted as the best estimates of the true proba-
bilities.

Observed transitional probabilities for dry spells
longer than about 10 days are extremely erratic, as il-
lustrated by the North Battleford data in Fig. 2. To
smooth the data without introducing artificiality, the
transitional probabilities from several similar curves
were averaged. Stations were grouped on the basis of
having nearly equal transitional probabilities at the

TaBLE 2. Values of fand « for North Battleford.

f «
1.0 1.114
0.8 1.147
0.6 1.207
0.4 1.345
0.2 2.056
0.1027 —_
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Fi1G. 4. Transitional probabilities (group 3 curves) for nine stations
in western Canada: Fort Nelson (FN), Smithers (SM), Cranbrook
(CB), Dawson (D), Fort Simpson (FSi), Prince Albert (PA ), Hudson
Bay (HB), North Battleford (NB), and Fort Smith (FSm).

shoulder of the curve. These stations also tended to be
located in the same general geographic areas and were
subject to the same large-scale flow patterns, similar
frequencies of blocking, and therefore, similar asymp-
totic transitional probabilities. Group 3 curves for nine
stations in western Canada are shown in Fig. 4. Their
values were averaged and smoothed using a five-point
binomial filter on all but the first three points (Fig. 5).
The upward trend in transitional probability is clearly
evident. Values along the curve can reasonably be es-
timated to about 40 days. The asymptotic value, al-
though obscure, was estimated as 0.925 based on this
curve and those of other western Canadian groups.

4. Results and discussion

The data for 41 Canadian stations were divided into
seven groups based on the transitional probability at
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F1G. 5. Average transitional probability
for the group 3 curves shown in Fig, 4.
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TABLE 3. Canadian stations grouped by the height
of the characteristic shoulder.

Location of station

Yellowknife, N.W.T.

Victoria, B.C.; Williams Lake, B.C.; Whitehorse, Y.T.
Fort Nelson, B.C.; Smithers, B.C.; Cranbrook, B.C.;
Dawson, Y.T.; Fort Simpson, N.W.T.; Prince Albert,
Sask.; Hudson Bay, Sask.; North Battleford, Sask.;
Fort Smith, N.-W.T.

Thompson Man.; Dauphin, Man.; Winnipeg, Man.;
Cold Lake, Alta.; Slave Lake, Alta.; Fort McMurray,
Alta.; Whitecourt, Alta.; The Pas, Man.; Rocky
Mountain House, Alta.

Kenora, Ont.; Sioux Lookout, Ont.; Armstrong, Ont.;
Earlton, Ont.; Thunder Bay, Ont.; Petawawa, Ont.;
Muskoka, Ont.; Timmins, Ont.; Bisset, Man.

6 Goose Bay, Nfld.; Gander, Nfld.; Val ¢'Or, Que,;
Roberval, Que.

7 Lansdowne House, Ont.; Kapuskasing, Ont.;
Maniwaki, Que.; Truro, N.S.; Fredericton, N.B.;
Charlo, N.B.

the shoulder of each curve. The locations of the groups
(Table 3) conform reasonably well with the pattern of
rainfall received in July. Yellowknife, by itself in group
1, with less than 50 mm of rainfall, is the driest station,
but not much drier than Victoria, Williams Lake, and
Whitehorse in group 2. Within the large area covered
by group 3, which receives July precipitation ranging
from 50 to 75 mm, is group 4, a strip of moister boreal
forest receiving more than 75 mm of rainfall. East of
Lake Winnipeg, group 5 stations receive July precipi-
tation ranging from 75 to 100 mm, except in the vi-
cinity of Toronto where it is drier. Group 6 and 7 sta-
tions are located in northern Ontario, Quebec, and the
Atlantic provinces, where precipitation is more reliable
and generally exceeds 100 mm. The distribution of
transitional probabilities in six of the eastern stations
appears to be represented best by a single Markov
chain. These are placed in group 7, although their geo-
graphical location suggests that they should belong in
the same group as the other eastern Canadian stations.

Analyses were performed on the average transitional
probability curve for each group. The values of 8, cho-
sen arbitrarily as the value of the transitional probability
on the fifth day; v, the asymptotic value chosen sub-

TABLE 4. Shoulder transitional probabilities 8, asymptotic values
v, and slope factors « — ¢ for the Canadian station groups.

Group ) % a—t
| 0.890 0.925 1.030
2 0.866 0.925 1.070
3 0.836 0.925 1.050
4 0.801 0.925 1.040
5 0.750 0.829 1.090
6 0.715 0.775 1.120
7 0.737 0.737 1.000
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jectively; and o — ¢, adjusted to provide the best eyeball
fit to the mean curves are shown in Table 4. Fitted
curves for each group are shown in Fig. 6.

The curves in Fig. 6 have several features in com-
mon. They start with a relatively low probability at k
= 0; rise rapidly after one dry day and slowly thereafter;
reach a leveling off point, termed a “shoulder”; and
then gradually rise to an assumed asymptotic value.
Several groups exhibit a spike at k = 1. This spike is
attributed to the unlikely occurrence of cyclonic storms
or low pressure troughs following each other during
the summer season with an intervening gap of a single
dry day. Only group 7 appears to fit a single Markov
chain model.

The probability of a dry day after rain, the transi-
tional probability at the shoulder, and the asymptotic
value of long sequences of dry days are all high in the
west and declining toward the east. Although all of the
curves become highly irregular when data become
scarce, there is no consistent evidence of a maximum
transitional probability followed by a decline as se-
quences become long. The transitional probabilities
appear to continue increasing toward some unknown,
but here estimated, asymptotic value.
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Data covering longer periods than the 28 years cov-
ered in this study might be expected to provide more
dependable estimates of transitional probabilities. Four
transitional probability graphs for long-term stations
are shown in Fig. 7. Victoria, British Columbia, with
90 years of records, exhibits a transitional probability
curve closer to that of Yellowknife (group 1) than that
of group 2 to which it originally belonged. The obser-
vations do not seriously conflict with an estimated
asymptotic value of 0.925. Scott, Saskatchewan, with
70 years of records, is fit closely by the group 3 curve
to about 15 years, differs considerably to about 25 years,
and then conforms reasonably well toward the end of
the curve. Winnipeg, Manitoba, with 110 years of re-
cords, is fit reasonably well by the group 4 curve to
about 35 years. Finally, Toronto, Ontario, with 140
years of records, is fit reasonably well by the group 5
curve, except near the shoulder where it demonstrates
a slightly higher probability of drought. Toronto is, in
fact, drier than the other Ontario stations of group 5
(Environment Canada 1986), which would explain the
higher frequency of short periods of drought. Toronto
is, however, under the same large-scale flow pattern as
the other Ontario stations and, therefore, should have
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FIG. 7. Transitional probabilities for four long-term stations: Victoria, British Columbia;
Scott, Saskatchewan; Winnipeg, Manitoba; and Toronto, Ontario.
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TABLE 5. Probability P of n or more dry days following a rain day and return period R (years) for sequences of n or more dry days.

n Group | Group 2 Group 3 Group 4 Group 5 Group 6 Group 7
1 P 0.745 0.687 0.684 0.658 0.656 0.594 0.735
R 0.056 0.049 0.041 0.036 0.031 0.028 0.025
2 p 0.649 0.568 0.547 0.517 0.497 0.428 0.540
R 0.064 0.059 0.052 0.046 0.041 0.039 0.034
3 P 0.562 0.475 0.448 0.409 0.369 0.297 0.397
R 0.074 0.071 0.063 0.058 0.055 0.056 0.046
4 P 0.494 0.405 0.370 0.324 0.276 0.208 0.292
R 0.084 0.083 0.076 0.073 0.073 0.080 0.063
5 P 0.440 0.350 0.308 0.258 0.207 0.148 0.215
R 0.094 0.096 0.092 0.091 0.098 0.113 0.086
6 P 0.391 0.302 0.258 0.207 0.156 0.106 0.158
R 0.106 0.111 0.110 0.114 0.129 0.158 0.117
7 P 0.349 0.263 0.216 0.167 0.119 0.076 0.116
R 0.119 0.128 0.131 0.142 0.170 0.219 0.159
8 P 0.311 0.229 0.183 0.135 0.091 0.056 0.085
R 0.133 0.147 0.155 0.175 0.222 0.302 0.216
9 P 0.278 0.201 0.155 0.110 0.070 0.041 0.063
R 0.149 0.168 0.183 0.215 0.287 0.411 0.294
10 P 0.248 0.177 0.132 0.090 0.055 0.030 0.046
R 0.167 0.191 0214 0.262 0.368 0.557 0.399
20 P 0.085 0.057 0.032 0.016 0.006 0.002 0.002
R 0.487 0.593 0.879 1.517 3.542 9.413 8.680
30 P 0.031 0.022 0.010 0.004 0.001 0.000 0.000
R 1.318 1.549 2.812 6.322 26.734 131.700 188.646
40 P 0.012 0.009 0.004 0.001 0.000 0.000 0.000
R 3.372 3.692 7.758 21.284 184.596 1731.223 4099.900
50 P 0.005 0.005 0.001 0.000 0.000 0.000 0.000
R 8.279 8.426 19.489 62.072 1230.601 >10 000 >10 000
60 P 0.002 0.002 0.001 0.000 0.000 0.000 0.000
R 19.714 18.817 46.355 164.572 8105.232 >10 000 >10 000

the same asymptotic value. The longest dry spell at
Toronto was 40 days. This corresponds well with the
return period of 184 years calculated for stations in
group 5 (Table 5) and would correspond even more
closely if the higher shoulder at Toronto was taken
into consideration.

Table 5 shows the probability that a sequence of dry
days will continue for at least n(n = k + 1) days, where
P(n) = P(k)p(k) and the return period R in years for
sequences of n or more dry days. The abrupt decrease
in the probability of long spells of dry weather when
crossing from the Prairie provinces into Ontario should
be noted. Long dry spells not only provide dry fuel but
also ample time for fire ignition, fire spread, and one
or more periods of strong wind. It is reasonable to ex-
pect that wildfire will be more difficult to control and
will burn much larger areas in western Canada than
in the east. This is clearly indicated by fire statistics
(Harrington 1982).

5. Conclusions

The probability of long periods of dry weather is
exceedingly difficult to predict because of the lack of
data, even for stations that have been in operation for
more than a century. A method is proposed in which
data from several stations with similar probability dis-

tributions are combined. From these data, the transi-
tional probability at the shoulder and at the asymptote
of the distribution are estimated. The observed curve
is approximated by an empirical function. An approx-
imate distribution of the frequency of long sequences
of dry days is computed from the fitted curve.

The method described throughout this paper is em-
pirical in nature, hanging loosely on a theoretical
framework. The theory calls for a bimodal distribution
of weather types leading to a double Markov process.
It is acknowledged that reality cannot be described so

- simply and that strict adherence to such a model must

fail. By modifying the model empirically, a fit to the
data has been obtained that yields reasonable estimates
of the probabilities and return periods of long sequences
of dry days.
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