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Abstract

Advances in sensor devices and harvesting technologies have enabled the de-

sign of small, inexpensive, and low-power energy harvesting wireless sensor

networks (EH-WSNs) that can be used to collect data and provide reliable

monitoring in many applications such as surveillance applications (e.g., in-

trusion detection). However, in such EH-WSNs, fluctuations in nodes stored

energy levels arise as a common aspect and present a challenge in achieving

prolonged network uptimes.

The thesis considers EH-WSNs where fluctuations in a node’s stored energy

affect primarily its transmission range, and studies a class of intrusion detec-

tion problems where an unauthorized traversal aims at crossing a geographical

area guarded by an EH-WSN. The main objective is to develop methodologies

to quantify the likelihood that an EH-WSN whose nodes are subject to energy

fluctuations can provide simultaneous detection and reporting of unauthorized

traversal along a given path to a sink node.

The thesis pursues this objective in the context of investigating a path

exposure reliability problem that calls for computing the probability that the

collaborative work of all nodes in a given EH-WSN succeeds in detecting and

reporting an intrusion along a given path. We show that the problem is com-

putationally intractable, and the thesis focuses on developing iteratively and

non-iteratively improvable algorithms that utilize special network structures,

called pathsets and cutsets, for driving lower and upper bounds on the exact

solutions. We conclude with some possible future research problems.
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Chapter 1

Introduction

The main theme of the thesis is on analyzing the ability of a wireless sen-

sor network (WSN) whose nodes utilize different means of energy harvesting

from the environment (e.g., solar power) to successfully achieve a well defined

task. In the introductory part of this chapter (Section 1.1), we motivate this

research direction, and give more details on the scope of the thesis. A general

mathematical model that can be used to formalize many problems of interest

associates a discrete probability state space with some elements (e.g., nodes

and/or links) of a given network, giving rise to the concept of a probabilis-

tic network model. Many important concepts and algorithms have evolved

in recent years on the use of probabilistic network models to analyze various

network reliability measures. To start, we review some of the needed concepts

in Section 1.2. In Section 1.4, we review some existing work for the class of

path exposure problems in WSNs. Section 1.5 outlines the main contributions

and structure of the thesis.

1.1 Introduction

The field of wireless sensor networks (WSNs) has been an active research and

development field in networking since around 1999 (see, e.g., the survey in [4]).

Typically, a WSN is composed of a dense deployment of low cost, low power

miniaturized devices (called sensor nodes) that integrate sensing, computa-

tion, and communication. WSNs continue to receive significant attention in

research and industry for providing solution platforms in may areas of appli-
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cations (e.g., environment monitoring, structural health monitoring, human

health monitoring, surveillance and target tracking, etc.). Early generations

of WSNs are designed to utilize non-rechargeable batteries. Research done on

such networks has resulted in a rich body of literature on various energy con-

servation approaches that collectively aim at reducing the energy consumed

by the whole network during operation. The objective is to maximize the

lifetime of a WSN while satisfying acceptable levels of performance. Among

such approaches, we mention the class of topological management (also called

efficient scheduling) algorithms surveyed in [54], the class of topology control

mechanisms surveyed in [43], the class of power-aware routing algorithms sur-

veyed in [53], and the class of power-aware MAC protocols surveyed in [55].

Surveys spanning different approaches appear in [5, 40].

More recently, with the advances in designing efficient solar panels, mi-

cro wind tribunes, and wireless charging technologies, more research work

has devoted attention to energy replenishment in terrestrial WSNs to achieve

increased network uptime. Research on energy replenishment in WSNs strad-

dles two broad directions. The first broad direction relies on harvesting energy

from the environment such as using solar power, vibrations, or thermoelectric

effects. The second broad direction for energy replenishment relies on using

wireless energy transmission.

The scope of the thesis work is on investigating some reliability aspects of

energy harvesting WSNs (EH-WSNs) deployed to detect events that occur in

a given geographical area. The goal is to be able to quantify the likelihood

that an EH-WSN with nodes subject to energy fluctuations can successfully

achieve its task. To this end, our research work aims at identifying useful EH-

WSN models, formalizing useful EH-WSN reliability problems, analyzing the

complexity of the resulting problems, and developing efficient algorithms to

solve the problems. The algorithms developed in the thesis aim at enabling a

network designer to differentiate among different candidate topologies, where

nodes in each network employ an energy management unit that controls the

maximum transmission range of a node. The differentiation relies on using a

reliability metric that captures that collective work of all nodes in the network

2



to achieve a given task. Network topologies are assumed to be given as input.

The developed algorithms, however, do not provide a direct means of control-

ling the nodes during daily operation. Thus, our research direction is similar

to the research work done in [19, 20, 47]. However, we focus here on the class

of EH-WSNs. In the next section, we review some of the needed concepts and

results in this direction.

1.2 Concepts in Network Reliability Analysis

In this section, we introduce some definitions and concepts used in our work.

The concepts have been used in the early work of [16] and [7] and the ref-

erences therein. For simplicity, we introduce the concepts in the context of a

fundamental graph problem, called the 2-terminal network reliability problem

(denoted Rel2) mentioned in [16] and [7]. We note that, although our main

problem that is dealt with in the thesis is different from the Rel2 problem,

many of the concepts introduced in this section are used in the thesis.

In the Rel2 problem, we are given an undirected graph G = (V,E, p) on

a set V of nodes and a set E of edges, with two distinguished terminal nodes

denoted s and t (see, e.g., Fig 1.2.1). Edges are assumed to operate/fail

independently of each other. We denote by p(e) (respectively, q(e) = 1− p(e))

the probability that edge e ∈ E operates (respectively, fails). Thus, we use a

2-state probability distribution to model the behaviour of each edge. The Rel2

problem asks for computing the probability that after an event of a random

failure, G is in a state where s can reach t by a path of operating edges.

The Rel2 problem is one of many problems on both wired and wireless

networks that have been analyzed using similar models where we use a discrete

state space to model the behaviour of each network element (e.g., node and/or

edge). We now introduce the following concepts.

1.2.1 Probabilistic Graphs, Pathsets, and Cutsets

The graph G = (V,E) with the probabilities {p(e) : e ∈ E} is called a proba-

bilistic graph, denoted G = (V,E, p). The Rel2 problem on G = (V,E, p) with

3



Figure 1.2.1: An example of the 2-terminal network reliability problem

the two distinguished terminals s and t is denoted Rel2(G, s, t). When each

edge in E is assigned a state in {operate, fail}, we obtain a network state of G.

We use (e, se) to denote the event that edge e is in state se ∈ {operate, fail}.

A network state S can then be written as S = {(e, se) : e ∈ E}. Likewise, we

use p(e, se) to denote the probability that edge e is in state se. Thus, when

edges operate independently of each other, the probability that G is in network

state S is Pr(S) =
∏

(e,se)∈S
p(e, se). We also need the following definitions.

• A network configuration C is a partial network state where some

edges (but not necessary all) are assigned a state. The remaining unas-

signed edges are free in C. For the Rel2 problem, a network state or

configuration is operating if s can reach t in S. Otherwise, C is a failed

configuration. When edges operate independently of each other, we get

Pr[C occurs] =
∏

(e,se)∈C
p(e, se).

• A pathset is an operating network configuration. A minpath is minimal

pathset. For example, in Figure 1.2.1, S = {(e4, operate), (e3, operate),

(e5, operate)} is a pathset (in fact, S is a minpath) of the Rel2 problem.

• A cutset is a failed configuration even if all unassigned (free) elements

operate. A mincut is minimal cutset. For example, in Figure 1.2.1,

S = {(e1, fail), (e4, fail)} is a cutset (in fact, a mincut) of the Rel2

problem.

An Exact Algorithm: Given an instance (G, s, t) of the Rel2 problem,

an exact algorithm may proceed by generating the set OP (G) of all dis-

tinct operating network states (i.e., pathsets of size |E| each), and computing

4



Rel2(G, s, t) =
∑

(Pr(S) : S ∈ OP (G)). The worst case running time of such

complete state enumeration algorithm, however, is O(2|E|) time.

1.2.2 Computational Complexity

In [16], all formulated reliability problems (a total of 6 problems) have been

shown to be #P-complete on arbitrary graphs even in cases of equal operating

probabilities. The classes of #P-hard and #P-complete have been introduced

in [52] to capture the computational complexity of counting problems (as op-

posed to NP-hard and NP-complete decision problems).

1.2.3 Algorithmic Approaches

To cope with the apparent computational intractability of many known relia-

bility problems on arbitrary networks, researchers have considered a number of

approaches to obtain useful algorithms (see, e.g., [7, 16]). Of these approaches,

we mention the following.

1. Exact algorithms on special classes of graphs:

WSNs that are deployed deterministically may have simple graph struc-

tures (e.g., trees) that allow a reliability problem to be solved in poly-

nomial time. Examples of work in this direction includes work utilizing

interval graphs [2], partial k-trees (for any fixed k ≥ 1) [1], and grid

networks [18].

2. Obtaining bounds from edge-disjoint pathsets and cutsets:

Given a set of edge-disjoint pathsets {p1, p2, ..., pr}, a lower bound on

the network reliability can be computed as in formula (1.2.1):

Pr[at least one pathset pi occurs] = 1−
r∏

i=1

(1− Pr(pi)) (1.2.1)

Likewise, given a set of edge-disjoint cutsets {c1, c2, ..., cr}, we can obtain

an upper bound as in formula (4.3.2):

Pr[None of the cutsets occur] =
r∏

i=1

(1− Pr(ci)) (1.2.2)
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3. Obtaining bounds from consecutive pathsets and cutsets:

In [44, 45], the author has introduced the concept of consecutive sets as

follows: a sequence Q∗ = (q1, q2, ...qr) of r sets satisfies the consecutive

set property if and only if for every element x that belongs to sets

qi, qj, i ≤ j , x also occurs in every set qk, where i < k < j. In [44],

the author has shown an efficient algorithm to compute an UB from a

given set of consecutive cutsets. Later, in [50], the authors have shown

an efficient algorithm to compute a LB from a given set of consecutive

pathsets. Note that, by definition, any edge-disjoint set satisfies the

consecutive sets property. Thus LBs and UBs from consecutive sets can

achieve strict improvements over bounds from edge-disjoint sets.

4. Obtaining bounds from statistically-disjoint pathsets and cut-

sets:

The above bounding approaches using edge-disjoint and consecutive path-

sets (or cutsets) are called non-iteratively improvable approaches. A non-

iteratively improvable approach produces a single LB or UB from a given

set of edge-disjoint or consecutive configurations (pathsets or cutsets).

In contrast, the bounds described here are iteratively improvable. That

is, the obtained bounds improve as we allow the algorithm to perform

more iterations. The idea is to generate a set of configurations (pathsets

or cutsets) whose occurrence probability can be added to each other.

In more detail, we call two configurations Ci and Cj statistically-disjoint

(s-disjoint, for short) if they have at least one common node say, x, that

is assigned to two different states in Ci and Cj. Thus, Pr(Ci) + Pr(Cj)

is the probability that at least one of Ci and Cj occurs. Consequently,

if {p1, p2, ..., pr} is a set of pairwise s-disjoint pathsets then a LB can be

computed using formula (4.3.1):

LB =
r∑

i=1

Pr(pi) (1.2.3)

Likewise, if {c1, c2, ..., cr} is a set of pairwise s-disjoint cutsets then an
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UB can be computed using formula (1.2.4):

UB = 1−
r∑

i=1

Pr(ci) (1.2.4)

To utilize this approach, one needs an algorithm that can systemati-

cally generate a maximal set of pairwise s-disjoint configurations in the

network. A framework called factoring is discussed in [16] (and the ref-

erences therein). In [20] the authors adapt the framework to generate

s-disjoint configurations. The factoring method generates s-disjoint con-

figurations iteratively in a tree-like manner starting from the empty con-

figuration as the root of the tree. At each iteration, the method selects

a configuration C that is perceived to be most promising (has highest

occurrence probability). Then the configuration C is used to generate

new pairwise s-disjoint configurations that are added to the tree. Ad-

ditional steps can be added to the factoring method in order to obtain

a set of s-disjoint pathsets (or cutsets) and compute a LB (respectively,

UB) from the generated s-disjoint pathsets (respectively, cutsets). In the

additional steps to compute a LB, in each iteration the selected config-

uration C is tested for extensibility to a pathset. If the configuration

C is not extensible, it is labelled as a bad configuration. Else, if it is

extensible then it is processed by (a) storing the obtained pathset in the

tree, and (b) generating child configurations that are s-disjoint from all

other configurations in the tree.

1.3 Node Model

We assume a standard sensor node (also called sensor mote) equipped with

one (or more) sensing device, a data processing unit, a wireless transmit-

ter/receiver device, an energy storage unit (with, e.g., a rechargeable battery

and/or supercapacitor), and an energy management unit (EMU) that controls

the activity of the node. We also assume that the network topology (a di-

rected graph G = (V,E) on a set of nodes V , and a set of directed links E)

is given as input. So, an arc (x, y) ∈ E if x’s transmission power is sufficient
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to satisfy the required signal-to-noise-plus-interference ratio threshold at the

receiving node y. In addition, if there exists a directed (x, y)-Path in some

state of the network G, then it is assumed that the routing algorithm used by

the network is able to detect and use such a path. Throughout the thesis, we

assume that the amount of energy left in a node’s energy storage system (e.g.,

a rechargeable battery and/or supercapacitor) can be estimated. Such amount

of energy is also referred to as the state-of-charge (SOC). Currently there is a

growing body of research on practical and accurate methods of estimating the

state-of-charge of lithium-ion batteries and supercapacitors (c.f., [13, 41, 42,

56]).

1.4 Work on WSNs Reliability for Path Ex-

posure Problem

The path exposure problem is a well-known problem in conventional WSNs.

The problem asks for computing the probability of detecting a moving target

along a given path over a period of time through a WSN field (see, e.g., [15,

32]). In [15], the authors analyze target detection probability using different

data fusion models, and present a method to minimize network deployment

cost while achieving desired exposure levels. In [32], the authors present a

model that utilizes energy sensed from a moving target over a period of time.

The model is then used to find a path of minimal exposure using a short-

est path algorithm. Subsequently, authors in [28] formalize a minimal path

exposure problem for WSNs employing directional communication. They de-

velop a directional sensing model used to define two weighted graphs that are

used to reduce the minimal path exposure problem into two discrete geome-

try problems. Their results include developing two approximation algorithms

to solve the problem. Also the work of [20], where the authors formalize a

path exposure problem, called EXPO, on conventional WSNs for surveillance

applications where nodes are subject to communication and/or sensing failure.

In contrast to previous work, the thesis considers a new variant of path

exposure problem in EH-WSNs where at any instant different nodes have dif-
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ferent transmission ranges based on their energy levels.

1.5 Thesis Contributions and Organization

The main theme of the thesis is on quantifying the likelihood that an EH-WSN

whose nodes are subject to energy fluctuations can provide simultaneous de-

tection and reporting of unauthorized traversal along a given path. The thesis

pursues this objective in the context of investigating a path exposure reliabil-

ity problem under range uncertainty that calls for computing the probability

that the collaborative work of the all nodes in EH-WSN succeeds in detecting

and reporting an intrusion along a given path. Here, we summarize the main

contributions of the thesis as follows.

1. In Chapter 3, we formulate a path exposure with range uncertainty prob-

lem, denoted EXPO-RU, where fluctuation in nodes energy levels over

time affects mainly their transmission ranges, and nodes can fail inde-

pendently of each other. We show that the EXPO-RU is #P-hard. In

addition, we formulate a problem called the extension to pathset prob-

lem, denoted E2P, for the EXPO-RU problem. We propose an efficient

heuristic algorithm to solve the E2P problem and use the devised al-

gorithm to design both iteratively and non-iteratively improvable LB

algorithms for the EXPO-RU problem.

2. In Chapter 4, we extend our work in Chapter 3 by formulating an exten-

sion to cutset problem, denoted E2C, for the EXPO-RU problem. We

propose two efficient heuristic algorithms to solve the E2C problem, and

use the devised algorithms to design both iteratively and non-iteratively

improvable UB algorithms for the EXPO-RU problem.

3. Chapter 5 considers two general types of reliability problems on proba-

bilistic graphs where each node can be independently in one of possible

node state (such as the EXPO-RU problem). Each type has two prob-

lems defined on pathsets and cutsets, respectively. In the cutsets version

of the first problem type, we are given a sequence Q of network cutsets,
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and we want to compute an UB on the exact solution by computing

the probability that no cutset in Q occurs. The pathset version is de-

fined similarly to compute a LB. We develop a dynamic programming

approach to compute such probability, assuming that node state satisfy

a coherence property. In general, the running time of the devised ap-

proach grows exponentially with the size of the input set Q. We show,

however, that when Q is a disjoint set of cutsets, or a consecutive set,

the running time is comparable to the running time of an algorithm that

is aware that the input has this property.

In the cutset version of the second problem type, we are given a disjoint

set Q of cutsets, and we seek to extend it to a set of consecutive cutsets

that exploits the multi-state node model.

4. In Chapter 6, we consider a variant of EXPO-RU problem where nodes

are equipped with directional communication devices, denoted

DirEXPO-RU. The DirEXPO-RU problem is to quantify the ability of

a network to detect and report traversal along a given path. A problem

that arises in managing the network resources to maximize this relia-

bility measure is to adjust the transmission beam width of each node,

where nodes beam centers are given as input. We formalize a half-width

angle selection problem, denoted HWAS, and propose two configuration

approaches to adjust the transmission beam width of each node in the

network. The proposed approaches are presented in a unified way. The

obtained numerical results compare the obtained results with omnidirec-

tional transmissions.

Table 1.1 summarizes the main contributions of the thesis. As mention

above, non-iteratively improvable LB or UB algorithms refer to a class of

bounding algorithms that produce a single bound on each input. Such al-

gorithms are typically fast, but they compute just one value for each input.

In contrast, iteratively improvable LB or UB algorithms can achieve exact

solutions if allowed to execute until termination. The results have been pub-

lished in [8–12]. Reference [12] has received the Best Student Paper Aware in
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Table 1.1: A summary of thesis contributions

Chapter Problem Subproblem
Obtained results

Non-iteratively

improvable

algorithms

Iteratively

improvable

algorithms

LB UB LB UB

3 [8]

EXPO-RU

E2P ✓ ✓

4 [10, 11]
E2C ✓ ✓

5 [9, 10] CS extend ✓ ✓

6 [12] DirEXPO-RU HWAS Configuring node’s beam width

SENSORNETS 2022.

1.6 Concluding Remarks

In this chapter, we have motivated research on developing efficient algorithms

to assess the reliability of EH-WSNs. We have also reviewed some fundamen-

tal concepts and algorithmic approaches useful in obtaining lower and upper

bounds on exact solutions. The, we have discussed the main contributions of

the thesis. In the next chapter, we review some recent research work in the

area of EH-WSNs.
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Chapter 2

Literature Review on EH-WSNs

The scope of the thesis work is on modelling and analyzing the reliability of

WSNs that utilize energy replenishment in their operation, with a particular

emphasis on the class of energy harvesting WSNs (EH-WSNs). Most of the

networking research work done to date on EH-WSNs concerns the link layer

(MAC protocols), the network layer (routing), and cross-layer energy efficiency

protocols. Understanding the work done on routing algorithms, however, is

important for understanding network failure modes, and contributes to the

ability of developing accurate network models, node state models, and relia-

bility evaluation measures. To this end, we review some basic concepts in the

design of EH-WSNs in Section 2.1, followed by a review of some qualitative

aspects of some recent EH-WSN routing algorithms in section 2.2, and some

mathematical analysis aspects of these routing algorithms in Section 2.3.

2.1 Introduction

As mentioned in Chapter 1, WSNs that utilize energy replenishment has at-

tracted much research over more than one decade now (see, e.g., the surveys in

[3, 51]). In this section, we give a brief overview on the design and operation

of such networks.

Energy Sources: In [3], the authors classify the sources of harvestable energy

into 3 broad classes:

• Radiant sources such as sunlight and radio frequency (RF)
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• Mechanical sources such as vibrations, wind, human body motion, and

water flow

• Thermal sources that utilize temperature difference between two con-

ducting surfaces where the amount of generated energy depends on the

temperature gradient between the surfaces

Table 2.1 (due to [3]) summarizes some harvesting technologies and power

densities associated with the above sources.

Table 2.1: Energy sources and their corresponding power densities (due to [3])

Energy Source Types Harvesting Method Power Density

Radiant

solar
solar cell (indoor) 10µW/cm2

solar cell (outdoor) 15mW/cm2

RF
electromagnetic conversion 0.1µW/cm2 (GSM)

electromagnetic conversion 0.01µW/cm2 (WiFi)

Mechanical

wind flow electromagnetic conversion 16.2µW/cm3

motion piezoelectric 330µW/cm3

Thermal body heat thermoelectric 40µW/cm2

Of the above energy sources, outdoor solar energy (with power density of

15mW/cm2) has been shown to provide adequate source to power miniaturized

sensor nodes. Solar harvesting technology has allowed the construction of

real life EH-WSN prototypes such as the Helliomote prototype of [39], and

the Prometheus prototype of [25]. Solar energy and wind energy harvesting

are subject to weather conditions. Early work on EH-WSNs has explored

the use of weather forecasts to improve a network’s ability to predict the

amount of energy that can be harvested during relatively long time (see, e.g.,

[46]). In [46], suitable energy models have been developed for the specific

solar panel and wind tribune used in the conducted empirical study. Wireless

energy transmission has also received extensive attention for powering WSNs.

Early real life prototypes for wireless energy transmission include the work

of [37] where the authors have built a proof-of-concept prototype composed

of a mobile charger (MC), a mobile robot carrying a wireless power charger,

and a network of sensor nodes. Wireless charging at 45mW when the charger
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is located 10cm away from a sensor is reported. Surveys on wireless energy

transmissions appear in [29, 30, 48].

Energy Harvesting architectures: In [51], the authors note the following

two types of architectures for using the harvested energy:

a) Harvest-use architecture: Here, the harvested energy is used directly to

supply the sensor node with the required energy. This architecture does

not require an extra unit to store harvested energy but the energy gener-

ated by the harvester has to be continuously above the energy required

to operate the sensor node, otherwise, the node will shut down.

b) Harvest-store-use architecture: In such an architecture, an energy stor-

age unit (battery and/or super-capacitor) is used to power a sensor node

when either a harvesting opportunity does not exist (i.e., during the

night for solar energy), or a sensor node needs more energy to perform

more functionality. The energy storage unit is particularly useful when

the harvested energy rate is more than the required energy by a sensor

node.

(a) Harvest-Use (b) Harvest-Store-Use

Figure 2.1.1: Types of energy harvesting architectures (adapted from [51])

The energy storage unit can be implemented using either a single storage device

(primary storage), or a double storage device (primary and secondary), where

the secondary storage device may work as a backup for situations when the

primary storage is exhausted. The energy storage device can be a rechargeable

battery and/or super-capacitor. A rechargeable battery (RB) has adequate

energy storage capability but limited cycle lifetime. A super-capacitor (SC),
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on the other hand, has lower energy storage capability but it can accommodate

a potentially larger number of charging cycles.

2.2 Overview of some EH-WSN Routing Al-

gorithms

In this section, we give an overview of some EH-WSN routing protocols and

algorithms. The algorithms below can be roughly classified as not using clus-

tering, using clustering, and routing in networks for special application envi-

ronments. We note that although the presented algorithms differ in their sys-

tem model, model assumptions, route selection methods, energy management,

and performance measures, their design share a common principle which is

aiming to maintain energy neutrality (e.g., balancing harvested and consumed

energy) over certain time intervals in order to achieve good performance.

Table 2.2 highlights some features of the surveyed papers (we use letters C

and J to denote conference and journal publications, respectively).

Table 2.2: Summary of selected energy harvesting aware routing protocols for
EH-WSNs

Reference Methodology Synopsis

[24] (C 2010) Simulation only The paper presents an EH-WSN
routing algorithm based on combin-
ing hop count distances and func-
tions of node energies into “energy
distance” measure used in distance
vector routing framework.

[21] (C 2014) Simulation only
(using Matlab)

The paper proposes an EH-WSN
routing algorithm based on modi-
fying AODV routing algorithm for
MANETs by replacing the hop
count field in RREQ/RREP mes-
sages with “energy count” field.
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[33] (J 2011) Simulation only
(using Matlab)

The paper presents a routing cost
metric for EH-WSNs utilizing both
rechargeable batteries (RBs) and
super-capacitors (SCs). The design
favours routes with more SC energy
and harvesting rate.

[35] (C 2013) Simulation only
(using Omnet++)

The work presents an energy neu-
tral routing algorithm that incor-
porates admission control of flows
in a network that uses the Directed
Diffusion paradigm [23].

[31] (J 2014) Simulation only
(using NS-2)

The authors formulate a route se-
lection problem to minimize the
amount of wasted harvested energy
when some of the rechargeable bat-
teries in a network become fully
charged.

[34] (C 2013)
[36] (J 2015)

Convex optimization
+ simulation (using
MatLab)

The authors present an energy
neutral clustering algorithm where
cluster heads are assumed to be
able to reach the sink node.

[27] (C 2015) LP optimization +
data analysis

The work discusses routing in
WSNs embedded in exterior walls
of buildings in Northern-climate ar-
eas and using harvested energy.

[6] (C 2015) Simulation only
(using Opnet)

The paper discusses the use of
EH-WSNs in e-Health applica-
tions where traffic is categorized
into compressed medical images,
long data steams, and short data
steams.

Routing Without Clustering: In [24], the authors present a distributed

and adaptive routing algorithm for EH-WSNs with a single sink node. The

algorithm aims at dynamically finding sustainable routes to the sink. A route

is sustainable if it has sufficient energy to work for sometime. The work as-

sumes that the stored energy in a node is measurable. To calculate sustainable

routes, information about each available node energy (converted to a quan-

tity called local distance penalty), and shortest hop count to sink (viewed as a
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shortest structural distance) are exchanged between nodes. The local distance

penalty is a real number derived from a node’s stored energy such that low

(respectively, high) node energy maps to high (respectively, low) real number.

The algorithm adds hop counts to distance penalties to obtain a distance met-

ric used in shortest path calculations. Shortest path calculations using the

new distance metric proceeds as in Distance Vector (DV) routing. Events that

trigger a node to send updates to neighbours include changes in node’s local

energy, and receiving updates from neighbours. Using simulation, the authors

compare their algorithm, called DEHAR, with a simplified version of a routing

algorithm utilizing the Directed Diffusion (DD) paradigm [23].

In [21], the authors modify the well-known Ad-hoc On-Demand Distance

Vector (AODV) routing algorithm [38] for routing in Mobile Ad-hoc Net-

works (MANETs). The resulting energy harvesting-aware algorithm is denoted

AODV-EHA. The prime modification is the use of an “energy count” quantity

in place of “hop count” in the header of route request (RREQ) and route reply

(RREP) messages. The energy count quantity is intended to be a prediction

of the average transmission energy to successfully deliver a data packet from

a source to a destination node. This average transmission energy takes into

account the average number of transmission retries, the power consumed in

processing and transmitting a packet, and the energy harvested during trans-

mission. Using simulation, the authors compare their AODV-EHA algorithm

with the AODV algorithm, and the DEHAR algorithm of [24].

In [33], the author present a routing cost metric for EH-WSNs where each

node has a hybrid energy storage system (HESS) that combines a super-

capacitor (SC), and a rechargeable battery (RB). The SC has low energy

storage capacity but can accommodate frequent charge cycles. On the other

hand, the RB has a higher energy storage capacity but limited charge cycles.

The cost metric presented in [33] (discussed in more detail in Section A.1)

assigns different weights to the residual energy in both units whilst favouring

routes with more SC energy and harvesting rates. To prolong the battery life-

time, similar to the work in [26], the constructed cost metric assumes that the

power management in each node directs the harvested energy to the RB when
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its residual energy falls below a threshold value of the product of (1 − D) ×

the RB maximum capacity. Otherwise, the SC is charged. Here, D denotes

the RB’s designed depth-of-discharge (DoD), i.e., the maximum recommended

fraction of battery capacity that can be withdrawn in one discharge cycle to

maximize the battery’s lifetime. The constructed cost metric is used to eval-

uate routes through different paths.

In [35], the authors present an energy neutral WSN routing algorithm

(called ENR). The ENR algorithm is based on the Directed Diffusion (DD)

paradigm [23]. We recall that the general DD paradigm allows a WSN to

support many different task types. Each task description is named by a list

of attribute-value pairs. For example, a vehicle-tracking task may use a type

attribute for a mobile object to be detected, a duration for reporting matching

events, and an interval specifying how frequently the matching events would

be reported. A named task description constitutes an interest that is injected

into the network from a sink node as a result of processing a query to the net-

work. The sink initially and repeatedly diffuses an interest for exploring the

possibility of obtaining matching replies. Subsequently, the sink may reinforce

one particular neighbour in order to collect more data. The dissemination of

an interest causes some participating nodes to set up a gradient (data rate and

directions to forward events) at some participating nodes. The work in [35],

implements a simplified version of the DD paradigm, adding an admission con-

trol step (to achieve energy neutrality) before a node can reinforce a flow that

serves a particular interest. The admission control step utilizes a prediction

of the harvested energy at each node, the duration and interval parameters of

a new flow, and the contents of a node’s interest cache that describes other

flows the node serves.

In [31], the authors consider wastage of harvested energy when a node’s

finite-capacity battery reaches its limit (and the battery can not be over-

charged). The authors formalize a route selection problem that aims at re-

ducing network wide overcharging-wastage in each time slot of the network’s

operation. They present energy harvesting wastage-aware algorithm (called,

EHWA) that selects a route by combining the cost associate with energy con-
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sumption due to packet transmission and energy wastage due to finite-capacity

battery being fully charged. Among other results, the authors show that a

route that minimizes the overcharge-wastage is a route that maximizes the to-

tal network resultant energy at the end of each time slot. More mathematical

details about this work is presented in Section A.7

Routing with Clustering: In [34, 36], the authors present an energy neu-

tral clustering algorithm for EH-WSNs. The devised algorithm follows closely

many concepts and ideas of the well-known LEACH (Low Energy Adaptive

Clustering Hierarchy) algorithm [22]. We recall that LEACH divides time into

rounds. Each round consists of two phases: a set-up phase where the network

is partitioned into clusters, and a steady-state phase where each cluster head

(CH) collects data from nodes in its cluster. LEACH assumes that each CH has

enough power to reach the base station. LEACH estimates the optimal number

of clusters to operate in each round, and uses a randomized process to select

(on average) this optimal number of cluster heads. The energy neutral cluster

(ENC) algorithm devised in [34, 36] also divides time into rounds (called time

slots), and the algorithm partitions the network into a user-specified number

of clusters (denoted K) during the first part of a time slot. The second part

of each time slot is used to collect data in each cluster. Each round starts by

selecting a cluster head group (CHG) that serves during the round. The size

of the CHG is sufficient to ensure energy neutrality operation during a time

slot. Scheduling the work of nodes in a CHG takes each node’s energy into

consideration. The authors formalize a convex optimization problem to find

the optimal number of clusters. More mathematical details about this work

are presented in Sections A.3 to A.6.

Routing for Special Application Environments: In [27], the authors

consider the deployment of WSNs embedded in walls of buildings to collect

information (such as humidity measurements sensed within walls) and send

it to a sink node. Buildings in the work are assumed to exist in Northern

climate areas where during colder months the temperature difference between

indoors and outdoors provides opportunity to generate electricity from ther-

mal effects. Temperature data collected over two years is used to estimate
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the amount of energy generated every period (e.g., day or week) during each

year. The work formulates two routing problems where in each problem traffic

generated by each node is routed to a sink node. The formulation assumes the

use of splittable flows (where several non-disjoint paths can serve the traffic

stream generated by each node). Each routing problem is formulated by giv-

ing a corresponding linear program (LP). The first routing problem aims at

maximizing the total flow (from all nodes) to the sink node. The formulation

considers the available energy at each node. To achieve fairness in serving all

nodes, the second routing problem aims at maximizing a single flow value that

can be supported between each node in the network and the sink node. The

default way of using the constructed LPs is to repeatedly solve the optimiza-

tion problem(s) by a central node (e.g., the sink node), and then inform other

nodes with routing decisions. In [27], the authors discuss a table driven method

(called a seasonal routing algorithm) where routing can be done by “seasonal”

adjustments done by each node independently without requiring solving an

optimization problem at each step during the lifetime of the network.

In [6], the authors discuss “Smart Energy Harvesting Routing” protocol

(called, SEHR) for data handling in WSN based e-Health systems (WSNEH).

Application data is categorized into three types:

• Compressed high resolution medical images (each image is about 6 Mbits)

• Big sized data (configured to 4.5 Mbits per stream), and

• Regular sized data (configured to 2 Kbits per stream)

Each data type has additional requirements on delivery time and route stability

(however, such aspects are not well detailed in the paper). The authors devise

a route selection algorithm where the destination node of a flow evaluates a

function (called the Q factor) for each possible route. The types of traffic

flows passing through each node on a route, and the energy state of the node

are considered by the function. The authors experiment with both RF energy

harvesting, and solar energy harvesting.
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2.3 Overview of some Analytical Models

Please refer to Appendix A for the material in this section (if desired).

2.4 Concluding Remarks

In this chapter, we have briefly discussed energy harvesting sources, and en-

ergy harvesting architectures used in EH-WSNs. We have also provided an

overview of some recent EH-WSN routing algorithms and we ended the chap-

ter with some mathematical analysis for selected routing algorithms. In the

next chapter, we formalize a path exposure reliability problem where nodes

utilize energy replenishment.
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Chapter 3

Path Exposure with Range
Uncertainty

Many WSNs deployed in outdoor areas are intended to detect application

specific events. Such outdoor networks are well suited to operate on energy

harvested from the ambient environment. In surveillance applications, de-

tecting a traversal across a geographic area guarded by a WSN is one of the

early studied WSN applications. In particular, early work in this direction

has considered the notion of path exposure. As mentioned in Section 1.4, path

exposure is a measure of how well an object moving on an arbitrary path can

be observed by the sensor network over a period of time.

In this chapter, we consider EH-WSNs, where fluctuations in a node’s

energy levels is assumed to cause the node to change its transmission range.

In Section 3.1, we formalize a new path exposure reliability problem called

path exposure with range uncertainty, denoted EXPO-RU, where we want to

quantify the ability of an EH-WSN to jointly detect and report a traversal

along a given path across an EH-WSN. Then, we show that the EXPO-RU

is #P-hard. In Section 3.2, we formulate an extension to pathset problem,

denoted E2P, for the EXPO-RU problem. We propose an efficient heuristic

algorithm to solve the E2P problem, and the devised algorithm is used to

design both iteratively and non-iteratively improvable LB algorithms for the

EXPO-RU problem.

Some of the results in this chapter appear in [8].
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3.1 Problem Formulation

In this section, we present the network model used to formalize the EXPO-RU

problem, define the EXPO-RU problem, and show that the problem is #P-

hard.

3.1.1 Network Model

During an interval of time of interest, a node x in an energy replenishment

WSN can operate at different power levels. We adopt a model that uses in its

basic form a simple 3-state node model where the analysis designates one range

of power levels as a full power range, and a second disjoint range as being a

reduced power range. A node lacking power in these ranges is considered failed.

This 3-state node model, and our devised algorithms, can be extended to deal

with a more fine-grained model that employs more power states at the expense

of requiring possibly higher algorithmic time and space complexities.

For any node x, the above events occur with probabilities denoted pfull(x),

pred(x), and pfail(x) (pfail(x) = 1− pfull(x)− pred(x)). Loss of a node’s power

affects its communication, sensing, and computing abilities. Since wireless

transmission is the most power demanding activity in many WSNs, we as-

sume that a node operating in a reduced power state incurs a reduction of its

transmission range. Different nodes in the network may have different state

probability distributions, and different transmission ranges when they operate

in these states.

The overall WSN is modelled by a probabilistic directed graph G = (V ∪

{s}, E) where s is a distinguished sink node, and E is a set of arcs (di-

rected edges). We assume that s is not subject to power fluctuations, and

it does not perform sensing. A non-sink node x can be in a state sx ∈

{full, reduced, fail}, during an interval of time when the network is analyzed.

Estimating Node State Probabilities: One way to estimate the needed

node state probabilities ps(x) for node x and state s is to use Monte Carlo

simulation. We divide time into fixed length slots, and simulate the network
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under a specified traffic load for a sufficiently long time. We then take the

fraction of the number of time slots when x is in state s over the total number

of simulation slots as an estimate of ps(x).

3.1.2 Problem Definition

As mentioned in Section 1.4, the path exposure problem is well studied in the

literature (see, e.g., [15, 32]). The problem asks for computing the probability

of detecting a moving target on a given path over a period of time through

a WSN field. Let P be an intrusion path across the WSN that we need to

monitor for unauthorized intrusion (see, e.g., Figure 3.2.1). Assume the nodes

that can sense the path P (called sensing nodes) are known from the geometric

layout of the network. Also, assume that in order to detect an intrusion event,

we need at least kreq sensing nodes to be able to reach the sink and report the

detection successfully. Therefore, our problem can be defined as follows.

Definition (the EXPO-RU Problem): Given a WSN that is

modelled by a probabilistic graph G = (V
⋃
{s}, E) where s is the

sink node, an integer kreq ≥ 1, a possible intrusion path P where

nodes that can sense P are known, and each node x ∈ V works

either in a full or reduced power states with probabilities pfull(x)

and pred(x), respectively, where pfull(x)+pred(x) ≤ 1, compute the

probability Expo(G, p,P, kreq) that P can be jointly detected by

at least kreq sensing nodes that can reach the sink. ■

To simplify notation, when no confusion arises, we sometimes abbreviate

Expo(G, p,P, kreq) as Expo(G, p, kreq) or Expo(G, kreq).

3.1.3 Complexity Analysis

Theorem 3.1.1 below shows that the EXPO-RU problem is #P-hard. The class

#P-hard (or, #P-complete) problems captures the computational complexity

of counting problems. In [20], the authors tackle a different version of the

path exposure problem, called the EXPO problem, defined on conventional

WSNs, in which each node x can successfully forward packets to its neighbours
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with probability prelay(x), and sense a target with probability psense(x). The

authors, in [20], show that a restricted version of the EXPO problem is #P-

hard. In the restricted version of the EXPO problem the input is a partial grid

network, only one node x has a non-zero probability of sensing the intruder

path P, and kreq = 1. Theorem 3.1.1 below uses this restricted version of the

EXPO problem to show the complexity of the EXPO-RU problem.

Theorem 3.1.1 EXPO-RU is #P-hard.

Proof. We reduce the restricted version of the EXPO problem to the EXPO-RU

problem in polynomial time as follows. Let (G,P, kreq, prelay(.), psense(.)) be an

instance of the restricted EXPO problem (presented in [20]) where G is a grid

network, P is an intrusion path that can be monitored by one node x where

psense(x) ̸= 0 (other nodes have psense(x) = 0).

We transform in polynomial time the above restricted instance of EXPO

problem to an instance of our EXPO-RU problem. The transformation cre-

ates an instance (G′,P′, k′
req, pfull(x), pred(x)) of the EXPO-RU problem where

G′, P′, and k′
req correspond to G, P, and kreq in the above instance of the

EXPO problem, respectively. In the EXPO-RU problem, set pfull(x) = 0, and

pred(x) = prelay(x) for each node x. This mapping from the restricted EXPO

problem to our EXPO-RU problem preserves the value of the solution and

hence proves the theorem. ■

3.2 The E2P Problem for EXPO-RU

In this section, we present concepts needed to design our LB algorithms for the

EXPO-RU problem, and formalize a pathset extensibility problem, called the

Extension to Pathset (E2P) problem. Then, we present a heuristic algorithm

to solve the E2P problem.

3.2.1 Concepts Needed for Algorithms

Network States. When each node in V is assigned one of its possible states,

we obtain a network state of G (a total of 3|V | states exist). Using (x, sx) to

25



denote the event that node x is in state sx (with probability, denoted psx(x)

or p(x, sx)), a network wide state S is specified by a set S = {(x, sx) : x ∈

V, sx ∈ {full, reduced, fail}} of node-state pairs, where |S| = |V |.

We assume that nodes can be in different states independently of each

other. Thus, network state S arises with probability Pr(S) =
∏

(x,sx)∈S
p(x, sx).

Network Configurations. A network configuration C is a obtained by as-

signing a state to each node in a subset of V . Using the above set notation to

describe C, we then have |C| ≤ |V | (an empty set is a valid network configu-

ration).

Pathset. A pathset is an operating network configuration that has at least

kreq sensing nodes that can reach the sink and monitor the given intrusion

path P. A minpath is a minimal pathset.

3

7 6 5

41 2

intrusion path P

sink

Figure 3.2.1: An instance of the EXPO-RU problem

Example 3.2.1 Fig. 3.2.1 illustrates an instance of the EXPO-RU problem

where dashed (solid) lines represent reachability by full (respectively, reduced)

transmissions. To avoid cluttering the diagram, two arcs (x, y) and (y, x) are

drawn as a double-arrowed line connecting x and y. In the example, we assume

that if node x can reach node y while x in some state (either full or reduced)

then y can also reach x while y is in the same state. Nodes that can sense P

appear as dotted circles. C = {(4, full), (6, reduced)} is a configuration that

leaves the remaining five non-sink nodes free. For kreq = 2, C is extensible to

a pathset such as S = {(4, full), (6, reduced), (7, reduced)}. ■

An Exact Algorithm. Given an instance of the EXPO-RU problem, an

exact algorithm may proceed by generating the set OP(G, kreq) of all pathsets
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in G, and outputing

Expo(G, p, kreq) =
∑

(Pr(S) : S ∈ OP(G, kreq)).

The worst case running time of such an exact algorithm, however, is O(3|V |)

time.

Our work here devises polynomial time algorithms to compute lower bounds

(LBs) on the exact solutions of EXPO-RU problem.

Here, we define a pathset extensibility problem, called the Extension to

Pathset (E2P) problem as follows.

Definition (the E2P Problem): Given an instance (G, p,P, kreq)

of the EXPO-RU problem, and an input configuration C = {(x, sx) :

x ∈ V, sx ∈ {full, reduced, fail}} of node-state pairs (C can be

empty), find a configuration Cnew (composed of full and reduced

nodes) that extends C to a valid pathset (if possible) such that:

(a) C
⋂

Cnew = ϕ, and (b) Cnew has the highest occurrence prob-

ability. ■

The next Section discusses an efficient heuristic algorithm to solve the E2P

problem.

3.2.2 The E2P Algorithm

3.2.2.1 Algorithm Idea

Our main contribution in this section is a heuristic algorithm, called E2P,

to solve the E2P problem. The algorithm has two main ideas. Firstly, we

employ a transformation of the input probabilistic graph G to an (ordinary)

weighted directed graph G′ that allows us to find optimized structures using

conventional single-destination shortest paths algorithms [17]. In particular,

for each non-sink node x in G, we associate a weight w(x, y) with each arc

(x, y) where x can reach y while x in some state sx ∈ {full, red} so that

w(x, y) is small when the probability ps(x) is large (and vice versa). Arc

weights in G′ can be added (as with distances), so as to allow using shortest

paths algorithms.
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Secondly, the overall algorithm performs a number of iterations. Each

iteration aims at extending the computed extension Cnew (by adding more

node-state pairs) so that we increase the number of nodes that can jointly

sense the intrusion path P and report the intrusion events to the sink.

To explain the first main idea, we introduce the following definition. The

definition uses the input probabilistic graph (G, p), an input configuration C

(C can be empty), and a currently computed extension configuration Cnew

(Cnew starts empty and changes as more iterations are done).

Definition: The graph G′ = logp dist(G,C ∪ Cnew) is a weighted directed

graph obtained from G, C, and Cnew as follows:

1. If a node x is assigned the failed sate in configuration C ∪ Cnew then

delete x from G′.

2. Else, if x is assigned the full (or, reduced) state in C ∪ Cnew then G′

has an arc (x, y) for each node y reachable from x in this state. We set

w(x, y) = 0.

3. Else, if x, x ̸= sink, is a free node in C ∪ Cnew (i.e., x /∈ (C ∪ Cnew)

where pfull(x) ̸= 0 (or, pred(x) ̸= 0) then G′ has an arc (x, y) for each

node y reachable from x in this state. We set w(x, y) = − log(pfull(x))

(respectively, w(x, y) = − log(pred(x))).

Thus, all arc weights in G′ take on finite non-negative values. ■

To explain the second main idea, we denote by k(C ∪ Cnew) the number

of operating nodes in the configuration C ∪ Cnew that can sense the intrusion

path P, and report the intrusion to the sink. Thus, a configuration C∪Cnew is

a pathset if k(C ∪ Cnew) ≥ kreq. The algorithm starts each iteration with the

input configuration C, and a currently computed extension Cnew. If (C∪Cnew)

is a pathset the algorithm terminates successfully. Else, the iteration tries to

compute an extension C ′
new of C ∪ Cnew such that k(C ∪ Cnew ∪ C ′

new) >

k(C ∪ Cnew).
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Figure 3.2.2: Construction of G′

Example 3.2.2 Fig. 3.2.2 illustrates the graph G′ = logp dist(G,C ∪ Cnew)

where G is the graph in Fig 3.2.1, C = {(2, fail), (4, reduced), (6, reduced)},

and Cnew = ∅. In G′ we have the following:

1. Node 2 is deleted since (2, fail) ∈ C

2. The weight of each reduced range arc out of nodes 4 and 6 is set to zero

since {(4, reduced), (6, reduced)} ⊆ C

3. The weight of each of the remaining arcs is obtained using rule 3 above.

■

3.2.2.2 Algorithm Details

The main steps performed by function E2P in Fig. 3.2.3 proceed as follow. Step

1 initializes the sought after solution Cnew to empty. Step 2 performs a number

of iterations until k(C∪Cnew) ≥ kreq. Step 3 transforms the probabilistic graph

(G, p), and the current configuration C ∪ Cnew to a directed distance graph.

Step 4 utilizes a single-destination shortest paths algorithm to find (if possible)

a minimum weight path P = (x0, x1, x2, · · · , sink) from a sensing node x0 that

does not reach the sink in the current configuration C∪Cnew to the sink. Else,

Step 5 returns with failure (−1). Step 6 extracts from the computed path P

nodes that are not currently in C ∪ Cnew. The step then assigns to each such

a node xi a state (either full, or reduced) depending on the range of the arc

(xi, xi+1) ∈ P .
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Function E2P(G, p, C,Cnew, kreq)
Input: An instance (G, p, C, kreq) of the E2P problem

Output: If the E2P problem has a solution return +1, and a solution in
Cnew. Else, return −1.

1. Set Cnew = ∅
2. while (k(C ∪ Cnew) < kreq)

{
3. Set G′ = logp dist(G,C ∪ Cnew)
4. In G′, find a minimum weight directed path P = (x0, x1, · · · , sink)

from a node x0 that can sense the intrusion (but can not currently
reach the sink) to the sink

5. if (P does not exist) return −1
6. Else, form configuration C ′

new from the found path P that includes
only nodes not currently in C ∪ Cnew

7. Add C ′
new to Cnew.

}
8. return +1

Figure 3.2.3: Function E2P for the EXPO-RU problem

3.2.2.3 Correctness and Running Time

Theorem 3.2.1 Let (G, p, C, kreq) be an instance of the EXPO-RU problem

where C is a configuration of G that can be extended to a pathset then

1. The above algorithm finds a solution Cnew, and

2. At each iteration, the computed configuration C ′
new is optimal for the

iteration

Proof. Part 1 follows since the algorithm finds a collection of paths from the

sensing nodes in G to the sink. Adding the nodes of any such a path to the

currently computed solution Cnew does not prohibit the identification of other

paths in subsequent iterations.

Part 2 follows since in each iteration the weight w(P ) of a computed path

is minimum possible, since we utilize a single-destination shortest paths al-

gorithm. In addition, the transformation guarantees that a minimum weight

path in G′ maps to an incremental configuration C ′
new with the highest possible

Pr(C ′
new). ■
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Running time. Function E2P runs in time O(kreq ·(n+m)) on a probabilistic

graph G with n nodes and m arcs. This follows since each iteration of function

E2P constructs a directed graph G′, runs a single-destination shortest paths

algorithm, and if a path P is found, it extracts the new nodes and updates

the computed solution Cnew. Running a shortest paths algorithm requires

Θ(n+m) time (or better) (see, e.g., [17]). Performing the other steps in each

iteration can be done in O(n+m) time.

3.3 Algorithms for Lower Bounds

In this section we highlight ideas of obtaining iteratively and non-iteratively

improvable algorithms to compute LBs on exact solutions of the EXPO-RU

problem. Both algorithms rely on using function E2P described above.

3.3.1 An Iteratively Improvable Algorithm

As mentioned in 1.5, an iteratively improvable LB algorithm produces an exact

solution if allowed to run to completion. Else, it outputs a LB on the solution.

Iteratively improvable algorithms typically rely on methods for systematically

generating a maximal set of pathsets that suffices to compute the exact solu-

tion. As mentioned in Section 1.2.3, the factoring method, discussed in [7], is

an algorithmic framework that serves the above purpose; the method applies

to a broad class of network reliability problems. In [20], the authors adapt the

factoring method to compute LBs and UBs on a variant of the path exposure

problem where a node may fail in communication and/or sensing.

The factoring algorithm presented in [20] computes a LB by systematically

generating a set of pathsets {P1, P2, · · · , Pr} such that

Expo(G, p, kreq) ≥
r∑

i=1

Pr(Pi) (3.3.1)

One way to ensure that the above equation holds is to ensure that any pair

of generated pathsets Pi and Pj have at least one common node, say x, such

that Pi and Pj assign two different states to node x. We call such pathsets (or
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configurations) s-disjoint. For the EXPO-RU problem, the two configurations

C1 = {(1, reduced), (2, fail)}, and C2 = {(1, full), (2, fail)} are s-disjoint

since node 1 is assigned two different states in C1 and C2.

In more detail, the factoring algorithm described in [20] iteratively gener-

ates s-disjoint configurations in a tree-like manner, starting from the empty

configuration as the root of the tree. At each iteration, the algorithm selects

a configuration C that is perceived to be most promising (in terms of its con-

tribution to the computed solution). Configuration C is then used to generate

new pairwise s-disjoint configurations that are added to the tree. Upon gen-

erating a configuration, the algorithm calls a suitable E2P function to decide

on its extensibility to a pathset. By deciding on the extensibility of a config-

uration immediately after being generated, the factoring algorithm limits the

number of configurations considered to be active in each iteration.

Section 3.4 presents results obtained by integrating function E2P within

the factoring framework, and we refer to the obtained LB in this way as the

factoring bound.

3.3.2 A Non-iteratively Improvable Algorithm

As mentioned in Section 1.5, a non-iteratively improvable LB algorithm com-

putes a single value after processing a given problem instance. Effective non-

iteratively improvable algorithms are useful both as standalone tools, and also

as subroutines called from within an iteratively improvable algorithm to handle

some cases.

One such algorithm computes a LB from a given set of pathsets {P1, P2, · · ·Pr}

that are pairwise node-disjoint. Computing lower bounds from node-disjoint

pathsets has been extensively studied in the context of many network reliabil-

ity problems where each node can either be operating or failed (see. e.g., [7]).

In Section 1.2.3, we presented a well-know formula for obtaining a LB from

edge-disjoint pathsets for the Rel2 problems where each element (e.g., edge)

can be either operating or failed.

In this section, we discuss using a similar formula to obtain a LB for the

3-state EXPO-RU problem as follows.
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1. Compute a set {p1, p2, ..., pr} of node-disjoint pathsets

2. For each node x where (x, reduced) appears in a pathset pi, set the

occurrence probability pocc(x) = pred(x) + pfull(x)

3. For each node x where (x, full) appears in a pathset pi, set the occur-

rence probability pocc(x) = pfull(x)

4. For each pathset pi = {(x, sx) : node x is either full or reduced}, set

Pr(pi) =
∏

(x,sx)∈pi
pocc(x)

5. Compute a LB on the solution using formula (3.3.2):

Pr[at least one pathset pi occurs] = 1−
r∏

i=1

(1− Pr(pi)) (3.3.2)

We note that the E2P algorithm discussed in Section 3.2 (which gives a

good pathset extension for an input graph G and a configuration C) can be

used repeatedly to obtain a good set {p1, p2, ..., pr} of node-disjoint pathsets.

We refer to the obtained LB in this way as the NDP bound.

In the next section, we conduct experiments to compare the strength of

LBs obtained by the NDP method with the LB obtained by executing a fixed

number N (N = 1000) of factoring iterations.

3.4 Numerical Results

In this section, we present some numerical performance results of our devised

algorithms. We use as test networks, the class of double-diagonal grids (called

x-grids, for short) of dimensions W ×W , W ≥ 2, where the rows (or, columns)

are numbered 0, 1, · · ·W − 1. The grid topology is one of the commonly refer-

enced topologies in WSN deployments. Their structural regularity simplifies

analyzing the numerical findings. Fig. 3.4.1 illustrates a 3×3 x-grid where the

sink is located at (x, y)-coordinate (0, 0), and the intrusion path P is placed

vertically between the leftmost 2 columns. Solid (dashed) edges represent re-

duced (respectively, full) transmission ranges. For simplicity, we assume that

nodes have identical transmission ranges when operating in their reduced (or
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Figure 3.4.1: A 3×3 x-grid network with an intrusion path P

full) power states. In the experiments, only nodes placed on the left and right

of P can sense the path.

Graph legend. Label NDP refers to LBs from node-disjoint pathsets, and

the Factoring label refers to LBs from the factoring algorithm.

3.4.1 Work Done by the Factoring Algorithm

The factoring algorithm discussed in Section 3.3 generates a maximal set of

pairwise s-disjoint pathsets when it runs to completion. This enables the

algorithm to compute the exact Expo(G, p, kreq). The algorithm avoids the

generation of all possible network states by discarding (at an early stage) con-

figurations that can not be extended to pathsets. Table 4.1 lists the obtained

results when solving the EXPO-RU exactly on x-grids with different sizes,

and kreq values. Each network is processed within one minute of user time.

As can be seen, the factoring algorithm finds the exact solution by examining

only a small fraction of the maximum number of possible network states.

3.4.2 Experiments with Varying the Network Size and
kreq

An important aspect in the design of a WSN is for the overall WSN to achieve

performance higher than that achieved by its individual nodes. This aspect
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Table 3.1: Exact computations by the factoring algorithm

x-grid
size

kreq
Configurations
generated

Pathsets
found

Maximum possible
number of states

2×2 1 7 6 33

3×3 1 15 14 38

4×4 1 645 530 315

2×2 2 17 12 33

3×3 2 67 56 38

4×4 2 357 274 315

2×2 3 15 8 33

3×3 3 207 158 38

4×4 3 675 484 315

is expected as a consequence of the cooperative work of all sensors in the

network. In this set of experiments, we vary the size of a W×W x-grid where

W ∈ [2, 6], and vary kreq in the range [1, 3]. For each non-sink node x, we

set pfull(x) = pred(x) = pfail(x) =
1
3
. Fig. 3.4.2a presents the obtained results

using the factoring algorithm after performing 1000 iterations.

In all networks, the sink is assumed not to sense the intrusion path, thus the

2×2 network has only 3 sensing nodes, whereas, the 3×3 network has 6 sensing

nodes. The shown values for x-grids with W = 2 to 4 are exact solutions. For

x-grids of widths W = 5 and 6, and kreq ≥ 2, the computed LB indicates that

the achieved exposure is no more than the probability that a node operates

either in the full or reduced states. These preliminary results suggest that

tuning the performance of networks relying on energy replenishment requires

careful investigations before deployment.

3.4.3 Comparison Among Lower Bounds

Non-iteratively improvable LB algorithms like the NDP algorithm are useful

as a standalone tools as well as part of an iteratively improvable framework. In

this section, we evaluate the strength of the NDP algorithm versus executing

a fixed number N of iterations of the factoring algorithm (we use N = 1000).

In our implementation of the factoring algorithm, performing N iterations
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by the factoring algorithm. Although this finding may not generalize to a larger

network, the obtained results encourage the use of the NDP algorithm as part

of a factoring framework to compute LBs on some configurations.

3.5 Concluding Remarks

In this chapter, we consider EH-WSNs, where fluctuations in a node’s energy

levels is assumed to cause the node to change its transmission range. In this

context, we formalize the EXPO-RU problem that seeks to quantify the ability

of an EH-WSN to jointly detect and report a traversal along a given path across

an EH-WSN to a sink node. We show that the EXPO-RU problem is #P-

hard, and we design both iteratively and non-iteratively improvable algorithms

for the EXPO-RU problem to derive lower bounds on the network’s ability to

detect intrusion along a given path across an EH-WSN monitored field.
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Chapter 4

The E2C Problem for the
EXPO-RU Problem

In this chapter, we extend our work in Chapter 3 by designing UB algorithms

for the EXPO-RU problem. In Section 4.1, we review the system model as well

as key definitions and assumptions for the EXPO-RU problem. In Section 4.2,

we formulate an extension to cutset problem, denoted E2C, for the EXPO-RU

problem. Then, we propose two efficient heuristic algorithms to solve the

E2C problem. The devised algorithms are used to design both iteratively and

non-iteratively improvable UB algorithms for the EXPO-RU problem.

Some of the results in this chapter appear in [10, 11].
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4.1 System Model

In this section, we briefly review the used network model for the EXPO-RU

problem as well as important definitions and assumptions.

4.1.1 Network Model

We adopt a network model similar to the one used in Chapter 3. The follow-

ing summarizes the main assumptions. We consider EH-WSNs that rely on

energy harvesting (e.g., solar energy). It is assumed that the system time is

slotted into a set of time slots denoted t1, t2, .., tk where the energy harvesting

rate of each non-sink node may be different during each time slot. The sink

node is assumed to have unlimited energy. Fluctuations in a node’s energy

level affect its communication, sensing and processing. However, since wire-

less transmission is the most power consuming activity in many EH-WSNs,

we assume that a reduction in a node’s available energy affects primarily its

transmission range. It is also assumed that there is an energy management

unit (EMU) that controls states of each node based on its available stored

energy level, and it controls the node’s transmission ranges. So, we model the

fluctuations in a node’s stored energy by associating a probability that a node

works either in full power, reduced power, or node can not work at all when

its energy is depleted.

In particular, we adopt a model that uses in its basic form the following

3-state node model for each non-sink node x in the network:

• If x’s stored energy level lies within a designer specified range (e.g., say

[70% − 100%]), x is assumed to be able to communicate in full trans-

mission power; then x is considered to be in the full energy state (with

probability pfull(x)).

• Else, if x’s stored energy level lies within a lower range (e.g., say [30%−

70%]), x is assumed to be communicating with reduced transmission

power; then x is considered to be in the reduced energy state (with

probability pred(x)).
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• Else, x has no enough energy to communicate, then x is in the fail state

with failure probability pfail(x) = 1− (pfull(x) + pred(x)).

The overall EH-WSN is modelled by a probabilistic directed graph G =

(V
⋃
{s}, E) where V is a set of nodes in G, s is a distinguished sink node,

and E is a set of directed edges. It is assumed that the sink node s does not

perform sensing tasks and it is not subject to power fluctuations. For any

non-sink node x ∈ G, x can be in a state sx ∈ {full, reduced, fail} during a

period of time when the network G is analyzed.

4.1.2 Review of the EXPO-RU Problem

As mentioned in Chapter 3, the EXPO-RU problem uses a probabilistic graph

(G, p) to model the network and the problem formulation assumes that dif-

ferent nodes behave independent of each other. During a short random time

interval, the network G is in some network state S where each node x is

in some state sx ∈ {full, reduced, fail}. We use S = {(x, sx) : x ∈ V, sx ∈

{full, reduced, fail}} to refer to any such network state. The probability that

a given network state S arises is Pr(S) =
∏

(x,sx)∈S
p(x, sx). Each network

state S is either operating or failed. To form an operating network state S,

node states in S should be such that at least kreq sensing nodes in S can reach

the sink node. Else, S is a failed state. The EXPO-RU problem is to compute

the probability that the network G is some operating state. We denote such

probability by Expo(G, p,P, kreq), or Expo(G, p) for short.

4.2 The E2C Problem for EXPO-RU

In this section, we present concepts needed to design our UB algorithms for the

EXPO-RU problem, and formalize a cutset extensibility problem, called the

Extension to Cutset (E2C) problem. Then, we present two heuristic algorithm

to solve the E2C problem, and use the devised algorithms to design both

iteratively and non-iteratively improvable UB algorithms for the EXPO-RU

problem.
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4.2.1 Concepts Needed for Algorithms

For every non-sink node x ∈ G, x can be in a state sx ∈ {full, reduced, fail}

at any interval of time with probabilities pfull(x), pred(x), and pfail(x), respec-

tively, where pfail(x) = 1− (pfull(x) + pred(x)).

We need the following concepts defined in Chapter 3. If all nodes in G

are assigned possible states, we get a network state S of the graph G where

S = {(x, sx) : x ∈ V, sx ∈ {full, reduced, fail}}, where |S| = |V |. On the

other hand, if some nodes in V (but not necessary all nodes) are assigned

possible states, we obtain a network configuration C (C can be the empty

set) where |C| ≤ |V |. A node x that is not assigned a state in C is called a

free node in C. A configuration C that has kreq sensing nodes and guarantees

detection and reporting of unauthorized intrusion across the path P is called

a pathset.

In this chapter, we also need the following definition. If a configuration

C leads to a failed state of the whole network even if all free nodes in C are

assigned the full state, then C is called a cutset.

Figure 4.2.1: An instance of the EXPO-RU problem

Example 4.2.1 Fig. 4.2.1 shows an instance of the EXPO-RU problem for

a 3× 3 double-diagonal grid network G where the dashed lines (coloured red)

represent communications in full power whereas the solid lines (coloured blue)

represent communications in reduced power. In Fig. 4.2.1, arcs (x, y) and

(y, x) are drawn as a double-arrowed line. In this example, we assume that

if node x reaches node y while x is in a state (either full or reduced) then y
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can also reach x while y is in the same state. In Fig. 4.2.1, squares represent

nodes that can sense the intrusion path P. Let C = {(3, fail), (6, full)}

be a given network configuration and let kreq = 2. Then, C can be ex-

tended to a pathset by adding nodes 1, 4 in the reduced states where S =

{(3, fail), (6, full), (1, reduced), (4, reduced)}. Here, nodes 4 and 6 can sense

the intrusion and reach the sink. However, if C = {(1, fail), (2, reduced), (3, fail)

, (4, reduced), (6, reduced)}, then C is a cutset even if all remaining nodes in

G are assigned the full state since C isolates the sink s. ■

Now, we define a cutset extensibility problem, called the Extension to

Cutset (E2C) problem as follows.

Definition (the E2C Problem): Given an instance (G, p,P, kreq)

of the EXPO-RU problem, and an input configuration C that is not

a pathset where C = {(x, sx) : x ∈ V, sx ∈ {full, reduced, fail}}

of node-state pairs (C can be empty), find a configuration Cnew

(composed of reduced and failed nodes) that extends C to a valid

cutset (if possible) such that: (a) C
⋂

Cnew = ϕ, and (b) Cnew has

the highest occurrence probability. ■

The next sections presents two heuristic algorithms to solve the E2C prob-

lem by utilizing two well-know techniques:

• The E2C-BFS algorithm that utilizes breadth-first-search (BFS) tech-

nique (cf. Section 4.2.2).

• The E2C-MaxFlow algorithm that utilizes a solver to the max-flow prob-

lem (cf. Section 4.2.3).

4.2.2 The E2C-BFS Algorithm

Our main contribution in this section is a heuristic algorithm that utilizes

breadth-first-search (BFS) [17] to solve the E2C problem, denoted E2C-BFS.

Given a graph G on V
⋃
{s} nodes, the BFS layering of G, using the sink

node s as a root, is a partition of the set nodes V into disjoint subsets (called,

layers) denoted L0, L1, L2, ..., Lr where layer L0 = {s}. In a BFS tree directed
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towards the sink, a node x belongs to layer Li, i ≥ 0, if and only if the shortest

directed path from x to s has exactly i arcs. For many graphs, the sink node

s has a few neighbours. So, layer L1 is typically small relative to other layers.

Hence, L1 forms a good start point to compute a cutset.

For the EXPO-RU problem, we note that depending on the input con-

figuration C, nodes in layer L1 alone may not be sufficient to compute an

extension Cnew such that C
⋃

Cnew is a cutset. For example, Fig. 4.2.2(a)

illustrates a BFS layering of a graph G. Assume that the input configuration

C = {(f1, full), (f2, full), (r1, reduced)}, and kreq = 2. Here, L1 = {x1, x2, f1}

doesn’t contain a cutset (since (f1, full) ∈ C). ■

Figure 4.2.2: BFS layers of graphs G and G′

4.2.2.1 Algorithm Idea

Motivated by the possibility of using BFS layering to solve the E2C problem,

we outline a heuristic algorithm, called E2C-BFS, to solve the E2C problem.

The algorithm transforms the input graph G to a directed graph G′ where

layer L1 of the BFS layering of G′ is guaranteed to contain a cutset extension

Cnew if such an extension exists in G. The directed graph G′ that satisfies this

latter property is constructed iteratively from G. The E2C-BFS algorithm has
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two main components:

Firstly, we transform the graph G to G′ as follows:

1. Initially, we set G′ = G

2. Delete from G′ all failed nodes in the input configuration C

3. For each node y that is assigned a state ys ∈ {full, reduced} in C,

and y appears on a directed path (x, y, z) where the arc (y, z) exists

when y is in state ys, add an arc (x, z) to G′. Arc (x, z) is a re-

duced (or full) if arc (x, y) is reduced (respectively, full). After pro-

cessing all such triplets (x, y, z), delete node y from G′. For exam-

ple in graph G′ of Fig. 4.2.2(a), assume that the input configuration

C = {(f1, full), (f2, full), (r1, reduced)}. After applying step 3 above,

node f1 is deleted from G′, and the new arcs (x3, sink) and (x4, sink)

are added, as shown in Fig. 4.2.2(b).

4. Our devised E2C-BFS algorithm takes the nodes in layer L1 of G′ as

failed nodes and uses them as a start point to compute an extension

Cnew (so we set Cnew = {(x, fail) : x ∈ L1}).

Secondly, the E2C-BFS algorithm uses two additional methods (explained

below) to refine the current computed Cnew to obtain a new configuration

with possibly higher occurrence probability Pr(Cnew).

• Method 1 : This method is motivated by observing that the current com-

puted Cnew may not be minimal. Thus, method 1 iterates over every

failed node (x, fail) in the current computed Cnew to see if x can be

deleted from Cnew without affecting the cutset property of the computed

solution in the original graph G. If so, (x, fail) is deleted from Cnew.

• Method 2 : This method aims at improving the current solution further

by iterating over every failed node (x, fail) in the current computed

Cnew where pred(x) > pfail(x) to see if changing (x, fail) to (x, reduced)

in Cnew does not effect the cutset property of the computed solution in
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the original graph G. If so, the pair (x, reduced) replaces (x, fail) in the

computed solution.

Figure 4.2.3: Construction of G′ and its BFS Layers

Example 4.2.2 Fig. 4.2.3 illustrates graph G′ constructed from the graph G

(shown in Fig. 4.2.1), where the input configuration C = {(1, reduced), (3, fail)}.

Let kreq = 2, and Cnew = ϕ. We do the following:

• Set G′ = G

• Remove node 3 since (3, fail) ∈ C

• After applying step 3 above, node 1 is deleted from G′; and the new arcs

(2, sink), (4, sink), (5, sink) and (7, sink) are added to G′ as explained

above (note that (5, 1, sink) and (7, 1, sink) are paths in G)

• Obtain a BFS layering of G′ with arcs directed towards the sink. G′ is

layered into L0 = {sink}, L1 = {2, 4, 5, 6, 7}, L2 = {8}

• Set Cnew = {(2, fail), (4, fail), (5, fail), (6, fail), (7, fail)}

• Apply method 1 to each node in Cnew. Node 2 is removed and we get

Cnew = {(4, fail), (5, fail), (6, fail), (7, fail)}

• Apply method 2 to each node in Cnew. The state of node 6 is changed

from fail to reduced (assuming that pred(6) > pfail(6)) and Cnew =

{(4, fail), (5, fail), (6, reduced), (7, fail)}.
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■

Function E2C-BFS(G, p, kreq, C)
Input: An instance (G, p, kreq, C) of the E2C problem where C is an input

configuration

Output: If C is extensible, return Cnew. Else, return -1

1. Set Cnew = ϕ
2. Construct G′ from G and C as explained above
3. With sink s taken as root, apply BFS to divide G′ into layers

L0, L1, ..., LK where L0 = {s}

4. If (L1 is empty): return -1
5. for (i = 0 to |L1|): add (L1[i], fail) to Cnew

6. Refine the size of Cnew using methods 1

7. Refine the states of nodes in Cnew using methods 2

8. return Cnew

Figure 4.2.4: Pseudo code for E2C-BFS function

4.2.2.2 Algorithm Details

Function E2C-BFS is summarized in Fig. 4.2.4. Step 1 initializes Cnew = ϕ.

Step 2 transforms G to a directed graph G′ as explained above. Step 3 utilizes

BFS rooted at the sink s on graph G′ to obtain layers L0, L1, ..., Lk where

L0 = {s}. In Step 4, if L1 = ϕ, then C is not extensible to a cutset. Else,

augment Cnew with a set of (node, fail) pairs where |Cnew| == |L1| as shown

in steps 5. Step 6 applies method 1 on the current computed Cnew iteratively

to minimize the number of candidate pairs in Cnew without losing the cutset

property. Similarly, Step 7 applies method 2 to change the states of some

nodes in Cnew to the states that have higher probability without losing cutset

property. Lastly, step 8 returns the refined extension Cnew.

4.2.2.3 Correctness and Running Time

Theorem 4.2.1 Let (G, p, kreq, C) be an instance of the E2C problem where

C is an extensible configuration then:
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1. Nodes in L1 generated by the E2C-BFS algorithm includes an extension

Cnew

2. Applying methods 1 and 2 to Cnew guarantees that Cnew is minimal

and the nodes are assigned better possible states (reduced if pred(x) >

pfail(x), otherwise, pfail(x)).

Proof. Part 1 follows since the sink s in the constructed graph G′ is only

reachable by nodes in L1 of the BFS tree rooted at s in G′. Thus, having

these nodes in Cnew is sufficient to identify if such extension Cnew exists.

Part 2 follows since utilizing method 1 iteratively on candidate node-state

pairs in the current computed Cnew guarantees that any extra pair in Cnew is

removed without violating the cutset property. Similarly, applying method 2

iteratively on any (node, state) pair in Cnew guarantees that this node in Cnew

is assigned to a node state with higher probability. ■

Running time: Let G = (V,E) be a directed graph on n = |V | nodes, and

m = |E| directed edges. It takes O(n + m) time to do each of the following

steps: Step 2 (constructing G′), Step 3 computing L1, and testing whether a

configuration is a cutset (needed in Steps 6 and 7). Since method 1 (or, 2)

tests each node in L1, it follows that the overall function requires O(n.(n+m))

time. ■

4.2.3 The E2C-MaxFlow Algorithm

In this section, we present a better heuristic algorithm to solve the E2C prob-

lem. In particular, our devised algorithm, called E2C-MaxFlow, utilizes a

solver to the max-flow problem (see, e.g., [17]) to solve the E2C problem.

We recall that in the maximum flow problem, we are given a directed graph

G = (V,E) with two distinguished vertices: a source s and a destination t,

where each arc (u, v) ∈ E has a non-negative capacity c(u, v). The problem

is to find the maximum (s, t)-flow value that satisfies arc capacity and flow

conservation constraints. By solving the max-flow problem, we obtain a cut
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(i.e., a subset of arcs whose removal disconnect s from t) with minimum total

arc capacity.

Figure 4.2.5: Replacement of a free node x ∈ G with a gadget in G′

Our devised algorithm is based on considering a simplified (or restricted)

E2C problem. In the simplified problem, we assume that we are given a

subset β of sensing nodes (nodes that can sense the intrusion path P) whose

disconnection from the sink creates a cutset. We call such a subset β a cutset

generating (CGEN, for short) set of nodes.

So, if Nsense is the number of sensing nodes in G, it suffices to consider

CGEN sets of size at most |β| = Nsense − kreq + 1 sensing nodes to create an

EXPO-RU cutset. We present an algorithm that takes an input configuration

C and a subset β of sensing nodes and computes an extension Cnew such that

all nodes in β are disconnected from the sink in C
⋃

Cnew.

The devised E2C-MaxFlow algorithm generates a number of possible CGEN

sets, computes an optimal cutset for each β subset, and then chooses the

best solution. Thus, the above strategy gives an optimal solution to the E2C

problem, if all possible candidates for the set β (at most
(

Nsense

Nsense−kreq+1

)
) are

considered.

4.2.3.1 Algorithm Idea

Given an instance (G,C, p,P, kreq) of the E2C problem, and a CGEN set β

(|β| ≤ Nsense − kreq + 1) of sensing nodes, we present an optimal algorithm to

compute Cnew such that all nodes in β are disconnected from sink in C
⋃

Cnew.

In particular, we transform the problem graph G to a directed flow graph G′
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such that an optimal solution can be obtained from a minimum capacity arc

cut in G′. The flow network G′ is constructed as follows. In G′, some arcs are

assigned a large capacity, denoted α. We set α to be larger than the sum of

all arc capacities inside all gadgets of G′ (as described below).

1. G′ has a new node, denoted s∗, that acts as a source of flows in the

max-flow problem. s∗ has a directed edge to each node in β.

2. The sink node acts as the destination node t in the max-flow problem.

3. Free nodes: in G′, we replace each free node x (x /∈ C) with a gad-

get, denote [x, x′, x′′], (shown in Fig. 4.2.5 as green rectangle). In the

gadget, we set the following arc capacities: c(x, x′) = −log(pfail(x)) and

c(x′, x′′) = −log(pred(x)). In addition, we have incoming and outgoing

arcs of node x.

• Incoming arcs to x: for each incoming arc to x in G, there is an

incoming arc to x in the corresponding gadget in G′. The capacity

of this arc is set to α.

• Outgoing arcs from x: for each arc (x, y) (or, (x, z)) in G where

y (respectively, z) is reachable from x in the reduced (respectively,

full) state, G′ has an arc (x′, y) (respectively, (x′′, z)) of capacity α.

4. Assigned nodes: for each non-failed node x ∈ C with incoming (or,

outgoing) arc in G, there is a corresponding arc in G′ of capacity α.

5. All failed nodes in C are deleted from G′.

We then run the max-flow algorithm between s∗ and the sink node to obtain

a minimum capacity (s∗, sink)-cut.

Example 4.2.3 Consider an instance of the E2C problem composed of the

graphG (shown in Fig. 4.2.1), an input configuration C = {(1, reduced), (3, fail)}

that leaves the remaining 6 non-sink nodes free, and kreq = 2. Since Nsense = 6

nodes of which node 3 is failed and kreq = 2, the size of each CGEN set is

5− kreq + 1 = 4. Thus, we may choose, e.g., a CGEN set β = {4, 5, 6, 7}. The

graph G′ (shown in Fig. 4.2.6) is obtained from the given instance as follows:
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Figure 4.2.6: Construction of G′

• A new node s∗ is added to G′ (not shown in Fig. 4.2.6 to avoid cluttering

the diagram) and it is connected to nodes in β. The node s∗ works as a

source of flows in a max-flow problem (Step 1 above),

• G′ contains the sink node that works as the destination node t in the

max-flow problem (Step 2 above),

• Each non-sink free node x (x /∈ C) is replaced with a gadget (Step 3

above),

• Since (1, reduced) ∈ C, in G′ all incoming (or, outgoing) arcs to node 1

have capacity α (Step 4), and

• Node 3 is removed from G′ since 3 has state fail in C (Step 5 above).

■

4.2.3.2 Mapping a Minimum Capacity (s∗, sink)-cut to a Solution
Configuration Cnew

We remark that a minimum capacity (s∗, sink)-cut either uses exactly one arc

from each gadget or no arc from the gadget. If arc (x, x′) is used, then we

add (x, fail) to the solution Cnew. Else, if arc (x′, x′′) is used, then we add

(x, reduced) to the solution Cnew.
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Function E2C-MaxFlow(G, p, kreq, C)
Input: An instance (G, p, kreq, C) of the E2C problem where C is an

extensible input configuration

Output: return C
⋃
Cnew

1. Set Cnew = ϕ.
2. Construct G′ from G and C as explained above
3. Generate the set {β0, β1, ..., βr} of all possible CGEN sets
4. Initialize best cut = ϕ.
5. foreach βi in {β0, β1, ..., βr}

{
6. Make s∗ adjacent to all nodes in βi
7. Solve an instance of max-flow problem on βi and return (s∗, sink)-cut

8. If ((s∗, sink)-cut of total capacity < α exists):
9. Update best cut with the best found (s∗, sink)-cut

}
10. Set Cnew = best cut
11. return C

⋃
Cnew

Figure 4.2.7: Pseudo code for function E2C-MaxFlow

4.2.3.3 Algorithm Details

Fig. 4.2.7 gives a pseudo code for function E2C-MaxFlow. Step 1 initializes

Cnew = ϕ. Step 2 obtains G′ from G and C as explained above. Step 3

generates a set {β1, β2, β3, ..., βr} of all possible CGEN sets. The main loop

in step 5 iterates over each set βi. Step 7 solves an instance of the max-flow

problem on nodes in βi where source = s∗ and terminal = sink. If a mincut

exists, update best cut as shown in step 9. Step 10 sets Cnew = best cut. Step

11 returns C
⋃

Cnew.

4.2.3.4 Correctness and Running Time

In the following argument, we use (G,C) to denote the graph G constrained

by the input configuration C, and let G
′

be the corresponding flow graph con-

structed by the above procedure. In addition, let β ⊆ Nsense be any CGEN set

considered by the algorithm. For convenience, we use dipath to refer to a di-

rected path, and use (β, sink)-dipath to refer to a directed path that links some

node in β to the sink. Correctness and optimality aspects of the algorithm
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follows from the following properties.

1. For any two non-failed nodes x1 and xr, the graph (G,C) has a dipath

P = (x1, x2, ..., xr) if and only if the graph G
′

has a dipath linking x1 to

xr.

2. The graph (G,C) has a cutset extension Cnew where the graph (G,C
⋃

Cnew)

has no (β, sink)-dipath if and only if G
′

has a (s∗, sink)-cut of capacity

< α.

3. Let Cnew be a cutset extension obtained by the above approach so that

all nodes in β are disconnected from the sink in C
⋃

Cnew, then Pr(Cnew)

is largest among all such cutset extensions.

Running time: The devised E2C-MaxFlow algorithm gives an optimal solu-

tion to the E2C problem if all possible minimal CGEN sets (at most O(N
kreq
sense))

are processed by the main loop of step 5. The time required by each itera-

tion of step 5 is dominated by the time required to solve a given instance of

the maximum-flow problem, denoted O(TMF ). Reference [17] discusses O(n3)

(and faster) algorithms to solve the maximum-flow problem. Thus, the overall

running time of function E2C-MaxFlow is O(TMF .N
kreq
sense). ■

4.3 Algorithms for Upper Bounds

Our devised E2C-BFS (c.f. 4.2.2) and E2C-MaxFlow (c.f. 4.2.3) algorithms

presented in the previous sections can be used to design a variety of algo-

rithms to compute UBs for the EXPO-RU problem. In this section, we discuss

the ideas of designing iteratively and non-iteratively improvable algorithms to

compute UBs on exact solutions of the EXPO-RU problem.

4.3.1 An Iteratively Improvable Algorithm

An iteratively improvable UB algorithm produces an exact solution if allowed

to run to completion. Else, it outputs an UB on the solution. As discussed in
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Chapter 1, an iteratively improvable algorithms typically rely on methods for

systematically generating a maximal set of pathsets that suffices to compute

the exact solution. The factoring method discussed in [7] is an algorithmic

framework that serves the above purpose, and the method applies to a broad

class of network reliability problems.

The method can be used to compute an UB from a set {c1, c2, · · · , cr} of

s-disjoint cutsets that can be generated systematically, where an UB can be

computed as follows

Expo(G, p, kreq) ≤ 1−
r∑

i=1

Pr(ci) (4.3.1)

One way to ensure that the above equation holds is to ensure that any pair

of generated cutsets ci and cj have at least one common node, say x, such

that ci and cj assign two different states to node x. We call such cutsets (or

configurations) s-disjoint. For the EXPO-RU problem, the two configurations

C1 = {(1, reduced), (2, fail)}, and C2 = {(1, full), (2, fail)} are s-disjoint

since node 1 is assigned two different states in C1 and C2.

In the next section, we present UB results obtained using the factoring

method. The method converges to computing an exact solution when all

possible iterations are done. For the EXPO-RU problem, the factoring method

makes at least one call to the E2C-MaxFlow (or, E2C-BFS) algorithm to

generate problem cutsets in each iteration. Over all iterations performed, the

factoring method outputs an UB that is a sum of disjoint products expression.

So, any two configurations Ci and Cj used in the expression are selected such

that Pr(Ci) + Pr(Cj) is the probability that at least one of Ci and Cj occurs.

4.3.2 A Non-iteratively Improvable Algorithm

As mentioned in Section 1.5, a non-iteratively improvable UB algorithm com-

putes a single value after processing a given problem instance. Effective non-

iteratively improvable algorithms are useful both as standalone tools, and also

as subroutines called from within an iteratively improvable algorithm to handle

some cases.

53



One such algorithm computes an UB from a given set of pathsets {c1, c2, · · · cr}

that are pairwise node-disjoint. Computing upper bounds from node-disjoint

pathsets has been extensively studied in the context of many network relia-

bility problems where each node can either be operating or failed (see. e.g.,

[7]).

In Section 1.2.3, we presented a well-know formula for obtaining an UB

from edge-disjoint cutsets for the Rel2 problems where each element (e.g.,

edge) can be either operating or failed.

In this section, we use a similar formula to obtain an UB for the 3-state

EXPO-RU problem as follows.

1. Compute a set {c1, c2, ..., cr} of node-disjoint cutsets

2. For each node x where (x, reduced) appears in a cutset ci, set the occur-

rence probability pocc(x) = pred(x) + pfail(x)

3. For each node x where (x, fail) appears in a cutset ci, set the occurrence

probability pocc(x) = pfail(x)

4. For each cutset ci = {(x, sx) : node x is either reduced or fail}, set Pr(ci) =
∏

(x,sx)∈ci
pocc(x)

5. Compute an UB on the solution using formula (4.3.2):

Pr[None of the cutsets occur] =
r∏

i=1

(1− Pr(ci)) (4.3.2)

To generate a set of node-disjoint cutsets, we use a simple iterative al-

gorithm in which each iteration calls function E2C-MaxFlow (or, E2C-BFS)

to find a cutset (if possible), and then removes its nodes before starting the

next iteration. Similar ideas are used in Chapter 3 to compute LBs for the

EXPO-RU problem from node disjoint pathsets.

4.4 Numerical Results

In this section, we present numerical results obtained by conducting a set of

performance evaluation experiments. The goal is to illustrate the usefulness of
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our devised E2C-MaxFlow and E2C-BFS algorithms in obtaining good bound-

ing algorithms as well as exploring the relative strength of the obtained UB

algorithms against LB algorithms presented in the Chapter 3. We use the fol-

lowing abbreviations (graph legends) to refer to various LB and UB methods:

• NDC (or, NDP): bounds from node-disjoint cutsets (or, pathsets).

• Factoring: UBs (or, LBs) from the factoring algorithm. The UBs are

obtained by integrating the factoring algorithm with either the E2C-MaxFlow

or E2C-BFS functions discussed in this chapter. The LBs are obtained

by integrating the factoring algorithm with the E2P function discussed

in Chapter 3. The function E2P is used to extend a given configuration

to a pathset (if possible).

To allow for direct comparisons, we use the same network topologies and we

run experiments on the class of W ×W , where W ≥ 2, double-diagonal grids

(x-grid, for short) where the rows (or, columns) are numbered 0, 1, · · ·W − 1

from left to right (respectively, bottom to top). Fig. 4.2.1 illustrates a 3 × 3

x-grid. The intrusion path P is assumed to be placed vertically between the

rightmost 2 columns. For simplicity, we assume that all nodes have identical

transmission ranges when operating in their reduced (or full) power states,

and only nodes placed on the left and right of the path P can sense the path.

The sink node is located at coordinates (x = 0, y = 0). We have implemented

all algorithms in Python and run on 2.8 GHz personal computer with 8 GByte

memory.

Table 4.1: Exact computations

x-grid
size

kreq

Generated
configurations
(UB)

Cutsets
found

Generated
configurations
(LB)

Pathsets
found

3×3 4 555 309 665 410

3×3 5 983 353 1103 497

4×4 4 17213 7764 23403 12142

4×4 5 32041 11623 46812 14396
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4.4.1 Exact Computations

The factoring algorithm mentioned above computes exact results when allowed

to run to completion. This is done by generating a maximal set of pairwise

s-disjoint configurations (pathsets or cutsets) while avoiding the generation of

many useless configurations. Table 4.1 presents the number of generated cut-

sets (the full implementation uses algorithm E2C-MaxFlow), and the number

of generated pathsets (the full implementation uses algorithm E2P) needed to

compute Expo(G, p, kreq) for 3 × 3 and 4 × 4 x-grids. The results show that

the number of generated configurations by the factoring algorithm is signifi-

cantly smaller than the maximum number of possible network states, where

the maximum possible number of states for a 3× 3 and 4× 4 networks are 38

and 315, respectively.

4.4.2 Comparing upper bounds

Here, we compare the UBs obtained by NDC, and Factoring (the full imple-

mentation uses both the E2C-MaxFlow and E2C-BFS functions). The experi-

ments use x-grid networks of sizeW×W , whereW ∈ [2, 10], and each non-sink

node x has pfull(x) = pred(x) = 0.25 with kreq = 1 (Fig. 4.4.1a) and kreq = 2

(Fig. 4.4.1b). In general, the UBs obtained by the factoring algorithm after

performing 1000 iterations is better than the NDP bounds. This is expected

as the factoring algorithm generates higher number of cutsets compared to

those used in the NDC bounds. Moreover, both Fig. 4.4.1a and Fig. 4.4.1b

show that the UBs computed by the E2C-MaxFlow approach achieves strict

improvements over bounds from the E2C-BFS as the E2C-MaxFlow approach

can give an optimal solution to the E2C problem as explained above.

4.4.3 Gaps between factoring bounds

Here, we comment on the gaps between the UBs and the LBs obtained by

the factoring algorithm. In particular, Fig. 4.4.1c shows gaps between the

UBs obtained by integrating the factoring algorithm with the E2C-MaxFlow

function and the LBs obtained by integrating the factoring algorithm with
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the E2P function (presented in Chapter 3). On the other hand, Fig. 4.4.1d

shows gaps between the UBs obtained by integrating the factoring algorithm

with the E2C-BFS function and the LBs obtained by integrating the factoring

algorithm with the E2P function. In the experiments, we use x-grid networks

of size W × W , where W ∈ [2, 6]. Also, we set pfull(x) = pred(x) = 0.25 for

all nodes, and the value of kreq ∈ [1, 2]. In general, it can be observed that

the gaps between the UBs and LBs increase as the network’s size increases

since only a relatively small number of configurations can be examined when

performing 1000 iterations of the factoring algorithm.

We also note that the obtained LBs achieved by the entire network is

comparable to the assigned probability pfull(x) (or, pred(x)) of an individual

node. This shows the possibility of building a large network whose performance

is at least as good as the performance of its individual nodes.

The obtained results (both UBs and LBs curves) can be used by a network

designer to compare the performance of different energy harvesting networks.

The low reliability values shown by the lower bound curves indicate to the

designer that this type of networks requires careful investigations before de-

ployment.

4.4.4 Exposure versus node state probability

Here we use the UBs and LBs curves obtained by the factoring algorithm (1000

iterations) on 6× 6 x-grid network. Fig. 4.4.1e shows the improvement gained

in Expo(G, p) when we set p = pred(x) = pfull(x) for each node x, and vary

p in range [0.0, 0.5] and set kreq = 1, 3. The results show that the Expo(G, p)

increases as p increases. This is expected as we get more reliable configurations

that contribute to the obtained bounds.

The results can be used by a network designer to explore the quality of

Expo(G, p) by finding a minimum value, denoted pmin, for which Expo(G, p) ≥

pmin. Using the shown LBs curves, one can estimate pmin ≈ 0.2 and pmin ≈ 0.3

for kreq = 1 and kreq = 3, respectively. The shown results are encouraging

since a network designer expects the performance of the overall network to

exceed the performance of each single node over a wide range of node operating
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parameters.

Moreover, in the context of deployment strategies, if the size of the surveil-

lance area increases, the designer might need to increase kreq to avoid false

alarms and increase detection probability. The curves illustrate that the

Expo(G, p) decreases as kreq increases (i.e., kreq = 3). This is expected since

configurations with a higher number of sensing nodes, required to monitor an

intrusion path P, have more nodes, and hence contribute less to the obtained

bounds

4.4.5 Identify an optimal location of the sink node

An interesting problem for an EH-WSN network designer is to identify a best

location of the sink node that maximizes the overall network reliability. Here,

we use the LB and UB curves to identify a best location of the sink that maxi-

mizes the exposure measure. We use a 6×6 x-grid network where the intruder’s

path P passing vertically between the last two columns, and the sink node is

located on the diagonal of the network at locations (0, 0), (1, 1), ..., (5, 5). We

set pfull(x) = pred(x) = 0.25 for all nodes and set kreq = 1. Fig. 4.4.1f illus-

trates the obtained bounds.

Despite the differences between the obtained bounds, the curves show that

the optimal location of the sink node is at (4, 4)-coordinate. This location wins

for its closeness to the intruder path P, and hence the quality of the obtained

cutsets and pathsets at this location is better than in other locations.

4.5 Concluding Remarks

In this chapter, We formulate the E2C problem for the EXPO-RU problem.

Then we propose two efficient heuristic algorithms to solve the E2C problem.

The first devised algorithm, called E2C-BFS, utilizes the breadth-first-search

technique while the second one, called E2C-MaxFlow, utilizes a solver to the

max-flow problem. The key strength of the second algorithm compared to the

first one is that it can produce an optimal solution for E2C problem if it runs

for termination.
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Then, both E2C-BFS and E2C-MaxFlow algorithms are used to design

iteratively and non-iteratively improvable UB algorithms for the EXPO-RU

problem. Numerical results obtained to explore the relative strength of the

devised UB algorithms against LB algorithms presented in Chapter 3.

60



Chapter 5

Bounding EXPO-RU Using
Dynamic Programming
Approach

In this chapter, we consider two general types of reliability problems on prob-

abilistic graphs where each node can be independently in one of a possible

number of node states (such as the EXPO-RU problem). Each type has two

problems defined on pathsets and cutsets, respectively.

In the cutsets version of the first problem type, we are given a sequence

Q of network cutsets, and we want to compute an UB on the exact solution

by computing the probability that no cutset in Q occurs. The pathset version

is defined similarly to compute a LB. We develop a dynamic programming

approach to compute such probability, assuming that node states satisfy a

coherence property. In general, the running time of the devised approach

grows exponentially with the size of the input set Q. We show, however, that

when Q is a disjoint set of cutsets, or a consecutive set, the running time is

comparable to the running time of an algorithm that is aware that the input

has this property.

In the cutset version of the second problem type, we are given a disjoint

set Q of cutsets, and we seek to extend it to a set of consecutive cutsets that

exploits the multi-state node model.

Some of the results in this chapter appear in [9, 10].
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5.1 System Model

In this section, we briefly review the used network model for the for the EXPO-

RU problem as well as important definitions and assumptions.

5.1.1 Network Model

We adopt the same network model used in Chapters 3 and 4. The main

aspect of the model is reviewed below. We consider EH-WSNs that rely on

energy harvesting (i.e., solar energy). It is assumed that the system time

is slotted into a set of time slots and the harvesting rate of each non-sink

node might be different by the end of each time slot, and the sink node is

assumed to have unlimited energy. Based on stored energy level of each node,

fluctuations in a node’s energy level affect its communication, sensing and

processing. However, since wireless transmission is the most power consuming

activity in many EH-WSNs, we assume that a reduction in a node’s available

energy affects primarily its transmission range. It is also assumed that there

is an energy management unit (EMU) that controls states of each node based

on its available stored energy level, and it controls the node’s transmission

ranges. So, we model the fluctuations in a node’s stored energy by associating

a probability that a node works either in full power, reduced power, or node

can not work at all when its energy is depleted.

In particular, we propose a model that uses in its basic form the following

3-state node model for each non-sink node x in the network:

• If x’s stored energy level lies within a designer specified range (e.g., say

[70% − 100%]), x is assumed to be able to communicate in full trans-

mission power; then x is considered to be in the full energy state (with

probability pfull(x)).

• Else, if x’s stored energy level lies within a lower range (e.g., say [30%−

70%]), x is assumed to be communicating with reduced transmission

power; then x is considered to be in the reduced energy state (with

probability pred(x)).
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• Else, x has no enough energy to communicate, then x is in the fail state

with failure probability pfail(x) = 1− (pfull(x) + pred(x)).

The overall EH-WSN is modelled by a probabilistic directed graph G =

(V
⋃
{s}, E) where V is a set of nodes in G, s is a distinguished sink node,

and E is a set of directed edges. It is assumed that the sink node s does not

perform sensing tasks and it is not subject to power fluctuations. For any

non-sink node x ∈ G, x can be in a state sx ∈ {full, reduced, fail} during a

period of time when the network G is analyzed.

5.1.2 Review of the EXPO-RU Problem

The EXPO-RU problem (defined in Section 3.1) uses a probabilistic graph

(G, p) to model the network, and the problem formulation assumes that dif-

ferent nodes behave independent of each other. During a short random time

interval, the network G is in some network state S where each node x is

in some state sx ∈ {full, reduced, fail}. We use S = {(x, sx) : x ∈ V, sx ∈

{full, reduced, fail}} to refer to any such network state. The probability that

a given network state S arises is Pr(S) =
∏

(x,sx)∈S
p(x, sx). Each network

state S is either operating or failed. To be operating, node states in S should

be such that at least kreq sensing nodes in S can reach the sink node. Else, S is

in a failed state. The EXPO-RU problem is called to compute the probability

that the network G is in an operating state S. We denote such probability by

Expo(G, p,P, kreq), or Expo(G, p) for short.

3

5 4

1 2

intrusion path P

sink

Figure 5.1.1: An instance of the EXPO-RU problem

63



Example 5.1.1 Fig. 5.1.1 illustrates an instance of the EXPO-RU problem.

Dashed (respectively, solid) links represent full (respectively, reduced) trans-

mission ranges. Each double-arrowed link represents two independent arcs,

one in each direction (for simplicity, we assume that if arc (x, y) exists then

arc (y, x) exists). Dotted circles represent nodes that can sense P. ■

5.1.3 Concepts Needed for Algorithms

In addition to the concepts of 3-state node model, network state, network

configuration, pathsets, and cutsets introduced in previous chapters; we need

the following definition.

Coherence: A reliability system is coherent if every superset of a pathset (or

a cutset) is a pathset (respectively, cutset) [16]. The majority of results in the

literature apply to coherent systems (such as the EXPO-RU problem).

The stronger (weaker) than relation: In addition, we also need the fol-

lowing relation on the set of possible node states {s1, s2, · · · , slast}: for two

different states sst and swk, sst is stronger than (>) swk (conversely, swk is

weaker than (<) sst) if replacing the node-state pair (x, swk) with (x, sst) in

any pathset gives a pathset, and replacing (x, sst) with (x, swk) in any cut-

set gives a cutset. Our algorithms deal with problems where the set of node

states under the strength relation is a total order. In the EXPO-RU problem

a state with a longer transmission range is stronger than a state with a shorter

transmission range.

5.2 Bounds from Cutsets and Pathsets

The main focus of our work here is on developing algorithms for computing

upper bounds (UBs) and lower bounds (LBs) from given sequences of cutsets

and pathsets, respectively. We aim at developing algorithms that:

(a) are conceptually simple,
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(b) handle problems with multistate nodes,

(c) work with any arbitrary sequence Q of cutsets or pathsets (no particular

structure is required),

(d) allow each node to appear in any state in each cutset or pathset,

(e) runs in polynomial time in the number of nodes used in Q, and the

number of possible node states, and

(f) exhibit substantial improved execution times when processing structured

sequences for which efficient algorithms exist.

For a brief related background, we note that the direction of obtaining

bounds from cutsets and pathsets is a fundamental direction that has received

extensive research work (see, e.g., [7, 14, 16]). When Q = (C1, C2, · · · , Cr) is

a given sequence of cutsets (respectively, pathsets), the desired UB is given by

Pr(no cutset in Q occurs) (respectively, the desired LB is given by Pr(at least

one pathset in Q occurs)). If Q contains all possible mincuts (respectively,

minpaths) of a problem instance, the UB (respectively, LB) is the exact solu-

tion to the instance. Since some #P-complete reliability problems on special

classes of networks have polynomial number of mincuts (or, minpaths), it is

unlikely that a general algorithm exists that can handle any set Q of cutsets

(or, pathsets) in time polynomial in the size of Q.

Efficient algorithms for computing the desired bounds exist when the se-

quence Q has some special structure. For example, if all cutsets (or pathsets)

in Q are pairwise disjoint then a simple formula can be used to compute the

desired bounds (see, e.g., [8] for the EXPO-RU problem).

Additionally, if the sequence Q satisfies a property called the consecutive

sets property then also efficient solutions exist (see, e.g., [49]). The consecutive

property holds if whenever a node x belongs to two sets Ci and Cj, i < j, then

it belongs to all intermediate sets Ck, i ≤ k ≤ j.

Our developed algorithms here satisfy the above desired properties, and

work for any coherent system where the node states have a total order under

the strength relation.
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5.3 A Cutsets Algorithm for Multistate Nodes

In this section, we present our general algorithm for computing the probability

that no cutset in a given sequenceQ = (C1, C2, · · · , Cr) of cutsets occurs. That

is, the algorithm takes as an input a cutset sequence Q = (C1, C2, · · · , Cr), and

a sequence X = (x1, x2, · · · , xnQ
) and produces the output Pr(no cutset in

Q occurs). To achieve efficiency, we use a dynamic programming approach

that stores and updates information about many network configurations in one

dynamic program configuration type, as described below. We first introduce

the two following ingredients:

• Node processing order, and

• Dynamic program configurations types.

5.3.1 Node Processing Order

Any ordering X = (x1, x2, · · · , xnQ
) of the nodes used in the sequence Q =

(C1, C2, · · · , Cr) gives a correct solution. However, improved bounds on the

worst case running times can be shown in some special cases if we use the

following ordering, called left-right (LR) ordering. For a node x, denote by

first(x) (last(x)) the index i ∈ [1, r] of a cutset Ci where node x is first

(respectively, last) used in the input sequenceQ. A sequenceX satisfies the LR

ordering property if node xi precedes node xj, i ≤ j, in X only when either (a)

first(xi) ≤ first(xj), or (b) first(xi) = first(xj) and last(xi) ≤ last(xj).

C1C1C1 C2C2C2 C3C3C3 C4C4C4

www reduced fail

xxx reduced fail

yyy reduced fail

zzz reduced

Figure 5.3.1: Incidence relation between 4 cuts and 4 nodes

Example 5.3.1 Fig. 5.3.1 illustrates the incidence relation between a se-

quence Q = (C1, C2, C3, C4) of 4 cutsets and 4 nodes where, e.g., C1 =

{(w, reduced)}, and C2 = {(w, fail), (x, reduced), (y, reduced)}. For node
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y, we have first(y) = 2 since C2 is the first cutset in Q that uses y, and

last(y) = 4. The node ordering X = (w, x, y, z) satisfies the LR property. ■

5.3.2 Dynamic Program Configurations Types

Given a node processing order X = (x1, x2, · · · , xnQ
), the algorithm processes

node xi in the ith iteration by examining the new configurations generated

by adding xi in each of its possible states (e.g., the full, reduced, and fail

states in the EXPO-RU problem) to network configurations over the previously

processed nodes (x1, x2, · · · , xi−1).

The algorithm achieves its efficiency by aggregating information about

several network configurations into one equivalence class. Each class corre-

sponds to a particular configuration type. The definition uses the assumed

total ordering of the possible states from the strongest to the weakest : (e.g.,

(full, reduced, fail)).

Definition (configuration types (c-types for short)). Let

S be a network configuration over nodes (x1, x2, x3, · · · ) processed

thus far. The type of S, denoted type(S), is a binary sequence

(b1, b2, · · · , br) where bi = 1 if at least one node x that appears in

cutset Ci appears in S in a state stronger than its state in Ci. Else,

we set bi = 0 (an initial value). Thus, we set bi = 1 if and only if

cutset Ci does not occur in network configuration S. ■

Below, we use s(x, S) (and, (s, Ci)) to denote the state of node x in the

configuration S (respectively, cutset Ci).

Example 5.3.2 For the example in Fig. 5.3.1, suppose that the algorithm

processes the nodes in the order X = (w, x, y, z). Assume that the algorithm

has finished processing nodes w and x. So, it has examined configurations

over these two nodes only. For a configuration S = {(w, full), (x, reduced)},

we have type(S) = (b1 = 1, b2 = 1, b3 = 1, b4 = 0). Here,

• b1 = 1 since (s(w, S) = full) > (s(w,C1) = reduced),
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• b2 = 1 since (s(w, S) = full) > (s(w,C2) = fail),

• b3 = 1 since (s(x, S) = reduced) > (s(x, C3) = fail).

• However, b4 = 0 since there is no node v in C4 where s(v, S) > s(v, C4).

■

5.3.3 Overview of the Algorithm

The overall algorithm takes as input a cutset sequence Q = (C1, C2, · · · , Cr),

and a sequence X = (x1, x2, · · · , xnQ
) and produces the output Pr(no cutset in

Q occurs). The algorithm utilizes two associative array, denoted R and T .

Each array provides a key-value mapping, where each key B = (b1, b2, · · · , br)

is a c-type, and the corresponding value R[B] (or T [B]) evolves iteratively to

the probability of obtaining network configurations of type B. The algorithm

is organized around the following functions.

Function Main. The pseudo code of function main is shown in Fig. 5.3.2.

Step 1 initializes the table R to hold one state type B = (b1 = 0, b2 =

0, · · · , br = 0) that corresponds to the empty network configuration where

no node is assigned to any state. Step 2 iterates over each node x in the input

sequence X. In the ith iteration, i ∈ [1, nQ], we use node x = xi to generate

all possible c-types where each c-type B′ is associated with network configu-

rations over nodes in (x1, x2, · · · , xi). During each such iteration, table R is

used as a source, and table T is used as a destination.

To generate such c-types, the two nested loops in Steps 3 and 4 iterate over

all keys in table R, and all possible states s(x) of node x. Step 5 computes the

new c-type B′ by invoking function NextState, and updating the corresponding

probability T [B′]. Step 6 deletes from table T c-types that do not contribute

to the final solution (as explained in Section 5.3.4). Step 7 exchanges the roles

of table R and T prior to the start of the next iteration that processes node

xi+1. Finally Step 8 returns the computed solution.

Function NextState. The pseudo code of function NextState is shown in
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Function Main(Q, p,X):
Input: A sequence Q = (C1, C2, · · · , Cr), r ≥ 1, of mincuts, a table p of

node state probabilities, and a sequence X = (x1, x2, · · · , xnQ
) of

node processing order for the nodes used in Q

Output: Return sol = Pr(no mincut in Q occurs)

1. initialize R[(b1 = 0, b2 = 0, · · · , br = 0)] = 1.0
2. foreach (node x in the ordering X)

{
3. foreach (state type B = (b1, b2, · · · , br) in R)

{
4. foreach (node state s(x) ∈ {full, reduced, fail})

{
5. a. B′ = NextState(B, x, s(x))

b. T [B′] +=R[B]× ps(x)(x)
}

}
6. delete from table T any non-extensible c-type B′

7. exchange pointers to tables R and T ; empty table T
}

8. return sol = R[(b1 = 1, b2 = 1, · · · , br = 1)]

Figure 5.3.2: Function Main for the EXPO-RU problem

Function NextState(B, x, s(x)):
Input: A state type B = (b1, b2, · · · , br), a node x, and a state s(x) of node

x
Output: A state type B′ = (b′1, b

′
2, · · · , b

′
r) obtained by adding the

node-state pair (x, s(x)) to any network configuration (on the
nodes of X processed thus far) of type B

Notation: s(x) ≤ s(x,Cj): input state s(x) equals to, or weaker than, the
state of node x in cutset Cj

1. for (j = 1, 2, · · · , r)
{

2. if (x ∈ Cj AND s(x) > s(x,Cj)) b′j = 1
else (i.e., x /∈ Cj OR (x ∈ Cj AND s(x) ≤ s(x,Cj)) b

′
j = bj

}
3. return state type B′ = (b′1, b

′
2, · · · , b

′
r)

Figure 5.3.3: Function NextState

Fig. 5.3.3. The function takes as input a c-type B = (b1, b2, · · · , br) and a node

x in state s(x). The function returns a new c-type B′ = (b′1, b
′
2, · · · , b

′
r) such
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that if S is a configuration of type B then type(S
⋃
(x, s(x)) = B′.

This is done by considering the effect of (x, s(x)) on each bit bj, j ∈ [1, r],

in B. In particular, if bj = 0, and s(x) is a stronger state than the state

s(x, Cj) of x in Cj then we set b′j = 1. Else, we set b′j = bj.

5.3.4 Deleting Non-extensible c-types

To further increase the efficiency of the algorithm, Step 6 in function Main

deletes the c-types from array T that do not contribute to the final solution

associated with the c-type (b1 = 1, b2 = 1, · · · , br = 1). We call such c-types

non-extensible. To explain this step, we introduce the following partitioning of

the cutsets in Q into three disjoint subsets during the processing of any node

xi, i ∈ [1, nQ] (each subset can possibly be empty):

– Pre(xi, X,Q): the subset of Q where each cutset Cj has all of its nodes

V (Cj) occurring before node xi in the processing sequence X.

– Active(xi, X,Q): the subset of Q where each cutset Cj either has node

xi ∈ Cj, and/or Cj has at least one node occurring before xi in X, and

another node occurring after xi in X.

– Post(xi, X,Q): the subset of Q where each cutset Cj has all of its nodes

V (Cj) occurring after xi in X.

C1C1C1 C2C2C2 C3C3C3 C4C4C4 C5C5C5

x1x1x1 •

x2x2x2 • •

x3x3x3 •

x4x4x4 • • •

Figure 5.3.4: An example with r = 5 cutsets on nQ = 4 nodes

Example 5.3.3 Fig. 5.3.4 illustrates the incidence relation between a se-

quence Q = {C1, C2, · · · , C5} of cutsets and 4 nodes. For the sequence

X = (x1, x2, x3, x4), we have: Pre(x3, X,Q) = {C1}, Active(x3, X,Q) =

{C2, C3, C4}, and Post(x3, X,Q) = {C5}.■
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As can be seen, during the ith iteration, if B = (b1, b2, · · · , br) is a c-

type in table R, calling function NextState can return a new c-type B′ where

b′j ̸= bj only if the corresponding cutset Cj ∈ Active(xi, X,Q). Otherwise (if

Cj ∈ Pre(xi, X,Q) or Cj ∈ Post(xi, X,Q)), the function keeps b′j = bj. Since

for any index i, i ∈ [1, nQ], we have Pre(xi, X,Q) ⊆ Pre(xi+1, X,Q), we can

characterize non-extensible c-types as follows.

Definition (non-extensible c-types). Given sequences Q and

X, during the ith iteration, in Step 6 a c-type B′ = (b′1, b
′
2, · · · , b

′
r)

in table T is non-extensible (w.r.t. the remaining nodes (xi+1, xi+2, · · · ))

if there is an index j, j ∈ [1, i], such that bj = 0 and the corre-

sponding cutset Cj ∈ Pre(xi, X,Q). ■

By the above observation, all such non-extensible c-types can be deleted

in Step 6.

Example 5.3.4 Using the example of Fig. 5.3.4, in the iteration that pro-

cesses node x3, Step 6 can delete the c-type B = (b1 = 0, b2 = 1, b3 = 1, b4 =

1, b5 = 0) since C1 ∈ Pre(x3, X,Q). ■

5.3.5 Correctness and Running Time

Using induction on the number of iterations done by the main loop of function

Main, one can show that

Theorem 5.3.1 Following the end of the ith iteration, i ∈ [1, nQ], of the main

loop in function Main (Step 2) the function computes: (a) a complete set of

c-types corresponding to network configurations on the prefix (x1, x2, · · · , xi)

of X that contribute to the final result, and (b) for each computed c-type

B, R[B] is the probability of obtaining a configuration S (over (x1, x2, · · · xi))

where type(S) = B. ■

Proof.

Part (a) follows since we induct on the iteration number i. The basis for

i = 1 holds since Step 1 initializes table R with the c-type (b1 = 0, b2 =
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0, · · · , br = 0) corresponding to the empty network configuration over the

nodes in (x1, x2, · · · , xnQ
). Iteration i = 1 generates all possible c-types re-

sulting from taking node x1 in each of its possible states.

For i > 1, we assume that the algorithm satisfies the induction hypothesis

for all iteration in the range [1, i−1]. The ith iterations starts with a complete

and correct table R. The body of the loop exhaustively generates in table T all

possible c-types that can be obtained from all c-types in table R by considering

node xi in all of its possible states. Subsequently, Step 6 deletes non-extensible

states from table T .

Part (b) follows since the algorithm considers the effect of each node state

s(x) of each node x in the ordering X on the state types in R.

■

Running Time. The maximum size of table R (or T ) determines the worst

case running time of the overall algorithm. When |Q| = r cutsets, a rough

bound on such a maximum size is 2r keys (c-types). However, a tighter bound

on the size of table R at the end of the ith iteration can be obtained by

considering the number of cutsets in the set Active(xi, X,Q). So, we introduce

the following function:

• n(X,Q) is the cardinality of the largest active set among the sets in

{Active(xi, X,Q) : i ∈ [1, r]}. For instance, in the example of Fig. 5.3.4,

n(X,Q) = 3 since Active(x3, X,Q) = {C2, C3, C4} is the largest active

set.

Thus, in any iteration, the maximum size of table R is bounded by 2n(X,Q).

We now derive the running time of the overall algorithm using the following

notation: nQ (= |X|), r (= |Q|), 2n(X,Q) (maximum size of table R), O(nQ · r)

(time to compute n(X,Q)), and O(r) (time to execute function NextState).

We assume a constant number of node states, and the use of associative arrays

that provide O(1) access and update time for each entry.

Theorem 5.3.2 Function Main runs in O(nQ · 2n(X,Q) · r) time.
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Proof. The running time is dominated by the execution of Step 5 over all

O(nQ · 2n(X,Q)) iterations done by Steps 2 to 4. The result follows since Step

5 requires O(r) time. ■

5.4 Performance on Special Cases

In this section, we show substantially improved running times of the algorithm

when processing two special types of cutset sequences. In the first type, Q,

|Q| = r, is a sequence of pairwise node-disjoint cutsets. For this type, a

formula for computing the solution in O(nQ) time exists. For such a sequence

Q, when X satisfies the LR property (cf., Sec. 5.3.1), the layout of the (Q,X)-

incidence matrix is as illustrated in Fig. 5.4.1(a). Here, for each node xi,

we have |Active(xi, X,Q)| = 1. Hence, n(X,Q) = 1, and the running time

reduces to O(nQ · r).

C1C1C1 C2C2C2 C3C3C3 C4C4C4

...

...

...
...
...
...

...

...

...
...
...
...

...

...

...

(a)

C1C1C1 C2C2C2 C3C3C3 C4C4C4 C5C5C5

x1x1x1 • •

x2x2x2 • •

x3x3x3 • •

x4x4x4 • •

(b)

Figure 5.4.1: (Q,X)-incidence relations

In the second type, Q is a consecutive sequence of cutsets, and each node

x appears in Q in only one state, denoted s(x,Q). For this type, algorithms

exist in the literature for computing the solution in O(nQ · r) time for 2-

state (operate/fail) systems. For such a sequence Q, when X satisfies the

LR property, the layout of the (Q,X)-incidence matrix is as illustrated in

Fig. 5.4.1(b) (each node x appears in a contiguous interval of cutsets in Q).

Here, we note that at the start of the ith iteration, i ≥ 2 of the algorithm’s

main loop, table R contains only c-types that matches the pattern 1∗0∗ com-

posed of a (possibly empty) sequence of 1s, followed by a (possibly empty)

sequence of 0s. Only c-types matching this pattern can be extended to the
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c-type solution (b1 = 1, b2 = 1, · · · , br = 1) by processing the remaining nodes

(xi, xi+1, xi+2, · · · ), given that any such node xj appears only in one state

s(xj, Q). The pattern gives rise to at most r c-types. Thus, the maximum size

of the table R is r, and the overall algorithm runs in time O(nQ · r2).

5.5 A Pathsets Algorithm for Multistate Nodes

The algorithm for computing a LB from a given sequence Q = (P1, P2, · · · , Pr)

of pathsets is similar to the cutsets algorithm with the following few (but

critical) modifications:

• Function Main, Step 1: initialize R[(b1 = 1, b2 = 1, · · · , br = 1)] (this

c-type corresponds to assuming that each pathset occurs)

• Function Main, Step 8: return sol = 1−R[(b1 = 0, b2 = 0, · · · , br = 0)]

(the c-type (b1 = 0, b2 = 0, · · · , br = 0) corresponds to configurations

where all pathsets do not occur)

• Function NextState, Step 2:

if (x ∈ Cj AND (s(x) < s(x, Cj)) b
′
j = 0 else b′j = bj

5.6 Consecutive sets

Algorithms for computing bounds (both UBs and LBs) from a given sequence

of cutsets and pathsets are valuable tools for evaluating the reliability of many

networks problems. One important class of such algorithms concerns the use

of sequences that satisfy the consecutive sets property [44]. Formally, given

a set of elements (e.g., nodes or edges of a graph) E = {e1, e2, ..., en} and a

sequence Q = (q1, q2, ..., qr) where each qi is a subset of E, the sequence Q is

said to have the consecutive set property if and only if whenever an element

x belongs to sets qi and qk, i < k, then x belongs to each intermediate set qj

where i ≤ j ≤ k. In the literature, it has been noted that any sequence of

node disjoint sets satisfies the consecutive sets property. Hence, bounds from

consecutive sets can improve on bounds obtained from disjoint sets (e.g., [16]).
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Examples of using consecutive sets include the work of [45] for computing LBs

from pathsets, and [19] for computing UBs from cutsets.

In this section, we present a core algorithm that can be used to build such

a consecutive sequence of cutsets or pathsets. The algorithm is an efficient

heuristic algorithm to solve a problem, called the consecutive sequence exten-

sion (CS extend) problem, defined below.

Definition (the CS extend problem): Given a set of elements

E = {e1, e2, ..., en} and a consecutive sequence (of type pathsets

or cutsets) Q = (q1, ..., qi, qi+1, ..., qr) of length |Q| = r, extend (if

possible) Q to a larger consecutive sequence (of the same type as

Q of either pathsets or cutsets) Q′ = (q1, ..., qi, X, qi+1, ..., qr) of

length |Q′| = r + 1, where X ⊆ E is a new added set. ■

To simplify the presentation, we henceforth assume that Q is a sequence

of cutsets (the solution approach is similar for pathsets).

5.6.1 Algorithm Idea

Our approach to solve the above problem is organized around two functions:

1. CS extend: (see, Fig. 5.6.3) a function that attempts to compute a new

set X that can be inserted in the sequence Q = (q1, ..., qi, qi+1, ..., qr)

between qi and qi+1, for a given input index i, where i ∈ [1, |Q| − 1], and

2. Q extend: (see, Fig. 5.6.4) a function that calls the above CS extend

function while varying the index i, i = 1, 2, ..., |Q| − 1.

Notation: We need the following notation to explain the function CS extend.

Given a sequence of consecutive cutsets Q = (c1, ..., ci, ci+1, ..., cr), Fig. 5.6.1

sketches the relationship between some of the used notation.

• E(Qsub): If Qsub is a (possibly empty) subsequence of Q then E(Qsub)

denotes the set of elements used in Qsub
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Figure 5.6.1: Notation used in function CS extend

• Estart: The set of elements (possibly empty) used in the prefix (c1, ..., ci−1)

that are not used anywhere else in Q. That is, Estart = E((c1, ..., ci−1)) \

E((ci, ..., cr))

• Ei,i+1: The set of elements (possibly empty) used in both ci and ci+1.

That is, Ei,i+1 = E((ci, ci+1))

• Ei,i+1: The set of elements (possibly empty) used in ci but not in ci+1.

That is, Ei,i+1 = E(ci) \ E(ci+1)

• Ei,i+1: The set of elements (possibly empty) used in ci+1 but not ci. That

is, Ei,i+1 = E(ci+1) \ E(ci)

• Eend: The set of elements (possibly empty) used in the suffix (ci+2, ..., cr)

that are not used anywhere else in Q. That is, Eend = E((ci+2, ..., cr)) \

E((c1, ..., ci+1))

• Erem: The set of elements (possibly empty) not in Q. That is, Erem =

E \ E(Q).

To illustrate the use of the above notation, we draw an example using the

well-known (s, t)-terminal reliability problem [16]. The problem assumes that

edges of a given undirected graph can fail independently of each other. A

pathset is a set of edges connecting two distinguished nodes (s and t). A

cutset is a set of edges whose removal disconnects s from t.
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Figure 5.6.2: An instance of the (s, t)-terminal reliability problem

Example 5.6.1 Figure 5.6.2 illustrates an instance of the (s, t)-terminal re-

liability problem where edges fail (so, E = {1, 2, 3, 4, 5, 6, 7, 8}). Assume we

start with a consecutive sequence of cutsets Q = (c1 = {1, 2, 3}, c2 = {6, 7, 8}),

and set i = 1. Then we get the following edge sets: Estart = ϕ, Ei,i+1 = ϕ,

Ei,i+1 = {1, 2, 3}, Ei,i+1 = {6, 7, 8}, Eend = ϕ, and Erem = {4, 5}. ■

Function CS extend: The pseudo code of function CS extend is shown in

Figure 5.6.3. The main loop of the function (Step 2) performs |Ei,i+1|×|Ei,i+1|

iterations. In each iteration, we obtain an instance (G′, C, p,P, kreq) of the

EXPO-RU E2C problem (discussed in Chapter 4). Each iteration corresponds

to a choice of a pair of nodes (x, y) where x ∈ Ei,i+1 and y ∈ Ei,i+1 to exclude

from a solution X (so, X is guaranteed to be different from ci and ci+1). The

instance is obtained as follows:

• Step 3 constructsG′ by assigning the full state to all nodes in Estart

⋃
Eend

⋃
{x, y}

from G.

• Step 4 constructs a configuration C by including all nodes in Ei,i+1.

• Step 5 solves the E2C problem on the formed instance (G′, C, p,P, kreq).

• In Step 6, if a solution Cnew exists, set X = C
⋃

Cnew and return X.

Else, the search continues by preforming the next iteration.

Function Q extend: The pseudo code of function Q extend is shown in Fig-

ure 5.6.4. The function is used to call the above CS extend function while

varying the index i, i = 1, 2, ..., |Q| − 1. It returns a potentially larger consec-

utive sequence Q′ of the same type as Q.
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Function CS extend(E,Q, i)
Input: An instance of the EXPO-RU problem (G, p,P, kreq), consecutive

sequence of cutsets Q = {c1, c2, ..., cr} on |Q| ≥ 1 sets of elements
(nodes), and a cutset index i where i < |Q|

Output: A set X ⊆ E such that Q′ = (c1, ..., ci, X, ci+1, ..., cr) is a
consecutive sequence of cutsets.

1. Set X = ϕ

2. foreach (pair (x, y) where x ∈ Ei,i+1 and y ∈ Ei,i+1)

{ //Form an instance (G′, C, p,P, kreq) of the E2C problem

3. Construct G′ from G by assigning the full state to all nodes in
Estart

⋃
Eend

⋃
{x, y}

4. Construct a configuration C by assigning a state s(x) to each node
x ∈ Ei,i+1; the sate s(x) can be either the state of x in cutset ci
or ci+1

5. Solve the instance (G′, C, p,P, kreq) of the E2C problem

6. if (a solution Cnew exists) return X = C
⋃
Cnew

else continue with the next iteration
}

Figure 5.6.3: Pseudo code for function CS extend

Function Q extend(Q)
Input: A consecutive sequence Q (of type pathsets or cutsets)
Output: Returns a potentially larger consecutive sequence Q′ of the same

type as Q

1. Set Q′ = ϕ
2. for (i = 1, 2, ..., |Q| − 1)

{
3. X = CS extend(E,Q, i)
4. If (X exists)
5. Insert X between the sets indexed i and i+ 1 in Q

}
6. return Q′ = Q

Figure 5.6.4: Pseudo code for function Q extend

5.6.2 Correctness and Running Time

An important ingredient in the the proof of correctness is the following char-

acterization: for a given index i, i ∈ [1, |Q| − 1], a cutset X is a solution to an
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instance (E,Q, i) of the CS extend problem if and only if it satisfies the two

following conditions:

a) X must include all elements in Ei,i+1, and

b) X can include elements only from Ei,i+1

⋃
Ei,i+1

⋃
Erem, but X must

differ from each of ci and ci+1 (e.g., by excluding a node x ∈ E(ci) and

a node y ∈ E(ci+1)).

The following example illustrates the above characterization.

Example 5.6.2 Consider the instance (E,Q, i = 1) of the CS extend prob-

lem in Example 5.6.1. A cutset X is a solution if and only if it satisfies the

two conditions:

• X must include elements in Ei,i+1 = ϕ

• X can include elements from Ei,i+1

⋃
Ei,i+1

⋃
Erem = {1, 2, 3, 4, 5, 6, 7, 8}

but X must differ from ci and ci+1. Thus, cutset X = {2, 3, 4, 6} is a

possible solution. ■

Running time: Function CS extend runs in time O(|Ei,i+1|.|Ei,i+1|.n.(n+m))

on a probabilistic graph G with n nodes and m edges. This follows since each

iteration of CS extend solves an instance of E2C problem by invoking, e.g.,

the function E2C-BFS, which takes O(n.(n+m)). ■

5.7 Numerical Results

In this section, we present numerical results that illustrate the performance

and use of our devised algorithms. All algorithms are implemented in Python,

and run on a 2.8 GHz laptop with 8 GByte of main memory. We use a 3-state

node model (with a set {full, reduced, fail} of states), and compare the ob-

tained results with the results obtained in [8] where a more extensive and time

consuming iteratively improvable algorithm, called the factoring algorithm, is

used.
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To allow for comparisons, we use the class of double-diagonal grids (x-grids,

for short) used in [8]. An x-grid has a structure similar to the graph in Fig. 1.2.1

extended to have any desired number of rows and columns. All nodes have

the same full (or reduced) transmission range. A square x-grid of dimension

W×W , W ≥ 2, has its rows (columns) numbered 0, 1, · · · ,W−1. We place the

sink node at the origin (x = 0, y = 0), and assume that the intrusion path P

is placed vertically between the rightmost two columns. Only nodes adjacent

to P can sense the path.

Graph legend. We use the following notations:

• NDP (or, NDC): node-disjoint pathsets (or, cutsets),

• CSP (or, CSC): consecutive sets of pathsets (or, cutsets), and

• USP (or, USC): unrestricted sets of pathsets (or, cutsets).

• Factoring: the factoring algorithm discussed in [20]. We use it to gener-

ate a set of pairwise s-disjoint pathset that can be used to obtain bounds

from the sum of disjoint products.

5.7.1 Sizes of the Obtained Pathsets and Cutsets

Fig. 5.7.1a shows the number of pathsets and cutsets of each type (node-

disjoint, consecutive, and unrestricted) extracted from x-grids of width W ∈

[2, 6] each when kreq = 1. As discussed below, the larger number of obtained

unrestricted sets results in notable improvements of the bounds. The pro-

cessing time of any square x-grid using the algorithm ranges from 1.1 msec

(millisec) for short sequences (e.g., r = 5) to 4.7 msec for longer sequences

(r = 22). In comparison, performing 1000 iterations of the factoring algo-

rithm on an x-grid of size W = 6 requires around one minute.

5.7.2 Comparisons Among Lower Bounds

Fig. 5.7.1b illustrates the obtained LBs on x-grids with W ∈ [2, 6], (pfull =

1/3, pred = 1/3), and kreq = 1. As can be seen, the bounds obtained by

processing a sequence of unrestricted pathsets improve significantly on the
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Expo(G, p) ≥ pmin. Based on the USP curve obtained by the algorithm, one

can estimate pmin ≈ 0.25 (and by doing much more work to implement and

run the factoring algorithm, one estimates pmin ≈ 0.2). The results are encour-

aging since designers expect the performance of the overall network to exceed

the performance of each single node over a wide range of node operating pa-

rameters.

5.7.4 Optimal Sink Placement

In this experiment we aim at tackling a WSN design problem where we want to

place the sink at a location that maximizes the exposure measure. Fig. 5.7.1d

illustrates the curves obtained when pfull = pred = 0.25, kreq = 1, and the sink

location is changed diagonally from coordinates (0, 0) to (5, 5) in a 6×6 x-grid.

Both the USP bound obtained by the devised algorithm, and the more

extensive factoring algorithm indicate that location (4, 4) is the best location.

This location wins for its closeness to the path P, and the quality of the

pathsets enabled by this location.

5.8 Concluding Remarks

In this chapter, we use a probabilistic graph model with multistate nodes

to model the different energy states caused by fluctuations in the harvested

energy in an EH-WSN. We consider two general types of reliability problems,

and each type has two problems defined on pathsets and cutsets, respectively.

For the cutsets (or, pathsets) version of the first problem type, we devise

a dynamic programming approach to compute bounds on the exact solution

from sequences of the problem’s cutsets (respectively, pathsets). The resulting

algorithms are versatile and work for any reliability type problem where the

system is coherent and the set of node states form a total order under certain

relation. For the cutsets (or, pathsets) version of the second problem type, we

are given a disjoint sequence of cutsets (respectively, pathsets), and we extend

it to a potentially larger sequence of consecutive cutsets (respectively, pathset)

that exploits the multi-state node model.
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Chapter 6

Directional Path Exposure with
Range Uncertainty

In this chapter, we consider a path exposure problem in EH-WSNs where

nodes are equipped with directional communication devices. We formalize

a directional path exposure with range uncertainty, denoted DirEXPO-RU,

where nodes manage fluctuations in their stored energy by adjusting some of

their directional transmission parameters. The DirEXPO-RU problem seeks

to quantify the ability of a network to detect and report traversal along a given

path. A problem that arises in managing the network resources to maximize

this reliability measure is to adjust the transmission beam width of each node,

where nodes beam centers are given as input. We formalize a half-width angle

selection problem, denoted HWAS, and propose two configuration approaches

to configure the transmission beam width of each node in the network. Based

on the proposed approaches, we develop a heuristic algorithm to deal with

the problem, and the devised algorithm is used in a framework for computing

bounds for the DirEXPO-RU problem. Then we compare the obtained results

with results obtained using omnidirectional transmission.

Some of the results in this chapter appear in [12].
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6.1 Overview of System Model

In this section, we introduce the needed assumptions and notations about the

node model, the network model, and the directional transmission model.

6.1.1 Node Operation Model

We adopt the same node model as in previous chapters. Here, however, we

assume that each node x in a given EH-WSN is equipped with a directional

communication device, and an omnidirectional sensing device. Energy har-

vested at each node x fluctuates over time. For the purpose of simulating the

network (e.g., to obtain the probability distributions mentioned below), we

assume that time is divided into equal length slots.

Since wireless transmission is the most energy consuming activity in many

WSNs, we assume that such fluctuations affect the transmission range of a

node (but does not affect much its sensing range). An energy management

unit (EMU) in each node controls a node’s state during any time slot. Our

work employs a multi-state node model for each node. In its basic form, the

model associates 3 states (full, reduced, and fail) with each non-sink node

x, defined as explained in previous chapters (e.g., Section 5.1).

6.1.2 Network Reliability Model

We adopt a network reliability model that abstracts the above node dynamics

over a long operation time by associating with each node x a probability

distribution where for each possible state s ∈ {full, reduced, fail} we know

the probability ps(x) (also denoted p(x, s)) that node x is in state s (here,

pfail(x) = 1− pfull(x)− pred(x)). In addition, we assume that different nodes

are assigned different states independently of each other. Such an assumption

is common in the literature to simplify the analysis, and also to take care of

applications where different nodes perform different tasks independent of each

other.

In overall, an EH-WSN is modelled over a long period of time by a proba-

bilistic graph (G, p) where G = (V ∪ {sink}, E) is a directed graph on a set V
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of EH wireless nodes, a non-EH and fully operational sink node, and a set E

of directed communication links (also referred to as directed edges or arcs).

The length of each arc (x, y) ∈ E emanating from a node x depends on the

energy state of x and also the directional transmission parameters associated

with x, as explained below. We note that G is a directed multigraph with

parallel arcs. Parallel arcs from a node a to a node b arise since if (a, b) exists

when a is in the full energy state then (a, b) may also exist when a is in the

reduced energy state (yet, they are considered two different arcs).

6.1.3 Node Directional Communication Model

We assume that all nodes in G are deployed in a 2-dimensional space, where

each node has an (x, y)-coordinate. The transmission beam of each node x

(when x is in either the full, or the reduced state) can be obtained from the

node’s directionality parameters, denoted DIRcomm(x). Our model uses the

following parameters: DIRcomm(x) = {Θmid, αfull, αred, Rfull, Rred} where

• Θmid is a counterclockwise (CCW) angle between two rays emanating

from x. The first ray is a horizontal ray (i.e., parallel to the x-axis)

that extends to the right. The second ray defines the middle of x’s

transmission beam, see, e.g., Fig. 6.1.1.

• For α = αfull, the angle Θmid − α (or, Θmid + α) is a CCW angle be-

tween two rays emanating from x. The first ray is a horizontal ray as

above. The second ray defines the start (respectively, the end) of x’s

full range transmission beam (thus, x’s beam is of width 2α). When

α = 180◦, the beam is of width 360◦, and node transmission becomes

omnidirectional. A similar definition applies when α = αred to describe

the reduced transmission beam.

• Rfull (or, Rred) is the maximum x’s transmission range when x is in the

full (respectively, reduced) state, and the angle α is sufficiently narrow

(e.g., α = 1◦).

• For a given half-width beam angle α = αfull, the actual full transmission
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range of a node x depends on Rfull and the angle α. We use Rfull(α) to

refer to such an actual transmission range. In general, such a transmis-

sion range decreases as α increases. Similarly, we use Rred(α) to refer to

a node’s reduced transmission angle when α = αred.

Figure 6.1.1: Node directional communication model.

In Section 6.5, we experiment with grid networks having diagonal links.

Each grid network has a sink node located at (x, y)-coordinates (0, 0), and

the grid has horizontal (and vertical) links parallel to the x-axis (respectively,

the y-axis), in addition to the diagonal links. The horizontal (and vertical)

distance between two horizontally (respectively, vertically) adjacent nodes is

set to 100 units. For full energy transmission, we set Rfull(α = 1◦) = 360

units, and use a function that reduces the transmission range linearly so that

Rfull(α = 180◦) = 180 units (for omnidirectional transmission). Likewise, for

reduced energy transmission, we set Rred(α = 1◦) = 180 units, and Rred(α =

180◦) = 100 units.

6.1.4 The Directional EXPO-RU Problem

In the context of designing EH-WSNs with directional communication nodes,

we aim at developing methods to configure node transmission dynamically so

as to increase the overall network path exposure reliability. Achieving this

goal is non-trivial since the EXPO-RU assessment problem has been shown in

[11] to be intractable (#P-hard), and there is no simple optimization criterion

that can be used to adjust the node directionality parameters so as maximize
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the overall network reliability. We use the name DirEXPO-RU to refer to the

EXPO-RU problem when nodes employ directional transmission. We use the

concepts of network state, network configuration, and pathset introduced in

previous chapters.

Example 6.1.1 Fig. 6.1.2 shows an instance of a 3×3 grid network with one

unit of horizontal (or, vertical) spacing. The dashed lines (coloured red) rep-

resent communications in full power whereas the solid lines (coloured blue)

represent communications in reduced power. In Fig. 6.1.2, Θmid = 135◦,

αfull = αred =
135◦

2
, Rfull(αfull) = 2 units, and Rred(αred) = 1 unit. If kreq = 2,

then the configuration C = {(3, reduced), (4, full)} is a pathset and, indeed,

it is a minpath.

Figure 6.1.2: An instance of a 3× 3 grid network.

In Section 6.2, we introduce two approaches for adjusting the directionality

parameters so as to obtain good network reliability performance.

6.2 Approaches for Adjusting Directional Trans-

mission

Given a node x in a state s ∈ {full, reduced}, we present in this section two

approaches for configuring the directionality parameters of the node-state pair

(x, s). We assume that the given problem instance specifies (as part of the

input) the angle Θmid that determines the direction of the middle line of x’s

transmission beam (e.g., one may use the direction of the line segment between
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x and the sink node). To adjust the half-width angle α(x, s) for node x in state

s, we experiment with the following two approaches that aim at maximizing

the performance measure Expo(G, p).

6.2.1 Approach 1

In this approach, we adjust the angle α(x, s) so as to maximize the out-degree,

denoted deg+(x, s), of node x. Equivalently, we seek to maximize the num-

ber of out-neighbours reachable from node x in state s. We recall that the

actual transmission range Rfull(α) (or, Rred(α)) decreases as α increases. The

rationale of this approach is that the more directed links that exist in any net-

work state S of the resulting probabilistic graph (G, p), the more likely that

Expo(G, p) increases.

We next remark that maximizing deg+(x, s) for the node-state pair (x, s) is

a local operation to node x that does not depend on the directionality setting

of other nodes. Our implementation of this approach (present in next section)

performs sequential search for finding an optimized angle α(x, s) in the interval

[1◦, 180◦] in increments of some sufficiently small angle δ (e.g., δ = 1◦).

6.2.2 Approach 2

The above approach seeks to maximize the number of out-neighbours of node

x in state s. In this approach, we consider the quality of such out-neighbours.

In particular, this approach makes an effort to adjust the angle α(x, s) so as

to give preference to include out-neighbour y of x depending on the quality

of the best found directed path, denoted P ∗
y,sink, from y to the sink node.

Based on the quality of such a best found path, we associate with node y a

preference weight, denoted w(y), that takes on a value that is proportional to

the goodness of the corresponding best found directed path P ∗
y,sink.

We next remark that unlike the first approach, finding such a best path

P ∗
y,sink depends on the directionality setting of nodes other than node x (includ-

ing node y). To simplify the search for such a best path, we adopt a heuristic

solution that assumes that each node z, z ̸= x, operates in an omnidirectional

(full or reduced) mode.
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As done in approach 1, we perform a sequential search for a good setting

of the angle α(x, s) in the range [1◦, 180◦] in increments of some sufficiently

small angle δ (e.g., δ = 1◦). At each search step, the angle α(x, s) is assigned a

certain value, and each node z ∈ V , z ̸= x, is assumed to be omnidirectional.

With the angle α(x, s) assigned a specific value in each search step, node x

can reach a subset of its possible out-neighbours, denoted Sα(x,s). With each

possible out-neighbour y of x assigned a preference weight w(y), we define the

weight of the set Sα(x,s) to be w(Sα(x,s)) =
∑

y∈Sα(x,s)
w(y). Then, the search

algorithm selects an angle α(x, s) that gives the highest w(Sα(x,s)).

The details of computing the preference weight w(y) of a possible out-

neighbour y of x follows the following steps.

1. Let (a, b) be an arc in the probabilistic graph (G, p) that exists when node

a is in state s ∈ {full, reduced}. We recall that typically the graph G

has many parallel arcs since an arc (a, b) that exists when node a is in the

full state may also exist when a is in the reduced state (and the two arcs

are considered to be different). We associate with each such an arc (a, b)

a cost, denoted cost(a, b), that takes on a small value when the node state

probability p(a, s) takes on a high value (e.g., cost(a, b) = − log p(a, s)).

2. The cost of a directed path P(y,sink) from a node y to the sink, denoted

cost(P(y,sink)), is the sum of the costs of its arcs.

3. We set the directed graph Gx to be G with node x deleted. Taking

arc costs as distances in Gx and the sink node as a destination, we

solve a single-destination shortest paths problem to find a shortest path

from each potential out-neighbour y of x to the sink. We denote such a

shortest path by P ∗
y,sink.

4. Finally, we assign a preference value w(y) to node y so that the value is

inversely proportional to the cost(P ∗
y,sink) (e.g., w(y) = 1/cost(P ∗

y,sink)).

We conclude this section by noting that the two above approaches also

apply when each node has multiple states (i.e., not only the basic 3-state

model used to explain the approaches).
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6.3 More Algorithmic Details

In this section, we present a heuristic algorithm, called HWAS (for half-width

angle selection), that utilizes the two proposed approaches (explained in Sec-

tion 6.2) to configure the transmission beams of each individual node x in

the network given its working direction Θmid. The devised HWAS algorithm

produces two different types of results based on the selected approach.

6.3.1 Algorithm Idea

Consider an instance (G, p) of the DirEXPO-RU problem with directional

parameters DIRcomm(x) = {Θmid, αfull, αred, Rfull, Rred} for each node x ∈ G,

where Θmid, Rfull, and Rred are given. Our devised algorithm configures the

directionality parameters for each individual node x ∈ G by finding the half-

width angle α(x, s) for node x in state s using Approach 1 and Approach

2.

The algorithm utilizes an associative array, denoted Bestα, to store such

α(x, s) values. In other words, Bestα provides a key-value mapping, where a

key is a tuple (x, s) of node x in state s (e.g., s ∈ {full, reduced}), and the

corresponding value is α(x, s).

In particular, the algorithm configures the directionality parameters of the

node-state pair (x, s) by performing the following steps:

1. Perform a sequential search for a good setting of the angle α(x, s) in

the range [1◦, 180◦] in increments of some sufficiently small angle δ (e.g.,

δ = 1◦), which implies adjusting the transmission beam of node x in state

s to reach a subset of its possible out-neighbours, denoted Sα(x,s). After

processing all α(x, s), we obtain a set {Sα1(x,s), ..., Sα180(x,s)} of possible

out-neighbours of x that correspond to values of α(x, s).

2. We evaluate the obtained set, and select a member Sα(x,s) using either

Method-1 or Method-2 (explained below).

3. Then, we set Bestα(x, s) = α(x, s) that corresponds to the best subset

Sα(x,s) of out-neighbours of x in state s.
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6.3.1.1 Method-1

This method is based on Approach 1 (explained in Section 6.2). It is a base-

line method that selects α(x, s) for each node x ∈ G based on the number of

out-neighbours of x. The approach aims at increasing the reachablity of node

x to maximize the performance measure Expo(G, p). In particular, Method-1

works by selecting a member Sα(x,s) of {Sα1(x,s), ..., Sα180(x,s)} that has the high-

est number of out-neighbours of x. We set Bestα(x, s) = α(x, s) corresponding

to the selected member Sα(x,s).

6.3.1.2 Method-2

This method is based on Approach 2. It is a cost-based method that selects a

subset Sα(x,s) for each node x ∈ G based on good out-neighbours of x in state

s, and hence can improve the performance measure Expo(G, p). In particular,

Method-2 works by selecting a member Sα(x,s) of the set {Sα1(x,s), ..., Sα180(x,s)}

that has the highest weight, w(Sα(x,s)), as explained in Section 6.2. Then,

we set Bestα(x, s) = α(x, s) corresponding to the selected member Sα(x,s) of

out-neighbours of x in state s.

After computing αfull and αred for each node x ∈ G, the actual full (re-

spectively, reduced) transmission range of a node x is calculated as explained

in Section 6.2. Therefore, full (respectively, reduced) arcs for each node x ∈ G

are added based on node’s directionality parameters DIRcomm(x).

6.3.2 Algorithm Details

Fig. 6.3.1 shows a pseudo code for function HWAS. Step 1 initializes array

Bestα used to store α(x, s) for all nodes in G. The nested loop in Steps 2 and

3 iterates over each node-state pair (x, s) to find its half-width angle α(x, s).

Steps 4 and 5 perform a sequential search for a good setting of an angle α(x, s)

in the range [1◦, 180◦] (in increment of δ = 1◦). This process generates a set

{Sα1(x,s), ..., Sα180(x,s)} of possible subsets for node x’s neighbours. Step 6 eval-

uates each generated set, and selects a subset Sα(x,s) using either Method-1
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or Method-2. Step 7 sets Bestα(x, s) = α(x, s) corresponding to the best

subset Sα(x,s) of the out-neighbours of x in state s. Finally Step 9 returns

Bestα.

Function HWAS(G, p)
Input: An instance (G, p) of the DirEXPO-RU problem, and DIRcomm(x)

for each node x ∈ G

Output: Compute α(x, s) where x ∈ G and s ∈ {full, reduced}

1. set Bestα = {}

2. foreach (node x ∈ G)
{

3. foreach (node state s ∈ {full, reduced})
{

4. for (α = 1
◦

to 180◦ step δ)
{

5. find set {Sα1(x,s), ..., Sα180(x,s)} of subsets of out-neighbours
of x as explained in the text

}
6. evaluate the obtained set and select a subset Sα(x,s) for x in

state s using Method-1 or Method-2 as explained in the text

7. set Bestα[(x, s)] = α(x, s) that corresponds to Sα(x,s)

}
}

8. return Bestα

Figure 6.3.1: Function HWAS for the DirEXPO-RU problem

6.3.3 Running Time

Consider an input problem instance on a 3-state network with n nodes. Denote

by dmax the maximum possible out-degree of any node (dmax ≤ n− 1). Thus,

the maximum possible number of arcs in the network is m ≤ dmax(n− 1).

Method-1 iterates a fixed number of times (depending on the increment

angle δ) over every node-state pair (x, s). Each iteration examines at most

dmax possible out-neighbours of x. Thus, the algorithm requires O(n · dmax)

time.

Similarly, Method-2 iterates over every node-state pair (x, s). Assume a
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fixed number of node states (in Fig.6.3.1, we use only 2 states), and assume

a fixed number of times Step 4 iterates (depending on the increment δ), and

noting that in each iteration of Step 4 one can identify each set Sαi(x,s) of

out neighbours of x in O(n) time. We conclude that the algorithm requires

O(n · (n+m)) time. ■

6.4 Computing Bounds

One main contribution of this work is obtaining lower bounds (LBs) on Expo(G, p, kreq)

for the DirEXPO-RU problem where each input graph G is constructed by our

devised HWAS configuration methods. To compute the Expo measure for any

given problem instance, we use an iteratively improvable method, called the

factoring method. Reference [7] is among the early references to this general

method. Subsequently the method has been used to obtain lower and up-

per bounds on many reliability problems, including the class of path exposure

problems (see, e.g., [8, 20]). In [20], the authors adapt the factoring method to

compute lower bounds (LBs) and upper bounds (UBs) of the EXPO problem

by generating s-disjoint pathsets and cutsets, respectively.

In more details, the factoring algorithm systematically generates a set of

pairwise statistical disjoint (s-disjoint, for short) configurations that can be

used to obtain bounds from the sum of disjoint products. We call two con-

figurations C1 and C2 s-disjoint if at least one node, say x, that appears in

both C1 and C2 is assigned two different states in the two configurations. So,

Pr(Ci) + Pr(Cj) is the probability of obtaining at least Ci and/or Cj. For the

DirEXPO-RU problem, e.g., the configurations C1 = {(1, reduced), (2, fail)},

and C2 = {(1, full), (2, fail)} are s-disjoint since node 1 is assigned two dif-

ferent states in C1 and C2.

For the EXPO-RU problem (with omnidirectional transmission), the work

in Chapter 3 develops function E2P (for extension to a pathset) that extends

(if possible) a given configuration C to a pathset. The E2P function is used

within the factoring method to obtain LBs on the solutions. In this context,
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the method generates a set {P1, P2, · · · , Pr} of pathsets such that

Expo(G, p, kreq) ≥
r∑

i=1

Pr(Pi) (6.4.1)

In the next section, we present results based on using this latter method to

compute LBs on problem instances generated by our HWAS configuration

methods.

6.5 Numerical Results

In this section, we present results to evaluate and compare the performance of

the devised directional transmission configuration approaches.

Test networks. The results are for a class of networks that can be viewed

as extended 2-dimensional square grid networks (denoted x-grids). Any such

W×W network G hasW rows (and columns) indexed as 0, 1, 2, · · · ,W−1 from

bottom to top (respectively, left to right). Each node has (x, y)-coordinates.

The sink node is placed at the origin at coordinates (0, 0). Rows (respec-

tively, columns) run horizontally (respectively, vertically) parallel to the x-axis

(respectively, the y-axis). The horizontal (or vertical) distance between two

consecutive nodes in the grid is set to 100 units.

As explained in Section 6.1.3, when a node is in the full energy state its

actual transmission range is assumed (for simplicity of obtaining numerical

results) to decrease linearly from Rfull(α = 1◦) = 360 units to Rfull(α =

180◦) = 180 units (the omnidirectional case) as the half-width beam angle α

increases. Thus, e.g., with omnidirectional transmission of an internal node x,

the node can reach 8 other nodes (corresponding to 4 horizontal and vertical

neighbours, and 4 diagonal nodes). Likewise, when a node is in the reduced

energy state its actual transmission range is assumed (again, for simplicity)

to decrease linearly from Rred(α = 1◦) = 180 units to Rred(α = 180◦) = 100

units as the half-width beam angle α increases. Thus, with omnidirectional

transmission of an internal node x, the node can reach 4 other nodes. In

each x-grid, the intrusion path P runs vertically between the rightmost two

columns. Only nodes that lie on the immediate left and right of P sense the
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The proposed approaches are used to configure the transmission beams of each

node for both the full and reduced power states. Fig. 6.5.2a and Fig. 6.5.2b

show the obtained number of links and exposure, respectively, for all methods:

Method-1, Method-2, and the Omni method.

Fig. 6.5.2a shows that the number of links increases as network’s size in-

creases for all used methods as a large network will have a higher number of

nodes, and hence more links. However, Method-1 obtains the highest number

of links compared to Method-2 and the Omni method.

Fig. 6.5.2b shows that the obtained results by Method-1 and Method-2

outperform the Omni method for different network sizes. The results illus-

trate the advantages of using directional sensors over omnidirectional as they

provide a higher level of tunability needed in optimizing their performance

when network’s size increases.

6.5.3 Identifying Good Working Direction Θmid

Configuring the direction of the transmission beam center (determined by the

angle Θmid) of nodes in the network is critical for obtaining good performance.

In cases when this parameter is misconfigured for a node, it is hoped that by

adapting the beam width the node can still deliver acceptable performance.

In this set of experiments, we examine this aspect when using W×W x-

grids and varying W in the range [2, 6]. Since the sink node is placed at the

(x, y)-coordinate (0, 0), the direction of the line between a node x and the

sink varies in the range [180◦, 270◦] (180◦ for nodes on the x-axis, and 270◦ for

nodes on the y-axis).

Fig. 6.5.3 shows detailed obtained results when changing Θmid in the range

[0◦, 360◦]. The results show that directional settings outperform the omnidi-

rectional setting when all nodes are oriented so that Θmid ∈ [180◦, 270◦]. The

results also show that even when Θmid = 90◦ (a setting that can be viewed

as a misconfiguration, given the sink position), the working of Method-1 and

Method-2 have been able to adjust the angle α of each node and the obtained

LBs are comparable with the omnidirectional case. The results also point to

the importance of adjusting the beam-width 2α based on the quality of the
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6.6 Concluding Remarks

In this chapter, we consider a fundamental problem on configuring the trans-

mission beams of nodes in a WSN that employs energy harvesting (EH) to

achieve prolonged operating time. We take the overall network reliability for

a path exposure problem as an objective function that we seek to maximize.

We propose two configuration approaches to configure the transmission beams

of each node in the network given its transmission beam centre. The proposed

approaches have shown the advantages of using directional transmission over

omnidirectional transmission.
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Chapter 7

Conclusion and Future Work

7.1 Summary

In this thesis, we consider EH-WSNs where fluctuations in a node’s stored

energy affect primarily its transmission range. We analyze a class of intru-

sion detection problems where an unauthorized traversal aims at crossing a

geographical area guarded by an EH-WSN. The main objective is to develop

methodologies to quantify the likelihood that an EH-WSN whose nodes are

subject to energy fluctuations can provide simultaneous detection and report-

ing of unauthorized traversal along a given path to a sink node.

We formalize an EH-WSN reliability problem, called path exposure with

range uncertainty (EXPO-RU) that calls for computing the probability that

the collaborative work of all nodes in a given EH-WSN succeeds in detecting

and reporting an intrusion along a given path. We show that the problem is

computationally intractable, and develop iteratively and non-iteratively im-

provable algorithms for driving lower and upper bounds on the exact solutions

of the problem.

In Chapter 3, we formulate the EXPO-RU problem and show that the prob-

lem is #P-hard. In addition, we consider the extension to a pathset (E2P)

problem for the EXPO-RU problem, and propose an efficient heuristic algo-

rithm to solve the E2P problem. The devised algorithm is used to design both

iteratively and non-iteratively improvable LB algorithms for the EXPO-RU

problem. In Chapter 4, we extend the work in Chapter 3 by considering the

extension to a cutset problem (E2C) for the EXPO-RU problem. We present
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two efficient heuristic algorithms to solve the E2C problem, and use the de-

vised algorithms to design both iteratively and non-iteratively improvable UB

algorithms for the EXPO-RU problem.

In Chapter 5, we consider two general types of reliability problems on

probabilistic graphs where each node can be independently in one of a possi-

ble number of node states (such as the EXPO-RU problem). Each type has

two problems defined on pathsets and cutsets, respectively. For the cutsets

(or, pathsets) version of the first problem type, we devise a dynamic program-

ming approach to compute bounds on the exact solution from sequences of

the problem’s cutsets (respectively, pathsets). The resulting algorithms are

versatile and work for any reliability type problem where the system is coher-

ent and the set of node states form a total order under certain relation. For

the cutsets (or, pathsets) version of the second problem type, we are given

a disjoint sequence of cutsets (respectively, pathsets), and we extend it to a

potentially larger sequence of consecutive cutsets (respectively, pathset) that

exploits the multi-state node model.

In Chapter 6, we consider a variant of the EXPO-RU problem where

nodes are equipped with directional communication devices, and study the

DirEXPO-RU problem. In this context, we consider a fundamental problem

on configuring the transmission beams of nodes in a WSN that employs energy

harvesting (EH) to achieve prolonged operating time. We take the overall net-

work reliability for the DirEXPO-RU problem as an objective function that

we seek to maximize. We propose two configuration approaches to configure

the transmission beams of each node in the network given its transmission

beam centre. The proposed approaches have shown the advantages of using

directional transmission over omnidirectional transmission.

Contributions of thesis based on the work in the thesis appear in publica-

tions [8–12].
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7.2 Future Work

In this section, we outline some possible future research problems and direc-

tions related to the main thrust of the thesis as follows.

• In Chapters 3 to 6, we consider outdoor WSNs where nodes operate on

energy harvested from ambient environment (e.g., solar energy). We in-

vestigate the well-known path exposure problem in WSNs under range

uncertainty. To cope with range uncertainty of nodes in such EH-WSN,

we assume that such fluctuations in a node’s energy levels affect only the

transmission range of the node and we assume that each node has an

energy management unit (EMU) that controls node’s state as well as its

corresponding transmission range during any time slot. Our assumption

arises since wireless transmission is the most energy consuming activity

in many WSNs. It is worthwhile to extend the work by considering addi-

tional effects of energy fluctuations (e.g., effect on both communication

and sensing rages).

• In the thesis, we devise algorithms that can work for any given number

of Nstate of node states. We obtain numerical results when Nstate =

3. Obtaining numerical results when Nstate > 3 is expected to help

in exploring the trade-off between increasing the model complexity and

obtaining more refined results.

• In light of the #P-hardness result of the EXPO-RU problem, our work in

the thesis has considered developing efficient algorithms for computing

lower and upper bounds on the exact solutions of the problem. I propose

to investigate the existence of polynomial time algorithm to solve the

problem on useful special classes of networks (e.g., the class of W × L

x-grids with fixed width W ).

• In Chapter 6, for the DirEXPO-RU problem, we investigate a fundamen-

tal problem on configuring the transmission beams of nodes where nodes

beam centers are assumed to be given as input. The obtained results
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have shown the advantages of using directional transmission over omni-

directional transmission. I propose to extend this work by developing a

more comprehensive dynamic configuration algorithm that does not take

the beam centers as input.

• Our results in the thesis concern the case where an EH-WSN has single

sink. I propose to consider cases where the network has two, or more,

sink nodes and develop such algorithms to handle such networks.
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Appendix A

Overview of Some Analytical
Models

In this section, we present some analytical methods used in a number of papers.

The section is organized around a number of relatively short sections, each

section focuses on modelling some particular aspect in one paper (or, two

related papers by the same authors). Sections based on the work that appears

in a published manuscript share the same variable names. Related sections

share the same references in their section titles.

A.1 Energy Model for Super-Capacitor and

Rechargeable Battery in [3]

The work presented in [3] considers a WSN with a hybrid energy storage

system (HESS) in each node that combines the use of a super-capacitor (SC)

and a rechargeable battery (RB). In the model, time is divided into equal time

slots. At the beginning of time slot t, node n operates with the harvested

energy accumulated in the previous time slot t − 1. At the end of a time

slot t, the energy required to transmit a packet is instantaneously removed

from the HESS. By taking into account energy leakage, harvesting rate, and

transmission load of data packets, the energy model for the super-capacitor

(SC) at node n is calculated using equations A.1.1 to A.1.3.
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Energy model at the beginning of a time slot t:

ÊSC(n, t)︸ ︷︷ ︸
e1

= min{
(
[ESC(n, t)︸ ︷︷ ︸

e2

−α(t− 1)︸ ︷︷ ︸
e3

] + [1− S2(n, t)︸ ︷︷ ︸
e4

] γn(t− 1)︸ ︷︷ ︸
e5

)
, uSC︸︷︷︸

e6

}

(A.1.1)

where:

e1 = the residual energy in the SC of node n at the beginning of time slot t

e2 = the residual energy in the SC of node n at the end of time slot t

e3 = the energy leakage of the SC over time slot t

e4 = a 0/1 value; the value is set to 0 if the harvested energy is directed to

the SC of node n in time slot t. Else, it is set to 1 to allow the RB be

charging until it gets full

e5 = the energy harvested by node n in the previous time slot t

e6 = the maximum capacity of the SC; the min{., .} function prevents the

possibility of exceeding the maximum capacity.

Energy model during a time slot t:

Êload,SC(n, t, R(j))︸ ︷︷ ︸
e1

= l(j)︸︷︷︸
e2

E(n,R(j))︸ ︷︷ ︸
e3

. I[ÊSC(n, t)− l(j)E(n,R(j)) > 0]︸ ︷︷ ︸
e4

(A.1.2)

where:

e1 = the energy consumed by node n during time slot t to relay packet j on

route R if the super-capacitor (SC) is used

e2 = length of packet R(j) in bytes

e3 = the consumed energy per byte to transmit packet R(j) from node n

e4 = a 0/1 indicator function I, where I = 1 if the residual energy in the SC

at the start of time slot t > the amount of energy required to relay the

packet R(j). Else, the function I = 0
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Energy model at the end of a time slot t:

ESC(n, t)︸ ︷︷ ︸
e1

= β(n,D, t)︸ ︷︷ ︸
e2

[ÊSC(n, t)︸ ︷︷ ︸
e3

− Êload,SC(n, t, R(j))︸ ︷︷ ︸
e4

] (A.1.3)

where:

e1 = the residual energy in the SC of node n at the end of time slot t

e2 = a 0/1 indicator function for the event that the RB of node n has not

exceeded its cycle lifetime at the beginning of time slot t

e3 = the residual energy in the SC of node n at the beginning of time slot t

(from equation A.1.1)

e4 = the energy consumed from the super-capacitor (SC) of node n at time

slot t to relay packet R(j) (from equation A.1.2)

The energy model for the rechargeable battery (RB) uses three similar equa-

tions (see [3]).

A.2 Routing Based on Cost-benefit Function

in [3]

The above equations are used in [3] to compute a cost-benefit function (A.2.1)

that reflects the ability of a node n to transmit a data packet at each time slot

t. In particular, the lower the cost function, the more able a node to forward

a packet.

cost(n, t)︸ ︷︷ ︸
e1

= [hc(n, t) ∗ whc︸ ︷︷ ︸
e2

+ qoc ∗ wqoc︸ ︷︷ ︸
e3

]− [ESC(n, t) ∗ wSC︸ ︷︷ ︸
e4

+ERB(n, t) ∗ wRB︸ ︷︷ ︸
e5

+

γ(n, t) ∗ wγ︸ ︷︷ ︸
e6

+Lc(n, t) ∗ wLc︸ ︷︷ ︸
e7

]

(A.2.1)

where:

e1 = the cost function (can be negative) for node n at time slot t; this cost

function is used to determine the ability of a node to forward a data

packet to the sink.
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e2 = the hopcount (the minimum path length) to the sink (weighted by whc
)

e3 = the length of the node’s transmission queue (weighted by wqc)

e4 = the residual energy in the SC of node n at time slot t (weighted by wSC)

e5 = the residual energy in the RB of node n at time slot t (weighted by wRB)

e6 = the energy harvested by node n at time slot t (weighted by wγ)

e7 = the cycle lifetime of the RB (weighted by wLc
)

Each parameter in the above cost function (e.g., hc(n, t)) is multiplied by

a weight and each parameter is set to a value in the range [0, 100] (e.g.,

ERB(n, t) = 100 means the RB is fully charged). Whenever a node has a

data packet to route, it queries all of its neighbours about their respective

costs to route the packet. The routing algorithm then forwards the packet to

the neighbour having the smallest cost.

In the simulation section, the authors set the energy leakage of the SC per

time slot (α(t)) to 0.1mJ , the maximum capacity of the RB (uRB) to 75J , the

RB cycle lifetime (Lc) starts with value 1150 sec and decreases 0.5 sec after

each discharge. Each node generates data packets of size L(j) = 24 bytes with

data rate 1 packet/second, the energy spent in transmitting and receiving 1

byte of data is 59.2µJ and 28.6µJ , respectively. The duration of each time slot

is T = 100ms, the energy harvested by a node at time slot t is γ(n, t) = 1mJ ,

which corresponds to the energy harvested by an outdoor photo-voltaic cell in

a time slot.

A.3 Basic Node Energy Model for Cluster Rout-

ing in [4, 5]

In [4, 5], Peng et al. consider EH-WSN with N energy harvesting sensor

nodes that are grouped into K clusters and each cluster has a cluster head

(CH) that gathers, aggregates data packets received from cluster members

(CMs) and sends the data to the base station.
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The energy consumed by the transmitter of a sensor node n to transmit

one bit of data (denoted, ETx/bit(n)) is given by:

ETx/bit(n) =

{
εtx + εsp ∗ d

2 if d < d̂

εtx + εmp ∗ d
4 if d ≥ d̂

(A.3.1)

where:

• εtx is the energy consumed by the transmitter electronics to perform

signal filtering, modulation and code spreading.

• εsp is a constant depending on the required receiver’s signal-to-noise ratio

(SNR) so that the bit error rate is acceptable assuming the free space

path loss model (d2 power loss).

• εmp is a constant depending on the required receiver’s SNR assuming a

two-ray mulitpath propagation model (d4 power loss).

Similarly, the energy consumed by the receiver of a sensor node n to receive

one bit of data (denoted, ERr/bit(n)) is estimated as follows:

ERx/bit(n) = εrx (A.3.2)

where εrx is the energy consumed by the receiver electrics to receive one bit

of data.

Based on equation A.3.1, the total energy consumed by a cluster member

(CM) to sense and transmit one bit of data to a cluster head (denoted, ECM(n))

is computed as follows:

ECM(n) = εSx + ETx/bit(n) (A.3.3)

where εSx represents the energy consumed to sense one bit of data.

Similarly, the total energy consumed by a cluster head (CH) to handle (re-

ceive, aggregate, transmit) one bit of data sent by a cluster member (denoted,

ECH(n)) is estimated as follows:

ECH(n) = ERx/bit(n) + αεda +
ETx/bit(n)

α
(A.3.4)

where:
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• α is data aggregation factor. If a perfect aggregation method is used,

α is set to the number of cluster members inside the cluster. Else, set

α = 1

• εda is average energy consumed in data aggregation process to process

and aggregate one bit of data

A.4 Node Energy Budget in a Time Slot in [4,

5]

In order to track the harvested solar energy during a typical day (24 hours),

the authors in [4, 5] divide the system’s time into a number of time slots that

are indexed by t = 1, 2, . . . , N . The length of each time slot is denoted T .

Thus, the amount of predicted harvested energy during a time slot t by a

sensor node n (denoted, En
H(t)) is given by:

En
H(t) =

∫ b

a

Ph(t)dt (A.4.1)

where Ph(t) is the predicted harvested power rate in time slot t where a and

b are the start and end of the time slot t, respectively.

To maintain the energy neutral state, the energy consumed by a sensor

node should not be more than the harvested energy by the sensor during a

specific number of time slots, denoted Nt. Let En
B(t) denote the amount of

energy that node n can use in time slot t (called the energy budget function).

So, to preserve the energy neutrality during a period of Nt time slots, we need

to satisfy the following expression:

Nt∑

t=1

En
B(t) ≤

Nt∑

t=1

En
H(t) (A.4.2)

The authors noted that energy storage devices such as batteries and super-

capacitors usually suffer from energy storage inefficiencies. For simplicity,

the authors deal with a system with no such inefficiencies, and hence, set

En
B(t) = En

H(t). In the simulation work, the authors set the length of each

time slot T = 1 hour, and set the harvest energy En
H(t) = 54 + X Joules,

where X is a random variable drawn from a random distribution N(0, 4).
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A.5 Estimating Cluster Head Group Size in [4,

5]

The work in [4, 5] manages an EH-WSN by partitioning the N nodes into

K clusters, where K is a user specified number. Each cluster is composed

of cluster members (CMs) and nodes in a cluster head group (CHG). At the

beginning of each time slot t, nodes spend time forming clusters, selecting a

cluster head group, and cluster members for each cluster. The remaining time,

denoted Tdx, is used to process the sensed information bits. Nodes in a CHG

do not perform sensing tasks, rather they process sensed information bits from

CMs, aggregate the information, and send the information to the base station.

Nodes in a CHG are scheduled so that at any instant one node serves as an

active cluster head while the remaining nodes in the CHG go to sleep.

In this section we explain the method used in [4, 5] to estimate the size

of a CHG (denoted, Nk
G) for a cluster k, where 1 ≤ k ≤ K. To start, the

authors observe that since the number of control messages exchanged for clus-

ter formation is small compared with the number of data packets that will be

sent in each time slot, the energy spent on exchanging these control message

can be neglected. Hence, the maximum amount of data bits in one time slot t

(denoted, Bk
max(t)) that can be transmitted by all cluster members (Nk

CM) in

cluster k without compromising energy neutrality, can be estimated as follows:

Bk
max(t) =

Nk
CM∑

n=1

En
B(t)

En
CM

(A.5.1)

where:

• En
CM is the amount of energy consumed by cluster member n to sense

and transmit one bit of data (from equation A.3.3)

• En
B(t) is the amount of energy budget assigned to cluster member n in

time slot t (from equation A.4.2)

•
En

B
(t)

En
CM

is the amount of data bits that cluster member n can sense and

transmit in a time slot t without compromising its energy neutral state.
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Based on equation A.5.1, to ensure energy neutrality of all nodes in the cluster

head group (CHG), the following equation should be satisfied:

Nk
G∑

n=1

En
B(t)

ECH(n)
≥ Bk

max(t) (A.5.2)

where:

• ECH(n) is the energy consumed by node n in the CHG to handle (receive,

aggregate, transmit) one bit of data (from equation A.3.4)

• En
B(t) is the amount of energy budget assigned to node n in the CHG at

time slot t (from equation A.4.2)

• Nk
G is the number of nodes in the cluster head group (CHG)

•
En

B
(t)

ECH(n)
(≥ Bk

max(t)) is the maximum amount of data in bits that node

n in the CHG can handle without compromising its energy neutrality.

Thus, the LHS of the inequality (equation A.5.2) denotes the maximum

amount of data in bits that all nodes in the cluster head group (CHG)

can handle without compromising the energy neutrality of any node in

the CHG.

Based on equation A.5.2, as the size of the cluster head group Nk
G increases,

the LHS increases. However, the RHS decreases as the number of cluster

members Nk
CM decreases. As a result, there will be fewer cluster members

(CMs) to gather data to send to the CHG. The size of the cluster head group

(CHG) is chosen to be the smallest integer value Nk
G that satisfies inequality

A.5.2.

A.6 Node Scheduling in [4, 5]

In this section, we present the key ideas used in scheduling nodes in a typical

cluster k. The time period T of a typical time slot can be written as T =

β+Tdx, where β is an initial part of T used for cluster formation, and deciding

on CHG nodes (and, the CMs) in each cluster k, and Tdx is the remaining part

of T used in collecting, processing, and relaying information bits.
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Scheduling of nodes in a cluster member (CM): In a cluster k with

Nk
CM member nodes, each node n is scheduled so that it transmits for a total

of Tdx

NK
CM

time during a time slot. Thus, the maximum data transmission rate

by any such member n is given by:

Dn
tx(t) =

Bn
max(t)
Tdx

Nk
CM

=
En

B(t) ∗N
k
CM

En
CM ∗ Tdx

(A.6.1)

Scheduling of nodes in a cluster head group (CHG): In a cluster k with

Nk
G nodes in its CHG, the scheme sets a CHG node n to be an active head

for a period of time denoted T n
A. To derive an expression for T n

A that satisfies

energy neutrality, the authors observe that:

• Bk
max(t) is the maximum amount of data bits generated by all cluster

members in one time slot (equation A.5.1)

• Bk
max(t)
Tdx

is the maximum data rate generated by all cluster members in

one time slot

• Bk
max(t)
Tdx

T n
A is the maximum amount of data handled by cluster head n in

one time slot

Thus, the maximum feasible T n
A time should satisfy:

Bk
max(t)

Tdx

∗ T n
A =

En
B(t)

En
CH

(A.6.2)

Each node n in the CHG knows En
B(t), E

n
CH , and Tdx. In addition, after

deciding on the CHG (and the CMs) the node is informed about Bk
max(t).

Thus, each node n in a CHG can compute its T n
A time. To verify that

∑Nk
G

n=1 T
n
A

(that is, the CHG can serve during the Tdx interval), we check that:

Nk
G∑

n=1

T n
A =

∑Nk
G

n=1
En

B
(t)

En
CH

Bk
max(t)
Tdx

≥ Tdx (A.6.3)

A.7 Overcharge Wastage-Aware Routing in EH-

WSNs in [2]

In [2], the authors model EH-WSNs with a graph G where each node vi ∈ G

has an energy storage unit with capacity B. In their work, time is slotted

118



around slots of length Th seconds each (Th = 10 seconds, or 100 seconds in the

simulation section). In any time slot, when a node harvests enough energy,

any additional received energy is wasted. The work formalizes a route selec-

tion problem that aims at reducing such overcharge wastage in each time slot.

More details are highlighted below.

Table A.1: Notation

Notation Description

Th A specified prediction time

ei Current residual energy at node vi

eh i Estimated harvested energy during Th

ec i Estimated consumed energy during Th

B Battery capacity

σn A route between source and sink

Problem formulation: The model uses the following variables (see Table

A.1): ei denotes node vi energy at the beginning of a time slot, eh i is the

estimated harvested energy during Th, ec i is the consumed energy if node vi is

active transmitting and receiving packets during Th, and σn is a route between

some source and destination nodes where every node vi along the route is

active during Th.

In the following equations, ew on i (respectively, ew off i) denotes the over-

charge wastage when node vi lies on the active route σn (respectively, does not

lie on σn) during Th.

ew on i = max[0, (ei + eh i − ec i − B)] (A.7.1)

ew off i = max[0, (ei + eh i − B)] (A.7.2)

Thus, the sum of energy consumption due to communication for nodes on the

active route σn, and the total network wastage of all nodes is given by:

C(σn) =
∑

vi∈σn

(ec i + ew on i) +
∑

vi /∈σn

ew off i (A.7.3)

The devised routing scheme, in [2], aims at finding a route σn at each time

slot Th (between given source and destination nodes) that minimizes the cost
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C(σn). The work, in [2], does not give an exact algorithm to find such optimum

route σn, rather the authors modify the well-known Distance Source Routing

(DSR) protocol [1] to find the best possible route from a subset of all possible

routes. Roughly speaking,

• The scheme modifies the headers of the Route Request (RREQ) messages

to collect information needed to compute
∑

vi∈σn
(ec i + ew on i) over a

traversed route σn.

• The destination waits for sometime to receive a subset of routes from

which it can compute a lower bound on
∑

vi /∈σn
ew off i (the off-route

information).

• The destination waiting time is controlled by a timer, called RREQ

timer (Trwq). The authors remark that Trwq should be small enough to

avoid unacceptable route acquisition delay, but large enough to allow

possible optimal routes to be received.

• In addition, each selected source-destination route is invalidated after a

route expiration time period. This feature allows routes to be updated

in response to changes in node energy states.
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