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Abstract

Vibration analysis has been widely used to detect gear tooth fault inside a planetary
gearbox. However, the vibration characteristics of a planetary gearbox are very
complicated. Inside a planetary gearbox, there are multiple vibration sources as several
sun-planet gear pairs and several ring-planet gear pairs are meshing simultaneously. In
addition, due to the rotation of the carrier, distance varies between vibration sources and a
transducer installed on gearbox housing. This thesis aims to simulate and understand the
vibration signals of a planetary gear set, and then propose a signal processing method to
detect gear tooth fault more effectively. First, an analytical method derives the equations
of a healthy planetary gear set’s time-varying gear mesh stiffness. Then, a gear tooth
crack growth model is proposed and equations are derived to quantify the effect of gear
tooth crack on the time-varying mesh stiffness. After that, a two-dimensional lumped-
mass model is developed to simulate the vibration source signals of a planetary gear set;
an analytical model is proposed to represent the effect of transmission path; and the
resultant vibration signals of a planetary gear set at a sensor location are generated by
considering multiple vibration sources and the effect of transmission path. Finally, a
signal decomposition method is proposed to detect a single tooth crack in a single planet
gear and experimental validation is performed. The methods proposed in this thesis help
us understand the vibration properties of planetary gearboxes and give insights into

developing new signal processing methods for gear tooth fault detection.
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Chapter 1: Introduction

This chapter is divided into three sections. I introduce the background of this thesis topic
in Section 1. Section 2 provides a detailed literature review of the research challenges
around the dynamics based vibration signal modeling and fault detection of planetary
gearboxes. Section 3 provides the research objectives and the organizational structure of

this whole thesis.

1.1 Background

Planetary gearboxes are common in industrial applications due to their compactness and
high torque-to-weight ratio [1.1]. A planetary gear set normally consists of a centrally
pivoted sun gear, a ring gear and several planet gears which rotate around the sun gear
and ring gear simultaneously as shown in Fig. 1.1. The sun gear and planet gears are
external gears; the ring gear is an internal gear. An external gear has its teeth formed on
the outer surface of a cylinder or cone, while an internal gear has its teeth formed on the
inner surface of a cylinder or cone [1.2]. Transducers usually rest on the housing of
planetary gearboxes or the casing of bearings to collect the vibration signals as shown in
Fig. 1.2. In this study, I focus only on modeling and investigating the vibration signals to

be collected by the transducers mounted on the housing of planetary gearboxes.



\
) Transducer
=iy =
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T

Ring gear
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Fig. 1.1: Structure of a planetary gear set [1.3]

1 stage planetary Transducers 2 stage planetary

Bearings

gearbox gearbox

Fig. 1.2: Planetary gearboxes and transducers

Due to high service load, harsh operating conditions or simple fatigue, faults may
develop in gears [1.4]. Gear faults are responsible for approximately 60% of gearbox
failures [1.5]. Most of these come from damage to the gear teeth such as pitting, cracking,
and spalling [1.5]. The ASM handbook [1.6] classifies gear tooth failures into the

following five categories: overload, bending fatigue, Hertzian fatigue, wear, and scuffing.



Observation during application of planetary gearboxes at Syncrude Canada Ltd, indicated
fatigue crack and pitting are the two commonest failure modes of the planetary gearbox
[1.7]. Fatigue crack is a non-lubrication-related failure mode while pitting is a
lubrication-related failure mode [1.5]. This study will model gear tooth fatigue crack and
investigate its effect on a planetary gearbox’s dynamic responses and vibration signals.

If the gear faults cannot be detected early, the health will continue to degrade,
perhaps causing large economic loss or catastrophe. In a rotorcraft, the transmission
system has a single load path without duplication or redundancy. The gearboxes are the
system’s main components. If the gears fail during a flight, the rotorcraft may crash. “As
a helicopter was flying to Aberdeen from the Miller platform in the North Sea on the
afternoon of 1 April 2009 the main rotor came off and the aircraft crashed into the sea.
All 14 offshore workers and the two crewmen died. It was the gear that failed as a result
of a fatigue crack, causing the failure of the main rotor gearbox.” [1.8] According to P.R.
Veillette [1.9], “More than half the accidents in U.S. helicopter logging operations in
1983 through 1999 involved failures of engines or transmission systems.”

It is important to monitor the health of gearbox systems and detect early faults in
advance. Condition monitoring techniques have been developed and widely used to
monitor and diagnose the health of gear systems. Vibration analysis, acoustic analysis, oil
debris analysis, temperature analysis, and strain analysis are common techniques in the
condition monitoring of gearbox systems. Vibration analysis relies on the analysis of
vibration signals to detect faults in equipment, most often in rotating equipment such as
gearboxes, motors, fans and pumps. Acoustic analysis detects fault in a device through

evaluating voice quality using fundamental frequency, perturbation and noise measures.



Oil debris analysis is the analysis of a lubricant’s properties, suspended contaminants,
and wears debris; mostly is performed during routine predictive analysis to provide
meaningful and accurate information on lubricant and machine condition. Temperature
analysis measures and analyzes temperature data. Strain analysis determines the stresses
and strains in materials and structures subjected to forces and loads for condition
monitoring. Among these, commonest condition monitoring technique for a gearbox is
vibration analysis [1.10, 1.11].

The vibrations of a planetary gearbox are much more complicated than those of a
fixed-shaft gearbox. In a fixed-shaft gearbox, every gear revolves around its own shaft
axis and will not revolve around any other gear’s. A planetary gear set has multiple
external gear pairs and multiple internal gear pairs meshing simultaneously. A sun-planet
gear pair contains two meshing external gears. A ring-planet gear pair contains one
external gear meshing with one internal gear. Each sun-planet gear pair produces similar
but phase shifted vibration signal [1.12]. So does each ring-planet gear pair. This phase
shift cancels or neutralizes some of the excitations induced by gear pairs but augments
others [1.13]. In addition, the rotation of the carrier varies the transmission path of the
vibration signals to a fixed transducer. Multiple vibration sources and the effect of
transmission path lead to the complexity of the vibration signals of a planetary gearbox.

Several researchers have used mathematical models to investigate the vibration
properties of a planetary gearbox [1.14, 1.15]. However, these models lack connections
with physical parameters of a gearbox, like gear mesh stiffness and damping. In addition,
they can hardly model the process of the fault growth. A dynamic model is more closely

connected with the physical parameters of a planetary gearbox than the mathematical



model. It can model fault growth and the corresponding effects. It has further advantages
over lab systems or field systems [1.16]: (1) environmental noises can be eliminated so
that the changes in vibration signals caused by the faults can be identified easily; (2) with
a good dynamic simulation model, it is easy to simulate different types and levels of
faults, and observe changes in the vibration signal they cause. In this thesis, a lab system
means an experimental setup in a lab for scientific research while a field system means an
onsite system where the phenomenon occurs naturally without isolating it from other
systems or altering the original conditions of the test.

Dynamic simulation can simulate the vibration signals of each gear inside a
planetary gearbox. Multiple vibration signals inside a planetary gearbox go through
different transmission paths and are eventually synthesized as a resultant vibration signal
at the sensor position. To obtain the vibration signals of the whole planetary gearbox,
both multiple vibration sources and the effect of transmission path must be considered.

In the dynamic modeling of a gear system, gear mesh interfaces are usually
modeled as a spring-damper system [1.17, 1.18]. The spring stiffness, also called mesh
stiffness, is one of the major sources of gear vibration [1.19]. Correctly evaluating the
time-varying mesh stiffness is essential to ensure accuracy of the simulated vibration
signals through dynamic simulation.

For a planetary gear set, tooth cracking is one of the commonest failure models
[1.1]. As the tooth crack grows, gear mesh stiffness will decrease and the gear system’
vibration characteristics will change. To simulate the vibration signals of a planetary gear
set with various crack severity levels, it is essential to establish the relationship between

the crack severity and the mesh stiffness reduction. In addition, tooth crack may occur in



the sun gear, the planet gears, or the ring gear. Mesh stiffness shapes are not the same for
each different tooth crack location. The differences will result in different fault symptoms
in vibration signals, which can help identify the fault location.

Many signal processing methods have been proposed to diagnose the health of
gearboxes [1.20, 1.21]. However, most researchers treat the gearbox as a black box
ignoring the generation mechanism of the vibration signals. Dynamics based vibration
signal modeling is an effective way to model and reveal the vibration properties of a
planetary gearbox. If we can “open” the black box, “see” all the sub-signals, understand
the generation mechanisms of vibration signals, and consider the effects of vibration
transmission path properly, effective tools can be developed to detect gear faults.

Though vibration analysis techniques have been widely used in the fault detection
of planetary gearboxes, the vibration characteristics of planetary gearboxes are still not
fully understood. This thesis aims to develop a dynamics based method to simulate and
analyze the vibration signals of a planetary gear set at various levels of single tooth crack
with the effects of transmission path considered. Then a signal decomposition method is

proposed to detect a single tooth crack fault in a single planet gear.

1.2 Literature review

This section reviews the available work on gear mesh stiffness evaluation for both fixed-
shaft gearboxes and planetary gearboxes; using dynamics based vibration signal
modeling, and vibration signal decomposition techniques for planetary gearboxes. This
section is organized as follows: Section 1.2.1 reviews the differences between finite

element method (FEM) and analytical method (AM) in terms of gear mesh stiffness
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evaluation. Section 1.2.2 reviews the analytical methods in mesh stiffness evaluation of
fixed-shaft gears. Section 1.2.3 reviews the analytical methods in mesh stiffness
evaluation of a planet gear set. Section 1.2.4 reviews the gear tooth crack modeling and
the crack effect on the gear mesh stiffness. Section 1.2.5 reviews dynamics based
vibration signal modeling. Section 1.2.6 reviews vibration signal decomposition

techniques for gear tooth fault detection.

1.2.1 Finite element method versus analytical method on mesh stiffness evaluation

Finite element method (FEM) and Analytical method (AM) have both been used to
evaluate the mesh stiffness of gear pairs. Wang and Howard [1.22] evaluated the
torsional stiffness of a pair of involute spur gears using FEM. FEM is flexible to model
any shaped gear, for example, the gears with non-standard tooth geometries [1.23]. FEM
can also model faulty gears and evaluate the influence of gear faults on the mesh stiffness.
Jia and Howard [1.24] evaluated the mesh stiffness of external spur gears when tooth
spalling or tooth crack is present using a 3-D finite element model. Pandya et al. [1.25]
used a 2-D finite element model to evaluate the crack effect on the mesh stiffness of an
external gear pair. Song et al. [1.26] developed a finite element model for a pair of
marine crossed beveloid gear and found that the gear misalignment had a slight effect on
the mesh stiffness. However, FEM is sensitive to contact tolerances, mesh density and the
types of finite elements selected [1.23]. As the mesh density increases, the numerical
accuracy is improved, while the computational cost goes up [1.27].

Parker et al. [1.28] proposed a combined element/contact mechanics model to

investigate the non-linear dynamic response of a spur gear pair. Later, this model was



extended to investigate the dynamic response of a planetary gear system [1.29].
Ambarisha and Parker [1.30] used this model to calculate the mesh stiffness of a
planetary gear set. This model reduces the number of finite elements used and enables the
mesh stiffness calculation with practically feasible run time. However, this model relies
on the unique commercial finite element-contact analysis software: Calyx [1.31].

AM is easy to use and also effective in evaluating gear mesh stiffness. The
contribution of individual component, like bending stiffness, shear stiffness, and Hertzian
contact stiffness, can be analyzed separately [1.23]. Chaari et al. [1.32] and Zhou et al.
[1.33] both analytically evaluated the mesh stiffness of an external gear pair with tooth
crack, and their mesh stiffness results were demonstrated to have a good agreement with
the FEM results. AM can also be used to evaluate the mesh stiffness of gears when gear
faults are present, like crack [1.25, 1.32], spalling [1.34], and tooth breakage [1.4]. Most
researchers analytically model the gear tooth as a nonlinear cantilever beam and the beam
theory was used to evaluate the gear mesh stiffness. However, some component
deformations and/or component faults are not easy to be modeled analytically, like gear
distributed pitting and gear misalignment.

In the analytical method, the gear tooth is modeled as a cantilever beam and a
beam theory is used. The two widely used classical beam theories are Euler-Bernoulli and
Timoschenko [1.35]. In the Euler-Bernoulli beam theory, shear deformations and
rotational inertia are neglected, and during deformation, the cross section of the beam is
assumed to remain planar and normal to the deformed axis of the beam. In the
Timoshenko beam theory, shear deformations and rotational inertia are both considered,

and during deformation, the cross section of the beam will remain planar, but no longer



normal to the deformed axis of the beam. Later, refined beam theories were developed to
deal with the effects that cannot be solved using either of the two classical beam theories,
such as warping, plane deformations, torsional-bending coupling, and localized boundary
conditions [1.35]. The Carrera Unified Formulation (CUF) permits one to develop a large
number of beam theories with a variable number of displacement unknowns by means of
a concise notation and by referring to a few fundamental beam theories. The number of
unknown variables is a free parameter of the problem. A 3D stress/strain field can be
obtained by an appropriate selection of these variables for any type of beam problem:
compact sections, thin-walled sections, bending, torsion, shear, localized loadings, static
and dynamic problems [1.35].

The potential energy method is a widely used analytical method to evaluate the
mesh stiffness of perfect gears and gears with crack [1.36]. In this method, the gear tooth
is considered as a non-uniform cantilever beam and the Timoshenko beam theory is used.

This method will be used directly in this study to evaluate the gear mesh stiffness.

1.2.2 Mesh stiffness evaluation of fixed-shaft gears

Many studies have been reported to analytically evaluate the mesh stiffness of fixed-shaft
external gear pairs. Yang and Lin [1.17] analytically evaluated the mesh stiffness of a
pair of fixed-shaft external spur gears using the potential energy method. They
considered Hertzian energy, bending energy and axial compressive energy corresponding
to Hertzian contact stiffness, bending stiffness and axial compressive stiffness,
respectively. Later, Tian et al. [1.37] added another energy component called the shear

energy corresponding to the shear stiffness. Utilizing the properties of involute curve,



Tian et al. [1.37] also simplified the expressions of the bending stiffness, shear stiffness
and axial compressive stiffness to facilitate the application. Zhou et al. [1.33] added the
deformation of the gear body into the model reported in [1.37]. Refs. [1.17, 1.32, 1.36]
modeled the gear tooth as a cantilever beam and assumed that the beam started from the
gear base circle. Actually, the gear tooth starts from the root circle rather than the base
circle as shown in Fig. 1.3. Thus, their models ignored the influence of a part of the gear
tooth between the root circle and the base circle. The tooth profile of this part (tooth fillet
area) is not an involute curve and it is basically determined by the cutting tool tip
trajectory. Using a different cutting tool, the generated curve will be different and there is
no uniform function to depict it [1.38]. However, neglecting this part will cause
inaccuracy of the estimated mesh stiffness of gear pairs, especially when the distance
between the base circle and the root circle is large. Refs. [1.27, 1.39, 1.40] modeled the
gear tooth as a cantilever beam which started from gear root circle. However, their
equations are not convenient to use. They only gave the stiffness equations for a specific
mesh point. In this case, for time-varying stiffness measurement, it is required to
manually calculate the gear profile information at every mesh point which is repeated in
nature for different gears and this is time consuming. Another shortcoming is that they
did not demonstrate how to match the mesh points. For example, one point on one tooth
is in meshing, then how to find the corresponding meshing point on the other tooth. For a
pair of spur gears whose contact ratio is between 1 and 2, the alternation of one pair and
two pairs of teeth in contact is observed. They also did not mention how to determine the
single-tooth-pair duration and the double-tooth-pair duration. These shortcomings will be

addressed in this thesis. In the Chapter 3 of this thesis, equations of the mesh stiffness of
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an external gear pair will be derived with the tooth fillet area considered in the external

gear tooth model.

Root Base Pitch
circle circle circle

Fig. 1.3: Gear tooth profile of an external gear

In contrast, the investigations on the mesh stiffness evaluation of the internal
gears are limited. The most detailed research is done by Pintz et al. [1.41]. They
introduced an iterative procedure to evaluate the mesh stiffness of an internal gear pair
through digitizing the tooth profile into a large scale of discrete points. In their method,
the mesh stiffness was expressed as a function of the transmitted load, gear profile errors,
gear tooth deflections, gear hub deformations, location of tooth contact and the number of
tooth pairs in contact. The mesh stiffness at each discrete point was evaluated iteratively.
However, they only gave the stiffness equations for a specific mesh point. The same as
discussed in the previous paragraph, their equations are not convenient to use. To address
this shortcoming, in Chapter 2 of this thesis, easy to use equations are derived for the

mesh stiffness of an internal gear pair.
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1.2.3 Mesh stiffness evaluation of a planetary gear set

In Section 1.2.2, I reviewed the gear mesh stiffness evaluation for a fixed-shaft external
gear pair and a fixed-shaft internal gear pair. In a planetary gear set, there are several
pairs of sun-planet gears and several pairs of ring-planet gears meshing simultaneously.
Actually, the gear mesh stiffness evaluation of a pair of sun-planet gears is the same as
that of an external gear pair since both the sun gear and the planet gear are all external
gears. The gear mesh stiffness evaluation of a ring-planet gear pair is the same as that of
an internal gear pair since the ring gear is an internal gear and the planet gear is an
external gear. In this section, I will review how to obtain the mesh stiffness of a planetary
gear set when the mesh stiffness of a pair of sun-planet gears and the mesh stiffness of a
pair of ring-planet gears are known.

While each of the sun-planet gear pair has the same shape of mesh stiffness
variation, they are not necessarily in phase with one another [1.42]. August et al. [1.43]
evaluated the mesh stiffness of a planetary gear set with three planet gears. The sun-
planet gears were treated as a fixed-shaft external gear pair whose mesh stiffness was
evaluated using the method proposed by Kasuba and Evans [1.39]. A ring-planet gear
pair was treated as a fixed-shaft internal gear pair whose mesh stiffness was evaluated
using the method proposed by Pintz et al. [1.41]. By considering the mesh phasing
relationships, they obtained the mesh stiffness of the whole planetary gear set. Two
significant shortcomings of their methods are: (a) the methods to evaluate the mesh
stiffness of the external gears and the internal gears are not convenient to use as described

in the last paragraph of Section 1.2.2, (b) the mesh phasing relationships are not well
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defined. Parker and Lin [1.42] proposed an analytical method later to calculate mesh
phasing relationships.

Some other researchers [1.44, 1.45] used a square waveform to approximate the
time-varying mesh stiffness of a planetary gear set as shown in Fig. 1.4. However, no
specific guidelines were presented on how to get the magnitudes of the time-varying
stiffness. The magnitudes were assumed without confirmation of the physical parameters.
Besides, the square waveform ignored the variation of the mesh stiffness caused by the
change of the contact point with the gear rotation. In addition, unwanted frequency
components may be generated due to the flatness of the stiffness curve. The approach to
be used in the Chapter 2 of this thesis aims to overcome these shortcomings. With
directly using the mesh phasing relationships reported by Parker and Lin [1.42],
equations are derived to get the mesh stiffness of a planetary gear set given the mesh
stiffness of a pair of sun-planet gears and the mesh stiffness of a pair of ring-planet gears

are known.
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Fig. 1.4: Approximation of the gear mesh stiffness using the square waveform [1.45]: 1),
denotes the meshing period, 7’ denotes the contact ratio between the sun gear and the i"

planet gear and " denotes the contact ratio between the ring gear and the i™ planet gear.
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1.2.4 Crack effect on the mesh stiffness

In Section 1.2.2 and Section 1.2.3, I reviewed the mesh stiffness evolution of fixed-shaft
gear pairs and planetary gears. In those two sections, all the gears are in the healthy
condition. In this section, the gear tooth crack effect on a fixed-shaft external gear pair
and a planetary gear set will be reviewed.

Many studies have evaluated the crack effect on the mesh stiffness of a fixed-
shaft external gear pair. Refs. [1.25, 1.33, 1.37] modeled the gear crack propagation in a
linear path shape starting from the point of intersection of the base circle and the involute
curve as shown in Fig. 1.5 (a). However, it is pointed out by both Kramberger et al. [1.46]
and Belsak and Flasker [1.47] that gear tooth crack mostly initiated at the point of the
maximum principal stress in the tensile side of a gear tooth (critical area in Fig. 1.6).
Chaari et al. [1.32] presented an analytical method to evaluate the mesh stiffness of an
external gear pair and modeled the crack in a straight line shape starting from the tooth
root. They mentioned that the gear mesh stiffness could be evaluated by taking into
account the tooth thickness reduction. Chen and Shao [1.40] proposed an analytical
model to evaluate the mesh stiffness of an external gear pair with tooth root crack
propagating along both the tooth width and the crack depth as shown in Fig. 1.5 (b).
However, the methods reported in Refs. [1.32, 1.40] are based on single point estimation
of the mesh stiffness. As stated in Section 1.2.2, these methods are not convenient to use.
To address this shortcoming, an external gear tooth crack model will be proposed in
Chapter 3 of this thesis and equations of the mesh stiffness of a fixed-shaft external gear

pair with a single gear tooth crack will be derived.
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Fig. 1.5: Crack modeling

Fig. 1.6: Gear crack propagation path [1.47] (a) experiment and (b) finite element method

In contrast, the studies on the crack effect on the mesh stiffness of a planetary
gear set are limited. Chaari et al. [1.1] used a square waveform to approximate the time-
varying mesh stiffness of a planetary gear set. They presented that the amplitude
modulation can be used to obtain the mesh stiffness of a planetary gear set with crack.
Fig. 1.7 [1.1] illustrated the amplitude loss of 50% due to a crack in the sun gear.
Physical meaning of this loss was not described, like how much crack propagation will
lead to the amplitude loss by 50%. In addition, they only modeled the stiffness reduction

in the double tooth contact duration while ignored the stiffness decrease in the single
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tooth contact duration. Chen and Shao [1.48] investigated the crack effect on the mesh
stiffness when a tooth crack occurred in the sun gear or the planet gear. They used the
same method for fixed-shaft gears reported in [1.40] to evaluate the mesh stiffness of
sun-planet gears and ring-planet gears. The gear mesh stiffness was evaluated based on
single point estimation of the mesh stiffness. When a crack is present in a planetary gear
set, the crack could be in the sun gear, a planet gear (sun gear side), a planet gear (ring
gear side) or the ring gear. The differences of the mesh stiffness when a tooth crack
appears in different gears are not extensively investigated. In Chapter 3 of this thesis,
crack effect on the mesh stiffness of a planetary gear set is investigated on three
situations: crack in the sun gear, crack in a planet gear (sun gear side) and crack in a
planet gear (ring gear side). The differences of the mesh stiffness shape in these three

situations are studied.
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Fig. 1.7: Amplitude loss of 50% due to a crack in the sun gear

1.2.5 Dynamics based vibration signal modeling

In the field applications, vibration sensors are usually mounted on the housing of the
gearbox and/or the bearings to collect the vibration signals. The vibration signals
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generated by each vibration source go through different transmission paths and are
eventually synthesized as a resultant vibration at the sensor position. To simulate the
resultant vibration signal of a planetary gearbox at the sensor location, both multiple
vibration sources and the effect of transmission path must be considered.

Mathematical models have been used by several researchers to investigate the
vibration properties of a planetary gearbox. Inalpolat and Kahraman [1.14] proposed a
simplified mathematical model to describe the mechanisms leading to modulation
sidebands of planetary gear sets. Feng and Zuo [1.15] mathematically modeled the gear
faults using the amplitude modulation and the frequency modulation, and then analyzed
the spectral structure of the vibration signals of a planetary gear system. The effect of the
transmission path was modeled as a Hanning function [1.14, 1.15] with the assumption
that, as planet i approaches to the transducer location, its influence increases, reaching its
maximum when the planet i is at the transducer location, then, its influence decreases as
the planet i goes away from the transducer. Even though mathematical models can exhibit
some basic vibration properties of a planetary gearbox, they lack the connection with the
physical parameters of a planetary gearbox. In addition, they can hardly model the
process of fault growth. This shortcoming will be solved in Chapter 4 of this thesis by
using dynamic modeling.

Dynamic simulation is a better choice to investigate the vibration properties of a
planetary gearbox. Kahraman [1.49] proposed a nonlinear dynamic model to investigate
the load sharing characteristics of a planetary gear set. Three degrees of freedom were
modeled for each component: transverse motions in the x-axis direction, y-axis direction,

and rotation. The equations were built in a fixed coordinate system. Inalpolat and
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Kahraman [1.50] used the same model proposed by Kahraman [1.49] to predict
modulation sidebands of a planetary gear set having manufacturing errors. The effect of
transmission path was represented by a Hanning function. Lin and Parker [1.18] modified
the model proposed by Kahraman [1.49] in two items: (a) used a rotating frame
coordinate system in order to consider the gyroscopic effect, (b) the planet deflections
were described in the radical and the tangential coordinates. Using this model, they
investigated the free vibration properties of a planetary gear set. Cheng et al. [1.51]
developed a pure torsional dynamic model to investigate the properties of a planetary
gear set when a single pit was present on a tooth of the sun gear. Chaari et al. [1.52]
developed a similar model as the one reported by Lin and Parker [1.18] to investigate the
manufacturing errors on the dynamic behavior of planetary gears. In addition, they
investigated the vibration properties of a planetary gear set with tooth crack or a single pit
on the sun gear. In their studies, the gear mesh stiffness was approximated as a square
waveform. Chen and Shao [1.48] studied the dynamic features of a planetary gear system
with tooth crack under different sizes and inclination angles. The displacement signal of
the sun gear and the planet gear was investigated when a crack was present on the sun
gear or the planet gear.

To better understand the vibration properties of a planetary gear set with faults,
more studies are required to investigate the vibration properties of a planetary gear set.
The dynamic model can be further improved by considering more factors, like the
centrifugal force generated due to the rotation of the carrier. The effect of the
transmission path can be further investigated rather than only use the Hanning function.

A dynamic model for a planetary gear set and a modified Hamming function for the
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modeling of transmission path effect will be proposed in Chapter 4 of this thesis to

address these shortcomings.

1.2.6 Vibration signal decomposition for gear tooth fault detection

In Section 1.2.5, I reviewed the research on vibration signal modeling of a planetary gear
set. Once vibration signals are generated based on dynamics models considering gear
tooth crack effects and the effect of transmission path as reviewed earlier, the last step is
to process the simulated vibration signals aiming to reflect health condition. In this
section, vibration signal decomposition for gear tooth fault detection will be reviewed.
The fault detection of a planetary gearbox is much complicated compared with
that of a fixed-shaft gearbox as the planetary gearbox’s properties of multiple vibration
sources and the effect of transmission path lead to the complexity of the vibration signals.
Signal decomposition techniques were raised by some researchers to emphasize fault
symptoms and eliminate the interferences from irrelevant factors. McFadden [1.53]
proposed a windowing and mapping strategy to obtain the vibration signal of individual
planet gears and of the sun gear in a planetary gearbox. In his method, a window function
was applied to sample the vibration signals when a specific planet gear was passing by
the transducer and then the samples were mapped to the corresponding meshing teeth of
the sun gear or the planet gear to form the vibration signals of the sun gear or the planet
gear. Many additional studies attempted to improve the performance of the method
reported in [1.53]. Refs. [1.54-1.57] investigated the techniques to index the positions of
each planet gear, which were used to find the best location of putting the windows. Refs.

[1.50, 1.55, 1.58-1.60] tried to find the best window type and window length for the
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sampling. The performances of Rectangular window, Hanning window, Turkey window
and Cosine window were investigated in Refs. [1.53-1.60]. All these efforts were trying
to decompose the vibration signal of a planetary gearbox while focusing on the vibration
signal of the sun gear or the planet gear of interest. The decomposed signal can reduce
the interference from the vibration of other gears and consequently emphasize the fault
symptoms of the gear of interest. This study does not intend to improve the existing
signal decomposition methods. But a new signal decomposition method will be proposed
in Chapter 5 of this thesis to decompose the vibration signal of a planetary gear set into
the gear tooth level of a planet gear. The decomposed vibration signal can reduce the
interference from the vibrations of other teeth of the planet gear of interest. Examining
the signals of all the teeth of a planet gear, the health differences of the teeth can be

measured.

1.3 Objective and outline

Based on the reviews summarized in the previous section, four main issues have been

identified that will be addressed in this thesis. This thesis’s overall objective is to

investigate the vibration properties of a planetary gearbox through the dynamics based

vibration signal modeling and then develop an effective method to detect gear tooth fault.

This objective is divided into these four research topics:

(1) An analytical method is developed to evaluate the time-varying mesh stiffness of a
planetary gear set. Equations of the mesh stiffness of a fixed-shaft external gear pair
are derived with the fillet curve area considered in the gear tooth model. Equations

of a fixed-shaft internal gear pair are derived. These equations are expressed as a
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3)

4

function of the rotation angle of a gear, which is convenient to use. Then, by
incorporating the effect of transmission path, the mesh stiffness of a planetary gear
set is evaluated. Examples are illustrated for three structures of a planetary gear set:
carrier fixed, sun gear fixed and ring gear fixed.

A tooth crack model is proposed and the tooth crack effect on the time-varying
mesh stiffness is evaluated. An external gear tooth crack model is proposed for the
purpose of gear mesh stiffness evaluation. Equations of the mesh stiffness of a
fixed-shaft external gear pair with tooth crack are derived. Then, the mesh stiffness
of a planetary gear set is evaluated by considering the mesh phasing relationships
and compared in three situations: tooth crack in the sun gear, tooth crack in a planet
gear (sun gear side) and tooth crack in a planet gear (ring gear side).

A two-dimensional lumped mass model is proposed to simulate the vibration signals
generated by each gear. Incorporating multiple vibration sources and the effect of
transmission path, the vibration signals of the whole planetary gearbox in healthy
and sun gear cracked tooth conditions are simulated and investigated. Certain
vibration properties present in the simulated signals are confirmed by those in the
experimental signals.

A signal decomposition method is proposed to decompose the vibration signals of a
planetary gearbox into gear tooth level of a planet gear. This method is tested on
both simulated and experimental vibration signals, and is demonstrated to be able to
detect a single tooth fault in a planet gear.

This thesis follows the paper format except for Chapter 1. Chapters 2-5 are

written in the form of a paper including introduction, literature review, problem definition,
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methodology, and research contributions. To be specific, here is a description of each
chapter:

In Chapter 1, background of this research topic is described followed by a
literature review. The objective and the outline of this thesis are defined.

In Chapter 2, potential energy method is applied to evaluate the time-varying
mesh stiffness of a planetary gear set. Equations of the time-varying mesh stiffness are
derived. The developed equations are applicable to any transmission structure of a
planetary gear set. Detailed discussions are given to three widely used transmission
structures: fixed carrier, fixed ring gear and fixed sun gear. This chapter is based on a
journal paper [1.61] and a refereed conference paper [1.62].

In Chapter 3, a modified cantilever beam model is proposed to represent the
external gear tooth and for the time-varying mesh stiffness evaluation. Equations of
bending stiffness, shear stiffness and axial compressive stiffness are derived for an
external gear pair. A crack propagation model is developed and the mesh stiffness
reduction is quantified when a tooth crack occurs in the sun gear or the planet gear. This
chapter is based on a journal paper [1.63] and a refereed conference paper [1.64].

In Chapter 4, vibration signals of a planetary gearbox are simulated and
investigated. A dynamic model is developed to simulate the vibration source signals. A
modified Hamming function is proposed to represent the effect of the transmission path.
By incorporating multiple vibration sources and the effect of transmission path, the
vibration signals of a whole planetary gearbox at the sensor location are generated.
Through analyzing the vibration signals, certain vibration properties of a planetary

gearbox are recognized and the fault symptoms of sun gear tooth crack are identified and
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located. This chapter is based on a journal paper [1.65] and a refereed conference paper
[1.66].

In Chapter 5, a windowing and mapping strategy is proposed to decompose the
vibration signals of a planetary gearbox into the tooth level of a planet gear. The fault
symptoms generated by a single cracked tooth of the planet gear of interest are
emphasized. The health condition of the planet gear is assessed by comparing the
differences among the signals of all teeth of the planet gear of interest. The proposed
windowing and mapping strategy is tested on both simulated and experimental vibration
signals. The vibration signals can be successfully decomposed and a single tooth crack on
a planet gear can be effectively detected. This chapter is based on a journal paper [1.67]
and a refereed conference paper [1.68].

In summary, this thesis provides a dynamics based method to simulate the
vibration signals of a planetary gear set in the sensor location and then a fault detection
technique is proposed to detect the tooth crack in a planet gear. The gear mesh stiffness
evaluation method developed in Chapter 2 and Chapter 3 can effectively evaluate the
time-varying mesh stiffness of a planetary gear set in healthy and cracked tooth
conditions. Accurate gear mesh stiffness is indispensable in obtaining the correct
dynamic response in the dynamic simulation. The dynamics based vibration signal
modeling method proposed in Chapter 4 can simulate the vibration signals of a planetary
gear set in the sensor location. Based on the understanding of the vibration properties of a
planetary gear set, a signal decomposition method is proposed in Chapter 5. This signal
decomposition method can effectively detect a single tooth crack when it appears in a

single planet gear. The techniques developed in this thesis help us better understand the
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vibration characteristics of a planetary gear set and give insights into developing new

signal processing methods for gear tooth fault detection.
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Chapter 2: Evaluating Time-Varying Mesh Stiffness of a

Planetary Gear Set Using Potential Energy Method

Time-varying mesh stiffness is one of the main excitations of vibration of a gear
transmission system. An efficient and effective way to evaluate it is essential to
comprehensive understanding of the dynamic properties of a planetary gear set. This
chapter is devoted to evaluating the time-varying mesh stiffness of a healthy planetary
gear set using the potential energy method. The method developed in this chapter will be
extended in Chapter 3 to evaluate the crack effect on the time-varying mesh stiffness of a
planetary gear. The obtained time-varying mesh stiffness will also be used in Chapter 4 to
generate the vibration signals of a planetary gear set using dynamic simulation. This
chapter is organized as follows. In Section 2.1, background of this research topic is
described and a literature review is given on time-varying gear mesh stiffness evaluation
of gears. In Section 2.2, equations are derived for the mesh stiffness evaluation of an
internal gear pair. In Section 2.3, the procedures of obtaining the time-varying mesh
stiffness of a planetary gear set are described; the gear mesh stiffness evaluation of three
transmission structures (fixed carrier, fixed ring gear and fixed sun gear) are discussed. A
summary is provided in Section 2.4. This chapter is based on a journal paper [2.1] and a

refereed conference paper [2.2].
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2.1 Introduction

Planetary gears are common in aeronautic and industrial applications due to their
compactness and high torque-to-weight ratios [2.3]. According to Lin and Parker [2.4],
mesh stiffness variation is one of the major sources of gear vibration. Finite element
method (FEM) and analytical method (AM) have been used by many researchers to
evaluate the mesh stiffness of gears. Wang and Howard [2.5] evaluated the torsional
stiffness of a pair of involute spur gears using FEM. FEM can also model complicated
shaped gears, for example, the gears with non-standard tooth geometries [2.6]. FEM can
also model the faulty gears and evaluate the influence of gear faults on the mesh stiffness.
Jia et al. [2.7] evaluated the mesh stiffness of an external spur gear pair when tooth
spalling and crack are present using a 3-D finite element model. Pandya and Parey [2.8]
used a 2-D finite element model to evaluate the crack effect on the mesh stiffness of an
external gear pair. Song et al. developed a finite element model for a pair of marine
crossed beveloid gears and found gear misalignment had a slight effect on the mesh
stiffness [2.9]. However, FEM is sensitive to tolerances, mesh density and mesh element.
And, it is more time-consuming in computation than AM [2.6].

AM is simple and also effective in evaluating gear mesh stiffness. It can
separately analyze relative contribution of individual component, like bending stiffness,
shear stiffness, and Hertzian contact stiffness [2.6]. Chaari et al. [2.10] and Zhou et al.
[2.11] both used it to evaluate the mesh stiffness of an external gear pair and their results
matched FEM results well. AM can also evaluate the mesh stiffness of gears with faults,
like crack [2.8, 2.10], spalling, and broken teeth [2.12]. Most researchers who used AM

treated the gear tooth as a nonlinear cantilever beam and used the beam theory to evaluate
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gear mesh stiffness. However, some component deformation and faults like gear
distributed pitting and gear misalignment defy easy application of AM.

Many researchers have analytically evaluated the mesh stiffness of an external
gear pair. Kasuba and Evans [2.13] introduced an iterative procedure of digitizing the
tooth profile into a large scale of discrete points. They expressed the mesh stiffness as a
function of transmitted load, gear profile errors, gear tooth deflections, gear hub
deformations, position of tooth contact and the number of tooth pairs in contact. Pintz et
al. [2.14] used the similar technique as Ref. [2.13] to evaluate the mesh stiffness of an
internal gear pair. The method used in Refs. [2.13, 2.14] can investigate the mesh
stiffness variation when gear profile errors are present. Yang and Sun [2.15] analytically
derived the Hertzian contact stiffness of an external gear pair and considered the Hertzian
contact stiffness as the gear mesh stiffness. Chaari et al. [2.10] considered the bending
deflection, fillet-foundation deflection and contact deflection in the evaluation of the
mesh stiffness of an external gear pair. Yang and Lin [2.16] proposed the potential energy
method to evaluate the mesh stiffness of an external spur gear pair. They considered
Hertzian energy, bending energy, and axial compressive energy corresponding to
Hertzian contact stiffness, bending stiffness, and axial compressive stiffness. They gave
the mesh stiffness equations for a single gear tooth. As shown in Fig. 2.1, if force F is
acting at the point p, the stiffness value at the point p in the direction of force F can be
analytically evaluated using the equations in [2.16]. However, when a pair of gears is in
meshing, the contact position changes with the rotation of the gears. There is also the
phenomenon of the alternation from one pair to two pairs of teeth in contact. As shown in

Fig. 2.2, there are two pairs of teeth in meshing simultaneously. The four points (A and C
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on one gear, and B and D on the other gear) also change with the rotations of the two
gears. If we know point A is in meshing, how can we know the position of points B, C,
and D? This knowledge is not provided in Ref. [2.16] but it is needed in the mesh
stiffness evaluation. Later, Tian et al. [2.17] added another energy component called the
shear energy corresponding to the shear stiffness. In addition, they added the
relationships between the four points (A, B, C and D as shown in Fig. 2.2) in the mesh
stiffness equations. Finally, they expressed the mesh stiffness of an external gear pair as a
function of gear rotation angle (given gear geometry and material information). Users can
use these equations directly to evaluate gear mesh stiffness even though they are not
familiar with beam and/or gear meshing theories. Recently, Zhou et al. [2.11] and Chen et
al. [2.18] added the deformation of the gear body to Tian’s model [2.17]. All of the above
references focused on the mesh stiffness evaluation of an external gear pair. The research
on the mesh stiffness evaluation of an internal gear pair is very limited. Only a method
reported in [2.14] evaluated the mesh stiffness of an internal gear pair. But only the
equations for a single gear tooth are given and the relationships between the four points
(A, B, C and D) are not incorporated in their model. Users would still need to calculate
these relationships by themselves. In this chapter, I will solve this problem. The potential
energy method reported in Ref. [2.16, 2.17] will be extended to evaluate the mesh
stiffness of an internal gear pair. Meanwhile, I will derive the relationships between the
four points (A, B, C and D as shown in Fig. 2.2) for an internal gear pair and incorporate
the relationships in the derivation of mesh stiffness equations. Finally, I will get the mesh

stiffness of an internal gear pair as a function of gear rotation angle. Users will be able to
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use these equations directly to evaluate gear mesh stiffness of an internal gear pair even

though they are not familiar with beam and/or gear meshing theories.

Tooth |
fillet |

/
Root Base
circle circle

Fig. 2.1: Tooth modeled as a cantilever beam

Fig. 2.2: Double tooth pairs in meshing

A planetary gear set has the sun-planet gear meshing (external gear pairs) and the
ring-planet gear meshing (internal gear pairs) simultaneously. Due to the lack of an
effective way to evaluate the time-varying mesh stiffness of an internal gear pair, a
square waveform was used by several researchers [2.19, 2.20] to approximate the time-
varying mesh stiffness of a planetary gear set. However, no specific guidelines were
presented in [2.19, 2.20] on how to get the magnitudes of the time-varying stiffness. The
magnitudes were assumed without confirmation of the physical situation. Furthermore,

the square waveform ignored the variation of mesh stiffness caused by the change of the
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tooth contact point. The flatness of the stiffness curve will generate unwanted frequency
components. The approach to be used in this study aims to overcome these shortcomings.

Overall, this chapter derives equations of the time-varying mesh stiffness of a
healthy planetary gear set. First, formulas are derived to evaluate the time-varying mesh
stiffness of an internal gear pair using the potential energy method. The total potential
energy of meshing gears is the summation of Hertzian energy, bending energy, shear
energy, and axial compressive energy. Despite the complexity in gear geometry, mesh
stiffness equations are derived for involute spur gears. The obtained time-varying mesh
stiffness reflects the stiffness variation caused not only by the change of the number of
contact tooth pairs but also the change of the contact positions of the gear teeth. Later, by
incorporating the mesh stiffness equations reported in [2.17] for an external gear pair and
the mesh phasing relationships reported in [2.21], the mesh stiffness of a planetary gear
set is evaluated. Case studies are given for three structures of a planetary gear set: carrier

fixed, sun gear fixed and ring gear fixed.

2.2 Mesh stiffness of a fixed-shaft internal gear pair

In this section, the mesh stiffness equations for a fixed-shaft internal gear pair will be
derived analytically. These equations will be used later in the mesh stiffness evaluation of
ring-planet gears of a planetary gear set. In [2.17], the mesh stiffness of a fixed-shaft
external gear pair is evaluated. In their research, all the gears are assumed to be involute
spur gears and the deflection of the gear body is ignored. More details of this work can be
found in [2.22]. The same assumptions will be applied in this study. Hertzian stiffness,

bending stiffness, axial compressive stiffness and shear stiffness will be considered.
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2.2.1 Hertzian stiffness

According to the Hertzian law, the elastic compression of two isotropic elastic bodies can

be approximated by two paraboloidal bodies in the vicinity of the contact point [2.15].

For the planet-ring contact, [ approximate the planet gear as a cylinder with radius 7, and

the ring gear as a circular groove with radius #,, as shown in Fig. 2.3.

Circular
groove

surface T ?w] ?
F

Fig. 2.3: Approximation of the ring-planet contact

The half width of the contact region can be expressed as [2.23]:

_ 2
p= SAZVOFE nn 2.2.1)
7EL r,—F

where £, L,v represent Yong’s modulus, tooth width and Poisson’s ratio, respectively,
and F'is the acting force.

The deformation of the contact teeth due to the force F' can be calculated as:
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The square-root terms in Eq. (2.2.2) can be approximated by the first two terms of

the binomial expansion (See Eq. (2.2.3)). The error of this approximation is on the order

of (b/r)*, and will be less than 0.5 percent for steel gears [2.15].

1_@ P (223)
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Substituting Eq. (2.2.3) into Eq. (2.2.2) gives:

2 2
S=r—r+r 1—1’—2 —r 1—b—2 S e (2.2.4)
2r, 2r 2\ r
Combining Eq. (2.2.1) and Eq. (2.2.4), the Hertzian stiffness &, is expressed as:

h

F  zEL
r__mes 2.2.5
s 41-vY) (22)

where £, is a constant for an internal gear pair. This expression of the Hertzian stiffness

for an internal gear pair is the same as that for an external gear pair which was derived in

[2.15].

2.2.2 Bending, shear and axial compressive stiffness

In this section, the potential energy method is used to evaluate the bending, shear and
axial compressive stiffness for an external gear and an internal gear, respectively. The

gear tooth is treated as a non-uniform cantilever beam.
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2.2.2.1 External gear

For the external gear, the expressions of the bending stiffness k, , shear stiffness &, and

axial compressive stiffness &, are derived in [2.17] as follows:

1 Jaz 3{1+c0s a [(a2 —)sina —cosoz]}2 (a,—a)cosa (2.2.6)
k, e 2EL[sina +(a, —a)cosal ’ o
_ 2
i:_.. > 1.2(1+1‘/)(052 a)cosacos” a. 2.2.7)
k, a  FEl[sina+(a, —a)cosa]
2
in‘ > (a2. a)cosasin” ¢, da. 2.2.8)
k, ‘-a2EL[sina+(a,—oa)cosa]

where «, is the half tooth angle on the base circle of the external gear, ¢, is the angle

between the force component F, and the acting force /* which can be decomposed into

two orthogonal component forces: F, and F, (see Fig. 2.4).

d Fp F

X a,
F,

wlhy h
o ‘\a) 0.’2 <«-% Fa
4] o
v
Action line
R,

Fig. 2.4: Elastic force on the external gear tooth [2.17]
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Egs. (2.2.6) to (2.2.8) can be used to evaluate the mesh stiffness of the external

gear of an internal gear pair. However, due to the configuration differences between an
external gear pair and an internal gear pair, the expression for «; changes. The angle ¢,
is the only variable in Egs. (2.2.6) to (2.2.8), which reflects the change of contact position
of the meshing gears. It is significant to derive the expression of ¢; which is not

mentioned in [2.17] for an internal gear pair.

Base circles
Pitch circle

Fig. 2.5: Gear meshing sketch of an internal gear pair

In Fig. 2.5, consider point B as the reference point, which corresponds to the
initial meshing point of the first pair of meshing teeth. At this point, the angular
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displacement of the external gear (6, ) and the internal gear (6, ), are assumed to be zero.

The corresponding angle ¢, can be expressed as (see Fig. 2.5):

a) = ZA0,D = /4A0,B — ZBOD. (2.2.9)
From the properties of the involute curve, the gear meshing action line BC is

tangent to the base circles. Therefore, the line 4O, is perpendicular to the line AC . The

angle ZAO, B can be expressed as:

R
ZAOB = arccos =2, (2.2.10)

0B

The line segment @ can be obtained in the triangle BO,0, as:

0,B =[R2, + 0,0, —2R,, 0,0, cos Z0,0,B , 2.2.11)

where R, is the base circle radius of the external gear, R,, is the inner radius of the

internal gear and O, 0, is the center distance of the two gears.
We can express ZBO,D as:

Z/BO.D = /DO,E— /BOE = a, — /BO,E, (2.2.12)

where a, =2L+tan a, —a,, ZBOE = tan ZAO,B— ZAO,B [2.22].

1
Substituting Egs. (2.2.10) - (2.2.12) into Eq. (2.2.9), the angle & can be

expressed finally as:

o) = —a, +tan ZAO,B = — d —tang, + o, + (2.2.13)

1
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N cos
tan | arccos

N, cos

N,-2 )

\/(N2 —2)2 +(N,—-N, )2 —2(N,-2)(N,—N,) cos(a,—arccos

where N, and N, represent the number of teeth of the external gear and the internal gear,
respectively, and ¢, is the pressure angle.
Eq. (2.2.13) gives the formula of the angle ¢, when the angular displacement of

the external gear is zero. When the angular displacement of the external gear is €, the

angle «a, will be:

a, = 0+a) = 0-—"—tan a, +oa,+ (2.2.14)
1

N cos o
tan | arccos

N.
\/(Nz —2)2 +(N,—-N, )2 —2(N,=2)(N,—N;)cos(«, —arccos%
-

2.2.2.2 Internal gear

According to the properties of the involute curve, the acting force is always along the

action line which is normal to the tooth profile and tangent to the gear base circle. The

acting force /' can be divided into two orthogonal forces £, and F, as shown in Fig. 2.6.
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Basecircle  Pitch citcle  Root circle

\
\

,,,,, / Action line /

Fig. 2.6: Elastic force on an internal gear tooth

F =Fsinpf,. (2.2.15)
F,=Fcosf,. (2.2.16)

Based on the beam theory, the bending, shear and axial compressive energies

stored in a tooth can be calculated as follows [2.16, 2.17]:

> [F(d-x)-F
u =L =j"[ A=) Fh], (2.2.17)
2k b 2EL
F? 1.2F?
== [, (2.2.18)
2k 0 2G4
2 2
UazF—zjd Fo gy, (2.2.19)
2k, 2EA

where k, ,k and k, represent the bending, the shear and the axial compressive stiffness,

respectively, £ and G denote Young’s modulus and shear modulus, respectively, 4 is
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the distance between the gear contact point and the central line, d is the distance from the

contact point to the gear root, and 4 and /, indicate the area and the area moment of

inertia of the tooth section where the distance to the tooth root is x (see Fig. 2.6).
According to the properties of involute curve, h, h , d, I and A  can be

expressed as follows:

h=R,(sinfB —(B—pB,)cos 3), (2.2.20)
h,=R,(sin B—(B~p,)cos f), (2.2.21)
R b
d=R, cos¢p——"—+htan f3,, (2.2.22)
cos B,
I —i(zh )3L—gh3L (2.2.23)
X 12 X 3 X b ohei o
A =2hL, (2.2.24)

where R, ,R_and L represent the base circle radius, the root circle radius and the width

rb > " rr
of the tooth of the internal gear, respectively, £, and @ denote the half tooth angle on the
base circle and the root circle, respectively, and /4, is the height of the section where the

distance to the tooth root is x ( see Fig. 2.6).
Substituting Egs. (2.2.15), (2.2.16) and (2.2.20) - (2.2.23) into Eq. (2.2.17), the

bending stiffness of the internal gear is obtained as:

g 3{1+cos 3 [(B, = Bsin f—cos B} (B, = Breos

k, 2EL[sin S+ (B, — f)cos AT B, (2.2.25)

where f, = 2; —tana, + @, and ¢ =f, + tan(arccos%) (see Fig. 2.6).

2 rr
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Substituting Eq. (2.2.16) and Eq. (2.2.24) into Eq. (2.2.18), the shear stiffness can

be expressed as:

i:J-ﬂ]1.2(1+1./)(,82—ﬂ)cosﬂcoszﬁldﬁ‘ (2226)
k, 77  EL[sin B+ (B, — f)cosf]
Substituting Eq. (2.2.15) and Eq. (2.2.24) into Eq. (2.2.19), the axial compressive

stiffness is obtained as:

¢ 2EL[sin B+ (f, — B)cos f]

é _ Iﬁl (Bo=Pcospsin f 4 (2.2.27)

Similar to the external gear, it is significant to derive the expression of the angle
B, for the internal gear. Firstly, I derive the expression of angle 3’ which is the angle of
B, when the gears mesh at the reference point (point B at Fig. 2.7).
B = ZFO,G = LFO,B+ ZBO,G
=/FO,B+ ZBO,K + ZKO,G = ZFO,B+ ZBO,K + 3, (2.2.28)

where the point K is the intersection of the internal gear base circle and the extension of

the involute curve.
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Base circles

Fig. 2.7: Meshing of an internal gear pair

Using the properties of the involute curve, the angle ZBO,K can be expressed as

[2.22]:

ZBO,K = Z/FO,K — ZFO,B = tan Z/FO,B - ZFO,B. (2.2.29)
Substituting Eq. (2.2.29) into Eq. (2.2.28), the expression of S can be rewritten

as:

R 4
B =tan ZFO,B + B, = tan(arccos—%) + —— — tana, + a,
02 2

N
= tan(arccos —= 08 % )+ T tana, + &, . (2.2.30)
N,—2 ' 2N,

When the angular displacement of the internal gear is 77, the angle £, will be:
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N N, cosa T
=p+3° = —L @ + tan(arccos —= 9y +
BBl =0 tanGarecos =

—tana, +«, , (2.2.31)
where 6 is the angular displacement of the external gear with respect to the reference
point B .

In this section, the bending stiffness, the shear stiffness and the axial compressive
stiffness of an internal gear are derived first time in the literature. These equations are
convenient to use. Given geometry and material parameters of an internal gear, the

bending stiffness, the shear stiffness and the axial compressive stiffness are expressed as

a function of the rotation angle of the gear.

2.2.3 Overall mesh stiffness of an internal gear pair

For a pair of standard spur gears whose contact ratio is always between 1 and 2, the
alternation of one pair and two pairs of teeth in contact is observed. The single-tooth-pair
duration and the double-tooth-pair duration of an internal gear pair are derived as the

rotation angular displacement of the external gear as follows [2.17]:

2 2
Single-tooth-pair duration: 6 € {(n - I)Vﬂ +0,, nﬁﬂ} n=12, --),

1 1

2 2
Double-tooth-pair duration: 96{(71—1)%, 9d+(n—1)§} (=12, ),
1

1

where 6 and N, denote the angular displacement and the number of teeth of the external

gear, respectively, 6, = (¢ — 1)?\[—7[ ,and ¢ is the contact ratio.
1

For the single-tooth-pair meshing duration, the total effective mesh stiffness can

be calculated as [2.17]:
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1
1 1 1 1 1 1 1’

kh kbl ksl k kbz ksZ ka2

al

k. (0) =

(2.2.32)

where k. is the total effective mesh stiffness which is expressed as a function of the

angular displacement of the external gear. Subscripts 1 and 2 represent the external gear
and the internal gear, respectively.
For the double-tooth-pair meshing duration, there are two pairs of gears meshing

at the same time. The total effective mesh stiffness can be obtained as [2.17]:

k. (0) =k, (0) + k., (0) =

1

, (2.2.33)
1 1 1 1 1 1
+ +—t + + +

k kh2.i k

al,i s2,0

2 1
=

L
kh,i khl,i ksl,i a,i
where i =1 for the first pair of meshing teeth and i =2 for the second pair.
The equations to evaluate the mesh stiffness of an internal gear pair will be used

later to evaluate the mesh stiffness of a ring-planet gear pair since it is an internal gear

pair.

2.3 Mesh stiffness of a planetary gear set

A planetary gear set consists of a centrally pivoted sun gear, a ring gear and several
planet gears which rotate between the sun gear and ring gear. The mesh stiffness
evaluation of a planetary gear set (one sun gear, one ring gear and four equally spaced
planet gears) will be illustrated in this section. The number of teeth for the sun gear, the
planet gear and the ring gear are 19, 31, and 81, respectively. The other properties of this
planetary gear set are the same for the sun gear, planet gear and the ring gear as shown in
Table 2.1.
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Table 2.1: Physical parameters of the gears

Module | Pressure angle | Face width | Young’s modulus | Poisson’s ratio

3.2 mm 20° 0.0381 m 2.068x10'! Pa 0.3

2.3.1 Mesh stiffness when the carrier is fixed

For a planetary gear set, if the carrier is fixed, each planet gear will rotate only around its
own fixed-shaft center; the sun gear and the ring gear will both rotate around the sun gear
shaft center. The sun-planet gear pair is equivalent to a fixed-shaft external gear pair
while the ring-planet gear pair is equivalent to a fixed-shaft internal gear pair. No matter
a sun-planer gear pair or a ring-planet gear pair, the overall mesh stiffness can be

expressed as a function of the rotation angular displacement of the planet gear 6, :
k., =k,(6,), (2.3.1)
ki =k,(6,), (2.3.2)

where k, and k,, represent the mesh stiffness of the first pair of sun-planet gears and

mpl
the first pair of the ring-planet gears, respectively, k, and k, denote the mesh stiffness

formulas for a fixed-shaft external gear pair (derived in [2.17]) and a fixed-shaft internal
gear pair (derived in Section 2.2 of this chapter), respectively.

Using Eq. (2.3.1) and Eq. (2.3.2), the mesh stiffness of the first pair of sun-planet
gears and the first pair of ring-planet gears are plotted in Fig. 2.8 and Fig. 2.9,
respectively. Because the planet gear has 31 teeth, the sun-planet pair and the ring-planet
pair will experience tooth meshing 15.5 times in half revolution of the planet gear. The

point B' showed in Fig. 2.8 is the reference point, which corresponds to the initial
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meshing point of a pair of sun-planet teeth. Point P' is the pitch point where two teeth
mesh at the pitch circle. Similarly, point B and point P are the reference point and the

pitch point of a pair of ring-planet teeth, respectively. The angle ¢, indicates the rotation

angular displacement of the planet gear meshing with the sun gear rotation from point B'

to point P'. The angle ¢, represents the rotation angular displacement of the planet gear
meshing with the ring gear rotation from point B to point P. The expressions for ¢,

and ¢,, will be described later.
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Fig. 2.8: Mesh stiffness of the first pair of sun-planet gears when the carrier is fixed
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Fig. 2.9: Mesh stiffness of the first pair of ring-planet gears when the carrier is fixed
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In a planetary gear set, there are several pairs of sun-planet gears and several pairs
of ring-planet gears meshing simultaneously. While each of the sun-planet meshes has
the same shape of mesh stiffness variation, they are not necessarily in phase with each
other [2.21]. Similar comments apply to the ring-planet meshes. The mesh phasing
relationships given in [2.21] will be applied in this study to get the mesh stiffness of the

n™ sun-planet pair (k,,) and the n" ring-planet pair (k,,, ), where » may go up to the

total number of planet gears which are equally spaced.

The stiffness of the ™ sun-planet pair (k,,, ) with respect to the 1* sun-planet pair

Y2
(k,, ) and the stiffness of the n™ ring-planet pair (k,,,) with respect to the 1" ring-planet
pair (k,,, ) are given as follows [2.21]:

ko =k (t=7,T,), (2.3.3)

spn

ke =K, (=71, ~7.T,), (2.3.4)

where y,, is the relative phase between the n™ sun-planet pair with respect to the 1 sun-
planet pair, y,, is the relative phase between the n' ring-planet pair with respect to the 1*
ring-planet pair, 7, is the relative phase between the n"™ ring-planet mesh with respect to
the n™ sun-planet mesh, K,, is the time-varying mesh stiffness of the 1* ring-planet pair

with # = 0 meshing at the pitch point, and 7,, is the mesh period which is the same for

both the sun-planet meshing and the ring-planet meshing. Without loss of generality, the
1** sun-planet pair is assumed to mesh at the pitch point at # = 0.

Ref. [2.21] provided an analytical way to calculate the relative phase between the
n™ sun-planet pitch point meshing and the n™ ring-planet pitch point meshing. However,

Ref. [2.21] did not mention how to obtain the position of the pitch point meshing in one
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mesh period of two gears. In this chapter, the position of the pitch point is defined as the
angular difference between the pitch point meshing and the reference point meshing. The
angle ¢ (see Fig. 2.8) and ¢, (see Fig. 2.9) define the pitch point meshing position in
one mesh period for a fixed-shaft external gear pair and a fixed-shaft internal gear pair,

respectively. A derivation is given below to get the value of angle ¢,, and ¢, .

Using the properties of the involute curve, the angle ¢, can be expressed as (see

Fig. 2.5):
BP AP—-AB
¢, =——=——"——=tang, - (2.3.5)
Rbl Rbl
N cos
tan | arccos ~
\/(Nz —2)2 +(N,—N, )2 —2(N,=2)(N,—N;)cos(«, —arccos%
L 2- i
Similarly, the angle @, can be calculated by:
9, = tana,, — (2.3.6)
Nl‘ cos a(')
tan | arccos ' '
1 [ [ [ ' ' N '
\/(N2 +2)2 +(N;+N, )2 —2(N,+2)(N;+N,) cos(arccos%—ao )|
(- 2 -

where N, and N, are the number of teeth of a fixed-shaft external gear pair, , is the

pressure angle.
Applying the methods proposed in [2.21] and the parameters listed in Table 2.1,

the relative phases of this planetary gear set are shown in Table 2.2. The zero value of y,
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means the sun-planet gear pair and the ring-planet gear pair mesh at the pitch point

simultaneously.

Table 2.2: Relative phases of the planetary gear set

7&1 7/52 7/53 7/54 7/r1 7r2 7,3 yr4 7rs
0 0.75 | 0.5 | 0.25 0 -0.25| -0.5 | -0.75 0

When the carrier is fixed, the time-varying mesh stiffness of this planetary gear

k

set is shown in Fig. 2.10. The curves & 929

19 k,and k_,, represent the 1%, the 2™, the

3 and the 4™ pairs of the sun-planet mesh stiffness, respectively. Similarly, the curves

k

pl

k

p2

k

.and k_, denote the 1%, the 2™, the 3™ and the 4™ pairs of the ring-planet
3 4 p g p
mesh stiffness, respectively. The mesh stiffness is expressed as a function of rotation

angular displacement of the planet gear. If the phase difference of the sun-planet gear

pairsis y, T in time, the corresponding phase difference in terms of the rotation angle of

snom

the planet gear is 6, =y, T,@, = 7,0, . The symbol @, represents the angular rotation

speed of the planet gear and the symbol 8, is the rotation angular displacement of the

planet gear in one mesh period, 8, :;—ﬂ. Similarly, the phase difference of the ring-
p

planet gear pairs can be expressed as 6. =y . T o =y, 6 . The point p'and p show

rn rn—m 4 rn—m
that both the sun-planet gear pair and the ring-planet gear pair mesh at the pitch point at ¢

=0.
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Fig. 2.10: Time-varying mesh stiffness of a planetary gear set when the carrier is fixed
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2.3.2 Mesh stiffness when the carrier is rotating

When the carrier is rotating, each planet gear not only revolves on its own axis but also
revolves around the sun gear shaft axis. In this situation, the sun gear or the ring gear can
be fixed, but not both, since the gearbox will not work if both the sun gear and the ring
gear are fixed. In the structure of differential planet gears, all the gears are rotating
including the carrier.

Whether the carrier is fixed or rotating, the meshing areas of the two gears are
always the same, which means the mesh stiffness shapes of the two cases are the same.
The only difference is the mesh period. If the gear mesh frequency ratio between the
cases of rotating carrier and fixed carrier is A, the mesh stiffness of the rotating case can
be obtained through an expansion of the mesh stiffness shape of the fixed case by 1/ 1
times. Based on Eq. (2.3.1) and Eq. (2.3.2), when the carrier is not fixed, the formulas for
the first pair of sun-planet gears and the first pair of the ring-planet gears can be
expressed respectively as:

kg, =k, (16,), (2.3.7)
k,, =k (10)), (2.3.8)

where the symbol A is the mesh frequency ratio between the rotating case and the fixed
case.

In the followings, the mesh stiffness evaluation of two other commonly used
planetary gear transmission structures will be described, namely fixed sun gear structure
and fixed ring gear structure. If the ring gear is fixed, the planetary gear set can earn the
maximum transmission ratio. On the other hand, if the sun gear is fixed, the planetary

gear set will attain the minimum transmission ratio.
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2.3.2.1 The ring gear is fixed

According to Kahraman [2.24], the gear mesh frequency @, is determined from

kinematic relationships as a function of the rotational speeds of the sun (€, ) and the ring

gears (,):
2729 /(Z,+Z), fixedring gear

o,=1229 /(Z +Z), fixedsun gear (2.3.9)
2O (or ZQ), fixed carrier

where Z and Z, are the numbers of teeth of the sun gear and the ring gear, respectively.

The gear mesh frequency @, when the ring gear is fixed is smaller than the

situation when the carrier is fixed. This is because in the first case the planet gear is
revolving around the sun gear in addition to meshing with the sun gear. The mesh
frequency ratio between the ring gear fixed case and the carrier fixed case can be
calculated from Eq. (2.3.9) as:

Z7ZQ /I (Z +Z V4
lr — sTro s ( S + 7‘) — r . (2310)
ZQ Z +7Z,

Therefore, the mesh stiffness when the ring gear is fixed can be obtained through

an expansion of the shape of the mesh stiffness when the carrier is fixed by 1/ A, times as
shown in Fig. 2.11. In half a revolution of the planet gear, 12.56 times (4,Z,/2) of gear

meshing are experienced.
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Fig. 2.11: Time-varying mesh stiffness of a planetary gear set when ring gear is fixed
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2.3.2.2 The sun gear is fixed

In this case, the mesh frequency ratio between the sun gear fixed case and the carrier

fixed case can be obtained based on Eq. (2.3.9) as:

Z7ZQ/(Z +Z Z
A =S8 Z+z)__2Z (2.3.11)
‘ 70 Z +Z

Then, the mesh stiffness when the sun gear is fixed can be obtained through an

expansion of the shape of the mesh stiffness when the carrier is fixed by 1/ A4, times. The
number of gear meshing in half a revolution of the planet gear is 4 Z, /2.

We now provide a summary of the gear mesh stiffness equations either reported
in the literature or derived in the earlier sections of this chapter. For the external gear, the
equations of bending stiffness, shear stiffness and axial compressive stiffness were
derived in [2.17] and are listed in Eq. (2.2.6) - Eq. (2.2.8) of this thesis. For the internal
gear, the equations of bending stiffness, shear stiffness and axial compressive stiffness
are derived in this research and are presented in Eq. (2.2.25) - Eq. (2.2.27). The bending,
shear and axial compressive stiffness equations of the external gear and the internal gear
have the same integrand because the tooth profile of both external gear teeth and internal
gear teeth is the involute curve. However, the limits of the integral reflect the differences
between the external gear tooth and the internal gear tooth. The expression of the
Hertzian contact stiffness derived in Section 2.2.1 of this chapter for an internal gear pair
(shown in Eq. (2.2.5)) is the same as that for an external gear pair reported in Ref. [2.15].

A summary of these equations is given in Table 2.3.

59



Table 2.3: A summary of gear mesh stiffness equations

Integrand Limits of integral
External | Internal
External gear Internal gear
gear gear
Bending 3 {1 +cosa, [(a, —a)sina —cos a]}z (a, —a)cosa fa . o] [4, 5]
. 12 2
stiffness 2EL[sina +(a, —a)cosal
Shear 1.2(1+v)(@, - @)cosacos’ o a| 951
stiffness El[sma+(a, —a)cosa] v
Axial (a, —a)cosasin’ a, [4,5]
compressive : [-a,, a,]
stiffness 2EL[sina +(a, —a)cos o]
Hertzian Constant: 7EL
stiffness 41—V

2.4 Conclusions

The analytical method evaluates the time-varying mesh stiffness of a planetary gear set
using the potential energy method. Mesh stiffness equations for a fixed-shaft internal
gear pair are derived in this chapter. Hertzian stiffness, bending stiffness, shear stiffness
and axial compressive stiffness are analytically derived for the internal involute gear
tooth. Different transmission structures may exist for a planetary gear set. If the carrier is
fixed, a sun-planet gear pair is regarded as a fixed-shaft external gear pair while a ring-
planet gear pair is regarded as a fixed-shaft internal gear pair. Combining the relative
mesh phases of gear pairs, the mesh stiffness of a planetary gear set when the carrier is
fixed is obtained. If the carrier is not fixed, the mesh stiffness is obtained through an
expansion of the mesh stiffness shape when the carrier is fixed. The obtained mesh
stiffness considers both the variation of the mesh position and the number of contact

tooth pairs. The results reported in this chapter will be further extended in Chapter 3 of
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this thesis for stiffness evaluation of a planetary gear set when gear tooth crack is present.

The gear mesh stiffness equations derived in this chapter will be used in the dynamic

model of a planetary gear set to be desribed in Chapter 4 of this thesis.
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Chapter 3: Gear Tooth Crack Influence on the Mesh Stiffness

of a Planetary Gear Set

In Chapter 2, the time-varying mesh stiffness of a healthy planetary gear set is evaluated
using the potential energy method. However, tooth faults like crack and pitting may occur
on gears. The gear mesh stiffness shape will change if a tooth fault appears and
consequently the vibration properties of the gear system will change. In this chapter, the
potential energy method used in Chapter 2 is improved and extended to evaluate the gear
tooth crack effect on the time-varying mesh stiffness of a planetary gear set. The obtained
time-varying stiffness in this chapter will be used in Chapter 4 to simulate the vibration
signals of a planetary gearbox in the faulty condition. The fault symptoms found in
Chapter 4 will be further processed in Chapter 5 to develop a fault detection method. This
chapter is organized as follows. In Section 3.1, background of this research topic is
described and a literature review is given on gear mesh stiffness evaluation, gear tooth
crack modeling, and gear tooth crack effect on the gear mesh stiffness. In Section 3.2, an
improved cantilever beam model is proposed for an external gear tooth and equations are
derived for the mesh stiffness evaluation of an external gear pair. In Section 3.3,
procedures of obtaining the time-varying mesh stiffness of an internal gear pair are
described. In Section 3.4, procedures of obtaining the time-varying mesh stiffness of a
planetary gear set are described. In Section 3.5, a tooth crack model is proposed and
equations are derived to evaluate the time-varying mesh stiffness of a planet gear set with
a tooth crack. In Section 3.6, the crack effect on the time-varying mesh stiffness of a

planetary gear set is analyzed; three fault conditions are considered: crack in the sun gear,
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crack in a planet gear (sun gear side) and crack in a planet gear (ring gear side). In
Section 3.7, conclusions are given. This chapter is based on a journal paper [3.1] and a

refereed conference paper [3.2].

3.1 Introduction

When a pair of spur gear meshes, the tooth contact number and the tooth mesh position
change during meshing. This leads to a periodic variation in the gear mesh stiffness. The
mesh stiffness variation is one of the main sources of vibration in a gear transmission
system [3.3]. Cracks may occur in gears due to excessive service load, inappropriate
operating conditions or simply fatigue [3.4]. When a crack occurs, the gear mesh stiffness
will be reduced resulting in changed vibration characteristics of a gear system. If the
stiffness reduction can be quantified for different crack levels, the corresponding
vibration signal can be obtained through dynamic simulation. The vibration signal can be
processed further for crack diagnostics and prognostics. Both the finite element method
(FEM) and the analytical method (AM) have been used to evaluate the gear mesh
stiffness [3.4-3.6]. But, FEM is complicated and time consuming. While AM can offer a
simple and also effective way to evaluate the time-varying mesh stiffness.

Many researchers have applied the analytical method to evaluate the mesh
stiffness of a fixed-shaft external gear pair. Yang and Lin [3.7] proposed the potential
energy method to evaluate the mesh stiffness of an external spur gear pair by considering
Hertzian contact stiffness, bending stiffness and axial compressive stiffness. Later, Tian
et al. [3.8] added another component called shear stiffness in the potential energy method.

Recently, Zhou et al. [3.9] took the deformation of the gear body into consideration. The
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gear tooth was modeled as a cantilever beam which started from the base circle [3.7-3.9].
Also, Tian et al. [3.8], Zhou et al. [3.9], Pandya and Parey [3.10] and Wu et al. [3.11]
considered that the gear crack follows a linear path starting from the point of intersection
of the base circle and the involute curve as shown in Fig. 3.1. Actually, the gear tooth
starts from the root circle rather than the base circle as given in Fig. 3.1. Thus, their
models ignored the gear tooth part between the root circle and the base circle. The tooth
profile of this part (tooth fillet area) is not an involute curve and it is basically determined
by cutting tool tip trajectory. A different cutting tool tip trajectory will generate a
different curve and there is not a uniform function to depict it [3.12]. However, the
ignorance of this part will change the stiffness of the meshing gears, especially when the
distance between the base circle and root circle is large. Chaari et al. [3.13] presented an
analytical method to evaluate the mesh stiffness of an external gear pair and modeled the
crack as a straight line starting from the root circle. They mentioned that the gear mesh
stiffness can be evaluated by taking into account tooth thickness reduction. However,
they did not provide the equations of the mesh stiffness for a crack gear. Chen and Shao
[3.14] proposed an analytical mesh stiffness model with tooth root crack propagating
along both the tooth width and the crack depth. Further, they [3.15] investigated the
effect of tooth profile modification on the mesh stiffness. Their model is more realistic
than other models.

To sum up, Refs. [3.13, 3.14] modeled the gear tooth crack starting from the tooth
root, but they only gave the equations of the mesh stiffness for a gear tooth. In other
words, they did not incorporate the gear meshing theory in their model. Ref. [3.8-3.11]

incorporated the gear meshing theory in their model, but they modeled the gear tooth
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crack starting from the gear base circle. In this chapter, I will model the gear tooth crack
starting from the tooth root and also incorporate the gear meshing theory in our equations.
Finally, the mesh stiffness equations will be expressed as a function of gear rotation angle
given gear geometry, material and tooth crack information (crack angle, crack length and
crack position). Users can use these equations directly to evaluate gear mesh stiffness of
gears with tooth crack even though they are not familiar with beam and gear meshing

theories.

Root Base Pitch
circle circle circle

Fig. 3.1: Crack modeling from Refs. [3.8-3.11]

For a planetary gear set, there are pairs of sun-planet gears (external gear pairs)
and pairs of ring-planet gears (internal gear pairs) meshing simultaneously. Chaari et al.
[3.16] and Walha et al. [3.17] used a square waveform to approximate the time-varying
mesh stiffness of a planetary gear set. In their method, the amplitudes of the sun-planet
mesh stiffness and the ring-planet mesh stiffness were assumed without a specific
qualification method. Besides, the square waveform reflects only the effect of the change
in tooth contact number, but ignores the effect of the change in tooth contact position.

Liang et al. [3.18] evaluated the mesh stiffness of a perfect planetary gear set using the
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potential energy method. They also treated the sun gear and the planet gear as a cantilever
beam starting from the base circle. It is mentioned in [3.16] that the amplitude
modulation can be used to obtain the mesh stiffness of a planetary gear set with crack.
Fig. 3.2 illustrated the amplitude loss of 50% due to a crack in the sun gear. But, they
modeled the stiffness reduction only in the double tooth contact duration while ignored
the stiffness decrease in the single tooth contact duration. Also, physical meaning of this
loss was not described, like how much crack propagation will lead to the amplitude loss

by 50%. In this study, I propose an approach to overcome these shortcomings.

»
»

Loss of 0%

Loss of 50%

Double tooth| Single tooth
contact | contact |

—
!

One mesh period !
|

A

Mesh stiffness

Gl

\4

Time

Fig. 3.2: Crack modeling in the sun gear [3.16]

In this chapter, the potential energy method is used to evaluate the crack effect on
the time-varying mesh stiffness of a planetary gear set. To model an external gear, i.e. the
sun gear and the planet gear, a modified beam model is proposed by considering the gear
tooth starting from the root circle. Further, a crack propagation model is developed and

the mesh stiffness equations are derived when a crack takes place in the sun gear or a
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planet gear. Examples are given to show the crack effect for three fault locations: crack in

the sun gear, crack in a planet gear (sun side) and crack in a planet gear (ring side).

3.2 Mesh stiffness of a fixed-shaft external gear pair

In Chapter 2, I derived equations of the mesh stiffness of a perfect internal gear tooth.
These equations are expressed as a function of gear angular displacement. For a perfect
external gear tooth, I used the equations reported in [3.7-3.9] directly. In [3.7-3.9], they
derived the equations of a perfect external gear tooth by considering the gear tooth
starting from the base circle instead of the root circle.

In this section, I will derive equations of a perfect external gear tooth by
considering the gear tooth starting from the roof circle using the potential energy method.
These equations will be expressed as a function of gear angular displacement. These
equations are the improved versions of those reported in [3.7-3.9] as crack usually starts
from the root circle rather than the base circle [3.19]. The differences of these two
modeling methods on the mesh stiffness will be illustrated.

In the potential energy, Hertzian energy, bending energy, shear energy and axial
compressive energy are considered. The new equations for the bending stiffness, shear
stiffness and axial compressive stiffness will be derived. Hertzian stiffness equation
remains the same. The overall mesh stiffness is represented as a function of the rotation
angular displacement of the driven gear. In Refs. [3.9-3.11], the gear system is assumed
to be perfect without friction and transmission error and the gear body is treated as solid.

The same assumptions will be used in this chapter.

69



3.2.1 Bending, shear and axial compressive stiffness

For an external gear, the gear root circle may be bigger or smaller than the base circle
according to the geometry of gears. If a gear is a standard spur gear with the pressure
angle of 20 degrees, the root circle is bigger if the tooth number is more than 41. It is
smaller if the tooth number is less than 41. In the industrial applications, both types of

gears are commonly used. In this chapter, these two cases will be discussed separately.

Case 1: The gear root circle is smaller than the base circle

If the root circle is smaller than the base circle, the beam model of the gear tooth is
shown in Fig. 3.3. Gear tooth profile follows involute curve up to the base circle (curves
IN " and JD"). The tooth profile between the base circle and the root circle is not an
involute curve and hard to describe analytically [3.12]. Therefore, straight lines NN' and

DD' are used to simplify the curve.

70



Root circle Base circle
\ \

Action line

Fig. 3.3: Beam model of an external gear tooth with root circle smaller than base circle

According to the properties of involute curve, the action line of two meshing
gears 1s always tangent to the gear base circle and normal to the tooth involute profile.

The action force F which is along the action line, can be decomposed into two

orthogonal forces F, and £, , as shown in Fig. 3.3.
F =Fsing,. (3.2.1)
F =Fcosq,. (3.2.2)

Applying the beam theory, the bending, shear and axial compressive energies

stored in a tooth can be expressed as follows [3.7, 3.8]:

S GRS RY

2
e, (3.2.3)
2k % 2EI

U, =
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2 2
v =L jdl‘ZFb X, (3.2.4)

*T 2k 2G4

F* g F?

U, :—:j < dx, (3.2.5)
2k, 0 2FA

where k,, k, and k, denote bending, shear and axial compressive stiffness, respectively,

E and G represent Young’s modulus and shear modulus, respectively, # shows the
distance between the gear contact point and the tooth central line, d is the distance from
the contact point to the gear root, 4. and / indicate the area and the area moment of
inertia of the section where the distance to the tooth root is x (see Fig. 3.3).

According to the characteristics of involute curve, 4, i, d, I and A4 can be

expressed as follows:

h=R,[(a +a,)cosa, —sina, |, (3.2.6)
R, sina,, if0<x<d,
= . . : (3.2.7)
Rb[(a+a2)cosa—sma], ifd <x<d
d=R, [(al +a,)sing, +cosa1]—Rr cosa,, (3.2.8)
[ =Ltonyr=2n1 (3.2.9)
RV B -
A=2hL, (3.2.10)

where R,, R and L denote base circle radius, root circle radius and tooth width of the
external gear, respectively, /_is the height of the section where the distance to the tooth

root is x = a, represents the half tooth angle on the base circle [3.19] while &, describes

the approximated half tooth angle on the root circle (see Fig. 3.3).

72



a2=%+tanao—ao, (3.2.11)

a, = arcsin(%) , (3.2.12)

r

where N is the tooth number of the external gear and ¢, is the pressure angle.

Substituting Eqgs (3.2.1), (3.2.2) and (3.2.6) to (3.2.9) into Eq. (3.2.3), the bending

stiffness of an external gear can be expressed as:

- (N-2.5)cosa, cosa,
1 N cosa,
k, 2ELcosa, sin’ a, . (3.2.13)

3
3
} —(l-cose, cosa,)

J-az 3{1+cos a,[(a, —a)sina —cos 0:]}2 (a, —a)cos @,

-~ 2EL[sina +(a, —a)cosal
Substituting Egs. (3.2.2), (3.2.7) and (3.2.10) into Eq. (3.2.5), the shear stiffness

of an external gear is given as:

1.2(1+v)cos’ a, (cos a, — N=25 cosa, j
Ncosa,

k ELsina, . (3.2.14)

S

J‘az 1.2(1+v)(a, —a)cosa cos’ ¢,
- El[sina+(a,—a)cosa]

Substituting Egs. (3.2.1), (3.2.7) and (3.2.10) into Eq. (3.2.4), the axial

compressive stiffness of an external gear can be obtained:

. N-25
sin” ;| cosa, —————Cos &,
Ncosa,

2ELsine, . (3.2.15)

»‘|,_‘

J'az (a, —a)cosasin’ a,
—a 2EL[sina + (o, —a)cosa]

73



Case 2: The gear root circle is bigger than the base circle

If the root circle is bigger than the base circle, the beam model of the gear tooth is
considered starting from the root circle as shown in Fig. 3.4. The whole gear tooth profile
(curves IN and JD) follows the involute curve. As compared to Case 1 when the root
circle is smaller than the base circle, the expressions for the tooth effective length d and

tooth section width /_changes as follows:
d=R,|(a,+a,)sina, +cosa, |- R cosa,, (3.2.16)
h,=R,[(a+a,)cosa—sina ], (3.2.17)

where «, is the half tooth angle on the root circle of Case 2.

Applying the similar derivation procedures as Case 1, the bending, shear and axial

compressive stiffness of Case 2 can be expressed as followings:

2

1 a 31l+cosq,|(a, —a)sina—cosa|; (a,—a)cosa
1 { [(a, ' ) ]} (32 ) da | (3.2.18)
k, J-a 2EL[sina +(a, —a)cosa]

_ 2
1 [ L.20+v)(@, —a)cosacos &, (3.2.19)
k, J-«  El[sma+(a,—a)cosa)
i__[as (a, —a)cosasin’ ¢, (3.2.20)

k, °-«2FL[sma+(a,—a)cosa]
The symbol a; represents the angle between the action force F and the
decomposed force F;, when the distance between the meshing point and the root circle is

0. The value of &, can be obtained through the following equation set.

{ R sina, =R, [(a, —a5)cos o —sin o | (3.2.21)

R cosa, —R,cosa, = R, [cosas —(a, —as)sina, —cos o |
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Fig. 3.4: Beam model for an external gear tooth with root circle bigger than base circle

3.2.2 Hertzian contact stiffness

From the result derived by Yang and Sun [3.20], the Hertzian contact stiffness £, for an

external gear pair, is linearized to a constant along the entire line of action independent of

both the position of contact and the depth of interpenetration.

wEL
ky =———>
4(1—-v7)

(3.2.22)

where E, L, v denote Yong’s modulus, tooth width and Poisson’s ratio, respectively.
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3.2.3 Overall mesh stiffness of an external gear pair

For a pair of spur gears with contact ratio between 1 and 2, one pair and two pairs of
tooth contact take place alternatively. For the single-tooth-pair meshing duration, the total
effective mesh stiffness can be calculated as [3.8]:

1
e T T T B B (3.2.23)

k, k, k, k

h sl al

ka ks2 kaZ

where subscripts 1 and 2 represent the driving gear and the driven gear, respectively.
For the double-tooth-pair meshing duration, there are two pairs of gears meshing

at the same time. The total effective mesh stiffness can be obtained as [3.8]:

1 1 1 1 1 1
+—t + + +

L
koo Ky, K

sl

2
b=k, k=3, ! , (3.2.24)

k

al,i

kb2.i ks2,i k

a2,
where i =1 for the first pair and i =2 for the second pair of meshing teeth.

Table 3.1 gives the parameters of a planetary gear set [3.18]. Suppose the
parameters of the driving gear and the driven gear of an external gear pair are the same to
the sun gear and the planet gear (see Table 3.1), respectively. The mesh stiffness of this
external gear pair can be evaluated using the method developed in this chapter. The
proposed model is compared with the model given in [3.8]. The results are shown in Fig.

3.5.
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Table 3.1: Physical parameters of the planetary gear set for mesh stiffness evaluation

Parameters Sun gear Planet gear Ring gear
Number of teeth 19 31 81
Module (mm) 3.2 3.2 3.2
Pressure angle 20° 20° 20°
Face width (m) 0.0381 0.0381 0.0381
Young’s modulus (Pa) | 2.068x10"" 2.068x10"" 2.068x10"
Poisson’s ratio 0.3 0.3 0.3
Base circle radius 28.3 46.2 120.8
Root circle radius 26.2 45.2 132.6
x 10°
- ”\If\ . N /I\ 7N\ I/'\ /_\I N /k ¢ - /\I/\ A

CEA RN T T N A N N S A A B N S R S W
> T T T T T Y T Y A S N N
Z 'I'I"'I'l""l:ll"'——-*Mdl |
E2.5‘ L T O T A A O B O O : : [ ode =
» T T T O T A T A IO TR Lo Proposed model| |
4 | : | : [ : | : | : | : Lo |1 : 11 7 i TT i |
£ £ PR T T S TN S SR ! S S S St SRS S
<

#

p=

0 20 40 60 80 100 120 140 160 180
Angular displacement of the driven gear 6 (°)

Fig. 3.5: Mesh stiffness of a fixed-shaft external gear pair
* Model from Tian et al. [3.8]

Fig. 3.5 illustrates the mesh stiffness (15.5 mesh periods) in half revolution of the
driven gear. In [3.8], the gear tooth is considered starting from the base circle, while in
this chapter it is modeled starting from the root circle. The difference in the radius of the
base circle and the root circle is 2.1 mm (7.4% of the base circle radius) for the sun gear
and 1 mm (2.2% of the base circle radius) for the planet gear as given in Table 3.1. It is

found that the mesh stiffness decreases about 40%, if the gear tooth is considered starting
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from the root circle. This demonstrates that substantial difference in the mesh stiffness of
an external gear pair is likely when the origin of the gear tooth is changed from the base
circle to the root circle, especially when the difference between the base circle and the
root circle is large. It is important to consider this difference because the dynamic

response of the gear system will be affected due to the stiffness change.

3.3 Mesh stiffness of a fixed-shaft internal gear pair

In this section, the procedures to obtain the mesh stiffness of a fixed-shaft internal gear
pair are presented. These procedures will be used later in the mesh stiffness evaluation of
ring-planet gears of a planetary gear set. An internal gear pair includes two types of gears,
namely an external gear and an internal gear. For an external gear, the root circle may be
bigger or smaller than the base circle. However, for an internal gear, the root circle is
always bigger than the base circle. Liang et al. [3.18] derived equations of the mesh
stiffness for an internal gear pair. But, they modeled the external gear tooth starting from
the base circle. In this study, I will improve the results of Liang et al. [3.18] by modeling
the gear tooth starting from the tooth root circle. The stiffness equations of the external
gear are derived in Section 3.2. For the internal gear, the equations of bending, shear, and
axial compressive stiffness reported in [3.18] will be used directly here. Thus, the
difference of the mesh stiffness for an internal gear pair between our model and the
model from [3.18] comes from the difference in the modeling of the external gear teeth.

I evaluate the mesh stiffness of a fixed-shaft internal gear pair of which the

external gear and the internal gear have the same parameters as the planet gear and the
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ring gear (listed in Table 3.1), respectively. The overall mesh stiffness is shown in Fig.

3.6. The comparison with Liang et al. [3.18] is also presented in Fig. 3.6.

- - ~ o~ |7 ¥ Model
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Fig. 3.6: Mesh stiffness of a fixed-shaft internal gear pair
* Model from Liang et al. [3.18]

It can be seen that even the radius difference of the base circle and the root circle
is only 1 mm for the planet gear; the mesh stiffness decreased about 17% in the double-
tooth-pair meshing duration and about 23% in the single-tooth-pair meshing duration.
This percentage change is smaller than that of an external gear pair because the same
stiffness equations are used for the internal gear in these two models. Though relatively
small, this result indicates the importance of modeling the gear tooth of the external gear

starting from the root circle as it is more realistic.
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3.4 Mesh stiffness of a planetary gear set

Fig. 3.7 shows the structure of a planetary gear set which will be considered in this study.
It is comprised of a sun gear (s), a ring gear (») and four equally-spaced planets (p) which
are held by a common carrier (c). In this structure, the ring gear is fixed. The parameters

of this planetary gear set are listed in Table 3.1.

Fig. 3.7: Structure of a planetary gear set with the ring gear fixed

A planetary gear set comprises several pairs of sun-planet gears (external gear
pairs) and ring-planet gears (internal gear pairs) meshing simultaneously. While each of
the sun-planet meshes (or ring-planet meshes) has the same shape of mesh stiffness
variation, they are not in phase with each other [3.21]. The phasing relationships of
multiple meshing gears must be considered. The mesh phasing of the planetary gear set

were calculated in [3.18] and shown in Table 2.2 of Chapter 2. The value of y,, (n=1, 2,

3, 4) is the relative phase between the n™ sun-planet pair with respect to the 1** sun-planet

pair. The value of y,, is the relative phase between the n" ring-planet pair with respect to

the 1% ring-planet pair. The value of y, is the relative phase between the n' ring-planet
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mesh with respect to the n™ sun-planet mesh. The 7, =0 shows that the sun-planet gears

and the ring-planet gears mesh at the pitch point simultaneously [3.18].

Once the mesh stiffness equations for a fixed-shaft external gear pair and a fixed-
shaft internal gear pair are derived, the mesh stiffness of a planetary gear set can be
obtained using the approach reported in [3.18]. The time-varying mesh stiffness of the
planetary gear set is plotted in Fig. 3.8.

There are 12.56 times of gear meshing in half revolution of the planet gear. The
point P' and P denote the pitch points of one sun-planet gear pair and one ring-planet
gear pair, respectively. It can be seen from Fig. 3.8 that both the sun-planet pair and the

k

ring-planet pair mesh at the pitch point at 1 = 0. The curves £, 25

spl >

k., and k,,
represent the 1%, 2", 3™ and 4™ pairs of the sun-planet mesh stiffness, respectively.

Similarly, the curves k,, k,,, k,, and k,, denote the 1%, 2", 3™ and 4" pairs of the

mpl 2
ring-planet mesh stiffness, respectively. The symbol &, is the rotation angular

displacement of the planet gear in one mesh period, 6, =272,/ Z,/(Z,+Z,) [3.18]. Z,,

Z,,and Z, are the tooth number of the sun gear, planet gear and ring gear, respectively.
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Fig. 3.8: Improved mesh stiffness of a planetary gear set when the ring gear is fixed
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3.5 Crack modeling of the external gear

Lewichi [3.22] found that several factors such as rim and web thicknesses, initial crack
location and backup ratio (rim thickness divided by tooth height) decided the gear crack
propagation. Belsak and Flasker [3.23] investigated the propagation path of the crack
both experimentally and computationally. The results (see Fig. 3.9) indicated that the
crack propagation paths were smooth, continuous, and in most cases, rather straight with
only a slight curvature; similar to the findings in [3.22]. It is pointed out by both
Kramberger et al. [3.24] and Belsak and Flasker [3.23] that the crack mostly initiated at

the point of the maximum principal stress in the tensile side of a gear tooth (critical area

in Fig. 3.9).
F
(@) (®)
. HHF mmmny
Cntlcal o i i 1\
Area 14 H

Fig. 3.9: Gear crack propagation path [3.23] (a) experiment and (b) finite element method

In the analytical modeling of gear tooth crack, straight lines were used to
approximate the tooth crack curve in [3.8, 3.11, 3.15]. In this section, the same idea is
used. The tooth crack is modeled as a straight line starting from the critical area of the

tooth and two cases will be analyzed. The first case is when the gear root circle is smaller
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than the base circle and the second case is when the root circle is bigger than the base
circle. When the crack happens, the gear mesh stiffness reduction is modeled by taking
into account the thickness reduction of the tooth section and the effective length changing

of the beam model.

Case 1: The gear root circle is smaller than the base circle

The point M (see Fig. 3.10), located within the critical area of the tooth, is considered as
the starting point of the crack. The crack is modeled as a straight line which passes
through point N which is the intersection of the straight line NN' and the root circle.
The crack propagates along the straight line until reaching the tooth central line at point
B. Then, it changes the propagation direction towards point D where the tooth breaks.
The line segment MN can be interpreted as an initial notch which stimulates higher
stress concentration which then leads to fully developed crack. It is similar to what
Lewicki et al. [3.25] described as an initial notch in his crack experiment. This notch will
not be considered in the mesh stiffness derivation in this chapter. The fillet curve is
difficult to express analytically [3.12], therefore, in the proposed beam model, I simplify
it and represent it using a straight line NN' as shown in Fig. 3.10. The angle between the
crack line and the tooth central line is defined as v . Though I have modeled that the
crack gradually grows until it reaches the breaking point D, sometimes, sudden tooth
breakage may also take place especially when the crack goes over the central line.

Similar to the perfect situation, the overall mesh stiffness is considered as the
summation of Hertzian stiffness, bending stiffness, shear stiffness and axial compressive

stiffness. The Hertzian stiffness and the axial compressive stiffness will not be affected
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by the crack propagation [3.8, 3.11]. Only the bending stiffness and the shear stifness will
be affected due to the change in the tooth length and the tooth height caused by the crack.
In order to derive the bending and shear stiffness with the propagation of the crack, we
need to consider four conditions. Condition 1 and condition 2 may happen when the
crack is below the tooth central line. Condition 3 and condition 4 may happen when the

crack goes over the tooth central line.

Root circle Base circle
\ \ d,

Fig. 3.10: Cracked tooth model when root circle is smaller than base circle

Condition 1: When h,>2h, & o, >a,
The symbol %, represents the distance from the crack end point 4 to the tooth

central line when the crack has not reached the tooth central line. Half of the roof chordal
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tooth thickness is denoted by /. The angle o, corresponds to the force action point K

(see Fig. 3.10). For a tooth with crack, the tooth section area and the area moment of

inertia can be expressed as follows:

{(ha +h)L ifx<d,

= . , (3.5.1)
2h L ifx>d,
1 s
—(h, +h YL ifx<d,
I = 112 , (3.5.2)
—Qh)YL  ifx>d,
12
where /s, and /_have the following expressions:
h, =R, sina, —q,sinv, (3.5.3)
R siny, if0<x<d,
h . ={R, sina,, ifd, <x<d,. (3.5.4)

R[(a+a,)cosa—sina], ifd,<x<d

Substituting Eq. (3.5.2) into Eq. (3.2.3) and substituting Eq. (3.5.1) into Eq.
(3.2.4), the bending and the shear stiffness of a cracked tooth can be obtained
respectively:

N-25

r

. Ncosa, q,
2sina| ————— cosa+cosa3—cosar—R—c0su cosq,
d

| R
=l ; @
EL (sin o, +sina - %sin l)]

”
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4{1_ (N —2.5)cosq, cos a,

3
—4(1—cosa, cosa, )’
Ncosa, } ( : )

3
ELcosq, (ZSin a, — 4 gin UJ
Rb
J-az 12{1+cos o, [(ar, —a)sina —cos a]}2 (a, —a)cosa
+

a, (3.5.5)

3

llg

EL|sina, — el sinv+sina +(a, —a)cosa

2 2
b

J‘—ag 3{1+0050{l [(0{2 —a)sina —cos a]}2 (a,—a)cosa
_l_

—a 2EL[sina +(a, —a)cosal

2.4(1+v)cos’ a,(cos a, — N=25 cosa;)

ki: J«a, 24(1+v)cos’ a, sina da+ : cosa,
’ EL(sin a, —%sinu+sin a} EL(Zsina, - R; sinv)
+_[_a2 2.4(1+v)(a, —a)cosacos’ a i

"EL sina, — 9 sinv+sina +(a, —a)cosa
R, , (3.5.6)
+Jv—ag 1.2(1+v)(a, —a)cosa cos’ a

-a EL[sina+(a, —a)cosa]

Condition 2: When h, <h, or when h,>2h, & o, <a,

In this condition, the expressions of the tooth section area and the area moment of

inertia are as follows:

I, =%(ha +h )L, (3.5.7)

A =(h,+h)L. (3.5.8)

Similar to Condition 1, the bending and the shear stiffness of the cracked tooth are

obtained:
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Ncosa, q

—(cosa +cosa, —cosa, —R—lcos UJCOS al}
d

r

12sin0{

| R
P L 3 *
EL [sin o, +sino — %sin u]

”

41— (N —-2.5)cosa, cosa,
Ncosa,

3
} —4(1-cosa, cosa, )’

+

3
ELcosq,| 2sina, ~ 4 sinp
Rb

, (3.5.9)

J~a2 12{1+cos o, [(a, —a)sina —cos 0:]}2 (a, —a)cosa

3
%
EL {sin a, —%sinu +sina +(a, —a)cos a}

b

2.4(1+v)cos® a,(cos a, — N=25 cosa,)

ki _ J-ar 2.4(1+v)cos’ a, sina da+ - N cosa,
’ EL [sin a, —%sinu+sin aj FLsine; —R—:sm v
e 2.4(1+v)(e, —a)cosacos’ do. (3.5.10)

)
EL|sma —7q1 smu+sma+(a —OC)COSCY
g R g

b
Condition 3: When h, <h, or when h,>2h, & o, <,

The angle a, corresponds to the force action point £ which is the mirror of the

point E'. The point £' is relative to the crack point C in the Fig. 3.10. The tooth section

area and the area moment of inertia are given by:

Ixzi(hx—hc)%, (3.5.11)
12

A =(h —h)L, (3.5.12)

where /. =g, sinv.
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The bending and the shear stiffness of the cracked tooth are derived as:

. Ncosa, sina; g,
12sina| —————| cosa +cosa, —cosa, —| —————= |COSV |cOs,

1 a, N-25 sinv R
= :I . da
’ » EL [sina—qzsin uj

R
N-2.5 ’
4 1—( —2.5)c0s @ cos a —4(1-cosa, cosa, )’
Ncosa : ?
0
+ 3
ELcosa, (sin a, — %2 gin UJ
R, , (3.5.13)
Iaz 12{1+cos a, [(052 —a)sina —cos a]}z (a,—a)cosa
—a, 3
EL[sinOH(oz2 —a)cosa—;];sinu}
b
, 2.4(1+v)cos’ a,(cosa, —Mcos a;)

1 0, 2.4(1+v)cos” ¢, sinx Ncosa,
- =J' da +

s 3 EL(sina—quin UJ EL(sina, —%Sinl))

R b
) 2.4(1+ — 2

+_[_ (1+v)(a,—a)cosacos” a, do. (3.5.14)

| EL{sinaht(O{2 —a)cosa—;];sinu}

b
Condition 4: When h,>2h, & o, > a,

In this condition, the tooth is considered as the constitution of the tooth sections

whose height /_are bigger than /4, [3.11]. If the section height /_ is smaller than 4, the

corresponding tooth part can be ignored. If the section height /_is bigger than /., the

expressions of the tooth section area and the area moment of inertia are the same in Eq.
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(3.5.11) and Eq. (3.5.12). The bending and the shear stiffness of the cracked tooth are

expressed as follows:

. Ncosa, sina; g,
12sing| ——————| cosa +cosa, —cosa, —| ————= |COSV |COs,
1 a, N-25 sinv R
k_zj . da
’ » EL[sina—qzsinuj
R
N-25 3
4 1—( ~2:5)c08 %, C0s g —4(1-cosa, cos,)’
Ncosa,
+ 3
ELcos o, (sin a, — %2 gin uj
Rb
2
o 12{1+cosa, |(a, —a)sina —cosa |; (a, —a)cosa
+] { e -e) ) (. 3) , (3.5.15)
EL {sina +(a, —a)cosa—%sin U}
b
) =25
, . 2.4(1+v)cos” o (cosa, ————cosa)
1 o 2.4(1+v)cos” a,sina cosa,
k_:Ia 3da+ 7
’ EL(sina ~ b i Uj EL(sina, _R725m v)
R b
+J:aZ 2.4(1+v)(a, —a)cos a cos” ¢, Jo. (3.5.16)

C EL{sina+(a2 —a)cosa—zzsinu}
b

Case 2: The gear root circle is bigger than the base circle

Fig. 3.11 shows the tooth crack model when the root circle is bigger than the base circle.
The crack is modeled as a straight line starting from the intersection (point M ) of the
involute curve and the root circle. The point M is within the critical area of the gear

tooth.
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Similar to Case 1, four conditions are considered in the derivation of bending and
shear stiffness. In each condition, the expressions of the tooth section area and the area
moment of inertia are the same as derived for the condition when the root circle is smallar

than the base circle. But, the expression of the tooth height, /_, changes as:

{Rrsiny, if0<x<d, (3.5.17)

R([(a+a,)cosa—sina ], ifd <x<d’

Applying the same procedure as stated in Case 1, the bending stiffness £, , and the

shear stiffness &, for the four cinditioins are derived and listed as follows:

Condition 1: When h,>2h, & o, >a,

. Ncosa, q,
12sina| —————*—| cosa +cosa, —cosa, ——-COSV |COSQ,
N-25 R p

”

1 a,

k =.[a3 3 o
b . . q, .

EL|sine, +s1na—R—lsmu

”

+J-a5 12{1+cos &, [(a, - a)sina —cos a]}z (a, —a)cos .

3
g
EL[sin a, — Zl sinv+sina +(a, —a)cos a}
3

. (3.5.18)
J-—ag 3 {1 +cos ¢, [(052 —a)sina —cos a]}2 (a, —a)cos ad
+ a
- 2EL[sina +(a, —a)cosal
2 . Y _ 2
1 _ _[ , 24(+v)cos” a,sina da+ j . 1.2(1+ 1./)(052 a)cosacos”
k, Y q - El[sina+(a,—a)cosa]
EL|sina, +sina — Rl sinv
_ 2
+I_5 24(1+v)(a, —a)cosacos” a, da. (3.5.19)

ag . . .
EL[sm a, —%smu+ sina +(a, —a)cos a}

b

91



Base circle Root circle

Involute curve_ X
extension M

Fig. 3.11: Cracked tooth model when root circle is bigger than base circle

Condition 2: When h, <h, or when h,>2h, & o, <a,

N-=-25

r

. Ncosa, q,
2sina| ————— cosa+c0sa4—cosar—R—cosu cosq,
d

1 @,
P : “
b . . q, .
EL|sina, +s1na—R—‘s1nu

7

[ 12{1+cosa [(@, ~a)sina —cosa]} (@, ~a)cosa (3.5.20)

3
‘11
EL[sin a, —%sinu +sina +(a, —a) cosa}

b
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da

1 &  24(1+v)cos’ o sina
=l ;
’ EL(sin a, +sina—%sin Uj

'

(3.5.21)

Ias 2.4(1+v)(a, —a)cosacos’ a, ia

1
EL|sina, — 4= sinv+sina +(a, —a)cosa
2 R 2

b

Condition 3: When h, <h, or when h,>2h, & o, <,

. Ncosa, sina, q,
12sina| ———*—| cosa +cosa, —cosa, —| ———+——= [COSV [COS,
N-25 sinb R

3
EL (sin o— 9 sin uj
R

”

da

1 a,
L

a 12{1+cos a, [(cx2 —a)sina —cos a]}z (a,—a)cosa

+ j . (3.5.22)
EL[sina +(a, —a)cosa —%sin u}
b
klz ja,. 2.4(1+v)cos® @, sin Ogda
’ EL(sina—Zzsin uj
" (3.5.23)

Ias 2.4(1+v)(a, —a)cosa cos’ a o

| EL{sinoz+(oz2 —a)cosa—?;sinu}

b

Condition 4: When h,>2h, & o, >,

. Ncosa, sina, q,
12sina| ———*—| cosa +cosa, —cosa, —| ———+——= [COSV [COSQ,
N-=25 sinv R

3
EL (sin a— 9 sin uj
R

7

da

1 a,
L
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+Ia5 12{1+cosorl [(a2 —a)sina —cos a]}z (a,—a)cosa

i - (3.5.24)
EL {sina +(a, —a)cosa —%sin U}
b
ki _ .[a,‘ 2.4(1+v)cos’ a, sin Ogda
’ EL (sina —%sin U]
' (3.5.25)

do

. J~a5 2.4(1+v)(a, —a)cosacos’ o,

EL {sin a+(a,—a)cosa — %sin u}
b

3.6 Crack effect on the mesh stiffness of a planetary gear set

In this section, the crack effect on the mesh stiffness of a planetary gear set (see Fig. 3.7)
is investigated when a crack takes place in the sun gear or a planet gear. Two cases exist
when a crack occurs in a planet gear (sun gear side or ring gear side). If it is the sun gear
side, the ring-planet mesh stiffness is assumed not to be affected as the cracked tooth can
still bear the compressive stiffness as if no crack exists. Similarly, if it is the ring gear
side, the sun-planet mesh stiffness will not be affeced. Overall, three cases are considered
in this study; crack in the sun gear, crack in a planet gear (sun side) and crack in a planet
gear (ring side). For each case, the mesh stiffness at four crack levels will be evaluated.

These levels are 25%, 50%, 75% and 100% crack (tooth missing). Fifty percent (50%)

crack occurs when the crack line g, reaches the tooth central line (see Fig. 3.10). Twenty
five percent (25%) crack means the crack length is half of 50% crack length. One
hundred percent (100%) crack indicates the crack line g, reaches the tooth root circle
when the tooth breaks. Seventy five percent (75%) crack happens when the crack line g,
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has the same length of g with 25% crack. The angle, v, between the crack line and the

tooth central line is assumed to be a constant in the calculation and set as 45°.

Case 1: Crack in the sun gear

Table 3.2 shows four crack levels in the sun gear and the corresponding crack length.
According to the parameters of the planetary gear set (parameters are listed in Table 3.1),
the root circle of the sun gear is smaller than the base circle. Applying the equations
derived in the Section 3.2 and the Section 3.5, the mesh stiffness of a pair of sun-planet

gears (k, ) are shown in Fig. 3.12 for four crack levels. The mesh stifness is represented

as a function of the angular displacement of the planet gear. As the size of the crack
grows, the mesh stiffness reduces correspondingly. Correct stiffness measurement is
important for fault diagnosis of the gears. For each crack level,corresponding vibration
signal can be obtained through dynamic simulation. By analysing these vibration signals,
fault severity indicators can be generated, which can be then used to detect the fauly

severity of the gear system.

Table 3.2: Crack levels and the corresponding crack length in the sun gear

Crack levels Crack length
25% ¢ =1.95 mm
50% ¢ = 3.90 mm
75% ¢ =390 mm, ¢, =1.95 mm
100% g =3.90 mm, ¢, =3.90 mm
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Fig. 3.12: Mesh stiffness of a sun-planet pair of four crack levels in sun gear

If the sun gear has a crack, the crack tooth will mesh with each of the planet gears
successively. Therefore, the mesh stiffness of all sun-planet pairs will be affected. Fig.
3.13 shows one crack mesh cycle of the sun-planet mesh stiffness, which is 19 times of
gear meshes corresponding to a 272.4 degree revolution of the planet gear. The symbol
0, represents the angular displacement of the planet gear in one mesh period; the
expression was given in Section 3.4. The point P' is the pitch point. The mesh stiffness

of the ring-planet gears are not affected by the crack just like what is shown in Fig. 3.8.
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Fig. 3.13: Mesh stiffness of sun-planet gear pairs with 25% crack in sun gear

Case 2: Crack in a planet gear (sun gear side)

Table 3.3 gives the information about the four crack levels in a planet gear. For the planet
gear given in Table 3.1, the root circle is also smaller than the base circle. The mesh
stiffness will decrease gradually along with the crack growth as shown in Fig. 3.14. In
this case, one crack mesh cycle includes 31 times of the gear meshing corresponding to a
444 4 degree revolution of the planet gear. The ring-planet gear pairs are treated as the
perfect condition (seen Fig. 3.15 for the mesh stiffness of the perfect case). One big
difference from Case 1 is that the mesh stiffness of only one pair of sun-planet gears will
be affected by the crack (see Fig. 3.15). This difference in the mesh stiffness will cause

the corresponding difference in the vibration signal which can be obtained through
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dynamic simulation. Signal processing methods can be applied to distinguish the crack

location in the sun gear or the planet gear.

Table 3.3: Crack levels and the corresponding crack length in the planet gear

Crack levels Crack length
25% g =2.15 mm
50% g =4.30 mm
75% g =430 mm, ¢, =2.15 mm
100% g =4.30 mm, g, =4.30 mm
x10°  25% crack «10°  50% crack
2 2
15 15 -
£ £
£ 1 £ 1
5 5
* 05 * 05
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Fig. 3.14: Mesh stiffness of a sun-planet pair of four crack levels in planet gear
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Fig. 3.15: Mesh stiffness of a sun-planet pair with 25% crack in planet gear

Case 3: Crack in a planet gear (ring gear side)

In this case, the crack lengths of the four crack levels are the same as the Case 2 (see
Table 3.3). Fig. 3.16 illustrates the mesh stiffness reduction trend for a pair of ring-planet
gears at four crack levels. For each crack level, the mesh stiffness reduction is quantified.
This information is essential to obtain the dynamic response of a planetary gear set when
crack is present. Fig. 3.17 presents the mesh stiffness of a pair of ring-planet gears when
the planet gear has the crack level of 25%. Gear mesh takes place 31 times during one
crack mesh cycle which corresponds to a 444.4 degree revolution of the planet gear. The
point P corresponds to the pitch point. The sun-planet gear pairs are regarded as the

perfect condition (seen Fig. 3.15 for the mesh stiffness of the perfect case). In the Case 1

99




and the Case 2, when the crack happens, the sun-planet mesh stiffness decreases and the
ring-planet mesh stiffness keeps the same as the perfect situation. This difference in the
mesh stiffness can be used in the dynamic simulation to observe the vibration response
when crack happens in different positions. By analyzing these vibration signals, fault

position indicators can be generated to track the crack position of a planetary gear set.
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Fig. 3.16: Mesh stiffness of a ring-planet pair of four crack levels in planet gear
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Fig. 3.17: Mesh stiffness of ring-planet pairs with 25% crack in planet gear

3.7 Validation

In [3.26], a two-dimensional (2-D) finite element model (see Fig. 3.18) was developed to
evaluate the torsional mesh stiffness of a pair of external gears with 1:1 transmission ratio.
The gears were modeled using quadratic 2-D plane strain elements and the contact effect
was modeled using 2-D line-to-line general contact elements which included elastic
Coulomb frictional effects. The torsional mesh stiffness is the ratio between the torque
and the angular deflection of gear body. The mesh stiffness calculated in this study (see

Eq. (3.2.23) and Eq. (3.2.24)) is the linear mesh stiffness which is the ratio of contact
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force to the linear displacement along the line of action. The relationship between linear

and torsional mesh stiffness can be expressed as follows [3.26]:
k, =k xR} (3.7.1)
where k, and k, represent the torsional mesh stiffness and linear mesh stiffness,

respectively, and R, is the radius of the gear base circle.
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Fig. 3.18: Two-dimensional finite element model [3.26]
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The key parameters of the gear pair used in [3.26] are listed in Table 3.4. I first
calculated the gear mesh stiffness (linear mesh stiffness) using the proposed method for
the same gear pair with parameters listed in Table 3.4. Then, I converted the linear mesh
stiffness to torsional mesh stiffness using Eq. (3.7.1). A comparison between the torsional
mesh stiffness results from [3.26] and that obtained in this study is given in Table 3.5 and
Fig. 3.19. Two health conditions are analyzed: healthy condition with no crack and crack

condition with a 4.7 mm crack at the root of one gear tooth. The biggest relative
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difference in the mesh stiffness between the FEM result in [3.26] and the analytical result

from this thesis is within 7%.

Table 3.4: Major parameters of the spur gears used for validation [3.26]

Gear type Standard involute, full-depth teeth
Material Aluminium
Modulus of easticity 69 Gpa
Poisson’s ratio 0.33

Face width 0.015m
Module 6 mm
Number of teeth 23

Pressure angle 20°
Theoretical contact ratio 1.59
Theoretical angle of meshing cycle 24.912°
Addendum 1.00 m
Dedendum 1.25m

Table 3.5: Mesh stiffness comparision

Maximum difference (%)

Gear tooth condition

Single mesh period

Double mesh periods

Perfect

5.9

6.3

4.7 mm crack

6.7

2.9
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Fig. 3.19: Time-varying mesh stiffness validation

(a) FEM result from [3.26] and (b) obtained from the method developed in this study
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3.8 Conclusions

In this chapter, equations are derived to evaluate the time-varying mesh stiffness of a
planetary gear set with tooth crack based on the potential energy method and the gear
mesh theory. The time-varying mesh stiffness is represented as a function of the angular
displacement of the gears. To use these equations, users only need to provide gear
geometry, material and tooth crack information (crack angle, crack length and crack
location).

A modified cantilever beam model is proposed for an external gear tooth in mesh
stiffness evaluation. Comparison results show that modeling gear tooth starting from the
root circle rather than from the base circle may cause a stiffness variation of up to 40%.
This shows that it is important to model the gear tooth starting from the root circle.

The mesh stiffness reduction due to crack is quantified when the crack appears in
the sun gear, in a planet gear (sun gear side), or in a planet gear (ring gear side). The
stiffness obtained in this chapter will be used in Chapter 4 to simulate the vibration
signals of a planetary gear set in the faulty condition.

In this chapter, the gear body is assumed to be rigid, and tooth profile and lead

modifications are not considered. These factors will be further investigated in the future.
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Chapter 4: Vibration Signal Modeling of a Planetary Gear Set

for Tooth Fault Detection

In Chapter 2 and Chapter 3, the time-varying mesh stiffness is analytically evaluated
using the potential energy method for a planetary gear set in healthy and cracked tooth
conditions. The time-varying mesh stiffness obtained in the previous two chapters will be
used in this chapter to simulate the vibration signals of a planetary gear set. In this
chapter, a dynamics based vibration signal modeling method is proposed to simulate the
vibration signals of a planetary gearbox at the sensor location. The vibration properties
found in this chapter for a planetary gearbox in healthy and faulty conditions enlighten
the development of a fault detection method to be proposed in Chapter 5. This chapter is
organized as follows. In Section 4.1, background of this research topic is described and a
literature review is given on vibration signal modeling and vibration analysis of a
planetary gear set. In Section 4.2, a lumped parameter model is proposed to simulate the
vibration source signals of a planetary gear set. In Section 4.3, a mathematical model is
proposed to represent the effect of transmission path. In Section 4.4, properties of the
resultant vibration signals are analyzed in time and frequency domains. In Section 4.5,
the proposed vibration properties of a planetary gear set are compared with experimental
signals. In Section 4.6, conclusions of this research topic are given. This chapter is based

on a journal paper [4.1] and a refereed conference paper [4.2].

109



4.1 Introduction

The vibration signals of a planetary gearbox are more complicated than those of a fixed-
shaft gearbox. For a planetary gear set, several sun-planet gear pairs and several ring-
planet gear pairs mesh simultaneously. The vibration signals generated by each sun-
planet gear pair are similar but with different phases [4.3]. So does each ring-planet gear
pair. This phase shift cancels or neutralizes some of the excitations induced by gear pairs
but augments others [4.4]. In general, vibration transducers, mounted on the housing of a
gearbox or the housing of a bearing acquire vibration signals. In addition, the rotation of
the carrier varies the transmission paths of the vibration signals to a fixed transducer.
Multiple vibration sources and the effect of the transmission path make fault symptoms
hard to distinguish.

Even though many signal processing methods have been proposed to detect gear
faults [4.3-4.6], such methods still need improvements. The transducer signal is
comprised of many sub signals, such as the vibrations of the sun gear, planet gear, ring
gear, bearings and shafts. Unfortunately, no mature signal processing methods can
effectively denoise and separate these signals [4.7-4.8]. If we can “open” the black box,
“see” all the sub-signals, and understand the generation mechanisms of vibration signals,
we can develop effective tools to detect gear faults.

Several researchers investigated the vibration properties of a planetary gearbox
using mathematical models [4.9-4.10]. However, these models lack connections with
physical parameters of a gearbox, like gear mesh stiffness and damping. In addition, they
can hardly model the process of the fault growth. A dynamic model can model fault

growth and the corresponding effects. It has further advantages over lab systems or field
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systems [4.11]: (1) we can eliminate environmental noises to identify changes in
vibration signals caused by the faults; (2) with a good dynamic simulation model, we can
easily simulate different types and levels of faults, and observe changes in the vibration
signal they cause.

A large range of dynamic models have been developed to simulate the behavior of
planetary gears. Kahraman [4.12] proposed a nonlinear dynamic model to investigate the
load sharing characteristics of a planetary gear set. Inalpolat and Kahraman [4.13] used
the same model as Ref. [4.12] to predict modulation sidebands of a planetary gear set
having manufacturing errors. Lin and Parker [4.14] modified the model of Ref. [4.12] and
investigated the free vibration properties of a planetary gear set. Cheng et al. [4.15]
developed a pure torsional dynamic model to investigate the properties of a planetary
gear set when a single pit was present on one tooth of the sun gear. Chaari et al. [4.16]
used a similar model as Ref. [4.14] to investigate manufacturing errors’ effect on the
dynamic behavior of planetary gears. This study did not consider tooth profile
modification or manufacturing errors. Studies on the effect of manufacturing error are
given in Refs. [4.13, 4.16] while studies on the effect of tooth profile modification are
given in Refs. [4.17-4.20].

However, the investigation of the vibration properties of a planetary gearbox with
cracked teeth is limited. Barszcz and Randall [4.21] applied spectra kurtosis to detect a
ring gear tooth crack in the planetary gear of a wind turbine. Lewicki et al. [4.22] used
vibration separation techniques to detect the tooth damage in the sun gear, planet gear
and ring gear, respectively. Chen and Shao [4.23] investigated the vibration properties of

a planetary gear set when there was a tooth root crack in the ring gear. Chaari et al. [4.24]
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applied the dynamic model developed in [4.16] to investigate the vibration properties of
the sun gear and the carrier of a planetary gear set with tooth crack or a single pit on the
sun gear. In their studies, the gear mesh stiffness was approximated as a square waveform
which would generate unwanted frequency components in the dynamic response [4.25].
Chen and Shao [4.26] studied the dynamic features of a planetary gear set when a tooth
crack was under different sizes and inclination angles. The displacement signals of the
sun gear and the planet gear were investigated when a crack was present on the sun gear
or the planet gear. But, Refs [4.23, 4.24, 4.26] did not consider the effect of transmission
path in their studies. In this study, I do consider the effect of transmission path while
focusing on a tooth crack in the sun gear.

The dynamic models described above can be divided into two categories: fixed
coordinate model and rotating coordinate model. A rotating coordinate model is more
convenient to consider inertial force effect caused by the rotation of the carrier. The
inertial force contains gyroscopic force and centrifugal force. The centrifugal force is a
fictitious force generated from the rotation of a planet gear around the axis of the sun gear.
Cooley and Parker [4.27] mentioned the centrifugal force in the investigation of
eigenvalues of a planetary gear set. They concluded that the constant centrifugal force (it
is not constant if the rotation speed of a planet gear around the axis of the sun gear is
varying) could be ignored without affecting the eigenvalues. Gu and Velex [4.28]
investigated the influence of planet position errors on the quasi-static and dynamic load
sharing among planets. In Gu and Velex’s model, both gyroscopic and centrifugal forces
were considered. In this thesis, both the gyroscopic force and the centrifugal force are

also considered as Gu and Velex [4.28] did. But our focus is not to investigate the effect
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of the gyroscopic and centrifugal forces. Instead, our focus is to find the fault symptoms
in the vibration signals of a planetary gear set with tooth crack when the gyroscopic and
centrifugal forces are present.

A few studies considered the effect of the transmission path in the vibration signal
modeling. Inalpolat and Kahraman [4.9] expressed the resultant acceleration signal of a

planetary gear set as follows:
at)=Y Cw,(1)F,, (). (4.1.1)
where C is a constant; N represents the number of planet gears; w,(¢) denotes the
effect of transmission path for the n™ planet gear which is a weighting Hanning function
[4.9] with a time duration of 7./ N ; and F,(t) is the dynamic force of the n™ ring-
planet mesh.

Later, Inalpolat and Kahraman [4.13] improved the modeling considering the

dynamic forces of both sun-planet meshes and ring-planet meshes. They used the same

Hanning function as Ref. [4.9] to cover the effect of the transmission path.
N
a(t)=3., (Cw,(OF,, (0+Cw,(DF,, 1), (4.12)

where C, and C, are constants facilitated to establish the relation between the gear mesh

forces; and £, (7) and F, (¢) represent the dynamic force of the n™ sun-planet mesh and

spn
the n™ ring-planet mesh, respectively.
However, the correctness of Eq. (4.1.2) is worth discussing. The line of force

F,, (?) is the internal common tangent of the base circles of the sun gear and the n"

planet gear. While the line of force £, (7) is the internal common tangent of the base
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circles of the ring gear and the n™ planet gear. Since dynamic forces F, () and F (?)

are not in the same direction, it is not proper to add weighted F,, (f) and weighted

F,,(¢) together as two scalars.

Feng and Zuo [4.10] investigated possible transmission paths of vibration signals
in a planetary gearbox. In Fig. 4.1, three transmission paths are illustrated from its origin
to the transducer. According to their studies, the transducer perceived signal arriving
along path 2 and 3 will have negligible amplitude. Therefore, only the first transmission

path was considered in their studies, and the transmission path was modeled by a
Hanning function with a time duration of 7.

All the previous studies modeled the effect of transmission path using a Hanning
function [4.9, 4.10, 4.13]. They all assumed that as planet n approached the transducer
location, its influence would increase, reaching its maximum when planet n was the
closest to the transducer location, then, its influence would decrease to zero as the planet
went away from the transducer. However, even if the planet n is in the farthest location
from the transducer, its influence may not be zero. In this study, I propose an approach to

overcome this shortcoming.
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Fig. 4.1: Transmission paths of a planetary gearbox [4.10]

In this chapter, a planetary gear dynamic model is developed to simulate the
vibration signals of each gear, including the sun gear, the planet gears, and the ring gear.
In this dynamic model, both gyroscopic force and centrifugal force are considered, and
more accurate physical parameters are adopted. The vibration signals are simulated in the
perfect condition of a planetary gearbox and in the fault condition when there is a cracked
tooth in the sun gear. A mathematical model is proposed to represent the effect of
transmission path which can fit different planetary gearboxes by choosing proper model
parameters. Incorporating the effect of transmission path, the resultant signals of a
planetary gearbox at a transducer location are generated. The vibration signals are
investigated both in time and frequency domains, and fault symptoms are found which
can be used to detect the severity of tooth crack. Finally, the simulated vibration signals

are compared with experimental signals.
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4.2 Dynamic simulation

In this section, a lumped-parameter model is developed to simulate the vibration signals
of each gear of a planetary gear set. This model is similar to that used by Lin and Parker
[4.14] with three distinctions: (1) the planet deflections are described in the horizontal
and vertical coordinates, (2) both the gyroscopic force and the centrifugal force (inertial
force) are incorporated, and (3) more accurate physical parameters are adopted. Whether
gear deflections are described in the horizontal and vertical coordinate system, or in the
radial and tangential coordinate system, the gear dynamic behaviors will not be affected.
However, if the planet deflections are described in the horizontal and vertical coordinates,
we can get the motions of all planet gears in the same direction. It has two benefits: (a)
we can easily compare the motion of different planet gears, and (b) we can easily do
algebraic operations on these vibration signals. For example, in Section 4.3, we need to
add the vibrations of planet gears together to generate sensor perceived vibration signal.
The inertial forces may play a more important role in the dynamic behavior of a gearbox
in high speed applications than that at low speed applications.

Time-varying mesh stiffness is one of the main sources of vibration in a gear
transmission system [4.29]. In [4.14], the gear mesh stiffness was approximated by a
square waveform. The square waveform reflects only the effect of the change in the tooth
contact number, but ignores the effect of the change in the tooth contact position [4.30].
In addition, the physical damping was ignored in their model. In this study, more accurate
physical parameters (mesh stiffness and physical damping) will be adopted in the

simulation of vibration signals.
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4.2.1 Modeling of a planetary gear set

Fig. 4.2: Dynamic modeling of a planetary gear set

Fig. 4.2 shows a two-dimensional lumped-parameter model which is used in this study to
simulate the vibration signals of a planetary gear set, which consists of one sun gear (s),
one ring gear (r), one carrier (¢) and N planet gears (p). Each component has three

degrees of freedom: transverse motions in x-axis and y-axis, and rotation. The rotation

coordinates 8, i=s, 1, C, p,,..., py are the angular displacement. The sun gear, ring gear
and carrier translations x s Vs J=8,1,¢ and planet translations Xpps Vous =Ly N,

are measured with respect to a rotating frame of reference fixed to the carrier with the
origin 0. The gear mesh interface is modeled as a spring-damper system. The directions
of all the coordinates at the initial time (time zero) are shown in Fig. 4.2. Since I am

focusing on the effects of a growing crack on the vibration response of the meshing gears,
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I have ignored the effects of transmission errors in the gears, the frictions between the
gear teeth, and other practical phenomena such as backlash. The equations of motion of a
planetary gear set are expressed as follows:

Equations of motion for the sun gear:

. . 2 . J
mx +c X +k x + ZFSP” cosy,, =mx Q" +2m y Q+my 2,
my +c v +k y +>F sing =myQ—2mxQ—mxQ

sy K syy K syy K spn l//sn s Y s s7Vs O

J,/r) 8+ F, =T/r,, (4.2.1)

1 N

where F| represents the dynamic force of the n™ sun-planet gear mesh:

F =k & +c. 0

son — KspnOspn T CopnOspn »
O = (X, =X, )COSW, +(y, =y, )siny,, +1.6, +7,,0, —1.6, cosa,
v, =r/2-a+y,,
v, =2mn-Dr/n; i=12,.,N.
Equations of motion for the ring gear:
mx, +c % +k.x, + > F cosy, =mxQ +2my,Q+myQ,
my, +¢, 3, +k,y, + Y F,,siny, =my,Q’ —2mxQ-mxQ,
J,/r) 6.+Cc,/r) 6+Ck, /1) 6.+ F =0, (4.2.2)

where F, represents the dynamic force of the n"™ ring-planet gear mesh:

F =k 6 +c. 05

rpn rpn~rpn rpn~"rpn °
0, =(x,—x,)cosy,, +(y.—y,)siny, +r.6.-r, 0, —r0, cosa,

pn-pn

v, =r/2ta+y,.
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Equations of motion for the planet gears:

Q+m, rQ’ cosy,,

Q+mpnypn pn'c

_ 2
=m,x, Q" +2m

mp}’lxpl’l + F - F COS l//.vn - F COS l// pn pnypn

cpnx spn rpn m

m, 3, +F, —F, siny, —F siny, =m,y O -2m % Q-m x Q+m, rQ siny,,

cpny spn rpn pn”" pn pn”" pn pn'c

,/r) 6, +F, ~F =0, (4.2.3)

son — Lopn
where F,, and F,, = describe the bearing forces between the carrier and the n™ planet in
the x and y directions:
Fop =k, (X, =X ) +c,, (X, = X.),
Fpy =Ky (Vs =)+ € (7 = 3)
Equations of motion for the carrier:
mx, +c X, +kx, = F, =mx QO +2my.0Q+myQ
M3, +Co 0k, Y, =D Fpy =my 2 =2m 3 Q-mx
J. /1) 6+ Y F,.siny,—> F, cosy,=T,1/r. (4.2.4)
As a planet gear rotates around the center of the sun gear, the inertial force will be

generated. The inertial force contains two items m Q) (gyroscopic force) and

pnxpn
mpanQ2 (centrifugal force) which can be observed from the equations of transverse

motions of planet gears in Eq. (4.2.3). x,,, which is the x-direction displacement of the

n"™ planet gear, is much smaller than r. which is the distance between centers of sun gear
and planet gear. If cosy/, takes a value near 1, the item mpnch2 cosy, will dominate the

inertial force when the rotation speed of the carrier is large. On the other hand, if cosy,

takes a small value near 0, the item mpnchZ siny, will dominate the inertial force when
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the rotation speed of the carrier is large, but it is in the y-direction motion. Some previous
studies [4.16, 4.26] considered the gyroscopic force, but ignored the gyroscopic force. In

this study, both these two items are considered.

4.2.2 Crack modeling and mesh stiffness evaluation

Gear tooth crack is one common failure mode in a gear transmission system. It may occur
due to excessive service load, inappropriate operating conditions or simply fatigue [4.31].
In the dynamic model described in Section 2.1, the gear mesh interface is modeled as a
spring-damper system. When a pair of spur gear meshes, the tooth contact number and
the tooth mesh position change during meshing. It leads to a periodic variation in the gear
mesh stiffness. When a crack happens in one gear tooth, the mesh stiffness will decrease
and consequently the vibration properties of the gear system will change. In order to
comprehensively understand the vibration properties of a planetary gear set, it is essential
to evaluate the mesh stiffness effectively.

According to the research by Belsak and Flasker [4.32], crack mostly initiates at
the critical area of a gear tooth (area of the maximum principal stress), and the
propagation paths are smooth, continuous, and in most cases, rather straight with only a
slight curvature as shown in Fig. 4.3. Liang et al. [4.30] simplified the crack growth path
as a straight line (the red line) starting from the critical area of the tooth root. The same

model as Ref. [4.30] will be used in this study.
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Fig. 4.3: Tooth crack propagation path of an external gear tooth [4.32]

The method reported in [4.30] will be used directly to evaluate the mesh stiffness
of a planetary gear set in the perfect and the cracked tooth condition. Potential energy
method [4.30, 4.33, 4.34] will be applied to evaluate the mesh stiffness of a pair of sun-
planet gear and a pair of ring-planet gear, respectively. The total potential energy of a
pair of meshing gears is considered to be the summation of Hertzian energy, bending
energy, shear energy, and axial compressive energy. The total effective mesh stiffness
can be evaluated based on Hertzian, bending, shear stiffness, and axial compressive mesh
stiffness. If there is a tooth crack, the bending stiffness and the shear stifness will reduce
due to the change in tooth length and tooth height induced by the crack [4.30], which
leads to the decrease of the total mesh stiffness. While each of the sun-planet meshes (or
ring-planet meshes) has the same shape of mesh stiffness variation, they are not in phase

with each other [4.35]. Incorporating the mesh phasing relationships, the mesh stiffness
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of all sun-planet gear pairs and all ring-planet gear pairs can be evaluated, thus, the mesh
stiffness of a planetary gear set is obtained.

In a planetary gearbox, sun gear teeth easily suffer damage because their
multiplicity of meshes with the planet gears increases the potential for damage on the sun
gear [4.4]. Fig. 4.4 shows the mesh stiffness of a pair of sun-planet gears with different
crack levels (perfect, 0.78 mm crack, 2.34 mm crack and 3.90 mm crack) on a sun gear
tooth. The physical parameters of this planetary gear set (one sun gear, one fixed ring
gear and four equally spaced planet gears) are listed in Table 4.1. As the growth of tooth
crack, the mesh stiffness reduces gradually, which will cause the gearbox vibrating

abnormally.

1.8M. rﬁ""'m\
S R —
1.2f T

)

Sun/planet mesh stiffness (N/m)

0.8 ' -
! | —* Perfect
0.61 —<(.78 mm crack |
2.34 mm crack
0.4r —-3.90 mm crack | ]
0'2 1 1 1 1 1 1 1
0 02 04 06 038 1 1.2 14 1.6

Mesh periods

Fig. 4.4: Mesh stiffness reduction of different crack levels on a sun gear tooth [4.30]
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Table 4.1: Physical parameters of the planetary gear set for dynamic modelling

Parameters Sun gear Planet gear Ring gear
Number of teeth 19 31 81
Module (mm) 3.2 3.2 3.2
Pressure angle 20° 20° 20°

Mass (kg) 0.700 1.822 5.982
Face width (m) 0.0381 0.0381 0.0381
Young’s modulus (Pa) | 2.068x10"" 2.068x10" 2.068x10"
Poisson’s ratio 0.3 0.3 0.3

Base circle radius 28.3 46.2 120.8
Root circle radius 26.2 45.2 132.6
Reduction ratio 5.263

Bearing Stiffness ksx =ke= kix =kry =kex =key= kpnx = kpny = 1.0X 10® N/m
Bearing damping Csx =Csy= Crx =Cry= Cex =Ccy= Cpnx = Cpny = 1.5% 10° kg/s

Fig. 4.5 describes the mesh stiffness of four sun-planet gear pairs with the

k

consideration of mesh phasing relationships of multiple gear pairs. The curves £ 2

p1 >
k. and k_, represent the mesh stiffness of the 1%, the 2", the 3" and the 4™ pair of the
sun-planet gears, respectively. The mesh stiffness of ring-planet gears are assumed not to
be affected by the tooth crack on the sun gear and the stiffness equations of the ring-
planet gears were derived in [4.30]. The cracked tooth on the sun gear meshes with the
four planet gears in turn, therefore, the mesh stiffness of the four pairs of sun-planet gears

are all affected. The time intervals of the cracked tooth in meshing are labeled in Fig. 4.5.

The symbol y,, (n =1, 2, 3, 4) is the relative phase between the n' sun-planet pair with
respect to the 1% sun-planet pair. The value of ,;, 7,,, 7. and 7,, are 1, 0.75, 0.5 and

0.25, respectively [4.25]. The symbol @, denotes the mesh period.
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Fig. 4.5: Mesh stiffness of sun-planet gears with 3.90 mm crack in a sun gear tooth [4.30]

4.2.3 Numerical simulation of vibration signals

In this section, vibration signals of each gear of a planetary gear set are numerically
simulated using MATLAB odelS5s solver. Physical parameters of the planetary gear set
are mainly listed in Table 4.1. In addition, the mass of the carrier is 10 kg. A constant
torque of 450 N'm is applied to the sun gear. The rotation speed of the carrier is 8.87

RPM. The gear mesh damping coefficient c is calculated by the following equation [4.36]:

c=2¢ [k (4.2.5)
ml +m2

where k denotes the time-varying mesh stiffness of a pair of gears; m; and m, represent

the mass of the pinion and the gear of a pair of gears, respectively; ¢ is a constant

damping ratio which is set to be 0.07 in this study. Through this simulation, displacement,
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velocity, and acceleration signals of the sun gear, the planet gears, the ring gear and the
carrier are all obtained.
Fig. 4.6 shows displacement signals of the sun gear in three health conditions:

perfect, 0.78 mm crack and 3.90 mm crack in one sun gear tooth. The sun gear has 19
teeth and Fig. 4.6 illustrates the signals in 19 mesh periods (7, ). Within 19 meshes, the

cracked tooth will mesh with the four planets in turn. The time duration of the cracked

tooth in meshing can be calculated analytically [4.30]. For the planetary gear set used in
this chapter, the time duration is 4.75 (19/4) T, which is labeled in Fig. 4.6. When the

cracked tooth is in meshing, the sun gear generates a bigger displacement (fault
symptom). With the growth of the crack, the fault symptoms enlarge. However, the fault
symptom may appear in the x-direction displacement or in the y-direction displacement,
even we can see 4 uniformly spaced fault symptoms in the absolute displacement of the
sun gear. In the 3.90 mm crack condition, we can observe clearly fault symptoms.
However, when the crack length is 0.78 mm, the fault symptom (indicated by the red
arrows) is very week. That’s why it is hard to detect the fault symptom in the early stage

of crack growth.
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Fig. 4.6: Displacements of the sun gear at different crack levels

d_: displacement in the x-direction; d , - displacement in the y-direction

Fig. 4.7 depicts the center locus of the sun gear in one revolution of the carrier in

three health conditions: perfect, 0.78 mm crack and 3.90 mm crack in one tooth of the

sun gear. For this sun gear, the crack length is 3.90 mm when the crack propagates to the

tooth centre line as indicated in Fig. 4.3. To demonstrate the fault symptom when there is

a small crack, the vibration signals of 0.78 mm (3.90/5 mm) crack are simulated.

According to Table 4.1, the ring gear has 81 teeth, thus in one revolution of the carrier,

81 gear meshes will occur. From Fig. 4.7, we can see 81 spikes in the perfect condition

which correspond to the 81 gear meshes. When there is a crack, some even bigger spikes

(fault symptom) can be observed from Fig. 4.7. In 81 gear meshes, the cracked tooth is

involved in meshing in 17 or 18 times (81/4.75). 17 bigger spikes are illustrated in the
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crack condition of Fig. 4.7. However, when the crack length is 0.78 mm, the fault

symptom is weak.

Perf . k . k
< 10°m erfect < 10°m 0.78 mm Crac < 10°m 3.90 mm Crac

1 1 1
0.5 0.5 0.5

0 0 0
-0.5 -0.5 -0.5

-1 -1 -1

-1 05 0 05 -1 =05 0 0.5 -1 05 0 05 1
x 10°m x 10°m x 10°m

Fig. 4.7: Centre locus of the sun gear

From the displacement signals of the sun gear from Fig. 4.6 and Fig. 4.7, we can
see clear fault symptoms when there is a crack in a sun gear tooth. However, in real
applications, it is very hard to acquire the vibration signals of the sun gear. Inside a
planetary gearbox, there are multiple vibration sources, because several pairs of sun-
planet gears and several pairs of ring-planet gears mesh simultaneously. The vibration
signals from these vibration sources will interfere with each other. In addition, due to the
rotation of the carrier, the transmission paths of the vibration signals, from the vibration
sources to a transducer, change. The effect of the multiple vibration sources and the effect
of transmission path will lead to the complexity of the resultant vibration signals acquired
by a transducer.

To demonstrate the effects of inertial force (including the gyroscopic force and

the centrifugal force), I compared the dynamic responses of a planetary gearbox in two
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cases: considering the inertial force and ignoring the inertial force. Fig. 4.8 shows the y-
direction displacement of the sun gear when the carrier is running at 8.87 RPM
(correspondingly, the sun gear is running at 46.68 RPM) and 950 RPM (the sun gear is
running at 5,000 RPM), respectively. For all the signals shown in Fig. 4.8, there is a 2.34
mm tooth crack in the sun gear. The time duration of the x-axis is one revolution of the
sun gear (19 gear meshes). When the carrier is running at 8.87 RPM, there is no visible
difference between the two signals with the inertial force considered and ignored (see Fig.
4.8). However, the inertial force effect is obvious when the carrier rotation speed is 5,000
RPM. As shown in Fig. 4.8, in the 5,000 RPM case, if the inertial force is incorporated in
the dynamic model, the amplitude of gear vibration signal becomes small and the signal
oscillation becomes slow. In addition, the fault symptom becomes weak when the inertial
force is considered. Thus, it is essential to incorporate the inertial force in high speed
applications in order to precisely reflect the real application. However, in the low speed

applications, the inertial force is negligible.
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Fig. 4.8: Y-direction displacement of sun gear with a 2.34 mm crack on a sun gear tooth

4.2.4 Numerical validation

A numerical study is performed in this section to validate the correctness of the proposed
dynamic model. The work of Lin and Parker [4.14] is the most relevant to our work.
They developed an analytical model of a planetary gear set and used it to investigate the
natural frequencies and vibration modes.

In this section, I will use their dynamic model to find the natural frequencies and
then use our dynamic model to find the natural frequencies. A comparison of these
obtained frequencies is used to validate our dynamic model.

Table 4.2 lists the physical parameters of the planetary gear set used in [4.14]. It
can be seen that the mesh stiffness is considered constant, i.e. the system is time invariant.

For the number of planets N from 3 to 5, they provided the obtained the eigen frequencies
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(natural frequencies) for each case in [4.14]. Using our dynamic model with the
parameters specified in Table 4.2, we calculated the natural frequencies, and tabulated
our results in Table 4.3. Our results match those of Ref. [4.14] (see Table 2 of Ref. [4.14])
very well. The largest difference in the obtained corresponding natural frequies is 0.4 Hz

or 0.04% of the value reported in [4.14]. This means that our dynamic model is validated.

Table 4.2: Parameters of the example system used in [4.14]

Parameters Sun | Ring | Carrier | Planet
Mass (kg) 040 |2.35 5.43 0.66
I/ (kg) 0.39 ]3.00 6.29 0.61
Base diameter (mm) | 77.4 | 275.0 | 176.8 100.3
Mesh stiffness ksp = kyp = 5% 10°
Torsional stiffness k=10’ kg =k =0
Pressure angle 24.6°

Table 4.3: Natural frequencies generated by our own Matlab codes

Multiplicity (m) E‘Lm;’er Ogvplffts (Aze —
0 0 0
m=1 14757 | 15365 | 15674

1930.3 | 1970.6 | 2006.1
(Rotational modes) 2658.3 | 2625.6 | 2614.8
7462.8 | 7773.6 | 8065.4
11775.3 | 13071.1 | 14253.1
743.2 727.0 710.0
1102.4 | 1091.0 | 1072.4
1896.0 | 1892.8 | 1888.1
2276.4 23425 | 24253
6986.3 | 7189.9 | 7382.3
96479 |10437.6 | 11172.3
m=N-3 -—- 1808.2 | 1808.2
- 5963.8 | 5963.8

--- 6981.7 | 6981.7

m=2

(Translational modes)

(Planet modes; exists
for N>3)
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4.3 Modeling the effect of transmission path

In this study, the resultant vibration signal is considered to be the summation of weighted
vibration of each planet gear as shown in Eq. (4.3.1). The planet gear meshes with the sun
gear and the ring gear simultaneously. Therefore, the vibration of the planet gear contains
both the information of sun-planet mesh and ring-planet mesh. The effect of the
transmission path is modeled as a modified Hamming function. The exponent expression
in Eq. (4.3.1) can be used to increase or decrease the bandwidth of the Hamming function
by choosing different @ values. The value of « is determined by the properties of a
gearbox, like its size, bearing characteristics, ring gear-housing interface and ring gear
flexibility. A proper accounting of these effects would require a deformable-body
dynamic model that can represent the transfer path between a given gear mesh and the
point of measurement accurately [4.9]. Fig. 4.9 illustrates the differences of Hanning
function, Hamming function and modified Hamming function corresponding to different
a values. The bandwidth is increased when « is positive, and decreased when « is
negative. However, we need to see that & cannot take a very large positive value. If « is
very large, the effect of vibration from the farthest planet (distance to the transducer) is

amplified, even overweight the effect of vibration from the nearest planet.
a(l‘) = Z;V:l ea(mod(wct+l//y,,27r)-ﬂ)z Hn (t)an (t) , (43 1)

where H, (f) represents Hamming function for the n™ planet gear and a,(t) is the

acceleration signal of the n™ planet gear.
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Fig. 4.9: Modelling of transmission path effect

4.4 Properties of resultant vibration signals

In this section, resultant vibration signals of a planetary gearbox are obtained and the
vibration properties are investigated. Solving the dynamic equations in Section 4.2.1, we
can get acceleration signals of each planet gear in the rotating carrier coordinate system.
Applying the theory of acceleration in the rotating coordinate system [4.37], the absolute
acceleration of each planet gear in the coordinate system fixed on the housing of a
gearbox can be attained. In this study, only the vertical direction (y-direction) of the
resultant acceleration signals is considered. The resultant acceleration signals of a
planetary gearbox in the y-direction are expressed as the weighted summation of the y-

direction acceleration signal of each planet gear.
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Fig. 4.10: Simulated resultant vibration signals for different transmission path effects

Fig. 4.10 shows the y-direction acceleration signals of a planetary gearbox at four
different cases (the effect of transmission path is represented by a modified Hamming
function with a = 0.1, Hamming function, Hanning function and modified Hamming
function with a = -1). We can see amplitude modulation in all the cases; however, the
degree of the amplitude modulation is different. The amplitude modulation is strongest
when the effect of the transmission path is represented by a modified Hamming function
with a = -1. The second strongest one is in the case of Hanning function. The weakest

one is in the case of modified Hamming function with a = 0.1. In addition, we can
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observe that amplitudes of the vibration signals in the four cases are different. The signal
amplitude is largest when the effect of the transmission path is represented by a modified
Hamming function with o = 0.1, while the signal amplitude is smallest when the effect of
the transmission path is represented by a modified Hamming function with a = -1. The
advantage of the modified Hamming function is capable of representing the effect of
different transmission paths while the Hanning function can represent only one specific
transmission path.

However, this study does not intend to propose a method to find the optimum
value of o for a given planetary gearbox. The selection of a will be investigated in our
future work. I have simply tried a few values of o which are 0.1, 0 and -1.0.
Correspondingly the modified Hamming function has the values of 0.21, 0.08 and 0.03
when the planet gear is in the farthest location from the transducer. The simulated
resultant vibration signals for these o values are presented in Fig. 4.10. Visually
comparing the simulated vibration signals shown in Fig. 4.10 with the experimental
vibration signal in the perfect condition of the gearbox shown in Fig. 4.17, I believe that
the simulated vibration signals match the experimental signals the best when o takes the
value of 0.1. Therefore, I have selected a to be 0.1 in the case study. When a takes the
value of 0.1, it means that 21% of the vibration amplitude of the planet gear which is at
the farthest location from the transducer can be sensed by the transducer. In the following
discussions, Hamming function («=0.1) is used to reflect the effect of the transmission
path.

Vibration properties of the resultant vibration signals are studied when the

planetary gearbox is in three health conditions: perfect, 0.78 mm crack in a sun gear tooth,
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and 3.90 mm crack in a sun gear tooth. Fig. 4.11 shows resultant vibration signals of a

planetary gearbox (parameters are listed in Table 4.1). The symbol «, represents vertical

direction acceleration of the gearbox. Amplitude modulation can be observed both in the
perfect condition and in the crack condition. Signal envelope fluctuates four times in one
revolution of the carrier as four planets pass through the transducer location sequentially.
In the meshing period of the cracked tooth, a bigger spike should be generated. As we
know, in one revolution of the carrier, the cracked tooth will mesh 17 or 18 times. When
the crack length is 0.78 mm, the fault symptom is very weak. Only three bigger spikes
(the locations are indicated by the arrows) can be visually observable. In the 3.90 mm
crack condition, 17 bigger spikes are observed. However, some spikes are attenuated

strongly (the circled area) due to the effect of the transmission path.
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Fig. 4.11: Simulated resultant vibration signals in the y-direction

Fig. 4.12 illustrates the frequency spectrum of the resultant vibration signal in
different health conditions. In the perfect condition, there are nearly zero amplitude at the
gear mesh frequency f, and its harmonics. Sizable amplitudes show in the following
locations: nfy, if n is an integer and a multiple of 4, nf,+f. if n is an odd integer, nf,,£2f. if
n is an even integer but not a multiple of 4. The symbol f. denotes rotation frequency of
the carrier. In this study, I represent the above mentioned sizable amplitude frequencies
by the symbol f,,,. This finding confirms the results reported in [4.9] that sizable
amplitudes appear at carrier order H = nN in the vicinity of gear mesh frequency and its
harmonics (n: integer, N: Number of planet gears). For example, the largest amplitude
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frequency 59f;,+; locates in the vicinity of 59" harmonic of gear mesh frequency. While,
59futf. equals to 4780 f. (f, = 81 f.) which is the location of 4780 carrier order. The
number 4780 is a multiple of 4 which is the number of planet gears. We also can observe
from Fig. 4.12 that if there is crack on a sun gear tooth, the amplitude of frequencies fqin

are rarely affected. However, a lot of sidebands appear in the vicinity of £,
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Fig. 4.12: Frequency spectrum of simulated resultant vibration signals

Fig. 4.13 presents the zoomed-in plot of the frequency region from 42f,, to 44f,,.
We can see a large amount of sidebands appear but they are not symmetric. Sizable
sidebands appear in the following locations: fuuint kfscrack = mfs + nf, £ fc (k, m, and n are
integers). For the planetary gear set used in this study, &, m, and » can take the following
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values: £k =0,1,2,3,4,m=0,1,2;n=0,1, 2, 3, 4. f; and f, denotes the rotation
frequency of the sun gear and the planet gear, respectively, while fi.,q.« represents the
characteristic frequency of the cracked sun gear, which can be calculated as follows
[4.10]:

Sserack=fm*NI Zgun, (4.4.1)

where N represents the number of planet gears and Z;,, denotes the teeth number of sun

gear.
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Fig. 4.13: Zoomed-in frequency spectrum of simulated resultant vibration signals
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4.5 Comparisons with experimental signals

Experimental signals acquired from a gearbox test rig as reported in [4.39] are used in
this study to validate the fault symptoms found in this study. The configuration of the test
rig is shown in Fig. 4.14 and the parameters of the gears are listed in Table 4.4. This test
rig has a 20 HP drive motor, a one stage bevel gearbox, two stages of planetary gearboxes,
two stages of speed-up gearboxes, and a 40 HP load motor. The drive motor is on the first
platform, the bevel gearbox and the planetary gearboxes are on the second platform, and
the two speed-up gearboxes and the load motor are on the third platform. An acceleration
sensor is installed in the vertical direction of the casing of the second stage planetary
gearbox to acquire the vibration signals. All the gears in the planetary gearboxes are

standard spur gears without tooth profile modification.

1* stage 2" stage 1* stage 2" stage
planetary gearbox  planetary gearbox Speed-up gearbox  Speed-up gearbox

Bevel gearbox Load motor

.

Drive motor ) ‘ 'v

Fig. 4.14: An experimental test rig
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Fig. 4.15 shows a diagram of the structure of the two stage planetary gearbox
[4.38]. As stated in [4.38]: “The 1* stage sun gear is mounted on the right side of shaft #1
with the driven bevel gear mounted on the left side. The 1* stage planet gears are located
on the 1% stage carrier which is connected to shaft #2. The 2™ stage sun gear is mounted
on the other side of shaft #2. The 2™ stage planet gears are mounted on the 2™ stage
carrier located on output shaft #3. The ring gears of the 1* and 2™ stages are mounted on
the housing od the corresponding stage.” The detailed experimental procedures and data

collection are documented in [4.39, 4.40].

Shaft #1 Sensor
st 2r1d

17 stage stage
planet gear — = planet gear
1* stage ‘ 2" stage
sun gear O @ sungear
1% stage | 7 2" stage
carrier ' carrier

1% stage * T 2" stage
ring gear | ring gear

I*stage  Shaft#2 2™ stage  Shaft#3
housing housing

Fig. 4.15: Diagram of two-stage planetary gearboxes [4.38]

The vibration data was acquired when the rotation frequency of the motor was
1200 RPM. Thus, the rotation speed of the sun gear of the second stage planetary gearbox
is 46.66 RPM which is the same as the simulated sun gear speed in the Section 4.2.3. To
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simulate the crack effect on the vibration signals, tooth crack was manually created in the
sun gear tooth using the electro discharge machining. When the crack length is small,
fault symptoms may submerge in the noise and hard to distinguish. To amplify the fault
symptoms, 3.9 mm tooth crack was created in the sun gear tooth. The crack goes through
the whole tooth width as shown in Fig. 4.16. The simulated planetary gear set has the

same configuration and gear parameters as the second stage planetary gear set.

Table 4.4: Physical parameters of the experimental test rig

Gearbox Bevel stage First stage planetary gearbox Second stage planetary gearbox
Gear Input Output Sun Planet Ring Sun Planet Ring
No. of teeth 18 72 28 62 (4) 152 19 31 (4) 81
Transmission 4 6.429 5263
ratio

Note: The number of planet gears is indicated in the parenthesis.

Fig. 4.16: 3.9 mm manually made tooth crack in the sun gear

Fig. 4.17 shows the experimental acceleration signals of the second stage

planetary gearbox in the perfect condition. The symbol «, denotes the vertical direction

acceleration of the gearbox. Amplitude modulation presents in the perfect condition of

the gearbox and signal envelope fluctuates four times in one revolution of the carrier. Fig.
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4.18 describes the experimental acceleration signals of the second stage planetary
gearbox both in the perfect condition and in the cracked tooth condition. In the cracked
tooth condition, some even bigger spikes show up. In addition, the amplitude modulation
is not very obvious, as amplitude modulation and fault signatures together lead to the

complexity of the vibration signals.

0 01 02 03 04 05 06 07 08 09 1
Rotation cycle of the carrier

Fig. 4.17: Experimental resultant vibration signal in perfect condition
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Fig. 4.18: Experimental resultant vibration signals in perfect and cracked tooth conditions

Fig. 4.19 illustrates the frequency spectrum of the experimental signals. In the
perfect condition, sizable amplitudes show in the following locations (fyuin): nfy if 1 is an
integer and a multiple of 4, nf,%f.if n is an odd integer, nf,+2f.if n is an even integer but
not a multiple of 4. When crack is in the sun gear tooth, many sidebands show in the

vicinity of f,.i» Which is most obvious in the region of 40f,, to 50f,,.
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Fig. 4.20: Zoomed-in frequency spectrum of experimental vibration signals
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Fig. 4.20 presents the zoomed-in frequency spectrum of the experimental signals
from 42f,, to 44f,. The sidebands are asymmetric and sizable sidebands appear in the
following locations: fuaint kfscrack £ mfs = nf, = fc. The integers of k, m, and n take the
following values: k =0,1,2,3,4,m=0,1,2;n =0, 1, 2, 3, 4. These results confirm the
proposed results in Section 4.

In this paragraph, the amplitudes of the simulated vibration signals and
experimental signals are compared. In the time domain, the maximum amplitude of the
simulated signal is about 5 m/s* when the gearbox is perfect as shown in Fig. 4.11. By
contrast, the maximum amplitude of the experimental signal is about 4 m/s* when the
gearbox is perfect as shown in Fig. 4.18. In the condition of 3.90 mm crack, some bigger
spikes (fault symptom) are generated in the simulated signal. The amplitude of the bigger
spikes reaches to about 10 m/s”. In the experimental signal of 3.90 mm crack, we can see
some bigger spikes present. But the amplitude of these spikes is only about 5 m/s”. In the
frequency domain of a healthy gearbox, the amplitude of sizable frequency components
reaches up to 0.8 m/s>. However, the amplitude of experimental signals reaches to only
0.2 m/s>. When there is 3.90 mm crack in a sun gear tooth, there is no big change of the
amplitude of sizable frequency components both in the simulated signals and in the
experimental signals. Some sidebands appear both in the simulated signals and
experimental signals. The amplitude difference of sidebands of simulated signals and
experimental signals is small. The amplitude of most of the sidebands is below 0.05 m/s*
both in the simulated signals and experimental signals. Only three sidebands are over
0.05 m/s? in the experimental signals, namely 43f,+ fc -2 ficrack, 43fmt fo 2 fscrack, and

A3fut fe 12 ficrack- There are three possible reasons to explain the amplitude differences
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between the numerical and experimental results. Firstly, the numerical model only
simulated one stage of planetary gearbox. While the experimental test rig is quite
complicated. It includes one stage of bevel gear, two stages of planetary gearboxes and
two stages of fixed-shaft gearboxes. Secondly, the shaft mass is not considered in the
simulated model, while in the test rig, a very heavy shaft going through the whole system.
The big mass of the shaft will damp the amplitude of the vibration. Thirdly, the dynamic
model did not consider the damping effect of the connection between gearbox housing
and the ground. The gearbox test rig is fixed on the ground by several screws. The
damping effect of the screw will also damp the amplitude of the vibration. All these
damping effect will limit the amplitude of big spikes. The proposed model finds some
properties of a stage of planetary gearbox; however, efforts are still needed to improve
the numerical model, like reducing the amplitude difference between the numerical
signals and experimental signals.

In summary, the comparisons between simulated signals and experimental signals
summarized above are not very conclusive. Some vibration properties present in the
simulated signals are confirmed by those in the experimental signals. These properties
may be useful for gearbox fault detection. However, there are still many vibration
features present in the experimental vibration signals are not present in the simulated
signals. This means that either further improvement is required for the proposed vibration
signal modeling method or better designed experiments need to be conducted for a more

fair comparison.
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4.6 Conclusions

In this chapter, a theoretical model is proposed to simulate the resultant vibration signals
of a planetary gearbox in healthy and cracked tooth conditions. A lumped-parameter
model is developed to simulate the vibration signals of each gear, including the sun gear,
the planet gears and the ring gear. A mathematical model is proposed to reflect the effect
of the transmission path. Incorporating multiple vibration sources and the effect of
transmission path, the resultant vibration signals at the sensor location are simulated. The
fault symptoms are found obvious in the time domain vibration signals of an individual
gear, like the sun gear. However, the fault symptoms attenuate in the resultant vibration
signal at the sensor location. Besides, obvious amplitude modulation is observed in the
resultant vibration signal due to the rotation of the carrier. In the frequency domain, a
large number of sidebands appear when there is a crack in the sun gear tooth. These
sidebands are investigated and located in the simulated signals, which can be used to
detect the crack fault. Some of the vibration properties found by the proposed signal
modeling method also appear in the experimental signals. These properties found in the
time domain will be used in Chapter 5 for the development of a fault detection method.
However, future work is needed for further experimental validation of the resultant signal

model.
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Chapter 5: A Windowing and Mapping Strategy for Gear

Tooth Fault Detection of a Planetary Gearbox

In Chapter 4, the resultant vibration signals of a planetary gear set at a sensor location are
simulated and the vibration properties are investigated. The fault symptom found in
Chapter 4 enlightens the development of a tooth fault detection method in this chapter.
This chapter aims to develop a windowing and mapping strategy to decompose the
vibration signal of a planetary gearbox into the tooth level of a planet gear to amplify the
fault symptom. The proposed approach can effectively detect a single tooth fault on a
planet gear. This chapter is organized as follows. In Section 5.1, background of this
research topic is described and a literature review is performed in terms of vibration
based gear fault detection of planetary gearboxes. In Section 5.2, the vibration properties
of a planetary gearbox are examined. In Section 5.3, a windowing and mapping strategy
is proposed to generate the vibration signal of each tooth. In Section 5.4, the proposed
method is assessed numerically and experimentally for detection of a tooth crack in a
planet gear. In Section 5.5, conclusions of this study are given. This chapter is based on a

journal paper [5.1] and a refereed conference paper [5.2]

5.1 Introduction

A planetary gear set typically consists of a sun gear, a ring gear and several planet gears
as shown in Fig. 1.1 of Chapter 1. Several sun-planet gear pairs and several ring-planet
gear pairs mesh simultaneously. Therefore, there are multiple vibration sources inside a
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planetary gearbox. In addition, with the rotation of the carrier, the distance between a
planet gear and a transducer fixed on the top of the housing varies all the time. The time-
varying distance will induce the effect of transmission path which attenuates the vibration
signals generated from the vibration source far from the transducer. Multiple vibration
sources and the effect of transmission path lead to the complexity of fault detection of a
planetary gearbox [5.3].

To understand the vibration properties of a planetary gearbox, model based
methods have been widely used to simulate the vibration signals of a planetary gearbox.
Several studies [5.4-5.7] have simulated and investigated the vibration signals of the sun
gear or a planet gear of a planetary gear set. However, transducers were generally
installed on the housing of a gearbox or the housing of a bearing to acquire the vibration
signals of the whole gearbox rather than the signals of a specific gear. Therefore, it is
more helpful for fault detection to model and investigate the vibration signals of a
planetary gear set rather than a single gear. Refs. [5.2, 5.3, 5.8-5.10] modeled the
vibration signals of a planetary gear set by incorporating the effect of transmission path
with the assumption that as planet » approached the transducer location, its influence
would increase, reaching its maximum when planet » was the closest to the transducer
location, then, its influence would decrease gradually as the planet went away from the
transducer. In this chapter, the method reported in [5.3] will be used directly to model the
vibration signals of a planetary gear set in healthy and faulty conditions. The simulated
signals will help test the effectiveness of the proposed fault detection method.

Many vibration analysis techniques have been developed to detect the gear fault

of a planetary gearbox [5.11-5.14]. McFadden [5.15] proposed a windowing and mapping
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strategy to obtain the vibration of individual planet gears and of the sun gear in a
planetary gearbox. He applied a window function to sample the vibration signals when a
specific planet gear is passing by the transducer and then mapped the samples to the
corresponding meshing teeth of the sun gear or the planet gear to form their vibration
signals. Many additional studies attempted to improve the performance of the method
reported in [5.15]. Refs. [5.16-5.19] investigated the techniques to index the positions of
each planet gear, which were used to find the best location of putting the windows. Refs.
[5.17, 5.18, 5.20-5.22] tried to find the best window type and window length for the
sampling. Refs. [5.16-5.23] investigated the performances of Rectangular window,
Hanning window, Turkey window and Cosine window. All these reported studies tried to
decompose the vibration signal of a planetary gearbox while focusing on the vibration of
the sun gear or the planet gear of interest. The decomposed signal can reduce the
interference from the vibration of other gears and consequently emphasize the fault
symptoms of the gear of interest.

In this chapter, a new windowing and mapping strategy is proposed to generate
the vibration signal of each tooth of a planet gear. The decomposed vibration signal can
reduce the interference from the vibrations of other teeth of the planet gear of interest.
Examining the signals of all the teeth of a planet gear, the health differences of the teeth
can be measured. To apply the proposed windowing and mapping strategy, an important
issue to be addressed is to determine where to apply the windows. A numerical
optimization algorithm is developed to find the optimal positions of windows given a

vibrations signal of a planetary gearbox with a single tooth fault in a planet gear. The
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proposed method as numerically and experimentally demonstrated, can detect a cracked

tooth in a planet gear.

5.2 Vibration properties of a planetary gear set

It is essential to understand the vibration properties of a planetary gearbox before the
development of an effective technique for tooth fault detection. In this section, the
method proposed in Chapter 4 will be used directly to simulate the vibration signals of a
planetary gear set and illustrate the vibration properties. In the dynamic model, each
component is modeled with three degrees of freedom: transverse motions in the x-axis
and y-axis, and the rotation motion as shown in Fig. 4.2. A rotating frame of reference
fixed to the carrier is applied to all coordinates. The resultant vibration signal of a
planetary gear set is modeled as the summation of the weighted vibrations of all planet
gears by modeling the effect of transmission path as a modified Hamming function. The
planetary gear set investigated in Chapter 4 is used again in this chapter to simulate the
vibration signals. The parameters of this planetary gear set are illustrated in Table 4.1 of
Chapter 4. The planetary gearbox contains one sun gear, four equally spaced planet gears
and one fixed ring gear. Detailed equilibrium equations of this dynamic model are given
in Section 4.2 of Chapter 4.

A planet gear tooth has two meshing sides. One side meshes with the sun gear
(sun side) and the other side meshes with the ring gear (ring side). Consequently, the
tooth fault may appear in the sun side or in the ring side of a planet gear tooth. This
windowing and mapping strategy is expected to be effective in the fault detection of

either the sun side or the ring side tooth crack of a planet gear as the vibration properties

156



of the two cases share the same properties: the cracked tooth will repeat the mesh every
revolution of the planet gear [5.2, 5.23]. In this study, I put our focus on the detection of
the ring side tooth crack of a planet gear.

Tooth crack mostly initiates at the critical area of a gear tooth and the propagation
paths are smooth and continuous with only a slight curvature [5.24]. Liang et al. [5.23]
simplified the crack growth path as a straight line (see Fig. 5.1) starting from the critical
area of the tooth root. The potential energy method reported in Refs. [5.23, 5.25, 5.26]
can be used to evaluate the time-varying mesh stiffness of a planetary gear set in the
perfect and the cracked tooth condition. The crack model and the potential energy method
described in [5.23] will be used in this section to evaluate the time-varying mesh stiffness
of a planetary gear set. It was assumed in [5.23] that the sun-planet mesh stiffness was
not affected if the crack was in the ring side, as the crack part could still bear the
compressive stiffness as if no crack existed. The same assumption will be used in this

study.

Tooth
entre line

Fig. 5.1: Tooth crack propagation path for a planet gear [5.24]
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Fig. 5.2 shows the simulated acceleration signals of a planetary gearbox
(parameters are given in Table 4.1 of Chapter 4) in the perfect condition and in the faulty
condition with a 4.3mm tooth crack in a single planet gear as shown in Fig. 5.1. A
constant torque of 429 N-m is applied to the sun gear and the rotation speed of the carrier
is set to be 8.87 RPM. The signal sampling frequency is 5, 000 Hz. The simulated
vibration signals mimic the vibration signals sensed by a transducer installed vertically on
the top of the gearbox. In one revolution of the carrier, 324 (81x4) meshes take place as
the ring gear has 81 teeth and there are four planet gears, and signal envelop fluctuates
four times caused by the effect of transmission path as the four planet gears approach the
transducer sequentially. Since each planet gear has 31 teeth, the single cracked tooth will
be in meshing every 31 mesh periods [5.26] and a large spike is generated by the meshing
of a cracked tooth. Therefore, in the time interval of 81 mesh periods the single cracked
tooth will mesh two or three times. Fig. 5.2 shows the case of three meshes in the time
interval of 81 mesh periods and we can observe three large spikes. However, the
amplitude of the three large spikes is quite different for two reasons. Firstly, the mesh
position of the cracked tooth with the ring gear is changing due to the rotation of the
carrier. If the planet gear is far from the transducer, less vibration energy will be sensed
by the transducer. Secondly, the rotation of the carrier causes the direction of the mesh
force changing which leads to the variance of energy distribution in the vertical direction
of the acceleration signal. Another phenomenon we can observe is that the time duration
of the large spikes is very short. Most of the time, the healthy teeth are in meshing and we
cannot detect the gear fault from the vibration signals especially for example in very

noisy environment where the fault symptoms may be submerged.
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Fig. 5.2: Simulated acceleration signals of the whole gearbox in perfect and faulty
conditions

When the cracked tooth is in meshing, an impulse is expected to be generated in

the vibration signals. It appears in a very short time and only when the cracked tooth is in

messing. If there is only one cracked tooth, such an impulse would appear at a fixed

frequency. If we can pick out these weak fault symptoms and assemble them together, the

fault symptom will be magnified and become easier to be detected.

5.3 Windowing and mapping

In this section, a windowing and mapping strategy is proposed to generate the vibration

signal of each tooth of a planet gear. Fig. 5.3 illustrates the input and the output of the

windowing and mapping strategy. The input is the vibration signal of a planetary gearbox
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and the output is the vibration signal of each tooth of the planet gear of interest. If a
planet gear has Z, teeth, the output will be Z, signals. Each signal corresponds to a planet
gear tooth meshing with all the teeth of the ring gear sequentially. All ring gear teeth are

assumed to be identical and healthy and the same assumption applies to the sun gear teeth.

Vibration Signal of a Planetary Gearbox

A 4

Windowing and Mapping

A 4

Vibration Signal of Each Tooth of Interested Planet Gear

Fig. 5.3: Input and outputs of the windowing and mapping strategy

Fig. 5.4 describes the signal decomposition procedures to obtain one tooth signal
of a planet gear. Before applying the windowing and mapping strategy, signal pre-
processing is required. The time domain vibration signal needs to be resampled to the
angular domain with the same angular step by the help of an order tracking technique
[5.27] if the shaft has a large speed variation. As in real applications, the rotation speed of
a gearbox is hard to keep constant causing the vibration signal to be non-stationary.
While in the angular domain, the vibration signal is sampled at constant angular
increments, and the effect of speed variation will be removed. In addition, if we know in
advance some frequencies are interferences; these frequency components should be
removed to facilitate fault detection. I call these signals with some frequency components
removed as residual signals. Next step is to determine the window positions. Once the

angular position of applying the first window is determined, other windows can be
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applied sequentially. Because a window function is applied sequentially to sample the
angular domain signal in every angular interval of 8,, where 6, is the rotation angle of the
planet gear of going through Z, mesh periods and Z, represents the number of teeth of the
planet gear. The determination of the angular position of applying the first window will
be comprehensively discussed later in Section 5.3.2. Right now, I assume that the angular
position of applying the first window is known. Without loss of generality, I will
illustrate how to obtain the vibration signal of tooth S of the planet gear, as the same
procedures can be applied to get the vibration signals of other teeth. Assume tooth S is
meshing with tooth 1 of the ring gear when we apply the first window. After one
revolution of the planet gear, the same tooth S is meshing with the tooth (Z,+1) of the
ring gear and at this moment we apply the same window the second time. The same »n™
window is applied when the same tooth S is meshing with the tooth mod ((n-1) Z,+1, Z,)
of the ring gear, where 7 is the number of sequence of the applied windows; Z, represents
the number of teeth of the ring gear; and mod () is a function to find the remainder of the
division of the two arguments. An exception is that when tooth S is meshing with tooth Z,
of the ring gear, the result of the mod () is zero. Consequently, after applying Z, windows,
we get Z. windowed signals. As stated above, the tooth mod ((n-1) Z,+1, Z,) of the ring
gear is enmeshing when the n™ window is applied, then the n™ windowed signal can be
mapped to the tooth mod ((n-1) Z,+1, Z,) of the ring gear. Assuming that the window
angular length is 6,,, assembling these Z, signal segments will generate an ensemble of
vibration signals for tooth S, where 6,, represents the rotation angle of a planet gear in one

tooth mesh period.
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Fig. 5.4: Signal decomposition to get one tooth signal of a planet gear

Fig. 5.5 illustrates an example of implementing the windowing and mapping
strategy. In this example, tooth number of the planet gear and the ring gear is 31 and 81,
respectively. Fig. 5.5 (a) shows the residual vibration signal of a planetary gearbox in the
time domain. Fig. 5.5 (b) describes the residual vibration signal in the angular domain,
where 6 denotes the rotation angle of the planet gear of interest referring to its own axis.
Fig. 5.5 (¢, d) shows that 81 windows are applied to get 81 signal segments. Then the n™
windowed signal are mapped to the tooth mod ((n-1) 31+1, 81) of the ring gear.

Assembling these 81 signal segments, we get one tooth signal.
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Fig. 5.5: Windowing and mapping strategy (Z, = 31, Z, = 81)

The same procedures described in the previous two paragraphs can be applied to
obtain the vibration signal of any other tooth of the planet gear of interest. The only thing
to change is the angular point of applying the first window. At the point of applying the
first window for tooth S, tooth S is enmeshing with tooth 1 of the ring gear as stated in the
above paragraph, and the rotation angle of the planet gear at that moment can be denoted
by 6. After a rotation angle of 6, tooth S+1 will be is enmeshing with tooth 1 of the ring
gear. To get the vibration signal of tooth S+1, the same first window as tooth S should be
applied in the rotation angle of the planet gear at ) + 6,,. Sequentially, the time moment
of applying the first window for other teeth can be obtained. For example, the time
moment should be in the rotation angle of 6y + NG, for tooth S+N.
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Applying the above procedures, total Z, signals can be generated corresponding to
the Z, teeth of a planet gear. Comparing the differences of these Z, signals can help detect
the faulty tooth of the planet gear of interest.

The windowing process can extract the signal generated by each tooth while the
mapping process can assemble them in the right order corresponding to the tooth number
of the ring gear. For a cracked planet gear tooth, this strategy collects the weak fault
symptoms spreading all over the vibration signals of a planetary gearbox to facilitate fault
detection. In addition, the transmission path does not contribute to the differences
between the tooth signals. Applying the windowing and mapping strategy, Z, tooth
signals can be decomposed from a planetary gearbox vibration signal segment with the
length of Z, x Z, mesh periods, These Z, tooth signals correspond to the Z, teeth of the
planet gear. Each vibration signal has a length of Z. mesh periods and corresponds to a
planet tooth meshing with the ring gear by one cycle. As each tooth of the planet gear
meshes with the same teeth of the ring gear and in the same order, the windowing and
mapping strategy can make sure that all the tooth signals have the same transmission path.
Consequently, the tooth signal differences come from only the diversity of the health

condition of the teeth of the planet gear.

5.3.1 Window type and length

Samuel et al. [5.22] proposed the use of a Tukey window in signal windowing. Since the
Turkey window has a flat-top as shown in Fig. 5.6, the tooth mesh waveform of interest
will be less distorted comparing with the use of other windows, for example a triangular

window or a Hanning window. The rectangular window also has the top flat; however,
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small discontinuities will be generated where the windows meet [5.22]. Thus, the Tukey

window will be used in this chapter. An N points Tukey window function is given as

follows:
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Fig. 5.6: Comparison of window functions

To make sure that there is no unwanted overlapping or gap between windows
when we assemble them, the window length must be M6,,, where M is an integer. For a
pair of standard spur gears, the contact ratio is between 1 and 2. For example, the contact
ratio is 1.9 for the planet-ring gear pair, which means that a tooth will be in meshing in a

time period of 1.9 6,,. If the window length is chosen to be 6,,, the window can only cover
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part of the vibration signal generated by a tooth. If the window length is 26,, or longer,
the window will totally cover the vibration signal generated by a tooth but with the
drawback of covering some vibration signals generated by the neighboring teeth. The
longer the window, the more vibration signals generated by other teeth will be covered.
Referring to the simulated vibration signal shown in Fig. 5.2, the spikes caused by a
single tooth crack appear in a time duration of less than one mesh period even though the

contact ratio is 1.9. Therefore, the window length is chosen to be 6,, in this study.

5.3.2 Location optimization of the first window

As described in the beginning of Section 5.3, once the position of applying the first
window is determined, other windows can be applied sequentially. Ref. [5.17] proposed
assembly and test procedures to experimentally measure the time when the sun, the planet,
and the ring gear teeth were in meshing. If it is known when a planet tooth starts to mesh,
the position of the first window can be determined. Therefore, the same assembly and test
procedures reported in [5.17] can be used to find the position of applying the first
window. However, to do this, special indexing and a specific transmission assembly
procedure is required. In some circumstances, it is not convenient to implement such
assembly and the measurements. Under such scenario, a numerical method is a good
choice. In this chapter, a numerical method is proposed to find the position of applying
the first window when there is a single tooth crack in a planet gear.

Referring to Fig. 5.2, when the cracked tooth is in meshing, the vibration signal
amplitude increases and correspondingly the signal energy generated by the cracked tooth

is larger than that of other healthy teeth. Given a vibration signal of a planetary gearbox,
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Z, vibration signals can be generated for the Z, teeth of a single planet gear assuming it is
known where to apply the first window. Among the Z, signals, the one with the largest
energy should correspond to the cracked tooth.

This paragraph proposes a numerical method to find the optimal position of
applying the first window. Based on gear mesh theory, there must be a planet tooth
initiating its meshing at an angular point during an angular interval of 6,. The first
window can be applied when a planet tooth initiates the meshing. Arbitrarily select a
planetary gearbox vibration signal with the angular length of 6,, and count the number of
data point in the selected signal segment. I use symbol P to denote the number of data
point. These P points are the whole candidates of positions of applying the first window.
Pick one point among the P points and apply the first window there. Implementing the
proposed windowing and mapping strategy, Z, signals can be generated. Calculate the
energy (like RMS energy: root mean square) of the Z, signals, and pick the one with the
largest energy which possibly corresponds to the cracked tooth. Similar procedures can
be applied to other points. For each point, the largest signal energy will be recorded and a
total of P energies will be obtained. Comparing these P energies, the largest one
corresponds to the optimal position to apply the first window.

The proposed windowing and mapping strategy requires accurate locations for
windowing. The proposed numerical algorithm may be ineffective for heavily noisy
signals. Therefore, for heavily noisy signal, denoising needs to be performed in advance

in order to use the proposed numerical algorithm.

167



5.4 Fault detection of a single tooth crack of a planet gear

In this section, the proposed windowing and mapping strategy is tested numerically and
experimentally, respectively. In Section 5.4.1, the vibration signals are generated
numerically using a dynamics based model. In Section 5.4.2, the vibration signals are
collected from an experimental test rig located in the Reliability Research Lab in

Mechanical Department of the University of Alberta.

5.4.1 Numerical simulation

The windowing and mapping strategy is applied to the simulated vibration signal of a
planetary gear set to generate the vibration signal of each tooth of a planet gear. The
physical parameters of this planetary gear set are listed in Table 4.1 of Chapter 4. The
same boundary conditions listed in Section 5.2 are used to simulate the vibration signals.
Because the simulated signals do not have interference frequencies as the experimental
signals, the step of removing interference frequencies to generate residual signals as
illustrated in Fig. 5.4 is omitted. Fig. 5.7 (a) presents the simulated vibration signal of this
planetary gear set with a 4.3 mm tooth crack in a planet gear and illustrates the optimized
window positions to generate the vibration signal of the cracked tooth using the algorithm
proposed in Section 5.3.2. These windows perfectly cover the fault symptoms generated
by the cracked tooth as observable in Fig. 5.7 (a). As stated in Section 5.3.1, the window
length is chosen to be 6,, even though the contact ratio of ring-planet gears is 1.9, as the
fault symptom lasts less than one mesh period as shown in Fig. 5.7 (a). The angular

position of the first window is obtained using the method stated in Section 5.3.2.
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Arbitrarily select a signal segment with the angular length of 6,. There are 418
(33,822/81) data points in the angular length of one mesh period since 33, 822 data points
were collected in one revolution of the carrier (81 mesh periods). The angular position of
the first window is chosen to be the one with the largest RMS energy. In every Z, (31)
mesh period, a window is applied to extract the signals of interest. For the purpose of
comparison, Fig. 5.7 (b) and Fig. 5.7 (c) present the generated vibration signal of a
perfect tooth and the cracked tooth, respectively. After the windowing and mapping
strategy, gear fault symptoms concentrate on the vibration signal of the cracked tooth.
However the signal amplitude corresponds to different teeth of the ring gear varies
largely for the cracked tooth signal as shown in Fig. 5.7 (¢). This phenomenon is caused
by the effect of transmission path and the direction change of the mesh force. However,
we can see that the proposed windowing and mapping strategy can highlight the fault

symptoms of a gearbox.
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Fig. 5.7: Vibration signal decomposition of a planetary gearbox
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To quantify the difference in vibration signals, statistical indicators are widely
used. There are many statistical indicators available in the literature. Wu et al. [5.28]
simulated the vibration signals of one stage of fixed-shaft gearbox and concluded that
root mean square (RMS) and kurtosis factor were two effective indicators to reflect the
crack severity. Lewichi et al. [5.17] tested nine statistical indicators to detect the man-
made faults in a planetary gearbox and the results showed that the indicator M8A
performed the best. Chen and Shao [5.5] simulated the vibration signals of a planetary
gear set and demonstrated that the crest factor was sensitive to the crack growth. Lei et al.
[5.29] proposed two new statistical indicators: root mean square of the filtered signal
(FRMS) and normalized summation of the positive amplitudes of the difference spectrum
between the unknown signal and the healthy signal (NSDS), and demonstrated that these
two indicators were effective in detecting planetary gearbox faults. Zhao et al. [5.30]
summarized 63 statistical indicators for gearbox fault detection. All these statistical
indicators have the potential to be used together with the proposed windowing and
mapping strategy to detect gearbox tooth crack fault, but the effective of these statistical
indicators should be tested. For the illustration purpose, in this study, I only tested one
statistical indicator: RMS [11], to quantify the difference of the tooth vibration signals of
a planet gear. The effectiveness of other statistical indicators is not tested in this study.
They will be tested in our future work. As shown in Fig. 5.7, the signal amplitude of the
perfect tooth is quite different from that of the cracked tooth. Correspondingly, the signal
energy of the signals will vary largely. RMS is a measurement of a signal’s overall

energy and is used to reflect the signal difference. The expression of RMS is given by:

RMS = /%[ ¥, (5.4.1)
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where N is the number of samples of a signal and x; is the sample amplitude.

The windowing and mapping strategy is applied to the simulated vibration signals
of a planetary gearbox. Five health conditions are considered respectively: healthy
condition, 1.0 mm, 2.0 mm, 3.0 mm and 4.3 mm tooth crack conditions (crack on the
ring-side of a planet gear). When the gearbox is healthy, the RMS of the vibration signal
generated by each tooth of a planet gear locates in the range of 38 m/s” and 40 m/s* as
shown in Fig. 5.8. When the gearbox has a cracked tooth 9, the RMS of all other teeth
also falls in the range of 38 m/s*and 40 m/s*. The RMS of tooth 9 is about 43 m/s” for 1.0
mm tooth crack, 47 m/s” for 2.0 mm tooth crack, 56 m/s’ for 3.0 mm tooth crack, and 76
m/s” for 4.3 mm tooth crack. When the crack length is 2.0 mm, 3.0 mm or 4.3 mm, the
tooth crack can be detected obviously. When the crack length is only 1.0 mm, the tooth
crack can also be detected even though the RMS difference between tooth 9 and other
teeth is small. The RMS difference between tooth 9 and other teeth indicates that there is
a tooth fault in tooth 9.

Overall, the windowing and mapping strategy can effectively decompose the
simulated vibration signal into the tooth level. Comparing the RMS of the tooth signals of

a planet gear, a single tooth fault can be successfully detected.
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Fig. 5.8: Energy of simulated vibration signal generated by each tooth of a planet gear

5.4.2 Experimental tests

In this section, the proposed windowing and mapping strategy is applied to the
experimental signals to further validate its effectives. The experimental data was
collected from a planetary gearbox test rig as shown in Fig. 4.14 of Chapter 4. This test
rig contains one bevel gearbox, two stages of planetary gearboxes and two stages of
speed-up gearboxes. This planetary gear set is used in Chapter 4 for vibration signal
analysis. The parameters of the bevel gearbox and the planetary gearboxes are listed in
Table 4.4 of Chapter 4. In this chapter, the vibration signals collected from the ond stage
of planetary gearbox are analyzed. An accelerometer was installed vertically on the
housing of the ond stage of planetary gearbox to collect the vibration signals. The

vibration signals were collected when the 2nd stage of planetary gearbox was in healthy
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and faulty conditions. In the healthy condition, all the gears are perfect. In the faulty
condition, a 4.3 mm tooth crack as shown in Fig. 5.9 was manually made in a planet gear
using Electro Discharge Machining. The rotation speed of the drive motor was set to be
1200 RPM and correspondingly the rotation speed of the carrier shaft of the 2™ stage
planetary gearbox was 8.87 RPM which is the same as the rotation speed of the carrier
shaft of the simulated planetary gearbox. The signal sampling frequency was 5, 000 Hz in
all the tests. The detailed experimental procedures and data collection were documented

in the technique report [5.31].

Fig. 5.9: 4.3 mm manually made tooth crack in a planet gear

As shown in Fig. 5.10, one encoder was installed to measure the carrier shaft
speed variance. In total 2048 pulses will be generated in one revolution of the encoder.
The carrier shaft is the output shaft of the 2™ stage planetary gearbox. By counting the
number of pulses generated by the encoder in a given time period, the rotation speed of
the encoder can by calculated. The measured average speed of the encoder is 13.61 RPM
and the speed variance is 7.6 x 10”7 RPM as shown in Fig. 5.11. Consequently, the speed

variance of the carrier shaft is very small as the carrier shaft and the encoder externally
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mesh. As the speed variance of the carrier shaft is very small, I consider the rotation
speed of the carrier shaft to be constant at 8.87 RPM in this study.

The collected experimental vibration signals are presented in Fig. 5.12. Noise
level of the experimental signals was estimated using the soft-thresholding method
reported in [5.31]. To be specific, it is approximated using the median absolute deviation
of the detail coefficients of the 1-level wavelet decomposition (refer to [5.31] for details).
The noise level was estimated using five experimental data samples with more than 1.5 x
10° data points in each sample. The obtained noise level was about 4 dB. When there is a
tooth fault in a planet gear, the signal amplitude increases slightly. However, there is no
obvious fault symptom visually noticeable due to the complexity of the gearbox test rig.

oHd stage planetary

GeRbiE Encoder

Accelerometer

Fig. 5.10: Accelerometer and encoder
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Fig. 5.12: Experimental vibration signals

The collected vibration signal not only contains the vibration information from
the 2™ stage planetary gearbox but also contains the vibration information from other
components. To reduce the interference from other components, residual signals are

generated before applying the proposed windowing and mapping strategy by removing
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drive motor rotation frequency, bevel gear mesh frequency and harmonics, 1% stage
planetary gearbox sun gear rotation frequency and harmonics, 1* stage planetary gearbox
planet gear rotation frequency and harmonics, 1% stage planetary gearbox mesh frequency
and harmonics; in addition, a low pass filter (up to 800 Hz) is applied to remove the high
frequency noise. The vibration of the speed-up gearboxes is not concerned as a chain
coupling is applied between the 2™ stage planetary gearbox and the 1% stage speed-up
gearbox. The chain coupling is believed to be able to avoid the interference from the
speed-up gearboxes. The frequencies to be removed are listed in Table 5.1 and the
generated residual signals are shown in Fig. 5.12. In the time domain, the residual signals

and the raw vibration signals still do not have big visual differences.

Table 5.1: Frequencies to be removed

st
Drive motor Bevel gear I” stage planctary gearbox
. Sun gear Planet gear
rotation mesh . . Gear mesh
frequency frequency rotation rotation frequency
frequency frequency
20Hz 360Hz SHz 1.9Hz 118.2Hz

Fig. 5.13 shows the decomposed tooth signals from the residual vibration signal
of the 2™ stage planetary gearbox without and with a tooth crack in a planet gear using
the proposed windowing and mapping strategy. Comparing between these two signals,
we cannot visually identify the clear fault symptoms corresponding to the tooth fault. Due
to the complexity of the gearbox test rig, the fault symptoms are very week and they are

submerged in the vibration signals.
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Fig. 5.13: Decomposed tooth signals of an experimental planetary gearbox

However, when we look at the RMS of the tooth signals, some differences appear.
Fig. 5.14 presents the energy of the vibration signal generated by each tooth. Let’s focus
on Fig. 5.14 (b) firstly. When the gearbox is in faulty condition with a cracked tooth in a
planet gear, the energy generated by 30 teeth scattered in the range of 16.0 m/s*and 16.3
m/s”. But there is one more tooth (outlier) with the energy of about 16.5 m/s* which is
much higher than the upper bound (16.3 m/s®) of the energy generated by other teeth.
This outlier corresponds to the cracked tooth. By contrast, when the gearbox is in healthy
condition, the energy generated by the planet teeth scattered in the range of 13.2 m/s” and
13.6 m/s”. There is no outlier presented in Fig. 5.14 (a). Therefore, comparing the signal

energies generated by all the teeth can effectively identify the cracked tooth.
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Fig. 5.14: Energy of experimental vibration signal generated by each tooth of a planet
gear

In addition, one advantage of this method is that only one vibration signal
segment (length of Z, revolutions of the planet gear) when the gearbox is in faulty
condition is adequate to finally find the single cracked tooth as the signals of all healthy
teeth can act as the reference signal themselves. It is unnecessary to have the vibration
signal of a perfect gearbox to identify the cracked tooth. This advantage can save much
effort in the industry as we do not need to collect the vibration signals of a perfect
gearbox.

Another phenomenon from the experimental data is that a healthy tooth of a faulty
planet gear generates more energy than a healthy tooth of a healthy planet gear. The
mechanism of this energy increase is unknown presently. According to the result of the
simulated vibration signal presented in Fig. 5.8, the tooth energy of a healthy tooth has no
difference between a healthy gearbox and a faulty gearbox. Further investigation is
required to clarify the tooth energy increase of a healthy tooth in degraded health

conditions of a planetary gearbox.
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In this study, the ability to detect incipient defect is not tested on experimental
signals. Right now, I only have the experimental data of the gearbox in healthy condition
and in the 4.3 mm tooth crack condition. The experimental data was collected in 2011 as
documented in Ref. [5.32]. In the future, I will design new experiments and then test the
ability of the proposed method to detect incipient defect of much smaller size on

experimental signals.

5.5 Conclusions

The purpose of this study is to decompose the vibration signal of a planetary gearbox into
the tooth level, and then amplify the fault symptoms generated by a faulty tooth. First, a
windowing and mapping strategy is proposed to generate the tooth signals of a planet
gear. Then, a numerical optimization algorithm is developed to find the optimal
windowing positions for the scenario that a single tooth crack is present in a planet gear.
The proposed method is tested on both simulated and experimental vibration signals, and
can detect a single tooth fault in a planet gear. The results show that the RMS generated
by the cracked tooth of a planet gear is much higher than that generated by the perfect
teeth both for the simulated and experimental signals. The RMS difference of the tooth
signals can tell the tooth health of the planet gear of interest. A big advantage of the
proposed method is that a reference signal when the gearbox in the healthy condition is
not required in the fault detection. If the vibration signals of a planetary gearbox are not
stationary, the effectiveness of the proposed method is expected to further improve when
angular synchronous averaging further removes noise. However, this will not be covered

in this thesis.
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Chapter 6: Summary and Future Work

This chapter summarizes the contributions on dynamics based vibration signal modeling
for fault detection of planetary gearboxes and describes some problems that remain to be

addressed.

6.1 Summary of contributions

Vibration analysis has been widely used in the condition monitoring of a planetary
gearbox system. The understanding of vibration properties of a planetary gearbox in
healthy and faulty conditions helps the development of effective tools in the fault
detection a planetary gearbox. This study aims to simulate and investigate the vibration
properties of a planetary gearbox for the detection of gear tooth crack fault. The
contribution of this thesis is summarized in four categories as described in the next four

sections.

6.1.1 Evaluating time-varying mesh stiffness of a planetary gear set using potential

energy method

Time-varying mesh stiffness is one of the main excitations of vibration of a gear
transmission system. An efficient and effective way to evaluate the time-varying mesh
stiffness is essential for comprehensively understanding the dynamic properties of a

planetary gear set. In this thesis, potential energy method is used to derive equations of an
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internal gear pair. Hertzian stiffness, bending stiffness, shear stiffness and axial
compressive stiffness are analytically derived for an internal gear pair without any
assumption of the gear tooth involute curve. Considering a sun-planet gear pair as a
fixed-shaft external gear pair, and a ring-planet gear pair as a fixed-shaft internal gear
pair, and combining the mesh phases of gear pairs, the mesh stiffness of a planetary gear
set is obtained. The proposed method is illustrated to calculate the mesh stiffness of a

planetary gear set in three structures: fixed carrier, fixed ring gear and fixed sun gear.

6.1.2 Analytically evaluating the influence of crack on the mesh stiffness of a

planetary gear set

The time-varying gear mesh stiffness shape will change if a tooth fault appears and
consequently the vibration properties of the gear system will change. In this thesis,
potential energy method analytically evaluates the time-varying mesh stiffness of a
planetary gear set when gear tooth crack occurs. A modified cantilever beam model is
proposed for an external gear tooth and the equations of bending stiffness, shear stiffness
and axial compressive stiffness are derived for an external gear tooth. The stiffness
results show that it is important to model the gear tooth starting from the root circle rather
than the base circle. A crack propagation model is developed for an external gear and the
equations of gear mesh stiffness are derived for different crack levels. The mesh stiffness
reduction is quantified when a crack appears in the sun gear, a planet gear (sun gear side)

or a planet gear (ring gear side).
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6.1.3 Vibration signal modeling of a planetary gear set for tooth crack detection

Even though many fault detection methods have been developed to analyze the vibration
signals of planetary gearboxes, the vibration properties of a planetary gear set is still not
well investigated. In this thesis, a dynamics based vibration signal modeling method is
proposed to simulate and investigate the resultant vibration signals of a planetary gearbox
in healthy and cracked tooth conditions. A lumped-parameter model is developed to
simulate the vibration signals of each gear, including the sun gear, planet gears and ring
gear. A modified Hamming function is proposed to reflect the effect of the transmission
path. Incorporating multiple vibration sources and the effect of transmission path, the
resultant vibration signals of a planetary gear set at the sensor location are simulated. The
results show obvious fault symptom in the time domain vibration signals of an individual
gear, like the sun gear. However, the fault symptoms attenuate in the resultant vibration
signal. Obvious amplitude modulation appears in the resultant vibration signal due to the
rotation of the carrier. In the frequency domain, a large number of sidebands appear when
there is a crack in the sun gear tooth. These sidebands are investigated and located, which
can help detect the crack fault. The vibration properties found by the proposed signal

modeling method are confirmed by comparing with those of the experimental signals.

6.1.4 A windowing and mapping strategy for gear tooth fault detection of a

planetary gearbox

Based on the understanding of vibration properties of a planetary gear set in healthy and
cracked tooth conditions, this thesis develops a method to decompose the vibration signal

of a planetary gearbox into the tooth level of a planet gear to amplify the fault symptom.
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A windowing and mapping strategy is proposed to generate the tooth signals of a planet
gear. A numerical optimization algorithm is developed to find the optimal windowing
positions for the scenario that a single tooth crack is present in a planet gear. The results
show that the RMS generated by the cracked tooth of a planet gear is much higher than
that generated by perfect teeth for both simulated and experimental signals. The RMS
difference of the tooth signals tells the tooth health of a planet gear. A big advantage of
the proposed method is that a reference signal when the gearbox in the healthy condition
is not required in the fault detection. I have tested the proposed method on both simulated
and experimental vibration signals, and demonstrated it to be able to detect a single tooth

fault in a planet gear.

6.2 Future work

Although the structure of this thesis is defined in the sense that important challenges and
limitations of current models in dynamics based vibration signal modeling for fault
detection of planetary gearboxes are covered, there are still some problems that need to
be further addressed. Based on the scope of this dissertation, the following three

perspectives are suggested for future consideration.

6.2.1 Vibration property investigation of a planetary gear set with tooth pitting

In this thesis, the vibration signals of a planetary gear set with a single tooth crack are
simulated and investigated. The tooth pitting fault is not covered in this study. However,

tooth pitting is a very common failure mode of gearboxes in industrial application. As
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pitting progresses, it may spread to neighboring and mating teeth. The vibration
properties of a planetary gearbox with distributed pitting on multiple teeth have not been
investigated. To obtain the vibration signals, the time-varying mesh stiffness of a
planetary gear set with distributed pitting on multiple teeth will need to be evaluated first.
Then, the signal modeling method proposed in Chapter 4 of this thesis can be used to

simulate and investigate the resultant vibration signals.

6.2.2 Validation of the transmission path effect model

In this thesis, a modified Hamming function is proposed to represent the effect of
transmission path. This model can represent the varying distance between a planet gear
and the vibration sensor. However, I did not provide a validation on the transmission path

effect model. Further validation is required in future work.

6.2.3 Time-varying load or random load effect on vibration signals

In this thesis, the applied load on a planetary gearbox is constant. However, in industrial
applications, the load is usually time-varying or random. This will cause the vibration
signals to be non-stationary. The vibration properties of a planetary gearbox will be much
more complicated under time-varying or random load condition than constant load
condition. It is necessary to investigate them to develop effective fault detection methods

in industrial application.
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6.2.4 Development of advanced fault detection techniques based on understanding

of vibration properties

Based on the understanding of vibration properties of a planetary gear set, a signal
decomposition method is proposed in this thesis to detect a single tooth crack in a planet
gear. However, the fault location may be in the sun gear, the ring gear or a planet gear.
The proposed method needs to be modified for the fault detection of sun gear tooth crack
or ring gear tooth crack. It is best to develop an intelligent fault detection method which

can determine the fault severity and fault location simultaneously.

6.2.5 Vibration signal modeling using a combined element/contact mechanics model

Parker et al. [6.1] proposed a combined element/contact mechanics model to investigate
the non-linear dynamic response of a spur gear pair. Later, this model was extended to
investigate the dynamic response of a planetary gear system [6.2]. This finite
element/contact mechanics approach did not require a highly refined mesh at the
contacting tooth surfaces. In addition, the time-varying mesh stiffness and mesh contact
forces were evaluated internally at each time step. The model reported in [6.2] was used
to study the quasi-static loads [6.3] and the root stresses [6.4] in planetary gears, and the
effect of manufacturing errors [6.5] and wear [6.6] on planetary gear dynamics. I think
this is a very good model and can be extended to simulate the vibration signals of a

planetary gear set with tooth crack in the future.
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6.2.6 Profile and lead modifications effect on gear mesh stiffness

In [6.7], it is stated that “Modern gearboxes are characterized by high torque load

demands, low running noise and compact design. In order to fulfill these demands, profile

and lead modifications are being applied more often than in the past.” Therefore, it is

important to consider profile and lead modifications in gear mesh stiffness evaluation.

However, in this thesis, I only derived mesh stiffness equations for a gear pair without

profile or lead modifications as my first step. The profile and lead modifications will be

considered in future work.
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