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Abstract 

 

Vibration analysis has been widely used to detect gear tooth fault inside a planetary 

gearbox. However, the vibration characteristics of a planetary gearbox are very 

complicated. Inside a planetary gearbox, there are multiple vibration sources as several 

sun-planet gear pairs and several ring-planet gear pairs are meshing simultaneously. In 

addition, due to the rotation of the carrier, distance varies between vibration sources and a 

transducer installed on gearbox housing. This thesis aims to simulate and understand the 

vibration signals of a planetary gear set, and then propose a signal processing method to 

detect gear tooth fault more effectively. First, an analytical method derives the equations 

of a healthy planetary gear set’s time-varying gear mesh stiffness. Then, a gear tooth 

crack growth model is proposed and equations are derived to quantify the effect of gear 

tooth crack on the time-varying mesh stiffness. After that, a two-dimensional lumped-

mass model is developed to simulate the vibration source signals of a planetary gear set; 

an analytical model is proposed to represent the effect of transmission path; and the 

resultant vibration signals of a planetary gear set at a sensor location are generated by 

considering multiple vibration sources and the effect of transmission path. Finally, a 

signal decomposition method is proposed to detect a single tooth crack in a single planet 

gear and experimental validation is performed. The methods proposed in this thesis help 

us understand the vibration properties of planetary gearboxes and give insights into 

developing new signal processing methods for gear tooth fault detection. 
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Chapter 1: Introduction 

 

This chapter is divided into three sections. I introduce the background of this thesis topic 

in Section 1. Section 2 provides a detailed literature review of the research challenges 

around the dynamics based vibration signal modeling and fault detection of planetary 

gearboxes. Section 3 provides the research objectives and the organizational structure of 

this whole thesis.  

 

1.1 Background 

Planetary gearboxes are common in industrial applications due to their compactness and 

high torque-to-weight ratio [1.1]. A planetary gear set normally consists of a centrally 

pivoted sun gear, a ring gear and several planet gears which rotate around the sun gear 

and ring gear simultaneously as shown in Fig. 1.1. The sun gear and planet gears are 

external gears; the ring gear is an internal gear. An external gear has its teeth formed on 

the outer surface of a cylinder or cone, while an internal gear has its teeth formed on the 

inner surface of a cylinder or cone [1.2]. Transducers usually rest on the housing of 

planetary gearboxes or the casing of bearings to collect the vibration signals as shown in 

Fig. 1.2. In this study, I focus only on modeling and investigating the vibration signals to 

be collected by the transducers mounted on the housing of planetary gearboxes. 
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Observation during application of planetary gearboxes at Syncrude Canada Ltd, indicated 

fatigue crack and pitting are the two commonest failure modes of the planetary gearbox 

[1.7]. Fatigue crack is a non-lubrication-related failure mode while pitting is a 

lubrication-related failure mode [1.5]. This study will model gear tooth fatigue crack and 

investigate its effect on a planetary gearbox’s dynamic responses and vibration signals.  

 If the gear faults cannot be detected early, the health will continue to degrade, 

perhaps causing large economic loss or catastrophe. In a rotorcraft, the transmission 

system has a single load path without duplication or redundancy. The gearboxes are the 

system’s main components. If the gears fail during a flight, the rotorcraft may crash. “As 

a helicopter was flying to Aberdeen from the Miller platform in the North Sea on the 

afternoon of 1 April 2009 the main rotor came off and the aircraft crashed into the sea. 

All 14 offshore workers and the two crewmen died. It was the gear that failed as a result 

of a fatigue crack, causing the failure of the main rotor gearbox.” [1.8] According to P.R. 

Veillette [1.9], “More than half the accidents in U.S. helicopter logging operations in 

1983 through 1999 involved failures of engines or transmission systems.”  

It is important to monitor the health of gearbox systems and detect early faults in 

advance. Condition monitoring techniques have been developed and widely used to 

monitor and diagnose the health of gear systems. Vibration analysis, acoustic analysis, oil 

debris analysis, temperature analysis, and strain analysis are common techniques in the 

condition monitoring of gearbox systems. Vibration analysis relies on the analysis of 

vibration signals to detect faults in equipment, most often in rotating equipment such as 

gearboxes, motors, fans and pumps. Acoustic analysis detects fault in a device through 

evaluating voice quality using fundamental frequency, perturbation and noise measures. 
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Oil debris analysis is the analysis of a lubricant’s properties, suspended contaminants, 

and wears debris; mostly is performed during routine predictive analysis to provide 

meaningful and accurate information on lubricant and machine condition. Temperature 

analysis measures and analyzes temperature data. Strain analysis determines the stresses 

and strains in materials and structures subjected to forces and loads for condition 

monitoring. Among these, commonest condition monitoring technique for a gearbox is 

vibration analysis [1.10, 1.11].  

The vibrations of a planetary gearbox are much more complicated than those of a 

fixed-shaft gearbox. In a fixed-shaft gearbox, every gear revolves around its own shaft 

axis and will not revolve around any other gear’s. A planetary gear set has multiple 

external gear pairs and multiple internal gear pairs meshing simultaneously. A sun-planet 

gear pair contains two meshing external gears. A ring-planet gear pair contains one 

external gear meshing with one internal gear. Each sun-planet gear pair produces similar 

but phase shifted vibration signal [1.12]. So does each ring-planet gear pair. This phase 

shift cancels or neutralizes some of the excitations induced by gear pairs but augments 

others [1.13]. In addition, the rotation of the carrier varies the transmission path of the 

vibration signals to a fixed transducer. Multiple vibration sources and the effect of 

transmission path lead to the complexity of the vibration signals of a planetary gearbox.  

Several researchers have used mathematical models to investigate the vibration 

properties of a planetary gearbox [1.14, 1.15]. However, these models lack connections 

with physical parameters of a gearbox, like gear mesh stiffness and damping. In addition, 

they can hardly model the process of the fault growth. A dynamic model is more closely 

connected with the physical parameters of a planetary gearbox than the mathematical 
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model. It can model fault growth and the corresponding effects. It has further advantages 

over lab systems or field systems [1.16]: (1) environmental noises can be eliminated so 

that the changes in vibration signals caused by the faults can be identified easily; (2) with 

a good dynamic simulation model, it is easy to simulate different types and levels of 

faults, and observe changes in the vibration signal they cause. In this thesis, a lab system 

means an experimental setup in a lab for scientific research while a field system means an 

onsite system where the phenomenon occurs naturally without isolating it from other 

systems or altering the original conditions of the test.  

Dynamic simulation can simulate the vibration signals of each gear inside a 

planetary gearbox. Multiple vibration signals inside a planetary gearbox go through 

different transmission paths and are eventually synthesized as a resultant vibration signal 

at the sensor position. To obtain the vibration signals of the whole planetary gearbox, 

both multiple vibration sources and the effect of transmission path must be considered. 

In the dynamic modeling of a gear system, gear mesh interfaces are usually 

modeled as a spring-damper system [1.17, 1.18]. The spring stiffness, also called mesh 

stiffness, is one of the major sources of gear vibration [1.19]. Correctly evaluating the 

time-varying mesh stiffness is essential to ensure accuracy of the simulated vibration 

signals through dynamic simulation.  

For a planetary gear set, tooth cracking is one of the commonest failure models 

[1.1]. As the tooth crack grows, gear mesh stiffness will decrease and the gear system’ 

vibration characteristics will change. To simulate the vibration signals of a planetary gear 

set with various crack severity levels, it is essential to establish the relationship between 

the crack severity and the mesh stiffness reduction. In addition, tooth crack may occur in 
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the sun gear, the planet gears, or the ring gear. Mesh stiffness shapes are not the same for 

each different tooth crack location. The differences will result in different fault symptoms 

in vibration signals, which can help identify the fault location. 

Many signal processing methods have been proposed to diagnose the health of 

gearboxes [1.20, 1.21]. However, most researchers treat the gearbox as a black box 

ignoring the generation mechanism of the vibration signals. Dynamics based vibration 

signal modeling is an effective way to model and reveal the vibration properties of a 

planetary gearbox. If we can “open” the black box, “see” all the sub-signals, understand 

the generation mechanisms of vibration signals, and consider the effects of vibration 

transmission path properly, effective tools can be developed to detect gear faults.  

Though vibration analysis techniques have been widely used in the fault detection 

of planetary gearboxes, the vibration characteristics of planetary gearboxes are still not 

fully understood. This thesis aims to develop a dynamics based method to simulate and 

analyze the vibration signals of a planetary gear set at various levels of single tooth crack 

with the effects of transmission path considered. Then a signal decomposition method is 

proposed to detect a single tooth crack fault in a single planet gear. 

 

1.2 Literature review 

This section reviews the available work on gear mesh stiffness evaluation for both fixed-

shaft gearboxes and planetary gearboxes; using dynamics based vibration signal 

modeling, and vibration signal decomposition techniques for planetary gearboxes. This 

section is organized as follows: Section 1.2.1 reviews the differences between finite 

element method (FEM) and analytical method (AM) in terms of gear mesh stiffness 
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evaluation. Section 1.2.2 reviews the analytical methods in mesh stiffness evaluation of 

fixed-shaft gears. Section 1.2.3 reviews the analytical methods in mesh stiffness 

evaluation of a planet gear set. Section 1.2.4 reviews the gear tooth crack modeling and 

the crack effect on the gear mesh stiffness. Section 1.2.5 reviews dynamics based 

vibration signal modeling. Section 1.2.6 reviews vibration signal decomposition 

techniques for gear tooth fault detection. 

1.2.1 Finite element method versus analytical method on mesh stiffness evaluation 

Finite element method (FEM) and Analytical method (AM) have both been used to 

evaluate the mesh stiffness of gear pairs. Wang and Howard [1.22] evaluated the 

torsional stiffness of a pair of involute spur gears using FEM. FEM  is flexible to model 

any shaped gear, for example, the gears with non-standard tooth geometries [1.23]. FEM 

can also model faulty gears and evaluate the influence of gear faults on the mesh stiffness. 

Jia and Howard [1.24] evaluated the mesh stiffness of external spur gears when tooth 

spalling or tooth crack is present using a 3-D finite element model. Pandya et al. [1.25] 

used a 2-D finite element model to evaluate the crack effect on the mesh stiffness of an 

external gear pair. Song et al. [1.26] developed a finite element model for a pair of 

marine crossed beveloid gear and found that the gear misalignment had a slight effect on 

the mesh stiffness. However, FEM is sensitive to contact tolerances, mesh density and the 

types of finite elements selected [1.23]. As the mesh density increases, the numerical 

accuracy is improved, while the computational cost goes up [1.27]. 

Parker et al. [1.28] proposed a combined element/contact mechanics model to 

investigate the non-linear dynamic response of a spur gear pair. Later, this model was 
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extended to investigate the dynamic response of a planetary gear system [1.29]. 

Ambarisha and Parker [1.30] used this model to calculate the mesh stiffness of a 

planetary gear set. This model reduces the number of finite elements used and enables the 

mesh stiffness calculation with practically feasible run time. However, this model relies 

on the unique commercial finite element-contact analysis software: Calyx [1.31]. 

AM is easy to use and also effective in evaluating gear mesh stiffness. The 

contribution of individual component, like bending stiffness, shear stiffness, and Hertzian 

contact stiffness, can be analyzed separately [1.23]. Chaari et al. [1.32] and Zhou et al. 

[1.33] both analytically evaluated the mesh stiffness of an external gear pair with tooth 

crack, and their mesh stiffness results were demonstrated to have a good agreement with 

the FEM results. AM can also be used to evaluate the mesh stiffness of gears when gear 

faults are present, like crack [1.25, 1.32], spalling [1.34], and tooth breakage [1.4]. Most 

researchers analytically model the gear tooth as a nonlinear cantilever beam and the beam 

theory was used to evaluate the gear mesh stiffness. However, some component 

deformations and/or component faults are not easy to be modeled analytically, like gear 

distributed pitting and gear misalignment.  

In the analytical method, the gear tooth is modeled as a cantilever beam and a 

beam theory is used. The two widely used classical beam theories are Euler-Bernoulli and 

Timoschenko [1.35]. In the Euler-Bernoulli beam theory, shear deformations and 

rotational inertia are neglected, and during deformation, the cross section of the beam is 

assumed to remain planar and normal to the deformed axis of the beam. In the 

Timoshenko beam theory, shear deformations and rotational inertia are both considered, 

and during deformation, the cross section of the beam will remain planar, but no longer 
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normal to the deformed axis of the beam. Later, refined beam theories were developed to 

deal with the effects that cannot be solved using either of the two classical beam theories, 

such as warping, plane deformations, torsional-bending coupling, and localized boundary 

conditions [1.35]. The Carrera Unified Formulation (CUF) permits one to develop a large 

number of beam theories with a variable number of displacement unknowns by means of 

a concise notation and by referring to a few fundamental beam theories. The number of 

unknown variables is a free parameter of the problem. A 3D stress/strain field can be 

obtained by an appropriate selection of these variables for any type of beam problem: 

compact sections, thin-walled sections, bending, torsion, shear, localized loadings, static 

and dynamic problems [1.35]. 

The potential energy method is a widely used analytical method to evaluate the 

mesh stiffness of perfect gears and gears with crack [1.36]. In this method, the gear tooth 

is considered as a non-uniform cantilever beam and the Timoshenko beam theory is used. 

This method will be used directly in this study to evaluate the gear mesh stiffness. 

1.2.2 Mesh stiffness evaluation of fixed-shaft gears 

Many studies have been reported to analytically evaluate the mesh stiffness of fixed-shaft 

external gear pairs. Yang and Lin [1.17] analytically evaluated the mesh stiffness of a 

pair of fixed-shaft external spur gears using the potential energy method. They 

considered Hertzian energy, bending energy and axial compressive energy corresponding 

to Hertzian contact stiffness, bending stiffness and axial compressive stiffness, 

respectively. Later, Tian et al. [1.37] added another energy component called the shear 

energy corresponding to the shear stiffness. Utilizing the properties of involute curve, 
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Tian et al. [1.37] also simplified the expressions of the bending stiffness, shear stiffness 

and axial compressive stiffness to facilitate the application. Zhou et al. [1.33] added the 

deformation of the gear body into the model reported in [1.37]. Refs. [1.17, 1.32, 1.36] 

modeled the gear tooth as a cantilever beam and assumed that the beam started from the 

gear base circle. Actually, the gear tooth starts from the root circle rather than the base 

circle as shown in Fig. 1.3. Thus, their models ignored the influence of a part of the gear 

tooth between the root circle and the base circle. The tooth profile of this part (tooth fillet 

area) is not an involute curve and it is basically determined by the cutting tool tip 

trajectory. Using a different cutting tool, the generated curve will be different and there is 

no uniform function to depict it [1.38]. However, neglecting this part will cause 

inaccuracy of the estimated mesh stiffness of gear pairs, especially when the distance 

between the base circle and the root circle is large. Refs. [1.27, 1.39, 1.40] modeled the 

gear tooth as a cantilever beam which started from gear root circle. However, their 

equations are not convenient to use. They only gave the stiffness equations for a specific 

mesh point. In this case, for time-varying stiffness measurement, it is required to 

manually calculate the gear profile information at every mesh point which is repeated in 

nature for different gears and this is time consuming. Another shortcoming is that they 

did not demonstrate how to match the mesh points. For example, one point on one tooth 

is in meshing, then how to find the corresponding meshing point on the other tooth. For a 

pair of spur gears whose contact ratio is between 1 and 2, the alternation of one pair and 

two pairs of teeth in contact is observed. They also did not mention how to determine the 

single-tooth-pair duration and the double-tooth-pair duration. These shortcomings will be 

addressed in this thesis. In the Chapter 3 of this thesis, equations of the mesh stiffness of 
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an external gear pair will be derived with the tooth fillet area considered in the external 

gear tooth model. 

 

 

Fig. 1.3: Gear tooth profile of an external gear 

 

In contrast, the investigations on the mesh stiffness evaluation of the internal 

gears are limited. The most detailed research is done by Pintz et al. [1.41]. They 

introduced an iterative procedure to evaluate the mesh stiffness of an internal gear pair 

through digitizing the tooth profile into a large scale of discrete points. In their method, 

the mesh stiffness was expressed as a function of the transmitted load, gear profile errors, 

gear tooth deflections, gear hub deformations, location of tooth contact and the number of 

tooth pairs in contact. The mesh stiffness at each discrete point was evaluated iteratively. 

However, they only gave the stiffness equations for a specific mesh point. The same as 

discussed in the previous paragraph, their equations are not convenient to use. To address 

this shortcoming, in Chapter 2 of this thesis, easy to use equations are derived for the 

mesh stiffness of an internal gear pair.  
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1.2.3 Mesh stiffness evaluation of a planetary gear set 

In Section 1.2.2, I reviewed the gear mesh stiffness evaluation for a fixed-shaft external 

gear pair and a fixed-shaft internal gear pair. In a planetary gear set, there are several 

pairs of sun-planet gears and several pairs of ring-planet gears meshing simultaneously. 

Actually, the gear mesh stiffness evaluation of a pair of sun-planet gears is the same as 

that of an external gear pair since both the sun gear and the planet gear are all external 

gears. The gear mesh stiffness evaluation of a ring-planet gear pair is the same as that of 

an internal gear pair since the ring gear is an internal gear and the planet gear is an 

external gear. In this section, I will review how to obtain the mesh stiffness of a planetary 

gear set when the mesh stiffness of a pair of sun-planet gears and the mesh stiffness of a 

pair of ring-planet gears are known. 

While each of the sun-planet gear pair has the same shape of mesh stiffness 

variation, they are not necessarily in phase with one another [1.42]. August et al. [1.43] 

evaluated the mesh stiffness of a planetary gear set with three planet gears. The sun-

planet gears were treated as a fixed-shaft external gear pair whose mesh stiffness was 

evaluated using the method proposed by Kasuba and Evans [1.39]. A ring-planet gear 

pair was treated as a fixed-shaft internal gear pair whose mesh stiffness was evaluated 

using the method proposed by Pintz et al. [1.41]. By considering the mesh phasing 

relationships, they obtained the mesh stiffness of the whole planetary gear set. Two 

significant shortcomings of their methods are: (a) the methods to evaluate the mesh 

stiffness of the external gears and the internal gears are not convenient to use as described 

in the last paragraph of Section 1.2.2, (b) the mesh phasing relationships are not well 
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defined. Parker and Lin [1.42] proposed an analytical method later to calculate mesh 

phasing relationships.  

Some other researchers [1.44, 1.45] used a square waveform to approximate the 

time-varying mesh stiffness of a planetary gear set as shown in Fig. 1.4. However, no 

specific guidelines were presented on how to get the magnitudes of the time-varying 

stiffness. The magnitudes were assumed without confirmation of the physical parameters. 

Besides, the square waveform ignored the variation of the mesh stiffness caused by the 

change of the contact point with the gear rotation. In addition, unwanted frequency 

components may be generated due to the flatness of the stiffness curve. The approach to 

be used in the Chapter 2 of this thesis aims to overcome these shortcomings. With 

directly using the mesh phasing relationships reported by Parker and Lin [1.42], 

equations are derived to get the mesh stiffness of a planetary gear set given the mesh 

stiffness of a pair of sun-planet gears and the mesh stiffness of a pair of ring-planet gears 

are known. 

 

 
Fig. 1.4: Approximation of the gear mesh stiffness using the square waveform [1.45]:  

denotes the meshing period,  denotes the contact ratio between the sun gear and the ith 

planet gear and  denotes the contact ratio between the ring gear and the ith planet gear. 
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1.2.4 Crack effect on the mesh stiffness 

In Section 1.2.2 and Section 1.2.3, I reviewed the mesh stiffness evolution of fixed-shaft 

gear pairs and planetary gears. In those two sections, all the gears are in the healthy 

condition. In this section, the gear tooth crack effect on a fixed-shaft external gear pair 

and a planetary gear set will be reviewed. 

Many studies have evaluated the crack effect on the mesh stiffness of a fixed-

shaft external gear pair. Refs. [1.25, 1.33, 1.37] modeled the gear crack propagation in a 

linear path shape starting from the point of intersection of the base circle and the involute 

curve as shown in Fig. 1.5 (a). However, it is pointed out by both Kramberger et al. [1.46] 

and Belsak and Flasker [1.47] that gear tooth crack mostly initiated at the point of the 

maximum principal stress in the tensile side of a gear tooth (critical area in Fig. 1.6). 

Chaari et al. [1.32] presented an analytical method to evaluate the mesh stiffness of an 

external gear pair and modeled the crack in a straight line shape starting from the tooth 

root. They mentioned that the gear mesh stiffness could be evaluated by taking into 

account the tooth thickness reduction. Chen and Shao [1.40] proposed an analytical 

model to evaluate the mesh stiffness of an external gear pair with tooth root crack 

propagating along both the tooth width and the crack depth as shown in Fig. 1.5 (b). 

However, the methods reported in Refs. [1.32, 1.40] are based on single point estimation 

of the mesh stiffness. As stated in Section 1.2.2, these methods are not convenient to use. 

To address this shortcoming, an external gear tooth crack model will be proposed in 

Chapter 3 of this thesis and equations of the mesh stiffness of a fixed-shaft external gear 

pair with a single gear tooth crack will be derived.  
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generated by each vibration source go through different transmission paths and are 

eventually synthesized as a resultant vibration at the sensor position. To simulate the 

resultant vibration signal of a planetary gearbox at the sensor location, both multiple 

vibration sources and the effect of transmission path must be considered. 

Mathematical models have been used by several researchers to investigate the 

vibration properties of a planetary gearbox. Inalpolat and Kahraman [1.14] proposed a 

simplified mathematical model to describe the mechanisms leading to modulation 

sidebands of planetary gear sets. Feng and Zuo [1.15] mathematically modeled the gear 

faults using the amplitude modulation and the frequency modulation, and then analyzed 

the spectral structure of the vibration signals of a planetary gear system. The effect of the 

transmission path was modeled as a Hanning function [1.14, 1.15] with the assumption 

that, as planet i approaches to the transducer location, its influence increases, reaching its 

maximum when the planet i is at the transducer location, then, its influence decreases as 

the planet i goes away from the transducer. Even though mathematical models can exhibit 

some basic vibration properties of a planetary gearbox, they lack the connection with the 

physical parameters of a planetary gearbox. In addition, they can hardly model the 

process of fault growth. This shortcoming will be solved in Chapter 4 of this thesis by 

using dynamic modeling. 

Dynamic simulation is a better choice to investigate the vibration properties of a 

planetary gearbox. Kahraman [1.49] proposed a nonlinear dynamic model to investigate 

the load sharing characteristics of a planetary gear set. Three degrees of freedom were 

modeled for each component: transverse motions in the x-axis direction, y-axis direction, 

and rotation. The equations were built in a fixed coordinate system. Inalpolat and 
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Kahraman [1.50] used the same model proposed by Kahraman [1.49] to predict 

modulation sidebands of a planetary gear set having manufacturing errors. The effect of 

transmission path was represented by a Hanning function. Lin and Parker [1.18] modified 

the model proposed by Kahraman [1.49] in two items: (a) used a rotating frame 

coordinate system in order to consider the gyroscopic effect, (b) the planet deflections 

were described in the radical and the tangential coordinates. Using this model, they 

investigated the free vibration properties of a planetary gear set. Cheng et al. [1.51] 

developed a pure torsional dynamic model to investigate the properties of a planetary 

gear set when a single pit was present on a tooth of the sun gear. Chaari et al. [1.52] 

developed a similar model as the one reported by Lin and Parker [1.18] to investigate the 

manufacturing errors on the dynamic behavior of planetary gears. In addition, they 

investigated the vibration properties of a planetary gear set with tooth crack or a single pit 

on the sun gear. In their studies, the gear mesh stiffness was approximated as a square 

waveform. Chen and Shao [1.48] studied the dynamic features of a planetary gear system 

with tooth crack under different sizes and inclination angles. The displacement signal of 

the sun gear and the planet gear was investigated when a crack was present on the sun 

gear or the planet gear.  

To better understand the vibration properties of a planetary gear set with faults, 

more studies are required to investigate the vibration properties of a planetary gear set. 

The dynamic model can be further improved by considering more factors, like the 

centrifugal force generated due to the rotation of the carrier. The effect of the 

transmission path can be further investigated rather than only use the Hanning function. 

A dynamic model for a planetary gear set and a modified Hamming function for the 
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modeling of transmission path effect will be proposed in Chapter 4 of this thesis to 

address these shortcomings. 

1.2.6 Vibration signal decomposition for gear tooth fault detection 

In Section 1.2.5, I reviewed the research on vibration signal modeling of a planetary gear 

set. Once vibration signals are generated based on dynamics models considering gear 

tooth crack effects and the effect of transmission path as reviewed earlier, the last step is 

to process the simulated vibration signals aiming to reflect health condition. In this 

section, vibration signal decomposition for gear tooth fault detection will be reviewed. 

The fault detection of a planetary gearbox is much complicated compared with 

that of a fixed-shaft gearbox as the planetary gearbox’s properties of multiple vibration 

sources and the effect of transmission path lead to the complexity of the vibration signals. 

Signal decomposition techniques were raised by some researchers to emphasize fault 

symptoms and eliminate the interferences from irrelevant factors. McFadden [1.53] 

proposed a windowing and mapping strategy to obtain the vibration signal of individual 

planet gears and of the sun gear in a planetary gearbox. In his method, a window function 

was applied to sample the vibration signals when a specific planet gear was passing by 

the transducer and then the samples were mapped to the corresponding meshing teeth of 

the sun gear or the planet gear to form the vibration signals of the sun gear or the planet 

gear. Many additional studies attempted to improve the performance of the method 

reported in [1.53]. Refs. [1.54-1.57] investigated the techniques to index the positions of 

each planet gear, which were used to find the best location of putting the windows. Refs. 

[1.50, 1.55, 1.58-1.60] tried to find the best window type and window length for the 



20 
 

sampling. The performances of Rectangular window, Hanning window, Turkey window 

and Cosine window were investigated in Refs. [1.53-1.60]. All these efforts were trying 

to decompose the vibration signal of a planetary gearbox while focusing on the vibration 

signal of the sun gear or the planet gear of interest. The decomposed signal can reduce 

the interference from the vibration of other gears and consequently emphasize the fault 

symptoms of the gear of interest. This study does not intend to improve the existing 

signal decomposition methods. But a new signal decomposition method will be proposed 

in Chapter 5 of this thesis to decompose the vibration signal of a planetary gear set into 

the gear tooth level of a planet gear. The decomposed vibration signal can reduce the 

interference from the vibrations of other teeth of the planet gear of interest. Examining 

the signals of all the teeth of a planet gear, the health differences of the teeth can be 

measured. 

 

1.3 Objective and outline 

Based on the reviews summarized in the previous section, four main issues have been 

identified that will be addressed in this thesis. This thesis’s overall objective is to 

investigate the vibration properties of a planetary gearbox through the dynamics based 

vibration signal modeling and then develop an effective method to detect gear tooth fault. 

This objective is divided into these four research topics: 

(1) An analytical method is developed to evaluate the time-varying mesh stiffness of a 

planetary gear set. Equations of the mesh stiffness of a fixed-shaft external gear pair 

are derived with the fillet curve area considered in the gear tooth model. Equations 

of a fixed-shaft internal gear pair are derived. These equations are expressed as a 
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function of the rotation angle of a gear, which is convenient to use. Then, by 

incorporating the effect of transmission path, the mesh stiffness of a planetary gear 

set is evaluated. Examples are illustrated for three structures of a planetary gear set: 

carrier fixed, sun gear fixed and ring gear fixed. 

(2) A tooth crack model is proposed and the tooth crack effect on the time-varying 

mesh stiffness is evaluated. An external gear tooth crack model is proposed for the 

purpose of gear mesh stiffness evaluation. Equations of the mesh stiffness of a 

fixed-shaft external gear pair with tooth crack are derived. Then, the mesh stiffness 

of a planetary gear set is evaluated by considering the mesh phasing relationships 

and compared in three situations: tooth crack in the sun gear, tooth crack in a planet 

gear (sun gear side) and tooth crack in a planet gear (ring gear side). 

(3) A two-dimensional lumped mass model is proposed to simulate the vibration signals 

generated by each gear. Incorporating multiple vibration sources and the effect of 

transmission path, the vibration signals of the whole planetary gearbox in healthy 

and sun gear cracked tooth conditions are simulated and investigated. Certain 

vibration properties present in the simulated signals are confirmed by those in the 

experimental signals. 

(4) A signal decomposition method is proposed to decompose the vibration signals of a 

planetary gearbox into gear tooth level of a planet gear. This method is tested on 

both simulated and experimental vibration signals, and is demonstrated to be able to 

detect a single tooth fault in a planet gear. 

This thesis follows the paper format except for Chapter 1. Chapters 2-5 are 

written in the form of a paper including introduction, literature review, problem definition, 
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methodology, and research contributions. To be specific, here is a description of each 

chapter: 

In Chapter 1, background of this research topic is described followed by a 

literature review. The objective and the outline of this thesis are defined.  

In Chapter 2, potential energy method is applied to evaluate the time-varying 

mesh stiffness of a planetary gear set. Equations of the time-varying mesh stiffness are 

derived. The developed equations are applicable to any transmission structure of a 

planetary gear set. Detailed discussions are given to three widely used transmission 

structures: fixed carrier, fixed ring gear and fixed sun gear. This chapter is based on a 

journal paper [1.61] and a refereed conference paper [1.62]. 

In Chapter 3, a modified cantilever beam model is proposed to represent the 

external gear tooth and for the time-varying mesh stiffness evaluation. Equations of 

bending stiffness, shear stiffness and axial compressive stiffness are derived for an 

external gear pair. A crack propagation model is developed and the mesh stiffness 

reduction is quantified when a tooth crack occurs in the sun gear or the planet gear. This 

chapter is based on a journal paper [1.63] and a refereed conference paper [1.64]. 

In Chapter 4, vibration signals of a planetary gearbox are simulated and 

investigated. A dynamic model is developed to simulate the vibration source signals. A 

modified Hamming function is proposed to represent the effect of the transmission path. 

By incorporating multiple vibration sources and the effect of transmission path, the 

vibration signals of a whole planetary gearbox at the sensor location are generated. 

Through analyzing the vibration signals, certain vibration properties of a planetary 

gearbox are recognized and the fault symptoms of sun gear tooth crack are identified and 
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located. This chapter is based on a journal paper [1.65] and a refereed conference paper 

[1.66]. 

In Chapter 5, a windowing and mapping strategy is proposed to decompose the 

vibration signals of a planetary gearbox into the tooth level of a planet gear. The fault 

symptoms generated by a single cracked tooth of the planet gear of interest are 

emphasized. The health condition of the planet gear is assessed by comparing the 

differences among the signals of all teeth of the planet gear of interest. The proposed 

windowing and mapping strategy is tested on both simulated and experimental vibration 

signals. The vibration signals can be successfully decomposed and a single tooth crack on 

a planet gear can be effectively detected. This chapter is based on a journal paper [1.67] 

and a refereed conference paper [1.68]. 

In summary, this thesis provides a dynamics based method to simulate the 

vibration signals of a planetary gear set in the sensor location and then a fault detection 

technique is proposed to detect the tooth crack in a planet gear. The gear mesh stiffness 

evaluation method developed in Chapter 2 and Chapter 3 can effectively evaluate the 

time-varying mesh stiffness of a planetary gear set in healthy and cracked tooth 

conditions. Accurate gear mesh stiffness is indispensable in obtaining the correct 

dynamic response in the dynamic simulation. The dynamics based vibration signal 

modeling method proposed in Chapter 4 can simulate the vibration signals of a planetary 

gear set in the sensor location. Based on the understanding of the vibration properties of a 

planetary gear set, a signal decomposition method is proposed in Chapter 5. This signal 

decomposition method can effectively detect a single tooth crack when it appears in a 

single planet gear. The techniques developed in this thesis help us better understand the 
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vibration characteristics of a planetary gear set and give insights into developing new 

signal processing methods for gear tooth fault detection.  
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Chapter 2: Evaluating Time-Varying Mesh Stiffness of a 

Planetary Gear Set Using Potential Energy Method 

 

Time-varying mesh stiffness is one of the main excitations of vibration of a gear 

transmission system. An efficient and effective way to evaluate it is essential to 

comprehensive understanding of the dynamic properties of a planetary gear set. This 

chapter is devoted to evaluating the time-varying mesh stiffness of a healthy planetary 

gear set using the potential energy method. The method developed in this chapter will be 

extended in Chapter 3 to evaluate the crack effect on the time-varying mesh stiffness of a 

planetary gear. The obtained time-varying mesh stiffness will also be used in Chapter 4 to 

generate the vibration signals of a planetary gear set using dynamic simulation. This 

chapter is organized as follows. In Section 2.1, background of this research topic is 

described and a literature review is given on time-varying gear mesh stiffness evaluation 

of gears. In Section 2.2, equations are derived for the mesh stiffness evaluation of an 

internal gear pair. In Section 2.3, the procedures of obtaining the time-varying mesh 

stiffness of a planetary gear set are described; the gear mesh stiffness evaluation of three 

transmission structures (fixed carrier, fixed ring gear and fixed sun gear) are discussed. A 

summary is provided in Section 2.4. This chapter is based on a journal paper [2.1] and a 

refereed conference paper [2.2].  
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2.1 Introduction 

Planetary gears are common in aeronautic and industrial applications due to their 

compactness and high torque-to-weight ratios [2.3]. According to Lin and Parker [2.4], 

mesh stiffness variation is one of the major sources of gear vibration. Finite element 

method (FEM) and analytical method (AM) have been used by many researchers to 

evaluate the mesh stiffness of gears. Wang and Howard [2.5] evaluated the torsional 

stiffness of a pair of involute spur gears using FEM. FEM can also model complicated 

shaped gears, for example, the gears with non-standard tooth geometries [2.6]. FEM can 

also model the faulty gears and evaluate the influence of gear faults on the mesh stiffness. 

Jia et al. [2.7] evaluated the mesh stiffness of an external spur gear pair when tooth 

spalling and crack are present using a 3-D finite element model. Pandya and Parey [2.8] 

used a 2-D finite element model to evaluate the crack effect on the mesh stiffness of an 

external gear pair. Song et al. developed a finite element model for a pair of marine 

crossed beveloid gears and found gear misalignment had a slight effect on the mesh 

stiffness [2.9]. However, FEM is sensitive to tolerances, mesh density and mesh element. 

And, it is more time-consuming in computation than AM [2.6].  

AM is simple and also effective in evaluating gear mesh stiffness. It can 

separately analyze relative contribution of individual component, like bending stiffness, 

shear stiffness, and Hertzian contact stiffness [2.6]. Chaari et al. [2.10] and Zhou et al. 

[2.11] both used it to evaluate the mesh stiffness of an external gear pair and their results 

matched FEM results well. AM can also evaluate the mesh stiffness of gears with faults, 

like crack [2.8, 2.10], spalling, and broken teeth [2.12]. Most researchers who used AM 

treated the gear tooth as a nonlinear cantilever beam and used the beam theory to evaluate 
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gear mesh stiffness. However, some component deformation and faults like gear 

distributed pitting and gear misalignment defy easy application of AM.  

Many researchers have analytically evaluated the mesh stiffness of an external 

gear pair. Kasuba and Evans [2.13] introduced an iterative procedure of digitizing the 

tooth profile into a large scale of discrete points. They expressed the mesh stiffness as a 

function of transmitted load, gear profile errors, gear tooth deflections, gear hub 

deformations, position of tooth contact and the number of tooth pairs in contact. Pintz et 

al. [2.14] used the similar technique as Ref. [2.13] to evaluate the mesh stiffness of an 

internal gear pair. The method used in Refs. [2.13, 2.14] can investigate the mesh 

stiffness variation when gear profile errors are present. Yang and Sun [2.15] analytically 

derived the Hertzian contact stiffness of an external gear pair and considered the Hertzian 

contact stiffness as the gear mesh stiffness. Chaari et al. [2.10] considered the bending 

deflection, fillet-foundation deflection and contact deflection in the evaluation of the 

mesh stiffness of an external gear pair. Yang and Lin [2.16] proposed the potential energy 

method to evaluate the mesh stiffness of an external spur gear pair. They considered 

Hertzian energy, bending energy, and axial compressive energy corresponding to 

Hertzian contact stiffness, bending stiffness, and axial compressive stiffness. They gave 

the mesh stiffness equations for a single gear tooth. As shown in Fig. 2.1, if force F is 

acting at the point p, the stiffness value at the point p in the direction of force F can be 

analytically evaluated using the equations in [2.16]. However, when a pair of gears is in 

meshing, the contact position changes with the rotation of the gears. There is also the 

phenomenon of the alternation from one pair to two pairs of teeth in contact. As shown in 

Fig. 2.2, there are two pairs of teeth in meshing simultaneously. The four points (A and C 
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on one gear, and B and D on the other gear) also change with the rotations of the two 

gears. If we know point A is in meshing, how can we know the position of points B, C, 

and D? This knowledge is not provided in Ref. [2.16] but it is needed in the mesh 

stiffness evaluation. Later, Tian et al. [2.17] added another energy component called the 

shear energy corresponding to the shear stiffness. In addition, they added the 

relationships between the four points (A, B, C and D as shown in Fig. 2.2) in the mesh 

stiffness equations. Finally, they expressed the mesh stiffness of an external gear pair as a 

function of gear rotation angle (given gear geometry and material information). Users can 

use these equations directly to evaluate gear mesh stiffness even though they are not 

familiar with beam and/or gear meshing theories. Recently, Zhou et al. [2.11] and Chen et 

al. [2.18] added the deformation of the gear body to Tian’s model [2.17]. All of the above 

references focused on the mesh stiffness evaluation of an external gear pair. The research 

on the mesh stiffness evaluation of an internal gear pair is very limited. Only a method 

reported in [2.14] evaluated the mesh stiffness of an internal gear pair. But only the 

equations for a single gear tooth are given and the relationships between the four points 

(A, B, C and D) are not incorporated in their model. Users would still need to calculate 

these relationships by themselves. In this chapter, I will solve this problem. The potential 

energy method reported in Ref. [2.16, 2.17] will be extended to evaluate the mesh 

stiffness of an internal gear pair. Meanwhile, I will derive the relationships between the 

four points (A, B, C and D as shown in Fig. 2.2) for an internal gear pair and incorporate 

the relationships in the derivation of mesh stiffness equations. Finally, I will get the mesh 

stiffness of an internal gear pair as a function of gear rotation angle. Users will be able to 
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use these equations directly to evaluate gear mesh stiffness of an internal gear pair even 

though they are not familiar with beam and/or gear meshing theories. 

 

                             

Fig. 2.1: Tooth modeled as a cantilever beam 

 

 

Fig. 2.2: Double tooth pairs in meshing 

 

A planetary gear set has the sun-planet gear meshing (external gear pairs) and the 

ring-planet gear meshing (internal gear pairs) simultaneously. Due to the lack of an 

effective way to evaluate the time-varying mesh stiffness of an internal gear pair, a 

square waveform was used by several researchers [2.19, 2.20] to approximate the time-

varying mesh stiffness of a planetary gear set. However, no specific guidelines were 

presented in [2.19, 2.20] on how to get the magnitudes of the time-varying stiffness. The 

magnitudes were assumed without confirmation of the physical situation. Furthermore, 

the square waveform ignored the variation of mesh stiffness caused by the change of the 
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tooth contact point. The flatness of the stiffness curve will generate unwanted frequency 

components. The approach to be used in this study aims to overcome these shortcomings.  

Overall, this chapter derives equations of the time-varying mesh stiffness of a 

healthy planetary gear set. First, formulas are derived to evaluate the time-varying mesh 

stiffness of an internal gear pair using the potential energy method. The total potential 

energy of meshing gears is the summation of Hertzian energy, bending energy, shear 

energy, and axial compressive energy. Despite the complexity in gear geometry, mesh 

stiffness equations are derived for involute spur gears. The obtained time-varying mesh 

stiffness reflects the stiffness variation caused not only by the change of the number of 

contact tooth pairs but also the change of the contact positions of the gear teeth. Later, by 

incorporating the mesh stiffness equations reported in [2.17] for an external gear pair and 

the mesh phasing relationships reported in [2.21], the mesh stiffness of a planetary gear 

set is evaluated. Case studies are given for three structures of a planetary gear set: carrier 

fixed, sun gear fixed and ring gear fixed. 

 

2.2 Mesh stiffness of a fixed-shaft internal gear pair 

In this section, the mesh stiffness equations for a fixed-shaft internal gear pair will be 

derived analytically. These equations will be used later in the mesh stiffness evaluation of 

ring-planet gears of a planetary gear set. In [2.17], the mesh stiffness of a fixed-shaft 

external gear pair is evaluated. In their research, all the gears are assumed to be involute 

spur gears and the deflection of the gear body is ignored. More details of this work can be 

found in [2.22]. The same assumptions will be applied in this study. Hertzian stiffness, 

bending stiffness, axial compressive stiffness and shear stiffness will be considered. 



38 
 

2.2.1 Hertzian stiffness 

According to the Hertzian law, the elastic compression of two isotropic elastic bodies can 

be approximated by two paraboloidal bodies in the vicinity of the contact point [2.15]. 

For the planet-ring contact, I approximate the planet gear as a cylinder with radius 1r , and 

the ring gear as a circular groove with radius 2r , as shown in Fig. 2.3. 

 

 

Fig. 2.3: Approximation of the ring-planet contact 

 

The half width of the contact region can be expressed as [2.23]:  

2
1 2

2 1

8(1 )
 =

r rF
b

EL r r








,        (2.2.1) 

where E , L,  represent Yong’s modulus, tooth width and Poisson’s ratio, respectively, 

and F is the acting force. 

The deformation of the contact teeth due to the force F  can be calculated as: 


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2 2

1 2 1 2 1 2 2 1
2 1

1 1
b b

r r O O r r r r
r r


   

           
   

.      (2.2.2) 

The square-root terms in Eq. (2.2.2) can be approximated by the first two terms of 

the binomial expansion (See Eq. (2.2.3)). The error of this approximation is on the order 

of 4( / )b r , and will be less than 0.5 percent for steel gears [2.15]. 

2 2

2
1 1

2

b b

r r
    
 

.         (2.2.3) 

Substituting Eq. (2.2.3) into Eq. (2.2.2) gives: 

2 2
2

1 2 2 12 2
2 1 1 2

1 1 1
1 1 =

2 2 2

b b
r r r r b

r r r r


     
           

     
.    (2.2.4) 

Combining Eq. (2.2.1) and Eq. (2.2.4), the Hertzian stiffness hk  is expressed as: 

24(1 )h

F EL
k


 

 


,         (2.2.5) 

where hk  is a constant for an internal gear pair. This expression of the Hertzian stiffness 

for an internal gear pair is the same as that for an external gear pair which was derived in 

[2.15]. 

2.2.2 Bending, shear and axial compressive stiffness 

In this section, the potential energy method is used to evaluate the bending, shear and 

axial compressive stiffness for an external gear and an internal gear, respectively. The 

gear tooth is treated as a non-uniform cantilever beam. 
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2.2.2.1 External gear 

 For the external gear, the expressions of the bending stiffness bk , shear stiffness sk  and 

axial compressive stiffness ak  are derived in [2.17] as follows: 

  2

1

2

1 2 2

3
2

3 1 cos ( )sin cos ( ) cos1

2 [sin ( ) cos ]b

d
k EL





       


   

   


  ,   (2.2.6) 

2

1

2
2 1

2

1.2(1 )( )cos cos1

[sin ( )cos ]s

d
k EL





     
   

 


  ,                                      (2.2.7) 

2

1

2
2 1

2

( )cos sin1

2 [sin ( )cos ]a

d
k EL





    
   




  ,                (2.2.8) 

where 2  is the half tooth angle on the base circle of the external gear, 1  is the angle 

between the force component bF  and the acting force F  which can be decomposed into 

two orthogonal component forces: aF  and bF  (see Fig. 2.4). 

 

 

Fig. 2.4: Elastic force on the external gear tooth [2.17] 
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displacement of the external gear ( 1 ) and the internal gear ( 2 ), are assumed to be zero. 

The corresponding angle 0
1  can be expressed as (see Fig. 2.5): 

0
1 1 1 1 =  =   AO D AO B BO D     .       (2.2.9) 

From the properties of the involute curve, the gear meshing action line BC  is 

tangent to the base circles. Therefore, the line 1AO  is perpendicular to the line AC . The 

angle 1AO B can be expressed as: 

b1
1

1

  arccos
R

AO B
O B

  .        (2.2.10) 

The line segment 1O B  can be obtained in the triangle 1 2BO O  as: 

2
1 2 1 2 2 1 2 1 2 = 2 cosO OO B R O O R O O O O B   ,     (2.2.11) 

where b1R  is the base circle radius of the external gear, 2OR  is the inner radius of the 

internal gear and 1 2O O is the center distance of the two gears.  

We can express 1BO D  as: 

1 1 1 = BO D DO E BO E     2  1BO E ,     (2.2.12) 

where 2 0 0
1

tan
2N

     , 1BO E  = 1 1tan AO B AO B   [2.22].  

Substituting Eqs. (2.2.10) - (2.2.12) into Eq. (2.2.9), the angle 0
1  can be 

expressed finally as: 

0
1 2 1 0 0

1

 = tan tan
2

AO B
N

                (2.2.13) 
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1 0

2 2 2 0
2 2 1 2 2 1 0

2

cos
tan arccos

cos
( 2) ( ) 2( 2)( ) cos( arccos )

2

N

N
N N N N N N

N






 
 
 
 
         

,  

where 1N  and 2N represent the number of teeth of the external gear and the internal gear, 

respectively, and 0  is the pressure angle. 

Eq. (2.2.13) gives the formula of the angle 1  when the angular displacement of 

the external gear is zero. When the angular displacement of the external gear is  , the 

angle 1  will be: 

0
1 1 0 0

1

 = + tan
2N

                (2.2.14) 

1 0

2 2 2 0
2 2 1 2 2 1 0

2

cos
tan arccos

cos
( 2) ( ) 2( 2)( ) cos( arccos )

2

N

N
N N N N N N

N






 
 
 
 
         

. 

2.2.2.2 Internal gear 

According to the properties of the involute curve, the acting force is always along the 

action line which is normal to the tooth profile and tangent to the gear base circle. The 

acting force F  can be divided into two orthogonal forces aF  and bF  as shown in Fig. 2.6. 
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Fig. 2.6: Elastic force on an internal gear tooth 

 

1sinaF F  .          (2.2.15) 

1cosbF F  .          (2.2.16) 

Based on the beam theory, the bending, shear and axial compressive energies 

stored in a tooth can be calculated as follows [2.16, 2.17]: 

2

0

[ ( ) ]

2 2

d
b a

b
b x

F d x F hF
U dx

k EI

 
   ,       (2.2.17) 

2 2

0

1.2

2 2

d
b

s
s x

F F
U dx

k GA
   ,        (2.2.18) 

2 2

02 2

d
a

a
a x

F F
U dx

k EA
   ,        (2.2.19) 

where bk , sk and ak  represent the bending, the shear and the axial compressive stiffness, 

respectively, E  and G  denote Young’s modulus and shear modulus, respectively, h  is 

Action line

β1 β

β2
x

d

Rrp

Rrr

Rrb

F

Fa Fbβ1 β

h hx

O

Root circleBase circle Pitch circle
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the distance between the gear contact point and the central line, d  is the distance from the 

contact point to the gear root, and xA  and xI  indicate the area and the area moment of 

inertia of the tooth section where the distance to the tooth root is x  (see Fig. 2.6). 

According to the properties of involute curve, h , xh , d , xI and xA  can be 

expressed as follows: 

1 1 2 1(sin ( )cos )rbh R       ,       (2.2.20) 

2(sin ( )cos )x rbh R       ,       (2.2.21) 

1
1

= cos tan
cos

rb
rr

R
d R h 


  ,       (2.2.22) 

3 31 2
(2 )

12 3x x xI h L h L  ,        (2.2.23) 

2x xA h L ,                                        (2.2.24) 

where rbR , rrR and L represent the base circle radius, the root circle radius and the width 

of the tooth of the internal gear, respectively, 2  and   denote the half tooth angle on the 

base circle and the root circle, respectively, and xh  is the height of the section where the 

distance to the tooth root is x ( see Fig. 2.6). 

Substituting Eqs. (2.2.15), (2.2.16) and (2.2.20) - (2.2.23) into Eq. (2.2.17), the 

bending stiffness of the internal gear is obtained as: 

  1

2

1 2 2

3
2

3 1 cos ( )sin cos ( ) cos1

2 [sin ( )cos ]b

d
k EL





       


   
   


  ,   (2.2.25) 

where 2 0 0
2

tan
2N

      and 2 tan(arccos )rb

rr

R

R
    (see Fig. 2.6). 
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Substituting Eq. (2.2.16) and Eq. (2.2.24) into Eq. (2.2.18), the shear stiffness can 

be expressed as: 

1
2

2 1

2

1.2(1 )( ) cos cos1

[sin ( )cos ]s

d
k EL





     
   

 


  .      (2.2.26) 

Substituting Eq. (2.2.15) and Eq. (2.2.24) into Eq. (2.2.19), the axial compressive 

stiffness is obtained as: 

1
2

2 1

2

( )cos sin1

2 [sin ( )cos ]a

d
k EL





    
   




  .      (2.2.27) 

Similar to the external gear, it is significant to derive the expression of the angle 

1  for the internal gear. Firstly, I derive the expression of angle 0
1  which is the angle of 

1  when the gears mesh at the reference point (point B  at Fig. 2.7). 

0
1 2 2 2FO G FO B BO G       

2 2 2 2 2 2FO B BO K KO G FO B BO K         ,    (2.2.28) 

where the point K  is the intersection of the internal gear base circle and the extension of 

the involute curve. 
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Fig. 2.7: Meshing of an internal gear pair 

 

Using the properties of the involute curve, the angle 2BO K  can be expressed as 

[2.22]: 

2 2 2 2 2tanBO K FO K FO B FO B FO B       .    (2.2.29) 

Substituting Eq. (2.2.29) into Eq. (2.2.28), the expression of 0
1  can be rewritten 

as: 

0 2
1 2 2 0 0

2 2

tan tan(arccos ) tan
2

b

O

R
FO B

R N

           

= 2 0
0 0

2 2

cos
tan(arccos ) tan

2 2

N

N N

     


.      (2.2.30) 

When the angular displacement of the internal gear is  , the angle 1  will be: 
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0 2 01
1 1 0 0

2 2 2

cos
 = + tan(arccos ) tan

2 2

NN

N N N

          


,   (2.2.31) 

where   is the angular displacement of the external gear with respect to the reference 

point B . 

In this section, the bending stiffness, the shear stiffness and the axial compressive 

stiffness of an internal gear are derived first time in the literature. These equations are 

convenient to use. Given geometry and material parameters of an internal gear, the 

bending stiffness, the shear stiffness and the axial compressive stiffness are expressed as 

a function of the rotation angle of the gear. 

2.2.3 Overall mesh stiffness of an internal gear pair 

For a pair of standard spur gears whose contact ratio is always between 1 and 2, the 

alternation of one pair and two pairs of teeth in contact is observed. The single-tooth-pair 

duration and the double-tooth-pair duration of an internal gear pair are derived as the 

rotation angular displacement of the external gear as follows [2.17]: 

Single-tooth-pair duration: 
1 1

2 2
( 1) ,     (  = 1,2,  )dn n n

N N

  
 

   
 

 , 

Double-tooth-pair duration: 
1 1

2 2
( 1) ,  ( 1)    (  = 1,2,  )dn n n

N N

  
 

    
 

 , 

where   and 1N  denote the angular displacement and the number of teeth of the external 

gear, respectively, 
1

2
( 1)d c

N

   , and c  is the contact ratio. 

For the single-tooth-pair meshing duration, the total effective mesh stiffness can 

be calculated as [2.17]:  
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1 1 1 2 2 2

1
( )

1 1 1 1 1 1 1r

h b s a b s a

k

k k k k k k k

 
     

,     (2.2.32) 

where rk  is the total effective mesh stiffness which is expressed as a function of the 

angular displacement of the external gear. Subscripts 1 and 2 represent the external gear 

and the internal gear, respectively. 

For the double-tooth-pair meshing duration, there are two pairs of gears meshing 

at the same time. The total effective mesh stiffness can be obtained as [2.17]: 

2

1 2
1

, 1, 1, 1, 2. 2, 2,

1
( ) ( ) ( )

1 1 1 1 1 1 1r r r
i

h i b i s i a i b i s i a i

k k k

k k k k k k k

  


  
     

 ,     (2.2.33) 

where 1i   for the first pair of meshing teeth and 2i   for the second pair. 

The equations to evaluate the mesh stiffness of an internal gear pair will be used 

later to evaluate the mesh stiffness of a ring-planet gear pair since it is an internal gear 

pair. 

 

2.3 Mesh stiffness of a planetary gear set 

A planetary gear set consists of a centrally pivoted sun gear, a ring gear and several 

planet gears which rotate between the sun gear and ring gear. The mesh stiffness 

evaluation of a planetary gear set (one sun gear, one ring gear and four equally spaced 

planet gears) will be illustrated in this section. The number of teeth for the sun gear, the 

planet gear and the ring gear are 19, 31, and 81, respectively. The other properties of this 

planetary gear set are the same for the sun gear, planet gear and the ring gear as shown in 

Table 2.1.  
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Table 2.1: Physical parameters of the gears 

Module Pressure angle Face width Young’s modulus Poisson’s ratio 

3.2 mm ο20  0.0381 m 2.068×1011 Pa 0.3 

2.3.1 Mesh stiffness when the carrier is fixed 

For a planetary gear set, if the carrier is fixed, each planet gear will rotate only around its 

own fixed-shaft center; the sun gear and the ring gear will both rotate around the sun gear 

shaft center. The sun-planet gear pair is equivalent to a fixed-shaft external gear pair 

while the ring-planet gear pair is equivalent to a fixed-shaft internal gear pair. No matter 

a sun-planer gear pair or a ring-planet gear pair, the overall mesh stiffness can be 

expressed as a function of the rotation angular displacement of the planet gear p :  

1 ( )sp s pk k  ,          (2.3.1) 

1 ( )rp r pk k  ,          (2.3.2) 

where 1spk  and 1rpk  represent the mesh stiffness of the first pair of sun-planet gears and 

the first pair of the ring-planet gears, respectively, sk  and rk  denote the mesh stiffness 

formulas for a fixed-shaft external gear pair (derived in [2.17]) and a fixed-shaft internal 

gear pair (derived in Section 2.2 of this chapter), respectively. 

Using Eq. (2.3.1) and Eq. (2.3.2), the mesh stiffness of the first pair of sun-planet 

gears and the first pair of ring-planet gears are plotted in Fig. 2.8 and Fig. 2.9, 

respectively. Because the planet gear has 31 teeth, the sun-planet pair and the ring-planet 

pair will experience tooth meshing 15.5 times in half revolution of the planet gear. The 

point 'B  showed in Fig. 2.8 is the reference point, which corresponds to the initial 
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meshing point of a pair of sun-planet teeth. Point 'P  is the pitch point where two teeth 

mesh at the pitch circle. Similarly, point B  and point P  are the reference point and the 

pitch point of a pair of ring-planet teeth, respectively. The angle sp  indicates the rotation 

angular displacement of the planet gear meshing with the sun gear rotation from point 'B  

to point 'P . The angle rp  represents the rotation angular displacement of the planet gear 

meshing with the ring gear rotation from point B  to point P . The expressions for sp  

and rp  will be described later. 

 

sp

'B

'P

 

Fig. 2.8: Mesh stiffness of the first pair of sun-planet gears when the carrier is fixed 
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Fig. 2.9: Mesh stiffness of the first pair of ring-planet gears when the carrier is fixed 
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In a planetary gear set, there are several pairs of sun-planet gears and several pairs 

of ring-planet gears meshing simultaneously. While each of the sun-planet meshes has 

the same shape of mesh stiffness variation, they are not necessarily in phase with each 

other [2.21]. Similar comments apply to the ring-planet meshes. The mesh phasing 

relationships given in [2.21] will be applied in this study to get the mesh stiffness of the 

nth sun-planet pair ( spnk ) and the nth ring-planet pair ( rpnk ), where n  may go up to the 

total number of planet gears which are equally spaced. 

The stiffness of the nth sun-planet pair ( spnk ) with respect to the 1st sun-planet pair 

( 1spk ) and the stiffness of the nth ring-planet pair ( rpnk ) with respect to the 1st ring-planet 

pair ( 1rpk ) are given as follows [2.21]: 

1( )spn sp sn mk k t T  ,                                                                  (2.3.3) 

1( )rpn rp rn m rs mk t T T     ,        (2.3.4) 

where sn  is the relative phase between the nth sun-planet pair with respect to the 1st sun-

planet pair, rn  is the relative phase between the nth ring-planet pair with respect to the 1st 

ring-planet pair, rs  is the relative phase between the nth ring-planet mesh with respect to 

the nth sun-planet mesh, 1rp  is the time-varying mesh stiffness of the 1st ring-planet pair 

with t  = 0 meshing at the pitch point, and mT  is the mesh period which is the same for 

both the sun-planet meshing and the ring-planet meshing. Without loss of generality, the 

1st
 sun-planet pair is assumed to mesh at the pitch point at t  = 0.  

Ref. [2.21] provided an analytical way to calculate the relative phase between the 

nth sun-planet pitch point meshing and the nth ring-planet pitch point meshing. However, 

Ref. [2.21] did not mention how to obtain the position of the pitch point meshing in one 
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mesh period of two gears. In this chapter, the position of the pitch point is defined as the 

angular difference between the pitch point meshing and the reference point meshing. The 

angle sp (see Fig. 2.8) and rp (see Fig. 2.9) define the pitch point meshing position in 

one mesh period for a fixed-shaft external gear pair and a fixed-shaft internal gear pair, 

respectively. A derivation is given below to get the value of angle rp  and sp .  

Using the properties of the involute curve, the angle rp  can be expressed as (see 

Fig. 2.5): 

0
1 1

tanrp
b b

BP AP AB

R R
 

              (2.3.5)   

1 0

2 2 2 0
2 2 1 2 2 1 0

2

cos
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( 2) ( ) 2( 2)( ) cos( arccos )
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N N N N N N

N






 
 
 
 
         

. 

Similarly, the angle sp  can be calculated by: 

'
0tansp              (2.3.6)  

' '
1 0

' '
' 2 ' ' 2 ' ' ' '2 0
2 1 2 2 1 2 0'

2

cos
tan arccos

cos
( 2) ( ) 2( 2)( ) cos(arccos )

2

N

N
N N N N N N

N






 
 
 
 
 
       
  

, 

where '
1N  and '

2N are the number of teeth of a fixed-shaft external gear pair, '
0  is the 

pressure angle. 

Applying the methods proposed in [2.21] and the parameters listed in Table 2.1, 

the relative phases of this planetary gear set are shown in Table 2.2. The zero value of rs  
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means the sun-planet gear pair and the ring-planet gear pair mesh at the pitch point 

simultaneously.  

 

Table 2.2: Relative phases of the planetary gear set 

1s  
2s  3s  4s  1r  2r  3r  4r  rs  

0 0.75 0.5 0.25 0 -0.25 -0.5 -0.75 0 

 

When the carrier is fixed, the time-varying mesh stiffness of this planetary gear 

set is shown in Fig. 2.10. The curves 1spk , 2spk , 3spk and 4spk  represent the 1st, the 2nd, the 

3rd and the 4th pairs of the sun-planet mesh stiffness, respectively. Similarly, the curves 

1rpk  2rpk , 3rpk and 4rpk  denote the 1st, the 2nd, the 3rd and the 4th pairs of the ring-planet 

mesh stiffness, respectively. The mesh stiffness is expressed as a function of rotation 

angular displacement of the planet gear. If the phase difference of the sun-planet gear 

pairs is sn mT  in time, the corresponding phase difference in terms of the rotation angle of 

the planet gear is sn sn m p sn mT      . The symbol p  represents the angular rotation 

speed of the planet gear and the symbol m  is the rotation angular displacement of the 

planet gear in one mesh period, 
2

m
pZ

  . Similarly, the phase difference of the ring-

planet gear pairs can be expressed as rn rn m p rn mT      . The point 'p and p show 

that both the sun-planet gear pair and the ring-planet gear pair mesh at the pitch point at t  

= 0. 
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Fig. 2.10: Time-varying mesh stiffness of a planetary gear set when the carrier is fixed 

 

2r ms 

3r ms 

4r ms 

2r mr 

3r mr 

4r mr 
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2.3.2 Mesh stiffness when the carrier is rotating 

When the carrier is rotating, each planet gear not only revolves on its own axis but also 

revolves around the sun gear shaft axis. In this situation, the sun gear or the ring gear can 

be fixed, but not both, since the gearbox will not work if both the sun gear and the ring 

gear are fixed. In the structure of differential planet gears, all the gears are rotating 

including the carrier. 

Whether the carrier is fixed or rotating, the meshing areas of the two gears are 

always the same, which means the mesh stiffness shapes of the two cases are the same. 

The only difference is the mesh period. If the gear mesh frequency ratio between the 

cases of rotating carrier and fixed carrier is  , the mesh stiffness of the rotating case can 

be obtained through an expansion of the mesh stiffness shape of the fixed case by 1 /   

times. Based on Eq. (2.3.1) and Eq. (2.3.2), when the carrier is not fixed, the formulas for 

the first pair of sun-planet gears and the first pair of the ring-planet gears can be 

expressed respectively as: 

1 ( )sp s pk k  ,         (2.3.7) 

1 ( )rp r pk k  ,         (2.3.8) 

where the symbol   is the mesh frequency ratio between the rotating case and the fixed 

case. 

In the followings, the mesh stiffness evaluation of two other commonly used 

planetary gear transmission structures will be described, namely fixed sun gear structure 

and fixed ring gear structure. If the ring gear is fixed, the planetary gear set can earn the 

maximum transmission ratio. On the other hand, if the sun gear is fixed, the planetary 

gear set will attain the minimum transmission ratio.  
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2.3.2.1 The ring gear is fixed 

According to Kahraman [2.24], the gear mesh frequency m  is determined from 

kinematic relationships as a function of the rotational speeds of the sun ( s ) and the ring 

gears ( r ): 

/ ( ),       fixed ring gear

/ ( ),       fixed sun gear

(or ),             fixed carrier

s r s s r

m s r r s r

s s r r

Z Z Z Z

Z Z Z Z

Z Z


 

  
  

     (2.3.9) 

where sZ  and rZ are the numbers of teeth of the sun gear and the ring gear, respectively. 

The gear mesh frequency m  when the ring gear is fixed is smaller than the 

situation when the carrier is fixed. This is because in the first case the planet gear is 

revolving around the sun gear in addition to meshing with the sun gear. The mesh 

frequency ratio between the ring gear fixed case and the carrier fixed case can be 

calculated from Eq. (2.3.9) as:            

/ ( )s r s s r r
r

s s s r

Z Z Z Z Z

Z Z Z


 
 

 
.       (2.3.10) 

Therefore, the mesh stiffness when the ring gear is fixed can be obtained through 

an expansion of the shape of the mesh stiffness when the carrier is fixed by 1/ r  times as 

shown in Fig. 2.11. In half a revolution of the planet gear, 12.56 times ( / 2r pZ ) of gear 

meshing are experienced. 
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Fig. 2.11: Time-varying mesh stiffness of a planetary gear set when ring gear is fixed 

 

2s mr 

3s mr 

4s mr 

2r mr 

3r mr 
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2.3.2.2 The sun gear is fixed 

In this case, the mesh frequency ratio between the sun gear fixed case and the carrier 

fixed case can be obtained based on Eq. (2.3.9) as:            

/ ( )s r r s r s
s

r r s r

Z Z Z Z Z

Z Z Z


 
 

 
.       (2.3.11) 

Then, the mesh stiffness when the sun gear is fixed can be obtained through an 

expansion of the shape of the mesh stiffness when the carrier is fixed by 1/ s  times. The 

number of gear meshing in half a revolution of the planet gear is / 2s pZ . 

We now provide a summary of the gear mesh stiffness equations either reported 

in the literature or derived in the earlier sections of this chapter. For the external gear, the 

equations of bending stiffness, shear stiffness and axial compressive stiffness were 

derived in [2.17] and are listed in Eq. (2.2.6) - Eq. (2.2.8) of this thesis. For the internal 

gear, the equations of bending stiffness, shear stiffness and axial compressive stiffness 

are derived in this research and are presented in Eq. (2.2.25) - Eq. (2.2.27). The bending, 

shear and axial compressive stiffness equations of the external gear and the internal gear 

have the same integrand because the tooth profile of both external gear teeth and internal 

gear teeth is the involute curve. However, the limits of the integral reflect the differences 

between the external gear tooth and the internal gear tooth. The expression of the 

Hertzian contact stiffness derived in Section 2.2.1 of this chapter for an internal gear pair 

(shown in Eq. (2.2.5)) is the same as that for an external gear pair reported in Ref. [2.15]. 

A summary of these equations is given in Table 2.3. 
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Table 2.3: A summary of gear mesh stiffness equations 

 
Integrand Limits of integral 

External gear Internal gear 
External 

gear 
Internal 

gear 

Bending 
stiffness 

  2

1 2 2

3
2

3 1 cos ( ) sin cos ( ) cos

2 [sin ( ) cos ]

       
   

   

 EL
[- 1 , 2 ] 

[ , 1 ] 

Shear 
stiffness 

2
2 1

2

1.2(1 )( )cos cos

[sin ( )cos ]

    
   

 
 EL

 [- 1 , 2 ] 
[ , 1 ] 

Axial 
compressive 

stiffness 

2
2 1

2

( ) cos sin

2 [sin ( )cos ]

   
   


 EL
 [- 1 , 2 ] 

[ , 1 ] 

Hertzian 
stiffness 

Constant: 
24(1 )

EL


 

 

2.4 Conclusions	

The analytical method evaluates the time-varying mesh stiffness of a planetary gear set 

using the potential energy method. Mesh stiffness equations for a fixed-shaft internal 

gear pair are derived in this chapter. Hertzian stiffness, bending stiffness, shear stiffness 

and axial compressive stiffness are analytically derived for the internal involute gear 

tooth. Different transmission structures may exist for a planetary gear set. If the carrier is 

fixed, a sun-planet gear pair is regarded as a fixed-shaft external gear pair while a ring-

planet gear pair is regarded as a fixed-shaft internal gear pair. Combining the relative 

mesh phases of gear pairs, the mesh stiffness of a planetary gear set when the carrier is 

fixed is obtained. If the carrier is not fixed, the mesh stiffness is obtained through an 

expansion of the mesh stiffness shape when the carrier is fixed. The obtained mesh 

stiffness considers both the variation of the mesh position and the number of contact 

tooth pairs. The results reported in this chapter will be further extended in Chapter 3 of 
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this thesis for stiffness evaluation of a planetary gear set when gear tooth crack is present. 

The gear mesh stiffness equations derived in this chapter will be used in the dynamic 

model of a planetary gear set to be desribed in Chapter 4 of this thesis. 
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Chapter 3: Gear Tooth Crack Influence on the Mesh Stiffness 

of a Planetary Gear Set 

 

In Chapter 2, the time-varying mesh stiffness of a healthy planetary gear set is evaluated 

using the potential energy method. However, tooth faults like crack and pitting may occur 

on gears. The gear mesh stiffness shape will change if a tooth fault appears and 

consequently the vibration properties of the gear system will change. In this chapter, the 

potential energy method used in Chapter 2 is improved and extended to evaluate the gear 

tooth crack effect on the time-varying mesh stiffness of a planetary gear set. The obtained 

time-varying stiffness in this chapter will be used in Chapter 4 to simulate the vibration 

signals of a planetary gearbox in the faulty condition. The fault symptoms found in 

Chapter 4 will be further processed in Chapter 5 to develop a fault detection method. This 

chapter is organized as follows. In Section 3.1, background of this research topic is 

described and a literature review is given on gear mesh stiffness evaluation, gear tooth 

crack modeling, and gear tooth crack effect on the gear mesh stiffness. In Section 3.2, an 

improved cantilever beam model is proposed for an external gear tooth and equations are 

derived for the mesh stiffness evaluation of an external gear pair. In Section 3.3, 

procedures of obtaining the time-varying mesh stiffness of an internal gear pair are 

described. In Section 3.4, procedures of obtaining the time-varying mesh stiffness of a 

planetary gear set are described. In Section 3.5, a tooth crack model is proposed and 

equations are derived to evaluate the time-varying mesh stiffness of a planet gear set with 

a tooth crack. In Section 3.6, the crack effect on the time-varying mesh stiffness of a 

planetary gear set is analyzed; three fault conditions are considered: crack in the sun gear, 
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crack in a planet gear (sun gear side) and crack in a planet gear (ring gear side). In 

Section 3.7, conclusions are given. This chapter is based on a journal paper [3.1] and a 

refereed conference paper [3.2]. 

 

3.1 Introduction 

When a pair of spur gear meshes, the tooth contact number and the tooth mesh position 

change during meshing. This leads to a periodic variation in the gear mesh stiffness. The 

mesh stiffness variation is one of the main sources of vibration in a gear transmission 

system [3.3]. Cracks may occur in gears due to excessive service load, inappropriate 

operating conditions or simply fatigue [3.4]. When a crack occurs, the gear mesh stiffness 

will be reduced resulting in changed vibration characteristics of a gear system. If the 

stiffness reduction can be quantified for different crack levels, the corresponding 

vibration signal can be obtained through dynamic simulation. The vibration signal can be 

processed further for crack diagnostics and prognostics. Both the finite element method 

(FEM) and the analytical method (AM) have been used to evaluate the gear mesh 

stiffness [3.4-3.6]. But, FEM is complicated and time consuming. While AM can offer a 

simple and also effective way to evaluate the time-varying mesh stiffness.  

Many researchers have applied the analytical method to evaluate the mesh 

stiffness of a fixed-shaft external gear pair. Yang and Lin [3.7] proposed the potential 

energy method to evaluate the mesh stiffness of an external spur gear pair by considering 

Hertzian contact stiffness, bending stiffness and axial compressive stiffness. Later, Tian 

et al. [3.8] added another component called shear stiffness in the potential energy method. 

Recently, Zhou et al. [3.9] took the deformation of the gear body into consideration. The 
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gear tooth was modeled as a cantilever beam which started from the base circle [3.7-3.9]. 

Also, Tian et al.  [3.8], Zhou et al. [3.9], Pandya and Parey [3.10] and Wu et al. [3.11] 

considered that the gear crack follows a linear path starting from the point of intersection 

of the base circle and the involute curve as shown in  Fig. 3.1. Actually, the gear tooth 

starts from the root circle rather than the base circle as given in  Fig. 3.1. Thus, their 

models ignored the gear tooth part between the root circle and the base circle. The tooth 

profile of this part (tooth fillet area) is not an involute curve and it is basically determined 

by cutting tool tip trajectory. A different cutting tool tip trajectory will generate a 

different curve and there is not a uniform function to depict it [3.12]. However, the 

ignorance of this part will change the stiffness of the meshing gears, especially when the 

distance between the base circle and root circle is large. Chaari et al. [3.13] presented an 

analytical method to evaluate the mesh stiffness of an external gear pair and modeled the 

crack as a straight line starting from the root circle. They mentioned that the gear mesh 

stiffness can be evaluated by taking into account tooth thickness reduction. However, 

they did not provide the equations of the mesh stiffness for a crack gear. Chen and Shao 

[3.14] proposed an analytical mesh stiffness model with tooth root crack propagating 

along both the tooth width and the crack depth. Further, they [3.15] investigated the 

effect of tooth profile modification on the mesh stiffness. Their model is more realistic 

than other models.  

To sum up, Refs. [3.13, 3.14] modeled the gear tooth crack starting from the tooth 

root, but they only gave the equations of the mesh stiffness for a gear tooth. In other 

words, they did not incorporate the gear meshing theory in their model. Ref. [3.8-3.11] 

incorporated the gear meshing theory in their model, but they modeled the gear tooth 
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crack starting from the gear base circle. In this chapter, I will model the gear tooth crack 

starting from the tooth root and also incorporate the gear meshing theory in our equations. 

Finally, the mesh stiffness equations will be expressed as a function of gear rotation angle 

given gear geometry, material and tooth crack information (crack angle, crack length and 

crack position). Users can use these equations directly to evaluate gear mesh stiffness of 

gears with tooth crack even though they are not familiar with beam and gear meshing 

theories. 

 

 

Fig. 3.1: Crack modeling from Refs. [3.8-3.11] 

 

For a planetary gear set, there are pairs of sun-planet gears (external gear pairs) 

and pairs of ring-planet gears (internal gear pairs) meshing simultaneously. Chaari et al. 

[3.16] and Walha et al. [3.17] used a square waveform to approximate the time-varying 

mesh stiffness of a planetary gear set. In their method, the amplitudes of the sun-planet 

mesh stiffness and the ring-planet mesh stiffness were assumed without a specific 

qualification method. Besides, the square waveform reflects only the effect of the change 

in tooth contact number, but ignores the effect of the change in tooth contact position. 

Liang et al. [3.18] evaluated the mesh stiffness of a perfect planetary gear set using the 


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potential energy method. They also treated the sun gear and the planet gear as a cantilever 

beam starting from the base circle. It is mentioned in [3.16] that the amplitude 

modulation can be used to obtain the mesh stiffness of a planetary gear set with crack. 

Fig. 3.2  illustrated the amplitude loss of 50% due to a crack in the sun gear. But, they 

modeled the stiffness reduction only in the double tooth contact duration while ignored 

the stiffness decrease in the single tooth contact duration. Also, physical meaning of this 

loss was not described, like how much crack propagation will lead to the amplitude loss 

by 50%. In this study, I propose an approach to overcome these shortcomings. 

 

  

Fig. 3.2: Crack modeling in the sun gear [3.16] 

 

In this chapter, the potential energy method is used to evaluate the crack effect on 

the time-varying mesh stiffness of a planetary gear set. To model an external gear, i.e. the 

sun gear and the planet gear, a modified beam model is proposed by considering the gear 

tooth starting from the root circle. Further, a crack propagation model is developed and 

the mesh stiffness equations are derived when a crack takes place in the sun gear or a 
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planet gear. Examples are given to show the crack effect for three fault locations: crack in 

the sun gear, crack in a planet gear (sun side) and crack in a planet gear (ring side).  

 

3.2 Mesh stiffness of a fixed-shaft external gear pair 

In Chapter 2, I derived equations of the mesh stiffness of a perfect internal gear tooth. 

These equations are expressed as a function of gear angular displacement. For a perfect 

external gear tooth, I used the equations reported in [3.7-3.9] directly. In [3.7-3.9], they 

derived the equations of a perfect external gear tooth by considering the gear tooth 

starting from the base circle instead of the root circle.   

In this section, I will derive equations of a perfect external gear tooth by 

considering the gear tooth starting from the root circle using the potential energy method. 

These equations will be expressed as a function of gear angular displacement. These 

equations are the improved versions of those reported in [3.7-3.9] as crack usually starts 

from the root circle rather than the base circle [3.19]. The differences of these two 

modeling methods on the mesh stiffness will be illustrated.  

In the potential energy, Hertzian energy, bending energy, shear energy and axial 

compressive energy are considered. The new equations for the bending stiffness, shear 

stiffness and axial compressive stiffness will be derived. Hertzian stiffness equation 

remains the same. The overall mesh stiffness is represented as a function of the rotation 

angular displacement of the driven gear. In Refs. [3.9-3.11], the gear system is assumed 

to be perfect without friction and transmission error and the gear body is treated as solid. 

The same assumptions will be used in this chapter.  
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3.2.1 Bending, shear and axial compressive stiffness 

For an external gear, the gear root circle may be bigger or smaller than the base circle 

according to the geometry of gears. If a gear is a standard spur gear with the pressure 

angle of 20 degrees, the root circle is bigger if the tooth number is more than 41. It is 

smaller if the tooth number is less than 41. In the industrial applications, both types of 

gears are commonly used. In this chapter, these two cases will be discussed separately. 

Case 1: The gear root circle is smaller than the base circle 

If the root circle is smaller than the base circle, the beam model of the gear tooth is 

shown in Fig. 3.3. Gear tooth profile follows involute curve up to the base circle (curves 

'IN  and 'JD ). The tooth profile between the base circle and the root circle is not an 

involute curve and hard to describe analytically [3.12]. Therefore, straight lines 'NN  and 

'DD  are used to simplify the curve.  
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Fig. 3.3: Beam model of an external gear tooth with root circle smaller than base circle 

 

According to the properties of involute curve, the action line of two meshing 

gears is always tangent to the gear base circle and normal to the tooth involute profile. 

The action force F  which is along the action line, can be decomposed into two 

orthogonal forces aF  and bF , as shown in Fig. 3.3. 

1sinaF F  .          (3.2.1) 

1cosbF F  .          (3.2.2) 

Applying the beam theory, the bending, shear and axial compressive energies 

stored in a tooth can be expressed as follows [3.7, 3.8]: 
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   ,                (3.2.5) 

where bk , sk  and ak  denote bending, shear and axial compressive stiffness, respectively, 

E  and G  represent Young’s modulus and shear modulus, respectively, h  shows the 

distance between the gear contact point and the tooth central line, d  is the distance from 

the contact point to the gear root, xA  and xI  indicate the area and the area moment of 

inertia of the section where the distance to the tooth root is x  (see Fig. 3.3). 

According to the characteristics of involute curve, h , xh , d , xI  and xA  can be 

expressed as follows: 

 1 2 1 1cos sinbh R         ,              (3.2.6) 
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2 1

2 1

sin ,                                if 0

cos sin ,    if 
b

x
b

R x d
h

R d x d


   

         
,          (3.2.7) 

 1 2 1 1 3= sin cos cosb rd R R         ,            (3.2.8) 

3 31 2
(2 )

12 3x x xI h L h L  ,                 (3.2.9) 

2x xA h L ,                    (3.2.10) 

where bR , rR  and L  denote base circle radius, root circle radius and tooth width of the 

external gear, respectively, xh  is the height of the section where the distance to the tooth 

root is x , 2  represents the half tooth angle on the base circle [3.19] while 3  describes 

the approximated half tooth angle on the root circle (see Fig. 3.3).  
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where N  is the tooth number of the external gear and 0  is the pressure angle. 

Substituting Eqs (3.2.1), (3.2.2) and (3.2.6) to (3.2.9) into Eq. (3.2.3), the bending 

stiffness of an external gear can be expressed as: 
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Substituting Eqs. (3.2.2), (3.2.7) and (3.2.10) into Eq. (3.2.5), the shear stiffness 

of an external gear is given as: 
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.     (3.2.14) 

Substituting Eqs. (3.2.1), (3.2.7) and (3.2.10) into Eq. (3.2.4), the axial 

compressive stiffness of an external gear can be obtained: 
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Case 2: The gear root circle is bigger than the base circle 

If the root circle is bigger than the base circle, the beam model of the gear tooth is 

considered starting from the root circle as shown in Fig. 3.4. The whole gear tooth profile 

(curves IN  and JD ) follows the involute curve. As compared to Case 1 when the root 

circle is smaller than the base circle, the expressions for the tooth effective length d  and 

tooth section width xh  changes as follows: 

 1 2 1 1 4= sin cos cosb rd R R         ,            (3.2.16) 

 2 cos sinx bh R         ,              (3.2.17) 

where 4  is the half tooth angle on the root circle of Case 2. 

Applying the similar derivation procedures as Case 1, the bending, shear and axial 

compressive stiffness of Case 2 can be expressed as followings: 
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(3.2.20) 

The symbol 5  represents the angle between the action force F  and the 

decomposed force bF  when the distance between the meshing point and the root circle is 

0. The value of 5  can be obtained through the following equation set. 
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.   (3.2.21) 
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Fig. 3.4: Beam model for an external gear tooth with root circle bigger than base circle 

3.2.2 Hertzian contact stiffness 

From the result derived by Yang and Sun [3.20], the Hertzian contact stiffness hk , for an 

external gear pair, is linearized to a constant along the entire line of action independent of 

both the position of contact and the depth of interpenetration.  
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,          (3.2.22) 

where E, L ,   denote Yong’s modulus, tooth width and Poisson’s ratio, respectively. 
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3.2.3 Overall mesh stiffness of an external gear pair 

For a pair of spur gears with contact ratio between 1 and 2, one pair and two pairs of 

tooth contact take place alternatively. For the single-tooth-pair meshing duration, the total 

effective mesh stiffness can be calculated as [3.8]:  

1 1 1 2 2 2

1
1 1 1 1 1 1 1t

h b s a b s a

k

k k k k k k k


     

,      (3.2.23) 

where subscripts 1 and 2 represent the driving gear and the driven gear, respectively. 

For the double-tooth-pair meshing duration, there are two pairs of gears meshing 

at the same time. The total effective mesh stiffness can be obtained as [3.8]: 

2

1 2
1

, 1, 1, 1, 2. 2, 2,

1
1 1 1 1 1 1 1t t t

i

h i b i s i a i b i s i a i

k k k

k k k k k k k


  
     

 ,   (3.2.24) 

where 1i   for the first pair and 2i   for the second pair of meshing teeth. 

 Table 3.1 gives the parameters of a planetary gear set [3.18]. Suppose the 

parameters of the driving gear and the driven gear of an external gear pair are the same to 

the sun gear and the planet gear (see Table 3.1), respectively. The mesh stiffness of this 

external gear pair can be evaluated using the method developed in this chapter. The 

proposed model is compared with the model given in [3.8]. The results are shown in Fig. 

3.5.  
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Table 3.1: Physical parameters of the planetary gear set for mesh stiffness evaluation 

Parameters Sun gear Planet gear Ring gear 

Number of teeth 19 31 81 

Module (mm) 3.2 3.2 3.2 

Pressure angle ο20  

ο20  

ο20  

Face width (m) 0.0381 0.0381 0.0381 

Young’s modulus (Pa) 2.068×1011 2.068×1011 2.068×1011 

Poisson’s ratio 0.3 0.3 0.3 

Base circle radius 28.3 46.2 120.8 

Root circle radius 26.2 45.2 132.6 

 

 

Fig. 3.5: Mesh stiffness of a fixed-shaft external gear pair 
* Model from Tian et al. [3.8] 

 

Fig. 3.5  illustrates the mesh stiffness (15.5 mesh periods) in half revolution of the 

driven gear. In [3.8], the gear tooth is considered starting from the base circle, while in 

this chapter it is modeled starting from the root circle. The difference in the radius of the 

base circle and the root circle is 2.1 mm (7.4% of the base circle radius) for the sun gear 

and 1 mm (2.2% of the base circle radius) for the planet gear as given in Table 3.1. It is 

found that the mesh stiffness decreases about 40%, if the gear tooth is considered starting 
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from the root circle. This demonstrates that substantial difference in the mesh stiffness of 

an external gear pair is likely when the origin of the gear tooth is changed from the base 

circle to the root circle, especially when the difference between the base circle and the 

root circle is large. It is important to consider this difference because the dynamic 

response of the gear system will be affected due to the stiffness change. 

 

3.3 Mesh stiffness of a fixed-shaft internal gear pair 

In this section, the procedures to obtain the mesh stiffness of a fixed-shaft internal gear 

pair are presented. These procedures will be used later in the mesh stiffness evaluation of 

ring-planet gears of a planetary gear set. An internal gear pair includes two types of gears, 

namely an external gear and an internal gear. For an external gear, the root circle may be 

bigger or smaller than the base circle. However, for an internal gear, the root circle is 

always bigger than the base circle. Liang et al. [3.18] derived equations of the mesh 

stiffness for an internal gear pair. But, they modeled the external gear tooth starting from 

the base circle. In this study, I will improve the results of Liang et al. [3.18] by modeling 

the gear tooth starting from the tooth root circle. The stiffness equations of the external 

gear are derived in Section 3.2. For the internal gear, the equations of bending, shear, and 

axial compressive stiffness reported in [3.18] will be used directly here. Thus, the 

difference of the mesh stiffness for an internal gear pair between our model and the 

model from [3.18] comes from the difference in the modeling of the external gear teeth.  

I evaluate the mesh stiffness of a fixed-shaft internal gear pair of which the 

external gear and the internal gear have the same parameters as the planet gear and the 
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ring gear (listed in Table 3.1), respectively. The overall mesh stiffness is shown in  Fig. 

3.6. The comparison with Liang et al. [3.18] is also presented in Fig. 3.6.  

 

 

Fig. 3.6: Mesh stiffness of a fixed-shaft internal gear pair 
* Model from Liang et al. [3.18] 

 

It can be seen that even the radius difference of the base circle and the root circle 

is only 1 mm for the planet gear; the mesh stiffness decreased about 17% in the double-

tooth-pair meshing duration and about 23% in the single-tooth-pair meshing duration. 

This percentage change is smaller than that of an external gear pair because the same 

stiffness equations are used for the internal gear in these two models. Though relatively 

small, this result indicates the importance of modeling the gear tooth of the external gear 

starting from the root circle as it is more realistic. 
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3.4 Mesh stiffness of a planetary gear set 

Fig. 3.7  shows the structure of a planetary gear set which will be considered in this study. 

It is comprised of a sun gear (s), a ring gear (r) and four equally-spaced planets (p) which 

are held by a common carrier (c). In this structure, the ring gear is fixed. The parameters 

of this planetary gear set are listed in Table 3.1. 

 

 

Fig. 3.7: Structure of a planetary gear set with the ring gear fixed 

 

A planetary gear set comprises several pairs of sun-planet gears (external gear 

pairs) and ring-planet gears (internal gear pairs) meshing simultaneously. While each of 

the sun-planet meshes (or ring-planet meshes) has the same shape of mesh stiffness 

variation, they are not in phase with each other [3.21]. The phasing relationships of 

multiple meshing gears must be considered. The mesh phasing of the planetary gear set 

were calculated in [3.18] and shown in Table 2.2 of Chapter 2. The value of sn  (n = 1, 2, 

3, 4) is the relative phase between the nth sun-planet pair with respect to the 1st sun-planet 

pair. The value of rn  is the relative phase between the nth ring-planet pair with respect to 

the 1st ring-planet pair. The value of rs  is the relative phase between the nth ring-planet 
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mesh with respect to the nth sun-planet mesh. The 0rs   shows that the sun-planet gears 

and the ring-planet gears mesh at the pitch point simultaneously [3.18].  

Once the mesh stiffness equations for a fixed-shaft external gear pair and a fixed-

shaft internal gear pair are derived, the mesh stiffness of a planetary gear set can be 

obtained using the approach reported in [3.18]. The time-varying mesh stiffness of the 

planetary gear set is plotted in Fig. 3.8.  

There are 12.56 times of gear meshing in half revolution of the planet gear. The 

point 'P  and P denote the pitch points of one sun-planet gear pair and one ring-planet 

gear pair, respectively. It can be seen from Fig. 3.8 that both the sun-planet pair and the 

ring-planet pair mesh at the pitch point at t  = 0. The curves 1spk , 2spk , 3spk  and 4spk  

represent the 1st, 2nd, 3rd and 4th pairs of the sun-planet mesh stiffness, respectively. 

Similarly, the curves 1rpk  2rpk , 3rpk  and 4rpk  denote the 1st, 2nd, 3rd and 4th pairs of the 

ring-planet mesh stiffness, respectively. The symbol m  is the rotation angular 

displacement of the planet gear in one mesh period, 2 / / ( )m r p s rZ Z Z Z    [3.18]. sZ , 

pZ , and rZ  are the tooth number of the sun gear, planet gear and ring gear, respectively.  

 



82 
 

 

Fig. 3.8: Improved mesh stiffness of a planetary gear set when the ring gear is fixed 
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than the base circle and the second case is when the root circle is bigger than the base 

circle. When the crack happens, the gear mesh stiffness reduction is modeled by taking 

into account the thickness reduction of the tooth section and the effective length changing 

of the beam model. 

Case 1: The gear root circle is smaller than the base circle 

The point M  (see Fig. 3.10), located within the critical area of the tooth, is considered as 

the starting point of the crack. The crack is modeled as a straight line which passes 

through point N  which is the intersection of the straight line 'NN  and the root circle. 

The crack propagates along the straight line until reaching the tooth central line at point 

B. Then, it changes the propagation direction towards point D  where the tooth breaks. 

The line segment MN  can be interpreted as an initial notch which stimulates higher 

stress concentration which then leads to fully developed crack. It is similar to what 

Lewicki et al. [3.25] described as an initial notch in his crack experiment. This notch will 

not be considered in the mesh stiffness derivation in this chapter. The fillet curve is 

difficult to express analytically [3.12], therefore, in the proposed beam model, I simplify 

it and represent it using a straight line 'NN  as shown in Fig. 3.10. The angle between the 

crack line and the tooth central line is defined as  . Though I have modeled that the 

crack gradually grows until it reaches the breaking point D , sometimes, sudden tooth 

breakage may also take place especially when the crack goes over the central line. 

Similar to the perfect situation, the overall mesh stiffness is considered as the 

summation of Hertzian stiffness, bending stiffness, shear stiffness and axial compressive 

stiffness. The Hertzian stiffness and the axial compressive stiffness will not be affected 
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by the crack propagation [3.8, 3.11]. Only the bending stiffness and the shear stifness will 

be affected due to the change in the tooth length and the tooth height caused by the crack. 

In order to derive the bending and shear stiffness with the propagation of the crack, we 

need to consider four conditions. Condition 1 and condition 2 may happen when the 

crack is below the tooth central line. Condition 3 and condition 4 may happen when the 

crack goes over the tooth central line. 

 

  

Fig. 3.10: Cracked tooth model when root circle is smaller than base circle 
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The symbol ah  represents the distance from the crack end point A to the tooth 
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tooth thickness is denoted by oh . The angle a  corresponds to the force action point K  

(see  Fig. 3.10). For a tooth with crack, the tooth section area and the area moment of 

inertia can be expressed as follows: 
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2               if 
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h h L x d
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where ah  and xh  have the following expressions: 
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Substituting Eq. (3.5.2) into Eq. (3.2.3) and substituting Eq. (3.5.1) into Eq. 

(3.2.4), the bending and the shear stiffness of a cracked tooth can be obtained 

respectively: 
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(3.5.6) 

 

Condition 2: When a oh h  or when 1 &  a o ah h      

In this condition, the expressions of the tooth section area and the area moment of 

inertia are as follows: 

31
( )

12x a xI h h L  ,         (3.5.7) 

( )x a xA h h L  .         (3.5.8) 

Similar to Condition 1, the bending and the shear stiffness of the cracked tooth are 

obtained: 
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 (3.5.10) 

 

Condition 3: When 1    & c o c o ch h or when h h      

The angle c  corresponds to the force action point E which is the mirror of the 

point 'E . The point 'E  is relative to the crack point C in the Fig. 3.10. The tooth section 

area and the area moment of inertia are given by: 

31
( )

12x x cI h h L  ,         (3.5.11) 

( )x x cA h h L  ,         (3.5.12) 

where 2 sinch q  . 
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The bending and the shear stiffness of the cracked tooth are derived as: 
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 (3.5.14)

 

 

Condition 4: When 1 & c o ch h     

In this condition, the tooth is considered as the constitution of the tooth sections 

whose height xh  are bigger than ch [3.11]. If the section height xh  is smaller than ch , the 

corresponding tooth part can be ignored. If the section height xh  is bigger than ch , the 

expressions of the tooth section area and the area moment of inertia are the same in Eq. 
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(3.5.11) and Eq. (3.5.12). The bending and the shear stiffness of the cracked tooth are 

expressed as follows: 
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 (3.5.16) 

Case 2: The gear root circle is bigger than the base circle 

Fig. 3.11  shows the tooth crack model when the root circle is bigger than the base circle. 

The crack is modeled as a straight line starting from the intersection (point M ) of the 

involute curve and the root circle. The point M  is within the critical area of the gear 

tooth. 
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Similar to Case 1, four conditions are considered in the derivation of bending and 

shear stiffness. In each condition, the expressions of the tooth section area and the area 

moment of inertia are the same as derived for the condition when the root circle is smallar 

than the base circle. But, the expression of the tooth height, xh , changes as:  
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.     (3.5.17) 

Applying the same procedure as stated in Case 1, the bending stiffness bk , and the 

shear stiffness sk  for the four cinditioins are derived and listed as follows: 
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Fig. 3.11: Cracked tooth model when root circle is bigger than base circle 
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(3.5.21)

 
 

Condition 3: When 1    & c o c o ch h or when h h      
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(3.5.23)

 
 

Condition 4: When 1 & c o ch h     
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(3.5.25)

 
 

3.6 Crack effect on the mesh stiffness of a planetary gear set 

In this section, the crack effect on the mesh stiffness of a planetary gear set (see Fig. 3.7) 

is investigated when a crack takes place in the sun gear or a planet gear. Two cases exist 

when a crack occurs in a planet gear (sun gear side or ring gear side). If it is the sun gear 

side, the ring-planet mesh stiffness is assumed not to be affected as the cracked tooth can 

still bear the compressive stiffness as if no crack exists. Similarly, if it is the ring gear 

side, the sun-planet mesh stiffness will not be affeced. Overall, three cases are considered 

in this study; crack in the sun gear, crack in a planet gear (sun side) and crack in a planet 

gear (ring side). For each case, the mesh stiffness at four crack levels will be evaluated. 

These levels are 25%, 50%, 75% and 100% crack (tooth missing). Fifty percent (50%) 

crack occurs when the crack line 1q  
reaches the tooth central line (see Fig. 3.10). Twenty 

five percent (25%) crack means the crack length is half of 50% crack length. One 

hundred percent (100%) crack indicates the crack line 2q
 
reaches the tooth root circle 

when the tooth breaks. Seventy five percent (75%) crack happens when the crack line 2q
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has the same length of 1q  with 25% crack. The angle,  , between the crack line and the 

tooth central line is assumed to be a constant in the calculation and set as ο45 .  

Case 1: Crack in the sun gear 

Table 3.2 shows four crack levels in the sun gear and the corresponding crack length. 

According to the parameters of the planetary gear set (parameters are listed in Table 3.1), 

the root circle of the sun gear is smaller than the base circle. Applying the equations 

derived in the Section 3.2 and the Section 3.5, the mesh stiffness of a pair of sun-planet 

gears ( sp1k ) are shown in Fig. 3.12 for four crack levels. The mesh stifness is represented 

as a function of the angular displacement of the planet gear. As the size of the crack 

grows, the mesh stiffness reduces correspondingly. Correct stiffness measurement is 

important for fault diagnosis of the gears. For each crack level,corresponding vibration 

signal can be obtained through dynamic simulation. By analysing these vibration signals, 

fault severity indicators can be generated, which can be then used to detect the fauly 

severity of the gear system. 

 

Table 3.2: Crack levels and the corresponding crack length in the sun gear 

Crack levels                      Crack length 

25%                      1q  = 1.95 mm 

50%                      1q  = 3.90 mm 

75%                      1q  = 3.90 mm, 2q  = 1.95 mm 

100%                       1q  = 3.90 mm, 2q  = 3.90 mm 
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difference in the mesh stiffness between the FEM result in [3.26] and the analytical result 

from this thesis is within 7%. 

 

Table 3.4: Major parameters of the spur gears used for validation [3.26] 

Gear type Standard involute, full-depth teeth 
Material Aluminium 
Modulus of easticity 69 Gpa 
Poisson’s ratio 0.33 
Face width 0.015 m 
Module  6 mm 
Number of teeth 23 
Pressure angle 020
Theoretical contact ratio 1.59 
Theoretical angle of meshing cycle 024.912
Addendum 1.00 m 
Dedendum 1.25 m 

 

Table 3.5: Mesh stiffness comparision 

Gear tooth condition 
Maximum difference (%) 

Single mesh period Double mesh periods 
Perfect 5.9 6.3 
4.7 mm crack 6.7 2.9 
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3.8 Conclusions 

In this chapter, equations are derived to evaluate the time-varying mesh stiffness of a 

planetary gear set with tooth crack based on the potential energy method and the gear 

mesh theory. The time-varying mesh stiffness is represented as a function of the angular 

displacement of the gears. To use these equations, users only need to provide gear 

geometry, material and tooth crack information (crack angle, crack length and crack 

location).  

A modified cantilever beam model is proposed for an external gear tooth in mesh 

stiffness evaluation. Comparison results show that modeling gear tooth starting from the 

root circle rather than from the base circle may cause a stiffness variation of up to 40%. 

This shows that it is important to model the gear tooth starting from the root circle.  

The mesh stiffness reduction due to crack is quantified when the crack appears in 

the sun gear, in a planet gear (sun gear side), or in a planet gear (ring gear side). The 

stiffness obtained in this chapter will be used in Chapter 4 to simulate the vibration 

signals of a planetary gear set in the faulty condition. 

In this chapter, the gear body is assumed to be rigid, and tooth profile and lead 

modifications are not considered. These factors will be further investigated in the future. 
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Chapter 4: Vibration Signal Modeling of a Planetary Gear Set 

for Tooth Fault Detection 

 

In Chapter 2 and Chapter 3, the time-varying mesh stiffness is analytically evaluated 

using the potential energy method for a planetary gear set in healthy and cracked tooth 

conditions. The time-varying mesh stiffness obtained in the previous two chapters will be 

used in this chapter to simulate the vibration signals of a planetary gear set. In this 

chapter, a dynamics based vibration signal modeling method is proposed to simulate the 

vibration signals of a planetary gearbox at the sensor location. The vibration properties 

found in this chapter for a planetary gearbox in healthy and faulty conditions enlighten 

the development of a fault detection method to be proposed in Chapter 5. This chapter is 

organized as follows. In Section 4.1, background of this research topic is described and a 

literature review is given on vibration signal modeling and vibration analysis of a 

planetary gear set. In Section 4.2, a lumped parameter model is proposed to simulate the 

vibration source signals of a planetary gear set. In Section 4.3, a mathematical model is 

proposed to represent the effect of transmission path. In Section 4.4, properties of the 

resultant vibration signals are analyzed in time and frequency domains. In Section 4.5, 

the proposed vibration properties of a planetary gear set are compared with experimental 

signals. In Section 4.6, conclusions of this research topic are given. This chapter is based 

on a journal paper [4.1] and a refereed conference paper [4.2]. 

 



110 
 

4.1 Introduction 

The vibration signals of a planetary gearbox are more complicated than those of a fixed-

shaft gearbox. For a planetary gear set, several sun-planet gear pairs and several ring-

planet gear pairs mesh simultaneously. The vibration signals generated by each sun-

planet gear pair are similar but with different phases [4.3]. So does each ring-planet gear 

pair. This phase shift cancels or neutralizes some of the excitations induced by gear pairs 

but augments others [4.4]. In general, vibration transducers, mounted on the housing of a 

gearbox or the housing of a bearing acquire vibration signals. In addition, the rotation of 

the carrier varies the transmission paths of the vibration signals to a fixed transducer. 

Multiple vibration sources and the effect of the transmission path make fault symptoms 

hard to distinguish. 

Even though many signal processing methods have been proposed to detect gear 

faults [4.3-4.6], such methods still need improvements. The transducer signal is 

comprised of many sub signals, such as the vibrations of the sun gear, planet gear, ring 

gear, bearings and shafts. Unfortunately, no mature signal processing methods can 

effectively denoise and separate these signals [4.7-4.8]. If we can “open” the black box, 

“see” all the sub-signals, and understand the generation mechanisms of vibration signals, 

we can develop effective tools to detect gear faults.  

Several researchers investigated the vibration properties of a planetary gearbox 

using mathematical models [4.9-4.10]. However, these models lack connections with 

physical parameters of a gearbox, like gear mesh stiffness and damping. In addition, they 

can hardly model the process of the fault growth. A dynamic model can model fault 

growth and the corresponding effects. It has further advantages over lab systems or field 
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systems [4.11]: (1) we can eliminate environmental noises to identify changes in 

vibration signals caused by the faults; (2) with a good dynamic simulation model, we can 

easily simulate different types and levels of faults, and observe changes in the vibration 

signal they cause.  

A large range of dynamic models have been developed to simulate the behavior of 

planetary gears. Kahraman [4.12] proposed a nonlinear dynamic model to investigate the 

load sharing characteristics of a planetary gear set. Inalpolat and Kahraman [4.13] used 

the same model as Ref. [4.12] to predict modulation sidebands of a planetary gear set 

having manufacturing errors. Lin and Parker [4.14] modified the model of Ref. [4.12] and 

investigated the free vibration properties of a planetary gear set. Cheng et al. [4.15] 

developed a pure torsional dynamic model to investigate the properties of a planetary 

gear set when a single pit was present on one tooth of the sun gear. Chaari et al. [4.16] 

used a similar model as Ref. [4.14] to investigate manufacturing errors’ effect on the 

dynamic behavior of planetary gears. This study did not consider tooth profile 

modification or manufacturing errors. Studies on the effect of manufacturing error are 

given in Refs. [4.13, 4.16] while studies on the effect of tooth profile modification are 

given in Refs. [4.17-4.20]. 

However, the investigation of the vibration properties of a planetary gearbox with 

cracked teeth is limited. Barszcz and Randall [4.21] applied spectra kurtosis to detect a 

ring gear tooth crack in the planetary gear of a wind turbine. Lewicki et al. [4.22] used 

vibration separation techniques to detect the tooth damage in the sun gear, planet gear 

and ring gear, respectively. Chen and Shao [4.23] investigated the vibration properties of 

a planetary gear set when there was a tooth root crack in the ring gear. Chaari et al. [4.24] 
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applied the dynamic model developed in [4.16] to investigate the vibration properties of 

the sun gear and the carrier of a planetary gear set with tooth crack or a single pit on the 

sun gear. In their studies, the gear mesh stiffness was approximated as a square waveform 

which would generate unwanted frequency components in the dynamic response [4.25]. 

Chen and Shao [4.26] studied the dynamic features of a planetary gear set when a tooth 

crack was under different sizes and inclination angles. The displacement signals of the 

sun gear and the planet gear were investigated when a crack was present on the sun gear 

or the planet gear. But, Refs [4.23, 4.24, 4.26] did not consider the effect of transmission 

path in their studies. In this study, I do consider the effect of transmission path while 

focusing on a tooth crack in the sun gear.  

The dynamic models described above can be divided into two categories: fixed 

coordinate model and rotating coordinate model. A rotating coordinate model is more 

convenient to consider inertial force effect caused by the rotation of the carrier. The 

inertial force contains gyroscopic force and centrifugal force. The centrifugal force is a 

fictitious force generated from the rotation of a planet gear around the axis of the sun gear. 

Cooley and Parker [4.27] mentioned the centrifugal force in the investigation of 

eigenvalues of a planetary gear set. They concluded that the constant centrifugal force (it 

is not constant if the rotation speed of a planet gear around the axis of the sun gear is 

varying) could be ignored without affecting the eigenvalues. Gu and Velex [4.28] 

investigated the influence of planet position errors on the quasi-static and dynamic load 

sharing among planets. In Gu and Velex’s model, both gyroscopic and centrifugal forces 

were considered. In this thesis, both the gyroscopic force and the centrifugal force are 

also considered as Gu and Velex [4.28] did. But our focus is not to investigate the effect 
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of the gyroscopic and centrifugal forces. Instead, our focus is to find the fault symptoms 

in the vibration signals of a planetary gear set with tooth crack when the gyroscopic and 

centrifugal forces are present. 

A few studies considered the effect of the transmission path in the vibration signal 

modeling. Inalpolat and Kahraman [4.9] expressed the resultant acceleration signal of a 

planetary gear set as follows: 

1
( ) ( ) ( )

N

n rpnn
a t Cw t F t


 ,        (4.1.1) 

where C  is a constant; N  represents the number of planet gears; ( )nw t  denotes the 

effect of transmission path for the nth planet gear which is a weighting Hanning function 

[4.9] with a time duration of /cT N ; and ( )rpnF t  is the dynamic force of the nth ring-

planet mesh. 

Later, Inalpolat and Kahraman [4.13] improved the modeling considering the 

dynamic forces of both sun-planet meshes and ring-planet meshes. They used the same 

Hanning function as Ref. [4.9] to cover the effect of the transmission path. 

1
( ) ( ( ) ( ) ( ) ( ))

N

s n spn r n rpnn
a t C w t F t C w t F t


  ,      (4.1.2) 

where sC  and rC  are constants facilitated to establish the relation between the gear mesh 

forces; and ( )spnF t  and ( )rpnF t  represent the dynamic force of the nth sun-planet mesh and 

the nth ring-planet mesh, respectively.  

However, the correctness of Eq. (4.1.2) is worth discussing. The line of force 

( )spnF t  is the internal common tangent of the base circles of the sun gear and the nth 

planet gear. While the line of force ( )rpnF t  is the internal common tangent of the base 
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circles of the ring gear and the nth planet gear. Since dynamic forces ( )spnF t  and ( )rpnF t  

are not in the same direction, it is not proper to add weighted ( )spnF t  and weighted 

( )rpnF t  together as two scalars. 

Feng and Zuo [4.10] investigated possible transmission paths of vibration signals 

in a planetary gearbox. In Fig. 4.1, three transmission paths are illustrated from its origin 

to the transducer. According to their studies, the transducer perceived signal arriving 

along path 2 and 3 will have negligible amplitude. Therefore, only the first transmission 

path was considered in their studies, and the transmission path was modeled by a 

Hanning function with a time duration of cT . 

All the previous studies modeled the effect of transmission path using a Hanning 

function [4.9, 4.10, 4.13]. They all assumed that as planet n approached the transducer 

location, its influence would increase, reaching its maximum when planet n was the 

closest to the transducer location, then, its influence would decrease to zero as the planet 

went away from the transducer. However, even if the planet n is in the farthest location 

from the transducer, its influence may not be zero. In this study, I propose an approach to 

overcome this shortcoming.  
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4.2 Dynamic simulation 

In this section, a lumped-parameter model is developed to simulate the vibration signals 

of each gear of a planetary gear set. This model is similar to that used by Lin and Parker 

[4.14] with three distinctions: (1) the planet deflections are described in the horizontal 

and vertical coordinates, (2) both the gyroscopic force and the centrifugal force (inertial 

force) are incorporated, and (3) more accurate physical parameters are adopted. Whether 

gear deflections are described in the horizontal and vertical coordinate system, or in the 

radial and tangential coordinate system, the gear dynamic behaviors will not be affected. 

However, if the planet deflections are described in the horizontal and vertical coordinates, 

we can get the motions of all planet gears in the same direction. It has two benefits: (a) 

we can easily compare the motion of different planet gears, and (b) we can easily do 

algebraic operations on these vibration signals. For example, in Section 4.3, we need to 

add the vibrations of planet gears together to generate sensor perceived vibration signal. 

The inertial forces may play a more important role in the dynamic behavior of a gearbox 

in high speed applications than that at low speed applications.  

Time-varying mesh stiffness is one of the main sources of vibration in a gear 

transmission system [4.29]. In [4.14], the gear mesh stiffness was approximated by a 

square waveform. The square waveform reflects only the effect of the change in the tooth 

contact number, but ignores the effect of the change in the tooth contact position [4.30]. 

In addition, the physical damping was ignored in their model. In this study, more accurate 

physical parameters (mesh stiffness and physical damping) will be adopted in the 

simulation of vibration signals. 
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4.2.1 Modeling of a planetary gear set 

 

Fig. 4.2: Dynamic modeling of a planetary gear set 
 

Fig. 4.2 shows a two-dimensional lumped-parameter model which is used in this study to 

simulate the vibration signals of a planetary gear set, which consists of one sun gear (s), 

one ring gear (r), one carrier (c) and N planet gears (p). Each component has three 

degrees of freedom: transverse motions in x-axis and y-axis, and rotation. The rotation 

coordinates i , 1, , , ,..., Ni s r c p p  are the angular displacement. The sun gear, ring gear 

and carrier translations jx , jy , , , j s r c  and planet translations pnx , pny , 1,..., n N , 

are measured with respect to a rotating frame of reference fixed to the carrier with the 

origin o . The gear mesh interface is modeled as a spring-damper system. The directions 

of all the coordinates at the initial time (time zero) are shown in Fig. 4.2. Since I am 

focusing on the effects of a growing crack on the vibration response of the meshing gears, 
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I have ignored the effects of transmission errors in the gears, the frictions between the 

gear teeth, and other practical phenomena such as backlash. The equations of motion of a 

planetary gear set are expressed as follows: 

Equations of motion for the sun gear: 

2cos 2s s sx s sx s spn sn s s s s s sm x c x k x F m x m y m y           , 

2sin 2s s sy s sy s spn sn s s s s s sm y c y k y F m y m x m x           , 

s s s spn i sJ / r + F =T / r （ ） ,        (4.2.1) 

where spnF  represents the dynamic force of the nth sun-planet gear mesh: 

spn spn spn spn spnF k c    , 

( )cos ( )sin cosspn s pn sn s pn sn s s pn pn c cx x y y r r r a            , 

/ 2sn na     , 

2( 1) / ;    1,2,...,n n n i N    . 

Equations of motion for the ring gear: 

2cos 2r r rx r rx r rpn rn r r r r r rm x c x k x F m x m y m y           , 

2sin 2r r ry r ry r rpn rn r r r r r rm y c y k y F m y m x m x           , 

0r r r rt r r rt r r rpnJ / r + c / r + k / r F =    （ ） （ ） （ ） ,        (4.2.2) 

where rpnF  represents the dynamic force of the nth ring-planet gear mesh: 

rpn rpn rpn rpn rpnF k c    , 

c( ) cos ( )sin cosrpn r pn rn r pn rn r r pn pn cx x y y r r r a            , 

/ 2+rn na    .                    
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Equations of motion for the planet gears: 

2 2cos cos 2 cospn pn cpnx spn sn rpn rn pn pn pn pn pn pn pn c nm x F F F m x m y m y m r            , 

2 2sin sin 2 sinpn pn cpny spn sn rpn rn pn pn pn pn pn pn pn c nm y F F F m y m x m x m r             , 

0pn p pn spn rpnJ / r F F   （ ） ,              (4.2.3) 

where cpnxF  and cpnyF  describe the bearing forces between the carrier and the nth planet in 

the x and y directions: 

( ) ( )cpnx pnx pn c pnx pn cF k x x c x x     , 

( ) ( )cpny pny pn c pny pn cF k y y c y y     . 

Equations of motion for the carrier: 

 ,                                              

2 2c c cy c cy c cpny c c c c c cm y c y k y F m y m x m x           , 

sin cos /c c c cpnx n cpny n o cJ / r F F T r     （ ） .    (4.2.4) 

As a planet gear rotates around the center of the sun gear, the inertial force will be 

generated. The inertial force contains two items 2
pn pnm x   (gyroscopic force) and 

2
pn cm r  (centrifugal force) which can be observed from the equations of transverse 

motions of planet gears in Eq. (4.2.3). pnx , which is the x-direction displacement of the 

nth planet gear, is much smaller than cr  which is the distance between centers of sun gear 

and planet gear. If cos n  takes a value near 1, the item 2 cospn c nm r   will dominate the 

inertial force when the rotation speed of the carrier is large. On the other hand, if cos n  

takes a small value near 0, the item 2 sinpn c nm r   will dominate the inertial force when 

2 2c c cx c cx c cpnx c c c c c cm x c x k x F m x m y m y          
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the rotation speed of the carrier is large, but it is in the y-direction motion. Some previous 

studies [4.16, 4.26] considered the gyroscopic force, but ignored the gyroscopic force. In 

this study, both these two items are considered. 

4.2.2 Crack modeling and mesh stiffness evaluation 

Gear tooth crack is one common failure mode in a gear transmission system. It may occur 

due to excessive service load, inappropriate operating conditions or simply fatigue [4.31]. 

In the dynamic model described in Section 2.1, the gear mesh interface is modeled as a 

spring-damper system. When a pair of spur gear meshes, the tooth contact number and 

the tooth mesh position change during meshing. It leads to a periodic variation in the gear 

mesh stiffness. When a crack happens in one gear tooth, the mesh stiffness will decrease 

and consequently the vibration properties of the gear system will change. In order to 

comprehensively understand the vibration properties of a planetary gear set, it is essential 

to evaluate the mesh stiffness effectively.  

According to the research by Belsak and Flasker [4.32], crack mostly initiates at 

the critical area of a gear tooth (area of the maximum principal stress), and the 

propagation paths are smooth, continuous, and in most cases, rather straight with only a 

slight curvature as shown in Fig. 4.3. Liang et al. [4.30] simplified the crack growth path 

as a straight line (the red line) starting from the critical area of the tooth root. The same 

model as Ref. [4.30] will be used in this study.  

 



 

 

of a 

meth

plane

pair o

energ

can b

stiffn

due t

leads

ring-p

with 

Fig. 4.3

The meth

planetary ge

od [4.30, 4.3

et gear and a

of meshing 

gy, shear en

be evaluated 

ness. If there

to the chang

 to the decre

planet mesh

each other [

3: Tooth crac

hod reported 

ear set in th

33, 4.34] wi

a pair of rin

gears is con

nergy, and ax

based on He

e is a tooth c

ge in tooth l

ease of the t

es) has the s

[4.35]. Incor

ck propagati

in [4.30] wi

he perfect an

ill be applied

ng-planet ge

nsidered to 

xial compre

ertzian, bend

crack, the be

length and t

total mesh st

same shape o

rporating the

121 

ion path of a

ill be used d

nd the crack

d to evaluate

ear, respectiv

be the sum

essive energy

ding, shear s

nding stiffne

tooth height 

tiffness. Wh

of mesh stif

e mesh phas

an external g

directly to ev

ked tooth co

e the mesh s

vely. The to

mmation of H

y. The total

stiffness, and

ess and the s

induced by

ile each of t

ffness variati

sing relation

  

gear tooth [4.

valuate the m

ondition. Pot

stiffness of a

otal potentia

Hertzian ene

l effective m

d axial comp

shear stifnes

y the crack [

the sun-plan

ion, they are

nships, the m

.32] 

mesh stiffnes

tential energ

a pair of sun

al energy of 

ergy, bendin

mesh stiffnes

pressive mes

ss will reduc

[4.30], whic

et meshes (o

e not in phas

mesh stiffnes

ss 

gy 

n-

a 

ng 

ss 

sh 

ce 

ch 

or 

se 

ss 



122 
 

of all sun-planet gear pairs and all ring-planet gear pairs can be evaluated, thus, the mesh 

stiffness of a planetary gear set is obtained.  

In a planetary gearbox, sun gear teeth easily suffer damage because their 

multiplicity of meshes with the planet gears increases the potential for damage on the sun 

gear [4.4]. Fig. 4.4 shows the mesh stiffness of a pair of sun-planet gears with different 

crack levels (perfect, 0.78 mm crack, 2.34 mm crack and 3.90 mm crack) on a sun gear 

tooth. The physical parameters of this planetary gear set (one sun gear, one fixed ring 

gear and four equally spaced planet gears) are listed in Table 4.1. As the growth of tooth 

crack, the mesh stiffness reduces gradually, which will cause the gearbox vibrating 

abnormally.  

 

 

Fig. 4.4: Mesh stiffness reduction of different crack levels on a sun gear tooth [4.30] 
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Table 4.1: Physical parameters of the planetary gear set for dynamic modelling 

Parameters Sun gear Planet gear Ring gear 
Number of teeth 19 31 81 
Module (mm) 3.2 3.2 3.2 
Pressure angle ο20  

ο20  

ο20  

Mass (kg) 0.700 1.822 5.982 
Face width (m) 0.0381 0.0381 0.0381 
Young’s modulus (Pa) 2.068×1011 2.068×1011 2.068×1011 
Poisson’s ratio 0.3 0.3 0.3 
Base circle radius 28.3 46.2 120.8 
Root circle radius 26.2 45.2 132.6 
Reduction ratio 5.263 
Bearing Stiffness ksx =ksy= krx =kry =kcx =kcy= kpnx = kpny = 1.0×108 N/m 
Bearing damping csx =csy= crx =cry= ccx =ccy= cpnx = cpny = 1.5×103 kg/s 

 

Fig. 4.5 describes the mesh stiffness of four sun-planet gear pairs with the 

consideration of mesh phasing relationships of multiple gear pairs. The curves 1spk , 2spk , 

3spk  and 4spk  represent the mesh stiffness of the 1st, the 2nd, the 3rd and the 4th pair of the 

sun-planet gears, respectively. The mesh stiffness of ring-planet gears are assumed not to 

be affected by the tooth crack on the sun gear and the stiffness equations of the ring-

planet gears were derived in [4.30]. The cracked tooth on the sun gear meshes with the 

four planet gears in turn, therefore, the mesh stiffness of the four pairs of sun-planet gears 

are all affected. The time intervals of the cracked tooth in meshing are labeled in Fig. 4.5. 

The symbol sn  (n = 1, 2, 3, 4) is the relative phase between the nth sun-planet pair with 

respect to the 1st sun-planet pair. The value of 1s , 2s , 3s  and 4s  are 1, 0.75, 0.5 and 

0.25, respectively [4.25]. The symbol m  denotes the mesh period. 
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Fig. 4.5: Mesh stiffness of sun-planet gears with 3.90 mm crack in a sun gear tooth [4.30] 

4.2.3 Numerical simulation of vibration signals 

In this section, vibration signals of each gear of a planetary gear set are numerically 

simulated using MATLAB ode15s solver. Physical parameters of the planetary gear set 

are mainly listed in Table 4.1. In addition, the mass of the carrier is 10 kg. A constant 

torque of 450 N·m is applied to the sun gear. The rotation speed of the carrier is 8.87 

RPM. The gear mesh damping coefficient c is calculated by the following equation [4.36]: 

1 2

1 2

2
m m

c k
m m




,
         

(4.2.5)
 

where k denotes the time-varying mesh stiffness of a pair of gears; m1 and m2 represent 

the mass of the pinion and the gear of a pair of gears, respectively;   is a constant 

damping ratio which is set to be 0.07 in this study. Through this simulation, displacement, 

2(4 )s m 

3(9 )s m 

4(14 )s m 
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velocity, and acceleration signals of the sun gear, the planet gears, the ring gear and the 

carrier are all obtained. 

Fig. 4.6 shows displacement signals of the sun gear in three health conditions: 

perfect, 0.78 mm crack and 3.90 mm crack in one sun gear tooth. The sun gear has 19 

teeth and Fig. 4.6 illustrates the signals in 19 mesh periods ( mT ). Within 19 meshes, the 

cracked tooth will mesh with the four planets in turn. The time duration of the cracked 

tooth in meshing can be calculated analytically [4.30]. For the planetary gear set used in 

this chapter, the time duration is 4.75 (19/4) mT  which is labeled in Fig. 4.6. When the 

cracked tooth is in meshing, the sun gear generates a bigger displacement (fault 

symptom). With the growth of the crack, the fault symptoms enlarge. However, the fault 

symptom may appear in the x-direction displacement or in the y-direction displacement, 

even we can see 4 uniformly spaced fault symptoms in the absolute displacement of the 

sun gear. In the 3.90 mm crack condition, we can observe clearly fault symptoms. 

However, when the crack length is 0.78 mm, the fault symptom (indicated by the red 

arrows) is very week. That’s why it is hard to detect the fault symptom in the early stage 

of crack growth. 
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Fig. 4.6: Displacements of the sun gear at different crack levels 

xd : displacement in the x-direction; yd : displacement in the y-direction 

 

Fig. 4.7 depicts the center locus of the sun gear in one revolution of the carrier in 

three health conditions: perfect, 0.78 mm crack and 3.90 mm crack in one tooth of the 

sun gear. For this sun gear, the crack length is 3.90 mm when the crack propagates to the 

tooth centre line as indicated in Fig. 4.3. To demonstrate the fault symptom when there is 

a small crack, the vibration signals of 0.78 mm (3.90/5 mm) crack are simulated. 

According to Table 4.1, the ring gear has 81 teeth, thus in one revolution of the carrier, 

81 gear meshes will occur. From Fig. 4.7, we can see 81 spikes in the perfect condition 

which correspond to the 81 gear meshes. When there is a crack, some even bigger spikes 

(fault symptom) can be observed from Fig. 4.7. In 81 gear meshes, the cracked tooth is 

involved in meshing in 17 or 18 times (81/4.75). 17 bigger spikes are illustrated in the 
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crack condition of Fig. 4.7. However, when the crack length is 0.78 mm, the fault 

symptom is weak.  

 

 

Fig. 4.7: Centre locus of the sun gear 

 

From the displacement signals of the sun gear from Fig. 4.6 and Fig. 4.7, we can 

see clear fault symptoms when there is a crack in a sun gear tooth. However, in real 

applications, it is very hard to acquire the vibration signals of the sun gear. Inside a 

planetary gearbox, there are multiple vibration sources, because several pairs of sun-

planet gears and several pairs of ring-planet gears mesh simultaneously. The vibration 

signals from these vibration sources will interfere with each other. In addition, due to the 

rotation of the carrier, the transmission paths of the vibration signals, from the vibration 

sources to a transducer, change. The effect of the multiple vibration sources and the effect 

of transmission path will lead to the complexity of the resultant vibration signals acquired 

by a transducer. 

To demonstrate the effects of inertial force (including the gyroscopic force and 

the centrifugal force), I compared the dynamic responses of a planetary gearbox in two 
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cases: considering the inertial force and ignoring the inertial force. Fig. 4.8 shows the y-

direction displacement of the sun gear when the carrier is running at 8.87 RPM 

(correspondingly, the sun gear is running at 46.68 RPM) and 950 RPM (the sun gear is 

running at 5,000 RPM), respectively. For all the signals shown in Fig. 4.8, there is a 2.34 

mm tooth crack in the sun gear. The time duration of the x-axis is one revolution of the 

sun gear (19 gear meshes). When the carrier is running at 8.87 RPM, there is no visible 

difference between the two signals with the inertial force considered and ignored (see Fig. 

4.8). However, the inertial force effect is obvious when the carrier rotation speed is 5,000 

RPM. As shown in Fig. 4.8, in the 5,000 RPM case, if the inertial force is incorporated in 

the dynamic model, the amplitude of gear vibration signal becomes small and the signal 

oscillation becomes slow. In addition, the fault symptom becomes weak when the inertial 

force is considered. Thus, it is essential to incorporate the inertial force in high speed 

applications in order to precisely reflect the real application. However, in the low speed 

applications, the inertial force is negligible.  
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Fig. 4.8: Y-direction displacement of sun gear with a 2.34 mm crack on a sun gear tooth 

4.2.4 Numerical validation 

A numerical study is performed in this section to validate the correctness of the proposed 

dynamic model. The work of Lin and Parker [4.14] is the most relevant to our work. 

They developed an analytical model of a planetary gear set and used it to investigate the 

natural frequencies and vibration modes.  

In this section, I will use their dynamic model to find the natural frequencies and 

then use our dynamic model to find the natural frequencies. A comparison of these 

obtained frequencies is used to validate our dynamic model.  

Table 4.2 lists the physical parameters of the planetary gear set used in [4.14]. It 

can be seen that the mesh stiffness is considered constant, i.e. the system is time invariant. 
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(natural frequencies) for each case in [4.14]. Using our dynamic model with the 

parameters specified in Table 4.2, we calculated the natural frequencies, and tabulated 

our results in Table 4.3. Our results match those of Ref. [4.14] (see Table 2 of Ref. [4.14]) 

very well. The largest difference in the obtained corresponding natural frequies is 0.4 Hz 

or 0.04% of the value reported in [4.14]. This means that our dynamic model is validated.  

 

Table 4.2: Parameters of the example system used in [4.14] 

Parameters Sun Ring Carrier Planet 
Mass (kg) 0.40 2.35 5.43 0.66 
I/r2 (kg) 0.39 3.00 6.29 0.61 
Base diameter (mm) 77.4 275.0 176.8 100.3 
Mesh stiffness ksp = krp = 5×108 
Torsional stiffness krt = 109         kspt = kct = 0 
Pressure angle 24.6o 

 

Table 4.3: Natural frequencies generated by our own Matlab codes 

Multiplicity (m) 
Number of planets (N) 
N = 3 N = 4 N = 5 

m = 1 

(Rotational modes) 

0 0 0 
1475.7 1536.5 1567.4 
1930.3 1970.6 2006.1 
2658.3 2625.6 2614.8 
7462.8 7773.6 8065.4 
11775.3 13071.1 14253.1 

m = 2 

(Translational modes) 

743.2 727.0 710.0 
1102.4 1091.0 1072.4 
1896.0 1892.8 1888.1 
2276.4 2342.5 2425.3 
6986.3 7189.9 7382.3 
9647.9 10437.6 11172.3 

m = N - 3 

(Planet modes; exists 
for N >3) 

--- 1808.2 1808.2 
--- 5963.8 5963.8 

--- 6981.7 6981.7 
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4.3 Modeling the effect of transmission path 

In this study, the resultant vibration signal is considered to be the summation of weighted 

vibration of each planet gear as shown in Eq. (4.3.1). The planet gear meshes with the sun 

gear and the ring gear simultaneously. Therefore, the vibration of the planet gear contains 

both the information of sun-planet mesh and ring-planet mesh. The effect of the 

transmission path is modeled as a modified Hamming function. The exponent expression 

in Eq. (4.3.1) can be used to increase or decrease the bandwidth of the Hamming function 

by choosing different   values. The value of   is determined by the properties of a 

gearbox, like its size, bearing characteristics, ring gear-housing interface and ring gear 

flexibility. A proper accounting of these effects would require a deformable-body 

dynamic model that can represent the transfer path between a given gear mesh and the 

point of measurement accurately [4.9]. Fig. 4.9 illustrates the differences of Hanning 

function, Hamming function and modified Hamming function corresponding to different 

  values. The bandwidth is increased when   is positive, and decreased when   is 

negative. However, we need to see that   cannot take a very large positive value. If   is 

very large, the effect of vibration from the farthest planet (distance to the transducer) is 

amplified, even overweight the effect of vibration from the nearest planet. 

2(mod( ,2 )- )

1
( ) ( ) (t)c n

N w t
n nn

a t e H t a   


 ,
     

 (4.3.1)
 

where ( )nH t  represents Hamming function for the nth planet gear and (t)na  is the 

acceleration signal of the nth planet gear. 
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Fig. 4.9: Modelling of transmission path effect 

 

4.4 Properties of resultant vibration signals 

In this section, resultant vibration signals of a planetary gearbox are obtained and the 

vibration properties are investigated. Solving the dynamic equations in Section 4.2.1, we 

can get acceleration signals of each planet gear in the rotating carrier coordinate system. 

Applying the theory of acceleration in the rotating coordinate system [4.37], the absolute 

acceleration of each planet gear in the coordinate system fixed on the housing of a 

gearbox can be attained. In this study, only the vertical direction (y-direction) of the 

resultant acceleration signals is considered. The resultant acceleration signals of a 

planetary gearbox in the y-direction are expressed as the weighted summation of the y-

direction acceleration signal of each planet gear.  
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Fig. 4.10: Simulated resultant vibration signals for different transmission path effects 
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observe that amplitudes of the vibration signals in the four cases are different. The signal 

amplitude is largest when the effect of the transmission path is represented by a modified 

Hamming function with α = 0.1, while the signal amplitude is smallest when the effect of 

the transmission path is represented by a modified Hamming function with α = -1. The 

advantage of the modified Hamming function is capable of representing the effect of 

different transmission paths while the Hanning function can represent only one specific 

transmission path. 

However, this study does not intend to propose a method to find the optimum 

value of α for a given planetary gearbox. The selection of α will be investigated in our 

future work. I have simply tried a few values of α which are 0.1, 0 and -1.0. 

Correspondingly the modified Hamming function has the values of 0.21, 0.08 and 0.03 

when the planet gear is in the farthest location from the transducer. The simulated 

resultant vibration signals for these α values are presented in Fig. 4.10. Visually 

comparing the simulated vibration signals shown in Fig. 4.10 with the experimental 

vibration signal in the perfect condition of the gearbox shown in Fig. 4.17, I believe that 

the simulated vibration signals match the experimental signals the best when α takes the 

value of 0.1. Therefore, I have selected α to be 0.1 in the case study. When α takes the 

value of 0.1, it means that 21% of the vibration amplitude of the planet gear which is at 

the farthest location from the transducer can be sensed by the transducer. In the following 

discussions, Hamming function ( =0.1 ) is used to reflect the effect of the transmission 

path. 

Vibration properties of the resultant vibration signals are studied when the 

planetary gearbox is in three health conditions: perfect, 0.78 mm crack in a sun gear tooth, 
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and 3.90 mm crack in a sun gear tooth.  Fig. 4.11 shows resultant vibration signals of a 

planetary gearbox (parameters are listed in Table 4.1). The symbol y  represents vertical 

direction acceleration of the gearbox. Amplitude modulation can be observed both in the 

perfect condition and in the crack condition. Signal envelope fluctuates four times in one 

revolution of the carrier as four planets pass through the transducer location sequentially. 

In the meshing period of the cracked tooth, a bigger spike should be generated. As we 

know, in one revolution of the carrier, the cracked tooth will mesh 17 or 18 times. When 

the crack length is 0.78 mm, the fault symptom is very weak. Only three bigger spikes 

(the locations are indicated by the arrows) can be visually observable. In the 3.90 mm 

crack condition, 17 bigger spikes are observed. However, some spikes are attenuated 

strongly (the circled area) due to the effect of the transmission path. 
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Fig. 4.11: Simulated resultant vibration signals in the y-direction 

 

Fig. 4.12 illustrates the frequency spectrum of the resultant vibration signal in 

different health conditions. In the perfect condition, there are nearly zero amplitude at the 

gear mesh frequency fm and its harmonics. Sizable amplitudes show in the following 

locations: nfm if n is an integer and a multiple of 4, nfm±fc if n is an odd integer, nfm±2fc if 

n is an even integer but not a multiple of 4. The symbol fc denotes rotation frequency of 

the carrier. In this study, I represent the above mentioned sizable amplitude frequencies 

by the symbol fmain. This finding confirms the results reported in [4.9] that sizable 

amplitudes appear at carrier order H = nN in the vicinity of gear mesh frequency and its 

harmonics (n: integer, N: Number of planet gears). For example, the largest amplitude 
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frequency 59fm+fc locates in the vicinity of 59th harmonic of gear mesh frequency. While, 

59fm+fc equals to 4780 fc (fm = 81 fc) which is the location of 4780 carrier order. The 

number 4780 is a multiple of 4 which is the number of planet gears. We also can observe 

from Fig. 4.12 that if there is crack on a sun gear tooth, the amplitude of frequencies fmain 

are rarely affected. However, a lot of sidebands appear in the vicinity of fmain.  

 

 

Fig. 4.12: Frequency spectrum of simulated resultant vibration signals 
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values: k = 0, 1, 2, 3, 4; m = 0, 1, 2; n = 0, 1, 2, 3, 4. fs and fp denotes the rotation 

frequency of the sun gear and the planet gear, respectively, while fscrack represents the 

characteristic frequency of the cracked sun gear, which can be calculated as follows 

[4.10]: 

fscrack = fm×N/Zsun,         (4.4.1) 

where N represents the number of planet gears and Zsun denotes the teeth number of sun 

gear. 

 

 

Fig. 4.13: Zoomed-in frequency spectrum of simulated resultant vibration signals 
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4.18 describes the experimental acceleration signals of the second stage planetary 

gearbox both in the perfect condition and in the cracked tooth condition. In the cracked 

tooth condition, some even bigger spikes show up. In addition, the amplitude modulation 

is not very obvious, as amplitude modulation and fault signatures together lead to the 

complexity of the vibration signals.  

 

  

Fig. 4.17: Experimental resultant vibration signal in perfect condition 
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Fig. 4.18: Experimental resultant vibration signals in perfect and cracked tooth conditions 

 

Fig. 4.19 illustrates the frequency spectrum of the experimental signals. In the 

perfect condition, sizable amplitudes show in the following locations (fmain): nfm if n is an 
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vicinity of fmain which is most obvious in the region of 40fm to 50fm.  
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Fig. 4.19: Frequency spectrum of experimental vibration signals 

 

 

Fig. 4.20: Zoomed-in frequency spectrum of experimental vibration signals 
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Fig. 4.20 presents the zoomed-in frequency spectrum of the experimental signals 

from 42fm to 44fm. The sidebands are asymmetric and sizable sidebands appear in the 

following locations: fmain± kfscrack ± mfs ± nfp ± fc. The integers of k, m, and n take the 

following values: k = 0, 1, 2, 3, 4; m = 0, 1, 2; n = 0, 1, 2, 3, 4. These results confirm the 

proposed results in Section 4. 

In this paragraph, the amplitudes of the simulated vibration signals and 

experimental signals are compared. In the time domain, the maximum amplitude of the 

simulated signal is about 5 m/s2 when the gearbox is perfect as shown in Fig. 4.11. By 

contrast, the maximum amplitude of the experimental signal is about 4 m/s2 when the 

gearbox is perfect as shown in Fig. 4.18. In the condition of 3.90 mm crack, some bigger 

spikes (fault symptom) are generated in the simulated signal. The amplitude of the bigger 

spikes reaches to about 10 m/s2. In the experimental signal of 3.90 mm crack, we can see 

some bigger spikes present. But the amplitude of these spikes is only about 5 m/s2. In the 

frequency domain of a healthy gearbox, the amplitude of sizable frequency components 

reaches up to 0.8 m/s2. However, the amplitude of experimental signals reaches to only 

0.2 m/s2. When there is 3.90 mm crack in a sun gear tooth, there is no big change of the 

amplitude of sizable frequency components both in the simulated signals and in the 

experimental signals. Some sidebands appear both in the simulated signals and 

experimental signals. The amplitude difference of sidebands of simulated signals and 

experimental signals is small. The amplitude of most of the sidebands is below 0.05 m/s2 

both in the simulated signals and experimental signals. Only three sidebands are over 

0.05 m/s2 in the experimental signals, namely 43fm+ fc -2 fscrack, 43fm+ fc +2 fscrack, and 

43fm+ fc +2 fscrack. There are three possible reasons to explain the amplitude differences 
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between the numerical and experimental results. Firstly, the numerical model only 

simulated one stage of planetary gearbox. While the experimental test rig is quite 

complicated. It includes one stage of bevel gear, two stages of planetary gearboxes and 

two stages of fixed-shaft gearboxes. Secondly, the shaft mass is not considered in the 

simulated model, while in the test rig, a very heavy shaft going through the whole system. 

The big mass of the shaft will damp the amplitude of the vibration. Thirdly, the dynamic 

model did not consider the damping effect of the connection between gearbox housing 

and the ground. The gearbox test rig is fixed on the ground by several screws. The 

damping effect of the screw will also damp the amplitude of the vibration. All these 

damping effect will limit the amplitude of big spikes. The proposed model finds some 

properties of a stage of planetary gearbox; however, efforts are still needed to improve 

the numerical model, like reducing the amplitude difference between the numerical 

signals and experimental signals. 

In summary, the comparisons between simulated signals and experimental signals 

summarized above are not very conclusive. Some vibration properties present in the 

simulated signals are confirmed by those in the experimental signals. These properties 

may be useful for gearbox fault detection. However, there are still many vibration 

features present in the experimental vibration signals are not present in the simulated 

signals. This means that either further improvement is required for the proposed vibration 

signal modeling method or better designed experiments need to be conducted for a more 

fair comparison.  
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4.6 Conclusions  

In this chapter, a theoretical model is proposed to simulate the resultant vibration signals 

of a planetary gearbox in healthy and cracked tooth conditions. A lumped-parameter 

model is developed to simulate the vibration signals of each gear, including the sun gear, 

the planet gears and the ring gear. A mathematical model is proposed to reflect the effect 

of the transmission path. Incorporating multiple vibration sources and the effect of 

transmission path, the resultant vibration signals at the sensor location are simulated. The 

fault symptoms are found obvious in the time domain vibration signals of an individual 

gear, like the sun gear. However, the fault symptoms attenuate in the resultant vibration 

signal at the sensor location. Besides, obvious amplitude modulation is observed in the 

resultant vibration signal due to the rotation of the carrier. In the frequency domain, a 

large number of sidebands appear when there is a crack in the sun gear tooth. These 

sidebands are investigated and located in the simulated signals, which can be used to 

detect the crack fault. Some of the vibration properties found by the proposed signal 

modeling method also appear in the experimental signals. These properties found in the 

time domain will be used in Chapter 5 for the development of a fault detection method. 

However, future work is needed for further experimental validation of the resultant signal 

model.  
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Chapter 5: A Windowing and Mapping Strategy for Gear 

Tooth Fault Detection of a Planetary Gearbox 

 

In Chapter 4, the resultant vibration signals of a planetary gear set at a sensor location are 

simulated and the vibration properties are investigated. The fault symptom found in 

Chapter 4 enlightens the development of a tooth fault detection method in this chapter. 

This chapter aims to develop a windowing and mapping strategy to decompose the 

vibration signal of a planetary gearbox into the tooth level of a planet gear to amplify the 

fault symptom. The proposed approach can effectively detect a single tooth fault on a 

planet gear. This chapter is organized as follows. In Section 5.1, background of this 

research topic is described and a literature review is performed in terms of vibration 

based gear fault detection of planetary gearboxes. In Section 5.2, the vibration properties 

of a planetary gearbox are examined. In Section 5.3, a windowing and mapping strategy 

is proposed to generate the vibration signal of each tooth. In Section 5.4, the proposed 

method is assessed numerically and experimentally for detection of a tooth crack in a 

planet gear. In Section 5.5, conclusions of this study are given. This chapter is based on a 

journal paper [5.1] and a refereed conference paper [5.2] 

 

5.1 Introduction 

A planetary gear set typically consists of a sun gear, a ring gear and several planet gears 

as shown in Fig. 1.1 of Chapter 1. Several sun-planet gear pairs and several ring-planet 

gear pairs mesh simultaneously. Therefore, there are multiple vibration sources inside a 
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planetary gearbox. In addition, with the rotation of the carrier, the distance between a 

planet gear and a transducer fixed on the top of the housing varies all the time. The time-

varying distance will induce the effect of transmission path which attenuates the vibration 

signals generated from the vibration source far from the transducer. Multiple vibration 

sources and the effect of transmission path lead to the complexity of fault detection of a 

planetary gearbox [5.3]. 

To understand the vibration properties of a planetary gearbox, model based 

methods have been widely used to simulate the vibration signals of a planetary gearbox. 

Several studies [5.4-5.7] have simulated and investigated the vibration signals of the sun 

gear or a planet gear of a planetary gear set. However, transducers were generally 

installed on the housing of a gearbox or the housing of a bearing to acquire the vibration 

signals of the whole gearbox rather than the signals of a specific gear. Therefore, it is 

more helpful for fault detection to model and investigate the vibration signals of a 

planetary gear set rather than a single gear. Refs. [5.2, 5.3, 5.8-5.10] modeled the 

vibration signals of a planetary gear set by incorporating the effect of transmission path 

with the assumption that as planet n approached the transducer location, its influence 

would increase, reaching its maximum when planet n was the closest to the transducer 

location, then, its influence would decrease gradually as the planet went away from the 

transducer. In this chapter, the method reported in [5.3] will be used directly to model the 

vibration signals of a planetary gear set in healthy and faulty conditions. The simulated 

signals will help test the effectiveness of the proposed fault detection method. 

Many vibration analysis techniques have been developed to detect the gear fault 

of a planetary gearbox [5.11-5.14]. McFadden [5.15] proposed a windowing and mapping 
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strategy to obtain the vibration of individual planet gears and of the sun gear in a 

planetary gearbox. He applied a window function to sample the vibration signals when a 

specific planet gear is passing by the transducer and then mapped the samples to the 

corresponding meshing teeth of the sun gear or the planet gear to form their vibration 

signals. Many additional studies attempted to improve the performance of the method 

reported in [5.15]. Refs. [5.16-5.19] investigated the techniques to index the positions of 

each planet gear, which were used to find the best location of putting the windows. Refs. 

[5.17, 5.18, 5.20-5.22] tried to find the best window type and window length for the 

sampling. Refs. [5.16-5.23] investigated the performances of Rectangular window, 

Hanning window, Turkey window and Cosine window. All these reported studies tried to 

decompose the vibration signal of a planetary gearbox while focusing on the vibration of 

the sun gear or the planet gear of interest. The decomposed signal can reduce the 

interference from the vibration of other gears and consequently emphasize the fault 

symptoms of the gear of interest.  

In this chapter, a new windowing and mapping strategy is proposed to generate 

the vibration signal of each tooth of a planet gear. The decomposed vibration signal can 

reduce the interference from the vibrations of other teeth of the planet gear of interest. 

Examining the signals of all the teeth of a planet gear, the health differences of the teeth 

can be measured. To apply the proposed windowing and mapping strategy, an important 

issue to be addressed is to determine where to apply the windows. A numerical 

optimization algorithm is developed to find the optimal positions of windows given a 

vibrations signal of a planetary gearbox with a single tooth fault in a planet gear. The 
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proposed method as numerically and experimentally demonstrated, can detect a cracked 

tooth in a planet gear.  

 

5.2 Vibration properties of a planetary gear set 

It is essential to understand the vibration properties of a planetary gearbox before the 

development of an effective technique for tooth fault detection. In this section, the 

method proposed in Chapter 4 will be used directly to simulate the vibration signals of a 

planetary gear set and illustrate the vibration properties. In the dynamic model, each 

component is modeled with three degrees of freedom: transverse motions in the x-axis 

and y-axis, and the rotation motion as shown in Fig. 4.2. A rotating frame of reference 

fixed to the carrier is applied to all coordinates. The resultant vibration signal of a 

planetary gear set is modeled as the summation of the weighted vibrations of all planet 

gears by modeling the effect of transmission path as a modified Hamming function. The 

planetary gear set investigated in Chapter 4 is used again in this chapter to simulate the 

vibration signals. The parameters of this planetary gear set are illustrated in Table 4.1 of 

Chapter 4. The planetary gearbox contains one sun gear, four equally spaced planet gears 

and one fixed ring gear. Detailed equilibrium equations of this dynamic model are given 

in Section 4.2 of Chapter 4. 

A planet gear tooth has two meshing sides. One side meshes with the sun gear 

(sun side) and the other side meshes with the ring gear (ring side). Consequently, the 

tooth fault may appear in the sun side or in the ring side of a planet gear tooth. This 

windowing and mapping strategy is expected to be effective in the fault detection of 

either the sun side or the ring side tooth crack of a planet gear as the vibration properties 
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Fig. 5.2 shows the simulated acceleration signals of a planetary gearbox 

(parameters are given in Table 4.1 of Chapter 4) in the perfect condition and in the faulty 

condition with a 4.3mm tooth crack in a single planet gear as shown in Fig. 5.1. A 

constant torque of 429 N·m is applied to the sun gear and the rotation speed of the carrier 

is set to be 8.87 RPM. The signal sampling frequency is 5, 000 Hz. The simulated 

vibration signals mimic the vibration signals sensed by a transducer installed vertically on 

the top of the gearbox. In one revolution of the carrier, 324 (81×4) meshes take place as 

the ring gear has 81 teeth and there are four planet gears, and signal envelop fluctuates 

four times caused by the effect of transmission path as the four planet gears approach the 

transducer sequentially. Since each planet gear has 31 teeth, the single cracked tooth will 

be in meshing every 31 mesh periods [5.26] and a large spike is generated by the meshing 

of a cracked tooth. Therefore, in the time interval of 81 mesh periods the single cracked 

tooth will mesh two or three times. Fig. 5.2 shows the case of three meshes in the time 

interval of 81 mesh periods and we can observe three large spikes. However, the 

amplitude of the three large spikes is quite different for two reasons. Firstly, the mesh 

position of the cracked tooth with the ring gear is changing due to the rotation of the 

carrier. If the planet gear is far from the transducer, less vibration energy will be sensed 

by the transducer. Secondly, the rotation of the carrier causes the direction of the mesh 

force changing which leads to the variance of energy distribution in the vertical direction 

of the acceleration signal. Another phenomenon we can observe is that the time duration 

of the large spikes is very short. Most of the time, the healthy teeth are in meshing and we 

cannot detect the gear fault from the vibration signals especially for example in very 

noisy environment where the fault symptoms may be submerged.  
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Fig. 5.2: Simulated acceleration signals of the whole gearbox in perfect and faulty 
conditions 

 

When the cracked tooth is in meshing, an impulse is expected to be generated in 

the vibration signals. It appears in a very short time and only when the cracked tooth is in 

messing. If there is only one cracked tooth, such an impulse would appear at a fixed 

frequency. If we can pick out these weak fault symptoms and assemble them together, the 

fault symptom will be magnified and become easier to be detected.   

 

5.3 Windowing and mapping 

In this section, a windowing and mapping strategy is proposed to generate the vibration 

signal of each tooth of a planet gear. Fig. 5.3 illustrates the input and the output of the 

windowing and mapping strategy. The input is the vibration signal of a planetary gearbox 
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and the output is the vibration signal of each tooth of the planet gear of interest. If a 

planet gear has Zp teeth, the output will be Zp signals. Each signal corresponds to a planet 

gear tooth meshing with all the teeth of the ring gear sequentially. All ring gear teeth are 

assumed to be identical and healthy and the same assumption applies to the sun gear teeth. 

 

 

Fig. 5.3: Input and outputs of the windowing and mapping strategy 

 

Fig. 5.4 describes the signal decomposition procedures to obtain one tooth signal 

of a planet gear. Before applying the windowing and mapping strategy, signal pre-

processing is required. The time domain vibration signal needs to be resampled to the 

angular domain with the same angular step by the help of an order tracking technique 

[5.27] if the shaft has a large speed variation. As in real applications, the rotation speed of 

a gearbox is hard to keep constant causing the vibration signal to be non-stationary. 

While in the angular domain, the vibration signal is sampled at constant angular 

increments, and the effect of speed variation will be removed. In addition, if we know in 

advance some frequencies are interferences; these frequency components should be 

removed to facilitate fault detection. I call these signals with some frequency components 

removed as residual signals. Next step is to determine the window positions. Once the 

angular position of applying the first window is determined, other windows can be 

Vibration Signal of a Planetary Gearbox

Windowing and Mapping

Vibration Signal of Each Tooth of Interested Planet Gear
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applied sequentially. Because a window function is applied sequentially to sample the 

angular domain signal in every angular interval of θp, where θp is the rotation angle of the 

planet gear of going through Zp mesh periods and Zp represents the number of teeth of the 

planet gear. The determination of the angular position of applying the first window will 

be comprehensively discussed later in Section 5.3.2. Right now, I assume that the angular 

position of applying the first window is known. Without loss of generality, I will 

illustrate how to obtain the vibration signal of tooth S of the planet gear, as the same 

procedures can be applied to get the vibration signals of other teeth. Assume tooth S is 

meshing with tooth 1 of the ring gear when we apply the first window. After one 

revolution of the planet gear, the same tooth S is meshing with the tooth (Zp+1) of the 

ring gear and at this moment we apply the same window the second time. The same nth 

window is applied when the same tooth S is meshing with the tooth mod ((n-1) Zp+1, Zr) 

of the ring gear, where n is the number of sequence of the applied windows; Zr represents 

the number of teeth of the ring gear; and mod () is a function to find the remainder of the 

division of the two arguments. An exception is that when tooth S is meshing with tooth Zr 

of the ring gear, the result of the mod () is zero. Consequently, after applying Zr windows, 

we get Zr windowed signals. As stated above, the tooth mod ((n-1) Zp+1, Zr) of the ring 

gear is enmeshing when the nth window is applied, then the nth windowed signal can be 

mapped to the tooth mod ((n-1) Zp+1, Zr) of the ring gear. Assuming that the window 

angular length is θm, assembling these Zr signal segments will generate an ensemble of 

vibration signals for tooth S, where θm represents the rotation angle of a planet gear in one 

tooth mesh period.  
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Fig. 5.5: Windowing and mapping strategy (Zp = 31, Zr = 81) 

 

The same procedures described in the previous two paragraphs can be applied to 

obtain the vibration signal of any other tooth of the planet gear of interest. The only thing 

to change is the angular point of applying the first window. At the point of applying the 

first window for tooth S, tooth S is enmeshing with tooth 1 of the ring gear as stated in the 

above paragraph, and the rotation angle of the planet gear at that moment can be denoted 

by θ0. After a rotation angle of θm, tooth S+1 will be is enmeshing with tooth 1 of the ring 

gear. To get the vibration signal of tooth S+1, the same first window as tooth S should be 

applied in the rotation angle of the planet gear at θ0 + θm. Sequentially, the time moment 

of applying the first window for other teeth can be obtained. For example,  the time 

moment should be in the rotation angle of θ0 + Nθm for tooth S+N. 
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Applying the above procedures, total Zp signals can be generated corresponding to 

the Zp teeth of a planet gear. Comparing the differences of these Zp signals can help detect 

the faulty tooth of the planet gear of interest. 

The windowing process can extract the signal generated by each tooth while the 

mapping process can assemble them in the right order corresponding to the tooth number 

of the ring gear. For a cracked planet gear tooth, this strategy collects the weak fault 

symptoms spreading all over the vibration signals of a planetary gearbox to facilitate fault 

detection. In addition, the transmission path does not contribute to the differences 

between the tooth signals. Applying the windowing and mapping strategy, Zp tooth 

signals can be decomposed from a planetary gearbox vibration signal segment with the 

length of Zp x Zr mesh periods, These Zp tooth signals correspond to the Zp teeth of the 

planet gear. Each vibration signal has a length of Zr mesh periods and corresponds to a 

planet tooth meshing with the ring gear by one cycle. As each tooth of the planet gear 

meshes with the same teeth of the ring gear and in the same order, the windowing and 

mapping strategy can make sure that all the tooth signals have the same transmission path. 

Consequently, the tooth signal differences come from only the diversity of the health 

condition of the teeth of the planet gear. 

5.3.1 Window type and length 

Samuel et al. [5.22] proposed the use of a Tukey window in signal windowing. Since the 

Turkey window has a flat-top as shown in Fig. 5.6, the tooth mesh waveform of interest 

will be less distorted comparing with the use of other windows, for example a triangular 

window or a Hanning window. The rectangular window also has the top flat; however, 



165 
 

small discontinuities will be generated where the windows meet [5.22]. Thus, the Tukey 

window will be used in this chapter. An N points Tukey window function is given as 

follows: 
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Fig. 5.6: Comparison of window functions 

 

To make sure that there is no unwanted overlapping or gap between windows 

when we assemble them, the window length must be Mθm, where M is an integer. For a 

pair of standard spur gears, the contact ratio is between 1 and 2. For example, the contact 

ratio is 1.9 for the planet-ring gear pair, which means that a tooth will be in meshing in a 

time period of 1.9 θm. If the window length is chosen to be θm, the window can only cover 
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part of the vibration signal generated by a tooth. If the window length is 2θm or longer, 

the window will totally cover the vibration signal generated by a tooth but with the 

drawback of covering some vibration signals generated by the neighboring teeth. The 

longer the window, the more vibration signals generated by other teeth will be covered. 

Referring to the simulated vibration signal shown in Fig. 5.2, the spikes caused by a 

single tooth crack appear in a time duration of less than one mesh period even though the 

contact ratio is 1.9. Therefore, the window length is chosen to be θm in this study. 

5.3.2 Location optimization of the first window  

As described in the beginning of Section 5.3, once the position of applying the first 

window is determined, other windows can be applied sequentially. Ref. [5.17] proposed 

assembly and test procedures to experimentally measure the time when the sun, the planet, 

and the ring gear teeth were in meshing. If it is known when a planet tooth starts to mesh, 

the position of the first window can be determined. Therefore, the same assembly and test 

procedures reported in [5.17] can be used to find the position of applying the first 

window. However, to do this, special indexing and a specific transmission assembly 

procedure is required. In some circumstances, it is not convenient to implement such 

assembly and the measurements. Under such scenario, a numerical method is a good 

choice. In this chapter, a numerical method is proposed to find the position of applying 

the first window when there is a single tooth crack in a planet gear. 

Referring to Fig. 5.2, when the cracked tooth is in meshing, the vibration signal 

amplitude increases and correspondingly the signal energy generated by the cracked tooth 

is larger than that of other healthy teeth. Given a vibration signal of a planetary gearbox, 
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Zp vibration signals can be generated for the Zp teeth of a single planet gear assuming it is 

known where to apply the first window. Among the Zp signals, the one with the largest 

energy should correspond to the cracked tooth.  

This paragraph proposes a numerical method to find the optimal position of 

applying the first window. Based on gear mesh theory, there must be a planet tooth 

initiating its meshing at an angular point during an angular interval of θm. The first 

window can be applied when a planet tooth initiates the meshing. Arbitrarily select a 

planetary gearbox vibration signal with the angular length of θm and count the number of 

data point in the selected signal segment. I use symbol P to denote the number of data 

point. These P points are the whole candidates of positions of applying the first window. 

Pick one point among the P points and apply the first window there. Implementing the 

proposed windowing and mapping strategy, Zp signals can be generated. Calculate the 

energy (like RMS energy: root mean square) of the Zp signals, and pick the one with the 

largest energy which possibly corresponds to the cracked tooth. Similar procedures can 

be applied to other points. For each point, the largest signal energy will be recorded and a 

total of P energies will be obtained. Comparing these P energies, the largest one 

corresponds to the optimal position to apply the first window. 

The proposed windowing and mapping strategy requires accurate locations for 

windowing. The proposed numerical algorithm may be ineffective for heavily noisy 

signals. Therefore, for heavily noisy signal, denoising needs to be performed in advance 

in order to use the proposed numerical algorithm.  
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5.4 Fault detection of a single tooth crack of a planet gear 

In this section, the proposed windowing and mapping strategy is tested numerically and 

experimentally, respectively. In Section 5.4.1, the vibration signals are generated 

numerically using a dynamics based model. In Section 5.4.2, the vibration signals are 

collected from an experimental test rig located in the Reliability Research Lab in 

Mechanical Department of the University of Alberta. 

5.4.1 Numerical simulation 

The windowing and mapping strategy is applied to the simulated vibration signal of a 

planetary gear set to generate the vibration signal of each tooth of a planet gear. The 

physical parameters of this planetary gear set are listed in Table 4.1 of Chapter 4. The 

same boundary conditions listed in Section 5.2 are used to simulate the vibration signals. 

Because the simulated signals do not have interference frequencies as the experimental 

signals, the step of removing interference frequencies to generate residual signals as 

illustrated in Fig. 5.4 is omitted. Fig. 5.7 (a) presents the simulated vibration signal of this 

planetary gear set with a 4.3 mm tooth crack in a planet gear and illustrates the optimized 

window positions to generate the vibration signal of the cracked tooth using the algorithm 

proposed in Section 5.3.2. These windows perfectly cover the fault symptoms generated 

by the cracked tooth as observable in Fig. 5.7 (a). As stated in Section 5.3.1, the window 

length is chosen to be θm even though the contact ratio of ring-planet gears is 1.9, as the 

fault symptom lasts less than one mesh period as shown in Fig. 5.7 (a). The angular 

position of the first window is obtained using the method stated in Section 5.3.2. 
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Arbitrarily select a signal segment with the angular length of θm. There are 418 

(33,822/81) data points in the angular length of one mesh period since 33, 822 data points 

were collected in one revolution of the carrier (81 mesh periods). The angular position of 

the first window is chosen to be the one with the largest RMS energy. In every Zp (31) 

mesh period, a window is applied to extract the signals of interest. For the purpose of 

comparison, Fig. 5.7 (b) and Fig. 5.7 (c) present the generated vibration signal of a 

perfect tooth and the cracked tooth, respectively. After the windowing and mapping 

strategy, gear fault symptoms concentrate on the vibration signal of the cracked tooth. 

However the signal amplitude corresponds to different teeth of the ring gear varies 

largely for the cracked tooth signal as shown in Fig. 5.7 (c). This phenomenon is caused 

by the effect of transmission path and the direction change of the mesh force. However, 

we can see that the proposed windowing and mapping strategy can highlight the fault 

symptoms of a gearbox. 
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Fig. 5.7: Vibration signal decomposition of a planetary gearbox 
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To quantify the difference in vibration signals, statistical indicators are widely 

used. There are many statistical indicators available in the literature. Wu et al. [5.28] 

simulated the vibration signals of one stage of fixed-shaft gearbox and concluded that 

root mean square (RMS) and kurtosis factor were two effective indicators to reflect the 

crack severity. Lewichi et al. [5.17] tested nine statistical indicators to detect the man-

made faults in a planetary gearbox and the results showed that the indicator M8A 

performed the best. Chen and Shao [5.5] simulated the vibration signals of a planetary 

gear set and demonstrated that the crest factor was sensitive to the crack growth. Lei et al. 

[5.29] proposed two new statistical indicators: root mean square of the filtered signal 

(FRMS) and normalized summation of the positive amplitudes of the difference spectrum 

between the unknown signal and the healthy signal (NSDS), and demonstrated that these 

two indicators were effective in detecting planetary gearbox faults. Zhao et al. [5.30] 

summarized 63 statistical indicators for gearbox fault detection. All these statistical 

indicators have the potential to be used together with the proposed windowing and 

mapping strategy to detect gearbox tooth crack fault, but the effective of these statistical 

indicators should be tested. For the illustration purpose, in this study, I only tested one 

statistical indicator: RMS [11], to quantify the difference of the tooth vibration signals of 

a planet gear. The effectiveness of other statistical indicators is not tested in this study. 

They will be tested in our future work. As shown in Fig. 5.7, the signal amplitude of the 

perfect tooth is quite different from that of the cracked tooth. Correspondingly, the signal 

energy of the signals will vary largely. RMS is a measurement of a signal’s overall 

energy and is used to reflect the signal difference. The expression of RMS is given by: 

 RMS ൌ 	ටଵ

ே
ሾ∑ ሺݔ௜ሻଶே

௜ୀଵ ሿ ,                     (5.4.1) 
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where N is the number of samples of a signal and xi is the sample amplitude. 

The windowing and mapping strategy is applied to the simulated vibration signals 

of a planetary gearbox. Five health conditions are considered respectively: healthy 

condition, 1.0 mm, 2.0 mm, 3.0 mm and 4.3 mm tooth crack conditions (crack on the 

ring-side of a planet gear). When the gearbox is healthy, the RMS of the vibration signal 

generated by each tooth of a planet gear locates in the range of 38 m/s2 and 40 m/s2 as 

shown in Fig. 5.8. When the gearbox has a cracked tooth 9, the RMS of all other teeth 

also falls in the range of 38 m/s2 and 40 m/s2. The RMS of tooth 9 is about 43 m/s2 for 1.0 

mm tooth crack, 47 m/s2 for 2.0 mm tooth crack, 56 m/s2 for 3.0 mm tooth crack, and 76 

m/s2 for 4.3 mm tooth crack. When the crack length is 2.0 mm, 3.0 mm or 4.3 mm, the 

tooth crack can be detected obviously. When the crack length is only 1.0 mm, the tooth 

crack can also be detected even though the RMS difference between tooth 9 and other 

teeth is small. The RMS difference between tooth 9 and other teeth indicates that there is 

a tooth fault in tooth 9. 

Overall, the windowing and mapping strategy can effectively decompose the 

simulated vibration signal into the tooth level. Comparing the RMS of the tooth signals of 

a planet gear, a single tooth fault can be successfully detected.  
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and faulty conditions. In the healthy condition, all the gears are perfect. In the faulty 

condition, a 4.3 mm tooth crack as shown in Fig. 5.9 was manually made in a planet gear 

using Electro Discharge Machining. The rotation speed of the drive motor was set to be 

1200 RPM and correspondingly the rotation speed of the carrier shaft of the 2nd stage 

planetary gearbox was 8.87 RPM which is the same as the rotation speed of the carrier 

shaft of the simulated planetary gearbox. The signal sampling frequency was 5, 000 Hz in 

all the tests. The detailed experimental procedures and data collection were documented 

in the technique report [5.31]. 

 

 

Fig. 5.9: 4.3 mm manually made tooth crack in a planet gear 
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Fig. 5.11: Rotation speed of the encoder 

 

 

Fig. 5.12: Experimental vibration signals 
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drive motor rotation frequency, bevel gear mesh frequency and harmonics, 1st stage 

planetary gearbox sun gear rotation frequency and harmonics, 1st stage planetary gearbox 

planet gear rotation frequency and harmonics, 1st stage planetary gearbox mesh frequency 

and harmonics; in addition, a low pass filter (up to 800 Hz) is applied to remove the high 

frequency noise. The vibration of the speed-up gearboxes is not concerned as a chain 

coupling is applied between the 2nd stage planetary gearbox and the 1st stage speed-up 

gearbox. The chain coupling is believed to be able to avoid the interference from the 

speed-up gearboxes. The frequencies to be removed are listed in Table 5.1 and the 

generated residual signals are shown in Fig. 5.12. In the time domain, the residual signals 

and the raw vibration signals still do not have big visual differences.  

 

Table 5.1: Frequencies to be removed 

Drive motor 
rotation 

frequency 

Bevel gear 
mesh 

frequency 

1st stage planetary gearbox 
Sun gear 
rotation 

frequency 

Planet gear 
rotation 

frequency 

Gear mesh 
frequency 

20Hz 360Hz 5Hz 1.9Hz 118.2Hz 
 

 

Fig. 5.13 shows the decomposed tooth signals from the residual vibration signal 

of the 2nd stage planetary gearbox without and with a tooth crack in a planet gear using 

the proposed windowing and mapping strategy. Comparing between these two signals, 

we cannot visually identify the clear fault symptoms corresponding to the tooth fault. Due 

to the complexity of the gearbox test rig, the fault symptoms are very week and they are 

submerged in the vibration signals.  

 



178 
 

 

Fig. 5.13: Decomposed tooth signals of an experimental planetary gearbox 
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Fig. 5.14: Energy of experimental vibration signal generated by each tooth of a planet 
gear 
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In this study, the ability to detect incipient defect is not tested on experimental 

signals. Right now, I only have the experimental data of the gearbox in healthy condition 

and in the 4.3 mm tooth crack condition. The experimental data was collected in 2011 as 

documented in Ref. [5.32]. In the future, I will design new experiments and then test the 

ability of the proposed method to detect incipient defect of much smaller size on 

experimental signals. 

 

5.5 Conclusions  

The purpose of this study is to decompose the vibration signal of a planetary gearbox into 

the tooth level, and then amplify the fault symptoms generated by a faulty tooth. First, a 

windowing and mapping strategy is proposed to generate the tooth signals of a planet 

gear. Then, a numerical optimization algorithm is developed to find the optimal 

windowing positions for the scenario that a single tooth crack is present in a planet gear. 

The proposed method is tested on both simulated and experimental vibration signals, and 

can detect a single tooth fault in a planet gear. The results show that the RMS generated 

by the cracked tooth of a planet gear is much higher than that generated by the perfect 

teeth both for the simulated and experimental signals. The RMS difference of the tooth 

signals can tell the tooth health of the planet gear of interest. A big advantage of the 

proposed method is that a reference signal when the gearbox in the healthy condition is 

not required in the fault detection. If the vibration signals of a planetary gearbox are not 

stationary, the effectiveness of the proposed method is expected to further improve when 

angular synchronous averaging further removes noise. However, this will not be covered 

in this thesis. 
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Chapter 6: Summary and Future Work 

 

This chapter summarizes the contributions on dynamics based vibration signal modeling 

for fault detection of planetary gearboxes and describes some problems that remain to be 

addressed. 

 

6.1 Summary of contributions 

Vibration analysis has been widely used in the condition monitoring of a planetary 

gearbox system. The understanding of vibration properties of a planetary gearbox in 

healthy and faulty conditions helps the development of effective tools in the fault 

detection a planetary gearbox. This study aims to simulate and investigate the vibration 

properties of a planetary gearbox for the detection of gear tooth crack fault. The 

contribution of this thesis is summarized in four categories as described in the next four 

sections. 

6.1.1 Evaluating time-varying mesh stiffness of a planetary gear set using potential 

energy method 

 Time-varying mesh stiffness is one of the main excitations of vibration of a gear 

transmission system. An efficient and effective way to evaluate the time-varying mesh 

stiffness is essential for comprehensively understanding the dynamic properties of a 

planetary gear set. In this thesis, potential energy method is used to derive equations of an 
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internal gear pair. Hertzian stiffness, bending stiffness, shear stiffness and axial 

compressive stiffness are analytically derived for an internal gear pair without any 

assumption of the gear tooth involute curve. Considering a sun-planet gear pair as a 

fixed-shaft external gear pair, and a ring-planet gear pair as a fixed-shaft internal gear 

pair, and combining the mesh phases of gear pairs, the mesh stiffness of a planetary gear 

set is obtained. The proposed method is illustrated to calculate the mesh stiffness of a 

planetary gear set in three structures: fixed carrier, fixed ring gear and fixed sun gear. 

6.1.2 Analytically evaluating the influence of crack on the mesh stiffness of a 

planetary gear set 

The time-varying gear mesh stiffness shape will change if a tooth fault appears and 

consequently the vibration properties of the gear system will change. In this thesis, 

potential energy method analytically evaluates the time-varying mesh stiffness of a 

planetary gear set when gear tooth crack occurs. A modified cantilever beam model is 

proposed for an external gear tooth and the equations of bending stiffness, shear stiffness 

and axial compressive stiffness are derived for an external gear tooth. The stiffness 

results show that it is important to model the gear tooth starting from the root circle rather 

than the base circle. A crack propagation model is developed for an external gear and the 

equations of gear mesh stiffness are derived for different crack levels. The mesh stiffness 

reduction is quantified when a crack appears in the sun gear, a planet gear (sun gear side) 

or a planet gear (ring gear side). 
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6.1.3 Vibration signal modeling of a planetary gear set for tooth crack detection 

Even though many fault detection methods have been developed to analyze the vibration 

signals of planetary gearboxes, the vibration properties of a planetary gear set is still not 

well investigated. In this thesis, a dynamics based vibration signal modeling method is 

proposed to simulate and investigate the resultant vibration signals of a planetary gearbox 

in healthy and cracked tooth conditions. A lumped-parameter model is developed to 

simulate the vibration signals of each gear, including the sun gear, planet gears and ring 

gear. A modified Hamming function is proposed to reflect the effect of the transmission 

path. Incorporating multiple vibration sources and the effect of transmission path, the 

resultant vibration signals of a planetary gear set at the sensor location are simulated. The 

results show obvious fault symptom in the time domain vibration signals of an individual 

gear, like the sun gear. However, the fault symptoms attenuate in the resultant vibration 

signal. Obvious amplitude modulation appears in the resultant vibration signal due to the 

rotation of the carrier. In the frequency domain, a large number of sidebands appear when 

there is a crack in the sun gear tooth. These sidebands are investigated and located, which 

can help detect the crack fault. The vibration properties found by the proposed signal 

modeling method are confirmed by comparing with those of the experimental signals. 

6.1.4 A windowing and mapping strategy for gear tooth fault detection of a 

planetary gearbox 

Based on the understanding of vibration properties of a planetary gear set in healthy and 

cracked tooth conditions, this thesis develops a method to decompose the vibration signal 

of a planetary gearbox into the tooth level of a planet gear to amplify the fault symptom. 



188 
 

A windowing and mapping strategy is proposed to generate the tooth signals of a planet 

gear. A numerical optimization algorithm is developed to find the optimal windowing 

positions for the scenario that a single tooth crack is present in a planet gear. The results 

show that the RMS generated by the cracked tooth of a planet gear is much higher than 

that generated by perfect teeth for both simulated and experimental signals. The RMS 

difference of the tooth signals tells the tooth health of a planet gear. A big advantage of 

the proposed method is that a reference signal when the gearbox in the healthy condition 

is not required in the fault detection. I have tested the proposed method on both simulated 

and experimental vibration signals, and demonstrated it to be able to detect a single tooth 

fault in a planet gear. 

 

6.2 Future work 

Although the structure of this thesis is defined in the sense that important challenges and 

limitations of current models in dynamics based vibration signal modeling for fault 

detection of planetary gearboxes are covered, there are still some problems that need to 

be further addressed. Based on the scope of this dissertation, the following three 

perspectives are suggested for future consideration. 

6.2.1 Vibration property investigation of a planetary gear set with tooth pitting 

In this thesis, the vibration signals of a planetary gear set with a single tooth crack are 

simulated and investigated. The tooth pitting fault is not covered in this study. However, 

tooth pitting is a very common failure mode of gearboxes in industrial application. As 
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pitting progresses, it may spread to neighboring and mating teeth. The vibration 

properties of a planetary gearbox with distributed pitting on multiple teeth have not been 

investigated. To obtain the vibration signals, the time-varying mesh stiffness of a 

planetary gear set with distributed pitting on multiple teeth will need to be evaluated first. 

Then, the signal modeling method proposed in Chapter 4 of this thesis can be used to 

simulate and investigate the resultant vibration signals. 

6.2.2 Validation of the transmission path effect model 

In this thesis, a modified Hamming function is proposed to represent the effect of 

transmission path. This model can represent the varying distance between a planet gear 

and the vibration sensor. However, I did not provide a validation on the transmission path 

effect model. Further validation is required in future work. 

6.2.3 Time-varying load or random load effect on vibration signals 

In this thesis, the applied load on a planetary gearbox is constant. However, in industrial 

applications, the load is usually time-varying or random. This will cause the vibration 

signals to be non-stationary. The vibration properties of a planetary gearbox will be much 

more complicated under time-varying or random load condition than constant load 

condition. It is necessary to investigate them to develop effective fault detection methods 

in industrial application. 
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6.2.4 Development of advanced fault detection techniques based on understanding 

of vibration properties  

Based on the understanding of vibration properties of a planetary gear set, a signal 

decomposition method is proposed in this thesis to detect a single tooth crack in a planet 

gear. However, the fault location may be in the sun gear, the ring gear or a planet gear. 

The proposed method needs to be modified for the fault detection of sun gear tooth crack 

or ring gear tooth crack. It is best to develop an intelligent fault detection method which 

can determine the fault severity and fault location simultaneously. 

6.2.5 Vibration signal modeling using a combined element/contact mechanics model  

Parker et al. [6.1] proposed a combined element/contact mechanics model to investigate 

the non-linear dynamic response of a spur gear pair. Later, this model was extended to 

investigate the dynamic response of a planetary gear system [6.2]. This finite 

element/contact mechanics approach did not require a highly refined mesh at the 

contacting tooth surfaces. In addition, the time-varying mesh stiffness and mesh contact 

forces were evaluated internally at each time step. The model reported in [6.2] was used 

to study the quasi-static loads [6.3] and the root stresses [6.4] in planetary gears, and the 

effect of manufacturing errors [6.5] and wear [6.6] on planetary gear dynamics. I think 

this is a very good model and can be extended to simulate the vibration signals of a 

planetary gear set with tooth crack in the future. 
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6.2.6 Profile and lead modifications effect on gear mesh stiffness 

In [6.7], it is stated that “Modern gearboxes are characterized by high torque load 

demands, low running noise and compact design. In order to fulfill these demands, profile 

and lead modifications are being applied more often than in the past.” Therefore, it is 

important to consider profile and lead modifications in gear mesh stiffness evaluation. 

However, in this thesis, I only derived mesh stiffness equations for a gear pair without 

profile or lead modifications as my first step. The profile and lead modifications will be 

considered in future work. 
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