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Abstract

TheMonte-Carlo Tree Search(MCTS) algorithmUpper Confidence bounds applied to Trees(UCT)

has become extremely popular in computer games research. Because of the importance of this

family of algorithms, a deeper understanding of when and howtheir different enhancements work

is desirable. To avoid hard-to-analyze intricacies of tournament-level programs in complex games,

this work focuses on a simple abstract game:Sum of Switches(SOS).

In the SOS environment we measure the performance of UCT and two of popular enhancements:

Score Bonusand theRapid Action Value Estimation(RAVE) heuristic. RAVE is often a strong

estimator, but there are some situations where it misleads asearch. To mimic such situations, two

different error models for RAVE are explored:random errorandsystematic bias. We introduce a

new, more robust version of RAVE called RAVE-max to better cope with errors.
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Chapter 1

Introduction

1.1 Monte Carlo Tree Search Methods

Monte-Carlo Tree Search (MCTS), especially in form of the UCT algorithm [25], has become an

immensely popular approach for game-playing programs. MCTS has been especially successful in

environments for which a good evaluation function is hard tobuild, such as Go [22] and General

Game-Playing [16]. MCTS-based programs are also on par withthe best traditional programs in

Hex [3], Amazons [26], and Lines of Action [44]. Recently MCTS has been successfully applied to

single-agent search as well [12, 32].

Part of the success of MCTS is due to enhancements developed to improve its effectiveness in

games. Methods inspired by Schaeffer’s history heuristic [33] include All-Moves-As-First (AMAF)

[6] and RAVE [19]. Whereas the value of a move is normally computed from simulations where

the move is the first one played, these heuristics use all simulations where the move is played at any

point in the game. This produces a low variance estimate thatis fast to learn [19]. Methods such

as progressive pruning [5] focusing simulations on strong branches by ignoring branches that have

lower simulated means.

While the game-independentalgorithms above can be used with minor variations across different

games, typical tournament-level programs add a large number of game-specific enhancements, such

as opening books [7] and specialized playout policies [14].Further examples are patterns [22, 11]

and tactical subgoal solvers in Go [30], and virtual connections in Hex [2].

As an example of a tournament-level Go program, considerFuego [13]. The computer Go

program Fuego uses a game independent UCT engine as a base with various game specific en-

hancements including RAVE, prior knowledge, specialized playout policies, and the capability of

multi-threaded search.

1.2 Motivation

While practical applications abound, up to this point therehas been relatively little detailed analysis

of the core MCTS algorithm and its enhancements. Gaining a deeper understanding of its behaviour
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and performance is difficult in the context of complex game playing programs. Rigorous testing,

evaluation and interpretation of the results is necessary but difficult to do in such environments. A

simpler, well-controlled environment seems necessary.

Since MCTS is a relatively new approach, there are a large number of open research questions,

both in theory and in practice. For example,

• How does the performance of MCTS vary with the complexity andtype of game that is

played?

• What are the conditions on a game for which a specific enhancement works? How much does

it improve MCTS in the best case? When and how do these enhancements fail?

• How should a general framework for MCTS be designed, and how can it then be adapted to a

specific game?

The final item is addressed in practice by the Fuego system [13], an open-source library for

games which includes the MCTS engine used for the experiments in this thesis. The experiments

help to address some of the other research questions regarding MCTS.

One way to study questions about MCTS in more precision than is possible for real games is

to use highly simplified, abstract games for which a completemathematical analysis is available.

Such games allow a deeper study of the core algorithms while avoiding layers of game-specific

complexity in the analysis.

In this thesis, a simple artificial game called SOS is used foran experimental study of MCTS al-

gorithms. In particular, SOS is selected as a close to ideal scenario for the RAVE heuristic. Through

experiments in our software FUEGO-SOS, we analyze the behaviour of UCT and RAVE in this well-

controlled environment. We manipulate the complexity of the SOS game, as well as the strength and

accuracy of UCT and RAVE. This analysis results in the development of RAVE-max as a solution

for dealing with games involving poor RAVE accuracy. Parts of this work have previously been

printed in [40, 41]. The rest of this thesis is organized as follows: Chapter 2 presents concepts

and methods used in games Artificial Intelligence (AI) research and the implementation of current

methods, such as UCT, in Fuego. Chapter 3 introduces the research questions addressed in this

thesis. Chapter 4 compares other models used to study MCTS and introduces the SOS game model.

Chapter 5 describes our experiments on SOS involving UCT andRAVE. Chapter 6 concludes with

a discussion of our results and ideas for future work.
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Chapter 2

Overview of the Research Area

This chapter discusses classical and contemporary techniques used in the computer study and play

of two-player sequential games. The Fuego framework mentioned in Section 1.2 is an example of

game-playing software containing many of the techniques described. Some implementation details

of Fuego are also discussed in this chapter as the framework is used to develop the software used in

the experiments of Chapter 5.

2.1 Game Trees

Classical board games have often been used as the focus of games AI research. Games that have

been studied include Go [4, 28], Chess [8], Checkers [34, 35], Amazons [29], Hex [3], Havannah

[39], and Lines of Action [43]. The structure used to model the state space of such games is a type of

directed graphcalled agame tree[23, 15]. A directed graph,G = (V, E), is an ordered pair formed

by a set ofverticesV and a set ofdirected edgesE ⊆ V ×V . We also define the formea,b = (va, vb)

for use as shorthand. Apathfrom vertexv1 to vn is a sequence of verticess = (v1, v2, . . . , vn) such

that ei,i+1 ∈ E for 1 ≤ i < n. In a game tree, vertices are commonly referred to asnodesand

edges asbranches, moves, or actions. A treeT is a graph in which for allvi there exists exactly

one path fromv0 to vi, wherev0 is called theroot nodeof the tree. If∃e1,2 ∈ E, thenv1 is called

the parentof v2 andv2 is thechild of v1. If ∃e1,2, e1,3 ∈ E, thenv2 andv3 are calledsiblings.

If ∃p = (v0, . . . , vn) in T , thenv0, ..., vn−1 are said to beancestorsof vn. Nodes of a game tree

represent states of the game and edges represent actions or moves that cause transitions between

those states. Theroot nodev0 represents the initial state of the game and has only outgoing edges,

whereasleaf nodeshave no outgoing edges and represent the terminal states of the game; all other

nodes represent intermediate states and are referred to asinterior nodes. Leaf nodes are associated

with a payoff, π(vt) ∈ ℜ, which we define as the result Player 1 receives when the leaf nodevt is

reached. We will only be discussing 2-player zero-sum games; the player playing at the root node is

labeledp1 and the other player is labeledp2. The payoff forp2 is the negative of the payoff forp1.

Researchers strive tosolvegames using game trees. To solve a game means to know, at the root
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node, the game result and a strategy required to attain that result. This definition of solving a game

is actually the definition of a weak solution [1], but for the purposes of this thesis it suffices. Solving

a game is trivial with a complete game tree, as it enumerates all possible strategies [24]. However, a

complete game tree has approximatelyΘ(bd) leaf nodes; whered is the depth of the game tree andb

is the number of legal moves at each state. This number is verylarge for most games;e.g., estimated

to be about1031 for 8x8 Checkers [1]. As it is unfeasible to store or even calculate trees of such

size, a partial game tree must be used instead. This is acceptable as only a subtree of the complete

game tree is necessary to solve a game [24]. The smallest treenecessary to solve a game is called

a minimal proof tree. A proof treeP is a subtree of game treeT for a propertyx that satisfies the

following properties:

1. v0 ∈ P andv0 = root(P ).

2. if vi ∈ P andvi ∈ leaves(P ), propertyx holds invi.

3. otherwise, ifvi ∈ P andp1 is to play atvi, then∃vj ∈ children(vi), vj ∈ P .

4. otherwise, ifvi ∈ P andp2 is to play atvi, then∀vj ∈ children(vi), vj ∈ P .

Propertyx is defined as a condition for one of the players;i.e. if propertyx is “p1 has won”, then

T is a complete winning strategy forp1. The problem is determining how to intelligently build and

utilize a proof tree while mitigating time and space complexity issues. Although the ultimate goal

in games research is to solve a game, a more accessible goal isoften to produce the strongest player

possible. Theminimax[31, 36] algorithm is used for evaluating a game tree and determining the

best move to play.

2.2 Minimax

The minimax algorithm involves labelingp1 as theMAX player andp2 as theMIN player. A node

is a MAX node if it is MAX ’s turn to play and aMIN node if it is MIN ’s turn. Beginning at the leaf

nodes, we back up the payoff values toward the root node. Nodes are assigned valuesπ(vi) based

on the player whose turn it is. The valueπ(vi) for each node is known as its minimax value and

represents the game result obtained if both players play optimally from that point on. π(vn) =

max(π(vi), . . . , π(vj)), wherevi, . . . , vj ∈ children(vn) if vn is a MAX node atvn andπ(v1) =

min(π(vi), . . . , π(vj)), wherevi, . . . , vj ∈ children(vn) if vn is aMIN node. Through this process

the payoff assigned to the root node,π(v0), is the solution of the game and is associated with the

move which leads to the node with the same payoff.

2.2.1 Minimax Search

The basic method of minimax search involves a depth first expansion of the tree, followed by min-

imax backups of the payoffs, and a best-first search to determine a winning strategy. The search
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is guided by the result of anevaluation functionapplied at each node encountered. An evaluation

function assigns a valuêπ(vi) to each node in a game tree. In a minimax search the evaluationfunc-

tion assigns minimax values to nodes. For interior nodesπ̂(vi) is the minimax value obtained from

backups. For terminal nodeŝπ(vi) is the payoff value associated with the game state. In practice

tree expansion is only performed to some depthd, as the storage and computation of a complete

game tree is intractable. Ifd is less than the depth of the complete game tree, then this expansion

does not contain all the leaf nodes ofT . The payoff values must be estimated for some leaf nodes in

the partial game tree that is generated. The accuracy of the estimates and the search result depend on

theheuristic functionused at the leaf nodes of the partial tree. The heuristic function estimates the

minimax value of nodevi based on the game state represented by the node. Typically a deeper ex-

pansion results in a more accurate estimate. However, the uniform expansion used in basic minimax

search involves expanding and storing many unnecessary nodes, causing the algorithm to quickly

reach computational and storage limits.

2.2.2 αβ Search

To improve upon these constraints, minimax is often used in conjunction with alpha-beta (αβ) prun-

ing [31]. In αβ pruning two bounds,α andβ, are maintained during the search. During the depth-

first traversal of the partial game tree,α holds the highest value available at aMAX node along the

path to the current state andβ holds the lowest value available at aMIN node along the path.α is

initialized to−∞ andβ is initialized to+∞. If at nodevi α > β, thenvi need not be explored and

can be pruned. In the best case,αβ pruning allows us to evaluate a significantly smaller numberof

nodes, the square root of the number of leaf nodes in the tree.This reduction allows for a search that

is twice as deep as without pruning, producing more accurateπ̂(vi) estimates and better play.

αβ search has been successful in domains such as Checkers, Chess, and Go-moku, and has

produced stronger-than-human computer players [4]. However, in domains such as Go and Gen-

eral Game Playing, alpha-beta search has been less successful. This result has been attributed to

the difficulty of producing a strong heuristic evaluation function in these domains [4, 16]. Recent

developments incorporatingMonte Carlo Tree Search Methodsin computer Go and General Game

Playing have shown very significant improvement over traditional alpha-beta approaches [6, 16].

2.3 Monte Carlo Tree Search Methods

Monte-Carlo (MC) Methods have long been used in the physicalsciences to simulate physical sys-

tems [27]. However, MC Methods were not widely employed in zero-sum games research until

Brügmann’s work on “Monte Carlo Go” [6]. Multiple MC-basedtree search methods simultane-

ously gained popularity in the 2000s following Brügmann’swork [9, 10, 22]. These methods became

collectively classified as MCTS algorithms. The basic MCTS algorithm involves generating a game

tree using random simulations and collecting statistics inthe tree to find the best solution available
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[9]. The game tree is grown incrementally in a best first manner guided by the simulations. The

tree is initialized to have only the root node,v0. MCTS simulations consist of two phases: during

the in-tree phase, a best first search is conducted to find the leaf nodevn of the partial tree with the

best value according to an evaluation function such as the UCT formula [25]; during theplay-out

phase, random simulations are performed with the starting statevn. If vn is visited for the second

time during simulations,vn is expanded,i.e. all children ofvn are added to the tree. Statistics are

kept for each node such as the average outcomeX̄(vn) of all simulations resulting from that node.

The evaluation function is typically composed ofX̄(vn) and an exploration component in order to

guide the search towards both promising and nodes with high uncertainty about their evaluation.

Since the in-tree phase directs simulations in a best-first manner, if a large number of simulations

are conducted, stronger moves are simulated far more frequently than other moves. The exploration

component of the evaluation function allows for weaker moves to occasionally be simulated over

stronger ones. As long as the exploration component is neverzero, given an infinite number of

simulations, thêπ(vi) values of all nodes would converge to their true minimax values,π(vi) [10].

The problem of devoting search to exploring unverified options or exploiting current maxima

is called theexploration-exploitation dilemma. Unlucky simulations may lead the search down

a sub-optimal branch that may not reach a refutation until many simulations later. However, the

simulations may instead be following the optimal branch andthe exploration of alternative options

may simply be a waste of time and resources. To effectively use time and resources, an algorithm

needs to balance between exploring and exploiting the search space in an efficient manner. The

algorithm Upper Confidence bounds applied to Trees (UCT) is apopular solution to the exploration-

exploitation dilemma [25]. At each nodevi UCT chooses a child that maximizes the formula:

π̃(vj) = X̄(vj) + c

√

log Ti(vi)

Ti,j(vi)
(2.1)

Ti(vi) represents the number of times thevi was visited.X̄(vj) denotes the average simulated payoff

of vj . Ti,j(vi) is the number of times moveei,j has been played atvi. The exploration constantc is

set by the user; increasingc leads to more exploration. In the basic MCTS algorithms suchas UCT,

the estimated minimax value of nodevj is its simulated mean,i.e., π̂(vj) = X̄(vj). By estimating

minimax values through random simulations, MC methods havesucceeded in domains previously

limited by heuristic functions that were difficult to formulate. In particular, since the UCT algorithm

is simple to implement and elegantly solves the exploration-exploitation dilemma, it is frequently

employed in current game-playing programs. UCT has been successfully used in Go [21], General

Game Playing [16], Amazons [26], Lines of Action [44], Havannah [39], and Hex [3].

2.4 RAVE

To produce low variance estimates forπ̂(vj), vj must be simulated many times. However, in a

large state space where there are many other candidate nodes, this may be very time consuming.
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Gelly and Silver proposed the use of an algorithm called Rapid Action Value Estimation (RAVE)

to reduce the time required to produce a low variance estimate for π̂(vj) [20]. In RAVE, π̂(vj)

is a linear combination of̄X(vj) and Ȳ (vj), whereȲ (vj) is an average generated by the RAVE

updates. Before we continue, let us define a term that will be used in the description of RAVE

updates. We define amove classM ⊆ E as a set of edges, such that each edge inM represents

the same move of a game piecex from positiona to positionb. Whereas traditional MC methods

update the value of a node,π̂(vj), for all simulation results that arise from choosing moveei,j ,

RAVE updates the value of̄Y (vj) for all moves in the same move class that occur later in the game

thanvi. That is, given{ea,b, ec,d, ei,j} ⊆ M , if vi is an ancestor ofva, a simulation involving move

ea,b will cause an update tōY (vj).This situation is illustrated in Figure 2.4. Low variance estimates

can be produced with only a few simulations using RAVE. But because RAVE updates ignore

temporal information, they may not always be accurate despite the large number of simulations they

represent. With enough simulations,X̄(vj) becomes more accurate thanȲ (vj) as it represents only

the game statevj . By varying the weighting of thēX(vj) and Ȳ (vj) components appropriately

during search, MCTS programs can produce strong value estimates both while simulation counts

are high or relatively low. RAVE has been successfully used in the games of Go [19], Havannah

[39], and Hex [3].

Figure 2.1: An example used to illustrate node relations that would be affected by the RAVE backup
procedure. Branchesea,b, ec,d, ei,j are of the same move class, x. Simulations passing throughvd

or vb will cause an update tovj . A simulation throughvd will not affectvb and vice versa.
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2.5 Fuego

Modern programs for games such as Hex, Go, Lines of Action, and General Game Playing now

contain a MCTS engine with a number of enhancements. The Fuego Go program developed at the

U of A is one such program [13]. It includes an UCT-based MCTS engine with RAVE capabilities

and domain knowledge capacities. Although the Fuego framework is primarily developed for the

computer Go program of the same name, its basis is the game-independent SmartGame library: a

set of classes and functions to handle gameplay, file storage, and game tree search as well as other

utility functions. The SmartGame library includes a generic MCTS engine with support for UCT,

RAVE, and using prior knowledge. As the Fuego framework was used to develop the software used

for the experiments presented in Chapter 5, relevant features of the Fuego framework are explained

in this section.

Similar to other MCTS frameworks, in Fuego, the game tree is grown incrementally. A value

called theexpand thresholddetermines how many visits a node must receive before it is expanded.

This threshold is set to one by default, meaning that all nodes are expanded on their second visit in

the game tree. Unexpanded nodes are assigned aFirst Play Urgencyvalue. The default value of

10000 is used in the experiments, which gives high priority to unexpanded nodes [25]. The UCT

engine uses a modified UCT formula, with user-defined parameters controlling the search behaviour.

π̃(vj) =
Ti,j(vi)

Ti,j(vi) + Wi,j

¯X(vj) +
Wi,j

Ti,j(vi) + Wi,j

¯Y (vj) + c

√

log Ti(vi)

Ti,j(vi) + 1
(2.2)

Ti(vi) represents the number of times the parent nodevi was visited. ¯X(vj) denotes the average

reward atvj and ¯Y (vj) the RAVE value of move classj atvi. The parameterc is defined by the user

to determine the influence of the UCB bound value; this parameter is usually optimized by hand,

but has the default value of 0.7.Ti,j(vi) is the MoveCount, the number of times movej has been

played atvi. Adding 1 toTi,j(vi) in the bias term avoids a division by 0 in case move classj has a

RAVE value butTi,j(vi) = 0. The RAVE weightWi,j will be explained later.

Along with UCT, the SmartGame library includes an implementation of RAVE. A parametric

function is used to control the influence of the RAVE value. When RAVE is active, the estimated

value for a move is determined by a linear combination of the mean value and RAVE value of the

move. The weighting function used here is simplified from theone originally proposed in [19], but

has been found to work as well as the original formula in Fuego. The unnormalized weighting of

the RAVE estimator is determined by the formula:

Wi,j =
Si,j(vi)wfwi

wf + wiSi,j(vi)
(2.3)

The RaveCount, Si,j(vi), represents the number of rave updates of move classj at nodevi. wi

andwf stand forRaveWeightInitialandRaveWeightFinalrespectively; these parameters determine

the influence of RAVE relative to the mean value. They are manually set by the user.wi describes

8



the initial slope of the weighting function andwf describes its asymptotic bound. As the number

of simulations increases, the weight of the RAVE value diminishes relative to weight of the mean

value. This formula is designed to lower the mean squared error of the weighted sum; it is optimal

when the weight of each estimator is proportional to the inverse of its mean squared error [37]. The

default value of RaveWeightInitial is 1.0 and a suitable RaveWeightFinal is found experimentally.

In our experiments, RaveWeightInitial is kept at 1.0 as we donot make any assumptions about the

accuracy of early RAVE and UCT estimates.

A tournament program also contains a time control that maintains and limits the time spent in

search, as the program has a finite amount of time to perform a play. We use time control only for

large game experiments where the required search time becomes impractical otherwise.
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Chapter 3

Research Questions and
Contributions

Compared to methods such asαβ search and minimax search, MCTS is a relatively new approachin

games AI research. However, it has been more successful thantraditional search methods in difficult

domains such as Go [21] and General Game Playing [16]. MCTS has also exhibited comparable

performance in other domains traditionally dominated byαβ such as Hex [3], Havannah [39] and

Lines of Action [44]. Despite recent success in these domains, MCTS is still in its infancy with

relatively undeveloped theory. Research directed at MCTS algorithms themselves would greatly

improve the effectiveness of their application to current and new domains. One way to approach this

ideal is by solving the research questions posed in Section 1.2.

How does the performance of MCTS vary with the complexity andtype of game that is

played? That is, given gameA and gameB, and similar implementations of MCTS, how does

the performance of MCTS differ? Furthermore, how does the performance differ within a game

when you change game parameters such as board size or number of pieces? These questions can be

answered by observing how MCTS interacts with the differentgame treesTA andTB. Properties

such as the number of leaf nodes, the depth of the tree, and thebranching factor should be related

to the performance of MCTS on a given game tree. Experiments on P-game trees provide some

performance benchmarks for the MCTS algorithm UCT [25]. However, other game trees may be

used for specific properties such as consistent move values.If we have benchmark values for MCTS,

we can know what to expect before adapting it to a new game. Prior knowledge of the affinity of

a game towards MCTS allows a researcher to determine whetherimplementing MCTS is a prof-

itable endeavour for his project. Furthermore, if certain properties of the game tree improve MCTS

performance, we can look for ways to manipulate the game treeto better suit the algorithm’s needs.

What are the conditions on a game for which a specific enhancement works? How much

does it improve MCTS in the best case? Where may these enhancements fail? By knowing the con-

ditions for which an enhancement works, benefits towards that enhancement may be reaped similar

to those mentioned in the previous paragraph. In addition, there may be points in a game during
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which the enhancement is more or less effective. By understanding the conditions for which an

enhancement works, we can strengthen or weaken the enhancement to suit the game state. However,

enhancements may be produced for research or for improving the performance of a game-playing

program in competitions. There may be abundant informationabout an enhancement or very lit-

tle. Furthermore, the enhancement may be very general or very specific, being only suitable for a

particular game. Because a large number of game-playing programs in games AI research tend to

be competition programs, they tend to contain several enhancements. It is difficult to discern the

effect of a particular enhancement with so many conflicting variables. If we know the effectiveness

of an enhancement in its best case, we can determine how well-suited it is for a particular environ-

ment. If a certain property improves the enhancement, it maybe exploited to maximize the benefit.

Move ordering inαβ search is an example of this kind of improvement. Similarly,by knowing

where enhancements are detrimental in a game, we can avoid weak play caused by misusing the

enhancement.

How should a general framework for MCTS be designed, and how can it then be adapted to

a specific game?How should software be produced to use and test MCTS? The Fuego framework

attempts to answer these questions by providing a game-independent MCTS engine that can be

adapted to specific games. Having a general framework to build upon allows users to achieve a level

of consistency when comparing performance across games. Separating the game specific from the

game-independent structures also improves the process of changing either.

By using the Fuego framework, we can essentially adapt MCTS to any adversarial game for

testing. However, most classical games are not yet solved. This means that it is difficult to measure

the correctness of moves that are played in most games. In addition, we would like to be able to

control the complexity of the game on which MCTS is operatingon. Overly large game depth and

complexity are not necessary for determining basic algorithm properties. Thus, we propose the use

of a simple abstract game for the purpose of studying MCTS. Bydesign, this abstract game should

be well suited to an enhancement(s), so we may test some of theenhancements that are popular in

practice currently. The abstract game we propose to use is called Sum of Switches (SOS). In the SOS

game, the value of a move is independent of when and by which player it is chosen. This represents

a best-case scenario for history-based heuristics such as RAVE that generalize move performance

across different points in the game.

Using the SOS game we attempt to answer some of these researchquestions. By approaching

these research questions, this thesis has produced the following contributions:

• We demonstrate the use of SOS as a test bed for UCT and RAVE. By implementing SOS

in Fuego, we show that such a general framework may be adaptedto a game. Furthermore,

we use the various facilities of Fuego to gather data on the performance of the algorithms. By

varying the size of SOS, we establish performance baselinesfor UCT and RAVE based on

game complexity. We also show the performance of the Score Bonus enhancement on SOS.
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• We show how some of the strengths and weaknesses of RAVE can affect search in SOS. We

show the use of SOS as a best case environment for RAVE by demonstrating the effectiveness

of using RAVE as the sole estimator. Results we present usingfalse RAVE updates further

provide insight into the properties of UCT and RAVE algorithms. Using the indiscriminate

false updates we show that UCT and RAVE are fairly resilient against noise. By using se-

lective false RAVE updates, bad cases for RAVE can be mimicked. We show the detrimental

effect that such scenarios can have on the search performance and provide a partial solution in

RAVE-max, a modification of the RAVE algorithm that handles cases where the RAVE value

is underestimating the true value of a node.
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Chapter 4

Artificial Games

4.1 Artificial Game Models

The original UCT paper [25] contains an experiment showing the performance of UCT on the artifi-

cial P-game tree model[38]. Each edge, or move in this game, is associated with a random number

from a specified range. The value of edges corresponding to opponent moves is negated. The value

of a leaf node is the sum of the edge values along the path from the root. A positive value indicates a

win for the player at the root and a negative value indicates awin for the opponent. Zero results in a

draw. In such a model many properties of the tree can be easilymanipulated, such as the branching

factor and tree depth. However, the model does not naturallyprovide any benefits to UCT or RAVE,

making it unsuitable to our goals of comparing best-case performance. Furthermore, the full game

tree must be generated, stored, and traversed in order to obtain an optimal strategy to compare to.

Larger problems are harder to model using this approach as storage requirements become harder to

meet.

A special case of the P-game tree model is thePrefix Value Game Tree Model[18]. In a Prefix

Value tree, each move in a state is associated with the amountit deviates from the optimal move in

that state. The value of a node is the alternating sum of the moves along the path from the root to

that node plus the value of the root node from the perspectiveof the turn player. By construction

this means that the negamax value for each node can be produced incrementally. This property

allows for large game trees to be easily constructed containing accurate node values. Determining

an optimal strategy in this paradigm is trivial. The optimalstrategy is determined by construction

as the path containing all moves with zero value. Although this model provides a simple way to

generate synthetic game trees, it does not provide any natural benefit to UCT or RAVE. Synthetic

game trees may be too abstract for the purposes of researching algorithm enhancements dependent

on structural properties of classical games. In order to mimic those same properties in a synthetic

game tree, various changes would need to be made, but may simply complicate the model.

One of our initial intentions upon approaching this projectwas to observe the behaviour of UCT

and RAVE in a best-case environment. This was the primary reason behind choosing an abstract
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environment other than synthetic game trees as a means to test the properties of UCT and RAVE.

The abstract game SOS appears to complement the RAVE algorithm by design. Furthermore, SOS

also has an easily extractable optimal strategy. The scalability of the game provides a means of

manipulating the difficulty level and comparing to alternative models.

4.2 Sum of Switches

Sum of Switches (SOS) is a number picking game played by two players. The game has one pa-

rametern. In SOS(n) players alternate turns picking one ofn possible moves. Each move can only

be picked once. The moves have values{0, . . . , n − 1}, but the values are hidden from the players.

The only feedback for the players is whether they win or lose the overall game. Aftern moves, the

game is over. Lets1 be the sum of allp1’s picks,s1 = p1,1 + . . . + p1,⌈n/2⌉, ands2 the sum ofp2’s

picks,s2 = p2,1 + . . . + p2,⌊n/2⌋. Scoring is similar to the game of Go. Thekomik is set to the

perfect play outcome,k = (n − 1) − (n − 2) + . . . ± 0 =

n
∑

i=1

(n − i)(−1)i+1 = ⌊n/2⌋. The first

player winsiff s1 − s2 ≥ k.

The optimal strategy for both players would be to simply choose the largest remaining number

at each step. However, since both the move values and the finalscoring system are unknown to the

players, good moves must be discovered through exploration, by repeated play of the same game.

SOS can be viewed as a generalized multi-armed bandit game [25]. In classical multi-arm bandit

problems, each game consists of picking a single armi out of n possible arms, which leads to an

immediate rewardri, a realization of a random variableXi. The player uses exploration to find the

arm with best expected reward, and exploits that arm by playing it. In SOS, one episode consists of

playingall arms once. The rewardri for choosing armi is constant, but is not directly shown to the

player. Only the success of all choices relative to the opponents choices is revealed at the end of the

episode.
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Chapter 5

Experimental Results

The experiments investigate the properties of MCTS with UCTand RAVE. We show results for

the basic behaviour of UCT in SOS followed by the basic behaviour of RAVE in SOS. Next, we

justify our choices in the Move Selection Policy and the Exploration Constant. We also show the

results of using the Score Bonus enhancement from Fuego on SOS. Then we present the results

of experiments where RAVE is intentionally misled. By usingfalse RAVE updates, we mimic the

problems in special-case game situations that tend to be difficult for RAVE. These situations involve

underestimations and overestimations on move values.

5.1 Setup

5.1.1 Graphs

This section describes the general properties of the experiments in this chapter. Each experiment

compares the performance of the UCT+RAVE SOS game-playing program, implemented as de-

scribed in Chapter 4, across different settings. The program is referred to as FUEGO-SOS for the

remainder of this chapter. Performance with respect to timeis measured by changing the number

of MC simulations the program is allowed to execute before returning a search result; this simu-

lation maximum is varied between powers of 2 from21 to 216. Three types of graphs are used

to plot the results of these experiments, which will be referred to as: general performance graphs,

specific performance graphs, and performance differentialgraphs. General performance graphs plot

the performance of the FUEGO-SOS player on a per-game basis. Each data point in the resulting

graph represents the number of correct first plays performedby FUEGO-SOS across 1000 trials. The

correct first play is known since we know the ordering of all moves, as discussed in Section 4. Fig-

ure 5.1 serves as a sample general performance graph showingthe performance of FUEGO-SOS on

SOS(10). The 99% confidence intervals are represented on Figure 5.1 using error bars. This interval

is largest at27 where it is 40.79 units wide on each side. Error bars are omitted from other exper-

iments in this section to avoid clutter. As SOS(10) is the most common testing environment in this

chapter, error is expected to be similar to this example. Specific performance graphs are used to in-
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vestigate the properties of individual moves. To obtain data values, 1000 search trials are performed

each using the search limit of216 simulations. In each trial, data is recorded after21, 22, . . . , 216

simulations. Graphs show the averages over all 1000 runs. Weshow how variables of interest such

as the individual move counts and estimated move values change with the number of simulations

using these results. Moves are labeled with their true valuefrom 0 to n− 1 in SOS(n). Performance

differential graphs present the performance difference between the general performance data of two

different settings. These graphs show the relative performance of one setting using the other as the

baseline measure. Performance differential graphs merelyserve as visual aids. The corresponding

values from two general performance graphs are simply subtracted to obtain these graphs.
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Figure 5.1: UCT on SOS(10), with 99% confidence intervals.

5.1.2 Settings

The basic UCT search engine is kept in its default form as described in Section 2.5, except in the

experiments of Section 5.6.2. Most UCT search settings are kept at default Fuego values [13].

The Fuego version used in these experiments was Fuego release 0.3. Values that were changed are

explained here. Default move selection in Fuego chooses themost simulated move, as this has been

shown to provide more stable performance in Go. We use the highest estimated move value as our

selection policy as per the original UCT [25]. FUEGO-SOS also performed better using the highest

valued move than the most simulated move, as will be shown in Section 5.4. WeightRaveUpdates is

another feature that is disabled in these experiments, but on by default in Fuego. WeightRaveUpdates

involves scaling the RAVE updates for moves based on how latein the game they were played. This
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modification to RAVE is a newer feature in the Fuego system andit is unclear how it affects the

algorithm. Although it may be interesting to investigate how the WeightRaveUpdates performs in

SOS in future work, preliminary results showed no significant change in performance. Fuego uses

a default time limit of 10s in the search. This time limit is disabled in experiments wheren ≤ 20 to

avoid bias in our results. Our experiments were performed on2 GHz i686 computers with 1GB of

memory running Linux 2.6.25.14-108.fc9.i686 Fedora release 9 (Sulphur).

5.2 Basic Behaviour

The complexity of a SOS game is solely determined by its size.SOS(n) produces a game tree of

sizen! assuming transpositions and tree pruning are not used. For example, the complete SOS(10)

game tree contains 3628800 leaf nodes. The larger the game, the more difficult it is for a game-

playing program to solve. Similarly, the playing strength of a plain, unenhanced UCT game-playing

program is mainly determined by a single parameters: the number of simulations it is allowed to

perform before playing a move. To establish a performance baseline for UCT in SOS, experiments

varyingn ands were performed. A uniform random playout policy is used during simulations in all

experiments found in this chapter.
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Figure 5.2: Performance of UCT without additional enhancements in SOS(n).

As n increases, convergence to optimal play becomes progressively slower. Forn ≤ 10 the

program quickly converges to optimal play in under212 simulations. However, for larger games in

the range20 < n ≤ 50, the number of simulations required for convergence appears to exceed the

limits of the values tested. Overall, convergence rates seem similar to those for P-games in [25] for
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games with a comparable number of leaf nodes. Convergence isquickly achieved in small games,

but if the game is too simple, it becomes difficult to measure changes introduced to the system.

Additionally, practicality must be considered, as resultsshould be obtained in a reasonable amount

of time. Estimated simulation speeds for SOS(10), SOS(20),SOS(30), SOS(40), and SOS(50) were

respectively 68000, 28000, 16000, 10000, and 7000 games persecond. For further experiments,

SOS(10) was chosen as a compromise between game difficulty and runtime until convergence.

5.3 RAVE

Section 2.5 describes how RAVE is used in Fuego’s UCT engine and introduces theRaveWeightFi-

nal variable. By manipulatingRaveWeightFinal, we manipulate the overall and long-term influence

of the RAVE value. Figure 5.3 shows experiments where RAVE isactive. Compared to the perfor-

mance of FUEGO-SOS with RAVE disabled, even low values ofRaveWeightFinalsuch as 2 give no-

ticeable improvements. Increasing the value ofRaveWeightFinalimproves performance, but shows

diminishing returns in the range tested: settings of 1024 producing similar results to 131072. As

a matter of convenience, 32768 was arbitrarily chosen as theRaveWeightFinalvalue used for most

experiments involving RAVE in this chapter. The value was sufficiently large to cause strong RAVE

influence and, as shown in Figure 5.3 produces very similar performance to other larger values.
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18



5.3.1 Exploiting RAVE

As stated in Section 4, this game is designed as a kind of best case for RAVE: the relative value

between moves is consistent at all stages of the game. In fact, in SOS it is possible and beneficial to

base the UCT search exclusively on the RAVE value and ignore the mean value. Figure 5.3 includes

this RAVE-only data as well. The performance of the RAVE-only setting in SOS outperforms all

RaveWeightFinalsettings tested. This method may not work in other games where the value of a

move depends on the timing of when it is played. In such games RAVE may cause overestimations

or underestimations in move values. The experiments in Section 5.6 approximate the difficulties that

may arise if UCT+RAVE overestimations or underestimationsin RAVE values occur; preliminary

tests showed that these kinds of problems were simply exaggerated if RAVE were used exclusively.

5.4 Move Selection Policy and Exploration Constant

In this section we discuss the Move Selection policy and Exploration Constant and the reasoning

behind their settings. As stated in Section 5.1.2, the Move Selection policy used in FUEGO-SOS

chooses the move with the highest estimated value. If strictly UCT is used, the search returns the

move at the root with the highest mean value, but if RAVE is enabled, the search returns the move

with the highest weighted sum of mean and RAVE values. The alternative policy of choosing the

most simulated move avoids the risk of “lucky” simulations skewing the search in favour of moves

with less reliable estimated values. However, results in Figure 5.4 show that the two strategies

perform approximately the same on SOS(10), but the highest estimated value policy appears to be

more successful while the simulation counts are low.

The exploration constantc in UCT is used to control the frequency of exploration in nodes

with high uncertainty. This constant has typically been hand-tuned to optimize UCT performance

in different games. However, there is debate about the effectiveness of the exploration component

of UCT, as some programs appear to perform best whenc = 0. Figure 5.5 shows the results of

varyingc on SOS(10). Differing values ofc do not seem to produce a change in the performance of

FUEGO-SOS on SOS(10), so the default value of 0.7 is maintained throughout our experiments.

5.5 Score Bonus

Score Bonus is an enhancement that differentiates between strong and weak wins and losses. If

game results are simply recorded as a 0 or 1, the program does not receive any feedback on how

close it was to winning or losing. With score bonus, a strong win that probably contained many

high-scoring moves gets a slightly better evaluation than aclose win.

In SOS with score bonus, losses are evaluated in a range from 0to γ and wins from1 − γ to 1,

for a parameterγ < 1. A minimal win is awarded1 − γ, and a maximal win a score of 1. All other

game outcomes are scaled linearly in this interval. The values assigned for losses are analogous.
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Figure 5.4: Performance values upon changing Move Selection Policy. Estimated Value is abbre-
viated as EV and Move Count is abbreviated here as MC. Do not confuse with Monte-Carlo from
text.

Score Bonus is used in the Fuego Go program. Unpublished large-scale experiments by Markus

Enzenberger showed that small positive values ofγ improve the playing strength slightly but signif-

icantly for 9 × 9. Best results were achieved forγ = 0.02. Figure 5.6 shows results for how this

enhancement performed in SOS.

We testedγ = 0.1, γ = 0.05, γ = 0.02, andγ = 0.01 in SOS to search for a suitable setting,

asγ needs to be hand-tuned. Despite success in Go, score bonus fails to improve gameplay in SOS.

None of the tested settings showed noticeable improvement.

5.6 False Updates

5.6.1 Indiscriminate False Updates

While RAVE has improved general performance in Go and other games, it is not always reliable.

RAVE can fail in some Go positions where basic UCT succeeds. Since RAVE updates the value

of all moves in a winning sequence and ignores temporal information, in less favourable environ-

ments moves may develop skewed RAVE values. False RAVE values can lead the search astray.

In situations where specific moves are only helpful at a giventime, RAVE can weaken game-play

instead of improving it. Suppose that in a game, a certain last move,Movea , will always lead to

a win, but is useless at all other times. The high RAVE value that Movea is likely to earn early in

simulations causes the game-playing program to waste time exploring paths starting withMovea
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Figure 5.5: Results of varying the constant c that regulatesthe exploration component.

at higher points in the tree. Although these simulations continually lead to losses, the high RAVE

value held byMovea keeps the search focused on it for a significant amount of time. Such a situation

produces very poor value estimates when the simulation limit is reached and thus, poor play results.

Conversely, the more typical case is that a move,Moveb , is only good if it is chosen as the first

move. In this situation,Moveb will gain a low RAVE value from simulations. With a low RAVE

value,Moveb is less likely to be sampled as the first move, meaning that many other moves will be

simulated beforeMoveb is simulated at the root node. The search is unlikely to discover thatMoveb

is a strong move at the root and again, a poor play results.

Experiments involving random false updates can simulate the effect of misleading RAVE values.

In the experiment shown in Figure 5.7, we randomly perform false RAVE updates on all moves.

With a probability ofµ, the RAVE update for all moves in the current simulation usesthe inverse

evaluationInverseEval = 1 − Eval instead ofEval .

Even with the influence of the mean value as a steadying force,the performance of RAVE with

false updates deteriorates as the value ofµ increases. The decay is gradual untilµ is about 0.5,

where performance drops significantly. RAVE still outperforms plain UCT whenµ is between 0

and 0.3. Up to aµ value of 0.5, the error introduced by the false update can be interpreted as

noise that slows down convergence. Even withµ = 0.6 the performance still improves with the

number of simulations. However,µ values of 0.7 or higher seem to prevent convergence altogether

in this simulation range. These results suggest RAVE is a robust heuristic that is resilient against a

reasonable level of error.
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In Section 5.3.1, we showed that using RAVE without the mean value component in the UCT

formula works exceptionally well in SOS. We investigate theeffect of false updates on this previ-

ously favourable arrangement. The results in Figure 5.8 show a similar trend while the error rate,µ,

is low. Theµ = 0 data corresponds to the RAVE-only line in Figure 5.3, where RAVE-only without

artificial error is significantly better than plain UCT and UCT+RAVE. However, atµ = 0.3 RAVE-

only is already slightly worse than plain UCT. Atµ = 0.4, RAVE-only is performing far worse than

plain UCT and UCT+RAVE with false updates from Figure 5.7. Atµ = 0.5 the algorithm behaviour

becomes equivalent to a uniform random player, and beyondµ = 0.5, plays become even worse.

This result can be expected in an arrangement where RAVE is overly emphasized, or in this case the

sole predictor, and RAVE is grossly skewed.

5.6.2 Selective False Updates

The false update model discussed in Section 5.6.1 is suitable for representing games where moves

have different values when played in different order or other situations where move values at dif-

ferent times in a game have low correlation. However, that model does not actually represent the

situations discussed where a specific move is of special importance at a certain point in time. In the

following versions of false updates, we selectively distort the updates related to specific moves and

specific outcomes. By consistently manipulating the RAVE values in a specific manner, we mimic

the hypothetical result of the scenarios described at the start of Section 5.6. This model is closer to

what is seen in Go, and presents a different problem for the search than the model in Section 5.6.1.
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Figure 5.7: Effect of Indiscriminate False Updates on UCT+RAVE in SOS(10). False RAVE updates
are performed randomly on all moves.

Whereas the previous model injects noise into the RAVE values, causing the search to proceed more

randomly, this model manipulates the RAVE values in a more directed manner, focusing the search

towards or away from specific moves.

Lowering Strong Values

One scenario described at the start of Section 5.6 is the caseof RAVE presenting a false negative.

In this scenario, RAVE statistics make a strong move look weak. We simulate this effect in these

experiments by manipulating the value of the strongest move, move 9 in SOS(10). If the RAVE

update for the optimal move would be the value of a win, with probabilityµ, we update it as a loss

instead. In this context, the optimal move refers only to theoptimal first move at the start of the

game. Results are shown in Figure 5.9.

At all values ofµ greater than 0, FUEGO-SOS performs significantly worse than in the indis-

criminate false update case. To analyze the behaviour of RAVE in this experiment, let us focus on

the setting whereµ = 0.2. At this setting, FUEGO-SOS performs significantly worse than where

µ = 0, but still achieves optimal play. After213 simulations, the UCT+RAVE algorithm seems

to overcome the effects of the false update. The performancerecovery is significant and drastic.

Figures 5.10 and 5.11 can be used to explain this effect. The estimated value for the optimal move,

move 9, is not the highest option prior to the213 point. However, the point at which this trend

changes coincides with the point at which the move count of the optimal move begins to rise past

the previous leader, move 8. At this point, move 9 was found tobe at least as good as move 8 and the
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Figure 5.8: Effect of Indiscriminate False Updates for RAVE-only on SOS(10). False RAVE updates
are performed randomly with probabilityµ.

move 9 branch of the game tree was more thoroughly explored asgames were won more frequently

than previously. As the move count increases, the UCT value gains dominance, and the effect of the

false RAVE value is diminished. This is a result of the weighting function introduced in Section 2.5.

This idealised scenario shows the effect in its clearest form, but is unrealistic since in practice the

RAVE updates of all moves in a simulation will be affected in the same way.

To more accurately mimic a real-game scenario, we investigate the effect of forcefully lowering

the RAVE value of the optimal move by generalizing the false RAVE update to all moves that were

played in the same simulated game. Performance results after applying this change are presented

in Figure 5.12. FUEGO-SOS performs better in this scenario than in the previous, more similar to

the indiscriminate false updates case. However, the suddenrebound effect seen in Figure 5.9 is seen

here as well. As soon as the estimated move value of the optimal move becomes the highest amongst

all alternatives, the algorithm appears to sample the optimal move almost exclusively, resulting in

consistent optimal play. Figures 5.13 and 5.14 show how the estimated values and move simulation

counts evolve. Again increased sampling correlates with the change in estimated value. This is

expected to result from the change in weights as the weight ofthe RAVE value diminishes. The

exampleµ = 0.6 was chosen as it was the highestµ value that converged to optimal play within the

tested number of simulations.
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Figure 5.9: Effect of False Updates where winning RAVE updates of the best move on SOS(10) are
inverted with probabilityµ.
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Figure 5.10: Value estimates(UCT+RAVE) from the experiment in Figure 5.9 forµ = 0.2.

Raising Weak Values

The other scenario mentioned at the start of Section 5.6 involved RAVE resulting in false positives

in its search. In this situation RAVE overestimates the value of a move,Movea , wrongly believing

thatMovea is a strong candidate for best move. To simulate this problem, we manipulate RAVE in

experiments similar to Section 5.6.2. However, simulationlosses are given the value of a win during

the RAVE update with probabilityµ, since we are bolstering the value of the target move instead.

Two different moves were investigated in this series of experiments: the worst move and the second-

best move, move 0 and move 8 respectively in SOS(10). The initial hypothesis proposed that bias

towards the second-best move should mislead the search moresignificantly than bias towards the

worst move, as distinguishing between the best and second best moves should be more difficult for
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Figure 5.11: Move Counts at the root node from the experimentin Figure 5.9 forµ = 0.2.
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Figure 5.12: Effect of False Updates where winning RAVE updates of the best move on SOS(10)
are inverted with probabilityµ. Inverted updates are also applied to all other moves playedby the
player that chose the best move.

UCT. Results from these experiments are shown in Figures 5.15 to 5.20.

When the value of the worst move was inflated, FUEGO-SOS performed better than in the indis-

criminate false update case. Although the false updates encourage simulations related to the worst

move in this scenario, simulations related to the optimal move are not discouraged. Thus, once the

worst move is refuted, the algorithm quickly switches to thenext best choice: the optimal move.

The value estimates and move counts of theµ = 1.0 setting in Figures 5.16 and 5.17 support this

hypothesis. The move value of move 9 remains consistently above all other moves save move 0.

When the value of move 0 drops below a certain point, 0.37 in this example, FUEGO-SOS begins to

simulate move 9 much more frequently.

When the value of the second-best move was inflated, the behaviour of FUEGO-SOS became

similar to inverting the updates of the best move in Figure 5.9. However, convergence rates were

better. We again investigate by closer examination of the move counts and value estimates of the

µ = 1.0 setting in Figures 5.19 and 5.20. As with inflating the value of the worst move, the value
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Figure 5.13: Value estimates(UCT+RAVE) from the experiment in Figure 5.12 forµ = 0.6.
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Figure 5.14: Move Counts at the root node from the experimentin Figure 5.12 forµ = 0.6.

of the optimal move remains consistently high, which allowsFUEGO-SOS to quickly converge to

optimality once the false move has been refuted.

We also investigate the effect of generalizing the false RAVE update to other moves played

with the target move. One would expect the effect of generalizing the false update for weak moves

to be less disastrous than the results from Section 5.6.2, asthe optimal move is not negatively

manipulated. Figures 5.21 and 5.24 show the results of generalizing the false update value to other

moves. Figures 5.22 and 5.23 show the moves values and move counts for Figure 5.21. The sameµ

values were used for our experiments for shared false updates. When this shared update was applied

to the inflated worst move scenario, the worst move dominatedthe best move in move value until

29 simulations were reached where the roles reversed. For simulations from24 on, the values of the

best and worst move remained within 0.01 of each other. This is not the case when the second-best

move becomes the target of the shared false update. A sizeable gap between the inflated second-best

move and the best move causes convergence to be delayed untilthe216 datapoint. As one would

expect, it appears that manipulating the move value of the second-best move is far more detrimental

to MCTS. The move values shown in Figure 5.25 show a considerable gap between the values of

the inflated move 8 and the optimal move, move 9. The generalized false update causes FUEGO-

SOS to simulate move 7 before further considering move 9, as seen in the move counts plotted in

Figure 5.26. The large time investment spent in simulating the inflated decoy moves greatly delays

convergence.
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Figure 5.15: Effect of False Updates where the losing RAVE updates of the worst move on SOS(10)
are inverted with probabilityµ.
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Figure 5.16: Value estimates(UCT+RAVE) from the experiment in Figure 5.15 forµ = 1.0.

RAVE-max: Towards a more robust RAVE

In the false update experiments, the measured meanX̄j of the optimal move is often high even

though its RAVE valuēYj is low. The following experiments testRAVE-max, the simple modifica-

tion of replacingȲj by max(Ȳj , X̄j) in Equation 2.2 from Section 2.5.

Figure 5.28 shows the performance difference betweenmax(Ȳj , X̄j) andȲj for indiscriminate

false updates. Initial performance is worse forµ ≤ 0.3, but significantly better for almost all

other cases. The weaker result at higher simulation counts for one case,µ = 0.6 is surprising. The

performance drop for smallµ and low number of simulations is natural since RAVE data is relatively

high quality and the sample size for the mean is so small.

Using RAVE-max on the selective false update problems from Section 5.6.2, we see performance

gains in both the individual move experiments and the sharedfalse update experiments. Figures 5.29

and 5.30 show the performance differences. The initial performance loss is seen atµ = 0.0 in the

individual case and forµ ≤ 0.2 in the shared case in this scenario. However, in general, performance
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Figure 5.17: Move Counts at the root node from the experimentin Figure 5.15 forµ = 1.0.
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Figure 5.18: Effect of False Updates where the losing RAVE updates of the second-best move on
SOS(10) are inverted with probabilityµ.

improves significantly in these tests. This result is to be expected as taking the max should negate

any undermining caused by RAVE.

For the boosting RAVE value problems from Section 5.6.2, RAVE-max showed overall positive

results only for individually boosting the worst move, withslightly negative results for small num-

bers of simulations. RAVE-max was also weaker whenµ ≤ 0.6, but positive results for allµ > 0.6.

This result is surprising since this scenario is the opposite of the reducing RAVE problems. Using

RAVE-max on the other boosting settings resulted in performance similar to the RAVE, but with

performance losses during low simulations counts. The performance differential graphs for these

settings are presented in Figures 5.31, 5.32, 5.33 and 5.34.RAVE-max improves performance in sit-

uations where RAVE values of moves are underestimated, but does not help against overestimates.

Even so, RAVE-max performs at least as well as RAVE on overestimation situations. A more robust

solution needs to be found to handle both classes of RAVE problems.
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Figure 5.19: Value estimates(UCT+RAVE) from the experiment in Figure 5.18 forµ = 1.0.
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Figure 5.20: Move Counts at the root node from the experimentin Figure 5.18 forµ = 1.0.
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Figure 5.21: Effect of False Updates where the losing RAVE updates of the worst move on SOS(10)
are inverted with probabilityµ. Inverted updates are also applied to all other moves playedby the
player that chose the worst move.
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Figure 5.22: Value estimates(UCT+RAVE) from the experiment in Figure 5.21 forµ = 1.0.
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Figure 5.23: Move Counts at the root node from the experimentin Figure 5.21 forµ = 1.0.
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Figure 5.24: Effect of False Updates where the losing RAVE updates of the second-best move on
SOS(10) are inverted with probabilityµ. Inverted updates are also applied to all other moves played
by the player that chose the second-best move.
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Figure 5.25: Value estimates(UCT+RAVE) from the experiment in Figure 5.24 forµ = 1.0.
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Figure 5.26: Move Counts at the root node from the experimentin Figure 5.24 forµ = 1.0.
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Figure 5.27: Results for experiments using IndiscriminateFalse Updates with RAVE-max.
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Figure 5.28: Performance differences for Indiscriminate False Updates. Compares RAVE-max to
RAVE.
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Figure 5.29: Performance differences for False Updates lowering the RAVE value of best move.
Compares RAVE-max to RAVE.
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Figure 5.30: Performance differences for False Updates lowering the RAVE value of best move and
other moves played with it. Compares RAVE-max to RAVE.
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Figure 5.31: Performance differences for False Updates raising the RAVE value of worst move.
Compares RAVE-max to RAVE.
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Figure 5.32: Performance differences for False Updates raising the RAVE value of worst move and
other moves played with it. Compares RAVE-max to RAVE.
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Figure 5.33: Performance differences for False Updates raising the RAVE value of second-best
move. Compares RAVE-max to RAVE.
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Figure 5.34: Performance differences for False Updates raising the RAVE value of second-best
move and other moves played with it. Compares RAVE-max to RAVE.
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Chapter 6

Conclusions and Future Work

6.1 Thesis Conclusions

The Sum of Switches game provides a simple, well-controlledenvironment where behaviour is eas-

ily measured. In this environment, our experiments studiedUCT and two common enhancements,

RAVE and Score Bonus. Score Bonus did not produce favourableresults in SOS, but had a positive

effect in Go. This discrepancy needs further study.

The RAVE experiments show significantly better performancethan plain UCT, even with dis-

torted RAVE updates. In games where the values of moves do notchange over the course of a game,

RAVE provides a much stronger estimate than the mean value. Furthermore, the indiscriminate false

update experiments suggest that the RAVE heuristic is robust against unbiased noise and performs

well even with a fair level of error.

When false updates were performed in a more realistic mannerin the selective false update

experiments, RAVE continued to demonstrate resilience. Bywatching the development of move

values and move counts throughout the search, we inferred some of the mechanisms behind the

recovery process of rebounding from a poor RAVE heuristic. From this, we produced RAVE-max

that attempts to hasten the rebound process. Although RAVE-max appears successful in overcoming

underestimated RAVE values, it does not improve situationswhere RAVE is overestimated.

6.2 Future Work

Future work related to this thesis can be pursued in the following areas: SOS, Score Bonus, RAVE-

max, and RAVE error models. One direction of research is studying the effect of improved, non-

uniform random playout policies in SOS. The Score Bonus enhancement is another topic that can be

further researched. Interesting topics that deserve investigation include why Score Bonus does not

improve performance on SOS and a general understanding of the types of environments where Score

Bonus does improve performance. One possible reason why Score Bonus was ineffective on SOS

was the accuracy of the estimated values. Score Bonus may be more useful in larger games where

value estimations are less accurate. Future work related toRAVE-max should look at handling the
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overestimation cases in RAVE errors. Of course, it may be more important to measure the actual

effectiveness of RAVE-max in popular classical games. Although our error models are designed

with the intent to model real situations, testing in real games is necessary to verify our results.

Furthermore, more accurate error models may be found to better model real situations.
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