University of Alberta

Investigating UCT and RAVE: Steps Towards a More Robust ldéth

by

David Tom

A thesis submitted to the Faculty of Graduate Studies anddteb
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

(©David Tom
Spring 2010
Edmonton, Alberta

Permission is hereby granted to the University of Albertaraiies to reproduce single copies of this thesis and todend
sell such copies for private, scholarly or scientific reskgurposes only. Where the thesis is converted to, or otkerw
made available in digital form, the University of Albertaliédvise potential users of the thesis of these terms.

The author reserves all other publication and other rightssociation with the copyright in the thesis and, excepieasin
before provided, neither the thesis nor any substantidglgoothereof may be printed or otherwise reproduced in any
material form whatsoever without the author’s prior writggermission.

Examining Committee
Martin Muller, Computing Science
Michael Buro, Computing Science

External, Robert Hayes, Chemical and Materials Engingerin

Abstract

TheMonte-Carlo Tree SeardfMCTS) algorithmUpper Confidence bounds applied to Trég€T)
has become extremely popular in computer games researctause of the importance of this
family of algorithms, a deeper understanding of when and their different enhancements work
is desirable. To avoid hard-to-analyze intricacies of b@ament-level programs in complex games,
this work focuses on a simple abstract ga®em of Switches$SOS).

Inthe SOS environmentwe measure the performance of UCTwamdftpopular enhancements:
Score Bonusnd theRapid Action Value EstimatiofRAVE) heuristic. RAVE is often a strong
estimator, but there are some situations where it misleagsech. To mimic such situations, two
different error models for RAVE are explorethndom errorand systematic biasWe introduce a

new, more robust version of RAVE called RAVE-max to bettgpevith errors.

Acknowledgements

First and foremost, | would like to thank my supervisor Dr. litaMuller for making this project
possible and providing invaluable knowledge and adviceughout the course of its realization. |
know that | have gained a lot if | have learned just a fractibwbat he has taught me. His advice
has been both helpful in the theoretical aspects and tealhaspects of this project.

The SmartGame library which my programEGo-SOS was built upon, was written by Martin
Muller and Markus Enzenberger. They deserve my thankgéating an excellent piece of software
and being there to help me understand it when | encountedddgms. | would also like to thank
my examiners Dr. Michael Buro and Dr. Robert Hayes for takhmgtime to evaluate my work.

Lastly, | would like to thank my family and friends. They halween wonderfully patient and
supportive. Perhaps they still do not understand my massgeer, but they helped me understand

that the pursuit of knowledge is something for oneself.

Table of Contents

1 Introduction 1
1.1 Monte Carlo Tree SearchMethods 1
1.2 Motivation e e e 1

2 Overview of the Research Area 3
2.1 Game Trees i i e e e e e 3
2.2 MINIMax o e e 4

221 MinimaxSearch 4

222 afSearch. e 5
2.3 Monte Carlo Tree SearchMethods 5
2.4 RAVE e e 6
25 FUuego 8

3 Research Questions and Contributions 10

4 Artificial Games 13
4.1 ArtificialGameModels e 13
4.2 SumofSwitches e 14

5 Experimental Results 15
5.1 Setup . . . e e 15

5.1.1 Graphs e 15
5.1.2 Settings e 16
5.2 BasicBehaviour. e 17
5.3 Rapid Action Value Estimation (RAVE) 18
5.3.1 ExploitingRAVE 91
5.4 Move Selection Policy and Exploration Constant 19
55 ScoreBonus 19
5.6 FalseUpdates 20
5.6.1 Indiscriminate False Updates 20
5.6.2 SelectiveFalseUpdates. 22

6 Conclusions and Future Work 37
6.1 ThesisConclusions e e 37
6.2 Future Work e 37

Bibliography 39

List of Figures

2.1 An example used to illustrate node relations that woeldffected by the RAVE
backup procedure. Branchesy, e. 4, ¢; ; are of the same move class, x. Simula-
tions passing throughy or v will cause an update to;. A simulation through;d
will not affectv, andviceversa.

5.1 Upper Confidence bounds applied to Trees (UCT) on Sum @tBes (SOS)(10),
with 99% confidenceintervals. e

5.2 Performance of UCT without additional enhancementd8@). 17
5.3 UCT+RAVE in SOS(10). VaryingRaveWeightFinalabbreviated as RWF in the
legend. 18

5.4 Performance values upon changing Move Selection Pdiistimated Value is ab-
breviated as EV and Move Count is abbreviated here as MC. Doarduse with

Monte-Carlofromtext. 20
5.5 Results of varying the constant c that regulates theoextibn component. 21
5.6 Score Bonus results involving variousn SOS(10). 22
5.7 Effect of Indiscriminate False Updates on UCT+RAVE inKM)). False RAVE

updates are performed randomlyonallmoves. 23
5.8 Effect of Indiscriminate False Updates for RAVE-only 80S(10). False RAVE

updates are performed randomly with probability. 24
5.9 Effect of False Updates where winning RAVE updates obést move on SOS(10)

are inverted with probability.. oo o
5.10 Value estimates(UCT+RAVE) from the experimentin Fggb.9 fory =0.2. . .. 25
5.11 Move Counts at the root node from the experimentin Eigu® foru =0.2. ... 26
5.12 Effect of False Updates where winning RAVE updatesebtbst move on SOS(10)

are inverted with probability.. Inverted updates are also applied to all other moves

played by the player that chose the bestmove. 26
5.13 Value estimates(UCT+RAVE) from the experiment in Fggb.12 fory = 0.6. . . 27
5.14 Move Counts at the root node from the experiment in Egut2 fory = 0.6. . . . 27
5.15 Effect of False Updates where the losing RAVE updatethefworst move on

SOS(10) are inverted with probability 28
5.16 Value estimates(UCT+RAVE) from the experimentin Féggb.15 foru = 1.0. .. 28
5.17 Move Counts at the root node from the experiment in E@ut5 foru = 1.0. . . . 29
5.18 Effect of False Updates where the losing RAVE updatéiseofecond-best move on

SOS(10) are inverted with probability L. 29
5.19 Value estimates(UCT+RAVE) from the experimentin Fggb.18 foru =1.0. .. 30
5.20 Move Counts at the root node from the experiment in Egut8 foru = 1.0. . . . 30
5.21 Effect of False Updates where the losing RAVE updatethefworst move on

SOS(10) are inverted with probability. Inverted updates are also apphed to all

other moves played by the player that chose the worst move. . . .
5.22 Value estimates(UCT+RAVE) from the experiment in Fegb.21 fory = 10 .. 31
5.23 Move Counts at the root node from the experimentin Eigu2l fory = 1.0. . . . 31
5.24 Effect of False Updates where the losing RAVE updatetb@fsecond—best move

on SOS(10) are inverted with probability Inverted updates are also applied to all

other moves played by the player that chose the second-loestm
5.25 Value estimates(UCT+RAVE) from the experiment in Fgb.24 fory = 1.0. .. 32
5.26 Move Counts at the root node from the experiment in E&u24 fory =1.0. . . . 32
5.27 Results for experiments using Indiscriminate Falsddths with RAVE-max. . . . 32
5.28 Performance differences for Indiscriminate Falsedtgsl Compares RAVE-max to

RAVE. e 33
5.29 Performance differences for False Updates loweriagr#VE value of best move.
Compares RAVE-maxto RAVE. 33

5.30 Performance differences for False Updates loweriadRBVE value of best move

and other moves played with it. Compares RAVE-max to RAVE.. . 34
5.31 Performance differences for False Updates raisinRWE value of worst move.

Compares RAVE-maxto RAVE. e 4 3
5.32 Performance differences for False Updates raisindREE value of worst move

and other moves played with it. Compares RAVE-max to RAVE.. 35
5.33 Performance differences for False Updates raisindqRINEE value of second-best

move. Compares RAVE-maxtoRAVE., 35

5.34 Performance differences for False Updates raisingRfNE value of second-best
move and other moves played with it. Compares RAVE-max to RAV. 36

List of Acronyms

AMAF All-Moves-As-First

Al Artificial Intelligence

MC Monte-Carlo

MCTS Monte-Carlo Tree Search

RAVE Rapid Action Value Estimation

SOS Sum of Switches

UCT Upper Confidence bounds applied to Trees

Chapter 1

Introduction

1.1 Monte Carlo Tree Search Methods

Monte-Carlo Tree Search (MCTS), especially in form of theTUglgorithm [25], has become an
immensely popular approach for game-playing programs. Bl@as been especially successful in
environments for which a good evaluation function is hartébudd, such as Go [22] and General
Game-Playing [16]. MCTS-based programs are also on partiétbest traditional programs in
Hex [3], Amazons [26], and Lines of Action [44]. Recently MGThas been successfully applied to
single-agent search as well [12, 32].

Part of the success of MCTS is due to enhancements developexbiove its effectiveness in
games. Methods inspired by Schaeffer’s history heuri88§ include All-Moves-As-First (AMAF)

[6] and RAVE [19]. Whereas the value of a move is normally caiep from simulations where
the move is the first one played, these heuristics use alllations where the move is played at any
point in the game. This produces a low variance estimateighfast to learn [19]. Methods such
as progressive pruning [5] focusing simulations on stroregnbhes by ignoring branches that have
lower simulated means.

While the game-independent algorithms above can be ushamiritor variations across different
games, typical tournament-level programs add a large nuailgame-specific enhancements, such
as opening books [7] and specialized playout policies [Fither examples are patterns [22, 11]
and tactical subgoal solvers in Go [30], and virtual conioestin Hex [2].

As an example of a tournament-level Go program, congiergo[13]. The computer Go
program Fuego uses a game independent UCT engine as a bhseaviitus game specific en-
hancements including RAVE, prior knowledge, specialize&yput policies, and the capability of

multi-threaded search.

1.2 Motivation

While practical applications abound, up to this point theaie been relatively little detailed analysis

of the core MCTS algorithm and its enhancements. Gainingpelaunderstanding of its behaviour

and performance is difficult in the context of complex gameyig programs. Rigorous testing,
evaluation and interpretation of the results is necessatrdifficult to do in such environments. A
simpler, well-controlled environment seems necessary.

Since MCTS is a relatively new approach, there are a largebenf open research questions,

both in theory and in practice. For example,

e How does the performance of MCTS vary with the complexity &k of game that is

played?

e What are the conditions on a game for which a specific enhascenorks? How much does
itimprove MCTS in the best case? When and how do these entmemtg fail?

e How should a general framework for MCTS be designed, and teowitchen be adapted to a

specific game?

The final item is addressed in practice by the Fuego systein §3open-source library for
games which includes the MCTS engine used for the expersrerthis thesis. The experiments
help to address some of the other research questions regMdTS.

One way to study questions about MCTS in more precision tegossible for real games is
to use highly simplified, abstract games for which a compheathematical analysis is available.
Such games allow a deeper study of the core algorithms whdaiag layers of game-specific
complexity in the analysis.

In this thesis, a simple artificial game called SOS is useaffioexperimental study of MCTS al-
gorithms. In particular, SOS is selected as a close to ideglaio for the RAVE heuristic. Through
experiments in our softwaredEGO-SOS, we analyze the behaviour of UCT and RAVE in this well-
controlled environment. We manipulate the complexity e 80S game, as well as the strength and
accuracy of UCT and RAVE. This analysis results in the dguelent of RAVE-max as a solution
for dealing with games involving poor RAVE accuracy. Partshis work have previously been
printed in [40, 41]. The rest of this thesis is organized db¥es: Chapter 2 presents concepts
and methods used in games Atrtificial Intelligence (Al) reseand the implementation of current
methods, such as UCT, in Fuego. Chapter 3 introduces tharadsgquestions addressed in this
thesis. Chapter 4 compares other models used to study MCIBtaaduces the SOS game model.
Chapter 5 describes our experiments on SOS involving UCTRAYE. Chapter 6 concludes with

a discussion of our results and ideas for future work.

Chapter 2

Overview of the Research Area

This chapter discusses classical and contemporary tastsigsed in the computer study and play
of two-player sequential games. The Fuego framework meation Section 1.2 is an example of

game-playing software containing many of the techniquesrileed. Some implementation details
of Fuego are also discussed in this chapter as the framewaosded to develop the software used in

the experiments of Chapter 5.

2.1 Game Trees

Classical board games have often been used as the focus esgdmesearch. Games that have
been studied include Go [4, 28], Chess [8], Checkers [34, BBlazons [29], Hex [3], Havannah
[39], and Lines of Action [43]. The structure used to model $tate space of such gamesis a type of
directed graptralled agame tred23, 15]. A directed graph; = (V, E), is an ordered pair formed
by a set olverticesV” and a set oflirected edge® C V x V. We also define the formy, , = (vg, vp)

for use as shorthand. pathfrom vertexv, to v, is a sequence of vertices= (v, vs, ..., v,) such
thate; ;41 € E for 1 < i < n. In a game tree, vertices are commonly referred ta@desand
edges adbranchesmovesor actions A treeT is a graph in which for alb; there exists exactly
one path fromyg to v;, whereuw is called theoot nodeof the tree. If3e; » € E, thenv; is called
the parentof v, andv, is thechild of v;. If Je; 2,13 € E, thenvy andvs are calledsiblings

If 3p = (vo,...,vn) in T, thenvy,...,v,_1 are said to bancestorof v,,. Nodes of a game tree
represent states of the game and edges represent actiors/es that cause transitions between
those states. Theot nodev, represents the initial state of the game and has only oujgedges,
whereadeaf nodeshave no outgoing edges and represent the terminal stathe ghine; all other
nodes represent intermediate states and are referredrttedier nodes Leaf nodes are associated
with a payoff =(v;) € R, which we define as the result Player 1 receives when the tddm is
reached. We will only be discussing 2-player zero-sum gatheplayer playing at the root node is
labeledp; and the other player is labeled. The payoff forp, is the negative of the payoff fqr, .

Researchers strive 8Bblvegames using game trees. To solve a game means to know, abthe ro

node, the game result and a strategy required to attaingbaltr This definition of solving a game
is actually the definition of a weak solution [1], but for therposes of this thesis it suffices. Solving
a game is trivial with a complete game tree, as it enumerdtpessible strategies [24]. However, a
complete game tree has approximatlyp?) leaf nodes; wherd is the depth of the game tree aind
is the number of legal moves at each state. This number idagyg for most gameg, g, estimated

to be aboufl0?! for 8x8 Checkers [1]. As it is unfeasible to store or even wlale trees of such
size, a partial game tree must be used instead. This is addefs only a subtree of the complete
game tree is necessary to solve a game [24]. The smallestdémsssary to solve a game is called
aminimal proof tree A proof treeP is a subtree of game tré&e for a propertyz that satisfies the

following properties:
1. vg € P andvy = root(P).
2. ifv; € P andv; € leaves(P), propertyz holds inv;.
3. otherwise, ifv; € P andp; is to play atv;, then3v; € children(v;),v; € P.
4. otherwise, ifv; € P andps is to play atv;, thenVu; € children(v;),v; € P.

Propertyz is defined as a condition for one of the playérs; if propertyx is “p; has won”, then
T is a complete winning strategy fpr. The problem is determining how to intelligently build and
utilize a proof tree while mitigating time and space comfileissues. Although the ultimate goal
in games research is to solve a game, a more accessible gftairigo produce the strongest player
possible. Theminimax[31, 36] algorithm is used for evaluating a game tree andrdgteng the

best move to play.

2.2 Minimax

The minimax algorithm involves labeling as themax player andps as themIN player. A node

is amAx node if it isMAX's turn to play and a1IN node if it isSMIN's turn. Beginning at the leaf
nodes, we back up the payoff values toward the root node. Nadeassigned valuegv;) based

on the player whose turn it is. The vala€v;) for each node is known as its minimax value and
represents the game result obtained if both players playnafly from that point on. 7(v,,) =
max(m(v;), ..., m(vj)), wherev;, ..., v; € children(v,) if v, is aMAX node atv,, andn(v,) =
min(w(v;), ..., m(v;)), wherev,, ..., v; € children(v,) if v, is aMIN node. Through this process
the payoff assigned to the root nodeyy), is the solution of the game and is associated with the

move which leads to the node with the same payoff.

2.2.1 Minimax Search

The basic method of minimax search involves a depth firstesipa of the tree, followed by min-

imax backups of the payoffs, and a best-first search to determmwinning strategy. The search

is guided by the result of aavaluation functiorapplied at each node encountered. An evaluation
function assigns a valug(v;) to each node in a game tree. In a minimax search the evaldfation
tion assigns minimax values to nodes. For interior nades) is the minimax value obtained from
backups. For terminal nodégv;) is the payoff value associated with the game state. In pecti
tree expansion is only performed to some degtlas the storage and computation of a complete
game tree is intractable. f is less than the depth of the complete game tree, then thansiqgn
does not contain all the leaf nodesiof The payoff values must be estimated for some leaf nodes in
the partial game tree that is generated. The accuracy oftlmates and the search result depend on
the heuristic functiorused at the leaf nodes of the partial tree. The heuristictiomestimates the
minimax value of node; based on the game state represented by the node. Typicalypeidex-
pansion results in a more accurate estimate. However, if@mmexpansion used in basic minimax
search involves expanding and storing many unnecessassnodusing the algorithm to quickly

reach computational and storage limits.

2.2.2 «of Search

To improve upon these constraints, minimax is often usednjunction with alpha-betay3) prun-
ing [31]. In o pruning two boundsy and, are maintained during the search. During the depth-
first traversal of the partial game tree holds the highest value available attax node along the
path to the current state amtholds the lowest value available atan node along the pathy is
initialized to —oco and is initialized to+co. If at nodev; « > (3, thenv; need not be explored and
can be pruned. In the best caag, pruning allows us to evaluate a significantly smaller nundjer
nodes, the square root of the number of leaf nodes in theThés reduction allows for a search that
is twice as deep as without pruning, producing more accuratg estimates and better play.

af search has been successful in domains such as Checkers, @hdsGo-moku, and has
produced stronger-than-human computer players [4]. Heweén domains such as Go and Gen-
eral Game Playing, alpha-beta search has been less sutcédsf result has been attributed to
the difficulty of producing a strong heuristic evaluatiomdtion in these domains [4, 16]. Recent
developments incorporatingonte Carlo Tree Search Methodscomputer Go and General Game

Playing have shown very significant improvement over tiadél alpha-beta approaches [6, 16].

2.3 Monte Carlo Tree Search Methods

Monte-Carlo (MC) Methods have long been used in the physidahces to simulate physical sys-
tems [27]. However, MC Methods were not widely employed inozeum games research until
Briigmann’s work on “Monte Carlo Go” [6]. Multiple MC-basérke search methods simultane-
ously gained popularity in the 2000s following Brigmanméek [9, 10, 22]. These methods became
collectively classified as MCTS algorithms. The basic MCTgddthm involves generating a game

tree using random simulations and collecting statistiadh@tree to find the best solution available

[9]. The game tree is grown incrementally in a best first mamguéded by the simulations. The
tree is initialized to have only the root nodg, MCTS simulations consist of two phases: during
thein-tree phasea best first search is conducted to find the leaf ngdef the partial tree with the
best value according to an evaluation function such as th& fd@nula [25]; during theplay-out
phase random simulations are performed with the starting statelf v,, is visited for the second
time during simulationsy,, is expandedi.e. all children ofv,, are added to the tree. Statistics are
kept for each node such as the average outcaife,) of all simulations resulting from that node.
The evaluation function is typically composed®{v,,) and an exploration component in order to
guide the search towards both promising and nodes with higdertainty about their evaluation.
Since the in-tree phase directs simulations in a best-fisstrar, if a large number of simulations
are conducted, stronger moves are simulated far more fnélgulean other moves. The exploration
component of the evaluation function allows for weaker nsoweoccasionally be simulated over
stronger ones. As long as the exploration component is reaer, given an infinite number of
simulations, ther(v;) values of all nodes would converge to their true minimax eaju(v;) [10].
The problem of devoting search to exploring unverified apior exploiting current maxima
is called theexploration-exploitation dilemmaUnlucky simulations may lead the search down
a sub-optimal branch that may not reach a refutation untiyr@mulations later. However, the
simulations may instead be following the optimal branch tredexploration of alternative options
may simply be a waste of time and resources. To effectivedytinse and resources, an algorithm
needs to balance between exploring and exploiting the Isesgpace in an efficient manner. The
algorithm Upper Confidence bounds applied to Trees (UCTpigraular solution to the exploration-
exploitation dilemma [25]. At each node UCT chooses a child that maximizes the formula:
log T (vi)

T;(v;) represents the number of times thevas visited X (v;) denotes the average simulated payoff

7(v;) = X(vj) +c (2.1)

of v;. T; ;(v;) is the number of times mowg ; has been played at. The exploration constaantis
set by the user; increasirngeads to more exploration. In the basic MCTS algorithms ascblCT,
the estimated minimax value of nodeis its simulated mear.e., #(v;) = X (v;). By estimating
minimax values through random simulations, MC methods lsaveeeded in domains previously
limited by heuristic functions that were difficult to fornaié. In particular, since the UCT algorithm
is simple to implement and elegantly solves the exploragigploitation dilemma, it is frequently
employed in current game-playing programs. UCT has beeresstully used in Go [21], General
Game Playing [16], Amazons [26], Lines of Action [44], Hawa [39], and Hex [3].

2.4 RAVE

To produce low variance estimates fofv;), v; must be simulated many times. However, in a

large state space where there are many other candidate, ibideiay be very time consuming.

Gelly and Silver proposed the use of an algorithm called ®R#&gition Value Estimation (RAVE)
to reduce the time required to produce a low variance estiftata(v;) [20]. In RAVE, 7 (v;)

is a linear combination oX (v;) andY (v;), whereY (v;) is an average generated by the RAVE
updates. Before we continue, let us define a term that will ¢elun the description of RAVE
updates. We definemove class\/ C F as a set of edges, such that each edgk/inepresents
the same move of a game piecdrom positiona to positionb. Whereas traditional MC methods
update the value of a nodé(v;), for all simulation results that arise from choosing maye,
RAVE updates the value &f (v;) for all moves in the same move class that occur later in theegam
thanv,. That s, given{e, , ec.q, € ;} € M, if v; is an ancestor of,,, a simulation involving move
ea,» Will cause an update t8 (v;).This situation is illustrated in Figure 2.4. Low varianctimates
can be produced with only a few simulations using RAVE. Butdwse RAVE updates ignore
temporal information, they may not always be accurate dedpé large number of simulations they
represent. With enough simulation$(v;) becomes more accurate thitv;) as it represents only
the game state;. By varying the weighting of theX (v;) andY (v;) components appropriately
during search, MCTS programs can produce strong value &stinboth while simulation counts
are high or relatively low. RAVE has been successfully usethe games of Go [19], Havannah
[39], and Hex [3].

Figure 2.1: An example used to illustrate node relationswloald be affected by the RAVE backup
procedure. Branches, ;, e. 4, €; ; are of the same move class, x. Simulations passing throggh
or v, Will cause an update to;. A simulation throughyg will not affectw;, and vice versa.

2.5 Fuego

Modern programs for games such as Hex, Go, Lines of Actiod, @eneral Game Playing now
contain a MCTS engine with a number of enhancements. Theds@egorogram developed at the
U of A is one such program [13]. It includes an UCT-based MCTH§ire with RAVE capabilities
and domain knowledge capacities. Although the Fuego fraomevwg primarily developed for the
computer Go program of the same name, its basis is the gasiepéndent SmartGame library: a
set of classes and functions to handle gameplay, file stpeagkegame tree search as well as other
utility functions. The SmartGame library includes a gea®iCTS engine with support for UCT,
RAVE, and using prior knowledge. As the Fuego framework wseduto develop the software used
for the experiments presented in Chapter 5, relevant featfrthe Fuego framework are explained
in this section.

Similar to other MCTS frameworks, in Fuego, the game treeasvg incrementally. A value
called theexpand thresholdetermines how many visits a node must receive before itpamced.
This threshold is set to one by default, meaning that all e@ite expanded on their second visit in
the game tree. Unexpanded nodes are assigiédtaPlay Urgencyvalue. The default value of
10000 is used in the experiments, which gives high priootytiexpanded nodes [25]. The UCT

engine uses a modified UCT formula, with user-defined parameontrolling the search behaviour.

log T} (v;)
T;j(vi) +1

T;(v;) represents the number of times the parent ngdeas visited X (v;) denotes the average

2.2)

reward at; andY (v;) the RAVE value of move clasgatv,. The parameteris defined by the user
to determine the influence of the UCB bound value; this patanie usually optimized by hand,
but has the default value of 0.7} ;(v;) is the MoveCount, the number of times moyeas been
played atv;. Adding 1 toT; ;(v;) in the bias term avoids a division by 0 in case move cfasas a
RAVE value butT; ;(v;) = 0. The RAVE weightiV; ; will be explained later.

Along with UCT, the SmartGame library includes an implenagion of RAVE. A parametric
function is used to control the influence of the RAVE value. aNHRAVE is active, the estimated
value for a move is determined by a linear combination of tleamvalue and RAVE value of the
move. The weighting function used here is simplified fromdhe originally proposed in [19], but
has been found to work as well as the original formula in Fuébwe unnormalized weighting of

the RAVE estimator is determined by the formula:

W,y = —Dualbwswi (2.3)
wy +w;Si,j(vi)
The RaveCounts; ;(v;), represents the number of rave updates of move glagsnodev;. w;
andw; stand forRaveWeightlnitiahnd RaveWeightFinalespectively; these parameters determine

the influence of RAVE relative to the mean value. They are ralipget by the userw; describes

the initial slope of the weighting function and; describes its asymptotic bound. As the number
of simulations increases, the weight of the RAVE value distias relative to weight of the mean
value. This formula is designed to lower the mean squarex efithe weighted sum; it is optimal
when the weight of each estimator is proportional to theriswef its mean squared error [37]. The
default value of RaveWeightlnitial is 1.0 and a suitable ®&eightFinal is found experimentally.
In our experiments, RaveWeightlinitial is kept at 1.0 as wendbmake any assumptions about the
accuracy of early RAVE and UCT estimates.

A tournament program also contains a time control that maaistand limits the time spent in
search, as the program has a finite amount of time to perforlaya Ye use time control only for

large game experiments where the required search time l@sciompractical otherwise.

Chapter 3

Research Questions and
Contributions

Compared to methods such@s search and minimax search, MCTS is a relatively new apprimach
games Al research. However, it has been more successfuttitional search methods in difficult
domains such as Go [21] and General Game Playing [16]. MCESatsm exhibited comparable
performance in other domains traditionally dominatedhigysuch as Hex [3], Havannah [39] and
Lines of Action [44]. Despite recent success in these doma@fCTS is still in its infancy with
relatively undeveloped theory. Research directed at MCI§Srighms themselves would greatly
improve the effectiveness of their application to curre@t aew domains. One way to approach this
ideal is by solving the research questions posed in Sectin 1

How does the performance of MCTS vary with the complexity andtype of game that is
played? That is, given gamed and gameB, and similar implementations of MCTS, how does
the performance of MCTS differ? Furthermore, how does tivéopmance differ within a game
when you change game parameters such as board size or nurpiEres? These questions can be
answered by observing how MCTS interacts with the diffegarhe tree§’y andT’z. Properties
such as the number of leaf nodes, the depth of the tree, arlitdhehing factor should be related
to the performance of MCTS on a given game tree. Experimemi3-game trees provide some
performance benchmarks for the MCTS algorithm UCT [25]. ldeer, other game trees may be
used for specific properties such as consistent move vdfives have benchmark values for MCTS,
we can know what to expect before adapting it to a new gamer Rniowledge of the affinity of
a game towards MCTS allows a researcher to determine whiatipbementing MCTS is a prof-
itable endeavour for his project. Furthermore, if certaioperties of the game tree improve MCTS
performance, we can look for ways to manipulate the gamearbetter suit the algorithm’s needs.

What are the conditions on a game for which a specific enhanceent works? How much
does it improve MCTS in the best case? Where may these enhantefail? By knowing the con-
ditions for which an enhancement works, benefits towardsathlaancement may be reaped similar

to those mentioned in the previous paragraph. In additleretmay be points in a game during

10

which the enhancement is more or less effective. By undwsisig the conditions for which an
enhancementworks, we can strengthen or weaken the enhantiersuit the game state. However,
enhancements may be produced for research or for improkimgérformance of a game-playing
program in competitions. There may be abundant informatioout an enhancement or very lit-
tle. Furthermore, the enhancement may be very general grspecific, being only suitable for a
particular game. Because a large number of game-playirgrgmnes in games Al research tend to
be competition programs, they tend to contain several ezdmaants. It is difficult to discern the
effect of a particular enhancement with so many conflictiagables. If we know the effectiveness
of an enhancement in its best case, we can determine hovswigdd it is for a particular environ-
ment. If a certain property improves the enhancement, it beagxploited to maximize the benefit.
Move ordering inaG search is an example of this kind of improvement. Similaboly,knowing
where enhancements are detrimental in a game, we can aveikl pl&y caused by misusing the
enhancement.

How should a general framework for MCTS be designed, and howan it then be adapted to
a specific gameHow should software be produced to use and test MCTS? TheoHtegework
attempts to answer these questions by providing a gam@émdient MCTS engine that can be
adapted to specific games. Having a general framework td bpibn allows users to achieve a level
of consistency when comparing performance across gamesra&mg the game specific from the
game-independent structures also improves the processnfing either.

By using the Fuego framework, we can essentially adapt M@T&ny adversarial game for
testing. However, most classical games are not yet solvieid.ieans that it is difficult to measure
the correctness of moves that are played in most games. Iticedve would like to be able to
control the complexity of the game on which MCTS is operating Overly large game depth and
complexity are not necessary for determining basic algoriproperties. Thus, we propose the use
of a simple abstract game for the purpose of studying MCTSd&ygn, this abstract game should
be well suited to an enhancement(s), so we may test some ehti@ncements that are popular in
practice currently. The abstract game we propose to usééslGum of Switches (SOS). Inthe SOS
game, the value of a move is independent of when and by whaglepit is chosen. This represents
a best-case scenario for history-based heuristics suctiheg Ehat generalize move performance
across different points in the game.

Using the SOS game we attempt to answer some of these respastions. By approaching

these research questions, this thesis has produced tbeifudl contributions:

e We demonstrate the use of SOS as a test bed for UCT and RAVE. mBlginenting SOS
in Fuego, we show that such a general framework may be adaptedame. Furthermore,
we use the various facilities of Fuego to gather data on thiepeance of the algorithms. By
varying the size of SOS, we establish performance baselinrdsCT and RAVE based on

game complexity. We also show the performance of the Sconei@enhancement on SOS.

11

e We show how some of the strengths and weaknesses of RAVE feant sfarch in SOS. We
show the use of SOS as a best case environment for RAVE by derating the effectiveness
of using RAVE as the sole estimator. Results we present daisg RAVE updates further
provide insight into the properties of UCT and RAVE algonith. Using the indiscriminate
false updates we show that UCT and RAVE are fairly resiliggdiast noise. By using se-
lective false RAVE updates, bad cases for RAVE can be mindickée show the detrimental
effect that such scenarios can have on the search perfoeraad@rovide a partial solution in
RAVE-max, a modification of the RAVE algorithm that handleses where the RAVE value
is underestimating the true value of a node.

12

Chapter 4

Artificial Games

4.1 Artificial Game Models

The original UCT paper [25] contains an experiment showirggderformance of UCT on the artifi-
cial P-game tree mod¢88]. Each edge, or move in this game, is associated with @ommumber
from a specified range. The value of edges correspondingdoramt moves is negated. The value
of a leaf node is the sum of the edge values along the path fremobt. A positive value indicates a
win for the player at the root and a negative value indicatemdor the opponent. Zero results in a
draw. In such a model many properties of the tree can be easihjpulated, such as the branching
factor and tree depth. However, the model does not natysedlyide any benefits to UCT or RAVE,
making it unsuitable to our goals of comparing best-castopeance. Furthermore, the full game
tree must be generated, stored, and traversed in orderamabt optimal strategy to compare to.
Larger problems are harder to model using this approactoesgs requirements become harder to
meet.

A special case of the P-game tree model isRhefix Value Game Tree Modgl8]. In a Prefix
Value tree, each move in a state is associated with the antaleiates from the optimal move in
that state. The value of a node is the alternating sum of theemalong the path from the root to
that node plus the value of the root node from the perspeofitiee turn player. By construction
this means that the negamax value for each node can be prbtharementally. This property
allows for large game trees to be easily constructed cantpaccurate node values. Determining
an optimal strategy in this paradigm is trivial. The optiretthtegy is determined by construction
as the path containing all moves with zero value. Althougdé thodel provides a simple way to
generate synthetic game trees, it does not provide anyaldienefit to UCT or RAVE. Synthetic
game trees may be too abstract for the purposes of resegualgiorithm enhancements dependent
on structural properties of classical games. In order toimthose same properties in a synthetic
game tree, various changes would need to be made, but maly siorpplicate the model.

One of our initial intentions upon approaching this projgas to observe the behaviour of UCT

and RAVE in a best-case environment. This was the primarsore&ehind choosing an abstract

13

environment other than synthetic game trees as a meang thegsroperties of UCT and RAVE.
The abstract game SOS appears to complement the RAVE algaoy design. Furthermore, SOS
also has an easily extractable optimal strategy. The dtilatf the game provides a means of

manipulating the difficulty level and comparing to alteimatmodels.

4.2 Sum of Switches

Sum of Switches (SOS) is a number picking game played by tageps. The game has one pa-
rametem. In SOS@) players alternate turns picking oneropossible moves. Each move can only
be picked once. The moves have valges...,n — 1}, but the values are hidden from the players.
The only feedback for the players is whether they win or Ibsedverall game. Aften moves, the
game is over. Let; be the sum of alp;’s picks,s; = p1 1 + ... + p1,[n/2], @ndsz the sum ofpy’s

picks, sy = p21 + ... + P2 |ns2)- Scoring is similar to the game of Go. Tkemik is set to the

perfect play outcomés = (n —1) — (n —2) +...+0 = zn:(n — i) (=)™ = |n/2]. The first
player winsiff s; — so > k. =

The optimal strategy for both players would be to simply dethe largest remaining number
at each step. However, since both the move values and theséioahg system are unknown to the
players, good moves must be discovered through explordijorepeated play of the same game.

SOS can be viewed as a generalized multi-armed bandit gahdfizlassical multi-arm bandit
problems, each game consists of picking a single aout of n possible arms, which leads to an
immediate rewarda;, a realization of a random variahlg;. The player uses exploration to find the
arm with best expected reward, and exploits that arm by ptaigi In SOS, one episode consists of
playingall arms once. The reward for choosing armi is constant, but is not directly shown to the
player. Only the success of all choices relative to the opptschoices is revealed at the end of the

episode.

14

Chapter 5

Experimental Results

The experiments investigate the properties of MCTS with WHDi@ RAVE. We show results for
the basic behaviour of UCT in SOS followed by the basic behavof RAVE in SOS. Next, we
justify our choices in the Move Selection Policy and the Bxation Constant. We also show the
results of using the Score Bonus enhancement from Fuego & JB@en we present the results
of experiments where RAVE is intentionally misled. By usfatse RAVE updates, we mimic the
problems in special-case game situations that tend to feudifor RAVE. These situations involve

underestimations and overestimations on move values.

5.1 Setup
5.1.1 Graphs

This section describes the general properties of the expets in this chapter. Each experiment
compares the performance of the UCT+RAVE SOS game-playiagrpm, implemented as de-
scribed in Chapter 4, across different settings. The progsareferred to as GFEGO-SOS for the
remainder of this chapter. Performance with respect to tinmmeeasured by changing the number
of MC simulations the program is allowed to execute befotarréng a search result; this simu-
lation maximum is varied between powers of 2 fr@hto 2'°. Three types of graphs are used
to plot the results of these experiments, which will be neféito as: general performance graphs,
specific performance graphs, and performance differegtégdhs. General performance graphs plot
the performance of thedleGO-SOS player on a per-game basis. Each data point in theiregult
graph represents the number of correct first plays perfobpétEGo-SOS across 1000 trials. The
correct first play is known since we know the ordering of aliMe®, as discussed in Section 4. Fig-
ure 5.1 serves as a sample general performance graph shineipgrformance of BFEGO-SOS on
SOS(10). The 99% confidence intervals are represented angFigl using error bars. This interval
is largest a” where it is 40.79 units wide on each side. Error bars are ethitom other exper-
iments in this section to avoid clutter. As SOS(10) is the theosnmon testing environment in this

chapter, error is expected to be similar to this exampleciipgerformance graphs are used to in-

15

vestigate the properties of individual moves. To obtaiadaiues, 1000 search trials are performed
each using the search limit @f¢ simulations. In each trial, data is recorded aftér2?, . .., 216
simulations. Graphs show the averages over all 1000 runshde how variables of interest such
as the individual move counts and estimated move valuesgehaith the number of simulations
using these results. Moves are labeled with their true Viahm 0 ton — 1 in SOS¢). Performance
differential graphs present the performance differen¢eéen the general performance data of two
different settings. These graphs show the relative perdoa of one setting using the other as the
baseline measure. Performance differential graphs meeeiye as visual aids. The corresponding

values from two general performance graphs are simply actettl to obtain these graphs.

o Size 10—

l) 1000 B /%/%,%,%,,%,% -
o ¥
=
S 800 % |
o /
d
z %
K 600 4
o
3 1
o 400 %/ i
© %
£
46_ ,//
O 200} %%]

O 1 1 1 ! ! ! 1 |

0 52 A S8 58 510 512 514 516
Simulations/Play

Figure 5.1: UCT on SOS(10), with 99% confidence intervals.

5.1.2 Settings

The basic UCT search engine is kept in its default form asrdest in Section 2.5, except in the
experiments of Section 5.6.2. Most UCT search settings apt &t default Fuego values [13].
The Fuego version used in these experiments was Fuegoadleasvalues that were changed are
explained here. Default move selection in Fuego chooseasittst simulated move, as this has been
shown to provide more stable performance in Go. We use theehigestimated move value as our
selection policy as per the original UCT [25]JUEG0O-SOS also performed better using the highest
valued move than the most simulated move, as will be showedatié 5.4. WeightRaveUpdates is
another feature that is disabled in these experiments oy default in Fuego. WeightRaveUpdates

involves scaling the RAVE updates for moves based on howratee game they were played. This

16

modification to RAVE is a newer feature in the Fuego systemiaigdunclear how it affects the
algorithm. Although it may be interesting to investigatevhthe WeightRaveUpdates performs in
SOS in future work, preliminary results showed no signifiaadrange in performance. Fuego uses
a default time limit of 10s in the search. This time limit isdbled in experiments where< 20 to
avoid bias in our results. Our experiments were performed GiHz i686 computers with 1GB of
memory running Linux 2.6.25.14-108.fc9.i686 Fedora rede@ (Sulphur).

5.2 Basic Behaviour

The complexity of a SOS game is solely determined by its s&@S() produces a game tree of
sizen! assuming transpositions and tree pruning are not used.xéanme, the complete SOS(10)
game tree contains 3628800 leaf nodes. The larger the gamedre difficult it is for a game-

playing program to solve. Similarly, the playing strengtlaglain, unenhanced UCT game-playing
program is mainly determined by a single parametethe number of simulations it is allowed to
perform before playing a move. To establish a performansellre for UCT in SOS, experiments
varyingn ands were performed. A uniform random playout policy is used dgsimulations in all

experiments found in this chapter.

' ' ' T ' ' ' Sizel ——
1000 L - Size 2
c_cg Size 3 x
£ Size 4 =
Size 5 —=—
S 800 r | Size 6 -
= Size 7 -
E Size 8 -+~
© 600 . Size 9
o Size 10 ——
® Size 20—~
T i |l Size30-<—
5 400 Size 40 -+~
£ Size 50 o
a o)
o 200 . o o ,vc‘// . i
olrifsgers
0 2 A B S8 10 512 14 516

Simulations/Play

Figure 5.2: Performance of UCT without additional enhaneet®in SOS().
As n increases, convergence to optimal play becomes progedssiower. Forn < 10 the
program quickly converges to optimal play in un@ét simulations. However, for larger games in

the range20 < n < 50, the number of simulations required for convergence ajgteaexceed the

limits of the values tested. Overall, convergence ratessailar to those for P-games in [25] for

17

games with a comparable number of leaf nodes. Convergermgadkly achieved in small games,
but if the game is too simple, it becomes difficult to measuranges introduced to the system.
Additionally, practicality must be considered, as resshesuld be obtained in a reasonable amount
of time. Estimated simulation speeds for SOS(10), SOSE05(30), SOS(40), and SOS(50) were
respectively 68000, 28000, 16000, 10000, and 7000 gamesegpend. For further experiments,

S0OS(10) was chosen as a compromise between game difficaltyuatime until convergence.

5.3 RAVE

Section 2.5 describes how RAVE is used in Fuego’s UCT engiddratroduces th®aveWeightFi-
nal variable. By manipulatinRaveWeightFinalwe manipulate the overall and long-term influence
of the RAVE value. Figure 5.3 shows experiments where RAV&ctive. Compared to the perfor-
mance of BEGO-SOS with RAVE disabled, even low valuesRéveWeightFinatuch as 2 give no-
ticeable improvements. Increasing the valu&akeWeightFinaimproves performance, but shows
diminishing returns in the range tested: settings of 1028lpcing similar results to 131072. As
a matter of convenience, 32768 was arbitrarily chosen aRéveWeightFinavalue used for most
experiments involving RAVE in this chapter. The value wafisiently large to cause strong RAVE

influence and, as shown in Figure 5.3 produces very simildopeance to other larger values.

, 1000t :
8
=
S 800f :
o
H ’
g 600f B4 RWE=8 -]
o 2SR BWAE — 2 e
2
T 400t —
© -
E .
2 I RWF = 32768 - = -
© 200 RWF = 131072+
RAVE Only —
O 1 1 1 1 Mea;n Onlyl ””*”T

0 2 A B B8 S0 S12 Sl4 L6
Simulations/Play

Figure 5.3: UCT+RAVE in SOS(10). VaryingaveWeightFinalabbreviated as RWF in the legend.

18

5.3.1 Exploiting RAVE

As stated in Section 4, this game is designed as a kind of lbsst for RAVE: the relative value
between moves is consistent at all stages of the game. lrfd&@0OS it is possible and beneficial to
base the UCT search exclusively on the RAVE value and igi@retean value. Figure 5.3 includes
this RAVE-only data as well. The performance of the RAVEyosétting in SOS outperforms all
RaveWeightFinasettings tested. This method may not work in other gamesenther value of a
move depends on the timing of when it is played. In such gam&$Rnay cause overestimations
or underestimations in move values. The experiments in@esi6 approximate the difficulties that
may arise if UCT+RAVE overestimations or underestimationRAVE values occur; preliminary

tests showed that these kinds of problems were simply exatggkif RAVE were used exclusively.

5.4 Move Selection Policy and Exploration Constant

In this section we discuss the Move Selection policy and >ion Constant and the reasoning
behind their settings. As stated in Section 5.1.2, the Male@ion policy used in BEGO-SOS
chooses the move with the highest estimated value. IfIsti¢€T is used, the search returns the
move at the root with the highest mean value, but if RAVE islded, the search returns the move
with the highest weighted sum of mean and RAVE values. Therradtive policy of choosing the
most simulated move avoids the risk of “lucky” simulatiokewing the search in favour of moves
with less reliable estimated values. However, results gufé 5.4 show that the two strategies
perform approximately the same on SOS(10), but the higtstishated value policy appears to be
more successful while the simulation counts are low.

The exploration constant in UCT is used to control the frequency of exploration in node
with high uncertainty. This constant has typically beendiamed to optimize UCT performance
in different games. However, there is debate about the teféaess of the exploration component
of UCT, as some programs appear to perform best when0. Figure 5.5 shows the results of
varyingc on SOS(10). Differing values efdo not seem to produce a change in the performance of

FUEGO-SOS on SOS(10), so the default value of 0.7 is maintainedititrout our experiments.

5.5 Score Bonus

Score Bonus is an enhancement that differentiates betviemmsand weak wins and losses. If
game results are simply recorded as a 0 or 1, the program adesaeive any feedback on how
close it was to winning or losing. With score bonus, a strong tlat probably contained many
high-scoring moves gets a slightly better evaluation thelose win.

In SOS with score bonus, losses are evaluated in a range ftorm @Gnd wins froml — v to 1,
for a parametety < 1. A minimal win is awarded — ~, and a maximal win a score of 1. All other

game outcomes are scaled linearly in this interval. Theasmhssigned for losses are analogous.

19

o 1000f 1
©
=
Q 800 1
o
-
2
& 600 1
ol
|2
T 400t 1
]
£
=
O 200f]
O 1 1 1 1

20 2 o4 b B8 S0 12 14 516
Simulations/Play

Figure 5.4: Performance values upon changing Move Sele&aicy. Estimated Value is abbre-
viated as EV and Move Count is abbreviated here as MC. Do ndtse with Monte-Carlo from
text.

Score Bonus is used in the Fuego Go program. Unpublishee-srgle experiments by Markus
Enzenberger showed that small positive values imfiprove the playing strength slightly but signif-
icantly for9 x 9. Best results were achieved for= 0.02. Figure 5.6 shows results for how this
enhancement performed in SOS.

We testedy = 0.1, v = 0.05, v = 0.02, andy = 0.01 in SOS to search for a suitable setting,
as+vy needs to be hand-tuned. Despite success in Go, score bdsus fenprove gameplay in SOS.

None of the tested settings showed noticeable improvement.

5.6 False Updates
5.6.1 Indiscriminate False Updates

While RAVE has improved general performance in Go and otlaenes, it is not always reliable.

RAVE can fail in some Go positions where basic UCT succeedsceSRAVE updates the value

of all moves in a winning sequence and ignores temporal informaiioless favourable environ-

ments moves may develop skewed RAVE values. False RAVE salae lead the search astray.
In situations where specific moves are only helpful at a giuee, RAVE can weaken game-play
instead of improving it. Suppose that in a game, a certainntese, Move,, will always lead to

a win, but is useless at all other times. The high RAVE valw fliove, is likely to earn early in

simulations causes the game-playing program to waste tkplerng paths starting witt\/ove,

20

® 1000 | |
8
=
Pt 800 | |
o
—
E‘ (/ 77777
< 600 P 2 _
D- 4 . V
E 400 o .]
£ c=0. .
i c=0. |
®) 200 c=0.
Cc = 0.8+RAVE v
0 I . . . c= l'OTRAVE, ,,,,, o
20 22 o* 26 8 o0 12 Sl4 516

Simulations/Play

Figure 5.5: Results of varying the constant c that regulitegxploration component.

at higher points in the tree. Although these simulationdiooally lead to losses, the high RAVE
value held byMove, keeps the search focused on it for a significant amount of tBueh a situation
produces very poor value estimates when the simulatiom iémeached and thus, poor play results.
Conversely, the more typical case is that a maeye,, is only good if it is chosen as the first
move. In this situationMove;, will gain a low RAVE value from simulations. With a low RAVE
value, Movey, is less likely to be sampled as the first move, meaning thayratirer moves will be
simulated beford/ove, is simulated at the root node. The search is unlikely to discthatMowve,,

is a strong move at the root and again, a poor play results.

Experiments involving random false updates can simulaeffect of misleading RAVE values.
In the experiment shown in Figure 5.7, we randomly perforleefd&RAVE updates on all moves.
With a probability ofu, the RAVE update for all moves in the current simulation ubesinverse
evaluation/nverseFval = 1 — Eval instead ofEval.

Even with the influence of the mean value as a steadying furegyerformance of RAVE with
false updates deteriorates as the valug @ficreases. The decay is gradual uptils about 0.5,
where performance drops significantly. RAVE still outpenfis plain UCT whery is between 0O
and 0.3. Up to au value of 0.5, the error introduced by the false update camtepreted as
noise that slows down convergence. Even with= 0.6 the performance still improves with the
number of simulations. Howevet,values of 0.7 or higher seem to prevent convergence altegeth
in this simulation range. These results suggest RAVE is agblheuristic that is resilient against a

reasonable level of error.

21

, 1000¢ 1
©
=
g 800t 1
o
-
2
T 600 y=0.00 ——]
a y=0.01
2 y=0.02 - x
L 400 y=0.05 o 4
3 y=0.10 =
£ y = 0.00+RAVE - -

I y=0.01+RAVE -+ |
o 200 y=0.02+RAVE -+ -

y = 0.05+RAVE -+
O 1 1 1 1 y:I OlloTRAVEI RN
20 22 24 26 28 210 212 214 216

Simulations/Play

Figure 5.6: Score Bonus results involving varigugn SOS(10).

In Section 5.3.1, we showed that using RAVE without the meslneszcomponent in the UCT
formula works exceptionally well in SOS. We investigate #fiect of false updates on this previ-
ously favourable arrangement. The results in Figure 5.&/ghsimilar trend while the error rate,
is low. Thep = 0 data corresponds to the RAVE-only line in Figure 5.3, whety'R-only without
artificial error is significantly better than plain UCT and T€RAVE. However, aju = 0.3 RAVE-
only is already slightly worse than plain UCT. At= 0.4, RAVE-only is performing far worse than
plain UCT and UCT+RAVE with false updates from Figure 5.7 ¢At 0.5 the algorithm behaviour
becomes equivalent to a uniform random player, and beyord0.5, plays become even worse.
This result can be expected in an arrangement where RAVEeyo@mphasized, or in this case the

sole predictor, and RAVE is grossly skewed.

5.6.2 Selective False Updates

The false update model discussed in Section 5.6.1 is seifabkepresenting games where moves
have different values when played in different order or p#ieiations where move values at dif-
ferent times in a game have low correlation. However, thadehdoes not actually represent the
situations discussed where a specific move is of specialrtapce at a certain pointin time. In the
following versions of false updates, we selectively distbe updates related to specific moves and
specific outcomes. By consistently manipulating the RAVEI®a in a specific manner, we mimic
the hypothetical result of the scenarios described at #réat Section 5.6. This model is closer to

what is seen in Go, and presents a different problem for theekeghan the model in Section 5.6.1.

22

n=00 ——

, 1000} | ow=ol
© H=0.2 o
£ hZo03 -

- il p=04 —=—-
g 80 4=04 =
S H=0.6 -+
> =07 -
g 600 1 p=08 =
?5 p=09 ——
@ H=1.0 v
L 400 | NORAVE o
©
£
2
S 200} |

0

0 52 A B 58 510 512 514 516
Simulations/Play

Figure 5.7: Effect of Indiscriminate False Updates on UCR¥R in SOS(10). False RAVE updates
are performed randomly on all moves.

Whereas the previous model injects noise into the RAVE &loausing the search to proceed more
randomly, this model manipulates the RAVE values in a moreatiéd manner, focusing the search

towards or away from specific moves.

Lowering Strong Values

One scenario described at the start of Section 5.6 is theafd®AVE presenting a false negative.
In this scenario, RAVE statistics make a strong move lookkwva&le simulate this effect in these
experiments by manipulating the value of the strongest mmase 9 in SOS(10). If the RAVE
update for the optimal move would be the value of a win, withlqability ., we update it as a loss
instead. In this context, the optimal move refers only todptimal first move at the start of the
game. Results are shown in Figure 5.9.

At all values ofy greater than 0, BEGO-SOS performs significantly worse than in the indis-
criminate false update case. To analyze the behaviour offRiA\this experiment, let us focus on
the setting where, = 0.2. At this setting, FEGO-SOS performs significantly worse than where
u = 0, but still achieves optimal play. Afte2'3 simulations, the UCT+RAVE algorithm seems
to overcome the effects of the false update. The performegemvery is significant and drastic.
Figures 5.10 and 5.11 can be used to explain this effect. Jtmated value for the optimal move,
move 9, is not the highest option prior to tB& point. However, the point at which this trend
changes coincides with the point at which the move count@fofitimal move begins to rise past

the previous leader, move 8. At this point, move 9 was fourizktat least as good as move 8 and the

23

H=00 —+—

, 1000t 1 u= 8_ %
© H=0.2 o
£ hZo03 -

:] p=04 -—=--
g 800 4=04-
S H=0.6 -+
> =07 -
g 600 1 p=08 =
?5 p=09 ——
7 H=10
L 400 | NORAVE o
©
£
=
O 200} 1

0 R P S S S

0 52 A B 58 510 512 514 516
Simulations/Play

Figure 5.8: Effect of Indiscriminate False Updates for RAWEY on SOS(10). False RAVE updates
are performed randomly with probability.

move 9 branch of the game tree was more thoroughly explorgdraes were won more frequently
than previously. As the move count increases, the UCT vadiresglominance, and the effect of the
false RAVE value is diminished. This is a result of the weiggtfunction introduced in Section 2.5.
This idealised scenario shows the effect in its cleareshfdnut is unrealistic since in practice the
RAVE updates of all moves in a simulation will be affectedhie same way.

To more accurately mimic a real-game scenario, we invastitpe effect of forcefully lowering
the RAVE value of the optimal move by generalizing the falg®&/R update to all moves that were
played in the same simulated game. Performance resultsagipdying this change are presented
in Figure 5.12. BEGO-SOS performs better in this scenario than in the previouseraimilar to
the indiscriminate false updates case. However, the sugd@und effect seen in Figure 5.9 is seen
here as well. As soon as the estimated move value of the dptimwae becomes the highest amongst
all alternatives, the algorithm appears to sample the @timove almost exclusively, resulting in
consistent optimal play. Figures 5.13 and 5.14 show howdlimated values and move simulation
counts evolve. Again increased sampling correlates wighctiange in estimated value. This is
expected to result from the change in weights as the weigtiieoRAVE value diminishes. The
exampley = 0.6 was chosen as it was the highgstalue that converged to optimal play within the

tested number of simulations.

24

o 1000f :
©
=
Q 800 -
o
-
2
& 600 -
ol
|2
T 400t -
]
£
=
O 200f -
0

0 52 A B 58 510 512 514 516
Simulations/Play

Z
o

pH=0.0——
p=0.1 -
=02 x
p=0.3 =
p=04 -—=--
p=0.5---o--
p=0.6 e~
p=0.7-—->-
H=0.8-a-
p=09 ——
p=1.0-—=--
RAVE o

Figure 5.9: Effect of False Updates where winning RAVE updatf the best move on SOS(10) are

inverted with probability.

l T T T T T

0.8

0.6 |
0.4
0.2/

Move Value Estimate

o L 1 L 1 L 1 L 1 L 1
A B 8 510
Simulations/Play

212

214

216

Move 0
Move 1
Move 2
Move 3
Move 4

Move 5
Move 6
Move 7
Move 8 4
Move 9 —s—

Figure 5.10: Value estimates(UCT+RAVE) from the experitierrigure 5.9 foru = 0.2.

Raising Weak Values

The other scenario mentioned at the start of Section 5.6vaddRAVE resulting in false positives

in its search. In this situation RAVE overestimates the @alfia move Move,, wrongly believing

that Mowve,, is a strong candidate for best move. To simulate this problemanipulate RAVE in

experiments similar to Section 5.6.2. However, simulaki@ses are given the value of a win during

the RAVE update with probability,, since we are bolstering the value of the target move instead

Two different moves were investigated in this series of expents: the worst move and the second-

best move, move 0 and move 8 respectively in SOS(10). Thalihigpothesis proposed that bias

towards the second-best move should mislead the searchsigmiécantly than bias towards the

worst move, as distinguishing between the best and secatarmyves should be more difficult for

25

100000 T T T T T T T

‘g ~~ 1 MoveO Move 5
ox 10000 F 7] Movel Move 6
© " +.a] Move2 Move 7
£ 1000 F T 1 Move3 Move 8 -+
3 & & Move 4 Move 9 ——
o 100 | e]
g 7t
g 10 | 9%””&%/]

1 . I .,// I . I . I . I . I . I

0 2 o 6 B ol0 12 14 516

Simulations/Play

Figure 5.11: Move Counts at the root node from the experinmeligure 5.9 fory = 0.2.

[2]

— T T T T T T T T = 0.0

2 1000} =01

S P=0.2 %

S I H=03 =

= 9% L=04 =

2 o5 o

g_‘ 600 H=06 =

- H=0.7 ——o-

2 I =08

Z 400 h-05 -
H=10 v

£ 200} No RAVE -

o

6

0
20 2

Simulations/Play

Figure 5.12: Effect of False Updates where winning RAVE upsgaf the best move on SOS(10)
are inverted with probability.. Inverted updates are also applied to all other moves playetie
player that chose the best move.

UCT. Results from these experiments are shown in Figurdst6.%.20.

When the value of the worst move was inflatedggo-SOS performed better than in the indis-
criminate false update case. Although the false updatesueage simulations related to the worst
move in this scenario, simulations related to the optimalerare not discouraged. Thus, once the
worst move is refuted, the algorithm quickly switches to tiext best choice: the optimal move.
The value estimates and move counts of the: 1.0 setting in Figures 5.16 and 5.17 support this
hypothesis. The move value of move 9 remains consistentyahll other moves save move 0.
When the value of move 0 drops below a certain point, 0.37ignekample, BEGO-SOS begins to
simulate move 9 much more frequently.

When the value of the second-best move was inflated, the lmehvasf FUEGO-SOS became
similar to inverting the updates of the best move in Figu8 $owever, convergence rates were
better. We again investigate by closer examination of theeramunts and value estimates of the

1 = 1.0 setting in Figures 5.19 and 5.20. As with inflating the val@i¢he worst move, the value

26

% 1 ' ' ' ' ' ' ' ' Move 0 Move 5
E osl 1 Movel Move 6
7] ' Move 2 Move 7
o 0.6 | V/W] Move 3 Move 8 s
S ' Move 4 Move 9 —=—
g 04 i a A, A A A A A A “Av/i/i/“]
S ool T T S e i
3 .
= ,
o " 1 " 1 " 1 " 1 " 1 " 1 " 1 " 1

0 2 A B 8 o0 S12 Hl4 516
Simulations/Play

Figure 5.13: Value estimates(UCT+RAVE) from the experitierrigure 5.12 for = 0.6.

§ 100000 T T T T T T T — T Move O Move 5
14 L 1 Movel Move 6
- 10000 / | Movel Move 6
1S 1000 | L et 1 Move3 Move 8 &
3 e 1 Move4d Move 9 —=—
(&} 100 ¢ A/{;;::/v]
Q T
3 10F }/9%]
E 1 L 1 N «‘»70/%. 1 N 1 N 1 N 1 N 1 N !

20 22 * 26 28 210 12 Hl4 516

Simulations/Play

Figure 5.14: Move Counts at the root node from the experinmeffigure 5.12 for = 0.6.

of the optimal move remains consistently high, which alldwsEco-SOS to quickly converge to
optimality once the false move has been refuted.

We also investigate the effect of generalizing the false RAYpdate to other moves played
with the target move. One would expect the effect of gerargjithe false update for weak moves
to be less disastrous than the results from Section 5.6.fheasptimal move is not negatively
manipulated. Figures 5.21 and 5.24 show the results of génieg the false update value to other
moves. Figures 5.22 and 5.23 show the moves values and mowesdor Figure 5.21. The same
values were used for our experiments for shared false updateen this shared update was applied
to the inflated worst move scenario, the worst move domintitedest move in move value until
29 simulations were reached where the roles reversed. Fotations from2* on, the values of the
best and worst move remained within 0.01 of each other. Bhi®i the case when the second-best
move becomes the target of the shared false update. A sizgaplbetween the inflated second-best
move and the best move causes convergence to be delayethanfif datapoint. As one would
expect, it appears that manipulating the move value of tberskbest move is far more detrimental
to MCTS. The move values shown in Figure 5.25 show a condilegap between the values of
the inflated move 8 and the optimal move, move 9. The generhfalse update causes EGO-
SOS to simulate move 7 before further considering move 9eas & the move counts plotted in
Figure 5.26. The large time investment spent in simulatirgginflated decoy moves greatly delays

convergence.

27

(2]

) T T T T T T T T — 00 -

2 1000} { h=o1 -

S P=0.2 %

8 i | u=03 o

S 800 N=04 =

& H=05c-

8 600f 1 u=06 =

- H=0.7 —-s-

B i | =08 e

T 400 N=09 -
H=10 -+

E 200t 1 NORAVE o

Q.

o . i

O | Yy Y vy vy |
20 22 24 26 28 210 212 214 216

Simulations/Play

Figure 5.15: Effect of False Updates where the losing RAV&ates of the worst move on SOS(10)
are inverted with probability:.

1 e e Move 0 —— Move 5

0.8 1 Movel Move 6

’ Move 2 Move 7

0.6 |1 Move3 Move 8
Move 4 Move 9 —~—

0.4
0.2

Move Value Estimate

20 22 24 26 28 210

Simulations/Play

Figure 5.16: Value estimates(UCT+RAVE) from the experitierrigure 5.15 for = 1.0.

RAVE-max: Towards a more robust RAVE

In the false update experiments, the measured n¥anf the optimal move is often high even
though its RAVE valug’; is low. The following experiments teRAVE-maxthe simple modifica-
tion of replacingY; by max(Y;, X;) in Equation 2.2 from Section 2.5.

Figure 5.28 shows the performance difference between(Y;, X;) andY; for indiscriminate
false updates. Initial performance is worse for< 0.3, but significantly better for almost all
other cases. The weaker result at higher simulation coontsfe casey = 0.6 is surprising. The
performance drop for smalland low number of simulations is natural since RAVE dataletieely
high quality and the sample size for the mean is so small.

Using RAVE-max on the selective false update problems frestiBn 5.6.2, we see performance
gains in both the individual move experiments and the shfated update experiments. Figures 5.29
and 5.30 show the performance differences. The initialquarnce loss is seen at= 0.0 in the

individual case and far < 0.2 in the shared case in this scenario. However, in generdgnpeance

28

100000 T

‘g MOVE (1) — MOve g
o [h ove ove
2 10000 1 Move?2 Move 7
= 1000 F 1 Move3 Move 8
3 1 Move4 Move 9 —s—
(&} 100 ¢ 5
0>) i
[} 10 E
2 1

1 " 1 1 " " " " "

20 22 A 26 28 210,12 Hl4 516

Simulations/Play

Figure 5.17: Move Counts at the root node from the experinmefftgure 5.15 for = 1.0.

[2]

— T T T T T T T T = 0.0

2 1000} =01

S P=0.2 %

S I H=03 =

= 9% L=04 =

2 o5 o

g_‘ 600 H=06 =

- H=0.7 ——o-

2 I =08

Z 400 h-05 -
H=10 v

£ 200} No RAVE -

o

6

0
20 2

Simulations/Play

Figure 5.18: Effect of False Updates where the losing RAVEates of the second-best move on
SOS(10) are inverted with probability.

improves significantly in these tests. This result is to bgeeted as taking the max should negate
any undermining caused by RAVE.

For the boosting RAVE value problems from Section 5.6.2, EAviax showed overall positive
results only for individually boosting the worst move, wilightly negative results for small num-
bers of simulations. RAVE-max was also weaker whped 0.6, but positive results for ajk > 0.6.
This result is surprising since this scenario is the oppasitthe reducing RAVE problems. Using
RAVE-max on the other boosting settings resulted in peréoroe similar to the RAVE, but with
performance losses during low simulations counts. Theoperdnce differential graphs for these
settings are presented in Figures 5.31, 5.32, 5.33 and BA4E-max improves performance in sit-
uations where RAVE values of moves are underestimated,d®g dot help against overestimates.
Even so, RAVE-max performs at least as well as RAVE on ovienadion situations. A more robust
solution needs to be found to handle both classes of RAVE|@nuh

29

2 L el et Move 0 Move 5
£ o8l | A eeaa < | Movel Move 6
7 ' i [eS| Move 2 Move 7
w 06L [e Vs o i 1 Move 3 Move 8 -+
S Sl T T - Move 4 Move 9 ——
< iy i
> 04r
2
3 0.2 B
2 J/‘/ 1 1 1 1 1 1 1 1
020 2 o b 28 ol0 12 Hl4 516
Simulations/Play
Figure 5.19: Value estimates(UCT+RAVE) from the experitieirfrigure 5.18 for = 1.0.
"8' 100000 T T T T T T T /VI'] Move 0 Move 5
& 10000 L 7 .1 Movel Move 6
= T {1 Move?2 Move 7
2 1000 e 1 Move3 Move 8 -+
3 Pl 1 Move4d Move 9 —~
O 100 F T —.
g AT i
5 10 F AR .
1 L , A F 1 L 1 L 1 L 1 L 1 L 1
20 22 A 6 B 0 S22 Ll4 516

Simulations/Play

Figure 5.20: Move Counts at the root node from the experinmefftgure 5.18 for = 1.0.

T T T L T T T u - 00 L

, 1000+ 1 = 8_ %
© H=0.2 o
= hZ03 o

- il p=04 —=—-
g 800 H=04 e
S H=06 9 -
> =07 -
?5 p=09 ——
4 H=10 -
L 400 | NORAVE o
]
£
o
O 200 r 4

O 1 1 I I I L L \

0 52 A B 58 510 512 514 516
Simulations/Play

Figure 5.21: Effect of False Updates where the losing RAV&ales of the worst move on SOS(10)
are inverted with probability:. Inverted updates are also applied to all other moves playdtie
player that chose the worst move.

30

Move Value Estimate

26

28 210 212 214

Simulations/Play

216

Move 0 —+—
Move 1
Move 2
Move 3
Move 4

Move 5
Move 6
Move 7
Move 8
Move 9 —~—

Figure 5.22: Value estimates(UCT+RAVE) from the experitierfrigure 5.21 fo = 1.0.

g 100000 T
o)
o 10000
kS
c 1000 |
3
(&} 100 ¢
g
) 10
=
1 0 . I2
2 2

26 28 210 212 214

Simulations/Play

216

Move 0 —+—
Move 1
Move 2
Move 3
Move 4

Move 5
Move 6
Move 7
Move 8
Move 9 —s—

Figure 5.23: Move Counts at the root node from the experinmeffigure 5.21 for = 1.0.

, 1000

©

=

Q 800

o

—

2

& 600

o

2

L 400

©

£

B

O 200
0

/
v

00—+

20 22 24 26 28 210 212 21 2

Simulations/Play

16

Z
o

pH=0.0——
p=0.1 -
=02 x
p=0.3 =
p=04 -—=--
p=05---o--
p=0.6~~-e--
p=0.7-—->-
H=0.8-a-
p=09 ——
p=1.0-—=--
RAVE o

Figure 5.24: Effect of False Updates where the losing RAVEaigs of the second-best move on
SOS(10) are inverted with probability Inverted updates are also applied to all other moves played
by the player that chose the second-best move.

31

Move Value Estimate

Move Count at Root

s Move 0 Move 5
| |1 Movel Move 6
Move 2 Move 7

1 Move 3 Move 8 - -a- -

Move 4 Move 9 —s—

O L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1
0 2 A B 8 o0 S12 Hl4 516
Simulations/Play

Figure 5.25: Value estimates(UCT+RAVE) from the experitierrigure 5.24 for = 1.0.

100000 T T T T T T T T

1 MoveO Move 5
L 2/« 1 Movel Move 6
10000 et 1 Move2 Move 7
i P 1] Move 3 Move 8 —
1000 A 1 Move 4 Move 9 ——
100 | s .
1 . 1 ‘/);//TV 1 . 1 . 1 . 1 . 1 . 1

20 22 A 6 B8 Hl0 S12 L4 ,16
Simulations/Play

Figure 5.26: Move Counts at the root node from the experinmeffigure 5.24 for, = 1.0.

T T T T T T T u - 00 L
, 1000 1 = 8'%
© H=0.2 o
s iZ03 -

il p=04 —=—-

S H=06 9 -
> =07 -
o p=0.9 ——
£ H=1.0 v
T 400 | NORAVE o
]
E
8
O 200]

2 oA B S8 510 512 514 516
Simulations/Play

Figure 5.27: Results for experiments using Indiscrimirkatise Updates with RAVE-max.

32

1000 T T T T T T T T T T T T T T T T

pH=0.0——
o H=0.1 ——
g H=0.2
S u=03 =
S 500F 1 u=04--=—
2 n=05 o
T H=06 =
J2 H=0.7 -~
o . L=0.8 = -
E Or ‘\ 1 u=09 ——
g L =1.0
(@] . ‘ H
5 500 §
2
[a]

_1000 1 1 1 1 1 1 1 1

0 52 A B 58 510 512 514 516
Simulations/Play

Figure 5.28: Performance differences for Indiscriminadés€& Updates. Compares RAVE-max to
RAVE.

0

S 1000 =00

S H=0.1 =
8 H=0.2 -
= L=03 o
& 500t L=04 =
& H=05 -
b L=0.6 o
g l_l = 07 ———t
L H=0.8 -
('—U O i u = 09 —_—
o

@)

£

@ -500 r 1

(8}

c

Q

Q

£

D _1000 1 1 1 1 1 1 1 1

0 52 A B S8 510 512 514 516
Simulations/Play

Figure 5.29: Performance differences for False Updatesriog the RAVE value of best move.
Compares RAVE-max to RAVE.

33

0

S 1000 =00

: oI
p=0.2 - Heoee

= =03 =

¢ 500f { pu=04 =

ks W=05 o

pos L=0.6 s

2 “’ = 07 B —

L H=0.8 -

E Or 1 p=09 ——

E H=1.0 v

Q.

o)

k=

o -500 f -

(8]

c

o

()

b=

D _1000 1 1 1 1 1 1 1 1

0 52 A S8 58 510 512 514 516
Simulations/Play

Figure 5.30: Performance differences for False Updatesriogy the RAVE value of best move and
other moves played with it. Compares RAVE-max to RAVE.

0
E 1000 T T T T T T T T l.,l — 00

u =0.2 HK-----
S H=03 =
& 500t 1 n=04--=-—
5 H=05 -
o L=0.6 o
g l_l = 07 A
L H=0.8 -
fs 0r 1 u=09——
£ =10
o
o
£
@ -500 8
(&)
c
o
D
D _1000 1 1 1 1 1 1 1 1

0 52 A B S8 510 512 514 516
Simulations/Play

Figure 5.31: Performance differences for False Updateingithe RAVE value of worst move.
Compares RAVE-max to RAVE.

34

0

g 1000 T T T T T T T T u = O 0

: Hes
p=0.2 — ERREEE

g u = 03 =

2 500°f . H=0.4 =

© =05 o

pos H=0.6 -

2 “’ = 07 B —

I H=0.8 -

E Or 1 p=09 ——

E H=1.0 v

o

o

£

o -500f 1

(&)

c

o

[¢]

=

D _1000 1 1 1 1 1 1 1 1

0 52 A S8 58 510 512 514 516
Simulations/Play

Figure 5.32: Performance differences for False Updatssigthe RAVE value of worst move and
other moves played with it. Compares RAVE-max to RAVE.

0
g 1000 T T T T T T T T T T T T T T T T u - 0 0
g p=0.1-——
38 H=0.2 -
= L=03 o
& 500t 1 n=04--=-—
‘—‘5 p=0.5--o--
p L=0.6 o
g l_l = 07 ———h—
L H=0.8 -
fs 0r 1 pu=09 ~—
£ H=10 -
o
o
£
@ -500 .
(&)
c
o
2
D _1000 1 1 1 1 1 1 1 1

0

0 52 A B S8 510 512 514 516
Simulations/Play

Figure 5.33: Performance differences for False Updatesngithe RAVE value of second-best
move. Compares RAVE-max to RAVE.

35

0
E 1000 T T T T T T T T l.,l - 00

u =0.2 HK-----
= L=03 o
& 500t 1 n=04--=-—
5 H=05 -
po’ H=06 =
g l_l = 07 ———t
L H=0.8 -
C_U O i 7 u = 09 —_—
o
®)
£
@ -500 r 8
(&)
c
Q
D
D _1000 1 1 1 1 1 1 1 1

0 52 A B 58 510 512 514 516
Simulations/Play

Figure 5.34: Performance differences for False Updatesngithe RAVE value of second-best
move and other moves played with it. Compares RAVE-max to RAV

36

Chapter 6

Conclusions and Future Work

6.1 Thesis Conclusions

The Sum of Switches game provides a simple, well-contr@l®dronment where behaviour is eas-
ily measured. In this environment, our experiments stutl€d” and two common enhancements,
RAVE and Score Bonus. Score Bonus did not produce favourabléts in SOS, but had a positive
effect in Go. This discrepancy needs further study.

The RAVE experiments show significantly better performathes plain UCT, even with dis-
torted RAVE updates. In games where the values of moves dchaoige over the course of a game,
RAVE provides a much stronger estimate than the mean valughérmore, the indiscriminate false
update experiments suggest that the RAVE heuristic is tamenst unbiased noise and performs
well even with a fair level of error.

When false updates were performed in a more realistic mainnttre selective false update
experiments, RAVE continued to demonstrate resilience.wBiching the development of move
values and move counts throughout the search, we inferna@ £ the mechanisms behind the
recovery process of rebounding from a poor RAVE heuristimnt-this, we produced RAVE-max
that attempts to hasten the rebound process. Although RAdkappears successful in overcoming

underestimated RAVE values, it does not improve situatwimsre RAVE is overestimated.

6.2 Future Work

Future work related to this thesis can be pursued in theviatig areas: SOS, Score Bonus, RAVE-
max, and RAVE error models. One direction of research isystggdthe effect of improved, non-

uniform random playout policies in SOS. The Score Bonus eoéiment is another topic that can be
further researched. Interesting topics that deserve tigat®on include why Score Bonus does not
improve performance on SOS and a general understanding tffies of environments where Score
Bonus does improve performance. One possible reason wing 8omus was ineffective on SOS
was the accuracy of the estimated values. Score Bonus mayteeuseful in larger games where

value estimations are less accurate. Future work relatBd\WE-max should look at handling the

37

overestimation cases in RAVE errors. Of course, it may beenmportant to measure the actual
effectiveness of RAVE-max in popular classical games. @ltjh our error models are designed
with the intent to model real situations, testing in real gans necessary to verify our results.

Furthermore, more accurate error models may be found terbatidel real situations.

38

Bibliography

[1] L.V. Allis. Searching for solutions in games and artificial intelligen®hD thesis, University
of Limburg, 1994.

[2] V. V. Anshelevich. A hierarchical approach to computexh Artificial Intelligence 134(1-
2):101 - 120, 2002.

[3] B. Arneson, R. Hayward, and P. Henderson. Wolve 2008 Wims TournamentiCGA Journa)
32(1):49-53, March 2009.

[4] B. Bouzy and T. Cazenave. Computer Go: an Al oriented eyunvArtificial Intelligence
132(1):39-103, 2001.

[5] B. Bouzy and B. Helmstetter. Monte-Carlo Go developrseht J. van den Herik, H. lida, and
E. Heinz, editorsAdvances in Computer Games. Many Games, Many Challengesdttings
of the ICGA / IFIP SG16 10th Advances in Computer Games Cemferpages 159 — 174.
Kluwer Academic Publishers, 2004.

[6] B. Brigmann. Monte Carlo Go, March 1993. Unpublishedoscriptht t p: / / www. cgl .
ucsf. edu/ go/ Prograns/ Gobbl e. ht m .

[7] M. Buro. Toward opening book learningCCA Journal 22(2):98-102, 1999.

[8] M. Campbell, A.J. Hoane, and F. Hsu. Deep Blukttificial Intelligence 134(1-2):57-83,
2002.

[9] G. Chaslot, M. Winands, J. Uiterwijk, J. van den Herikda®. Bouzy. Progressive strategies
for Monte-Carlo tree searchlew Mathematics and Natural Computatjdi(3):343—357, 2008.

[10] R. Coulom. Efficient selectivity and backup operaterdMonte-Carlo tree search.ecture
Notes in Computer Scienc#630:72-83, 2007.

[11] R. Coulom. Whole-history rating: A bayesian rating tgys for players of time-varying
strength. In van den Herik et al. [42], pages 113-124.

[12] F. de Mesmay, A. Rimmel, Y. Voronenko, and M. Pischelan8it-based optimization on
graphs with application to library performance tuning. InFADanyluk, L. Bottou, and M. L.
Littman, editors,ICML, volume 382 ofACM International Conference Proceeding Series
page 92. ACM, 2009.

[13] M. Enzenberger and M. Miller. Fuego, 200Bt t p: / / f uego. sf. net/ Retrieved De-
cember 22, 2008.

[14] M. Enzenberger and M. Miller. Fuego — an open-souraméwork for board games and
Go engine based on Monte-Carlo tree search. Technical RERod9-08, Dept. of Comput-
ing Science. University of Alberta, Edmonton, Alberta, @da, 2009.ht t p: / / www. Cs.
ual berta. cal/research/techreports/ 2009/ TR09- 08. php.

[15] T.S. Ferguson. Game Theory, 2004. Online tekt, p: / / www. mat h. ucl a. edu/ ~t onf
Ganme_Theory/ Contents. html .

[16] H. Finnsson and Y. Bjornsson. Simulation-based appihdo General Game Playing. In Fox
and Gomes [17], pages 259-264.

[17] D. Fox and C. Gomes, editorBroceedings of the Twenty-Third AAAI Conference on Atdifici
Intelligence, AAAI 2008, Chicago, lllinois, USA, July 13;2008 AAAI Press, 2008.

39

[18] T. Furtak and M. Buro. Minimum Proof Graphs and Fastest-First Search Heuristics. In
Proceedings of the 21st International Joint Conference difiéial Intelligence pages 492—
498, Pasadena USA, 2009.

[19] S. Gelly and D. Silver. Combining online and offline knedge in UCT. In Z. Ghahramani,
editor, ICML, volume 227 ofACM International Conference Proceeding Seripages 273—
280. ACM, 2007.

[20] S. Gelly and D. Silver. Achieving Master Level Play in ®xComputer Go. IrProceedings
of the Twenty-Third AAAI Conference on Artificial Intellige, AAAI 2008pages 1537-1540,
2008.

[21] S. Gelly and Y. Wang. Exploration exploitation in Go: U@or Monte-Carlo Go. INNIPS:
Neural Information Processing Systems Conference Onttading of Exploration and Ex-
ploitation WorkshopCanada, 12 2006.

[22] S. Gelly, Y. Wang, R. Munos, and O. Teytaud. ModificatafiJCT with patterns in Monte-
Carlo Go, 2006. Technical Report RR-6062, INRIA, France.

[23] H. Gintis. Game Theory Evolving: A Problem-Centered Introduction todeling Strategic
Interaction (Second EditionPrinceton University Press, 2nd edition, February 2009.

[24] R. P. Jones and D. J. Thuente. The role of simulation ireldging game playing strategies.
In ANSS '90: Proceedings of the 23rd annual symposium on Siionj@ages 89-97, Piscat-
away, NJ, USA, 1990. IEEE Press.

[25] L. Kocsis and C. Szepesvari. Bandit based Monte-Cplidmning. InProceedings of 17th
European Conference on Machine Learning, ECML 2Q@jes 282-293, 2006.

[26] R. J. Lorentz. Amazons discover Monte-Carlo. In van Henik et al. [42], pages 13-24.

[27] N. Metropolis. The beginning of the Monte Carlo methagds Alamos Scien¢d5:125-130,
1987.

[28] M. Muller. Computer GoAtrtificial Intelligence 134(1-2):145-179, 2002.

[29] M. Miller and T. Tegos. Experiments in computer Amazorn R.J. Nowakowski, editor,
More Games of No Changpages 243-257. Cambridge University Press, 2002.

[30] X. Niu and M. Muller. An open boundary safety-of-teaty solver for the game of Go. In
J. van den Herik, P. Ciancarini, and H. Donkers, edit@@mputer and Games. 5th Interna-
tional Conferencgvolume 4630 of_ecture Notes in Computer Scienpages 37-49, 2006.

[31] S. Russell and P. NorvidArtificial Intelligence: A Modern ApproachPrentice Hall, 1995.

[32] M. P.D. Schadd, M. H. M. Winands, H. J. van den Herik, Ga€lbt, and J. W. H. M. Uiterwijk.
Single-Player Monte-Carlo Tree Search. In van den Herik ¢42], pages 1-12.

[33] J. Schaeffer. The history heuristic and alpha-betackeanhancements in practicédEEE
Trans. Pattern Anal. Mach. Inte)l11(11):1203-1212, 1989.

[34] J. Schaeffer, N. Burch, Y. Bjornsson, A. Kishimoto, MiNer, R. Lake, P. Lu, and S. Sutphen.
Checkers is solvedscience317(5844):1518, 2007.

[35] J. Schaeffer, J.C. Culberson, N. Treloar, B. Knight.#. and D. Szafron. A world champi-
onship caliber checkers prograsrtificial Intelligence 53(2-3):273—-289, 1992.

[36] A. Scheucher and H. Kaindl. The reason for the benefitmiofmax search. IfProceedings
of the 11th international joint conference on Artificial élifgence-Volume lpages 322-327,
1989.

[37] D. Silver. Reinforcement Learning and Simulation-Based SeaRD thesis, University of
Alberta, 2009.

[38] S.J.J.Smith and D. S. Nau. An analysis of forward prgnim AAAI'94: Proceedings of the
twelfth national conference on Artificial intelligence (vB), pages 1386—-1391, Menlo Park,
CA, USA, 1994. American Association for Artificial Intelkmce.

[39] F. Teytaud and O. Teytaud. Creating an Upper-Confiddmee program for Havannah. In
Advances in Computer Games, Pamplona Espagne, 2009. To appear in LNCS.

40

[40] D. Tom and M. Miller. A Study of UCT and its Enhancements Advances in Computer
Games 122009. To appear in LNCS.

[41] D. Tom and M. Miller. Towards a Robust RAVE Heuristidd1D. Submitted to the Interna-
tional Conference on Computers and Games 2010.

[42] H. Jaap van den Herik, Xinhe Xu, Zongmin Ma, and Mark H.\WInands, editorsComputers
and Games, 6th International Conference, CG 2008, Beifigna, September 29 - October
1, 2008. Proceedingsolume 5131 ot ecture Notes in Computer Scien&pringer, 2008.

[43] M.H.M. Winands. Analysis and implementation of LinesAztion. Master’s thesis, Depart-
ment of Computer Science, Universiteit Maastri@00.

[44] M.H.M. Winands and Y. Bjornsson. Evaluation Functidased Monte-Carlo LOA. Iid-
vances in Computer Games,2Z009. To appear in LNCS.

41

