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ABSTRACT 

Fatigue cracking is one of the major integrity threats to oil and gas pipelines. Having a reliable 

trajectory of fatigue crack growth once detected is very crucial for decision making regarding 

integrity threat management. In-line Inspection (ILI) tools, and other non-destructive methods are 

used to assess different damage levels, such as measuring fatigue crack sizes in pipelines. 

Furthermore, fracture mechanics-based models, such as linear elastic fracture mechanics (LEFM) 

based Paris’ law, is used for prediction of future crack growth trajectory for fatigue crack integrity 

management in oil and gas pipelines.   

Neither fracture mechanics-based models nor crack measurements can be solely used to make a 

perfect fatigue crack growth (FCG) related integrity threats management decisions. However, the 

information contained in both sources can be fused to make better FCG predictions to support 

integrity management decisions. As such stochastic filtering specifically Particle Filter (PF), an 

iterative Bayesian approach, can be used for extraction of information about unknown model 

parameters like the material properties and crack sizes at certain time of interest by using data 

measured up to and including that point of time. Afterwards, Paris’ law can be used to predict 

future trajectory based on the updated information from the PF-based estimation process. As such, 

a methodology to couple the Particle Filter and Paris’ law, stochastic filtering-based FCG 

prediction, is developed in this study as a tool for pipelines with a fatigue crack.  

In the Paris law, the range of Stress Intensity Factor (SIF), the other important parameter besides 

the material fatigue crack resistance properties, are usually estimated using industry standard codes 

such as API 579 or BS 7910. In this study, the fatigue crack driving parameter SIF calculation 

using extended finite element method (XFEM), as well as conventional finite element method 
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(FEM) implemented in Abaqus®, was dealt in detail along with various factors, like mesh size, 

mesh/element type, number of contour request and enrichment radius at the crack tip/front. The 

SIF estimation results were compared with the aforementioned industry models for cracked 

pipelines and analytical solutions for compact tension (CT) specimens. This aims to explore the 

capability of XFEM for SIF estimation in cracked pipelines, and also to assess the accuracy of the 

industry models (e.g., API 579). An indirect method of estimating fatigue crack growth (FCG) 

trajectory incorporating the SIF estimated using XFEM is then demonstrated for both a CT 

specimen and pipeline section tested in the literature. FCG trajectory, which is very sensitive to 

the fatigue parameters and the SIF, was successfully estimated reasonably well.  

Instead of using the API 579 model, directly for stochastic filtering-based FCG prediction process, 

a single surrogate model using Gaussian Process Regression (GPR) was developed and used. The 

GPR model, trained using validated SIF data points based on the various numerical and analytical 

models, was built for quick, reliable and computationally less expensive SIF estimation.  

To this end, a PF-based fatigue crack growth prediction methodology for pipelines was developed 

to leverage measurement data and known physics-based model, e.g., Paris law. This methodology 

was implemented as a python tool, to (1) jointly estimate fatigue model parameters and crack sizes, 

and (2) predict future trajectory of the fatigue crack growth in pipelines. This tool was applied to 

case studies using synthetic data of noisy crack size measurements in a pipeline for the purpose of 

demonstration. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Pipelines are known to be the safest and efficient medium of transporting oil and gas from 

development areas to consumers. About 97% of the Canadian natural gas and crude oil production 

is transported by transmission pipelines as per Canadian Energy Pipeline Association (CEPA) [1] 

and similar statistics can be found for many other countries. The high percentage clearly indicates 

the vitality of oil and gas pipes to both the consumers and pipeline operators. 

 

Figure 1-1: Canada’s Pipeline Infrastructure [2] 

As shown in Figure 1-1 the Canadian pipeline infrastructure comprises four main pipeline system 

viz. gathering lines (4”- 12”), feeder lines, transmission lines (4”-48”), and local distribution lines 

(1/2”- 6”) [2]. The first Canadian pipeline was a 25 kilometer long cast-iron natural gas pipe built 

in 1853 and with discovery of abundant source of crude oil and natural gas the pipeline network 

expanded in the 1950s [3]. After years of service, pipelines can suffer from different types of 

defects, which poses different kinds of integrity threats like corrosion, fatigue cracking, stress 
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corrosion cracking (SCC), mechanical damages (e.g., dent)  and others as shown in Figure 1-2. 

Presence of crack like defects anywhere in the pipeline body, welds, dent, and corrosion site makes 

the pipeline vulnerable to different kinds of threats. Pipeline operating situations like line start–

stop, pigging, product injection and unexpected shut-down can cause pressure fluctuations [4]. 

These factors together make fatigue crack grow in oil and gas pipelines. 

  

(a) (b) 

 

 

 

(c) (d) 

Figure 1-2: Photos of ruptured pipelines due to different type of defects: (a) fatigue cracking [5], 

(b) stress corrosion cracking [6], (c) mechanical damage (dent) [7], and (d) other (penetration) 

[8] 
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1.2 Problem Statement and Motivation 

A defect-free pipeline usually can have fatigue life much longer than the service life of most oil 

and gas pipelines [9].  However, pipelines are very likely to have anomalies and consequently have 

significantly reduced fatigue life causing integrity threat. Presence of defects in pipelines is 

inevitable resulting in cracks that can eventually propagate and cause sudden failure. Once a crack 

is detected in a pipeline by the operator via performing inline inspection (ILI) or any other non-

destructive testing, taking timely maintenance to control the crack growth or subsequent inspection 

scheduling can be beneficial. As such, tracking and reliably predicting the crack growth as a 

function of the operation time or load cycles can provide support to assist decision-making for 

integrity management. If the model that describes the fatigue life (e.g., S-N curve) is accurate, and 

no uncertainty exists in the stress cycles, fatigue life prediction is deterministic. Similarly, if an 

accurate facture mechanics-based model that can describe the damage evolution as a function of 

time exists and the initial crack measurement is accurate or free of noise, fatigue crack growth can 

be predicted deterministically. However, in practice, neither of these two are true. The fatigue life 

and the crack growth prediction is challenging due to the imperfect model or unknown model 

parameters and uncertainties involved in the load history. Furthermore, crack size measurements 

can be noisy due to the noisy inheritance of the in-line inspection (ILI) tool used. 

Though neither of fracture mechanics-based models nor crack measurements can be solely used to 

perfectly predict fatigue crack propagation, the information contained in both sources can be fused 

to better predict the future. One of many approaches to deal with such problems is to use Bayesian 

methods. In a Bayesian method, a prior distribution of the noisy crack size is combined with the 

likelihood of the crack size data collected using ILI tools to build a posterior probability 

distribution. For example, stochastic filtering, an iterative Bayesian approach, can be used for 

extracting information about unknown model parameters and crack states at certain time of interest 

by using data measured up to and including that point of time. Essentially, it provides a ‘best 

estimate’ for the true value of the state for a system or process based on noisy observations 

available, and the updated model can be further used for better predictions. Fatigue crack growth 

propagation being a stochastic process is influenced by varieties of uncertainty like material 

properties, load, and environmental factors. Therefore, accurate estimation of current state of crack 
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size and fatigue model parameters, e.g., for the Paris’ law as considered in this study as the fatigue 

crack growth model, is very crucial for reliable prediction of fatigue crack growth trajectory. 

1.3 Objectives  

The two main objectives of this study are as follows:  

i. To develop a fatigue crack growth (FCG) simulation method in pipelines using extended 

finite element method (XFEM) when crack size measurement data is absent.  

ii. To develop a FCG trajectory prediction tool when a sequence of crack size measurement 

data is available till the current state.  

1.4 Methodology 

The extended finite element method (XFEM) implemented in Abaqus® is used to explore the 

fatigue crack growth simulation, with special focus on the calculation of fatigue crack driving 

parameters, i.e., Stress Intensity Factor (SIF). The numerical simulation results for SIF are used to 

verify the well-known model in API 579, i.e., the lookup table for SIF calculation. Surrogate 

models for efficient calculation or interpolation of SIF are developed using Gaussian process 

regression. To the end, a tool based on stochastic filtering is developed using crack size 

measurement data and a fatigue crack growth model for joint estimation of crack size and fatigue 

crack growth model parameters, as well as future crack growth trajectory prediction. To 

demonstrate the application of the tool developed, a few case studies using synthetic data 

considering different measurement noise levels are presented.  

To sum up, in order to achieve the aforementioned objectives the following research tasks are 

followed 

1. Literature review on relevant works on fatigue crack growth quantification on the body of 

steel pipelines. 

2. Investigation of numerical methods for fatigue crack growth prediction and calculation of 

fatigue crack driving parameters i.e., Stress Intensity Factor (SIF). 
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3. Verification of analytical model for calculation of SIF prescribed in API 579 [10] against 

Finite Element Methods (FEM) and relatively new eXtended Finite Element Methods 

(XFEM). 

4. Development of surrogate model to mimic thus validated analytical model for estimation of 

SIF. 

5. Development of stochastic filter-based tool for pipeline fatigue crack size estimation by 

integrating crack size data collected from ILI with fatigue crack growth prediction model, 

i.e. Paris Law.  

6. Demonstration of the use of stochastic filter-based tool for joint estimation of model 

parameters and current fatigue crack size, and use the updated information (i.e., current crack 

size and updated model parameters) for prediction of future crack growth trajectory along 

with the reliability quantification of prediction.  

1.5 Organization of the Thesis 

This thesis contains six chapters as follows: 

Chapter 1 introduces fatigue crack problems in oil and gas pipelines subjected to fluctuating 

internal pressure cyclic load, leading to the need of reliable quantification of fatigue crack growth 

trajectory. Followed by the objectives of this study and the methodology to achieve the proposed 

goals, this chapter ends with the picture of overall flow of the thesis through different chapters. 

Chapter 2 comprises of a summary of relevant studies or research investigations carried out with 

regards to the fatigue related issues in steel pipelines.  

Chapter 3 explores the fatigue crack growth simulation using existing techniques built in Abaqus®, 

with special emphasis on the estimation of fatigue driving parameters. It also presents a detailed 

discussion on various analytical models currently practised in the pipeline industry, like in API 

579 and BS 7910 for estimating SIF used in fatigue crack growth analysis. The models are then 

compared with two different numerical methods viz. Finite Element Method (FEM) and eXtended 

Finite Element Method (XFEM).  
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Chapter 4 discusses the use of surrogate modeling technique like Gaussian Process Regression 

(GPR) for reliable, fast and computationally less expensive estimation of the fatigue driving 

parameter, SIF. 

Chapter 5 introduces stochastic filtering methods for the joint estimation of fatigue crack growth 

model parameters and current fatigue crack sizes, when fatigue crack size measurement data is 

available. Furthermore, probabilistic prediction of future fatigue crack growth trajectory based on 

the estimated current crack size and model parameters is discussed in detail.  

Chapter 6 summarizes the entire work with conclusion of the research followed by 

recommendation for future works.  
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CHAPTER 2: LITERATURE REVIEW 

This chapter presents a literature review, aiming to provide the relevant research background in 

various aspects related to the thesis research. Firstly, different types of pipeline integrity threats 

are introduced and works related to management of the threats are discussed. Fatigue cracking is 

one of the major integrity threats to the pipelines. Various approaches for fatigue design of 

pipelines and fatigue crack integrity threat management once the crack is detected are discussed. 

Fracture mechanics-based method for fatigue crack growth assessment is widely used in pipeline 

industry; relevant details and works are discussed. Different methods for estimation of fatigue 

crack driving parameters like analytical models, and numerical models are discussed. Followed by 

a review on alternate approach, using surrogate models, for reliable estimation of fatigue crack 

driving parameters, a concise review on surrogate models is also presented. Finally, a brief review 

on using Bayesian approach for probabilistic estimation of fatigue crack growth model parameters 

and/or crack sizes to assist monitoring the fatigue crack growth in pipelines is presented.   

2.1 Introduction to Pipeline Integrity Threats and Management 

Pipelines are susceptible to various integrity threats due to operating condition, environment, 

material property changes, and third-party influence to mention a few. Pipeline integrity 

management remains top priority of a pipeline operator because of the factors like financial, social 

responsibilities, and government regulations amongst many others. Pipeline integrity threats are 

factors that alters the operation of pipeline resulting in occurrence of any kind of incidents. ASME- 

B31.8S-2018 [11] classifies pipeline integrity threats into three main categories viz. (a) time 

dependent, (b) resident, and (c) random or time independent. Particularly, if the operational mode 

in which the pipelines are subjected to significant pressure cycles, pressure differential, and rates 

of change of pressure fluctuations, fatigue is recommended to be considered as integrity threats.  

2.1.1 Time Dependent Integrity Threats 

Time dependent integrity threats are the kind of hazards or threats that grow with time and requires 

periodic inspection to monitor their growth. They include cracking due to fatigue or stress 

corrosion (SCC), and metal loss due to environmentally assisted corrosion or erosion [12].  
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2.1.1.1 Cracking 

Cracking can be considered as one of the major integrity threats and can develop in pipeline at any 

stage- during manufacturing, fabrication, installation and throughout operational life [13].  

Fatigue cracking can be considered as local damage accumulation due to presence of 

microstructural voids in the materials causing stress raisers. It will be visible when the accumulated 

damage is large enough. Defect-free pipelines can typically survive the threat caused by fatigue 

well beyond its expected life. Kiefner et al. (2004) [14] summarized that the presence of large, 

longitudinally oriented defects, aggressiveness of the pressure cycles at the defect site and the rate 

of crack growth inherent in the material in its particular environment as the three main factors 

influencing the fatigue in a pipeline. Many incidents in pipelines related to fatigue have been 

reported in the past; two incidents related to fatigue crack within shallow dents occurred in 2009 

as per a report from National Energy Board, Canada [15].  Presence of pre-exiting surface or 

embedded defects in offshore pipelines, which are under fluctuating loadings due to waves, 

currents and ground motions, are very susceptible to fatigue failure [16]. Fatigue damage 

accumulation has been a greater concern for liquid pipelines than gas pipelines due to aggressive 

pressure fluctuations [17]. Semiga et al. (2016) presented a method of defining which gas pipeline 

segments can reasonably be considered to be at risk of fatigue damage. Various limit curves were 

defined based on the wall thickness, grade, initial defect size, pressure cycling severity as factors 

beyond which the pipelines would be at risk of fatigue damage [18]. Presence of defects such as 

wrinkle, which otherwise may not pose an immediate threat, can lead to fatigue crack initiation, 

propagation and rupture due to pressure fluctuation and stress concentration [19].    

Stress corrosion cracking (SCC) refers to service failure in engineering materials occurring due to 

slow, environmental induced crack propagation [20]. The environment around pipe i.e., high pH 

or near neutral pH, coating disband, pipe surface temperature and the stresses caused due to 

operating pressure and various other factors, are the main cause behind SCC [21]. High pH SCC 

and near neutral pH SCC were first identified in 1960s and 1980s respectively [21]. Both high pH 

and near neutral SCC are characterized by colonies of many longitudinal surface cracks in the 

body of the pipeline that link up to form long shallow flaws. The main difference being inter-

granular fracture mode in the high pH SCC and trans-granular in near neutral- pH SCC [22]. Also 



 

9 

 

high pH SCC is associated with very less evidence of corrosion of the crack walls or the outer pipe 

surface; on the contrary near neutral pH SCC is often accompanied by corrosion of the crack walls 

and the outer pipe surface [22]. Near neutral pH SCC, a major integrity threat and cause for several 

pipeline failures, was first identified in a pipeline of Canadian pipeline operator TransCanada 

Pipelines Ltd., subsequently by many other pipeline operators in the U.S.A., Asia, Australia, 

Europe [23].  

2.1.1.2 Metal Loss 

Metal loss are caused due to erosion and corrosion, which poses a major integrity threat to 

pipelines. Corrosion is the most common form of defects and affected by surrounding 

environment. Erosion defects can also be caused when sand particles contained in oil and gas come 

in contact with pipe walls [24]. Ossai et al. (2012) [25] presented a review on effects of corrosion 

on pipelines, risk assessment methodologies and mitigation framework. Furthermore, authors 

demonstrated the use of previous field data to predict the effects of corrosion in the future [25]. 

Equipment used in pipeline industry is a major victim of erosion; thus some numerical erosion 

models were based on experimental and response from existing sub-models [26]. Note that the 

combination of erosion and corrosion (E-C) causes excessive material loss compared to that due 

to individual effects [27].  

2.1.2 Time Independent Integrity Threats 

Time independent integrity threats are random in nature and can occur at anytime and can be 

controlled to some extent by surveys, communication and protective measures [24]. 

2.1.2.1 Mechanical Damage  

Mechanical damage is defined as localized damage to the pipe resulting from contact. Dents, 

gouges, and combined dents-gouges are very common types of mechanical damage that can be 

observed in pipelines. Dents are the depressions in the pipe that causes change in the curvature and 

gouges are the surface damage in pipelines caused by contact with foreign objects [28]. For 

example, dents are caused due to impact from indenting objects like rock, excavator, etc., while 

gouges can be formed due to excavator tooth. Different causes of mechanical damage have varied 

severity: rock induced damage typically results in delayed failure whereas, those caused from 
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equipment are more likely to fail immediately [29]. Existing BG/EPRG model (old) and new Dent-

Gouge models for assessing dents containing gouges were compared in [30]. The BG/EPRG model 

is a fracture mechanics based model for dent gouge assessment which is based on the relation 

between fracture toughness and plasticity of the pipe material. Furthermore, the new model was 

based on BG/EPRG model but presented using a failure assessment diagram (FAD) and takes 

effect of the micro-cracking and residual stress occurring around the gouge [30]. That study 

concluded that the old model gave best predictions of full scale test data and new model was more 

conservative for failure frequency estimation because of the minimal development in model 

research compared to inspection technologies [30] . Providing extra cover over has been reported 

to lower the chances of damage from digging [31]. Wang et al. (2014) [32] presented results on an 

enhanced approach for identification and characterization of top side dents based on unique 

criterions like geometry, strain and magnetic flux leakage (MFL) tool signal, whose effectiveness 

was verified with the field examinations.  

2.1.2.2 Others  

Damage caused due to third party activities, like drilling, piling, and ploughing, manufacturing 

defects, equipment failure can be considered as the other sources of time independent integrity 

threats. There are different technologies to assist the detection of such damage. Fiber optics 

technology is suitable for early detection of threats and acoustic sensing technology for detection, 

location, and classification of impact and leaks as reported in [33].  El-Hussein et al. (2015) [34] 

demonstrated the potential of using low frequency guided wave based on finite element and ball 

bearing drop field test for monitoring damage caused due to vandalism. 

2.2 Approaches to Tackle Fatigue Threat for Pipeline Design and Integrity Management 

Fatigue life of a component comprises of three distinct phases: crack initiation, stable crack 

propagation, and unstable crack propagation or fracture. The crack initiation phase makes up for 

majority of the fatigue life. This happens at the microstructural level and may not be visible. The 

stable crack growth phase is visible and more of concerns to the pipeline operators as it can 

eventually grow to a critical size and cause sudden fracture failure. It is at this stable crack growth 

phase where quantification and mitigation of the threat plays a vital role in the overall fatigue crack 
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integrity threat management of pipelines. Figure 2-1 shows a typical laboratory specimen subjected 

to fatigue testing and shows all three phases of the fatigue damage. 

 

Figure 2-1: Laboratory specimen used for fatigue testing showing fatigue crack initiation, 

propagation and fracture [35] 

2.2.1 Fatigue Design of Pipelines 

Fatigue data of a material has been presented by S-N plots ever since Wohler’s work on railroad 

axles subjected to rotating bending stress [36]. There are different design methodologies based on 

stress life i.e. S-N plot method, strain life i.e. ϵ-N plot method,  fracture mechanics based or damage 

tolerant based methods [36]. The S-N plot method is used extensively and recommended by many 

standards like DNV RP-C203 [37] for fatigue design of steel oil and gas pipelines. For a test 

specimen made up of a specific material, the number of loading cycles (N) required to fracture it 

at a given stress range (S) is presented in the form of S-N plots, see a typical S-N plot as shown in 

Figure 2-2. The stress range is the difference between maximum and minimum stress in the 

specimen. 
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Figure 2-2: Typical S-N plot [9] 

Eq. (2–1) can be used to estimate the fatigue life (N) at the applied stress range of a pipeline using 

S-N curve.  

 
s

I
N





 (2–1) 

where,  is the applied stress range, I and s are parameters describing the intercept and slope of 

the S-N curve respectively.   

Semiga et al. (2016) [9] published a work entitled “Fatigue Considerations for Natural Gas 

Transmission Pipelines” and presented an example on estimating fatigue lives of three different 

pipelines with no defects. The three pipelines were assumed to be made up of X42, X52 and X80 

grades, with the same diameter and wall thickness of 609.6 mm and 5.08 mm respectively as well 

as the same maximum allowable operating pressure (MAOP) at 72% of specified minimum yield 

stress (SMYS). Based on the values of I and s from DNV RP-C203 [37], the fatigue lives of the 

pipe body for three different grades of pipelines were estimated to be 409335, 173835 and 30979 

cycles at MAOP. These values are much higher than the service life of the most gas pipelines.  

Kanuf et al. (2007) [38] presented a review and a comparative study on different codes of practice 

for fatigue life assessment of pipes. The different standards compared were Germen code DIN 
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2413, English code IGE/TD/1/4, European code EN 13480, IIW, Eurocode 3, DNV RP-C203. The 

S-N plots from each code were compared for seamless, electric resistance welded (ERW) and 

submerged arc welding (SAW) pipelines. The authors emphasized the reliability of the S-N plots 

from DIN 2413 as these were obtained from a large number of tests of pipes representing a wide 

variety of dimensions, steel grades, production process and internal pressure fatigue.   

Coffin et al. (1955) [39] established that plastic strain life data (ϵ-N plots) could be utilized for 

fatigue life prediction similar to S-N plots [36]. Gholami et al. (2020) [32] performed a strain-

based fatigue life analysis of pipeline with the external defect under cyclic internal pressure. The 

fatigue life calculation model used there in was from Smith et al. (1970) [40] which was also based 

on the ϵ-N method.  

The fracture mechanics-based fatigue design methodology is widely used for fatigue crack 

integrity threat management as it allows quantification of crack size with the loading cycles and is 

discussed in detail in the next section.   

2.2.2 Fatigue Crack Integrity Threat Management in Pipelines 

Fatigue crack integrity threat management starts with the proper identification of the cracks. 

Pipeline operators use different kinds of in-line inspection (ILI) tools depending upon the objective 

of the run. It could be for crack, metal loss, and mechanical damage detection. For instance, ILI 

tools based on magnetic flux leakages (MFL) are mainly used for metal loss inspection, while 

ultrasonic tools (UT) and electromagnetic acoustic transducers (EMAT) are used for different 

types of corrosion and crack detection. Each tool have their own advantages and disadvantages; a 

detailed discussion on this can be found in [24].      

Once a crack is detected, quantifying the crack size with time can provide valuable insight in any 

kind of crack related integrity threat management. Paris’ law introduced in [41] is one of such 

equations that quantifies the crack growth rate in the stable crack growth phase of fatigue life and 

given by Eq. (2–2):  
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 ( )mda
C K

dN
   (2–2) 

where, /da dN is the rate of fatigue crack growth per loading cycle; C and m are  fatigue properties 

of material;  is the range of SIF when a structure is stressed from the minimum to the 

maximum load. 

Paris’ law is widely used in pipeline industry to quantify the fatigue cracking size with the loading 

cycles. Performance of Paris’ law to accurately represent fatigue crack growth phenomenon 

depends on the factors like SIF, C, m, and load. API 579 [10] and BS 7910 [42] provides analytical 

solutions for estimation of SIF for various crack geometries and values of C and m. Jaske et al. 

(2006) [43] demonstrated that the use of fracture mechanics-based approach for estimating fatigue 

crack growth in pipelines based on Paris’ law and recommend to include the effects of stress ratio 

as it could lead to excessively non-conservative predictions of fatigue life. Silva et al. (2011) [44] 

estimated the fatigue life of a pipeline using Paris’ law, together with the analytical solution for 

estimation of SIF proposed using pipeline section subjected to cyclic indenting load, and C and m 

values estimated from the data obtained from fatigue tests on CT specimens. Tiku et al. (2020) 

[45] presented values of fatigue properties from a large set of full scale tests on different grade 

pipes and concluded that these values of fatigue properties combined with API 579 model for SIF 

estimation to be a less conservative and better predictor of the fatigue crack growth. There are 

many efforts being made to quantify the fatigue crack growth and fracture mechanics-based fatigue 

driving parameters such as SIF. In the next section, relevant but brief background on fracture 

mechanics is presented. 

2.2.2.1 Fracture Mechanics Based Approach 

Fracture mechanics approach for structural design adds crack size and measure of the fracture 

toughness for a material [36]. Fracture toughness measures the ability of a material to resist crack 

formation and propagation. Commonly used fracture toughness parameters are strain energy 

release rate (G), stress intensity factor (K), J-Integral, crack tip opening displacement (CTOD) or 

indirect parameters measured by the Charpy V-notch (CVN) impact test or other tests. Fracture 
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mechanics-based approach can be broadly classified into two categories: Linear Elastic Fracture 

Mechanics (LEFM) and Elastic-Plastic Fracture Mechanics (EPFM).  

(1) Linear Elastic Fracture Mechanics (LEFM) 

Linear elastic fracture mechanics (LEFM) is the domain of fracture mechanics with the assumption 

that the crack contained in a part is a flat surface in a linear elastic stress field and the energy 

released during this rapid crack propagation is a basic material property [36]. The strain energy 

released upon crack extension is the driving force for fracture in cracked material under linear 

elastic conditions. This loss of elastic potential energy with the crack extension of unit area is the 

strain energy release rate (G) [36]. 

 The stress intensity factor (SIF) is a linear elastic fracture mechanics-based parameter that 

completely defines the crack tip condition. The critical value of SIF is called the fracture 

toughness. It is a single toughness parameter that can describe the stress and strain field in the 

vicinity of the crack tip and has a general form as shown in Eq. (2–3) [46]: 

 ( , , )I II IIIK Y a   (2–3) 

where, Y is a dimensionless constant function depending on the geometry of the structure and mode 

of loading as shown in Figure 2-3,  is the characteristic stress (e.g., characteristics stress for a 

CT specimen is the remotely applied tensile load), and a is the characteristic crack dimension. The 

subscripts represent the value of K in each loading mode, viz. mode I (opening), mode II (in-plane 

shear mode) and mode III (out of plane shear mode). 
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Figure 2-3: Fracture modes [47] 

The strain energy release rate (G) and stress intensity factor are related as shown in Eq. (2–4): 

 
2

'

K
G

E
  (2–4) 

where, E’=E for plane stress and 
2' (1 )E E    for plane strain conditions. E is the Young’s 

modulus of elasticity and ν is the Poisson’s ratio. 

(2) Elastic-Plastic Fracture Mechanics  

Elastic plastic fracture mechanics (EPFM) covers the high toughness structural materials 

undergoing large plastic deformation before fracture. J-Integral, crack tip opening displacement 

(CTOD) and R-Curve methods are some of the EPFM based parameters for crack analysis [36].   

J-Integral is the change in potential energy of the body with crack extension.  It is a contour integral 

taken around the crack tip which results in energy release rate as given in Eq. (2–5): 

 

 
(2–5) 
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where, w is the strain energy per unit volume; T is the  traction vector along the contour as shown 

in Figure 2-4; u is the displacement vector; ds is the incremental length along the contour. 

 

Figure 2-4: Arbitrary contour around a crack tip 

The total magnitude of J-Integral consists of elastic and fully plastic part. For linear elastic and 

non-linear elastic materials in 2D plane, J-integral and G are equivalent. Therefore, J-Integral is 

related to the SIF as
2 / 'J K E ; where E’ = E (Young’s modulus of elasticity) for plane stress 

condition and 2' / (1 )E E   for plane strain condition and   is the Poisson’s ratio. 

2.2.2.2 Numerical Methods for Various Types of Crack Growth Modeling 

In order to quantify the damage levels numerical models can provide a very fast and inexpensive 

alternative over experimental approach to understand damage process like crack growth. The 

concept of fracture mechanics discussed in the previous section is the fundamentals for numerical 

modeling of the crack analysis. In this section, various works and further concepts related to 

numerical modeling of various types of crack growth in pipelines are discussed in detail.  

(1) Quasi-Static Crack Growth Modeling 

When the loading condition is slow enough where equilibrium assumption can be made at every 

loading step such phenomenon can be termed as quasi-static condition. For instance, in numerical 

modeling of burst pressure testing of pipelines the load is applied in small increments to provide 

static loading condition at each step whilst crack growth, this can be a quasi-static condition. 

Cohesive zone model (CZM) is a very popular method of numerical modeling of crack growth 

[48]. In CZM it is assumed that a local fracture occurs in the zone where stress has reached its 

limiting value causing stress to fall to zero at some displacement afterwards [49]. Traction 

separation law (TSL) is a constitutive relation that defines the CZM. TSL basically defines the 
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relation between cohesive traction acting on the crack surfaces to resist crack propagation and the 

corresponding separations of surfaces across an extended crack tip [48].  Selection of TSL depends 

on the material type either brittle or ductile. Figure 2-5 (a) shows a typical TSL curve for a brittle 

material and the area under the TSL curve is the critical strain energy release rate (Gc) [50]. Figure 

2-5 (b) shows a typical stress-strain response curve for a ductile material with damage properties. 

Hillerborg et al. (1976) used CZM with brittle TSL for concrete fracture modeling using FEM [51] 

and this work was first of its kind. Wells et al.  (2001) used CZM to model fracture in quasi-brittle 

material using FEM with unstructured mesh that allowed introduction of displacement jumps 

based on concept of partition of unity i.e. XFEM [52].  

CZM is widely used for crack propagation analysis in pipelines. Shim et al. (2011) demonstrated 

the use of CZM to simulate ductile crack growth behavior of a through-wall cracked pipe, where 

the values of bending moment, J-Integral compared well with the experimental results [53]. 

Chanda et al. (2015) used CZM based FEM model to study the effects of temperature on fracture 

behavior of pipeline steel. Furthermore, based on a temperature dependent CZM parameters i.e. 

maximum traction and fracture energy for a pipeline steel, dynamic fracture was simulated in [54]. 

Wang et al. (2016) developed a method to estimate parameters required for CZM: maximum 

traction and cohesive energy based on stress-strain curve of the material. The predicted dynamic 

fracture behavior modeled using FEM was reported to have good agreement with previous works 

for X70 and X80 grade pipeline steel [55].  

Extended Finite Element method (XFEM), first introduced by Belytschko et al. (1999) [56], has 

also been gaining popularity for engineering problems with discontinuity such as cracked 

pipelines. In XFEM cracks can be modeled independent of the actual structure which provides 

flexibility of no re-meshing or minimal re-meshing. XFEM model can alleviate the need of focused 

meshing and minimal re-meshing is required. Comprehensive studies have been performed at the 

University of Alberta using full scale pipe test and laboratory specimens to calibrate different 

damage initiation criterion like maximum principal stress, maximum principal strain. Agbo et al.  

(2019) [57] used XFEM to evaluate tensile strain capacity (TSC) after calibrating damage 

parameters based on experimental results and concluded that with appropriate damage parameters 

XFEM can reasonably reproduce full-scale experimental tests and can be used for parametric 

study. Lin et al. (2017) [58] calibrated fracture criterion to model crack propagation in XFEM 
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models using their previous experimental study on steel pipes with circumferential cracks 

subjected to eccentric tensile load on pressurized pipeline specimen. Lin et al. (2020) reported 

validated damage parameters based on maximum principal stress and fracture energy [48]. Okodi 

et al. (2020) used maximum principal strain and fracture energy as damage parameters to estimate 

burst pressure of pipeline with satisfactory results compared to the experimental and highlighted 

need of more full scale burst test for better calibration of the damage parameters [59]. XFEM has 

been successfully validated and used as a promising tool for quasi-static crack growth modeling, 

focusing more on the global structural response quantities (e.g., burst pressure) rather than local 

ones (e.g., SIF, J-integral). 

 

 

(a) (b) 

Figure 2-5: (a) Typical traction separation law for brittle material, and (b) typical stress-strain 

curve for material with specified damage properties 

 

(2) Fatigue Crack Growth Modeling  

Numerical modeling of fatigue phenomenon, which involves a large number of load repetitions, 

can be prohibitively computationally expensive. Direct cyclic approach for fatigue damage 

modeling is based on the assumption that after a number of repetitive cycles, the response of 

elastic-plastic structures may lead to a stabilized state in which stress-strain relationship in each 

successive cycle is the same as in the previous one. Direct cyclic algorithm is implemented in 

Abaqus® which uses a modified Newton method in conjunction with a Fourier representation of 

the solution and the residual vector to obtain the stabilized cyclic response directly [60]. 
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In Abaqus® only low cycle fatigue (LCF) analysis can be performed with XFEM. Low cycle 

fatigue (LCF) is associated with higher stress levels producing elastic and plastic deformation in 

the structure and fatigue life is usually less than 10000 cycles. Whereas, high cycle fatigue (HCF) 

are associated with relatively lower stress level producing elastic deformation in the structure and 

having fatigue life higher than 10000 cycles [61]. Selection of either LCF or HCF analysis depends 

on expected level of deformation in the component either elastic or elasto-plastic. LCF analysis 

implemented in Abaqus® XFEM relates fatigue crack growth rate to the fracture energy release 

rate (or strain energy release rate) at the crack tips in the enriched elements as shown in Figure 

2-6. The fatigue crack initiates when the energy release rate is above some threshold values and 

governed by Eq. (2–6): 

 
2

1

1.0
c

N

c G



 (2–6) 

where, N is the number of cycles, 
1c and 2c are material properties governing the crack initiation 

and G  is the energy release rate at the corresponding load cycle. 

The fatigue crack growth is governed by Paris law in energy terms given by Eq. (2–7):  

 4

3

cda
c G

dN
   (2–7) 

where, /da dN is the rate of fatigue crack growth per loading cycle; 3c and 4c are fatigue properties 

of material; G is the range of relative energy release rate when a structure is stressed from 

minimum to maximum load.   

Based on the relation between energy release rate (G) and stress intensity factor (SIF) given by 

Eq. (2–8) [46]. The fatigue properties 3c and 4c are related to Paris law parameters C and m given 

by Eq. (2–9) and Eq. (2–10) respectively, 
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where, E’=E for plane stress and 
2' (1 )E E    for plane strain conditions. E is the Young’s 

modulus of elasticity and ν is the Poisson’s ratio. 
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where, C and m are Paris’ law parameters; and E is the Young’s modulus of elasticity.  

 

Figure 2-6: Fatigue crack growth with Paris law regime implemented in Abaqus® 

Zhang et al. (2016) [16] used XFEM for low cycle fatigue analysis of offshore pipeline with 

embedded semi-elliptical crack subjected to cyclic tension load. A comparison between FCG 
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results from XFEM LCF analysis and that carried out using BS7910 method were in good 

agreement for the pipeline case studied [16]. Xiao et al. (2020) [62] performed fatigue crack 

initiation and growth investigation on steel pipeline, containing 3D coplanar and non-coplanar 

semi-elliptical surface and elliptical embedded cracks, using XFEM. The authors concluded the 

reliability of the results in terms of fatigue crack growth rate and fatigue life, from XFEM upon 

comparison with the available experimental results found in open literature [62]. 

Various approaches and research works carried out to tackle the fatigue cracking threat in pipeline 

from fatigue crack initiation phase to propagation phase was discussed. Capabilities of XFEM 

implemented in Abaqus® for modeling quasi-static crack growth and LCF crack growth analysis 

were discussed. In this study, HCF crack growth analysis in oil and gas pipelines subjected to 

internal pressure cycling, which are usually lower than the maximum operating pressure which 

could cause the material to yield, that closely resembles the actual operating condition using 

XFEM is presented.  

2.3 Fatigue Crack Driving Parameter Estimation based on Fracture Mechanics 

Fatigue crack driving parameters can be estimated numerically either through conventional FEM 

or XFEM. To explicitly model cracks in conventional FEM, singular finite elements are used to 

represent the asymptotic displacement field at the crack tip. Thus, this requires a conforming mesh 

to ensure a smooth and accurate interpolation of the solution over the crack surfaces, as well as 

focused mesh to ensure accurate representation close to the crack tip or front. Consequently, re-

meshing is required for growing cracks or crack analysis with different crack sizes. 

As an extension of the conventional FEM, XFEM is based on the concept of partition of the unity 

and was first introduced by Belytschko et al. (1999) [56]. The displacement fields in XFEM, as 

given in Eq. (2–11), is approximated by introducing local enrichment to the elements that are cut 

by the crack. The nodes of those elements are enriched by introducing an additional set of degrees 

of freedom (DOFs) with both crack tip enrichment and cross-crack enrichment along with their 

traditional DOFs denoted by iu  in Eq. (2–11):  



 

23 

 

 
i All Nodes j Type #2 k #1 1 m Type#3 1

( ) ( , ) ( , ) 
     

   
      

   
     

Ty Ty

i i j j k k l m m l

Type l l

u u N b N H x N c F r N c F r  (2–11) 

where, iu is the nodal displacement vector; jb , kc and mc are additional degrees of freedom for 

enriched nodes as indicated in Figure 2-7; Ni, Nj, Nk and Nm are the shape functions; H(x) is the 

Heaviside (jump) function across the crack surface given by Eq. (2–12); lF is the asymptotic crack 

tip function, and Ty is the number of asymptotic crack tip functions (Ty = 4 for linear elastic 

materials) given by Eq. (2–13): 

   1    ;( - ). 0
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H x
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x x* n

 (2–12) 

where, x is a sample point in the FE domain, x* is the point on crack closest to x and n is the unit 

normal at the crack tip. 
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where, ( , )r    is a polar coordinate system with the origin at the crack tip.  

For example, in Figure 2-7, a 2D finite element domain is discretized into 4×4 grid. Nodes with 

red dots (Type #1) represent nodes at the crack mouth, nodes with blue dots (Type #2) represent 

nodes that are cut by the crack body and nodes with orange dots (Type #3) represent nodes at the 

crack tip. Note that s is the unit tangent to the crack tip and n is the unit normal to the crack tip.  
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Figure 2-7: Schematic diagram of finite element domain enrichment in XFEM 

As it can be seen in Eq. (2–11) the displacement field in XFEM is approximated by some additional 

enrichment functions compared to the conventional finite element formulation. The first term is 

same as the standard FE formulation, while the second term accounts for jump in displacement 

caused due to discontinuity (referred to as cross-crack enrichment), and the last two term captures 

the singularity around the crack tip (referred to as crack tip enrichment). Due to such enrichment 

in XFEM, finite element meshing can represent discontinuity inside elements through local 

enrichment functions and additional nodal DOFs (i.e., independent of FE mesh). As such, no re-

meshing is needed for growing cracks or analysis of cracks of different crack sizes. The term crack 

tip is used for 2D cracks as shown above and referred to as crack front for 3D cracks dealt in later 

sections. The solution technique of conventional FEM and XFEM are similar. In commercially 

available FE analysis software package Abaqus®, both FEM and XFEM problems can be solved 

using direct linear equation solver or iterative solver with Newton or quasi-Newton technique. For 

further details on different solution algorithm readers can refer to [60].  

As seen in Eq. (2–2), the fatigue crack growth rate is related to the range of stress of intensity 

factor. The range of stress intensity factor, K is defined as the difference in the values of SIF 

when a structure is subjected to the maximum and the minimum load. Abaqus® can be used for 

determining SIF as used in this study. SIF is extracted in Abaqus® using J-Integral, which is 
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defined in terms of strain energy release rate (G) as crack tends to advance [60]. As explained 

earlier, for linear elastic and non-linear elastic materials in 2D plane, the strain energy release rate 

is related to the stress intensity factor as
2 / 'J K E ; where E’=E (Young’s modulus of elasticity) 

for plane stress condition and 2' / (1 )E E   for plane strain condition;    is the Poisson’s ratio. 

However, for a 3D numerical model extraction of SIF from J-Integral is slightly different and 

achieved using the relation as shown in Eq. (2–14). For further details on this readers can refer to 

the Abaqus® user manual [60].   
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. .
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TJ


 K B K  (2–14) 

where,  , ,
T

I II IIIK K KK are stress intensity factors along normal (mode I), shear (mode II) and 

tangential (mode III) directions and B is pre-logarithmic energy factor matrix, which is diagonal 

for homogeneous isotropic material [60].  

Fakkoussi et al. [63] and Coelho et al. (2017) [64] reported the comparative study of the fatigue 

crack driving parameter SIF values obtained using XFEM, FEM and analytical methods. The 

authors concluded the robustness and reliability of the XFEM. Mora et al. (2021) used XFEM to 

estimate SIF in a core region of the reactor pressure vessel considered as a hollow cylinder with 

different defect or crack sizes when subjected to thermal shock. The SIF estimated using XFEM 

was verified against the values obtained using weight function formula (WFF) and were found to 

give good results [65]. Olamide et al. (2020) used conventional FEM to estimate SIF for a pipe 

segment with semi-elliptical circumferential crack. The results obtained were compared with other 

analytical, numerical results with reasonably good agreement [66]. 

A brief background on formulation of XFEM and implementation of numerical method of 

computing SIF in Abaqus® for estimation of SIF was presented above. SIF estimation related 

works using XFEM and FEM carried out by other researchers were also presented. In this study, 

comprehensive details related to reliable estimation of SIF using XFEM compared to FEM and 

Analytical method are presented. To be specific, selection of finite element types, mesh size, 
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different meshing strategies and enrichment radius (singularity calculation radius) are discussed in 

detail.    

2.4 Surrogate Modeling for Fatigue Crack Driving Parameter Estimation 

Surrogate models, also known as meta-models, are approximation models that mimic the behavior 

of the simulation model as closely as possible while being computationally cheap. It is constructed 

based on modeling the response of the simulator to a limited number of intelligently chosen data 

points. Surrogate models are used for estimating system response and supporting decision making 

in engineering processes with a focus on pointwise estimation [67].Well-known surrogate models 

include polynomial response surface, linear or nonlinear regression, kriging (i.e., Gaussian process 

regression), polynomial chaos expansion, radial basis function, support vector machine, and 

artificial neural network. Data driven surrogate models establish relationship between input vector 

and output response with an error quantifying deviation of target output and prediction as given 

by Eq. (2–15): 

 ( )f  y x  (2–15) 

where, y is the response, x is the available data and  is an error. 

In order to measure the performance of a surrogate model, the error term quantifying the deviation 

of target output and the predictions are generally quantified using statistical performance function. 

Coefficient of determination 
2( )R  and the root mean squared error (RMSE) are the common 

metrics used to measure the performance of a surrogate model. Coefficient of determination 
2( )R  

measures the proportion of the variance in the variability of the dependent variables that is 

accounted for in the model between the prediction and target and given by Eq. (2–16): 

 
2 Re1 s

Tot

SS
R

SS
   (2–16) 

where, Re sSS is the sum of squared residuals and given by Eq. (2–17) and TotSS is the total sum of 

squares given by Eq. (2–18): 



 

27 

 

 
2

Re

1

( ( ))
n

s i i

i

SS y f x


   (2–17) 

where, x is the available sample data, y is the target, and ( )f x  is the prediction. 
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where, y is the average of the target values y. 

Root mean squared error (RMSE) is the mean squared root of the Re sSS and is given by Eq. (2–19):  
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Higher the value of the coefficient of determination
2( )R , the better the model prediction. 

Alternatively, lower the value of RMSE, the better the model prediction.  

Some initial efforts on using surrogate modeling can be found in the pipeline engineering for 

pipeline reliability analysis by Yang et al. (2013) [68] ; Hassanien et al. (2016) [69]. Xie et al. 

(2018) used polynomial surface fitting method to fit the data points of SIF obtained using 3D FE 

model of a pipe with semi elliptical crack front on the external surface and reported to have good 

goodness of fit [70]. Salemi et al. (2020) also used polynomial surface fitting and GPR to build 

surrogate models to predict SIF for pipelines with a semi-elliptical outer surface crack, trained 

using data points from 3D FE models.  Loghin et al. (2020) used response surface modeling based 

on radial basis function as a surrogate model to predict SIF and crack path trained using three-

dimensional (3D) finite element models of a laboratory specimen. The authors concluded use of 

3D FE models and the surrogate model provided an accuracy-runtime trade-off that extended its 

application to component level probabilistic life assessment [71]. Surrogate models aim to 

reproduce the underlying relation between input and output based on the training data-set obtained 

from high-fidelity models but at very less computational expense [72].  
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In the following sections the published works and efforts made by various researchers related to 

GPR and other surrogate models for prediction of fatigue crack driving parameters like SIF, J-

Integral are discussed.   

2.4.1 Gaussian Process Regression for SIF Estimation 

A Gaussian Process regression (GPR) is a non-parametric, kernel-based probabilistic model to 

approximate the underlying relationship between inputs and output response, as will be discussed 

in details in Chapter 4. Specific to fatigue life analysis of pipelines, Keparate et al. (2017a) [73] 

used adaptive Gaussian process regression as an alternative to conventional FEM in ANSYS to 

predict the SIF. Furtherly, Keprate et al. (2017b) [74] compared different meta-modeling 

approaches to predict the SIF of semi-elliptical cracks in plates and recommended the GPR as the 

best surrogate model for predicting SIF, and GPR was chosen as it could quantify the uncertainty 

in the predicted values. Salemi et al. (2020) [75] also employed GPR as a surrogate model to 

predict SIF values of a flawed pipeline. Selection of appropriate kernel or co-variance function 

and sensitivity towards length scale parameter in GPR modeling is discussed [75]. Additionally, 

GPR models were reported to perform bad when extrapolating the values and recommended on 

having as many boundary points as possible [75].  

Leser et al. (2017) [76] used SIF from finite element models of a single-edge notched specimen 

with two holes created using FRANC3D with thirty different crack initiation locations to build 

GPR model to estimate SIF and coupled it with crack growth algorithm for remaining useful life 

(RUL) estimation. The GPR model was built using “scikit-learn” learn library in Python 

programming language [76].   

2.4.2 Others 

An artificial neural network (ANN) as per Maureen et al.  (1989) is defined as a computing system 

made up of number of simple, highly interconnected processing elements, which process 

information by their dynamic state response to external inputs. Jang et al. (2020) proposed an 

approach based on machine learning technique to estimate J-Integral, an elastic plastic fracture 

parameter, for surface cracked pipelines. Deep multilayer perceptron ANN models based on 
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training dataset from FE models were developed and concluded to have better accuracy compared 

against closed-form solution [77].  

Keprate et al. (2017) proposed using gradient boosting regression to predict SIF values of a crack 

propagating in small bore pipe and was reported to have reasonable accuracy and reduced 

computation time [78]. Hoffman et al. (2016) used response surface polynomials, ordinary 

krigging and interpolation to estimate stress intensity factor influence coefficient in a flawed 

reactor pressure vessel and reported to have good performance for interpolated values only when 

compared with the benchmark solution [79].    

2.5 Bayesian Approach for Fatigue Crack Growth Estimation  

Paris’ law as described earlier is a physics-based model that describes the Fatigue crack growth 

(FCG). Crack sizes obtained using measurements such as from ILI, in-ditch measurement or any 

other technique can be utilized for estimation of the fatigue model parameters such as C and m. If 

the crack size measurement data is error free, the model parameter estimation is a straight forward 

task. However, in reality there is always measurement uncertainty and the physics-based method 

has its own limitations in accuracy. Different kinds of ILI tools such as Magnetic flux leakage 

(MFL), Ultrasonic (UT) tools, Electromagnetic acoustic transducers (EMAT) etc. are used in the 

pipeline industry with their respective capabilities, limitations and accuracy [80]. Xie et al. (2018) 

proposed an integrated approach for pipeline FCG prediction with large crack sizing uncertainty, 

which integrates physics- based model and the ILI data using Bayesian method. The study 

demonstrated promising results using the approach and concluded that the FCG prediction can be 

more accurate with the improvement in the accuracy of the ILI tool [70].    

A Bayesian approach provides a method to express degree of belief on a certain event based on 

the collected information such as ILI measurements and knowledge about a process such as Paris’ 

law for FCG [81]. This is because Bayes’ theorem describes the probability of an event (posterior) 

based on the previous knowledge (prior) and likelihood of its occurrence for given set of 

observations. To be specific, if θ is the model parameter, which is used to describe a physical 

process, it can be estimated from a given set of observations X. The updated estimate of the 

parameter, considering the observations of the actual physical process, according to Bayesian 

approach would be given by Eq. (2–20):   
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where, ( | )P θ X is the posterior probability density function (PDF) ofθ , ( )L X |θ is the likelihood 

of making the observations X given the parameter, ( )P θ is the prior PDF of θ , and P(X) is 

marginal density function of X or also known as normalizing constant to make integral of posterior 

PDF to be one. 

In this study, epistemic uncertainty or reducible uncertainty in the estimation of fatigue model 

parameters and crack size is dealt. This can be achieved by improving the knowledge about the 

process based on the observed data.  

The uncertainty in tools are inherent due to various factors like signal interference and cannot be 

reduced to zero but can be reduced to levels where the desired accuracy can be achieved. As such, 

Fang et al. (2017) presented a detailed literature review on commonly used ILI tools, for e.g. UT, 

MFL, EMAT, including technical principles, signal analysis, defect sizing method and inspection 

reliability [82]. Pipeline Research Council International (PRCI) reported that the industry EMAT 

ILI performance validation result shows the probability of sizing of 80% at 95% confidence for 

crack depths, which meet the tool performance specification. The results are in line with that 

obtained by Enbridge from a EMAT performance validation program on a Canadian gas 

transmission pipeline [83]. The field results were used to determine the crack depth and length 

sizing accuracy. In a program to test the performance of EMAT ILI tools performed at PRCI ILI 

test facility by Katz et al. (2017) crack depth sizing accuracy of ±15% of pipe wall thickness with 

an 80% confidence was reported. However, the crack lengths reported by EMAT tool were longer 

than field measurement [84]. 

However, leveraging the power of crack size measurement data and the existing FCG models can 

be a promising solution to improve the confidence in the crack size measurements and to make 

better prediction of the fatigue crack growth, which is beneficial for predictive maintenance of 

pipelines against fatigue cracks. In the following section different methods of implementing 
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Bayesian approaches to reduce the epistemic uncertainty in model parameter and crack size 

estimation is discussed, including the relevant works from other researchers.  

Stochastic filtering, as an iterative Bayesian approach, can be used for extraction of information 

about unknown model parameters and crack states at certain time of interest by using data 

measured up to and including that point of time. Essentially, it provides a ‘best estimate’ for the 

true value of the state for a system or process based on noisy observations available, and the 

updated model can be further used for better predictions. Performance of the stochastic filtering 

method is usually measured by the stability of the estimated mean values and its confidence 

interval (CI). CI of a mean is a range of mean values bounded by lower and upper limit. 95 % CI 

is the most commonly used confidence level, it is the range of estimated mean between 2.5 and 

97.5 percentile values. For a normal distribution, 95% CI is ±1.96 times the standard deviation. 

Narrower the CI higher the confidence in mean or the estimation is reliable.     

2.5.1 Particle Filter (PF) for FCG Model Parameter and Crack Size Estimation  

Particle filtering (PF), as a MC sampling-based filtering method where distributions are 

approximated by a discrete set of weighed particles representing probabilistic information, is a 

promising tool for stochastic estimation of state (e.g., crack size) and model parameters. Cadini et 

al. (2009) employed PF for structural prognostic problems and to estimate the distribution of 

structural component’s remaining lifetime [85]. Wang et al. (2015) used PF along with Paris’ law 

for diagnostics and prognostics of a single-crack near fastener hole specimen. Performance of PF 

was reported to be superior even though the computational cost was high and author also proposed 

a modification in the prediction step of PF to save on computational expenses [86]. Robinson et 

al. (2016) presented comparative study between interval technique, a deterministic method, and 

two stochastic non-linear prognosis methods [87]. Liu et al. (2017) coupled PF and Paris’ law to 

predict fatigue crack growth model parameters and crack size. The coupled method was reported 

to produce accurate results of monitoring degradation of gear and residual fatigue life [88].  Yang 

et al. (2017) used deterministic resampling PF for crack size and crack growth model parameter 

estimation in edge-crack specimens [89].  Besides fatigue crack growth,  PF has been employed in 

robot tracking, lithium-ion batteries, rolling bearings and so on [90]. Note that in these estimation 
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problems when model parameters are unknown and assumed to be time invariant, the parameters 

are jointly estimated by augmenting the parameters to the state vector [91].  

2.5.2 Others 

There exists various stochastic filtering approaches, such as Kalman filter (KF), extended Kalman 

filter (EKF), and unscented Kalman filter. Kalman filter (KF), a pioneer method in the estimation 

problem, provides optimal solution for linear problems with Gaussian noise. Furthermore, 

extended Kalman filter (EKF) and unscented Kalman filter (UKF) are more sophisticated version 

of KF built to deal with non-linear system with Gaussian noise assumptions and reported to have 

poor performance for highly non-linear system [89]. 

Ray et al. (1996) used EKF for real time computation of the fatigue rate and fatigue damage 

accumulation in aluminum alloy specimen and verified the results against the experimental data 

and also pointed out that EKF can be used for crack size following normal distributions only [92]. 

Moussas et al. (2005) compared Adaptive Lainiotis Filter (ALF), a multi-model partitioning 

algorithm, with EKF for FCG monitoring and identification and reported ALF to have superior 

performance over EKF for both parameter identification and residual fatigue life estimation [93]. 

Cobb et al. (2008) studied a fatigue crack growth estimation problem by utilizing data from energy-

based wave propagation model from ultrasonic tools as the measurement model and Paris’ law as 

the system model in Kalman Filter. They reported that their approach provided highly accurate 

crack size estimates compared to those observed from either methods alone [94]. Wang et al. 

(2016) presented a comparative study for joint estimation of crack size and Paris law parameters 

of an aircraft fuselage panel using both EKF and UKF, and  concluded that EKF provided results 

within comparable accuracy to UKF but at less computational expense [95]. Wang et al. (2019) 

proposed a coupled EKF-linearization method which provided satisfactory results for fatigue crack 

growth model parameter estimation, and future crack growth trajectory prediction of an aircraft 

fuselage panel [96]. Besides fatigue crack growth, UKF has been employed in other engineering 

problems, e.g., parameter estimation of resistor-capacitor building energy models [97] and 

complex non-linear finite element models [98]. 

Stochastic filtering technique is widely used for diagnosis and prognosis of threats caused by 

fatigue cracking in various structures as discussed above. Despite being a powerful and robust tool 
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for FCG model parameter and crack size estimation, not many works in the field of oil and gas 

pipelines for FCG monitoring can be found. However, utilizing Bayesian approach based on 

stochastic filtering methods can help make better predictions even with the limited number of data 

and is discussed further in Chapter 5 of this thesis. 
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CHAPTER 3: CRACK PROPAGATION MODELING AND STRESS INTESITY 

FACTOR ESTIMATION FOR FATIGUE CRACK GROWTH ANALYSIS 

3.1 Introduction 

This chapter presents comprehensive details of numerical methods of modeling different types of 

crack propagation using conventional FEM and XFEM. Numerical modeling techniques has been 

proven to be a reliable alternate to full scale tests for pipelines to model different kinds of crack 

propagation mechanism. First, a brief introduction and previous works relevant to crack modeling 

using FEM and XFEM is presented. Quasi-static crack propagation analysis based on cohesive 

zone modeling (CZM) with traction separation law (TSL) is a popular method for modeling crack 

propagation in numerical modeling techniques like FEM and XFEM. Burst pressure estimation of 

a pipelines with internal and external surface cracks using XFEM implemented in Abaqus® with 

damage modeling based on maximum principal stress and fracture energy is presented to 

demonstrate the capabilities and robustness of XFEM for quasi-static crack propagation 

simulation.  

In order to model fatigue crack growth (FCG) reliable estimation of stress intensity factor (SIF) 

along with other material properties plays a crucial role. Analytical models for simple crack 

geometries are available in literatures. For complex and irregular crack geometries FEM with 

focused mesh which confirms to the crack geometry has been widely used. XFEM allows cracks 

to be modeled independent of the mesh in crack domain and can be utilized for building robust 

crack growth model by eliminating need of re-meshing or minimal re-meshing. A comparison of 

SIF estimated using FEM and XFEM along with various factors like mesh size, mesh design, 

number of contours, and enrichment radius (singularity calculation radius) is presented. 

Furthermore, the numerical methods are also used to estimate SIF for different crack geometries 

on pipeline body and compared with the analytical model available in API 579 and reasonable 

agreement is found. In the final section, a methodology to estimate FCG using SIF estimated from 

XFEM and relevant values of fatigue model parameters is presented with the help of case studies 

on a compact tension (CT) specimen and a pipeline.  
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3.2 Crack Modeling 

For pipelines, existence of fatigue and/or SCC cracks poses a major integrity threat and has been 

a major concern especially in aged pipelines. Performing full-scale experiments on pipeline to 

study crack propagation under various pipe configurations and loading conditions is of significant 

value, but it is limited to knowledge of particular cases under restricted scenarios. Time and cost 

associated with the full-scale tests or even reduced-scale specimens has motivated researchers to 

use alternate methods based on numerical techniques such as FEM and XFEM in order to study 

the different types of crack growth mechanism. Using appropriate numerical techniques allows 

researchers to deal with pipelines subjected to complex loading and boundary conditions. 

Furthermore, parametric and sensitivity studies become much more feasible which otherwise 

would have been prohibitively time consuming and expensive using full-scale pipelines or even 

reduced scale specimens. 

Finite Element (FE) method, one of the leading numerical methods used in various engineering 

fields, is widely adopted for evaluating fracture mechanics-based crack driving parameters and 

crack growth prediction under monotonically increasing loading or cyclic fatigue loading [99]. 

With the use of appropriate modeling strategy and analysis method, FEM is shown to be a viable 

tool for simulating cracks in metallic pipes [100]. Several researchers have discussed about the use 

of meshing strategy like spider web, wedge elements at the crack tip and number of contours for 

reliable and accurate estimation of SIF [101-103]. A detailed review on use of FE models for 

fatigue crack analysis in pipes which summarizes the studies focusing on the factors influencing 

the mechanism of crack growth, such as geometry and loading, can be found in Li et al. (2020) 

[99]. Branco et al. (2015) [104] used a FE model with adaptive re-meshing technique and 

appropriate sized mesh to estimate fatigue crack driving parameter like SIF and coupled it with 

fatigue crack growth model such as the Paris law to update crack dimension until pre-determined 

crack dimension was achieved to model fatigue crack growth. FE models are an alternative to the 

experimental method but still has cumbersome modeling procedure such as mesh design, mesh 

confirming to the crack, re-meshing, and also requires user’s expertise to obtain reliable estimation 

for the SIF estimation or crack growth under quasi-static loading and fatigue loading. 
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In contrast, Extended Finite Element method (XFEM), first introduced by Belytschko et al. (1999) 

[56], has gained popularity for engineering problems with discontinuity such as cracked pipelines. 

In XFEM, cracks can be modeled independent of the actual structure providing flexibility of no 

re-meshing or minimal re-meshing. XFEM model can alleviate the need of focused meshing and 

minimal re-meshing is required. Even though XFEM has such potential for numerical simulation, 

it has not been widely used in fatigue growth analysis and fatigue crack driving parameter 

estimation of pipelines in the open literature except for few works by [63, 64]  as discussed earlier.  

In the following sections of this chapter: (a) Case study demonstrating capabilities of XFEM to 

model a quasi-static crack propagation in pipeline is discussed, (b) Case study demonstrating 

fatigue crack propagation in a compact tension (CT) specimen and pipelines using an alternate 

method i.e. indirect method is presented, with special focus on the fatigue driving parameter, SIF. 

For all the numerical simulations, the commercially available finite element analysis software 

Abaqus®19.0 is used in this study.     

3.3 Quasi-Static Crack Growth Simulation 

The crack defects in pipelines subjected to internal pressure can propagate in the radial direction 

(along the wall thickness) and/or the longitudinal direction (along the pipeline axis). The crack 

propagation below a critical size when subjected to monotonically increasing load usually grow in 

a stable fashion. Under such condition equilibrium can be assumed at each incremental load step 

and this type of crack growth can be taken as quasi-static in nature.  

A case study showing capabilities of XFEM implemented in Abaqus® for quasi-static crack 

growth in pipeline to estimate burst pressure, i.e., where crack grows through wall thickness of 

pipeline, is presented in the following section.   

3.3.1 Pipeline Section 

Failure behavior of axially flawed pipelines was studied by Brazilian State Oil Company 

(Petrobras) [105], using a series of full-scale burst test on end-capped API 5L X60 grade pipe 

specimens. Dotta et al. (2004)  [105]  performed crack growth analysis for pipes having internal 

and external cracks with semi elliptical crack front taken from the experimental study, using plane 

strain finite element models. In this study, two pipelines with internal and external cracks from the 
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same experimental and numerical study presented in [105] are modeled to demonstrate the 

capabilities of XFEM implemented in Abaqus® for crack growth analysis under monotonically 

increasing internal pressure. The geometrical properties of the pipe and cracks are summarised in 

Table 3-1. The yield strength is 483 MPa and the ultimate tensile strength is 597 MPa. The Young’s 

modulus of elasticity (E) and Poisson’s ratio (ν) are 210000 MPa and 0.3, respectively. The true 

uniaxial stress-strain response of the API 5L X60 steel used in Abaqus® is shown in Figure 3-1. 

The end caps are 20 mm thick and made up of steel having same E and ν as pipe.    

Table 3-1 Geometric properties of pipe and axial cracks  

Outer 

Diameter, 

OD (mm) 

Wall 

Thickness, 

WT (mm) 

Length, L 

(mm) 

Internal Crack External Crack 

Depth, a 

(mm) 
Length, 

2c (mm) 
Depth, a 

(mm) 
Length, 

2c (mm) 

508 15.8 3000 7 140 7 140 

 

 

Figure 3-1: Uniaxial stress-strain response of API 5L X60 steel used in Dotta et al. (2004) [105] 

3.3.1.1 Numerical modeling details 

Two FE models of full-scale pipes with the geometric properties as given in Table 3-1 are 

developed in Abaqus®.  In order to model the crack propagation XFEM implemented in Abaqus® 

is used. The XFEM model process begins with creating geometry of pipe as in conventional FEM 

and a crack feature is added to the geometry of the pipe making it independent of any mesh created 
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in the pipe. Following the modeling strategy used by Okodi et al. (2020) [59], three dimensional 

(3D) deformable solid elements with reduced integration (C3D8R) are used to model the pipe and 

end caps. In order to save the computational expenses utilizing symmetry of the pipe along the 

longitudinal direction, only half of the pipe length is modeled. Symmetric boundary condition 

along longitudinal direction, i.e. z- symmetry ( 0)z rx ryu u u   on all faces of the circumference 

of the pipe is applied as shown in Figure 3-2 (a). The end plate and the pipe are connected using 

tie constraint.  The boundary condition at the capped end of the pipe are pinned and only rotation 

about longitudinal axis is allowed ( 0)x y z rx ryu u u u u      as shown in Figure 3-2 (b). 

Furthermore, the model constitutes two regions, viz. the crack domain and the non-crack domain, 

which allows using different fineness level of mesh as shown in Figure 3-3.  The crack domain is 

a solid strip of size 20 mm × 15.8 mm × 140 mm, where mesh size of 1.53 mm × 0.55 mm × 2 mm 

is used along circumferential, thickness and longitudinal directions respectively. The meshing is 

shown in Figure 3-3 (b) and (c) for internal surface and external surface cracks respectively. The 

crack domain and non-crack domain are connected using tie constraints. This method of domain 

splitting is used in many studies ([48, 59]) for  crack propagation simulation  as it makes the 

modeling more robust and efficient. Whereas, the remainder of the pipe and end caps have 

relatively coarser mesh, overall mesh size of approximately 36 mm in pipe body and 8 mm in end 

cap is used. Internal surface of the pipe is subjected to internal pressure load applied in very small 

increments. 

XFEM implemented in Abaqus® allows users to specify different damage initiation and evolution 

criteria. Since the study of sensitivity of different damage criteria are outside the scope of this 

work, in this study maximum principal stress (MPs) is used as the damage initiation criterion and 

fracture energy as damage evolution criterion with cohesive zone modeling based linear traction 

separation law. Maximum principal strain (MPe) damage initiation criterion has been already used 

by Okodi et al. (2020) for the exact same burst pressure estimation problem. In order to check the 

results and performance of XFEM based on different damage initiation criteria MPs is used in 

here. The damage modeling properties are given in Table 3-2. Zhang et al. (2016) [16] used 

maximum principal stress as damage initiation criteria in XFEM for X65 grade steel pipeline and 

recommended using the true ultimate tensile strength obtained from the tensile test as MPs. Hence, 

the value of maximum principal stress is adopted to be equal to true ultimate tensile strength from 
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the available test data. Whereas the value of fracture energy is adopted from Okodi et al. (2020) 

[59] as the pipe materials are from same X60 grade steel. 

 
(a) 

 
(b) 

Figure 3-2: Typical 3D XFEM model showing boundary conditions used in the pipeline for 

estimation of burst pressure (a) z-axis symmetry condition at the half length, and (b) boundary 

condition at the capped end of pipe 
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(a) 

  
(b) (c) 

Figure 3-3: Overall view of a typical 3D XFEM model for burst pressure estimation with mesh 

(a) close-up view of crack domain with mesh and internal crack, and (c) close-up view of the 

crack domain with mesh and external crack (Note: Highlighted red solid curves are the XFEM 

crack feature) 

Table 3-2 Damage modeling properties 

Maximum Principal Stress (MPa) 692.6 

Fracture Energy (N/mm) 150  
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3.3.1.2 Results and Discussion 

The internal pressure load is applied to the internal surface of the pipe and increased quasi-

statically to cause the element at the outermost end of the crack tip to fracture completely, leading 

to the burst failure. The corresponding internal pressure is considered burst pressure in this study. 

In order to estimate the burst pressure of the pipeline using XFEM in Abaqus® ‘STATUSXFEM’ 

variable is tracked, value of 1 represents complete fracture of the element. Figure 3-4 shows the 

status of the enriched elements in the pipeline, the red color of the elements with 

STATUSXFEM=1 representing complete fracture. To be specific, Figure 3-4 (a) shows the status 

of the enriched elements that represent the initial internal crack geometry and Figure 3-4 (b) shows 

the status of the enriched elements at internal pressure corresponding to the burst pressure i.e. final 

crack morphology of the initial internal crack. Similarly, Figure 3-4 (c) shows the status of the 

enriched elements that represent the initial external crack geometry and Figure 3-4 (d) shows the 

status of the enriched elements at internal pressure corresponding to the burst pressure i.e. final 

crack morphology of the initial external surface crack. Figure 3-5 (a) shows the internal crack 

growth with the increasing internal pressure using experimental and FEM results from [105], and 

XFEM. The crack size after 11.98 mm from experimental results was not presented and was 

reported to have propagated unstably in [105]. As mentioned earlier the elements were considered 

to be completely fractured when value of variable ‘STATUSXFEM’ is 1, see Figure 3-5 (c). At 

approximately same pressure (burst pressure), all elements ahead of the crack tip at the deepest 

location are completely fractured. After that, the crack propagation is unstable and represented by 

solid red line in Figure 3-5 (a). However, with the increasing pressure, elements ahead of the crack 

tip are fractured partially (see Figure 3-5 (b)) and represented by dashed red line in Figure 3-5 (a). 

The crack growth estimated from XFEM closely matches to that from experimental results even 

though the exact burst pressure are slightly off, as discussed in the following section. Also, the 

experimental results for external crack growth was not presented in [105] and hence left out here. 

Table 3-3 summarizes burst pressure estimated using maximum principal stress and fracture 

energy as damage parameters in XFEM. The results are compared to the burst pressure obtained 

by experiment and finite element method from Dotta et al. (2004) [105]. Dotta et al. (2004) 

performed non-linear FE analysis using WARP3D FE analysis code assuming plain strain 

condition achieved by using a single thickness layer 3D eight node trilinear hexahedral elements 

[105]. The burst pressure estimated for same crack geometry using different methods are in 
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reasonably good agreement with each other. XFEM estimated burst pressure for internal and 

external cracks are about 1.9 % and 5.4 % less than that from experimental results. The reason for 

this discrepancy is due to the specification of the damage initiation and propagation criteria. As 

mentioned earlier XFEM implemented in Abaqus® allows users to specify different damage 

modeling criterion. However, selection of appropriate set of parameters and calibration of these 

values are field of study being investigated by different researchers [59]. 

Table 3-3 Burst Pressure Comparison for API 5L X60 Grade Steel Pipeline 

Crack Location and 

Geometry 

Burst Pressure (MPa) 

XFEM 

Experimental 

(Dotta et al., 2004 

[105]) 

FEM 

(Dotta et al., 2004 

[105]) 

Internal 

(7 mm × 140 mm) 
26.978 27.5 27.8 

External 

(7 mm × 140 mm ) 
23.65 25.0 26.9 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3-4: Longitudinal view of the crack domain showing status of enriched elements due to 

(a) initial internal crack, (b) internal crack at burst pressure, (c) initial external crack, and (d) 

external crack at burst pressure 
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(a) 

  
(b) (c) 

Figure 3-5: (a) Comparison of internal crack growth with internal pressure using various 

methods, (b) status of enriched element ahead of the crack tip showing partial fracture, and (c) 

status of enriched element ahead of the crack tip showing full fracture 

3.4 Fatigue Crack Growth Modeling 

The limitation of existing fatigue analysis code to perform LCF only as discussed in section 

2.2.2.2, computational expenses and modeling complexity using conventional finite element 

analysis of component subjected to cyclic load lead to find an alternative method for fatigue 

analysis. A fracture mechanics based assessment of the fatigue crack growth rate with respect to 

loading cycles is related to the crack driving parameters like stress intensity factor (SIF) and crack 

growth resisting material properties. Paris law is one of such equations that quantifies the crack 

growth rate in the stable crack growth phase of fatigue life and given by Eq. (3–1):  
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 ( )mda
C K

dN
   (3–1) 

where, /da dN is the rate of fatigue crack growth per loading cycle; C and m are fatigue properties 

of material;  is the range of SIF when a structure is stressed from minimum to maximum load. 

The fracture mechanics based assessment has been gaining popularity and incorporated in industry 

practiced standards like API 579 [10] and BS 7910 [42]. These standards provides analytical 

expression for estimation of SIF. Due to less conservative estimate of SIF using API 579 model 

compared to BS 7910, supported by many studies [63], is used in this study for comparison and 

other purposes discussed in the following sections. The values of the material properties C and m 

are recommended to be calculated experimentally in both standards, as they greatly depend on the 

factors like load ratio, and environment [106, 107]. In order to assess the fatigue crack growth in 

pipelines using Paris Law the values of C and m mentioned in API 579 (Clause 9F.5.3.2), for 

ferritic and austenitic steels in air or other non-aggressive service environment at temperatures up 

to 100 C   and yield strengths less than or equal to 600 MPa, are 5.218×10-13 

(unit : / , )mm Cycle MPa mm  and 3.00 respectively. Similarly, these values in BS 7910 (Clause 

8.2.3.3), for steels (ferritic, austenitic or duplex ferrtic-austenitic) with yield strengths less than or 

equal to 700 MPa operating in air or other non-aggressive environments at temperatures up to 100

C , are 3.980×10-13 (unit : / , )mm Cycle MPa mm  and 2.88 respectively for load ratio less than 

0.5.  In addition, 5.860×10-13 (unit : / , )mm Cycle MPa mm and 2.88 for load ratio greater than or 

equal to 0.5. 

FE Model of a component with XFEM crack feature is created in Abaqus® and static analysis is 

performed. From the generated output file of the XFEM analysis, fatigue crack driving parameters 

are extracted. Numerical estimation of fatigue crack driving parameters such as Stress Intensity 

Factor (SIF) and J-Integral as explained in section 2.3 and is used for estimating number of cycles 

required to extend crack by some predefined length, at least one element length ahead of crack tip. 

An Euler discretized form of the Paris’ law is used as analytical solution of the differential equation 

due to complex formulation of the range of SIF is not always viable. The discretized form provides 

accurate results for engineering purposes and given by Eq. (3–2):  
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 1 1( )m

k k ka C K N a      (3–2) 

where, ka is the crack size at current time step k, 1kK  is the range of SIF at the previous time step 

(k-1) when a structure is stressed from minimum to maximum load, N is the number of load 

cycles, C and m are Paris’ law model parameters. Note: When using discretized form of differential 

equations smaller the value of N better the accuracy.  

A flowchart to model fatigue crack growth using an indirect method is shown in Figure 3-6. A 

brief description of the method is as follows: start with a FE model of a pipe along with the crack 

geometry. Selection and use of appropriate FE modeling method i.e. either conventional FEM or 

XFEM is discussed in details in following sections. Fatigue crack driving parameter like SIF is 

extracted after analyzing and post processing the model. Use of analytical method for calculating 

SIF is equally applicable in this method. For a linear-elastic material once the SIF corresponding 

to the maximum load is evaluated it can be used to calculate the corresponding value at the 

minimum load and hence the range of SIF. If the calculated range of SIF is greater than the critical 

value of SIF it signifies that the unstable fatigue crack growth has started and the process is 

terminated. If not, number of cycles required to grow a crack by an incremental size is evaluated 

using the discretized equation given by Eq. (3–2). The relation can be used either by fixing the 

difference between number of load cycles ( )N  corresponding to the increment in crack size 

( )a or vice versa. The crack geometry is then updated and checked if the critical crack size is 

reached or not. If yes, the process is terminated else a new FE analysis is performed with the 

updated crack geometry and repeated until critical values of either crack size or SIF is reached. In 

a previous study by the author [108], demonstration and potential of estimating FCG for CT 

specimen and pipeline section has been presented.  

In the following sections, different SIF estimation methods like analytical and numerical methods 

are discussed. The section ends with demonstration of the methodology using different case 

studies. 
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Figure 3-6: Flowchart showing the indirect method of fatigue crack growth 

3.4.1 SIF Estimation Methods and Comparison  

Estimation of SIF plays a vital role in assessing the state of the structure ahead of the crack tip or 

crack front. As shown in the previous section one of the important parameters for modeling fatigue 

crack growth is the range of SIF. Accurate SIF estimation is crucial as it has exponential relation 

with the crack growth as shown by Eq. (3–1). In this section, analytical method and two different 

numerical methods for SIF estimation are discussed in detail.    

3.4.1.1 API 579 Model: Background and Formulation  

API 579-1/ASME FFS-1 [109] provides an analytical of solution for estimation of SIF for different 

pipe and crack geometries. API 579 model for calculation of SIF is developed based on the 

influence coefficient approach, which basically employs the principle of superposition to a cracked 

body subjected to polynomial stress distribution and using Taylor series expansion to get the fourth 
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order polynomial. The influence coefficients are obtained from over 2700 finite element analyses 

[46], with a typical meshing strategy used as shown in Figure 3-8. Furthermore, a sixth-degree 

polynomial fit to the finite element results of SIF estimation from Franc2D software was used to 

obtain the influence coefficients [110]. Additionally, the 6th-order polynomial was fitted to the 

FEM results excluding those at the free surface and those values at the surface were estimated by 

extrapolating the polynomial fit. This was done because the results at the surface were unreliable 

and highly sensitive to mesh size, theoretically the value of SIF at the free surface of a 3D body is 

zero [46]. Further details about how the API 579 model was developed can be found in [110].  

The values of SIF for a longitudinal crack with a semi-elliptical crack front on the outer surface of 

a pressurized cylinder, as shown in Figure 3-7 as per API 579-1/ASME FFS-1 [109], is given by 

Eq. (3–3): 

 

Figure 3-7. Longitudinal section (left) and cross section (right) of pipeline with semi-elliptical 

crack front on the external surface and subjected to internal pressure load 
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 (3–3) 

where, p is the internal pressure, iR is the internal radius, oR is the external radius, Q is a crack 

geometry parameter and 0 4G G  are influence coefficients and valid for 0 / 1.0it R  , 
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0.03125 / 2a c  and 0.2 / 0.8a t  . The coefficients 
0 1and  G G are tabulated in Table 9B.13 

of API 579 [10]. Whereas, 
2 3 4, , and    G G G are calculated based on 

0 1and  G G , given by equations 

presented there. The equations for influence coefficients 2 3 4, , ,G G G and Q can be found in 

ANNEX-C. 

 

Figure 3-8: Typical meshing strategy used in FE models used for developing the API 579 model 

for SIF estimation [110] 

3.4.1.2 Numerical methods for SIF estimation 

In the next section, SIF estimation using conventional FEM and XFEM models are demonstrated. 

Firstly, a compact tension (CT) specimen with a straight crack front is presented. Sensitivity of the 

mesh size, selection of element type, number of contour integral request and other factors are dealt 

in detail. Finally, a pipeline section having semi-elliptical (curved) crack front is presented. 

Various factors such mesh size, element type, number of contour integral request and effect of 

curved crack front in SIF estimation are dealt in detail. 
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(1) CT Specimen 

One of the nine CT specimens subjected to fatigue testing in Silva et al. (2011) [44] (designated 

as CTC5 in that study)  is used for demonstrating SIF estimation method using FEM in Abaqus®. 

CTC5 specimen is chosen in this study because all of the specimens have approximately same 

geometric properties. Additionally, testing details and other information are clearly mentioned for 

this specimen in Silva et al. (2011) [44]. The geometric details, material properties, loading and 

boundary conditions are used from the literature [44] directly such that the numerical model 

closely replicates the experimental model presented.  Figure 3-9 shows the geometric details of the 

CT specimen. The CT specimens were cut out from a pipeline section of API 5L X65 and Table 

3-4 summarizes the material properties of the pipeline steel. 

  
(a) (b) 

Figure 3-9: (a) Geometric details of the CT specimen: flat view (left) and sectional view (right) 

and (b) CT specimen used in experiment [44] (Note: All dimensions are in mm) 

Table 3-4 Material Properties 

Young’s modulus (MPa) 200000 

Yield stress (MPa) 571 

Ultimate stress (MPa) 709 

Ultimate strain (%) 9.1 

C  (
m( / ) / ( . )mm cycle MPa mm ) 1.504 ×10-16 

m 4.14 
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(a) Modeling Strategy 

A 3D model of CT specimen is created, as in Abaqus® SIF can be requested for 3D models only 

while using XFEM, in order to make a fair comparison between conventional FEM and XFEM as 

discussed in the following sections. Both conventional FEM and XFEM models are created for the 

CT specimen described above. Figure 3-10 shows typical 3D finite element model of CT specimen 

used in this study. The lower clamp hole is pinned in all direction ( 0)x y zu u u   .The upper 

clamp hole is pinned along longitudinal and transverse direction ( 0)x zu u  and subjected to 

concentrated load of 10 KN along the normal direction ( 10 )yP KN . As mentioned in [44]; 

material property of the  CT specimen is assumed to be linear elastic, isotropic and homogeneous. 

The SIF has proportional relation with the load hence; the range of SIF ( )K is calculated once 

the value for maximum load max( )P  is calculated. Even though modeling cracks in conventional 

FEM is a tedious job, the accuracy is higher due to less approximation compared to XFEM due to 

additional degrees-of-freedom (DOF) to the conventional DOFs as given in Eq. (2–11). The cracks 

studied here are sharp and the strain field becomes singular at the crack tip, including singularity 

in the model for small-strain analysis improves the accuracy of the contour integral as well as 

stress and strains [60]. In order to get as accurate result as possible, different kinds of meshing 

strategies and finite element types are used and compared. The estimated value of SIF is compared 

to that prescribed by ASTM E647 which given by Eq. (3–4): 

 
2 3 42

0.886 4.64 13.32( ) 14.72( ) 5.6( )
(1 )

P a W
K a W a W a W a W

a WB W

 
       

 (3–4) 

where, max minP P P   , B is the width of the CT specimen, a is the crack depth measured from 

center of clamp holes, W is the effective length of CT specimen. 
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Figure 3-10: 3D finite element model with boundary conditions 

(b) Mesh Design for FEM and XFEM Models 

In conventional FEM mesh should confirm to the crack geometry. Figure 3-11 shows the meshing 

strategies used in conventional FEM model. Spider-web type mesh having wedge elements with 

reduced integration (C3D6R) as shown in Figure 3-11 (b) is used in the first contour region. Using 

this type of strategy improves the accuracy of the results by considering the singularity at the crack 

tip as recommended in [60]. In all other region hexahedral elements with reduced integration 

(C3D8R) is used. Also, a spider web type mesh with regular hexahedral elements with reduced 

integration (C3D8R) all over is used as shown in Figure 3-11 (c) in order to make comparison with 

the results obtained using XFEM. Reduced integration scheme is used to save on computational 

expenses. 

Figure 3-12 shows the meshing strategies used in the XFEM model. Similar to FEM, two meshing 

strategies are deployed in XFEM models too. First, a general meshing strategy such that the cracks 

can be modeled independent of the mesh as shown in Figure 3-12 (b). The other meshing strategy 

is similar to that used in conventional FEM as shown in Figure 3-12 (c). The C3D8R elements are 

used in entire XFEM model. XFEM implemented in Abaqus® 6.19 does not support wedge 

elements (C3D6R) yet.  It should be noted that crack can be modeled independent of mesh even if 
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an unfocused type of meshing strategy is used. However the mesh size around the crack tip should 

be sufficiently small to capture the response accurately [60]. Which in turn increases 

computational time but the tedious modeling time is reduced remarkably.  

 

(a) 

  
(b) (c) 

Figure 3-11: (a) Overall mesh design in the CT specimen using conventional FEM method, (b) 

Mesh type #1 and element type used in the crack tip zone (red circle in (a)), and (c) Mesh type 

#2 and element type used in the crack tip zone (red circle in (a)). Note: Red lines in (b) and (c) is 

crack 

 



 

54 

 

 

(a) 

  
(b) (c) 

Figure 3-12: (a) Overall mesh design in the CT specimen using XFEM method, (b) Mesh type #1 

and element type used in the crack tip zone (red circle in (a)), and (c) Mesh type #2 and element 

type used in the crack tip zone (red circle in (a))). Note: Red lines in (b) and (c) is crack 

(b) Results and Discussion 

To get converged SIF values first a mesh size convergence study is performed, which is one of 

very important factor that helps in selecting appropriate mesh size, which in turn increases 

efficiency of a finite element model. SIF values estimated using conventional FEM with wedge 

elements, as shown in  Figure 3-11 (b), is used as the base model since it has been reported to 

produce reliable results for various crack geometries in different structures  [111, 112]. The mesh 

fineness increases from #1 to #4 by a factor of two. For example, number of elements along 



 

55 

 

thickness and around the crack tip are 4 and 16 respectively in model with mesh size #1 and those 

in model with mesh size #2 are 8 and 32 respectively.  

Ideally, the contour integral around the crack tip should be path independent but due to numerical 

approximations, they are not. However, extraction of SIF values is also of concern. As such, the 

sensitivity of number of contours is firstly analyzed, considering mesh level #3, as this mesh level 

provides sufficient accuracy as is explained later. Figure 3-13 (a) and (b) shows the values of SIF 

at the surface and mid-thickness of the CT specimen respectively. It shows different number of 

contour integral (solid lines with dot marking) requested around the crack tip and the average 

values of SIF (dashed lines) after ignoring the first two contours as per recommendation in [60] 

for the case with a/W= 0.4. For e.g. red solid line with dot marking represents SIF values obtained 

from a model where total five contour integrals were requested, and each dot corresponds to SIF 

value from that contour number. First two contours are ignored due to numerical issues which 

gives unrealistic values of SIF. The average SIF values for different number of contours are within 

±1% of each other. Similar plot for different values of a/W can be found in ANNEX-A. 

  
(a) (b) 

Figure 3-13: Contour integral values around the crack tip in CT specimen for a/W= 0.4, 

requesting different number of contours in Abaqus® (a) at the surface, and (b) at the mid 

thickness 

In Figure 3-13, the average values of coefficient of variation (CV) at surface and mid-thickness of 

CT specimen are 0.266 % and 0.220 % respectively. CV is the ratio of standard deviation to the 

mean. Here, CV is calculated based on the standard deviation and mean value of SIF from each 
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model with different number of contours requested i.e. 5, 10, 15, and 20. Therefore, in order to get 

a reliable estimate of SIF, average value of at least five number of contours after ignoring first two 

contours i.e. remaining three should be adequate. Requesting more number of contour integrals 

can be computationally expensive. Hence, in all of the models five contours are requested and 

extracted from output file (.odb) using a post processing Python [113] script. Also, mesh size #3 

is used to analyze the sensitivity of number of contours, as this mesh size provides a trade-off 

between accuracy and computational expenses which is explained further in the following sections. 

Figure 3-14 shows the SIF values along the thickness of the CT specimen with a/W= 0.4 when 

estimated using conventional FEM with wedge elements of different mesh sizes. It also contains 

SIF values calculated based on Eq. (3–4), which is based on two dimensional plane strain 

assumption and has a constant value throughout the thickness [114]. Similar plots for different 

values of a/W can be found in ANNEX-A. 

 

Figure 3-14: SIF values along thickness of the CT specimen using conventional FEM with 

wedge elements for a/W= 0.4 

Figure 3-15 shows the values of SIF at the surface, finite distance inside the surface and mid-

thickness of the CT specimen for different values of a/W for all mesh sizes used. The values of 

SIF at the mid-thickness of the specimen is less sensitive to the mesh fineness but that at the surface 

is very sensitive to the mesh fineness. This behavior can be explained based on the computation 
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algorithm. At the free surface SIF is typically computed over a domain that is one element thick. 

Also, the theoretical value of SIF on the free surface of a three-dimensional body is zero. 

Therefore, with mesh refinement the value will continually decrease [46]. The theoretical value of 

SIF at the surface is of little practical importance because crack propagation is governed by the 

SIF (crack driving force) over a finite distance inside the surface [46]. Here, the finite distance 

inside the surface is 0.258 mm which is the finite element node location immediately inside the 

surface element node in the model with mesh size #4, having 32 number of elements along the 

thickness of the CT specimen and is the finest mesh used here. The values of SIF at the finite 

distance inside the surface for mesh size #1, #2 and #3 are calculated using linear interpolation 

method. 

 

Figure 3-15: SIF values at the surface, finite distance inside the surface and mid-thickness of the 

CT specimen for different mesh sizes for values of a/W 

The coefficient of variation (CV) for average values of SIF at the surface, finite distance inside the 

surface and mid-thickness of the CT specimen calculated using different mesh sizes as mentioned 

above are 4.994 %, 2.369 %, and 0.277 % respectively. The wedge element size using mesh size 

#3 around the crack tip, i.e. the first contour region, has radius of 0.125 mm and 0.258 mm thick; 

based on number of elements around the crack tip the remaining dimension can be calculated. 

Here, the mesh seeding around the area of interest in the models are done based on number of 

elements. Also, the radius of contour region increases by 0.125 mm for example the radius of fifth 
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contour region is 0.625 mm. As it can be observed, mesh size #3 can provide a reliable estimate 

of SIF values for different values of a/W. Therefore, the results from mesh size #3 is used as the 

base results for making comparison with the results obtained using various meshing strategies and 

sensitivity of the number of contour integral request as mentioned above. 

The SIF values estimated using the base model as described in previous section are compared with 

the SIF values estimated using other meshing strategy used in FEM and XFEM models. The SIF 

values estimated using FEM models with meshing strategy as shown in Figure 3-11 (c) are 

compared directly to the results obtained using XFEM with meshing strategy as shown in Figure 

3-12 (c). The enrichment radius or singularity calculation radius in XFEM models equal to at least 

one element length ahead of the crack tip produces stable and reliable results. The enrichment 

radius for the mesh size #3 is 0.125 mm. First, in order to check the robustness of XFEM, SIF 

values are estimated using XFEM and shown in Figure 3-16, with a general mesh strategy as shown 

in Figure 3-12 (b). Fineness of mesh is similar to that used for conventional FEM as mentioned 

previously. The values of SIF at depth is more sensitive but that at surface shows similar trend to 

that observed with conventional FEM. The mesh size of elements around the crack tip used in this 

study is in the range of 0.25-1.15% of the CT specimen thickness, mesh size #3 corresponds to 

0.25% of thickness. 

 

Figure 3-16: SIF values along thickness of the CT specimen using XFEM with general meshing 

strategy for a/W= 0.4 
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Finally, a comparison between different meshing strategies used in both conventional FEM and 

XFEM with the mesh size #3 is done, see Figure 3-17. FEM-Wed, FEM-Hex, XFEM-Gen and 

XFEM-Hex in Figure 3-17 corresponds to meshing strategies shown in Figure 3-11 (b), Figure 

3-11 (c), Figure 3-12 (b) and Figure 3-12 (c) respectively. The SIF values estimated using different 

meshing strategies for different values of a/W at surface, finite distance inside the surface and mid-

thickness of the CT specimen is shown in Figure 3-18. The values of SIF estimated using different 

meshing strategies are compared with the finest base model, i.e. focused mesh strategy as shown 

in Figure 3-11 (b). The values are within +3% of that estimated using focused mesh strategy. 

Hence, if a general meshing strategy is used in XFEM sufficiently fine mesh around the crack tip 

is required to get a reliable estimate of SIF. Mesh convergence result plots for different values of 

a/W using general meshing strategy in XFEM can be found in the ANNEX-A. 

 

Figure 3-17: SIF values along thickness of the CT using different meshing strategies in XFEM 

and FEM models for a/W= 0.4 
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(a) 

 
(b) 

Figure 3-18: SIF values for different values of a/W (a) surface and mid-thickness of the CT 

specimen, and (b) finite distance inside the surface and mid-thickness of the CT specimen  

(2) Pipeline Section 

In this section, a pressurized pipeline section with semi-elliptical surface crack along longitudinal 

direction studied in [111] is used for validation of both FEM and XFEM models. The Young’s 

modulus of elasticity (E) and Poisson’s ratio (ν) are 204500 MPa and 0.3 respectively.  Figure 3-19 

shows the geometrical features of the pipeline section (a hollow cylinder) and longitudinal crack. 

The wall thickness (t), internal radius ( )iR and length (L) are 19.00 mm, 1139.75 mm and 6000.00 
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mm respectively. The pipeline section has a longitudinal crack with semi-elliptical crack front 

having depth a and length 2c. Various combination of crack geometries with constant a/c=0.5 and 

varying a/t is used in this study similar to that in [111] for estimation of SIF when subjected to 

monotonic internal pressure of 3.5 MPa. 

 
Figure 3-19: Geometric details of the hollow cylinder with longitudinal crack in the outer surface 

 

(a) Modeling Strategy 

Both conventional FEM and XFEM models are developed for the pipeline section (hollow 

cyclinder) using Abaqus®. Figure 3-20 shows a typical 3D finite element model of the pipeline 

section. Either ends of the pipeline section are pinned ( 0)x y zu u u   . A monotonically 

increasing maximum pressure load of 3.5 MPa is applied on the internal surface of the pipeline 

section. In order to reduce complexity in meshing, the pipeline section is divided into three sub 

parts and tied together with surface based constraint tie as shown in Figure 3-21. Similar technique 

has been successfully used in [115]. The three sub-parts are viz. Main pipe body, transition pipe 

body and crack location part as shown in Figure 3-21 (b), (c), and (d) respectively. The value of 

angle subtended at the center 1.875   . The length of subpart transition pipe body is three times 

the length of crack i.e. 6c  and that of the main crack location part is 1.5 times the length of crack 

i.e. 3c . The length of pipeline section in the models are taken to be 1000 mm, as per [111, 112] 

/ 2 10L c   should be enough to neglect the length effect on the SIF.  
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Figure 3-20: 3D finite element model with boundary conditions and load in the hollow cylinder 

  
(a) (b) 

  
(c) (d) 

Figure 3-21: 3D parts created in the models and tied together with surface based tie constraints 

(red arrow shows location of each sub-part being constraint to the other) (a) Main pipe body 

(Coarse Mesh), (b) zoomed in view of main pipe body at the constraint location, and (c) 

Transition pipe body (Medium size mesh), and (d) Crack location part with the crack (finest 

mesh size) 
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Figure 3-22. Typical section of 3D models of the pipeline section showing geometrical features 

of each sub-parts 

 

(b) Mesh Design for FEM and XFEM Models 

A very similar meshing strategy as discussed in previous section 0 for CT specimen is used for the 

pipeline section as well. Figure 3-23 shows the detail of the meshing strategy used in the pipeline 

section. Spider web type mesh having wedge elements with reduced integration (C3D6R) as shown 

in Figure 3-23 (e) is used in the first contour region. In all other region hexahedral elements with 

reduced integration (C3D8R) is used. A spider web type mesh with regular hexahedral elements 

with reduced integration (C3D8R) is also used in the entire model as shown in Figure 3-23 (f) in 

order to make comparison with the results obtained using XFEM. 

 

 

 



 

64 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 3-23: Typical meshing strategy used in FEM models (a) overall meshing in the pipe, (b) 

mesh in the transition pipe body part, (c) mesh in the crack location part, (d) mesh along the 

semi-elliptical crack front, (e) focused mesh with wedge type element in FEM model, and (f) 

focused mesh with hexahedral type element used in FEM and XFEM models 

 

(c) Results and Discussion 

A mesh convergence study of FEM models with six out of twelve crack configurations with 

different values of a/t and constant value of a/c=0.5 similar to that in [111] is carried out in this 

study. Table 3-5 summarizes different crack geometry configurations used in this study for FEM 

and XFEM model verification. Four different mesh sizes, mesh size #1 being coarsest and #4 being 

finest mesh size. The level of fineness around the crack tip and along the crack front increases by 

a factor of two from mesh size #1 to mesh size #3. For example, element size along the crack front 

in mesh size#1 is 1 mm and that in mesh size #3 is 0.25 mm and element size around the crack tip 

in mesh size #1 is 1 mm and that in mesh size #3 is 0.25 mm. The element size along the crack 
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front is same in mesh size #3 and mesh size #4 but that around the crack tip in mesh size #4 is 

0.125 mm. This change in fineness is done to save in computational expenses. 

Table 3-5 Crack geometry used for FEM and XFEM model verification  

Crack # a (mm) c (mm) a/t 

1 5 10 0.263 

2 11 22 0.579 

3 15.8 31.6 0.832 

4 16.5 33 0.868 

5 17.18 34.36 0.904 

6 17.3 34.6 0.911 

 

Figure 3-24 shows SIF values along the crack front calculated from FEM model with focused mesh 

as shown in Figure 3-23 (e) for a/t=0.868. Similar plot for different values of a/t can be found in 

ANNEX-A. Figure 3-25 shows the values of SIF at the surface, finite distance inside the surface 

and at the depth of the pipeline section for different values of a/t. A very similar kind of trend in 

the values of SIF at surface and depth can be observed as mentioned in previous section (b) for CT 

specimen for similar reasons. The value of SIF at the surface is of little practical importance 

because crack propagation is governed by the SIF (crack driving force) over a finite distance inside 

the surface as mentioned in section (b) [46]. SIF values for mesh size #1 and mesh size #2 at finite 

distance under the surface i.e. 0.523  are calculated by interpolation technique, as the number 

of elements along the crack front are less than that in mesh size #3 and #4. The mean value of CV 

of average values of SIF at the surface, finite distance under the surface and depth of the pipeline 

section using different mesh sizes mentioned above are 1.566 %, 0.873 %, and 0.339 % 

respectively. The CV of SIF at different location along the crack front shows a converged behavior. 

As it can be observed in Figure 3-24, that SIF estimated using model with mesh size #3 can provide 

a reliable estimate of SIF. Hence, FEM model with mesh size #3 is used as base model for 

comparison with other meshing strategies.  
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Figure 3-24: SIF values along crack front calculated using FEM with focused mesh having 

wedge elements for a/t=0.868 

 

Figure 3-25: SIF values at the surface, finite distance inside the surface depth of the pipeline 

section for different values of a/t 

The SIF values estimated using the base model as described in previous section are compared with 

the SIF values estimated using other meshing strategy used in FEM and XFEM models. Figure 

3-26 shows comparison of SIF values using different meshing strategies in FEM and XFEM 
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models. The SIF values estimated using FEM models shows a smooth behavior along the crack 

front but those using XFEM shows an oscillating behavior especially towards the depth. This 

behavior can be explained based on the difference in the technique used for modeling cracks in 

FEM and XFEM. In FEM, cracks are modeled by confirming to the mesh i.e. mesh actually 

represent the crack. Whereas, in XFEM cracks are modeled independent of the mesh and for a 

curved crack front the nodes might not necessarily coincide with the crack geometry and due to 

interpolation approximations of the values between the nodes such oscillating behavior might be 

observed. However, the trend of values along the crack front are very similar and are in reasonable 

agreement using different mesh strategies in FEM and XFEM 

 

Figure 3-26: SIF values along crack front calculated using different meshing strategies in XFEM 

and FEM models for a/t=0.868 

Figure 3-27 shows the values of SIF at the surface, finite distance inside the surface and at the 

depth of the pipeline section for different values of a/t. The values of SIF estimated using various 

meshing strategy in FEM and XFEM are within +3% of that estimated using focused mesh strategy 

except for surface values using XFEM where it is just below +5.5%. As stated, earlier the values 

of SIF at the surface are of less practical significance. Hence, SIF values estimated using 

appropriate mesh size and technique in both XFEM and FEM are reliable. 
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(a) 

 
(b) 

Figure 3-27: SIF values for different values of a/t (a) surface and depth of the pipeline section, 

and (b) finite distance inside the surface and depth of the pipeline section 

 

3.4.1.3 Comparison of SIF estimation using different methods 

In previous section, meshing strategies and other factors like number of contour request to get 

reliable estimate of SIF values for straight crack front and semi-elliptical crack front were 

discussed in detail. Based upon the strategies discussed above SIF values for three different 
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pipeline sections is estimated to further validate numerical modelling procedure. Pipeline and 

Hazardous Materials Safety Administration (PHMSA) is a regulatory based in United States of 

America that regulates safe transportation of energy to the public. Any incident/accidents related 

transportation of energy are required to be reported and such reports are made available to public. 

Using such publically available data, three pipeline sections reported to have incident related to 

fatigue crack in pipe body were selected and SIF values for these pipelines were calculated using 

FEM, XFEM and API 579 model given by Eq. (3–3). Table 3-6 lists various information related 

to three pipelines from PHMSA database reported to have incident related to fatigue crack in pipe 

body. It lists wall thickness (WT or t), internal radius (Ri), t/Ri, operating pressure at the time of 

incident (OP), maximum operating pressure (MOP) and specified minimum yield strength 

(SMYS). 

Table 3-6 Pipelines reported to have incident related to fatigue crack in pipe body in PHMSA 

database 

S.N. 
Operator 

Name 

WT, t 

(mm) 
Ri (mm) t/Ri 

OP 

(MPa) 
MOP 

(MPa) 
SMYS 

(MPa) 

1 
Phillips 66 

Pipeline llc 
6.350 146.05 0.043 9.570 13.000 413.685 

2 

West Texas 

Gulf Pipeline 

Co. 

7.925 322.275 0.025 3.089 5.500 358.527 

3 
Colonial 

Pipeline Co 
7.137 450.063 0.016 2.179 4.000 358.527 

 

(1) Results and Discussion 

Both FEM and XFEM models with modeling strategies discussed in section 3.4.1.2 were built for 

the three pipelines #1- #3 with various crack geometries listed in Table 3-7 with respective t/Ri 

and subjected to respective MOPs. For each pipeline, 25 (5 a/c × 5 a/t) data are produced. The 

values of a/c and a/t are selected such that the results could be compared to that calculated using 

API 579 model.  
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Table 3-7 Pipe and crack geometry configuration 

t/Ri a/c a/t 

0.016 (PHILLIPS) 

0.125, 0.25, 0.5, 1, 2 0.2, 0.4, 0.6, 0.8, 0.9 0.025 (WEST) 

0.043 (COLONIAL) 

 

A comparison between SIF values at the surface and depth using FEM, XFEM and API 579 models 

for three pipeline section for a/c = 0.5 is shown in Figure 3-28. A similar plot for different values 

of a/c for each pipeline section can be found in ANNEX-A. Note that, the SIF values corresponds 

to values at finite depth from the surface of the pipeline section for 1.7  . The results obtained 

using XFEM are in good agreement with FEM and API 579 models. This can be explained based 

on the fact that API 579 models were generated by fitting 6th –order polynomial to the results 

obtained using FEM analysis having 20 node brick elements [110] with meshing strategy same as 

in this study. Additionally, the 6th- order polynomial was fitted to the FEM results excluding those 

at the free surface and the values of SIF at the surface are estimated by extrapolating the 

polynomial fit. The meshing strategy used in API 579 model building is as shown in Figure 3-8. 

Table 3-8 summarizes average values of difference between SIF values calculated using XFEM 

vs. FEM and API 579 for different values of a/c and a/t listed above given by Eq. (3–5): 

 
/

/

x100%XFEM FEM API

FEM API

SIF SIF

SIF



  (3–5) 

where, XFEMSIF is SIF value obtained using XFEM and /FEM APISIF is SIF value obtained using FEM 

and API 579 model. 

The values of SIF at the surface estimated using XFEM are in average higher up-to 3.87% than 

FEM and those at the depth are within ±1.328%. The results from XFEM when compared to the 

API 579 model are overall less conservative at depth and surface. The values of SIF for a/t > 0.8 

was linearly extrapolated for API 579 model for comparison. 
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(a) 

 
(b) 

 
(c) 

Figure 3-28: SIF values at finite depth from surface and depth ( 90  ) for a/c=0.5 (a) Pipeline 

#1, (b) Pipeline #2, and (c) Pipeline #3 
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Table 3-8 Comparison between SIF values calculated using XFEM vs. FEM and API 579 

Pipeline 
XFEM compared to FEM XFEM compared to API 579 

Surface (%) Depth (%) Surface (%) Depth (%) 

Phillips 66 

Pipeline LLC 
3.870 0.288 2.014 -3.951 

West Texas Gulf 

Pipeline Co 
2.288 -0.399 -0.147 -3.532 

Colonial Pipeline 

Co 
3.375 -1.328 -1.174 -3.562 

 

3.4.2 Implementation of Indirect Method of FCG Modeling 

Comprehensive details on various methods including XFEM for estimation of one of the main 

parameters required for fatigue crack propagation, SIF, was presented in previous section. In the 

following section SIF calculated using verified XFEM modelling procedure is coupled with Paris’ 

law as explained in section 3.4 to demonstrate implementation of indirect method of FCG 

modeling using CT specimen and pipeline section are presented as case studies.    

3.4.2.1 Demonstration of Indirect FCG Modeling in CT Specimen 

In this section, the CT specimen as described in section (1) is used to demonstrate the indirect FCG 

modeling. A 3D XFEM model with the meshing and modeling strategy discussed in the section 

(1) is used for estimation of SIF at the surface and mid thickness of the CT specimen.  

Figure 3-29 shows the FCG generated using the indirect method as explained in the previous 

section. The experimental result data is taken from Silva et al. (2011). The experimental result is 

for a through crack, i.e. the entire cross section at particular crack depth is cracked. The FCG 

generated using indirect method is based on the SIF value at particular point of interest, like mid-

thickness and surface. Due to high tri-axiality at the mid thickness, the value of SIF is high relative 

to the surface, also verified in the previous section. Hence, an average of the FCG estimated at the 

surface, mid thickness provides a more realistic FCG curve, and matches closely to the 

experimental results.  
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Figure 3-29: Fatigue crack growth curve of CT specimen obtained using In-direct method 

 

3.4.2.2 Demonstration of Indirect FCG Modeling in Pipeline Section 

(1) Model Description and Details 

Tiku et al. (2020) proposed the fatigue crack growth equation parameters C and m. The values 

were based on the pipeline material fatigue crack growth database developed using 185 fatigue 

crack growth rate tests on 45 pipeline materials ranging in grade from X46 to X70 and in vintage 

from 1937 to 2014 [45]. The FCG data was generated using proposed C and m values coupled with 

API 579 model for SIF estimation. This was compared against FCG data obtained various methods 

like BS 7910, API 579, and experiments. In this section one of the pipes studied in Tiku et al. 

(2020) whose FCG curve, using proposed values of C and m, is presented with all the necessary 

details is selected to demonstrate and compare the indirect FCG modeling procedure. 

X46 grade pipeline with geometric and material properties listed in Table 3-9 and Table 3-10. 

Initial cracks having semi elliptical crack front with crack geometries shown in Table 3-9 are 

machined. The pipelines are subjected to maximum internal pressure corresponding to 55% of 

SMYS and minimum internal pressure corresponding to 5% of SMYS, i.e. stress ratio is 0.1. The 

values of internal pressure are not mentioned explicitly. However, the maximum internal pressure 

is estimated to be 5.5 MPa and minimum internal pressure is estimated to be 0.55 MPa based upon 
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the provided data. Length of the pipe is adopted to be 4064 mm, making it greater than 10 times 

the outer diameter, on order to make the effect of end conditions negligible [116]. Pinned boundary 

condition is applied at both ends ( 0)x y zu u u   . Similar to Tiku et al. (2020) [45] the crack 

growth along axial direction is assumed to be negligible and kept constant.   

XFEM models are created using the strategies discussed in section (2). Figure 3-30 shows a typical 

XFEM model of the pipeline for estimation of SIF and FCG. The general meshing strategy is used 

in the main crack domain region with an objective to check the performance of the XFEM with 

non-confirming mesh for crack modeling. The mesh size in the crack domain is approximately 1 

mm × 0.2 mm × 1 mm, along the circumferential, thickness and longitudinal direction respectively. 

The crack depth used in the XFEM model ranges from 2.667 mm to 5.397 mm, and crack length 

is held constant at 250 mm.        

Table 3-9 Geometric details of pipe and crack 

Pipe ID 

Outer 

Diameter, OD 

(mm) 

Wall 

Thickness, 

WT (mm) 

Initial Crack 

Depth, 0a  

(mm) 

Initial Crack Length, 

0
2c  

(mm) 

A 406.4 6.35 40 % of WT = 2.54 250 

 

Table 3-10 Material properties 

Grade 

Specified Minimum 

Yield Strength , 

SMYS (MPa) 

C 
m( / ) / ( . )mm cycle MPa mm  

m 

X46 317.15 3.03E-14 3.24 
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(a) (b) 

  
(c) (d) 

Figure 3-30: Typical XFEM model of Pipeline section for FCG estimation using indirect method 

(a) overall view, and (b) overall close up view at the crack location, and (c) mesh view along the 

pipe wall thickness, and (d) mesh view along the axial direction. (Highlighted red geometry is 

the crack) 

(2) Result and Discussion 

FCG curve generated using indirect method for the pipeline section with the initial crack geometry, 

crack depth of 40 % of WT i.e. 2.54 mm, is shown in Figure 3-31. However, the data FCG data 

available in [45] is reported starting from slightly higher value i.e. 2.677 mm which might be due 

to experimental measurement condition. This value of crack depth was adopted for XFEM models. 

The results obtained using indirect method and that from Tiku et al. (2020) [45] are in good 

agreement with each other. In Tiku et al. (2020) [45] the FCG was obtained using fatigue 

parameters from experiment and SIF was estimated using API 579 model.  The factors like mesh 

size and discrepancies in the internal pressure data could be the reason for minor differences. 

However, more experimental data is required for further validation of the method. It is worth 

mentioning that reasonable results are obtained for both straight crack front as shown in section 
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3.4.2.1 for CT specimen and curved crack front as demonstrated is this section. The promising 

results hints towards the potential of the indirect method to be used as FCG estimation tool.  

 

Figure 3-31: Fatigue crack growth curve of pipeline section with initial crack obtained using in-

direct method 

3.5 Summary  

In this chapter, comprehensive details about numerical methods for quasi-static and fatigue crack 

propagation in steel pipelines is presented. Influence of damage modeling properties used in quasi-

static crack propagation analysis for estimation of burst pressure using XFEM implemented in 

Abaqus® is discussed. Various factors like meshing strategy, mesh size, number of contours, and 

enrichment radius for estimation of SIF is dealt in detail using case studies on CT specimen and 

pipeline section. An alternate method i.e. indirect method, for FCG estimation from SIF estimated 

using XFEM and coupled with discrete form of Paris’ law is discussed.  

Calibration of damage modeling properties with full scale tests is recommended to accurately 

predict the burst pressure of pipe using quasi-static analysis. This is a field of investigation and 

many researcher are putting their efforts on it. FEM requires a crack confirming mesh and wedge 

type of elements for better accuracy. Mesh size of 0.125 mm – 0.25 mm along the crack front and 

around the crack tip produces reliable values of SIF. In XFEM crack can be modeled independent 

of the crack geometry with a general meshing strategy, but a mesh structure confirming to the 

shape of crack geometry provides better accuracy. Mesh size of 0.125 mm – 0.25 mm produces 

good results when using focused type mesh. When general meshing strategy is used the mesh size 
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of 0.02 mm around the crack tip is required, which is about one fifth of that required when using 

focused type meshing strategy. Mesh size 0.125 mm – 0.25 mm along crack front is sufficient. 

Five number of contours around the crack tip and calculating the average after ignoring first two 

contours provides a reliable estimate. The appropriate enrichment radius around the crack tip is 

estimated to be at least one element size ahead of the crack tip, which is 0.125 mm in this study. 

The estimated SIF values compared to those from the API 579 model for different pipelines are in 

very good agreement, which provides further confidence in use of XFEM. The FCG estimated 

using indirect method produced results with good agreement in other published experimental work. 
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CHAPTER 4: SURROGATE MODELING FOR FATIGUE CRACK DRIVING 

PARAMETER ESTIMATION 

4.1 Introduction 

In this chapter, a surrogate model for reliable, fast and computationally less expensive way of 

estimating SIF is presented. Data-points for building surrogate model will be generated from API 

579 model, as it has been verified using FEM and XFEM model in previous section and proven to 

provide reasonably accurate values of SIF. Furthermore, API 579 model for SIF estimation was 

developed based on a large set of finite element models and hence covers a wide range of pipe and 

crack geometry.  

4.2 Motivation for Building Surrogate Model for SIF Estimation 

Surrogate models are approximation models that mimic the behavior of the simulation model as 

closely as possible while being computationally cheap. It is constructed based on modeling the 

response of the simulator to a limited number of intelligently chosen data points. Surrogate models 

are used for estimating system response and supporting decision making in engineering processes 

with a focus on pointwise estimation [67]. 

Several surrogate models have been used in the literature to estimate the growth of cracks in 

offshore pipelines, including linear regression, polynomial regression, nonlinear models (e.g., 

Artificial neural network: ANN), kernel-based models (e.g., Gaussian Process: GP), and sparse 

kernel based models (e.g., Support vector machines: SVM) [117]. For onshore pipelines, which 

are typically thin-walled and larger diameter pipelines, polynomial regression is the most 

commonly used approach [46, 110]. The results of this approach are included in the commonly 

used industry standards such as “Fitness for service: Assessment of crack-like flaws” (API 579-1 

Part 9, 2016). In a comparative study, between ANN, SVM, and GPR for estimation of SIF of 

pipeline with crack on the outer surface the authors concluded that all three methods provided 

flexible ways of model fitting over wide variety of inputs [118]. However, as mentioned earlier 

Gaussian Process Regression is a non-parametric, kernel-based probabilistic model to approximate 

the underlying relationship between input and output response instead of relying on a functional 

relationship. GPR is also capable of uncertainty quantification making it an attractive choice as a 

surrogate model.    
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As discussed in previous chapter in section 3.4.1.1, the API 579 model for calculating SIF due to 

semi-elliptical crack on the outer surface of pipe subjected to internal pressure is made utilizing 

the influence coefficients 0 4G G . The coefficients 
0 1and  G G are tabulated in Table 9B.13 of API 

579 [10]. Nevertheless, 
2 3 4, , and  G G G are calculated based on 

0 1and  G G given by equations 

presented there. Linear interpolation between the tabulated values are allowed but extrapolation is 

not. The parameters required for extracting the coefficients are t/Ri, a/c, and a/t which have 8, 7 

and 5 distinct tabulated values respectively for each 
0 1and  G G . Hence, the table contains 280 data 

points of each 
0 1and  G G i.e. 560 data points are present. Here, t/Ri is a ratio of pipe wall thickness 

to the internal radius, a/c is a ratio of crack depth to the half crack length, and a/t is the ratio of 

crack depth to the pipe wall thickness. 

In order to get the SIF values at the tabulated values of parameters t/Ri, a/c, and a/t, it is 

straightforward. However, when SIF at intermediate values of these parameters need to be 

estimated, multiple linear interpolation is required based on the table and execution time increases 

significantly, which partly depends on the implementation. For example, loading the table data 

into python repeatedly can be time consuming. When performing operations like stochastic 

filtering as discussed in the following chapter, involving calculation of SIF for various 

combinations of pipe and crack geometry, load etc., the computational expense plays a vital role. 

Also, to automate the SIF extraction using a single model, instead of a piece-wise model consisting 

of multiple sub-models in API 579, a surrogate model was developed. Thus, developed surrogate 

model was eventually integrated with PF and Paris’ law for FCG trajectory prediction in the next 

chapter. 

4.3 Gaussian Process Regression (GPR) for SIF Estimation  

4.3.1 Introduction  

Gaussian Process (GP) is a collection of an infinite number of correlated random variables, any 

finite number of which has multivariate normal distributions. A GP is fully specified by a mean 

vector and covariance matrix as shown by Eq. (4–1): 
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 ~ ( , )
Pr Pr

f N μ Σ  (4–1) 

where,
Pr
μ  and PrΣ are the prior mean vector and prior co-variance matrix of the GP f , 

respectively. 

Gaussian Process Regression (GPR) is a non-parametric, kernel-based probabilistic model to 

approximate the underlying relationship between inputs and target response. Consider a training 

dataset with input parameters tx and target response ty . If the prediction required is ( )f x  for a 

given set of input parameters x, the conditional probability distribution of the required prediction 

is modeled in GPR as a Gaussian distribution, leading to a GP as shown by Eq. (4–2): 

 ( ( ) | , , ) ~ ( , )Po PoP f N
t t

x x y x μ Σ  (4–2) 

where, Po
μ and PoΣ are the posterior mean and covariance of ( )f x . The essential ingredients of 

GPR is presented below, without providing a comprehensive overview of this method. For details, 

readers of interest can refer to [119]. 

GPR model can be defined using function-space view and/or weight space view for posterior mean 

and variance calculation. The weight space view is given by Eq. (4–3) making it analogous to the 

standard linear model with non-linear function of the inputs [119].  

 
T( ) ( )f x x w  (4–3) 

where, x is the input parameter, ( ) x is a mapping function and w is the weight vector.  

4.3.2 Kernel Functions 

The covariance between the data points is defined using the so-called kernel functions. These co-

variance functions measure the correlation between different input data points using some special 

functional relation. Each of these kernel functions has hyper-parameters that build a functional relation with 

the distance between input points. For instance, when x is a scalar, the hyper-parameters basically comprise 
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of a length scale (l) that takes into account the closeness of the input points between x and x’, a scale factor 

( )k which governs the average distance of function value or deviation from its mean, and another scale 

factor v( ) which accounts for noise in the observed dataset. A typical kernel function has the form as 

shown in Eq. (4–4): 

 
2 2

v( , ; : , , ) ( , , )k k vK l f l     x x' x x' I  (4–4) 

where, , and  x x'are input data points, 
k v, ,l   are hyper-parameters represented by  and I is an 

identity matrix. 

4.3.3 Formulation  

In order to build a GP model the observed response or points are treated as samples, which are 

assumed to be drawn from Gaussian process to be fitted, and thus are used as training points. Some 

portion of observed data-set is used while training or fitting the model and the remaining are known 

as testing points. These testing points are used for checking the goodness of fit of model before 

deploying it. As GP is a collection of random variables, any finite number of which has 

multivariate normal distribution. The joint distribution of the training and testing points according 

to the prior probability distribution is given by Eq. (4–5): 

 

 

(4–5) 

where, TRY  is the training output, TSY is the testing output, TR is the mean of training output, TS

is the mean of testing output, TRX  is the training input, TSX is the testing input, and (.)K are the co-

variance matrices or the kernel functions. If there are TRn training points and TSn testing points the 

co-variance matrix will have TR TSn n  dimension. 
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For predicting values of testing points or other points, the sample are drawn from the posterior 

distribution formed by conditioning on the observations as shown by Eq. (4–6):  

  (4–6) 

where, | and
TS|TR

  TS TR  are the mean and co-variance of the posterior distribution given by Eq. (4–

7) and Eq. (4–8) respectively.  

 
1

| ( , ). ( , ) .( )TS TR TS TS TR TR TR TR TRK X X K X X Y      (4–7) 

 

 
1

| ( , ) ( , ) ( , ) ( , )TS TR TS TS TS TR TR TR TR TSK X X K X X K X X K X X    (4–8) 

 

4.3.3.1 Hyper-parameter Tuning 

An optimum set of parameters 
k v, ,l  is required for designing an appropriate kernel function 

that can closely define the underlying relation between the data points. In GPR, usually the set of 

hyper-parameters that maximizes the log-marginal likelihood of the posterior is selected as the 

optimum set of values. The log marginal likelihood can be estimated using Eq. (4–9):  

 
11 1

log ( | ) log ( | , ) log | | log(2 )
2 2 2

T

TR TR TR TR TR TR TR TR TR

N
P Y X N Y K Y K Y K       (4–9) 

where,  TRY  is the training output, TRX  is the training input, TR is the prior mean of training output, 

TRK is the kernel function of the training inputs with the hyper-parameters to be tuned. 
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4.3.4 Implementation of GPR Modeling  

In this section detailed methodology of implementation of Gaussian Process Regression (GPR) for 

estimating the influence coefficients and hence the SIF values is discussed. A brief introduction of 

Gaussian Process Regression module in scikit-learn [120] library in Python programming 

language [121] and appropriate model parameter selection is discussed. The results and discussion 

on implementation of GPR for SIF estimation based on tabulated values of coefficients 0 1and  G G  

are then presented. 

4.3.4.1 Introduction to scikit-learn library for Gaussian Process Regression Modeling 

The theoretical background of the Gaussian Process was presented in the previous section. 

Specifically, formulae for estimation of mean and co-variance of the fitted joint- Gaussian 

distribution conditioned on the training data is of special interest. As these equations help in 

estimating the mean and variance of the output based on the input, which is a classic regression 

problem. As such, scikit-learn  library has a GaussianProcessRegressor class which takes in 

various input parameters and produce output such as mean, standard deviation [120] .  The 

algorithm used for implementation of GPR in scikit-learn library is Algorithm 2.1 from Rasmussen 

et al. (2006) [119]. In this study scikit-learn version 0.23.1 is used.  

Under sklearn.gaussian_process module the GaussianProcessRegressor class is implemented. A 

module in python simply means a collection of logical codes written to solve a problem, which 

can be imported inside other python function. Furthermore, a class is a means of bundling data and 

functionality together. Once imported the GaussianProcessRegressor ( ) class can be used to fit or 

train a GPR model using the training data points, make predictions, draw samples from prior and 

fitted posterior distribution. The key input parameters for this class are kernel, alpha, optimizer, 

n_restarts_optimizer, normalize_y. The kernel input is the function which specifies the covariance 

function of the GP. The alpha is the value added to the diagonal of the kernel matrix, to ensure 

positive definiteness of the co-variance matrix and default value is 1-10. The optimizer input is used 

for specifying the optimizing algorithm for hyper-parameters of the kernel function, as default the 

L-BFGS-B algorithm is used and serves the purpose of this study. The n_restarts_optimizer allows 

to specify the number of time to restart the optimizing algorithm such that log-marginal likelihood 

is maximized and to avoid local maxima. The normalize_y allows users to specify if the target 
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values to be normalized or not i.e. scale the output values to standard normal distribution, having 

zero mean and unit variance [120].  

Once the input parameters are specified the GaussianProcessRegressor( ) class can be used to train 

a GPR model by using fit ( ) method, where the training data-set can be specified. A method in 

Python is a function which allows users to perform certain operation. Once trained or fitted using 

fit ( ) method i.e. a posterior distribution is defined as explained in section 4.3.3. After which 

predict ( ) method can be used to estimate the posterior mean and variance as explained before. 

There are few other methods like sample_y ( ) which can be used to draw number of samples from 

both prior and posterior distributions. The score ( ) method returns the coefficient of determination 

of the predictions [120].  

4.3.4.2 GPR Model Parameter Selection 

GPR is a supervised machine learning algorithm and its performance depends on different factors 

like selection of appropriate kernel function as discussed earlier. Surrogate models are basically 

machine learning algorithms that relies on data. Machine learning algorithm which uses data set, 

i.e. input or labels and corresponding output or features, to create some functional relationship or 

mapping function between input and output falls under supervised machine learning category.  

It is very common practise in supervised machine learning to split up a given data set into training 

and testing subsets. The subset of data used to fit the model is training data and the one to evaluate 

the fitness of model is testing data. In order to make the model robust some portion of the data-set, 

say 20%, is kept unseen such that performance of the model using these unseen data is measured. 

Common training-testing splits are 80%-20%, 67%-33% and 50%-50% [122]. In order to further 

improve the generalization of the model, the training subset itself is split into number of subsets. 

One of such subset is used as validation set for testing the performance of model fitted using other 

subset. This testing or validation is done before the final testing using the initially held out or 

unseen testing data. 

In this study appropriate kernel function is selected using grid search algorithm implemented in 

scikit-learn library [120]. A grid of different kernel functions: radial basis function (RBF), squared 

exponential (SQ), Matern 3/2 and Matern 5/2, is created. The grid search algorithm returns the 
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GPR model built with kernel function having the best performance metric i.e. R2 value. In order to 

split the dataset into random training and testing sets, scikit-learn library function train_test_split 

( ) is used. Furthermore, repeated k-fold cross validation procedure implemented in scikit-learn 

library function RepeatedKFold ( ) is used to further improve the generalization of the model as 

explained earlier. k represents the number of folds or subsets to be created from the training data 

set. Figure 4-1 shows a typical training and testing data set splitting scheme using k-fold cross 

validation procedure with five folds.   

 

Figure 4-1: Typical k-fold cross validation training and testing data set split schematics [120] 
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4.3.4.3 GPR Model Development and Deployment 

In this section, detailed procedure of developing a GPR model to estimate values of 
0 1and  G G

from the tabulated values, measuring the performance of the model and saving it for future use or 

deployment is discussed. 

(1) Illustration of GPR model development with one dimensional input   

The coefficients 
0 1and  G G tabulated in Table 9B.13 of API 579 are functions of t/Ri, a/c, and a/t 

which requires the GPR model to be a three dimensional input model. In order to demonstrate the 

concept of GPR a simple one-dimensional input problem is first presented. Figure 4-2 shows 

samples drawn from GP fitted using training data set i.e. from posterior. The training data-set 

consisted of all the tabulated values of a/t and corresponding values of 
0G  for a particular value 

of t/Ri, a/c. Due to limited number of points train-test split and cross validation is not performed 

for this one dimensional demonstration problem. It can be observed that the fitted model using 

RBF kernel function for varying a/t produced a very good model with more certainty in the 

predictions. 

  
(a) (b) 

Figure 4-2: One dimensional GPR model fitted using RBF kernel for estimating G0 at depth for 

different values of a/t at t/Ri=0.01 and a/c=0.0625 (a) mean and confidence interval of samples 

drawn from prior, and (b) mean and confidence interval of samples drawn from posterior 
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Figure 4-3 shows samples drawn from GP fitted using training data set i.e. from posterior. The 

training data-set consisted of all the tabulated values of a/c and corresponding values of 
0G  for a 

particular value of t/Ri, a/t . It can be observed that the fitted model using radial basis function 

(RBF) kernel function for varying a/c produced a good model but the confidence interval widened 

when the spacing between inputs increased.   

Figure 4-4 shows samples drawn from GP fitted using training data set i.e. from posterior. The 

training data-set consisted of all the tabulated values of t/Ri and corresponding values of 
0G  for a 

particular value of a/t, a/c. RBF kernel used for fitting the model for varying t/Ri is poor even 

though the confidence interval in the posterior is reduced considerably. The uncertainty remains 

constant except for the first and last inputs.  

In addition, when a fitted model is used for making predictions beyond the training data points the 

confidence interval widens i.e. extrapolation uncertainty increases farther the input from observed 

data.  Figure 4-5 shows predictions made at points beyond the training data set. 

  
(a) (b) 

Figure 4-3: One dimensional GPR model fitted using RBF kernel for estimating G0 at depth for 

different values of a/c at t/Ri =0.01 and a/t =0.2 (a) mean and confidence interval of samples 

drawn from prior, and (b) mean and confidence interval of samples drawn from posterior 
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(a) (b) 

Figure 4-4: One dimensional GPR model for estimating G0 at depth for different values of t/Ri at 

a/c =0.0625 and a/t =0.2 (a) mean and confidence interval of samples drawn from prior, and (b) 

mean and confidence interval of samples drawn from posterior 

A particular kernel function with a set of hyper-parameter might be appropriate for one set of input 

and output but not necessarily for other sets. In order to solve this problem and build an optimum 

model, the grid search algorithm and k-fold cross validation algorithms, as discussed in section 

4.3.4.2, are employed. 

  
(a) (b) 

Figure 4-5: One dimensional GPR model for estimating G0 (a) mean and confidence interval of 

samples drawn from posterior with extrapolation for varying a/t, and (b) mean and confidence 

interval of samples drawn from posterior with extrapolation for varying a/c 
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(2) Illustration of GPR model development with three dimensional input 

In this section details about GPR model development using all three inputs a/t, a/c, and t/Ri 

simultaneously to estimate values of
0 1and  G G . A split of 80 % training - 20 % testing of data set 

is done randomly using scikit-learn’s train_test_split ( ) function. In order to reduce complexity in 

implementation four separate models for 
0 1and  G G  at depth and surface are developed. For each

0 1and  G G , the training and testing data-set contains 224 points and 56 points respectively. 

A grid of different kernel functions is created as summarized in Table 4-1. The basic structure of 

kernel function is as given by Eq. (4–4), formed by adding a basic kernel, like radial basis function 

(RBF), rational quadratic (RQ), Matern 3/2, Matern 5/2, to the white noise kernel which accounts 

for uncertainty in the training data. All numerical values within the kernel functions are initial 

guesses, which are tuned or optimized while fitting the GPR model by minimizing the log-marginal 

likelihood. As mentioned in section 4.3.4.1, GaussianProcessRegressor( ) is used to perform all 

of these operations. 

Table 4-1 Grid of Kernel Functions  

S.N Kernel Function 

1 12 × RBF(l=( / / /, ,
ia t a c t R   ))+0.0012 

2 2 21 ( 0.01, 1) 0.001RQ l      

3 12 × Mat3/2(l=( / / /, ,
ia t a c t R   ))+0.0012 

4 12 × Mat5/2(l=( / / /, ,
ia t a c t R   ))+0.0012 

5 12 × [RBF(l=( / / /, ,
ia t a c t R   )) + RQ(l=( / / /, ,

ia t a c t R   ))]+0.0012 

Note: μ represents mean of corresponding input parameters. The kernel function Rational 

Quadratic (RQ) implemented in scikit-learn library allows user to provide only scalar value [120]. 

So, the smallest distance between input t/Ri is provided as this kernel provided the best fit when 

tested with simple one-dimensional problem. 

As mentioned in section 4.3.4.2, in order combine the grid search algorithm and k-fold cross 

validation to build a general GPR model GridSearchCV ( ) function implemented in scikit-learn 
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library is used. The function takes in the basic GPR model, grid of kernels given in Table 4-1, and 

RepeatedKFold ( ) with five-fold and repeated five times. 

Matern 3/2 kernel is the best fitting kernel function for all the models with optimized hyper-

parameters. All of the models have excellent coefficient of determination (R2) value of more than 

0.99. The log-marginal likelihood values are positive indicating that observance of posterior is 

highly likely and supports the good fit of model. The total duration of model building including 

grid searching over five different kernel functions, repeated k-fold cross-validation with five-fold 

and five repetition ranges from 12.609 seconds to 18.75 seconds.  

Table 4-2 Model fitting and performance summary 

Model Best Kernel Function 

Log-

Marginal 

Likelihood 

Coefficient of 

Determination 

(R2) 

Trainin

g-

Testing 

Duratio

n (sec.) 
Train Test 

G0 

Depth 
2 21 ( [1.16,0.107,0.837], 1.5) 0.01Matern l      30.984 0.992 0.995 17.078 

G1 

Depth 
2 21 ( [1.31,0.108,0.854], 1.5) 0.01Matern l      37.006 0.992 0.995 18.75 

G0 

Surface 
2 21 ( [2.95,0.513,1.4], 1.5) 0.01Matern l      129.94 0.997 0.996 18.27 

G1 

Surface 
2 21 ( [1.89,0.435,1.15], 1.5) 0.01Matern l      100.978 0.996 0.991 12.609 

 

Figure 4-6 and Figure 4-7 shows scatter plot for true and predicted values of 0 1and  G G at surface 

and depth respectively. A good fit of model can be observed. 
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(a) (b) 

Figure 4-6: Scatter plot for true training and testing values versus predicted training and testing 

values of influence coefficients at depth (a) G0, and (b) G1 

  
(a) (b) 

Figure 4-7: Scatter plot for true training and testing values versus predicted training and testing 

values of influence coefficients at surface (a) G0, and (b) G1 

(3) Model deployment 

Once the model is developed as explained in the previous section it is saved and stored with all the 

required components such as kernel or covariance matrix using Python pickle [121] library. The 

use of saved model or deployment in discussed in the next chapter.  

A comparison of computational time for estimation of 0 1and  G G using the fitted GPR model and 

regular API 579 model is made. 0 1and  G G were calculated at depth and surface for 1000 points, 
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including exact values in API 579 look-up table. The computation time between GPR model and 

interpolating function directly from API 579 model is shown in Table 4-3. The scatter plot between 

the values estimated using API 579 model directly and developed GPR model for tabulated and 

intermediate points at depth are shown in Figure 4-8 and Figure 4-9 respectively. Similar plot for 

the values at surface can be found in ANNEX-B. The coefficient of determination (R2) for G0 at 

depth, G1 at depth, G0 at surface, and G1 at surface for intermediate points were 0.978, 0.975, 

0.996, and 0.995 respectively. The GPR model performance is satisfactory and the computational 

time is drastically low. Hence, the developed GPR model provides a trade-off between 

computational expenses and accuracy. 

Table 4-3 Computation time of different models 

Model 
Time (sec) 

 For 1000 points 

GPR fitted 0.363 

API 579 176.868 

 

  
(a) (b) 

Figure 4-8: Scatter plot for 0 1and  G G  estimated at tabulated points using API 579 model and 

developed GPR model at depth (a) G0, and (b) G1 
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(a) (b) 

Figure 4-9: Scatter plot for 
0 1and  G G  estimated at intermediate points using API 579 model and 

developed GPR model at depth (a) G0, and (b) G1 

4.3 Summary 

In this, chapter details related to Gaussian Process Regression as a surrogate model to estimate the 

values of influence coefficients and hence the SIF is presented. Tabulated values for estimation of 

influence coefficients from API 579 is used for the training and testing purpose. The tabulated 

values are obtained from a large set of FE models and was verified using conventional FEM and 

XFEM for different pipelines is previous chapter. The accuracy of prediction, computational time 

and confidence interval estimated by GPR makes it a very good alternative tool to high-fidelity 

numerical models for estimation of SIF.  

Performance of GPR greatly depends on the kernel or co-variance function with appropriate set of 

hyper-parameters. A grid-search over different types of standard kernel function helps in building 

an optimum performing model and is recommended. With increase in the dimensionality, the 

complexity of the GPR model fitting increases. Performing one-dimensional modeling before 

performing high dimensional modeling can provide a better insight of the underlying trend of the 

training data points. The optimum model fitting time and accuracy, with all necessary pre-

processing steps like kernel function selection, hyper-parameter tuning, and training-testing 

splitting is very reasonable. Matern 3/2 is found to be the best kernel function based on the grid 

search performed using five-fold cross-validation with five repetition. The GPR trained model can 
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be saved and used later for routine tasks. The computational time from fitted GPR model for a 

large number of data points is negligible when compared to that from the regular API 579 model. 
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CHAPTER 5: A BAYESIAN APPROACH FOR FATIGUE CRACK GROWTH 

MODELING IN PIPELINES INTEGRATED WITH FATIGUE CRACK DRIVING 

PARAMETER ESTIMATION SURROGATE MODEL 

5.1 Introduction 

The fatigue crack growth model Paris’ law, as discussed in previous chapters, requires reliable 

values of crack geometry and the material properties for good modeling performance. This chapter 

introduces stochastic filtering method specifically Particle Filter (PF) for fatigue crack growth 

model parameters and current crack size or state estimation. PF is an algorithm, which provides 

best estimate based on the available measurement data (e.g. ILI data) and a system model (e.g. 

Paris’ law) which describes the phenomenon. Thus, a pseudo fatigue crack growth data set is 

generated for a pipeline and made noisy to mimic the ILI data by adding different levels of 

Gaussian white noise.  A methodology to integrate PF, Paris’ law and surrogate model to estimate 

model parameters, current crack size and future fatigue crack growth trajectory is proposed and 

implemented using a Python based tool. The performance of the tool, i.e. comparison between the 

true values of the crack sizes and model parameters to the predicted mean values with the 

confidence interval band, is presented for different cases and the results are reliable.  

5.2 Stochastic Filtering for Fatigue Crack Growth Modeling in Pipelines 

5.2.1 Particle Filter (PF) 

Particle Filter (PF) method is a set of Monte Carlo algorithms that relies on repeated random 

sampling to obtain numerical results to solve filtering problems. The fundamental concept of PF 

is based on Bayesian approach, where posterior distribution is obtained by multiplying likelihood 

function with the prior distribution. In PF the prior and posterior probability density function (PDF) 

of parameters are represented by particles (samples). It has become a very popular numerical 

method for optimal estimation in non-linear non-Gaussian scenarios. 

The principal advantage of PF over a popular standard approximation method Extended Kalman 

Filter (EKF) is that it does not rely on any local linearization or any crude functional approximation 

[123].  

A generic algorithm of standard particle filter in shown below (see Algorithm 5-1) [124] 
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Algorithm 5-1 

Line 1: Draw 0

i
X from the prior PDF

0( )p X , 1...i N  

Line 2: Set 0 1/i NW , 1...i N  

Line 3: for time step 1 to dok k     

Line 4:     for 1 to  doi N  

Line 5:         Sample 1 from ( | )i i

k k kp X X X  

Line 6:         Set 1. ( | )i i i

k k k kp zW W X   

Line 7:     Normalize weights, ˆ
i

i k

i

k




W
W

W
 

Line 8:     for 1 to  doi N  

Line 9:            Sample ~ ( | )i

k k kp zX X  by drawing new particles from the distribution defined 

by    ˆ( , )j j

kX W , 1...j N         

Line 10: Set 1/i

k NW , 1...i N  

where, X is the state-parameter vector, W is the weight vector, z is the measurement, k is the time 

step, (.)p is the PDF. The algorithm is described in detail using case studies in the section 5.4. 

A general description of the algorithm can be presented in the following manner. A PF is initialized 

with an adequate number of particles sampled randomly from a distribution (for e.g. uniform, 

normal, and log-normal) for each state and parameter based on the experience or literature (Line 

1). At the initial stage each of the generated particles are assigned equal weight i.e. 1/N such that 

the sum of all probabilities equals one, this combination of particles and weights forms the 

probability distribution (Line 2). In the prediction step a numerical model (e.g. Paris’ Law) 
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describing the fatigue crack growth is used to update the belief in the system state with some noise 

which accounts for the uncertainty in the process model (Line 5). Based on the likelihood of the 

observed noisy measurement the weights of the predicted state are updated (Line 6 and 7). The 

particles close to the measurement data will generally have a higher weight, which is referred to 

as Sequential Importance Sampling (SIS). The SIS algorithm suffers the degeneracy phenomenon 

which occurs when the weights are updated with the same initial samples. Thus, large weight is 

assigned to the particles very close to the measurement and extremely low weight to the farther 

ones. There might be a scenario where very less number of particles with extremely high weights, 

meaningfully contributing to the estimation, be sampled [125]. This can lead to inaccuracy, which 

is the so-called filter degeneracy. Thus, a resampling algorithm is used (Line 9 and 10). The 

resampling algorithm discards particles with very low probability and replaces them with new 

particles with higher probability. The particles with relatively high probability are duplicated and 

slightly dispersed by the noise resulting in a set of points having large majority of the particles 

representing the distribution with higher accuracy [125].  

In order to solve the filter degeneracy various resampling algorithms are popular like multinomial 

resampling or simple random sampling, residual resampling, stratified resampling, systematic 

resampling. In multinomial resampling the cumulative sum of the normalized weights is computed 

which gives an array of increasing values from 0 to 1. To select a weight a random number 

generated from uniform distribution between 0 and 1 and using binary search to find its positions 

in the cumulative sum array. This resampling algorithm can be implemented using inverse of the 

cumulative distribution function (CDF) of the distribution [81]. In residual resampling, the 

normalized weights are multiplied by number of particles (N), and then the integer value of each 

weight is used to define how many samples of that particle will be taken and will have some left 

out. For which residual is taken, the weights minus the integer part leaving the fractional part of 

the number. After which a multinomial resampling is done to select the rest of the particles based 

on the residual. Stratified resampling works by dividing the sample space into N equal sections, 

and then selecting one particle randomly from each section which guarantees that each sample is 

between 0 and 2/N apart. Systematic resampling works by dividing the sampling space into N 

divisions, then choosing a random offset to use for all of the divisions, ensuring that each sample 

is exactly 1/N apart. Choice of an appropriate resampling algorithm depends on the type of problem 
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and prior knowledge. However, in practise stratified and systematic resampling algorithms are 

considered to be superior to the other two across a variety of problems [125]. 

5.3 Methodology for Integration of Particle Filter and Surrogate Model for State-

Parameter and Future Trajectory Estimation  

In this study, a PF-based fatigue crack growth prediction methodology for pipelines is developed 

by integrating crack size measurement and predictions from a fatigue crack evolution model. 

Specifically, Paris law as discussed in previous chapters is used to model the fatigue crack growth, 

utilizing SIF ranges and fatigue material properties, as reflected by fatigue model parameters. In 

this proposed methodology, fatigue model parameters and crack sizes will be jointly estimated 

using PF. Afterwards, the fatigue crack growth model with updated parameters and current 

estimate of crack sizes will be utilized to predict future trajectory of the fatigue crack growth in 

pipelines. In this section, model formulation for joint state-parameter estimation via PF using noisy 

observation data, and estimation of SIF using GPR model is presented briefly. In this study, the 

cracks are assumed to be longitudinal surface crack with semi-elliptical crack front. Unless 

otherwise specified, minor radius of the semi elliptical crack front is the crack depth ‘a’ and the 

major radius is the half crack length ‘c’. 

5.3.1 Particle Filter and State-space model formulation 

In fracture mechanics-based assessment the crack growth rate with respect to the number of 

loading cycles is related to the crack driving parameters. For example, Paris law, introduced by 

Paris and Erdogan in 1963 [41], is one of such equations that quantifies the crack growth rate of 

the stable fatigue crack growth as a function of SIF, see Eq. (5–1) for the crack depth a (measured 

along wall thickness direction)  and crack length c (measured along the longitudinal direction). 

 

( )m

a

da
C K

dN
   

( )m

c

dc
C K

dN
   

(5–1) 
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where, /da dN  and  /dc dN are the rate of fatigue crack growth per loading cycle; C and m are 

the fatigue model parameters related to the properties of the material; α and c are the range 

of SIF at the depth and surface respectively when a structure is stressed from minimum to 

maximum load in a loading cycle. Eq. (5–1) can be discretized as Eq. (5–2): 

 
1 , 1 1 1( ; , ) ( )m

k k a k k ka f a C m C K N a         

1 , 1 1 1( ; , ) ( )m

k k c k k kc f c C m C K N c         

(5–2) 

where, ka  and kc are the crack sizes at current time step k, , 1a kK   and , 1a kK  are the range of SIF 

at the previous time step (k-1), 
1kN  is the number of load cycles, C and m are time-invariant 

model parameters. 

This fatigue crack growth model can be incorporated into a state-space model, which also includes 

crack measurement model for its use in PF. The crack growth model is given by Eq. (5–3): 

 1( )k k X Xf w  (5–3) 

where, [ , ]a cX is the state vector, f(.) is the state transition model, k  is the time step and w is 

the process noise, which is used to facilitate the Bayesian estimation of state variables. In joint 

state-parameter estimation, the model parameters (C, m) are assumed to be time-invariant and 

added to the state vector to form the augmented state vector [ , , , ]a c C mX . This is a common 

approach when unknown model parameters are to be estimated together with the states [97]. Thus, 

the state transition equation for the augmented state vector can be written as Eq. (5–4): 

 

1

1

1 , 1 1 1

1 , 1 1 1

1

1
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k

m
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mk k

C K N aa w
c wC K N c
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



   
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



      
           
        

 (5–4) 
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where, (C, m) are time-invariant fatigue model parameters but their estimations at the previous and 

current time steps are denoted by  1 1,k kC m   and  ,k kC m , respectively; , , ,a c C mw w w w are 

process noise for states and parameters. 

The measurement model for the crack size observation available from ILI is shown in Eq. (5–5): 

 ( )k k Y Xh v  (5–5) 

where, kY is the observation vector at time step k for the state vector kX  and v is the observation 

noise. Since the crack size in the augmented state variable is assumed to be measurable with 

measurement error while the model parameters are not observable, h(.) is simply as shown in Eq. 

(5–6): 

 k a
k

k c

a v
c v
    
      

Y  (5–6) 

 

where, av and cv are the measurement noise from ILI tool for crack sizes a and c  respectively. 

Given observation data kY  till time step k corresponding to the number of load cycles kN , i.e., 

      0 1 10, , , , ..., ,k ka N a N a , Bayesian inference can be performed to estimate the probability 

distribution of state vector kX  iteratively at time step k making use of the state-space model 

defined in Eq. (5–4) and Eq. (5–6). However, exact solution is not possible in general since 

complex high-dimensional integrations are required. Particle Filter (PF) method is a set of Monte 

Carlo algorithms that rely on repeated random sampling to obtain numerical results of such 

filtering problems. It has become a very popular numerical method for optimal estimation in non-
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linear non-Gaussian scenarios [123], and is thus suitable for the joint state-parameter estimation 

problem considered in this study.  

5.3.2 Surrogate model for Stress Intensity Factor Estimation 

The surrogate model developed using Gaussian Process Regression (GPR) from the data points 

provided in Table 9B.13 of API 579 [10] is used for stress intensity factor estimation. The details 

about the GPR model development and deployment can be found in chapter 4. 

The developed GPR model takes the pipe and crack geometrical properties t/Ri, a/c, and a/t to 

estimate the values of coefficients G0 and G1. t/Ri is the ratio of pipe wall thickness, a/c is the ratio 

of crack depth to the half crack length, and a/t is the ratio of crack depth to the pipe wall thickness. 

The coefficients are further used with the Eq. (5–7) to estimate the value of SIF. 

 

2 3 4
2

0 1 2 3 42 2

0 0 0 0

2 2 3 4 5i

o i
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        
            

          

 (5–7) 

where, p is the internal pressure, 
iR is the internal radius, 

oR is the outer radius, a is the crack depth, 

Q is a parameter based on crack geometry, G0 and G1 are estimated using the developed GPR 

model, G2, G3 and G4 are functions of G0 and G1. The equations of Q, G2, G3 and G4 can be found 

in ANNEX-C.   

5.3.3 Python-based Tool Implementation 

The methodology proposed for joint estimation of Paris law parameters and crack size in pipelines 

using noisy crack size measurements is implemented as a tool using Python programming 

language, as it provides a free environment [124] and thus facilitates its further development and 

future use. Python is an object-oriented programming language, which is popular in both scientific 

research and engineering communities since it helps programmers even with less experience to 

write clear and logical code [126]. Furthermore, it also has large number of open-source libraries 

that help to develop practical tools by taking advantage of existing libraries like NumPy, Pandas, 

SciPy and others, as used in this study. 
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The tool implemented here mainly consists of five modules: (1) cracked pipe specification module, 

(2) fatigue driving parameter calculation module (e.g., GPR Model), (3) fatigue crack evolution 

module (e.g., Paris Law), (4) stochastic estimation module (e.g., Particle Filter), and (5) fatigue 

crack prediction. These modules, as shown in Figure 5-1, are integrated to first update fatigue 

model parameters and estimate the current crack size from its noisy measurement, and then to 

predict future crack growth using the fatigue crack growth model with updated model parameters 

and crack size. Each module is briefly described next.  

 

Figure 5-1: Schematic illustration of the Python modules implemented for joint state-parameter 

estimation and Bayesian fatigue crack prediction 

The cracked pipe specification module contains the information related to a cracked pipeline. 

Specifically, they include pipe wall thickness (WT = t), pipe outside diameter (Ro) or inside radius 

(Ri), as well as the longitudinal crack depth (a0) and half crack length (c0) that can be initial guesses 

or rough estimate based on experience or preliminary detection devices. The crack geometry ( , )a c

will be updated once a measurement at a future time is available. 
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The fatigue driving parameter calculation module contains models to calculate the SIF, or other 

fatigue driving parameters. For example, GPR Model is implemented in the current tool to estimate 

the values of SIF, along the semi-elliptical crack front on the external surface of pipeline subjected 

to internal pressure. For a given input of pipe geometry ( , )it R , crack geometry ( , )a c , location ( )  

and load pressure range
max min( )p p p  , a SIF value is calculated based on GPR model developed 

and deployed as discussed in Chapter 4. 

The fatigue crack evolution module contains established fatigue crack growth models, such as 

Paris Law, which is used to estimate the future crack size ka and kc for additional load cycles (

1kN  ) based on the previous crack size 1ka  , 1kc  and fatigue model parameters ( . ., , )e g C m  

according to Eq. (5–4), 1k  is the range of SIF when a pipe is stressed from minimum ( minp ) to 

maximum pressure ( maxp ).  The value of SIF is estimated by calling the GPR Model.  

The stochastic estimation module contains stochastic filters such as Particle Filter, which performs 

joint state-parameter estimation. It will take in measurements iteratively, i.e., one measurement 

data at a time, to estimate the crack size and model parameters along with their corresponding 

weights, which provide a probabilistic measure of the estimates. The final output of the function 

is the mean values of the cracks and model parameters, and their corresponding standard deviation 

or confidence interval. The mean values will provide updated values of the current crack size and 

more accurate estimate of the model parameters. In order to overcome the filter degeneracy 

problem this module uses systematic and stratified resampling methods from a python library 

FilterPy [125]. The stratified and systematic resampling function implemented in the FilterPy 

library returns the indexes of the particles to be resampled. These indexes are then used to perform 

resampling, where particles with relatively high probabilities are retained and those with low 

probabilities are discarded and every particle is assigned with the same weight. 

The last module is for fatigue crack prediction, which uses the fatigue growth module but with the 

updated values of the current crack size and more accurate estimate of the model parameters. This 

module can be called each time to predict the crack growth curve in the future after a measurement 

is integrated in the stochastic estimation process.  
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5.4 Case Studies 

As discussed in previous sections, for reliable prediction of fatigue crack growth, the current crack 

size, i.e. a, and c, and fatigue model parameters, i.e. C and m, are required within reasonable 

accuracy. In order to demonstrate the application of the proposed methodology and the developed 

tool, pseudo-data set is generated using simulation data from the fatigue crack evolution model, 

i.e., Paris law and GPR model for SIF estimation for a pipeline, and polluting the simulation data 

with additive Gaussian white noise to mimic measurement error from an ILI tool. Note this method 

is not limited to the pipe steel grade. However, for different pipe steel grades, the prior information 

about the fatigue properties can be different. Thus, better information about the pipe properties 

(e.g., Paris’ law parameters) will allow the estimate of the model parameters to converge faster 

with less data required. 

5.4.1 Pseudo Data Generation 

A pipeline section reported to have an incident related to fatigue crack in pipe body in the Pipeline 

and Hazardous Materials Safety Administration (PHMSA) database is selected. The geometric 

details and operating condition and pipe material are summarized in Table 5-1. In this study it is 

assumed that a fatigue crack has been correctly identified assuming no other co-existing defects. 

If other defects exist, the accuracy of the model used for fatigue crack growth prediction in this 

study will be affected. As such, more accurate models for crack growth prediction considering the 

effect of other defects can be used in this method. 

Table 5-1 A pipeline reported to have an incident related to fatigue crack in pipe body in PHMSA 

database 

# 
Operator 

Name 

WT, 

t 

(mm) 

Ri (mm) t/Ri 
OP 

(MPa) 
MOP 

(MPa) 
SMYS 

(MPa) 
Pipe 

Specification 

1 
Colonial 

Pipeline Co 
7.137 450.063 0.016 2.179 4.000 358.527 API 5L-X42 

 

Two case studies are presented in the following sections. In the first case study, the data set 

generated includes the number of loading cycles (N) and the corresponding crack sizes along 
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thickness direction i.e. crack depth a only. The data set starts from loading cycle number zero 

which corresponds to the first detected crack. The initial crack geometry is taken such that the 

initial crack depth (a) is 20% of wall thickness, i.e. 1.427 mm. Furthermore, the half crack length 

(c) is 4 times the crack depth and assumed unchanged in the first case, assuming that fatigue crack 

does not grow much along the longitudinal direction [70]. The initial crack geometry is selected 

in such a manner that it represents a short shallow crack and eventually grows out to become a 

short deep crack i.e. 0.25 / 1.0a c  , which in turn allows use of value of Q for / 1.0a c   as 

shown in Eq. (C-3). While simulating the fatigue crack growth (FCG) data for first case, SIF is 

calculated based on constant t/Ri (constant for a given pipe) and varying a/c and a/t as they vary 

with crack depth. For the pipeline section considered in this study the value of SIF at depth is about 

1.81 times (at / 0.2 and / 0.25  a t a c  ) higher than that at the surface, causing the fatigue crack 

growth along the thickness direction 6 times higher than along the longitudinal direction.  

Whereas, in the second case the data set generated includes the number of loading cycles (N) and 

the corresponding crack sizes along both thickness direction i.e. crack depth a and axial direction 

i.e. half crack length c. The initial crack geometry is taken such that the initial crack depth (a) is 

20% of wall thickness, i.e. 1.427 mm. and the half crack length (c) is 4 times the crack depth (a) 

i.e. 5.708 mm. 

Gaussian white noise, i.e.
2(0, )ILIN  , with two different noise level ( )ILI  are added to the 

generated data set to mimic ILI tool measurement data. In this study 

0.15 , and 0.30     ILI mm mm   are added to the generated data in both cases. These are assumed 

to be ILI tool error and adopted from Xie et al. (2019) [24].  

The values of C and m mentioned in API 579 (Clause 9F.5.3.2), for ferritic and austenitic steels in 

air or other non-aggressive service environment at temperatures up to 100 C   and yield strengths 

less than or equal to 600 MPa, are 5.218×10-13 ( / , )mm Cycle MPa mm  and 3.00 respectively is 

used for the data generation purpose. The range of internal pressure loading for calculation of the 

range of SIF ( )K  is assumed as the difference between the operating pressure (OP) and 

maximum allowable operating pressure (MOP) of the pipeline, and it is assumed crack size data 

is available every 1000 cycles ( kN =1000). 
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5.4.2 Simultaneous Estimation of Crack Depth (a) and Paris’ Law Model Parameters (C and 

m) and Future Trajectory Prediction 

Figure 5-2 shows a typical simulated true and noisy crack measurement data, i.e. crack depth (a), 

with noise level of 0.15 mm. Crack length is assumed to be known and kept constant in this case. 

PF algorithm requires sampling points from assumed distribution as discussed in previous sections. 

Greater the number of sample better the representation of the posterior estimates. However, use of 

very large number of data points can be computationally expensive. In this study, only 2000 sample 

points are drawn from the probability distribution for the state and model parameter variables and 

it is found reasonable accuracy can be achieved here. Note that Latin hypercube sampling (LHS) 

technique is used in this study as it ensures samples are picked from the entire distribution 

especially when the sample size is relatively small.  

 

Figure 5-2: Simulated crack depth ‘a’ data keeping crack length constant for 0.15 ILI mm   

5.4.2.1 Case I: Noise level= 0.15 mm 

Selection of appropriate set of parameters is very crucial in stochastic filtering techniques. A good 

approach would be to perform a grid search within range of reasonable values. A priori for state 

and parameters are drawn from the distribution summarized in Table 5-2. The table also 

summarizes the probabilistic information for other parameters required for the tool, i.e. the 

assumed distributions for the measurement and process noise.  
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Table 5-2 Input data for Particle Filter for noise level=0.15 mm  

0a
 

2

meas,0 meas,0
2

 ( , (12.5% ) )

(1.165,0.145 )

Normal a a

= Normal


 

0C
 

(125% log( ),95% log( ))
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True TrueUniform C C
Uniform

 
  

 

0m
 

(0.65 ,1.05 )
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True TrueUniform m m
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 

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Normal Normal Normal

  

 




 

 

Results and Discussion 

The joint state-parameter estimation results are shown in Figure 5-3 for noise level of 0.15 mm. 

Figure 5-3 (a) presents the estimation results of the state variable, i.e., crack depth, with the 

available data up to 72000 cycles (corresponding to 73 observations, or 50% of the total data 

generated about 50% of the total generated data). Figure 5-3 (b) and (c) presents the updating 

histories of the two fatigue model parameters. It can be seen that, with the increase of crack size 

observations, better mean estimates of the two model parameters can be found and the associated 

variance is much lower in the model parameters. Figure 5-4 (a) -(c) shows histogram plot for state, 

and parameters for initial guesses or priors. Figure 5-4 (d) - (f) shows histogram plot for state, and 

parameters for posterior distribution, i.e. posterior is built incorporating measurement data 

available up to 72000 cycles. The execution time is approximately 183 seconds. 

The future prediction of crack depth a based upon the estimated state and updated model 

parameters at different time steps (related to load cycles here) is shown in Figure 5-5. Figure 5-5 

(a) shows the fatigue crack growth prediction made based on initial values of the state and model 

parameters with no observation. Figure 5-5 (b) - (f) shows the fatigue crack growth predictions 

when observations are made up to 15000 cycles (with 16 observations), 29000 cycles (with 30 

observations), 44000 cycles (with 45 observations), 58000 cycles (with 59 observations), and 

72000 cycles (with 73 observations) respectively. It can be observed that the fatigue crack growth 

curve predicted purely based on the model without using measurement data is way off from the 

truth, while when more measurement data is used, the prediction of the fatigue crack growth curve 
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is closer and closer to the truth. At the same time, the uncertainty (or confidence interval) is much 

less when measurements are used. This trend can be seen in Figure 5-6, which contains a summary 

plot of these predicted trajectories at different time steps. The shaded areas in Figure 5-5 and Figure 

5-6 represents region 95% confidence interval of each state and parameters, also the vertical axis 

of plots are limited to the wall thickness. 95% Confidence interval of the weighed mean of the 

state and parameters are calculated from the population of particles using 97.5 and 2.5 percentile. 

Table 5-3 summarizes the state-parameter estimation results at the end of available data i.e. 72000 

cycles.  

Table 5-3 State-Parameter estimation summary at the end of 72000 cycles with noise level=0.15 

mm 

State-Parameter Mean 
95 % Confidence Interval 

Upper Limit Lower Limit 

a 2.628 2.843 2.451 

Log(C) -27.844 -27.503 -28.494 

m 2.914 3.058 2.797 
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(a) 

  
(b) (c) 

Figure 5-3: State-parameter estimation results with 95% confidence interval for noise level=0.15 

mm (a) State (crack depth) ‘a’ estimation, (b) Parameter ‘C’ estimation, and (c) Parameter ‘m’ 

estimation 
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 5-4: Histogram plots for state and parameters for noise level=0.15 mm (a) prior for state 

‘a’, (b) prior for parameter ‘C’, (c) prior for parameter ‘m’, (d) posterior for state ‘a’ at the end of 

72000 cycles, (e) posterior for parameter ‘C’ at the end of 72000 cycles, and (f) posterior for 

parameter ‘m’ at the end of 72000 cycles 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 5-5: Future crack depth ‘a’ prediction for noise level=0.15 mm when (a) No measurement 

data (with no observations), (b) Measurement data up to 15,000 cycles (with 16 observations), 

(c) Measurement data up to 29,000 cycles (with 30 observations), (d) Measurement data up to 

44,000 cycles (with 45 observations), (e) Measurement data up to 58,000 cycles (with 59 

observations), and (f) Measurement data up to 72, 000 cycles (with 73 observations) 
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Figure 5-6: Future prediction of crack depth ‘a’ at different time steps when different number of 

observations are available for noise level=0.15 mm 

5.4.2.2 Case II: Noise level=0.30 mm 

A priori for state and parameters are drawn from the distribution summarized in Table 5-4. The 

table also summarizes the probabilistic information for other parameters required for the tool, i.e. 

the assumed distributions for the measurement and process noise.  
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Table 5-4 Input data for Particle Filter for noise level=0.3 mm  

0a
 

2

meas,0 meas,0
2

 ( , (12.5% ) )

(0.902,0.112 )

Normal a a

= Normal


 

0C
 

(125% log( ),95% log( ))
( 35.352, 26.874)

True TrueUniform C C
Uniform

 
  

 

0m
 

(0.65 ,1.05 )
(1.95,3.15)

True TrueUniform m m
Uniform

 


 

av
 

2

2

(0, (167% ) )

(0,0.5 )
ILINormal

Normal




 

, ,a C mw w w
 

2 2 2 2 2

2 2 2 2 2

(0, (6.25% ) ), (0, (10 ) ), (0, (10 ) )

(0,0.018 ), (0, (10 ) ), (0, (10 ) )
ILINormal Normal Normal

Normal Normal Normal

  

 




 

 

Result and Discussion 

The joint state-parameter estimation results are shown in Figure 5-7 for noise level of 0.30 mm. 

Figure 5-7 (a) presents the estimation results of the state variable, i.e., crack depth, with the 

available data up to 72000 cycles (corresponding to 73 observations, or 50% of the total data 

generated about 50% of the total generated data). Figure 5-7 (b) and (c) presents the updating 

histories of the two fatigue model parameters. It can be seen that, with the increase of crack size 

observations, better mean estimates of the two model parameters can be found and the associated 

variance is much lower in the model parameters. Figure 5-8 (a) - (c) shows histogram plot for state, 

and parameters for initial guesses or priors. Figure 5-8 (d) - (f) shows histogram plot for state, and 

parameters for posterior distribution, i.e. posterior is built incorporating measurement data 

available up to 72000 cycles. The execution time is approximately 185 seconds including the 

pseudo-data generation step.  

The future prediction of crack depth a based upon the estimated state and updated model 

parameters at different time steps (related to load cycles here) is shown in Figure 5-9. Figure 5-9 

(a) shows the fatigue crack growth prediction made based on initial values of the state and model 

parameters with no observation. Figure 5-9 (b) - (f) shows the fatigue crack growth predictions 

when observations are made up to 15000 cycles (with 16 observations), 29000 cycles (with 30 

observations), 44000 cycles (with 45 observations), 58000 cycles (with 59 observations), and 

72000 cycles (with 73 observations) respectively. It can be observed that the fatigue crack growth 

curve predicted purely based on the model without using measurement data is way off from the 
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truth, while when more measurement data is used, the prediction of the fatigue crack growth curve 

is closer and closer to the truth. At the same time, the uncertainty (or confidence interval) is much 

less when measurements are used. This trend can be seen in Figure 5-10, which contains a 

summary plot of these predicted trajectories at different time steps. The shaded areas in Figure 5-5 

and Figure 5-10 represents region 95% confidence interval of each state and parameters, also the 

vertical axis of plots are limited to the wall thickness. 95% Confidence interval of the weighed 

mean of the state and parameters are calculated from the population of particles using 97.5 and 2.5 

percentile. Table 5-5 summarizes the state-parameter estimation results at the end of available data 

i.e. 72000 cycles. 

Table 5-5 State-Parameter estimation summary at the end of 72000 cycles with noise level=0.3 

mm 

State-Parameter Mean 
95 % Confidence Interval 

Upper Limit Lower Limit 

a 2.640 2.923 2.361 

Log(C) -28.048 -27.237 -28.317 

m 2.973 3.090 2.828 
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(a) 

  
(b) (c) 

Figure 5-7: State-parameter estimation results with 95% confidence interval for noise level=0.3 

mm (a) State (crack depth) ‘a’ estimation, (b) Parameter ‘C’ estimation, and (c) Parameter ‘m’ 

estimation 
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 5-8: Histogram plots for state and parameters for noise level=0.3 mm (a) prior for state 

‘a’, (b) prior for parameter ‘C’, (c) prior for parameter ‘m’, (d) posterior for state ‘a’ at the end of 

72000 cycles, (e) posterior for parameter ‘C’ at the end of 72000 cycles, and (f) posterior for 

parameter ‘m’ at the end of 72000 cycles 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 5-9: Future crack depth ‘a’ prediction for noise level=0.15 mm when (a) No measurement 

data (with no observations), (b) Measurement data up to 15,000 cycles (with 16 observations), 

(c) Measurement data up to 29,000 cycles (with 30 observations), (d) Measurement data up to 

44,000 cycles (with 45 observations), (e) Measurement data up to 58,000 cycles (with 59 

observations), and (f) Measurement data up to 72, 000 cycles (with 73 observations) 
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Figure 5-10: Future prediction of crack depth ‘a’ at different time steps when different number of 

observations are available for noise level=0.3 mm 

5.4.3 Simultaneous Estimation of Crack Depth (a), Half Crack Length (c) and Paris’ Law 

Model Parameters (C and m) and Future Trajectory Prediction 

Figure 5-11 shows a typical simulated true and noisy crack measurement data i.e. crack depth (a) 

and half crack length (c), with noise level=0.15 mm in both crack sizes. In the following cases too, 

2000 sample points are drawn from the probability distribution for the state and model parameter 

variables and it is found reasonable accuracy can be achieved here. Latin hypercube sampling 

(LHS) technique is used in the following cases. 
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(a) (b) 

Figure 5-11: Simulated data with noise (a) crack depth ‘a’, and (b) half crack length ‘c’ 

5.4.3.1 Case I: Noise level=0.15 

A priori for state and parameters are drawn from the distribution summarized in Table 5-6. The 

table also summarizes the probabilistic information for other parameters required for the tool, i.e. 

the assumed distributions for the measurement and process noise.  

Table 5-6 Input data for Particle Filter for noise level=0.15 mm 
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Results and Discussion 

The joint state-parameter estimation results are shown in Figure 5-12 for noise level of 0.15 mm. 

Figure 5-12 (a) and (b) presents the estimation results of the states, i.e., crack depth ‘a’ and half 

crack length ‘c’, with the available data up to 71000 cycles (corresponding to 72 observations, or 

50% of the total data generated about 50% of the total generated data). Figure 5-12 (c) and (d) 

presents the updating histories of the two fatigue model parameters. It can be seen that, with the 

increase of crack size observations, better mean estimates of the two model parameters can be 

found and the associated variance is much lower in the model parameters. Figure 5-13 (a) - (d) 

shows histogram plot for state, and parameters for initial guesses or priors. Figure 5-13 (e) - (h) 

shows histogram plot for state, and parameters for posterior distribution, i.e. posterior is built 

incorporating measurement data available up to 71000 cycles. The execution time is approximately 

379 seconds including the pseudo-data generation step.   

The future prediction of crack depth a based upon the estimated states and updated model 

parameters at different time steps (related to load cycles here) is shown in Figure 5-14. Figure 5-14 

(a) shows the fatigue crack growth prediction made based on initial values of the state and model 

parameters with no observation. Figure 5-14 (b) - (f) shows the fatigue crack growth predictions 

when observations are made up to 14000 cycles (with 15 observations), 29000 cycles (with 30 

observations), 43000 cycles (with 44 observations), 58000 cycles (with 59 observations), and 

71000 cycles (with 72 observations) respectively. It can be observed that the fatigue crack growth 

curve predicted purely based on the model without using measurement data is way off from the 

truth, while when more measurement data is used, the prediction of the fatigue crack growth curve 

is closer and closer to the truth. At the same time, the uncertainty (or confidence interval) is much 

less when measurements are used. A similar kind of trend can be observed for crack length, the 

figures can be found in ANNEX-C. This trend can be seen in Figure 5-15 and Figure 5-16, which 

contains a summary plot of the predicted trajectories at different time steps for crack depth and 

half crack length respectively. The shaded areas in Figure 5-14, Figure 5-15, and Figure 5-16 

represents region 95% confidence interval of each state and parameters, also the vertical axis of 

plots are limited to the wall thickness. Table 5-7 summarizes the state-parameter estimation results 

at the end of available data i.e. 71000 cycles. 
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(a) 

 
(b) 

  
(c) (d) 

Figure 5-12: State-parameter estimation results with 95% confidence interval (a) State (crack 

depth) ‘a’ estimation, (b) State (half crack length) ‘c’,  (c) Parameter ‘C’ estimation, and (d) 

Parameter ‘m’ estimation  
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(a) (e) 

  
(b) (f) 

  
(c) (g) 

  
(d) (h) 

Figure 5-13: Histogram plots for state and parameters with noise level=0.15 mm (a) prior for 

state ‘a’, (b) prior for state ‘c’, (c) prior for parameter ‘C’, (d) prior for parameter ‘m’, (e) 

posterior for state ‘a’ at the end of 71000 cycles,  (f) posterior for state ‘c’ at the end of 71000 

cycles, (g) posterior for parameter ‘C’ at the end of  71000 cycles, and (h) posterior for 

parameter ‘m’ at the end of  71000 cycles 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 5-14: Future crack depth ‘a’ prediction for noise level=0.15 mm when (a) No 

measurement data (with no observations), (b) Measurement data up to 14000 cycles (with 15 

observations), (c) Measurement data up to 29000 cycles (with 30 observations), (d) Measurement 

data up to 43000 cycles (with 44 observations), (e) Measurement data up to 58000 cycles (with 

59 observations), and (f) Measurement data up to 71000 cycles (with 72 observations) 
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Figure 5-15: Future prediction of crack depth ‘a’ at different time steps when different number of 

observations are available for noise level=0.15 mm 

Table 5-7 State-Parameter estimation summary at the end of 71000 cycles with noise level=0.15 

mm  

State-Parameter Mean 
95 % Confidence Interval 

Upper Limit Lower Limit 

a 2.627 2.843 2.419 

c 6.048 6.185 5.932 

Log(C) -28.616 -28.164 -28.894 

m 3.043 3.157 2.897 
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Figure 5-16: Future prediction of half crack length ‘c’ at different time steps when different 

number of observations are available for noise level=0.15 mm 

 

5.4.3.2 Case II: Noise level=0.3 mm 

A priori for state and parameters are drawn from the distribution summarized in Table 5-8. The 

table also summarizes the probabilistic information for other parameters required for the tool, i.e. 

the assumed distributions for the measurement and process noise.  
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Table 5-8 Input data for Particle Filter for noise level=0.30 mm 
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Results and Discussion 

The joint state-parameter estimation results are shown in Figure 5-17 for noise level of 0.30 mm. 

Figure 5-17 (a) and (b) presents the estimation results of the states, i.e., crack depth ‘a’ and half 

crack length ‘c’, with the available data up to 71000 cycles (corresponding to 72 observations, or 

50% of the total data generated about 50% of the total generated data). Figure 5-17 (c) and (d) 

presents the updating histories of the two fatigue model parameters. It can be seen that, with the 

increase of crack size observations, better mean estimates of the two model parameters can be 

found and the associated variance is much lower in the model parameters. Figure 5-18 (a) - (d) 

shows histogram plot for state, and parameters for initial guesses or priors. Figure 5-18 (e) - (h) 

shows histogram plot for state, and parameters for posterior distribution, i.e. posterior is built 

incorporating measurement data available up to 71000 cycles. The execution time is approximately 

385 seconds including the pseudo-data generation step.  

The future prediction of crack depth a based upon the estimated states and updated model 

parameters at different time steps (related to load cycles here) is shown in Figure 5-19. Figure 5-19 

(a) shows the fatigue crack growth prediction made based on initial values of the state and model 

parameters with no observation. Figure 5-19 (b) - (f) shows the fatigue crack growth predictions 

when observations are made up to 14000 cycles (with 15 observations), 29000 cycles (with 30 
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observations), 43000 cycles (with 44 observations), 58000 cycles (with 59 observations), and 

71000 cycles (with 72 observations) respectively. It can be observed that the fatigue crack growth 

curve predicted purely based on the model without using measurement data is way off from the 

truth, while when more measurement data is used, the prediction of the fatigue crack growth curve 

is closer and closer to the truth. At the same time, the uncertainty (or confidence interval) is much 

less when measurements are used. A similar kind of trend can be observed for crack length, the 

figures can be found in ANNEX-C. This trend can be seen in Figure 5-20 and Figure 5-21, which 

contains a summary plot of the predicted trajectories at different time steps for crack depth and 

half crack length respectively. The shaded areas in Figure 5-19 , Figure 5-20, and Figure 5-21 

represents region 95% confidence interval of each state and parameters, also the vertical axis of 

plots are limited to the wall thickness. Table 5-9 summarizes the state-parameter estimation results 

at the end of available data i.e. 71000 cycles. 

Table 5-9 State-Parameter estimation summary at the end of 71000 cycles with noise level=0.3 

mm 

State-Parameter Mean 
95 % Confidence Interval 

Upper Limit Lower Limit 

a 2.584 2.991 2.203 

c 6.080 6.371 5.835 

Log(C) -28.292 -26.928 -28.890 

m 2.997 3.181 2.713 
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(a) 

 
(b) 

  
(c) (d) 

Figure 5-17: State-parameter estimation results with 95% confidence interval (a) State (crack 

depth) ‘a’ estimation, (b) State (half crack length) ‘c’,  (c) Parameter ‘C’ estimation, and (d) 

Parameter ‘m’ estimation 
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(a) (e) 

  
(b) (f) 

  
(c) (g) 

  
(d) (h) 

Figure 5-18: Histogram plots for state and parameters with noise level=0.30 mm (a) prior for 

state ‘a’, (b) prior for state ‘c’, (c) prior for parameter ‘C’, (d) prior for parameter ‘m’, (e) 

posterior for state ‘a’ at the end of 71000 cycles,  (f) posterior for state ‘c’ at the end of 71000 

cycles, (g) posterior for parameter ‘C’ at the end of  71000 cycles, and (h) posterior for 

parameter ‘m’ at the end of  71000 cycles 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 5-19: Future crack depth ‘a’ prediction for noise level=0.3 mm when (a) No measurement 

data (with no observations), (b) Measurement data up to 14000 cycles (with 15 observations), (c) 

Measurement data up to 29000 cycles (with 30 observations), (d) Measurement data up to 43000 

cycles (with 44 observations), (e) Measurement data up to 58000 cycles (with 59 observations), 

and (f) Measurement data up to 71000 cycles (with 72 observations) 
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Figure 5-20: Future prediction of crack depth ‘a’ at different time steps when different number of 

observations are available for noise level=0.3 mm 
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Figure 5-21: Future prediction of half crack length ‘c’ at different time steps when different 

number of observations are available for noise level=0.3 mm 

For the case studies presented with different noise levels, the overall performance of the developed 

tool was found to be good with optimum set of tool parameters: (a) system model uncertainty, and 

(b) measurement model uncertainty. Table 5-10 summarizes the optimum set of values of system 

and measurement model uncertainty relative to the ILI tool measurement uncertainty along with 

the number of particles generated.  
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Table 5-10 Optimum tool parameters for generated pseudo dataset 

ILI-tool 

Noise 

level 
System model uncertainty (w) Measurement model 

uncertainty (v) # of 

particles 
σ

ILI
 σ

a
 σ

c
 σ

log(C)
 σ

m
 σ

a
 σ

c
 

0.15 mm 6.25% σ
ILI
 - 10-2 10-2 167%  σ

ILI
 - 2000 

0.3 mm 6.25% σ
ILI
 - 10-2 10-2 167%  σ

ILI
 - 2000 

0.15 mm 6.25% σ
ILI
 6.25% σ

ILI
 10-2 10-2 167%  σ

ILI
 167%  σ

ILI
 2000 

0.3 mm 8.33% σ
ILI
 8.33% σ

ILI
 10-2 10-2 167%  σ

ILI
 167%  σ

ILI
 2000 

  

5.5 Summary 

In this chapter stochastic filtering technique specifically Particle Filter is introduced. Particle Filter 

is a Monte Carlo based algorithms that relies on repeated random sampling to obtain numerical 

results to solve filtering problems. The fundamental concept of PF is based on Bayesian approach, 

where posterior distribution is obtained by multiplying likelihood function with the prior 

distribution. Using the recursive estimation technique proposed in this method, the prior 

knowledge about the crack growth is leveraged with the measurement data. Compared to the purely 

model-based prediction of crack growth, this method provides a way to calibrate the model 

parameters using measurements when data become available. More importantly, the noisy 

measurement data can be filtered with the use of model for more reliable estimate of the crack size. 

Note in this study, the analytical model API 579 model is used for SIF prediction. However, with 

the increase in computational capabilities, more accurate fatigue crack growth prediction models 

(e.g., XFEM-based) covering wider range of crack and pipe geometry than that in API 579 can be 

potentially used in this method for joint state-parameter estimation. 

A python based tool is developed to couple Particle Filter, fatigue crack growth model Paris’ law 

and GPR model in order to provide a probabilistic estimate of current crack sizes or states and 

model parameters. The tool incorporates the noisy measurement data from ILI tools and updates 

the belief of the current crack sizes along with the model parameters. Noisy measurement data and 

physics-based model were coupled to extract the best possible estimate. As more data becomes 



 

134 

 

available the estimate gets more reliable even for increasing noise levels. Performance of the 

Particle Filter depends greatly on the various parameters like noise level in tool, and confidence in 

the model. Measurement noise from tool are specified by the vendors which is fixed. However, 

the confidence in the model depends on how closely it relates to the physical phenomenon like 

fatigue crack growth. An optimum set of these parameters leads to a good performing Particle 

Filter. For the pseudo dataset generated using different noise levels the developed FCG tool 

performed reasonably good when system model uncertainty was around 6.25% of the ILI tool 

uncertainty. The measurement model uncertainty was tuned to make the tool flexible and value of 

1.67 times the ILI tool uncertainty was found to be good enough.   

The current crack size estimated and model parameters updated were used in the fatigue growth 

model (i.e., Paris law) to predict the future trajectory of the fatigue crack growth. The tool 

developed has shown to be promising for fatigue crack growth prediction when a fracture 

mechanics-based model and measurement data are both utilized, though when noise level is high, 

more measurements are expected.    
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

6.1 Summary 

Fatigue crack growth is one of the main pipeline integrity threats. Once a crack is detected in a 

pipeline by the operator while performing ILI or any other non-destructive testing, taking timely 

proactive or predictive maintenance can be beneficial. In addition to fatigue crack measurements, 

fracture mechanics-based approach can be used to simulate the crack size with time and thus be 

used to predict the potential fatigue crack growth.  

In order to monitor and manage fatigue crack growth, Paris’ law is widely used in pipeline industry. 

Paris’ law requires reliable values of stress intensity factor and fatigue model parameters. In this 

study, numerical method XFEM was explored for reliable estimation of SIF. The XFEM model 

was compared with conventional FEM and very good agreement between both numerical methods 

was found. Furthermore, industry practiced API 579 model, which provides an analytical solution 

in a tabular format with the need of interpolation for estimating SIF. API 579 model was also 

compared against the numerical method to check it’s accuracy. Good agreement was achieved 

between API 579 model and the numerical results from FEM or XFEM. 

A surrogate model developed based on Gaussian Process Regression was used as an alternate 

method to estimate SIF over high-fidelity FE models. The training and testing data set was obtained 

from API 579 model, as it provides good accuracy when compared with FEM and XFEM models 

as shown in this study. The computation time and accuracy of the GPR model makes it a very good 

alternative to API 579 model for SIF calculation, i.e., performing interpolation based Gaussian 

Process Regression.  

A python based tool to couple the surrogate model for estimation of SIF, PF and Paris’ law was 

developed. PF provides a probabilistic estimate of current crack size and model parameters based 

on the noisy ILI measurement data and Paris’ law model. Once the crack size and model 

parameters were estimated, they were used in Paris’ law to provide a probabilistic estimate of the 

future fatigue crack growth trajectory. The performance of the tool was found to be reliable with 

the optimum set of parameters.       
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6.2 Conclusions 

The main conclusions that can be drawn from this study are listed below:  

i. XFEM has proven to be a reliable method for different type of crack propagation analysis 

with appropriate set of parameters. Furthermore, XFEM was used for estimation of stress 

intensity factor and very good agreement was found between results from conventional 

FEM and API 579 model. 

a. FEM requires a crack confirming mesh and wedge type of elements for better 

accuracy. Mesh size of 0.125 mm – 0.25 mm along the crack front and around the 

crack tip was found to produce reliable values of SIF. 

b. In XFEM crack can be modeled independent of the crack geometry with a general 

meshing strategy, but a mesh structure confirming to the shape of crack geometry 

provides better accuracy. Mesh size of 0.125 mm – 0.25 mm produces good results 

when focused type mesh was used.  

c. General meshing strategy in XFEM required mesh size of 0.02 mm around the 

crack tip, which is about one fifth of that required when using focused type meshing 

strategy. Mesh size 0.125 mm – 0.25 mm along crack front was sufficient. Selection 

of using either focused type or general type of meshing strategy depends on the 

user. Evaluating time and effort for mesh design versus the actual computational 

power required in solving the problem is recommended.           

d. The adequate number of contours around the crack tip was found to be five for 

computational efficiency. After ignoring first two contours, the average of 

requested contours could be used for reliable SIF calculation. Enrichment radius of 

at least one element size ahead of the crack tip, which was 0.125 mm, could provide 

stable SIF values.  

ii. Gaussian process regression-based surrogate model is developed for SIF calculation. The 

model is based on the training data set from validated API 579 model and provides a 

reliable and quick estimate which is used further in stochastic filter. 

a. Matern 3/2 was found to be the best kernel function based on the grid search 

performed using five-fold cross-validation with five repetitions.    
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iii. Leveraging the physical model and available data from ILI tools can lead to more confident 

estimate of the crack size from the noisy measurement and better estimate of the fatigue 

parameters. This is proved to be achievable by using stochastic filtering technique, i.e., 

Particle Filter, which can provide a probabilistic estimate of the model parameters and 

current crack size. The updated information about the current crack size and fatigue model 

parameters can be further utilized to make probabilistic estimate of the future fatigue crack 

growth trajectory. As more data becomes available, the estimate gets better. If tool error is 

large, more data can be used to filter out the measurement noise to a certain degree, thus 

more accurate information about the crack size. 

a. Pseudo datasets were generated in this study using Paris’ law for a pipeline section 

with semi-elliptical crack on the outer surface and adding Gaussian white noise 

with standard deviation of 0.15 mm and 0.3 mm for performance validation of the 

FCG tool. System model uncertainty of about one-sixteenth of the ILI tool and 

measurement model uncertainty of 1.67 times the ILI tool were found to be 

optimum set of FCG tool parameters. 

6.3 Recommendations for Future Work 

The work carried out in this research project contributed mainly towards (1) the verification of 

existing standard code of practice for fatigue crack driving parameter in a pipeline, (2) SIF 

estimation using relatively new numerical method XFEM, (3) a surrogate model to provide a 

robust and computationally efficient tool for SIF calculation, and to the end, (4) a stochastic 

filtering tool using Particle Filter to estimate the fatigue crack growth model parameters and 

current crack size, along with the uncertainty related to the estimation to provide a probabilistic 

estimate of the future fatigue crack growth trajectory. However, due to limitations in this study, 

there still remains room for further development in the following aspects, to name a few, 

i. The fatigue crack growth parameter based on LEFM was used in this study and material were 

assumed to be linear elastic.  There remains a direction of investigation towards use of elastic-

plastic material properties and hence EPFM based fatigue crack growth. Capabilities of XFEM 

for fatigue crack growth modeling for elastic-plastic materials also needs to be considered. 
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ii. The surrogate model developed were based on GPR models. There are many other surrogate 

modeling technique that cam be further explored like Artificial Neural Network (ANN), 

Support Vector Machine (SVM). The training points generated were based on verified models 

from standard practise. As mentioned previously the further capabilities of XFEM for elastic-

plastic materials can be utilized to generate data-points and expand to the elastic-plastic 

material properties domain. 

iii. The Particle Filter was used for estimating model parameters and crack size from a mimicked 

pseudo-data with Gaussian white noise. Further investigation is required using actual ILI data. 
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ANNEX-A  

 

  
(a) (b) 

Annex Figure A-1: Contour integral values around the crack tip in CT specimen (a/W= 0.229) (a) 

at the surface (b) at the mid thickness 

  
(a) (b) 

Annex Figure A-2: Contour integral values around the crack tip in CT specimen (a/W= 0.6) (a) at 

the surface (b) at the mid thickness 
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(a) (b) 

Annex Figure A-3: Contour integral values around the crack tip in CT specimen (a/W= 0.8) (a) at 

the surface (b) at the mid thickness 

  
(a) (b) 

Annex Figure A-4: Contour integral values around the crack tip in CT specimen (a/W= 0.9) (a) at 

the surface (b) at the mid thickness 

 

Annex Table A-1 Coefficient of variation of SIF at surface and mid-thickness with number of 

contours  

a/W 
Coefficient of variation (CV) 

of SIF at surface (%) 

Coefficient of variation (CV) 

of SIF at mid-thickness (%) 

0.229 0.246 0.099 

0.4 0.033 0.111 

0.6 0.030 0.062 

0.8 0.095 0.026 

0.9 0.926 0.804 

Average 0.266 0.220 
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Annex Table A-2 Coefficient of variation of SIF with mesh size 

a/W 

Coefficient of variation 

(CV) of SIF at surface 

(%) 

Coefficient of variation 

(CV) of SIF at finite 

distance under the 

surface (%) 

Coefficient of variation (CV) 

of SIF at mid-thickness (%) 

0.229 4.434 2.063 0.241 

0.400 4.607 2.165 0.240 

0.600 4.761 2.261 0.234 

0.800 5.296 2.582 0.304 

0.900 5.874 2.776 0.367 

Average 4.994 2.369 0.277 

 

  
(a) (b) 

  
(c) (d) 

Annex Figure A-5: SIF values along thickness of the CT specimen for different values of a/W 

using conventional FEM with wedge elements (a) a/W=0.229, (b) a/W=0.6, (c) a/W=0.8, and (d) 

a/W=0.9 
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(a) (b) 

  
(c) (d) 

Annex Figure A-6: SIF values along thickness of the CT specimen for different values of a/W 

using XFEM for (a) a/W=0.229, (b) a/W=0.6, (c) a/W=0.8, and (d) a/W=0.9 
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Annex Table A-3 Comparison table against SIF values obtained using other meshing strategies to 

the focused mesh with wedge elements in CT specimen 

a/W 

XFEM- Hex XFEM- Gen FEM-Hex 

Surface 

(%) 

Finite 

element 

depth 

from 

surface 

(%) 

Mid-

thickness 

(%) 

Surface 

(%) 

Finite 

element 

depth 

from 

surface 

(%) 

Mid-

thickness 

(%) 

Surface 

(%) 

Finite 

element 

depth 

from 

surface 

(%) 

Mid-

thickness 

(%) 

0.229 2.919 1.505 1.329 2.720 1.408 1.200 1.812 0.408 0.255 

0.400 2.028 0.627 0.525 1.863 0.447 0.236 1.874 0.436 0.299 

0.600 2.188 0.781 0.659 2.096 0.670 0.443 2.022 0.556 0.424 

0.800 2.996 1.522 1.358 2.997 1.488 1.186 2.494 0.914 0.807 

0.900 4.546 2.900 2.737 4.701 2.963 2.632 3.417 1.657 1.595 

Average 2.936 1.467 1.322 2.876 1.395 1.139 2.324 0.794 0.676 

 

Annex Table A-4 Coefficient of variation of SIF with mesh size for pipeline section 

a/t 

Coefficient of variation 

(CV) of SIF at surface 

(%) 

Coefficient of variation 

(CV) of SIF at finite 

distance under the 

surface (%) 

Coefficient of variation (CV) 

of SIF at depth (%) 

0.263 0.413 1.235 0.561 

0.579 1.015 0.616 0.315 

0.832 1.910 0.710 0.288 

0.868 2.054 0.831 0.191 

0.904 2.041 0.892 0.350 

0.911 1.961 0.956 0.331 

Average 1.566 0.873 0.339 

 

 

 

 



 

158 

 

Annex Table A-5 Comparison table against SIF values obtained using other meshing strategies to 

the focused mesh with wedge elements in FEM models for pipeline section 

a/t 

XFEM FEM-Hex 

Surface 

(%) 

Finite 

element 

depth from 

surface 

(%) 

Depth (%) 
Surface 

(%) 

Finite 

element 

depth from 

surface 

(%) 

Depth (%) 

0.263 5.092 1.123 0.547 1.710 0.660 0.243 

0.579 5.530 1.605 0.545 2.259 1.013 0.284 

0.832 5.344 2.497 0.583 2.818 1.351 0.261 

0.868 5.312 2.537 0.466 2.883 1.409 0.253 

0.904 5.181 2.460 0.348 2.926 1.446 0.246 

0.911 5.340 2.617 0.417 2.947 1.462 0.257 

Average 5.300 2.140 0.485 2.591 1.223 0.257 
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(a) (b) 

  
(c) (d) 

 
(e) 

Annex Figure A-7: SIF values along crack front calculated using FEM with focused mesh having 

wedge elements for (a) a/t=0.263, (b) a/t= 0.579, (c) a/t=0.832, (d) a/t=0.904, and (e) a/t=0.911 
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(a) (b) 

  
(c) (d) 

 
(e) 

Annex Figure A-8: SIF values along crack front calculated using different meshing strategies in 

XFEM and FEM models for (a) a/t=0.263, (b) a/t= 0.579, (c) a/t=0.832, (d) a/t=0.904, and (e) 

a/t=0.911 
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(a) (b) (c) 

Annex Figure A-9: SIF values at finite depth from surface and depth ( 90  ) for a/c=0.125 (a) 

Pipeline #1, (b) Pipeline #2, and (c) Pipeline #3 

   
(a) (b) (c) 

Annex Figure A-10: SIF values at finite depth from surface and depth ( 90  ) for a/c=0.25 (a) 

Pipeline #1, (b) Pipeline #2, and (c) Pipeline #3 

   
(a) (b) (c) 

Annex Figure A-11: SIF values at finite depth from surface and depth ( 90  ) for a/c=1 (a) 

Pipeline #1, (b) Pipeline #2, and (c) Pipeline #3 
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(a) (b) (c) 

Annex Figure A-12: SIF values at finite depth from surface and depth ( 90  ) for a/c=2 (a) 

Pipeline #1, (b) Pipeline #2, and (c) Pipeline #3 
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ANNEX-B  

  
(a) (b) 

Annex Figure B-1: Scatter plot for 0 1and  G G  estimated at tabulated points using API 579 model 

and developed GPR model at surface (a) G0, and (b) G1 

 

  
(a) (b) 

Annex Figure B-2: Scatter plot for 0 1and  G G  estimated at intermediate points using API 579 

model and developed GPR model at surface (a) G0, and (b) G1 
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ANNEX-C  

The formulas used for calculation of influence coefficients and other parameters used in API 579 

model are as follows:  

2 3 4 5 6
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For deepest point ( 2)   
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Annex Figure C-1: Future half crack length ‘c’ prediction for noise level=0.15 mm when (a) No 

measurement data (with no observations), (b) Measurement data up to 14000 cycles (with 15 

observations), (c) Measurement data up to 29000 cycles (with 30 observations), (d) Measurement 

data up to 43000 cycles (with 44 observations), (e) Measurement data up to 58000 cycles (with 

59 observations), and (f) Measurement data up to 71000 cycles (with 72 observations) 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Annex Figure C-2: Future half crack length ‘c’ prediction for noise level=0.3 mm when (a) No 

measurement data (with no observations), (b) Measurement data up to 14000 cycles (with 15 

observations), (c) Measurement data up to 29000 cycles (with 30 observations), (d) Measurement 

data up to 43000 cycles (with 44 observations), (e) Measurement data up to 58000 cycles (with 

59 observations), and (f) Measurement data up to 71000 cycles (with 72 observations) 


