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ABSTRACT

This is a qualitative study, which describes two students’ learning of the base
complement additions method for compound subtraction of whole numbers. In particular
the research addresses the questions: 1. How does base complement additions (BCA)
compare to decomposition (D), as an algorithm for teaching/learning compound
subtraction, in terms of skill development? 2. Which method do students choose to use
when subtracting? Why do they say they chose the method? 3. In what ways does the
learning of both methods increase students’ arithmetic competence?

The BCA is a derivative of equal additions algorithm, which was based on
compensation. That is, if the same number is added to both minuend and subtrahend the
difference remains the same. Equal additions was intensively used in the USA a
generation ago but its distinct disadvantage was its difficulty to model subtraction
meaningfully using manipulatives.

The data collection covered the period of November 2000 to January 2001. Pre-
intervention, intervention and post-intervention design was used and computational tests
and interviews were two main evaluation instruments used for the study.

Results of the study indicate that participants were more confident with base
complement additions than with decomposition, that students made fewer errors,
recognized errors in worked examples, and chose base complement additions over

decomposition as their method for compound subtraction.
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CHAPTER 1 - STATEMENT OF THE PROBLEM

Background of the Problem

Chief examiners and assistant examiners of the West African Examinations
Council, mathematics teachers and employers who are in a position to criticise the
capability of young people who have passed through the public elementary schools, have
all experienced some uneasiness about the condition of arithmetical knowledge at the
present time. They have observed, for instance, that accuracy in manipulation of figures,
by the pupils, is not as expected (Gyening, 1993).

According to Gyening (1993) employers sometimes express concern at the
inability of young persons to perform simple numerical operations, without the use of
calculators. From my experience, when a problem like, “9-7”, is given to learners, they
use a variety of strategies to solve it. Some of these strategies are: counting down to,
counting on and take away. However, when it comes to compound subtraction like,
“701-467”, they don’t usually find it easy and they seek the help of calculators. Why? 1
conjecture that the most common method students use for computing compound
subtraction is the “decomposition method” and they find it difficult; they tend to make a
lot of errors with this method. The report of the National Assessment of Education
(Carpenter, 1975), found that only 55% of the nine year olds could correctly complete
two-digit subtraction problems with regrouping. This is not encouraging because one of
the aims of the school curriculum is to help children develop computational skills. This
problem has actually been a concern for many governments, especially that of Ghana. In
England and Wales, for instance, concern for the apparent lack of basic computational
skills and other mathematical skills and abilities in many children led to the appointment
of a committee chaired by W. H. Cockroft (1982). The committee was charged with
considering the teaching of mathematics in primary and secondary schools in England
and Wales, with particular regard to the mathematics required in further and higher
education, employment and adult life, and to make recommendations (Cockroft, 1982).

In Ghana, today, the situation is not different. The apparent lack of basic
mathematics computational skills has led to poor performance in mathematics
examinations. In Ghana, the 1998 Senior Secondary School Certificate Examination
results in mathematics is a typical example. In my school, Diabene Secondary-Technical
School, only 55% of the total number of students who sat for the core mathematics
examination passed.

According to the study, entitled “Cognitive Arithmetic Across Cultures,”
(Campbell & Xue, 2001), the performance of Asian Chinese was better than the non-
Asian counterparts. This was associated with the frequency of the latter’s use of
calculators in elementary schools. In addition the authors reiterated further on simple
mathematics, that Asian Chinese students and Chinese Canadian students were nearly
equivalent and both performed better than the non-Asian



students. The authors offered the following explanation: If students exclusively solve
arithmetic problems using a calculator, then they will become proficient using a
calculator, but this will not provide much exercise for the long-term and short-term
memory processes that mental arithmetic depends on. On the other hand, use of
calculators was associated with poor performance of the complex arithmetic task.
Working complex arithmetic without the aid of a calculator promotes better working
memory skills for complex arithmetic procedures such as carrying, borrowing, and place
keeping. In conclusion, Campbell and Xue (2001) state

A calculator is a very powerful tool for learning arithmetic and math, because it
provides students with instantaneous means to explore, discover and confirm
mathematical facts and principles. Undoubtedly, calculator use can contribute
very positively to math education in many ways, but mental arithmetic expertise
will develop only through extensive practice of the specific cognitive processes
that underlie that skill (pp. 312-315).

According to Gyening (1993), poor arithmetic skills in many children are due
to a number of causes. One of the possible causes is the teaching of certain topics; and
one such topic is compound subtraction. The conventional method of teaching compound
subtraction is the method of “decomposition”. He argues that this method has many
inherent drawbacks, which adversely affect pupils in their performance on arithmetical
tasks involving compound subtraction. Some of these drawbacks are limited preparation
in time, difficulties with presentation forms and frequency of errors.

a. It takes too much time to prepare the pupil’s mind for the decomposition method.

Teaching of compound subtraction by decomposition requires knowledge of
place value, expansion, and renaming or regrouping. These are pre-requisites in the
teaching of the decomposition method, and each takes a lot of time. Thus it is too time-
consuming when teaching children this method. The adverse effects, among others, are
that materials cannot be covered conveniently in the time allocated for the topic and
pupils become handicapped with respect to mastery, for there is not enough time for
discussion and practice.

b. It does not lend itself conveniently to the representation of the task in the
Horizontal form.

5
For the difference of 63 — 28, the written representation, j{ 13-28, after “borrowing” looks
like 513-28. On account of this shortcoming the standard textbooks do not usually present
the treatment in the horizontal form. According to Gyening (1993), they do not only shy
away from it but they also exhort others to follow suit. Hence pupils are seldom taught
compound subtraction by horizontal presentation, and this has affected pupils
computation regarding subtraction in horizontal forms.

Habor and Nworgu (1989) conducted an experiment using the same set of test
items on three different groups of pupils of relatively the same academic abilities. To one
group the items were put in vertical arrangement only; to another group the items given



were all in horizontal form; and the last group was given a blend of both horizontal and
vertical forms. It was discovered that the group that was given the set of questions in
vertical form did best, followed by the group that were given the mix of both vertical and
horizontal forms of subtraction.

c. Errors associated with the decomposition method
Despite the fact that treatment of compound subtraction by the method of
decomposition takes a lot of time, pupils eventually make a lot of errors in their
compound subtraction computations (as mentioned above). Common among the errors I

have observed from my teaching experience are:

1. Reversal Errors;

e.g 8344 This is subtracting smaller number from a
- 6877 bigger number irrespective of which is
2533 subtrahend. In this example the person
mistakenly subtracts 4 from 7 and 3 from 8.

2. Borrowing without reducing the minuend;

e.g. 7586 In this example, the student treats the 6 as
- 5647 16 in order to subtract but does not
2949 “borrow” any unit from the 8 tens.

Similarly the student treats the 5 in the
hundreds column as 15 in order to
subtract but does not “borrow” any unit
from the 7 hundreds.

3. Borrowing across zero;

cg 401 In this example the student borrows but
'% rather than taking ten tens from the

hundreds and then ten ones from the tens
to the ones, simply reduced the hundreds
by 1 and send it straight across the zero
to the ones.

Other Methods Used a Generation Ago

Another widely used method for dealing with this compound subtraction was
equal additions (Muller, 1964). The equal additions method was a method that was
extensively used in the U.S.A. a generation ago and it was generally used throughout
Europe until 1964. The rationale for the equal additions technique is based on



compensation. That is, if the same number is added to both minuend and subtrahend the
difference remains the same.

Now the decomposition method is more widely used than the equal additions
mainly because the decomposition method is easier to rationalise (Jerman & Beardslee
1978). Both decomposition and equal additions have been compared in many research
studies with inconclusive results as to which one is superior to the other. Brownell and
Moser (1949) showed, in a classic experiment comparing the effectiveness of the
decomposition and equal additions methods, that the decomposition when taught
meaningfully was more successful; the equal additions method was difficult to
rationalise.

According to Jerman and Beardslee (1978), the equal additions method is
difficult to model with manipulatives and does not really model the subtraction process.
They went on to say that equal additions has been compared with the decomposition
method in many research studies and in most cases equal additions has been shown to be
a superior teaching tool when meaning is not a factor but computation is what is
considered important. Hence the superiority of one method over the other depends on the
desired outcome, meaning or computational effectiveness.

Research Questions

Consideration of the weakness of equal additions and drawbacks and errors
associated with the decomposition methods led to the study of the problem of compound
subtraction by Gyening of the Department of Science Education, University of Cape
Coast. On April 23, 1993, at a departmental seminar, Gyening presented a paper titled
“Facilitating Compound Subtraction by Equivalent Zero Additions (EZA).” At the end of
the presentation, the consensus of the audience was that this method (EZA) has potential
to compare favourably with the method of decomposition (D) which is now the standard
method used in most parts of the world, including Ghana. Hence, it was recommended
that a research study be conducted to determine how this EZA method compares with the
D method. This sparked my interest and I decided to pursue this study as part of my
Master’s program at the University of Alberta. A close study of the EZA method (by
myself) indicated that base complement additions (BCA) is a better title since the model
is based on base complements. Hence 1 pose the research questions below:

1. How does base complement additions (BCA) compare
to decomposition (D), as an algorithm for teaching/learning
compound subtraction, in terms of skill development?

2. Which method do students choose to use when subtracting?
Why do they say they chose the method?



3. In what ways does the learning of both methods increase students’
arithmetic competence?

The Purpose of the Study

The purpose of the study is to learn more about children’s ways of doing
subtraction that involve renaming. The study is an attempt to throw some light on the
teaching and learning of compound subtraction by BCA. It is also an attempt to
determine whether the teaching of compound subtraction by the method of BCA
compares favorably with the method of D in terms of skill development if manipulatives
are used to teach both algorithms.

Definition of Terms

For the purpose of the study, the following terms used in the report are defined as
shown below.

Simple subtraction
This is subtraction that does not need renaming.
E.g. 1. 8-4 2. 435
214

Compound Subtraction
This is subtraction that requires renaming. It is when at least one of the digits of the
minuend is less than the corresponding digits of the subtrahend.
E.g.1.536 2.615
249 -378

Subtrahend
The number that is being subtracted. For instance, if a — b = ¢, then b is said to the
subtrahend.

Minuend
This is a number from which another number is taken away. For instance if a — b = ¢,
then a is said to be the minuend.

Algorithm
An algorithm is a step-by-step procedure for accomplishing a task, which is done

mentally and/or by paper-and-pencil. Its form distinguishes such procedure, in which the
first action in the sequence is usually precisely specified and after that the next is also
indicated. (Algorithms are discussed in further detail in chapter 2.)

Subtraction by Decomposition
Subtraction by “decomposition” is subtraction done by renaming the minuend. It is a rule




of procedure or algorithm for solving compound subtraction problems by decomposing
the minuend e.g. by increasing the ones place by 10 units and decreasing the tens place
by 1 ten. Subtraction by decomposition is commonly called “borrowing”.

Subtraction by Equal Additions
The equal additions algorithm is a rule of procedure for solving compound subtraction
problems by changing both the minuend and the subtrahend. The rationale for the equal
additions technique is based upon a general property of the operation of subtraction
commonly referred to as compensation. That is if the same number is added to both the
minuend and the subtrahend the difference remains the same. However, in practice, in
equal additions strategy, one is only required to add ten to the minuend and a ten to the
subtrahend. A typical example will be this “If the ones place of the minuend is increased
by 10 ones to allow for subtraction within the set of whole numbers it is compensated by
adding 1 ten to the tens place of the subtrahend”.

Eg. 73 = 7 (13)

-58 -(6) 8

Subtraction by Base Complement Additions

This is a rule of procedure that transforms compound subtraction into simple subtraction
by way of base complement (s). By base complement of a number s relative to the base b,
we mean the positive number that should be added to s to obtain b. In other words c¢ is the
base complement of s if s + ¢ = b, where b is the base.

Thus with respect to base 10, we have the following

Number Base complement
1 9
2 8
3 7
4 6
5 5
6 4
7 3
8 2
9 1

Table 1-1. Digits and Their Corresponding Base Complements
E.g. 24 (+3) 27
—

17 -(+3)  -20
The base complement of 7 (i. e., 3) is added to both the minuend
(24) and the subtrahend (17). This gives a transformed minuend
and subtrahend of 27 and 20 respectively.



Crutch

This is a symbolic learning aid when doing a paper and pencil computation. Crutches are
characterized by the use of markings through numerals followed by a subscript and/or a
superscript.

7 6

Eg 1) _&17 LY

-5 9 -3 7

Deep-end Approach
Deep-end approach according to Gagné et al. (1963) is learning from complex to simple.
With respect to mathematics instruction, this is when one or two prerequisites or phases
or stages of instruction is/are skipped. A typical example is instruction using symbolic
phase of instruction, where iconic or enactive phases could be used to buttress
understanding only.

It must be recalled that certain individuals can skip prerequisites or phases or
stages of instruction and learn complex algorithms without explicitly practicing the sub-
skill(s) (Dienes & Golding, 1971). Factors that bring about this include: high motivation;
presentation of tasks that might involve some of skills acquired somewhere; and that all
the sub-skills might have been learned already at home or taught by a friend(s) or at
school.

Instructional Sublimation

This is instructional process whereby sub-skills or phases are skipped during instruction.
Instructional direction here is from simple to complex and vice-versa. For this study
instruction from symbolic to enactive and vice-versa are typical examples. They are
processes to help the learner to fold back and forth for meaningful construction of
knowledge.

Transferability

This is the ability to demonstrate successful carry-over to untaught processes (Brownell
& Moser, 1949). In this study transferability was measured by the ability to solve from 4
up to 11 digits following an intervention involving 2 and 3-digit examples of compound
subtraction of whole numbers.

Instrumental Understanding

Instrumental understanding, according to Skemp (1978), is the rote performance of a
procedural learning.

Procedural Knowledge
This is learning that focuses on skills and step-by-step procedures and sometimes without
explicit reference to mathematical ideas.




Meaning
In this study, the instruction is designed to help students understand why renaming, by

use of BCA, is valid. To do this BCA is modeled with a manipulative (see chapter 4). To
the extent that this modeling offers an explanation of why renaming does not change the
equality of the expression, it has the potential to be meaningful to the students. In this
study meaning is used to speak about how the BCA algorithm works as a procedure. The
students’ understanding is assessed strictly on the basis of demonstrating conceptual
understanding or procedural knowledge of BCA.

Delimitations

The study was delimited to two students in fourth and fifth grades and of the same
parents. This was for convenience sake. The study was delimited to whole number paper-
and-pencil subtraction. Most of the questions were selected from MathQuest (1986)
because this was the textbook the students brought home from school.

Limitations

The study was limited to the effects of five days of instruction, fourteen days
retention period during which no BCA was taught, twenty-eight day post- post
intervention to confirm retention during which no BCA was taught or intentionally
reinforced. However, students may have been practicing at school when responding to
subtraction questions.

The sequence of instruction was developed by the researcher, and is limited to the
various reactions of the participants. The researcher’s teaching experience of 12 years
included 3 years in a training college, 4 years in a secondary —technical school, 2 years in
a middle school and 3 years in a primary school. All his teaching experience was limited
to the use of D algorithm. His familiarity with the BCA algorithm was limited to insight
given to him by Gyening of the Mathematics Education Department (the then Science
Education Department), Faculty of Education, University of Cape Coast, Ghana.

This study is a descriptive, qualitative one, in which only two students’ activities
and responses are studied. Hence no claims are made to suggest that the results are
generalizable.



Assumptions

The participants used as subjects come from the same family, attended the same
school but they took different end of term examinations because one was in grade 4 and
the other was in grade 5. It was assumed:

e That they would perform differently depending on their understanding of the
algorithm.

e Those participants already know how to do simple addition of whole numbers.

e That participants could use their logico-mathematical thinking to reason at the
formal stage of instruction; thus they would be able to transfer knowledge from
two- or three digit number to multi-digit numbers.

e that the test items were valid and reliable since they were selected from a
standard mathematics textbook, MathQuest 3, 4 & 5. [Note-This book is no
longer the recommended for use in Alberta schools. However, as already noted,
this is the text the students were using in school.]

Significance of the Study

If BCA is found to be meaningfully understood to participants, then this study
offers pupils an additional tool for their mathematical toolkit. From this toolkit they can
choose the most appropriate strategy based on their comfort level. Thus it will expand the
knowledge base of learners to improve upon their learning. For teachers, the study has the
potential to inform them about an alternative algorithm for multi-digit subtraction that
involves renaming.

Organization of the Report

The report of this research study is organized in six chapters. Chapter 1 presents
the problems and purpose of the study. Chapter 2 is a review of literature related to the
study. Chapter 3 describes the method and the procedures used for the study. Chapter 4 is
reports on the development of the intervention. Chapter 5 is about the results followed by
a summary of the chapter. The last is Chapter 6, which presents a summary of the whole
study, the conclusions and recommendations.



CHAPTER 2 - REVIEW OF RELATED RESEARCH AND LITERATURE

Introduction

From early to the middle 1900s, textbooks used any one of the three different
algorithms, for teaching subtraction that involves renaming: the equal additions, the
decomposition and the Austrian method. However, the algorithms used did not show any
marking through or numbers being rewritten. The students were expected to remember
when a number was “borrowed” and reduce the number “borrowed from” accordingly.
After William Brownell modified the decomposition algorithm in 1949, to include the
use of the crutch, the use of other algorithms was practically eliminated in mathematics
textbooks (Ross & Pratt-Cotter, 1999).

This chapter is a review, which describes the related research that has been done
regarding the two algorithms—decomposition and equal additions. This chapter is divided
into four parts. The first part discusses pre-algorithmic subtraction (i.e., subtraction
without renaming) and subtraction algorithms. It is followed by section two, which
reports on some early research efforts. Reviews on some other research efforts and
justification for the research study are the third part. The fourth section of the chapter
deals with the learning theories that underpin the study.

Pre-algorithmic Subtraction/Subtraction Without Renaming

According to Carpenter and Moser (1982), children bring to school well
developed counting procedures, some knowledge of numbers, and some understanding of
physical operations. Carpenter and Moser, therefore, encourage researchers to examine
variations in how children process information prior to, during, and after formal
instruction.

According to Carpenter Hiebert, & Moser (1983) before formal instruction
children can analyze and solve simple subtraction tasks by directly presenting the
operation with physical objects or by using counting strategies. However, these strategies
are too cumbersome to be effective with more complex problems and large numbers.
According to their research findings, there is evidence that at the time children are
introduced to writing mathematical sentences they see no connection between them and
their informal strategies (Carpenter, et. al., 1983). From the study, it was learned that
counting backwards (down) is more difficult than counting up for the first grade children,
especially when the count goes beyond three numbers or when the count starts with a
number greater than 10 (Baroody, 1984; Carpenter & Moser 1984). According to
Baroody (1984), in order for children to use counting up, or counting back procedures
successfully to solve subtraction problems, they must be able to count on and back from
given numbers “with ease”.
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Boulton-Lewis (1993) noted that teaching children to count backwards as a
procedure for finding the difference between two numbers as opposed to forward
counting of subtrahend and minuend has been discussed in detail. Backward counting
caused problems, with both small and large subtrahends but more particularly with
subtrahends greater than 3 or 4 (e.g. 12-9, 16-8, 25-12, 31-6). Children who attempted
and succeeded with more difficult subtraction tasks were generally not using backward
counting. It was also noted that the practice of teaching subtraction algorithms to 2 or 3
digits without regrouping before those that require regrouping caused some children to
use “buggy” algorithms and others not to use the written algorithm at all. Only a small
number of responses in the year 2 group made correct use of the written algorithm and
that was for items that required no regrouping.

In classroom based research three distinct classes of subtraction strategies:
separating from, counting down from, and counting up from given or adding on have
been identified (Carpenter & Moser 1982). Their results indicate that children tend to
model the action or relationship described in the problem rather than attempt to relate the
problem to a single operation of subtraction. These researchers hypothesized that children
do not recognize the interchangeability of subtraction strategies. This accounts for the
close match between problem structure and strategy. The authors believe that the
transition from the informal modeling and counting strategies that children invent to
solve basic addition and subtraction problems to the use of the number facts and formal
algorithms they learn in school is a critical stage in children’s learning of mathematics.
Thus the investigators encourage efforts to ease the transition from informal problem
solving strategies to formal algorithms.

There is the need to precede any basic fact instruction involving counting with
conceptually-based learning activities that enable children to reflect on and refine their
own counting understandings and skills (Fuson & Secada, 1986; Fuson & Willis, 1988;
and Thornton, 1989). When children are having difficulty in computing basic subtraction
problems, it is very important to begin diagnosis with an examination of their informal
subtraction procedures. Understanding the complicated nature of children’s entry
behaviour will go a long way in the designing of specific remedial instruction.

Strategies Based Approaches to “Basic Facts” Learning

Rathmell (1978) found that teaching children thinking strategies facilitates their
learning and retention of basic facts. According to Chambers (1996), more recent studies
have confirmed this effect. Chambers explains that a strategies approach helps students
organize the facts in a meaningful network so that they are easily remembered and
accessed. Adults also use strategies and rules for certain facts (Thornton, 1990).
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Algorithms

An algorithm is “a process, or set of rules, usually one expressed in algebraic
notation, now used especially in computing, machine translation and linguistics”
(O. E. D, 00005610).

Mathematics educators typically may offer something like “a step-by-step process
that guarantees the correct solution to a given problem, provided the steps are executed
correctly” as their definition of algorithm (Barnett, 1998 p. 69). An algorithm is also
explained as a finite, step-by-step procedure for accomplishing a task that we wish to
complete (Boyer, Brumfield & Higgins 1960; Usiskin, 1998; Ashlock, 2002). Maurer
(1998) defines algorithm as precise and systematic method for solving a class of
problems, which follows a determinate set of rules, and finite number of steps to give
outputs that provide conclusive answers.

It appears there are many definitions or explanations for an algorithm though the
meanings might be similar. For the purpose of this research an algorithm will be
understood as step-by-step procedures for accomplishing tasks, which are done mentally
and/or by paper-and-pencil. Such procedures are distinguished by their form, in which the
first action in the sequence is usually precisely specified and after that the next is also
indicated. These procedures are said to be conclusive, for their outputs are solutions to
the specified tasks (Maurer 1998).

Historical Account of Algorithm

Gerbert d’Aurillac (ca. 940-1003) is known to be the “father” of the use of Hindu-
Arabic numerals in Western Europe. D’Aurillac used the numerals 1, 2, 3, ...9 in
columns on the counting board using counters. Zero was represented on the board with a
blank column. He appeared not to have algorithms for calculating with these counters. It
was rather Fibonacci, also known as Leonardo da Pisa (ca. 1180-1250), and other
Western European medieval mathematicians who learned these algorithms from the
works of al-Kwarizmi, on Hindu Arabic system. Algorithm is a word that means a rule or
procedure for solving a problem. The word was chosen as an honor to al-Kwarizmi, who
supposedly wrote the first elementary textbook on algebra (Hughes, 1998; Barnett, 1998).

In the Renaissance Italy students competed within the commercial setting to earn
their living by computation. These students were the children of the Italian abacists who
were mathematical practitioners. These practitioners earned their living by teaching
methods of computation. But there was much disagreement between those who supported
the use of the counting board for computational purposes and the proponents of the
Hindu-Arabic system- after al-Kwarizmi’s arithmetic had been translated to Latin in the
twelfth century the first time (Barnett, 1998).

According to Boyer, Brufiel and Higgins (1960), algorithm was synonymous with
positional numeration between the tenth and the fifteenth centuries. Emphasis, at that
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time was on symbols and arithmetic then called algorism. The people who used algorism
to calculate were called algorists. Today, the Oxford English Dictionary indicates that the
word algorithm and algorism are synonymous (NCTM, 1960, p. 252; OED, 00005610).

Eventual Adoption of al-Kwarizmi’s Arithmetic

From records of Barnett (1998), the Hindu-Arabic numerals and their algorithms
(of al-Kwarizmi’s arithmetic) was preferred to the use of the counting board for the
following reasons:

e The counting board system was logically awkward, since it required both a
large board and a bag of counters

¢ Nontransportability of the medieval counting board

¢ Recording the computation with the computing board was difficult, since each
step had to be eliminated before the next could be effected on the board.

e Hindu-Arabic algorithms allowed one to record each step of the process,
making verification of the result much easier. (pp. 70-71).

Types of Algorithms

In the mathematics education literature we find two main types of algorithms:
student developed algorithms (see page 16) and standard algorithms (Ashlock, 2002).
According to Ashlock (2002) the paper-and-pencil procedures that individuals learn and
use differ over time and among cultures. On this account, curriculum designers make
choices in selecting algorithms as ‘“‘standard”. Algorithms are usually acceptable as
standard when they always provide the correct answers. From the point of view of
Usiskin (1998) these paper-and-pencil algorithms that are being used in school
mathematics can be put into three categories. These are: arithmetic, algebra, and calculus
and drawing algorithms. 1t is the arithmetic algorithms that are pertinent to this research
study. Arithmetic algorithms including those for subtraction, finding square roots, doing
long division, standard deviation, and so on (Usiskin, 1998). Specifically this study is on
an algorithm for doing compound subtraction.

Reasons for Using Algorithms

For a procedure to be used as an algorithm Usiskin (1998) has this to say: “If we
are going to answer one question of a particular type we don’t tend to think of the
procedure we used to answer that question as an algorithm. However, if there are many
questions for which the same procedure works, then it becomes useful to learn a
procedure. Once we are able to identify the sequence of steps in the procedure, it
becomes an algorithm” (p.10). Usiskin then asserts, “Algorithms are generalizations that
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embody one of the main reasons for studying mathematics to find ways of solving classes
of problems. When we know of an algorithm, we can complete not just one task but all
tasks of a particular kind and we are guaranteed an answer or answers” (p. 10). He then
analyzed reasons for having algorithms, some of which are as follows:

Power. This applies to the breadth of the applicability of an algorithm.

Reliable and Accurate. An algorithm always provides the correct answer, when
done correctly.

Speed. An algorithm proceeds directly to the answer.

A record. A paper-and-pencil algorithm provides a record of “how” the answer
was determined.

Instruction. An algorithm is instructive. “ They don’t just announce the result;
they construct it.” (pp. 10-14).

Why Teach Algorithms as Another Tool in Toolkit

Recent educational reforms emphasize the importance of the development of
number sense, conceptual understanding and problem solving (Hiebert et al. 1991). Now
is the time for us to evaluate the importance of arithmetic computation and the standard
algorithms. A student might perform a mental calculation, develop an invented
procedure, choose an appropriate written algorithm, or use a calculator when doing
arithmetic computation. When asked to do a simple calculation, like 34-16, students
might use a mental procedure. But for more complex calculations the calculator and the
written algorithm may be more appropriate. Estimation technique may also be
appropriate if the exact answer is not needed. Students, however, are usually encouraged
to reason about which approach might best fit the problem at hand and then consider the
reasonableness of their answers.

To enhance number sense students must be provided the opportunities in the
primary grade levels, to develop and discuss invented algorithms (Kami, Lewis, &
Livingstone 1993; Sowder 1992). In these situations, such students were found to be
aware of several approaches and were flexible in their thinking and in choosing a
procedure that best fits a problem. Very importantly, they were found to develop the
ability to share their strategies and thus improve their reasoning and communication skills
(Carroll & Denise 1998). It was apparent from Carroll and Denise’s studies that teaching
of specific algorithms should be diminished or delayed in the early years of the child’s
primary education. But it is also obvious that as students get to later stages in the primary
grades levels and beyond, written algorithms become indispensable for several reasons.

First, some calculations are not handled as well by a mental method. As the
number becomes greater, demand on memory grows and often requires written
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record keeping. Although calculators and estimation can often be used, written
algorithms are often the most reasonable method to use for “middle size”
numbers. Second, some students are not successful in “inventing” addition and
subtraction algorithms, and some alternative, like the traditional written method,
may be beneficial to them. Methods that build on their thinking and early
experience can help them use written algorithm with meaning. Third, tests and
other societal expectations still make it necessary for most students to know some
written method for each operation. Not only do many standardized tests include a
computation section, but also parents and other adult still see competence in
written computation as a benchmark of success in mathematics. Students benefit
from having a range of options to choose from, including paper-and-pencil
methods. This is supported by our observations where students are introduced to
several methods for the subtraction of whole numbers (p. 107).

The researchers confirmed that “although it is advantageous for all students to know at
least one written procedure for each of the operations, the standard algorithms taught in
school are often not the most appropriate or understandable. Although they are efficient,
the meaning of these standard algorithms is often unclear to students who learn them
without understanding (e.g. why the ones are being carried). Consequently, ‘buggy’
procedure may develop” (Carroll & Denise, 1998 p. 107). This study offers an alternative
subtraction algorithm for students. Once that has potential for enabling students to be
more proficient at multi-digit compound subtraction and it provides another tool in their
math toolkit. It avoids such procedures as “borrowing” or “carrying” and appears to be
powerful, reliable and accurate and provides good records for instructional purposes.

Subtraction Algorithms

In the history of mathematics education, teaching children to subtract has long
been considered a problem area. Winch (1920), noted that “No methods give more
trouble and are less successful than those of teaching subtraction” (p.20). Thorndike
(1921) believed that the controversy regarding how children should be taught to subtract
centered on the argument of whether to use the “subtractive” or “additive” method.
Today, the subtraction algorithm continues to be a source of difficulty for many students

and the question of how best to teach it to youngsters is gaining renewed interest (Martin,
1992).

Currently, the decomposition algorithm, is predominantly used in the United
States, Canada and other parts of the world, as the standard compound subtraction
algorithm. However, several others, mostly students developed algorithms, have been
endorsed as efficient for learning compound subtraction (Ross & Prat-Cotter, 1999). The
following discussion of algorithms will be limited to decomposition and equal additions.
These two have been singled out based on their worldwide recognition as standard
subtraction algorithms (Suydam & Dessart, 1976; Thiessen et al., 1989).
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Student Developed Algorithms

Fuson et al. (1997) provided a good summary of informal algorithms students use
for solving subtraction problems that involves renaming. The following provide protocol
for finding the difference 62-28 identified in this analysis:

Sequential: Sixty take away twenty is forty. Then put back the two; that’s forty-
two. Now take away the eight from the forty-two. First, take away the two, that’s
forty, and then six more makes thirty-four.

Combining units separately: Sixty take away twenty is forty. You can’t take eight
from two. If you take two from the two, you still have six more to take away.
Now take the six from the forty; that’s thirty-four.

Compensation: Sixty-two take away thirty, but we’re to take away twenty-eight

so it’s two more. The answer is, therefore, thirty-four. (on compensation, refer to
pages 18- 19)

We accept the above as a comprehensive analysis of categories for students’ invented
algorithms for computing compound subtraction (Sowder, 1998). However, from
different methods students use for subtraction, cited in Gordon Calvert’s hand-out 1.1.3,
(2002) there are many others we may find difficult to put in the above categories. For

example,
54 54
-38  +61 Subtract each number in the bottom from 9 ie. 3
115 becomes 6, 8 becomes 1. Now add. When done, drop
+1 the 1 in the largest place and add 1 to the ones place to
_16 get the answer of 16.

(Gordon Calvert, 2002, p. 3)

Both standard and student invented algorithms reduce a complex procedure to simpler
components that can be operated on using available knowledge or procedures.

The Decomposition Algorithm

The D algorithm is commonly called the “borrowing method”. However, the term
“borrow” may be a misnomer. By definition, whatever is borrowed must be paid back,
and this is something that is not clearly seen when using the D algorithm. Interestingly,
the word “borrow” was not used when this method was first introduced in the United
States around 1821. The term seemed to have appeared some years later (Johnson, 1938,
p. 14).
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The instructional sequence for subtraction (See Milne, 1895; Ray, 1857), might be
described as follows:

1. Write the subtrahend under the minuend, units under units, tens under tens,
etc.

2. Begin at the right and subtract each figure of the subtrahend from the
corresponding figure of the minuend, writing the result beneath.

3. If a figure in the minuend has a less value than the corresponding figure in the
subtrahend, increase the former by ten, and subtract; then diminish by one the
units of the next higher order in the minuend, and subtract as before.

4. Proof: Add together the difference and subtrahend. If the result is equal to the
minuend, the work is correct (Milne, 1895, p. 47).

Subtraction with zeros was handled separately. The explanation given for the problem
9,000 - 7,685 describes the D method.

Since five units cannot be subtracted from O units, and since there are no tens nor
hundreds, 1 thousand must be changed into hundreds, leaving 8 thousand; 1 of the
hundreds must be changed into tens, leaving 9 hundreds and 1 of the tens into
units, leaving 9 tens. The expression 8 thousand, 9 hundreds, 9 tens, and 10 units
is thus equivalent to the minuend, from which the units of the subtrahend can be
readily subtracted (Milne, 1895 p. 49).

There is one very important advantage for this algorithm: the ability to
demonstrate the regrouping procedure using bundles of sticks. This has made the
algorithm very popular, especially following the “meaningful teaching” at the turn of the
century (Brownell & Moser, 1949). Many mathematics educators claim that this
algorithm is easy to rationalize (Martin, 1992).

The most obvious drawback of D is that it takes too much time for students to
learn it. Some students stick to their informal strategies thus subtraction becomes
extremely difficult when it involves large numbers and renaming is required more than
once (Carpenter et al., 1983).

The Use of a Crutch in Decomposition Algorithm

Brownell (1947) conducted a study to determine if a “crutch” in the D algorithm
would be helpful to students. The crutch consisted of the use of markings through
numerals from which an amount would be borrowed in order to keep track of the
different steps when working. There was no evidence that the crutch was being used
when Brownell conducted his research on its effectiveness. The only example that could
be found was from a text published in 1857, in which markings were used to keep track
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of the renaming process. This was done in only one problem in the text, with all other
problems worked without any markings (Ross & Pratt-Cotter, 1999).

According to the study the crutch was very beneficial to the users. Users of the
crutch were more accurate, at the beginning of instruction, on borrowing as well as at the
end. The recorded speed for the users was relatively better, at the beginning of the study,
as compared to the students not using the crutch. Toward the end of the study, however,
there was not as much significant difference in speed between the users of the crutch and
non-users (Brownell & Moser, 1949).

Use of the place value initials H, T, and O at the top of the algorithm were used to
help students identify H for hundreds, T for tens and O for ones. Many textbooks used
this followed by the D method which involves borrowing — for the crutch caught on very
quickly (Buswell, Brownell, & John, 1947).

Today this method of subtraction is used in most textbooks that treat compound
subtraction. While some textbooks may present alternative algorithms for subtraction, the
D algorithm is considered the primary algorithm in the United States, Canada and other
parts of the world (Ross & Pratt-Cotter, 1999).

The Equal Additions Algorithm

The equal additions method was used extensively in United States a generation
ago and it is still used in some European countries (Gyening, 1993). The rationale for
equal additions technique is based on compensation. That is if the same number is added
to both minuend and the subtrahend, the difference, however remains the same. The
compensation in subtraction expressed generally is that for all @, b, k € R, if
a—b =k, then (a + ¢) — (b + ¢) = k. This is because given a — b = k, we have

a-b=k
a-b+c-c=k
atc~-b-c=k
(a+c)—(b+tc)=k

For example, consider 21 — 17 = 4 (in table 2 below); note that the invariance of the
difference as the minuend and the subtrahend are successively increased by 5, 7, 9, 10,
15, 1000.

+5 +7 +9 + 10 + 15 + 1000

21 26 28 30 31 36 1021
-17 -22 -24 26 - 27 -32 -1017
4 4 4 4 4 4 4

Table 1-2. A Set of Subtraction Expressions for 21 —17 (Based on Compensation)




From the writings of Johnson (1938), the equal additions algorithm could be
traced back to the 15th and 16th centuries. Johnson explained that equal additions could
also be called the “borrow and repay method” (p. 16). With respect to the meaning of the
term “borrow”, it is clear that it fits better in equal additions algorithm than the D
algorithm. This is because in this method, a power of 10 is borrowed to add to the
necessary place in the minuend and is repaid by adding to the digit in the next place of
the subtrahend. An example of equal additions is shown in the table above.

Although the D and Austrian algorithms did appear in some textbooks, EA was
the predominant algorithm used before 1940s. A textbook, authored by Willetts (1819),
explains subtraction using the following rule:

1. Place the less number under the greater, with units under units, tens under
tens, etc.

2. Begin at the right hand and take the lower figure from the one above it and set
the difference down.

3. If the figure in the lower line is greater than the one above it, take the lower
figure from 10 and add the difference to the upper figure which sum set down.

4. When the lower figure is taken from 10 there must be one added to the next
lower figure. (p. 11).

Willetts (1819) was using “upper figure” and “lower figure” to mean minuend and
subtrahend respectively. Though this method is “equal additions”, in principle, to my
observation, the strategy being used is base complement additions. This gives me an
indication that the base complement additions was once used without modeling the
mathematics with manipulatives.

The Base Complement Additions Algorithm (BCA)

Like the equal additions algorithm, the BCA is a rule of procedure for solving
compound subtraction problems by changing both the minuend and the subtrahend. The
BCA is a rule of procedure that transforms compound subtraction into simple subtraction
by way of base complement(s). By base complement of a number s relative to the base b,
we mean the positive number that should be added to s to obtain b. In other words ¢ is the
base complement of s if s + ¢ = b, where b is the base (see page 6).

The rationale for BCA heuristic is based on compensation. That is, if the same
number is added to both the minuend and the subtrahend the difference is not changed
though there is change in arithmetic expression. (For more information on BCA refer to
page 6 and chapter 4.)
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Categories for Comparison: Decomposition and Base Complement Additions as
Algorithms for Computing Multi-digit Subtraction

DECOMPOSITION

BASE COMPLEMENT ADDITIONS

1. Use is made of place value

1. Use is made of place value

2. Could be modeled using

2. Could be modeled using

Manipulatives Manipulatives
3. Symbolic representation has three 3. Symbolic representation has three
phases: phases:
Renaming/expansion Renaming
The crutch The crutch
The formal The formal

Table 1-3. Commonalties Between Decomposition and Base Complement Methods

DECOMPOSITION

BASE COMPLEMENT ADDITIONS

1. Computation is usually subtractive
and compound

1. Computation is additive and usual
simple

2. Renaming is based on reducing a
place value in the minuend

2. Renaming is based on adding base
complement, of the subtrahend, to
both minuend and subtrahend

3. The deep-end approach may not be
appropriate for instructional sequence

3. The deep-end approach may be
appropriate for instructional sequence
(Not yet researched)

4. Uses expansion to rename/ transform
compound to simple subtraction

4. Uses the idea of balancing to rename/
transform compound to simple
subtraction

5. With respect to use of manipulatives:
Use is made of Dienes blocks, abacus,
sticks, bottle tops, number tray, etc.

5. With respect to use of manipulatives:
balance scale, numeration cards,
Dienes blocks and algebra tiles are
useful

6. The following errors are common:
reversal, borrowing without reducing the
minuend and borrowing across zero

(=)

. The following errors are absent:
reversal, borrowing without reducing
the minuend and borrowing across zero

7. Renaming by way of expansion is
unique with compound subtraction

7. Renaming by way of balancing could
be transferred to the concept of
“equivalent equations” which is useful
in algebraic manipulations
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8. Borrowing when subtraction is simple is | 8. Application of base complement
not possible addition when subtraction is simple

could be possible. [This could be a

problem if not well handled]

9. Subtraction is usually not easy with 9. Subtraction is always easy with multi-
multi-digit subtraction (subtraction digit subtraction of whole numbers
involving more than four digits)

Table 1-4. Differences Between Decomposition and Base Complement Methods

Some Early Research Efforts

The D algorithm dates back to 1140 and was first introduced to America in
1822 (Smith, 1925). Johnson (1938) indicated that by 1875 many textbooks in United
States were using this approach. The equal additions algorithm (EA) dates back to the
writings of Fibonacci in 1202. And there have been more than 16 studies and many
articles investigating the relative merit of these approaches of teaching compound
subtraction since the turn of the century. Below are the most significant ones.

Smith (1925) believed the equal additions algorithm was “justly looked upon
as one of the best plans by most of the fifteenth and sixteenth century writers, and we
have none that is superior to it at present time” (p.100). Smith also noticed that prior to
1820 this approach was the only method used in the United States. According to Johnson
(1938) the equal additions method prevailed in Illinois until 1850. Proponents of this
method claim that it results in faster and more accurate computation, solving the
difficulty present with the D algorithm when successive zeroes occur in the minuend.

A distinct disadvantage of this method, however, is the difficulty of rationalizing
it. Commenting on the difficulty of developing the equal additions algorithm
meaningfully, Gagg (1956) wrote:

The equal additions method is not so logical as the other. . . The children will see
that adding ten to each does not alter the answer (p.30). The author continues to
endorse the algorithm stating that “This is just one of those rare occasions when
many children will just have to believe what you say about the method being
accurate” (p.30).

Which Algorithm To Use

The controversy over the best algorithm to teach compound subtraction to
students began in the United States early in the 1900s (Trafton, 1970). In 1914, P. B.
Ballard conducted an experiment in England exploring the three algorithms. Ballard
conducted his investigation with 18,600 pupils ranging, in age, from 8 to 14. The study
was based on a timed arithmetic test. The result indicated that the EA subjects were more
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accurate and faster than the D pupils. The investigator indicated that an obvious
disadvantage occurred when zeroes were in the minuend. According to Ballard, the EA
method was superior to the D method (Osburn, 1927).

In 1918, W. W. McClelland compared the equal additions method and the D
method and stated:

The complete result of the comparison of the two methods may thus be
summarised by saying that the method of equal additions appears superior in
speed, accuracy, and adaptability to new conditions, while the method of D is
superior in speed after long practice (Osburn, 1927, p. 239).

Johnson’s preliminary efforts involving several methods of subtraction took place
in 1924 and 1931. After investigating speed and accuracy with college students, adults,
and fifth through eighth graders, he concluded that subtraction using EA method resulted
in more accurate and faster computation than the D method. Johnson’s most influential
work was his doctoral study conducted in 1938. His subjects included 1054 third through
eighth graders and 43 adults. He compared the performance efforts using the D, EA and a
third method, the Austrian (A) approach to subtraction. Accuracy and time were the
criteria used to measure the effectiveness of each algorithm.

Johnson (1938) summarized two of his significant findings as follows:

Other things being equal, the D technique in subtraction of whole numbers is, by
its own intrinsic nature, by far the poorest method to employ from the standpoint
of both accuracy and time. When compared to the equal additions method, the D
method produces 18% more errors and requires 15% more time (p. 66).

Murray studied the speed and accuracy of over 3000 children comparing the D,
EA and A methods of subtraction. The subjects included 1622 youngsters just learning
compound subtraction and 1675 subjects, ages 10-11, already familiar with subtraction.
Murray found that the D group were significantly inferior to both EA and A groups in
accuracy and rate for both age groups. Murray’s findings influenced the Committee on
Primary School Subjects to recommend the EA approach to be adopted as the sole
method taught in the schools of Scotland (Murray, 1941).

In Ray’s Arithmetic (1857), the EA method was described in approximately the
same way as above and the remark made is that the EA method of proceeding is the one

generally used in practice, it is more convenient and less liable to error, especially when
the upper number contains one or more zero.
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The Transition

Two researchers Brownell and Moser (1949), comparing the effectiveness of D and
EA methods, showed that the D method when taught meaningfully was the more
successful method. According to the report the EA method was difficult to rationalise, the
use of crutch facilitated the teaching and learning of the D method, and children
discarded the crutch when encouraged to do so by teacher. No comparative research of
such import on the merit of the best algorithm for teaching subtraction has been
conducted since the Brownell-Moser (1949) study (Suydam & Dessart, 1976; Trafton,
1970). Whereas the old method studies focused on speed and accuracy, the more recent
research studies focused on understanding.

Neureiter (1965) advocated D for its effectiveness in reinforcing place value
concepts and continued that:

The long controversy, of the past, ended with the all-out American choice of the
decomposition method of subtraction (borrowing), between composition and
equal additions methods. Although research had shown certain advantages in
terms of speed and accuracy for the additive method, American educators agreed
that decomposition should be preferred because it fits best into the concept of

meaningful instruction since its mathematical bases is easily understood by
children (p. 277).

As indicated above the EA method is difficult to model with manipulatives and
does not really model the subtraction process. Though it had been compared with the D
method in many research studies and in most cases it had been shown to be a superior
teaching tool when meaning and understanding were not factors (Jerman & Beardslee,
1978). Similarly studies by Grossnickle and Reckzeh (1973) showed that the D was
preferred, for EA method was very difficult to objectify.

Rheins and Rheins (1955) conducted a comparative interview study of
subtraction methods with eighth graders. They concluded that D, generally, was not
inferior for the more intelligent subjects in their sample, and for less intelligent portion, D
proved to be superior. However, Weaver (1956) criticised this research. He pointed out
that Rheins data did not tell anything about the value of meaningful teaching. In their
computation for accuracy, Weaver noted that 36% of the problems in Rheins study
requires no regrouping.

It is clear from the above literature that extensive research work has been done in
the area of subtraction algorithms. Though D started about a century before the
introduction of EA, the early investigations preceding the Brownell-Moser (1949) study
indicated a general preference for the EA algorithm, based primarily on speed and
accuracy. Brownell’s (1949) classic research endorsed the teaching of subtraction via the
meaningful development of the D procedure. This research led to the adaptation of the D
method for the entire United States and many parts of the world. But according to
Johnson (1938) and Murray (1941), it was the poorest method if one is looking for speed
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and accuracy of computation. I wonder how one research study could convince teachers,
curriculum developers, mathematicians and mathematics educators to use the
decomposition method even though it had been found in earlier studies as the poorest
method with respect to speed, accuracy and retention? It appears that it is because of its
meaningfulness to learning through its modelling with manipulatives that it was so
widely accepted. If this is the case, then why not give the EA method a trial by
researching its strengths when taught with manipulatives?

Other Research Efforts

Martin (1992) conducted a comparative study of 178 students in second and third
grade in a rural setting of South Illinois. There were D and EA groups for each grade
level. The study covered three weeks of instruction followed by ten days of retention
during which period there was no compound subtraction taught. The results were as
follows:

Immediately following instruction there were no significant difference between
the computation post-test of the D and EA among the second and the third
graders. However, the difference which was shown favoured the D group. With
respect to post-test it was concluded that the D group produced better computation
accuracy among the second and the third graders than the EA group. The
difference was greater for the third graders than for the second graders. The
transfer post test and post-post test favoured the D group. The mean for the D
group at both grade levels were higher than those for the EA group (pp. 48-49).

A weakness in this research was that the teacher-implementers did not know anything
about EA algorithm and Martin (1992) had to brief them before each instructional period.

In their article published in 1999, Ross and Prat-Cotter conducted a thorough
research study and stated that:

The algorithms used for subtraction vary. In the United States, three different
algorithms were used almost equally until the 1940s: the equal additions, the
decomposition, and the Austrian method. After William Brownell modified the
decomposition algorithm, the use of other algorithms was practically eliminated
in mathematics textbooks. Today, some texts introduce the equal equal additions,
but the decomposition is still the predominant algorithm (p.389).

The above statement is an indication that the EA algorithm is now being introduced in
some textbooks, even though its mathematics is not modeled with manipulatives.
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Justification for the Research Study

The algorithms used and the language used to describe subtraction have
changed since 1940s. One of the most dramatic changes in algorithms seen in the last
century was the introduction of Brownell’s crutch. This new version of the D algorithm
completely changed the way subtraction was taught in the United States and Ghana. The
rapidity with which the D algorithm became dominant could be due to many factors, one
of which was the way research was distributed. Throughout the 1920s and 1930s,
research indicated the D algorithm was the weakest of the three algorithms. The research
at that time might not have had the widespread impact that it had in Brownell’s day,
possibly due to publication practices (Martin, 1992; Ross & Pratt-Cotter, 1999). But it
was quite clear that most of the research studies were in favour of the EA. I, therefore,
strongly agree with Gyening’s recommendation (1993) that a research study should be
conducted to investigate the relative efficiency of D and BCA methods in terms of speed,
accuracy and retention. BCA method, a modification of EA method, is rather easy to
objectify with a model in order to make subtraction more meaningful.

If BCA could compete favourably with D, then it could be recommended to
teachers as an alternative approach to teaching compound subtraction, when necessary (as
stated above). After all we are usually not restricted to use only one method in solving a
problem in mathematics.

Learning Theories Underpinning the Instructional Methods for this Study
Procedural Learning

Procedural learning, unlike conceptual learning, which focuses on ideas and on
generalizations that make connections among ideas, focuses on skills and step-by-step
procedures without necessarily making explicit reference to mathematical ideas.

Procedural knowledge has two distinct parts: representation system and
algorithms, for completing arithmetic tasks. The first part is sometimes called the “form”
of mathematics (Byers & Erlwanger, 1984). This is the symbols for mathematical ideas
and syntactic rules for writing the symbols. The second part of procedural learning
consists of the step-by-step instructions for completing tasks (i.e. algorithms). Procedural
systems are usually structured and hierarchically arranged. Thus some procedures are
embedded in others as sub-procedures. The super-procedures are entire sequence of step-
by-step prescriptions- i.e. the target tasks (Hiebert & Lefevre, 1986).

The relationship between conceptual and procedural knowledge is obviously
crucial during the early years of the child’s education (Baroody, 1982; Ginsburg, 1977,
Hiebert & Lefevre, 1986; Sinclair & Sinclair, 1984). It may result in symbols with
meaning and procedures that can be remembered better and used more effectively
(Hiebert & Lefevre, 1986). Proponents of “meaningful” learning and teaching of
arithmetic suggest that understanding of the paper-and-pencil computational procedure is
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achieved through a solid conceptual basis (Brownell, 1935; Byers & Herscovics, 1977;
Skemp,1978). In other words the procedural knowledge must rest on a conceptual
knowledge base. The implication here is that conceptual knowledge is to form a support
system for procedural knowledge (among others). But it is also known that procedural
knowledge can be achieved without conceptual knowledge. Such can be quite limited in
terms of solving non-routine problems unless it is connected to a conceptual knowledge
base. Hiebert (1986) offers an interesting example, if a person knows how to prepare a
meal only by following explicit cookbook directions the person will be helpless. The
person is unlikely to modify a recipe according to taste especially when the needed
ingredient is unavailable or when the cookbook fails to talk about it. But when the
person’s procedural knowledge of cooking is enriched with conceptual information about
the spices, and the role of various ingredients in the cooking process, then the person is
likely to apply the knowledge to novel situations (pp. 184-185).

Algorithms and Procedural Knowledge

Ashlock (2002) also points out that procedural learning may be based on concepts
already learned. He supports the claim that standard algorithms can be taught so that
students understand the concept and reasoning associated with procedures. This means
paper-and-pencil procedures could involve both conceptual and procedural knowledge.
Therefore as indicated above students are not merely mechanical processors. Ashlock
(2002) maintains that when students use specific paper-and-pencil algorithm, the
procedure becomes more automatic. Repeated use of an algorithm over time brings about
less conceptual knowledge and more procedural knowledge. He termed this as
“proceduralization” (p. 9). As support for the teaching of computation skills in school,
Ashlock quoted NCTM’s Principles and Standards for School Mathematics as follows:

...students must become fluent in arithmetic computation- they must have
efficient and accurate methods that are supported by an understanding of numbers
and operations. “Standard” algorithms for arithmetic computation are one means
of achieving this fluency (p. 9).

From the context of the relationship between conceptual and procedural knowledge
(above), the use of paper-and-pencil algorithms, even in this contemporary world of
technology, is appropriate when it makes sense to do so.

Instrumental and Relational Understanding

Skemp (1978) has clearly distinguished between “instrumental” and “relational”
understanding. He refers to instrumental understanding as a kind of rote procedure and
relational understanding as the procedure with “understanding”. He further explained that
relational understanding has a rich supply of conceptual knowledge base for the
procedures. However, some students have procedural competence only (as indicated
above) and thus cannot use their procedural knowledge to solve non-routine problems.
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These students, according to Skemp, have only the instrumental understanding of their
procedures. Thus with respect to transfer of knowledge, for solving non-routine
problems, relational understanding is preferred (Hiebert, 1986; Skemp, 1978). But despite
all odds, many teachers teach instrumentally. Are there some reasons why teachers might
teach for instrumental understanding? Could there be some advantages for teaching
instrumentally? Gordon Calvert (2002) summarized Skemp’s work as follows.

Instrumental Understanding

Relational Understanding

Maths is a series of rules, laws or
algorithms to remember

Maths is about relationships and
asking “why” or “what if?”

If you do lots of examples of the same
type you will learn the rule

Examples are not repeated often. They
tend to be different to each other

Children taught in this way often want
to be “shown one like it” at the start of

Children expect to understand rather
than remember

the lesson

Teachers doing this are often thought
to be “good teachers” because they
“explain”

Children sometimes complain, “she
won’t explain!”, “She always asks
another question!”

Gordon Calvert

Table 2-1. Instrumental and Relational Understanding

Why Teachers Might Teach for Instrumental Understanding

new

Though mathematics taught relationally is easier to remember, more adaptable to
tasks, is organic and a goal in itself, many teachers do not teach this way (Skemp,

1976). We might ask why so many children are taught for instrumental understanding?
Skemp (1976) gave some reasons for which individual teachers might make the choice to
teach for instrumental understanding.

That relational understanding takes too long to achieve, and to be able to use a
particular technique is all that these pupils are likely to need.

That relational understanding of a particular topic is too difficult.

That a skill is needed for use in higher mathematics and other subjects like
science before it can be understood relationally with the schemas presently
available to the pupils.

That all the other mathematics teaching is instrumental.

The quantity of information that is required by syllabi. (p. 24)
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The implication of the above is that the teacher must consider alternative goals, of
instrumental and relational understanding on their merit in relation to a particular
situation, to make a choice. To make a reasoned choice, according to Skemp (1976), one
must be aware of the distinction between relational and instrumental understanding.

Advantages of Instrumental Mathematics

Skemp (1976) suggested reasons, by offering three advantages, for teaching
instrumental mathematics.

e With instrumental thinking one can often get the right answer more
quickly and reliably than with relational.

¢ Instrumental mathematics, within its own context, is easier to understand.
Some topics are very difficult to understand relationally. A typical
example, here, is “Minus times minus is plus”.

e From the reasons above the rewards are more immediate, and more
apparent. It is nice to get a page of right answers and have the feeling of
success from it (p. 23).

It must be recalled that a school is well known to chalk successes if very high percentage

of students from the school pass final exams. From the above if what a student wants is to
simply get the right answers, one could understand how a teacher may believe that
instrumental mathematics may be quicker and easier rate.

Transfer of Learning

One of the traditional conceptions of associationist psychologists has been the view
that learning one task successfully helps one to learn another task in so far as the tasks
have the same set of associations. This is the concept of transfer of learning known as
“the identity element theory of learning”. Gagné (1963) represents the most successful
person to apply this idea of transfer rigorously to math’s curriculum, which he refers to as
“the cumulative learning theory (CLT) or the theory of learning hierarchies”.

The CLT of Gagné starts with a task analysis of ordered sub-skills. He begins his
hierarchy by asking, “What does the child need to know how to do in order to be able to
perform the task if given only instruction?”. This generates subordinate skills or sub-
skills to the target task. The same question is asked again to generate further pre
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requisites or sub-skills to the preceding sub-skills. This procedure according to Gagné is
repeated until a successively simpler set of skills or hierarchy is generated. The skills do
not go beyond the level where the student is assumed to have mastered relevant skills. A
few features and assumptions are built into the learning hierarchies. A task position
higher in a hierarchy does not mean that it is harder to learn than skills below it. The skill
above may in fact be more complex than a successively lower skill because it
incorporates all the lower skills. A sub-skill identified in the hierarchy may also play a
role in other hierarchies. The target task, also, is supposed to incorporate all the
components of the subordinate skill (Gagné et al, 1963).

The Implications of Transfer of Learning for this Study

Gagné’s theory of hierarchies has a number of implications for mathematics
instructors. In the first place, it makes the researcher aware of the need to break down the
entire instruction into smaller units of a teaching sequence and to give treatment from
simple to complex so that “transfer of learning” can enhance learning. The pre-
intervention test involved the use of learning hierarchies must be diagnostic in nature.
This can help the researcher to capture the capabilities of the participants and assist the
researcher in determining where to start the intervention. Testing also reveals individual
capabilities and therefore calls on the researcher to adopt individualization of instruction
whereby individual attention is given to participants according to their need. Research
evidence from students in learning hierarchies indicates that some students benefit from
the deep-end approach; this implies that treating all your participants in the same manner
can constrain some able participants, or in fact cause harm to others. Gagné’s theory of
hierarchies, therefore calls the attention of the researcher to individual differences in
participants and therefore ensures that the researcher adopts instructional approaches
beneficial to all participants.

Use of Manipulatives

Zoltan P. Dienes (1973), is credited with an idea that involved preparation of
materials for the achievement of instructional objectives. His theory of learning cycle
therefore starts with giving children a large variety of structural materials concerning the
concept to be taught. Initially, the child is expected to interact with these materials in a
free play way. Dienes believes that children are naturally attracted to the properties of
structural materials: shapes, size, color, pattern etc. This process he believes, must not be
hurried since it is an essential process and concept is embedded in it.

The next stage according to Dienes (1973) is the process of structural play. In
this process the learner starts with the abstractions of a concept. He, therefore, extracts
properties common to a given principle while discarding those that are not common to the
principle or concept. Dienes contends that the materials should be presented to the child
in multiple embodiments. That is, different sets of materials each embodying the concept
of interest should be presented to the child to ensure perceptual variability. Central to
this, according to Dienes, is recognition and stressing of mathematical variability. In this
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case, a concept is developed using various relevant forms and structures. In teaching
place value for instance variability may be place value involving other bases like base
five, six etc. This helps to ensure that application is not restricted, in a sense, to the child.
This leads to mathematical variability. It is after these processes that Dienes suggested
the use of graphs, images, maps, etc to abstract knowledge that has been gained. This
stage according to Dienes is the pictorial representation. Even in this case, he believes,
symbolism could be initiated by the child, using or adopting his’her own symbols
(Dienes, 1966; 1970; 1973).

Implications of the Use of Manipulatives for this Study

Dienes’ approach to mathematics instruction has relevance for this study.
Children are able to abstract knowledge better if they are given the opportunity to interact
with teaching/learning materials. In giving the intervention, therefore, the researcher
should provide teaching/learning materials to enhance abstraction. The child who goes
through a lot of activities for preparation and then uses the manipulatives this way for
solution to the problem practically is more likely to work better with meaning than the
one who has just been taught to apply the algorithm. On the other hand, the use of
manipulatives is essential to meaningful teaching and learning of BCA.

The Dienes concept also implies that the researcher does not hurry through the
activities but progresses from one stage to the other such that participants can rely on
experiences in previous activities to solve new problems. Instructions need not be tied to
only one type of instructional material for teaching a concept. In order to assist children
to learn with meaning without attaching properties or principles wrongly to certain
properties of material, several materials embodying the concept of interest should be
employed in the treatment. The researcher should not start treatment with abstract ideas.
There should always be a basis for abstraction that makes it easier for children to store
images of objects they interacted with as a transition to abstraction and symbolism.

Bruner’s Phases of Instruction

In his theory of “the sequence of conceptual development” Bruner (1964)
describes three modes of representation. These modes of capturing experience in the
memory are enactive, iconic and symbolic. Enactive representation is the concrete level.
Here children manipulate with materials directly. In the classroom, this is the level that
involves concrete objects. “Iconic” is the second phase of representation. Iconic phase
takes a step away from the concrete and physical to the mental imagery. According to
Bruner, iconic representation is what happens when the child “pictures” an operation as a
way of remembering the act and recreating it mentally when necessary. Such mental
pictures do not include every detail of what happened but summarize events by
representing only their important characteristics. In the classroom, this is when we might
use pictorial representations including drawings, sketches, diagrams and pictures. The
symbolic representation is the third way of capturing experience in the memory. This
phase is made possible by the advent of language competence. A symbol is a word or a
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mark that stands for something but in no way resembles that thing. For example, the
numeral 9 does not look at all like an actual array of object having that property and
neither does the word “eight”- each of these symbols are completely abstract.

According to Bruner writing mathematical operations using numerals, simple
equations, and operation signs (+, -, =, etc) is the beginning of symbolic representation.
Children soon learn to think about their performance in terms of the same symbols, which
opens up the new possibility of abstract thinking. The three modes of representation are
related developmentally (Bruner, 1964). Each depending on the one preceding it and
requiring a great deal of practice before the transition to the next mode occurs.

Bruner claims that any idea or problem or body of knowledge can be presented in
a form simple enough so that any particular child can understand it in a recognizable
form; that is, there are ways to present complicated concepts such that children of any age
would understand them at any level. He continues that any teaching, of a new concept,
that follows the order enactive, iconic and symbolic is the best. And even though some
students might be quite “ready” for a pure symbolic presentation it seemed wise to
present at least the iconic mode as well so that the learners would have mental images to
fall back on in case their symbolic manipulations fail (Bruner, 1959; Bruner, 1966, p.44).

Implications of Bruner’s Phases of Instruction for this Study

Bruner’s “phases of instruction” creates awareness for the researcher regarding
the planning of the instructional sequence. It indicates that when teaching a new concept,
the three phases are very necessary to bring about meaningful learning, enhance retention
and retrieving information from the memories. This approach will help the participants of
the study. Furthermore, the three phases of instruction promote discovery learning. For
participants can see, feel, manipulate and play with physical materials to abstract
concepts. Since each phase depends on the one preceding it and it requires a great deal of
practice before the transition to the next phase can occur, the researcher should allow
participants to do a lot of exercises during treatment.
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CHAPTER 3 - METHODS AND PROCEDURES

Introduction

The study investigated the effects of an intervention based on subtraction of
multi-digit whole numbers, when the new algorithm, BCA, was taught using
manipulatives. Two students participated in the study. One was in grade 4 and the other
in grade 5.

In this chapter information on the research design and recruitment of participants
are presented. Following this general outline of study, procedures used in analyzing the
data and the instructional setting (the development of instruction sequences for the D and
the BCA approaches to solving subtraction that involves renaming) are discussed. The
instructional sessions, evaluation instruments and the summary of activities are also
featured in this chapter.

Design of the Study

The study, which took approximately eight school weeks for each participant, was
divided into three phases. The procedure was the same for both participants for they both
sat together to receive instruction, at the same time, and at their own residence.

Phase I consisted of a pre-intervention test and an interview. The pre-intervention
test assessed entry behavior of participants and the pre-intervention interview helped to
know more about participants and how they did subtraction in general. Phase I also
included a review of some basic subtraction facts, place value and a review of doing 2-
digit subtraction requiring both grouping and non-grouping. The D method was reviewed.

Phase II was the intervention and it covered five contact periods. A sequence of
instructions was given to participants. It was mainly based on the BCA. The BCA was
meaningfully developed with participants, to cover the enactive, iconic and symbolic
phases of representation. The intervention was followed by an intervention test; but there
was no interview at this phase.

Phase III was conducted 14 days after phase II for both participants. The same
post-intervention test was given to each participant in the study. A day after the test, post-
intervention interviews were conducted with each participants. The purpose was to
determine how meaningful the instruction was to participants. It was conducted to find
out if students were still sticking to their old methods and thus, it was a measure to
observe if there was any change in behavior of participants.

The fourth phase was the post-post intervention session. This was approximately

four weeks after phase III. At this phase unexpected tests were administered to the
participants to confirm the authenticity of the findings of the study at phase III - which
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were far beyond the expectations of the researcher. On account of that, immediately after
the post-post tests, the third interviews followed and audiotaped. Table 2-2, below, gives
a diagrammatic view of the design of the study.

Sessions Description of Activities Date

1 Pre-intervention test November 13, 2000

2 1* Interview November 14, 2000
1*" Instructional Period

31 Using numeration cards to model compound November 15, 2000
subtraction
2" Instructional Period

4t Diagrammatic representation of activities of the | November 17, 2000
3" session

5" 3" Instructional Period November 18, 2000

Renaming of subtraction expressions

4" Instructional Period

Revision of activities of the 5™ session.
6™ The three stages of the symbolic phase of November 20, 2000
renaming- i. €. expansion, the crutch and the
formal.

5" Instructional Period

The formal analyzes of the third phase was
7t stressed. November 21, 2000
Discussions based on transfer of learning from
two to three and four-digit numerals

gt Intervention Test November 22, 2000
g Post- Intervention Test December 6, 2000
10™ Post- Intervention Interviews December 7, 2000
11° Post-Post- Intervention Tests January 5, 2001

Post-Post- Intervention Interviews

Table 2-2. The Design of the Study
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Recruitment of Participants

The researcher, unfamiliar with local schools and school personnels, registered
and participated in a study buddy program with the aim of getting participants for the
study. But some questions came to his mind when he was in the program. These were:

e How long will it take for Cooperative Activities Program (CAP) to go through
before the research could start?

o Students have already been introduced to using the D algorithm in computing
compound subtraction. The question here was “what if learning BCA brings
interference and thus causes students to be worse off in arithmetic skill
development, forgetting their old method D and not understanding the BCA?”

o Can I get volunteers for the study?

o When and where could be appropriate for both participants and the
researcher to do the study?

The above questions troubled the mind of the researcher. Eventually the thought of
recruiting from the church members so that the study could be done outside the normal
classroom came. Recruiting students in this way offered the possibility for the researcher,
an international student, to carry out the study in Canada rather than returning to Ghana.

By arranging with the presiding elder of the church of Pentecost, Edmonton, an
announcement was made to ask for interested students. Four students came forward to
participate in the study. However, only two were chosen after a preliminary interview
based on:

e Their involvement in the activities during this introductory interview;
e Their willingness to participate in further interviews;

e Their willingness to identify, reflect upon, and discuss issues on the subject
matter;

e Students who already knew how to do subtraction that involves renaming;
o Their availability at any time.

The two students who were selected were of the same parents. Both children were
enrolled in the same primary school during the fall of 2000. One child was in grade 4 and
the other child in grade 5. Prior to the study the two students had been introduced to
working compound subtraction by way of D. Thus it was assumed that students already
knew what place value was, how to do simple subtraction and also how to do exercises
based on compound subtraction.
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The parents were asked for their children’s participation in the study and
fortunately they requested that all sessions be conducted in their residence. The parents
were informed of their option to withdraw their wards from the study at any time, without
affecting the children in any way. Examples of the letters sent to the parents are found in
Appendix A. The parents, however, did not withdraw the children from the study.

Procedure

The study began on November 13, 2000 and ended on January 5, 2001. First, the
participants were given the same set of test items to do. This was then followed by
interviews. Each interview was conducted in such a way that there was one person at a
time with the researcher. The researcher met participants everyday for 8 days, during
which the participants were given instructions on a new algorithm for doing compound
subtraction. After which there was a break for 14 days. After the fourteenth day the post-
intervention tests and interviews followed consecutively. Four weeks after the post-
intervention test and interviews came the post-post intervention tests and interviews in
the same session. All these occurred at the end of the day after the participants’ formal
school hours.

The instructional periods started from the third session and ended on the eighth
session with a test. The duration for this intervention, which covered 5 instructional
sessions, was approximately 35 minutes for each contact period. All the tests, instructions
and interviews were centered on subtraction that involves renaming. All the interviews
were audio-taped; the transcribed audio-tapes, the test papers and the working papers
form the bases for the data required for the study.

Instructional Intervention

After a pre-intervention test and pre-intervention interviews, the researcher and
the participants had a short discussion of how to solve compound subtraction using the D
method. This was followed by the intervention, which was BCA for compound
subtraction. From my point of view, the intervention and the interviews were the
hallmark of the study. Each session was characterized by the researcher’s explicit goal to
foster the generation and evolution of the participants’ understanding of the BCA
algorithm by judiciously selecting tasks and, second, by researcher-participants
interdependent activity through verbal and nonverbal communication. Consequently,
researcher-participants interaction was the result of collaborative communication in
which language was used as a tool to achieve and express cognitive processes.
Theoretical bases for the instructions, discussed in chapter two as the “learning theories
underpinning the instructional methods for this study” were the key to developing each
session. However, it should be noted that instruction in the sessions was modified
continually to the students’ ways of understanding of the topic at hand as revealed by
his/her answers and explanations.
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Application of the Learning Theories to the Instruction

The instructional activities for BCA involved concrete representation of the
transformation as well as diagrammatic and symbolic representations (of BCA). To
master the new algorithm, BCA, the Diene’s principles for mathematics instruction (on
structural materials for achievement of instructional objectives) and Bruner’s phases of
instruction were used. The two theories cover representations using concrete materials,
followed by image formation of the first representation, which is done by using diagrams.
These, mentally, bring the objects, which are not physically present to the classroom for
further discussions. The third phase is the symbolic representation. This carries
knowledge to abstract realms. For concepts to be understood meaningfully, depends on
proper integration of these three representations or at least two of them (see next chapter).

In Dienes (1973), theory of preparation of materials for the achievement of
instructional objectives, there were representations that were not directly mentioned in
Bruner’s approach; but all were considered in the study. One representation is “free play”
in which children are naturally attracted to properties of the physical materials: shapes,
size, color, pattern etc. Another representation is “multiple embodiment” in which
different sets of materials each embodying the concept of interest is presented to the child
to ensure “perceptual variability”. There is also “mathematical variability” in which a
concept is developed using numeration cards. The researcher presented the learning
situation first in free play before it became structured. At the free play stage Rubin wrote
numerals at the back of some of the small cards- the ones. He and his sister used these as
a game on one of the flat cards, which represents a hundred. Their play was such that it
worth studying; it has the potential of promoting interpersonal communicative skills. The
researcher also used different colors and different sets of teaching/learning aids (e.g.
straws; algebra tiles; ones, longs and flats of Dienes blocks; cents, ten cents and dollars)
for multiple embodiment and perceptual variability.

At the symbolic phase of representation are three stages: renaming, the crutch and
the formal. The target task of the BCA is to operate at the formal stage of the symbolic
representation. The BCA algorithm was procedurally developed; but more importantly
conceptually informed through the enactive and iconic phases of representations for all
the eight pre-requisite skills (see chapter 4). Thus for meaningful transfer from
two/three-digits to multi-digits compound subtraction, the researcher put the entire
intervention into smaller units of teaching sequence and gave treatments from simple to
complex. Application of BCA to many different compound subtraction examples made
its use become automatic and appeared less conceptual and more procedural (Ashlock
2002) and therefore more appropriately “instrumental” in use.
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Instructional Sequence for Discussion on Decomposition Algorithm

Step1. Development of the concept of renaming using manipulatives such as bundles of
sticks and numeration flash cards;

Step 2. Revision of renaming process by way of the manipulatives mention above;

Step 3. Use of number-words to express the renaming of numbers, for example: 72 = 7
tens, 2 ones renamed as 6 tens, 12 ones.

Step 4. Application of D in horizontal notation; e. g. 456 — 238

Step S. Application of D in vertical arrangement;

e.g86
29
Step 6. Renaming at both the developmental and final stages, in the vertical form. For
example:
® (12 ® (12
9 tens, 2 ones 9 2
- 5 tens, 6 ones - 6
Step 7. Extension of algorithm to 3-digit numbers; special attention paid to zeroes in the
minuend.
(69) (14)
For example, 704 704
- 36 -36

Step 8. Using the D algorithm with word problems.

It is important to note that participants had been introduced to the D algorithm for
at least three years so the above revision took one contact period only. After revision of
the D algorithm with participants, the BCA algorithm was introduced to participants.
Below are the main features of the BCA.

The Main Features of the Instructional Sequence for BCA

Step 1. Use of numeration cards
o for expansion of numbers (the idea of place value)
e for the concept of base complement
¢ modeling subtraction
Step 2. Discussion of types of subtraction
e simple
e compound
Step 3. Identification of simple and compound subtraction from group
of expressions.
Step 4. Renaming, using the idea of
e equivalent equations (from equivalent zero addition)
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e base complement additions (Use of numeration cards for the enactive
representation before proceeding to diagrammatic and symbolic
representations.)

Step 5. Stages of base complement additions
a. 21 +3 24
- 17 3. 20  (renaming)
4

24
b. 21 (using crutches)

o

20

c. 21
-17 (formal application)
4
Step 6. Exercises based on step 5, above
Step 7. Word problems that will involve compound subtraction
(two digits only; use must be made of BCA only, in
computation).
Step 8. Extending BCA to three digit-numbers.
¢ identification of which subtraction at a place value is simple or compound
e typical examples of how three-digit compound subtraction are worked using
BCA
Step 9. Exercises based on step 8 above
Step 10. Word problems related to step 9 (above).

Instructional Sessions

1% Session: pre-intervention test. A set of subtraction questions was given to
participants to try. The purpose was to observe individual participants’ various
approaches to subtraction. These observations were used to provide a clue to the
interviewer about the line of questioning that would be used in subsequent sessions. The
interviews were to find out participants’ thinking regarding subtraction that involves
renaming. They were also conducted to find out the various procedures students employ
when doing subtraction that involves renaming. (Refer to appendix B.)

2" Session: pre-intervention interviews. These interviews were conducted and
audio-taped in the house of participants. A participant was called and interviewed whilst
the other was asked to play in another room. A complete interview took 40 minutes for
the first participant and 35 minutes for the second participant. Children bring to school
some informal counting procedures, some knowledge of numbers, and some
understanding of physical operations (Carpenter & Moser 1982). Thus there was the need
to examine variations in how children process information prior to, during, and after
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formal instruction. The interviews, in this session, were conducted purposely to find out
participant’s entry behaviors. They were also conducted mainly to find out the informal
strategies students already have and also their level of understanding of the D algorithm
for solving compound subtraction. (This strategy was developed because of Gagné’s
(1963) suggestion that instruction should be informed by an awareness of the student’s
sub-skills for the new skill to be acquired.)

3" Session: It was the first instructional period of the instructional sequence. This
session covered a discussion of types of subtraction, identifying simple and compound
subtraction from a group of expressions, an introduction to the numeration cards and
using numeration cards to model subtraction. Dienes blocks, algebra tiles, straws, etc.
were also displayed and discussed as alternatives to numeration cards. The duration for
this period was 40 minutes and activities were based on two-digit whole numbers.
Students participated together.

4™ Session: This was the second instructional period of the instructional sequence.
This session was mainly on diagrammatic representation of the modeling activities with
numeration cards of the third session. Activities of the first instructional period were
revisited with more intensive work concentrated on the iconic representations. Whereas
the first instructional period was characterized by the use of manipulatives, this session
was characterized by student drawings of the manipulatives that model specific
compound subtraction questions. This was done to link the manipulatives to the iconic
phase (Bruner, 1966). Activities were based on two-digit whole numbers only and the
duration was 30 minutes.

5™ Session: This was the third instructional period of the instructional sequence.
This session covered “renaming of subtraction expressions” using the idea of

e equivalent equations and

e base compliment additions

Use was made of numeration cards, diagrammatic and symbolic representations. After
using 10 minutes to discuss the enactive and the iconic representations, 20 to 25 minutes
was used to discuss the symbolic representations. To help participants to effectively
connect phases of instruction, activities were based on two-digit whole numbers only.

6™ Session: It was recorded as the fourth instructional period of the intervention.
This session was used to revise the activities of the fifth session and also to cover the
three stages of the symbolic phase of renaming compound subtractive expressions- i. €.
renaming, the crutch and the formal stages. Here, Dienes blocks and algebra tiles were
displayed and discussed as alternatives for numeration cards. Activities were based on
two-digit whole numbers. The duration was 37 minutes.

7™ Session: This was the fifth instructional period. This session was mainly a
revision of the sixth session activities. Use was made of word problems and application
of base complements. The formal analysis of the third phase of procedural development
was stressed. Discussions were based on transfer of learning from two to three and four-
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digit numerals. Application to numeration systems (bases 2, 3, 4, and 5) was discussed
briefly. This was to avoid interference with participants thinking processes, with respect
to base 10. (There was no revision for the numeration systems. It was discussed only
once).

8™ Session: It was recorded as session for the intervention test. This intervention
test was the second set of compound subtraction questions given to the participants. The
purpose was to find out if the students made sense of the intervention and were able to
use the BCA algorithm. The duration was supposed to be 30 minutes but participants
used less than 15 minutes to complete the test. (Please, refer to test B in Appendix B).

9™ Session: This was the post-intervention test session. This was conducted
fourteen days after intervention test. The purpose was to find out if the students were still
using BCA algorithm and to determine what method they spontaneously selected after the
intervention. According to Martin (1992), a fourteen-day period is enough for students to
fall back to their old methods, if the new method had not been understood. (Please, refer
to test C in Appendix B).

10" Session: This session was about the post-intervention interviews. The
interviews, which were audio-taped, were conducted in the house of participants. A
participant was called and interviewed individually, whilst the other was asked to be far
away from the scene. The interview took approximately 30 minutes for the first
Interviewee who was in grade 4 and 40 minuets for the second who was in grade 5. These
interviews were conducted purposely to find out whether participant’s entry behaviors
had undergone some changes. In addition, they were conducted to find out how BCA
contributed to their skill development, in terms of accuracy, speed and especially
retention. As well, these interviews were conducted to find out what kind of meaning the
participants made out of the intervention. On the other hand, the interviews were
conducted to find out whether participants were still clinging to the use of the D
algorithm for solving compound subtraction problems.

11™ Session: This was the final session with participants; and it was recorded as
the post-post-intervention tests and interviews period. The researcher conducted the
instructions to cover mainly two-digits numbers and tried to help participants to transfer
to three and four-digit subtraction. However, the two children were able to use the BCA
algorithm to solve subtraction questions with as many as eleven digits. This was first
discovered when, in a discussion they were asked to set questions for each other to solve.
This ability was clearly pronounced during interviews with the interviewees in the 10®
session. This was far beyond the expectations of the researcher; thus these post-post-
intervention tests and interviews were conducted, to find out how authentic the
participants’ claim was (Refer to Appendix B).
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Evaluation Instruments and Procedures

Two evaluation instruments were used to assess computational skill in solving
subtraction problems offered in a number of forms: horizontal presentation, vertical
presentation and word problems. The evaluation instruments (i.e., the computational tests
and interviews) were all designed and administered by the researcher. Copies of the tests
can be found in Appendix B. The evaluation instruments used in this study included:

Phase I: Pre-intervention Phase

- Pre-intervention test

- Pre-intervention interview
Phase II: Intervention Phase

- Intervention test

Phase III: Post-intervention Phase
- Post-intervention test
- Post-intervention interviews

Phase IV: Post-post-intervention Phase
- Post-post-intervention tests and interviews

Administration of the Tests
The Tests

The objective of the tests was to ascertain the participants’ way of operating with
natural numbers and their current methods of subtraction that involves renaming.

The study started with a pre-intervention test. The same test items were given to
each of the two participants. Though the time limit was 40 minutes the researcher was
very flexible with the time set for the test. Students were then given enough time to
complete the test. There were 20 test items in this pre-intervention test: 6 involved two-
digit subtraction, 3 had the subtraction expressed in the horizontal form, 3 questions
involved money and there was one word problem. All questions involved compound
subtraction. (Refer to Appendix B.)

The next test to be administered in the study, after the pre-intervention test, was
the intervention test. Each of the two participants was given the same test items to do.
The time limit for the intervention test was also 40 minutes. Students were assured of
enough time even if they were not able to complete the test within the stipulated time.
Like the pre-intervention test, the intervention test consisted of 20 items: 6 involved two-
digit subtraction, 3 had the subtraction question expressed in the horizontal form, 3
question involved money and there was one word problem. These all involved compound
subtraction. (Refer to Appendix B.)
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According to the researcher’s schedule, the last test to be administered was the
post-intervention test. Like the pre-intervention test and the intervention sets, the same
test items were given to each of the two participants in the post-intervention test. The
time limit was again 40 minutes, but was made very flexible for participants. There were
20 test items, in this test; 6 were on two-digit subtraction, 3 were on subtraction in the
horizontal form, 3 on money and one word problem. They were all on compound
subtraction. (Refer to Appendix B.)

Post-post-intervention tests were unscheduled according to researcher’s initial
program of activities. The post-post-intervention tests were administered as a follow-up
to the findings of the post-test. Unlike the pre-intervention, intervention and post-
intervention tests, the post-post-intervention test items were two different sets of test
items. These test items consisted of four, five, six and seven-digit numbers on compound
subtraction. They contain more word problems and questions that require investigations
and reasoning; they did not, however, require students to explain their reasoning. There
were no time limits for participants in these test items. (Refer to Appendix B.)

Analysis of the Tests

As seen above the learning of computational strategies was measured by
subtraction computation tests, which required at least an understanding of subtraction.
The test items were based primarily on the MATHQUEST (1984) text series. The
researcher selected test items from the subtraction computation sections found in the
third, fourth and fifth grade textbooks. The researcher assumed these questions were at an
appropriate level given they were found in the text resource the students were using in
their mathematics classes.

The researcher’s test consisted of 20 items involving whole numbers, problems on
money and some word problems. Items were presented in both vertical and horizontal
forms. The money items were all in the vertical formation. Out of the 20 test items, 4
were in horizontal form, 15 in the vertical form and a word problem. There were 6 two-
digit number items, 9 three-digit number items and 5 four-digit items. All the problems
were written in large print to allow for the crutch of either algorithm. Though 40 minutes
was indicated on the test sheet, participants were told not to mind it, but to finish their
work at their own rate. Matchsticks, bottle tops numeration cards, straws etc. were put
before participants to use when necessary (during the tests).

The pre-intervention, intervention and the post-intervention tests were identical
for each has the same number of items for two, three and four digits, vertical and
horizontal digits, money and word problems. The same set of questions was given to each
participant for the pre-intervention, intervention and the post-intervention tests. The post-
post intervention tests were different, but parallel forms. Each set had two sections; the
first section comprises of one example each on three, four, five, six and ten-digit
numbers. The second section had two aspects, the first aspect was a set of questions
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based on the ability of participants to determine which question is wrong/right and to
show the part(s) which is/are wrong. The second aspect was based on a value on a
paycheck. It required participants to find out if their expected value on the paycheck was
right or wrong. It asked them to write down how they were able to determine their
expectations and the method used. It also asked participants to write down reasons for
choosing a method.

The Interviews

According to Piaget (discussed in Ginsburg, 1981), an interview may have three
purposes: discovery of cognitive activities, the identification of cognitive activities and
the evaluation of competence levels. The first purpose enables the researcher to elucidate
students’ error patterns and ways of thinking during instances of problem solving. The
second purpose enables the researcher to investigate more completely patterns of
behavior in a variety of problem solving situations. The final purpose enables the
researcher to elucidate the highest mathematical level at which the subjects are able to
perform. An interview may focus on any one or more of these purposes in a given
interview or a series of related interviews. In this study, it was necessary to know the
entry behavior of participants and then learn about changes that had occurred during and
after the intervention. Thus a tool was necessary for the investigation of how students do
subtraction that involves renaming. Hence interviews were conducted for this purpose.
The interviews enabled the researcher to elucidate students’ error patterns and ways of
thinking during instances of problem solving in compound subtraction. In addition, they
were used so that the researcher could investigate more completely patterns of behavior,
since entry behavior was expected to change at the end of the intervention.

It must be recalled that one of the initial concerns a researcher faces is a concern
for the reliability and validity of the emerging data. Swenson et al. (1981) argue that: (a)
verbal data have a place in cognitive research, (b) there are no important limits and
constraints on their use: the level of questioning imposed upon subjects must be restricted
to that at which answers can reasonably be provided, for example, subjects cannot
reasonably be asked to comment on their neural functioning, (c) effective use of verbal
data requires paying careful attention to the limit of constraints, (d) provided this is done,
any of the remaining problems using verbal reflections are the same as those which apply
to traditional research methods. From this perspective the authors agree that interview is a
viable research methodology (Swenson, 1981).

The interviews were conducted over a period of 8 weeks. Although it was
important to keep the structure of the interview open-ended in order to accommodate
participants’ reflection and prioritization of issues, these questions were also developed in
order to focus on the participants’ thoughts. The following questions formed the
backbone of the interviews:

1. What is your personal experience regarding the use of subtraction? Can you
please describe your experience both at school and home?
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. What can you tell me about the use of technology (calculators and computers) in
the learning of subtraction?

. 1. Hereis a question 85  a. Will you do it for me?
-37  b. Can you tell me why you did...?

ii. Here is another question 90
-48 Can you use your strategy?

Students use different strategies in calculating subtraction of all kinds. Could you
explain the strategies you are using?

. Which strategy, in calculating subtraction, are you most comfortable with? Why?
. Do you feel that one method can promote arithmetic better than another can?
. Do you feel you have a choice in choosing your subtractive algorithm?

. In your opinion does the learning of both your own methods and that of teacher
increase your arithmetic competence? Why?

. If some body does this work:
9024

-4034
4090

Is the person right or wrong? What makes it right or wrong?

10. Is this correct or wrong?

4003
-2007
1006
How did you check your answer?

The interviews were taped and transcribed for analysis. The final clinical interview
probed the participants’ current knowledge of compound subtraction, after receiving the
intervention. A complete interview took approximately 40 minutes.

Analysis of the Interviews

The purpose of the interviews in this study was to determine the effects of the

BCA on participants’ computational skills. The interviews were conducted at each stage
to assess strategies used for subtraction. Interviews were conducted at the first stage to
find out the entry behavior of participants with respect to subtraction strategies they
already used. But the interviews at the post-intervention phase were conducted to assess
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whether participants have understood and could use the novel algorithm. As well the
interviews were conducted to find out if participants were sticking to their old algorithm,
the D, and if so, why? On the interview days, each student was called and interviewed
one at a time. The two were not paired since the researcher wanted to know the thinking
of each child with respect to the new approach to solving compound subtraction. The
interview times were pre-arranged with the parents and the interviews were not
conducted during regular school hours, but in the afternoons after participants had
finished school. The interviews ranged from a length of forty to forty-five minutes. The
interviewer went to participants’ residence and walked with participants to their big hall,
the location of interviews. The location maximized privacy and minimized external
distractions.

The interviews were made as open-ended as possible. Ginsburg (1981) says
interviews must be unstructured and open-ended to give the child the opportunity to
display his natural ‘inclination’ (p. 6). The interviews, of this study, were task-oriented
and flexible. The interviewer sometimes followed and pursued the student’s thinking,
asking questions until the student’s reasons for some responses were understandable to
the researcher. The direction of the interviews was, therefore, largely based upon the
responses given by the subject. In this way, the interviews were unstructured and open-
ended. The interviews began by asking participants to provide their full names. The
participants were informed that the researcher is not interested in their answers being
correct or wrong but how they understand and do subtraction work. They were informed
that the interviews will be audio-taped using a small recorder so that the researcher could
remember exactly what the participants had said/done when solving the problems. Each
question was presented to the participant one at a time and each question was read aloud
by the researcher. Participants were given several pieces of manipulatives to help them.
But the participants, generally, did not use the manipulatives during the interviews.

Summary

Pre-intervention, intervention and post intervention interviews were used to
collect data. In addition interviews were conducted, which were audio-taped, in each
phase to investigate learners’ thinking about the subject matter. Students’ working papers
were also collected and analyzed. In the pre-intervention session a set of subtraction
questions was given to participants to try. The purpose was to observe individual
participants’ various strategies and then follow it by interviews to find out how they
approach subtraction that involves renaming. After this intervention, a second set of
questions was given to participants to do, to find out if the participants made sense of the
researcher’s intervention. The post-intervention came a week after the intervention. In
this session participants were given a third set of questions, on subtraction. After the test
they were interviewed again. The post-post intervention test was unscheduled and
comprised of two, different but parallel, sets of questions and interviews.
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After completion of all the interviews the tapes were transcribed and analyzed as
follows:

a. All the transcripts were read and re-read.

b. All the questions and their corresponding answers were numbered for each set of
interviews.

¢. Themes arising out of the data were written down.

d. Now the transcripts were slowly read and the numerals pertaining to any
particular theme were written under each theme

¢. The process explained in d. (above) was used for each of the three interviews.

f. After reading and distributing the numbers to each respective theme, the computer
was used to select the items to their respective themes.

g. After the process of f. (above), the themes were carefully read and some were

merged and the transcribed items that appeared more than once were put under
appropriate themes.
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CHAPTER 4 - REPORTS ON DEVELOPMENT OF THE INTERVENTION

Use of Numeration Cards

Numeration cards were made and named by the researcher for use in the intervention.
They were mainly used for developing meaningful understanding of place values, base
complements, compound subtraction expressions and transformation of compound
subtraction expressions. The numeration cards were displayed and named as: small, long
and flat cards.

Figure 4 -1. Display of numeration cards as small, long and flats (from left to right)

The numeration cards work in the following way:
e Ten smalls (ones) are equivalent to one long. Thus 10 smalls (ones) could be
exchanged for 1 long.
e Five longs are equivalent to one flat (first flat). The first flat has an area for 50

(fifty) to be written. But it was left empty (this was on top of the card) for students
to find out for themselves.

e Ten longs are equivalent to one flat (the second flat). Ten longs could be
exchanged for one flat. Thus it contains 100 smalls (ones).

e The cards are used to model numerals on the flats as well as modeling subtraction
by placing and taking away smalls (ones) and/or longs, on the flats.
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Place Value

Participants were asked to play with the cards, for a while to satisfy their
curiosities. After playing with the cards participants were asked to find out the number of
small ones that will make a long and the number of longs that will make a flat.

Participants did not waste time in finding out that 10 small equal 1 long and 10
longs equal 1 flat. To help participants review place value, the following arrangements
were made and participants were asked to name them.

Figure 4-2. Numeration cards arrangements for 22 (left) and 33 (right)

On the lett side of Figure 4-2 two tens, 20 smalls (ones), are placed from bottom-
left to the top, to cover the first two columns, and two smalls (ones) are placed after them
on a flat. The number of columns and small spaces covered on the flat indicate the idea of
place value for tens and ones respectively. Subtraction, here, is modeled by taking smalls
away, starting from the bottom-left. On the right side in Figure 4-2 three longs are placed
from left to right to cover the first three columns and three smalls (ones) placed after
them, on a flat. To take away more than 3 small ones, some of the longs must be
exchanged for smalls (ones) to allow for subtraction of the ones.

Students were asked to exchange 10 ones for 1 long, which they easily did. Since
participants had already studied the concept of place value they easily answered questions
of the form: How many tens are in this mathematical expression? How many ones are
in this mathematical expression? How many small ones are left to fill this long?
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Base Complements
To help participants understand base complement and be able to apply it in the
latter stage of the intervention, the researcher went through the following with the

participants.

a. How many small ones can fill in figure 4-3?

Figure 4-3. Numeration cards arrangement to show base complement of one
b. What is the base complement of 1 (one)? (Referring to figure 4-3 above)
Participants were able to look at the empty spaces, count them and say the right answers.

But for clarification they were asked to fill the long with small ones. The statements for
a. and b. (above) were repeated for the following:

Figure 4-4. Numeration cards arrangements to show base complements of 1,2,3, ,9
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The iconic representation of numbers 4, 5, ... 9 above were not covered, for participants
showed good understanding of the base complements. Thus, iconic transformation of 1,
2, 3 to their symbolic representation only, of the figure 4-4 (above, numbered 1, 2, 3,
...9), were covered.

Participants were asked to draw a “long”, show one “small” on it and write the
base complement besides it.

Figure 4-5. Grace’s work showing base complement of 1 is 9 (left) and Rubin’s work
showing base complement of 1 is 9 (right)

Participants were asked to draw two “longs”; put, on one long, two (2) small; and
the other, three (3) small ones. After that they were told to write the base complements
beside each.

Figure 4-6. Grace’s work showing base complement of 2 and 3 are 8 and 7 respectively

Figure 4-7. Rubin’s work showing base complement of 2 and 3 are 8 and 7 respectively
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After the above, participants were asked to fill in a table to show the base
complements of the numbers from one to ten (Figure 4-8).

Figure 4-8. Grace’s work: Digits and the corresponding base complements (left); and
Rubin’s work: Digits and the corresponding base complements (right)

Modeling Subtraction

To effectively model subtraction with numeration cards the researcher
symbolically discussed simple and compound subtraction and the idea of equivalent
equations (by way of equivalent zero addition- a form of balancing equations).

Simple and Compound Subtraction

The researcher wrote down the following and had a discussion about them with
the participants. They were asked to look at the following and tell the difference in terms
of difficulties when working them.

1. 9-2 2.74 3. 24 4. 412
-16 - 276

From the discussion, the participants made it clear that items 1 and 2 are less difficult
than 3 and 4. For the latter involves borrowing. At this point the researcher explained
“borrowing” as a method for renaming such expressions as 3 and 4 (above). Thus 3 and 4
involve renaming and therefore are ‘“compound subtraction expressions.” 1 and 2
however, do not involve renaming and thus are called “simple subtraction expressions.”
Several subtraction expressions were written for participants to identify as simple or
compound; and this posed no problem to participants.

Simple and Compound Subtraction Expressed in a Vertical Form
The researcher wrote down the following and asked participants to identify which

subtraction expressed vertically (i. e., place-value subtraction) is simple and which is
compound.
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a. 583 b. 647
-327 -_456

Participants find no problem in saying that:

1. In a) subtraction at “ones column” is compound; at “tens” is simple and at
“hundreds” is simple.

2. Inb) subtraction at “ones” is simple; at “tens” is compound and “hundreds” is
simple.

Several discussions, of this type, went on to help participants identify simple and
compound subtraction in vertical arrangements of numbers.

Equivalent Subtraction Expressions

Equivalent zeros were introduced as “balancing subtractive expressions”.
Participants were told that if the same number is added to both the minuend and the
subtrahend the answer remains unchanged. However, the expression is changed
(transformed) to a more difficult or less difficult one depending upon the equivalent zero
used. To help participants understand this a set of equivalent expressions was written
down for discussion.

21 (22 23 24 25 26 27 28 121
-17 1 -18 -19 -20 -21 -22 -23 -24... -117

Figure 4-9. A set of equivalent expressions

For discussion, participants were told to look at each expression and say the answer for
each case, and then also say what has brought the differences in expressions and which
expression is easiest to work. Participants were able to use borrowing to get the answer 4
for all. They could not, however, easily see that equal numbers were added to both
minuend and subtrahend for each case. Thus the researcher took the expressions one at a
time and discussed the difference (of each expression) with respect to the original
expression. After participants understood it, they were asked to pick, from among the
equivalent expressions, the one that looks easiest to calculate. Here they were asked to do
independent work. They both selected the third equivalent expression: 24

-20.

This led to the introduction of BCA as a method for transforming a compound subtraction
for easier computation of subtraction of multi-digit whole numbers.
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Numeration: Using the Cards

The researcher asked the participants to play with the cards for a while (and they
played their own game for some time). After that they were asked to show 21 and 32 with
the cards. The participants were a bit confused; they did not know how to arrange the
cards- whether from right to left and from top to bottom or otherwise. Grace started from
left to right and bottom to mid-way to the top, whereas Rubin started from the middle top
to right and filled to bottom. The researcher then explained that in our traditional writing
we start from left to right and top to bottom. We are starting from left to right, as usual,
but from bottom to the topmost part (as conventional method for our arrangement of
numeration cards). After the explanation participants easily arranged the cards as done
below:

Figure 4-10. Numeration cards arrangements for 21(left) and 32 (right)

After the above participants were asked to show 22, 34 and 45. This was no big deal for
them.

Subtraction: Using Numeration Cards

The researcher referred participants to figure 4-10 above and asked them to take
away 17 cards from each. Interestingly, they each took away 17 cards the same way; they
both started from the right leaving in the first instance 4 single cards on the bottom left
hand corner and in the second instance 15 cards, 10 in the first column on the left and 5
more in the next column. However, this is not useful for this model since the intent is to
leave some evidence of what the original question was after taking away cards.

At this point the researcher reminded the students that since the arrangement of
cards starts from the bottom left, taking away the cards must also start the same way.
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After this rule was told to the participants they were able to model the subtraction as done
below.

Figure 4 —11. Subtraction models for 21-17 (left) and 32-17 (right)

Many examples were given to participants to do. Some of the expressions included: Use
the numeration cards to represent each of the following and What subtraction
expression does each of the following represents?

After several examples participants were asked to write symbolic expressions
beside each numeration arrangement as done below:

21-17 32-17
Figure 4-11 i. Subtraction models and their symbols written on pieces of paper. Twenty-one take
away seventeen (left) and thirty-two take away seventeen (right).
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Transformation of Compound Subtraction to Simple Subtraction:
Application of the Base Complement, of the Subtrahend

For meaningful transformation of compound subtraction to simple subtraction, the
researcher used numeration cards and involved participants in discussions. For continuity,
the researcher used figure 4-11 i (above). The discussion went on as described below:

Students were given the two models, in Figure. 4-11 1 and asked which aspects show 21
and 32, and which show 17. This appeared to be of no problem for the participants to
show. But the more difficult aspect was adding the same value to transform subtractive

expressions (Refer to discussion below).

Peter: Do you remember which expression from among the set of equivalent
expressions, we said, is easier to work with?

Rubin: When there is zero at the end of number we are subtracting.

Grace: [joining in] when there is zero

Peter: What was added to both minuends and subtrahends? (referring to the set of
equivalent subtractive expressions).

Grace forgot it but Rubin easily remembered that the base complement must be added to
both sides. After accepting what Rubin said participants were asked to demonstrate it
using the numeration cards. But this was not done properly as shown below:

Figure 4-12. Participants model showing 24-14 (instead of 24-20)

As shown each participant added 3 cards to each side. But this does not really
demonstrate equivalent zero + 3 - 3. They rather showed 24-14 which does not have
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the same answer as the original expression 21-17 . At this point the researcher explained
what is meant by adding to a minuend and a subtrahend. Using the expression 21 — 17
again the explanation of the procedure went on, symbolically, as follows:
Consider: 21

-17

21 is the minuend; adding 3 to it increases it to 24. 17 is the subtrahend; adding 3 to it, to
read 20 (minus 20) means three (3) more have been taken away. Though we see it to be
added to the number more are rather taken away. The implications are that we added 3
and have taken 3 back. Thus the original expression is balanced. Hence the expressions i
and i1 (below) are also equivalent and thus have the same answer.

i.32 ii. 35
-17 -20

With the explanation above participants were able to correctly transform the
expressions, 21-17 and 32 — 17, using numeration cards as done below

Figure 4-13. Transformation of 21-17 to 24-20 (left); and 32-17 to 35-20 (right)

Note, to identify the compound subtraction that was transformed, one of the following is
required: the base complement used for the transformation, the minuend before
transformation or the subtrahend before transformation.

The question of Which of the two arrangements, i and ii above, is easier to tell the

answer was answered by Grace. Grace after arranging for the transformation said, I can
look at these and tell the answer more quickly . The above statement of Grace brought
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relief to the researcher; and several examples were given to the participants, which
covered all phases of instructional representations.

Iconic Representations

Each lesson was introduced with iconic representations of the previous enactive-
based lesson. Thus iconic representations became recapitulations of the preceding
lessons. Most of the homework was presented in iconic form but participants were asked
to present their answers in symbols. For iconic representations refer to appendix C. It
must be recalled that the illustrative works in the lessons were mostly done using two-
and three-digit numeration. Participants were, however, able to transfer to multi-digit
after they had meaningfully developed the BCA skaill.

Renaming Subtraction Expressions

The target task of using BCA is to operate at the formal stage of the symbolic
representation, during subtractive computation. Students will eventually have to think for
example at the right:

“1-7 is compound” 21

“Base complement of 7 is 3, 3 plus 1 is 4” -17

“1 increases by 1. Now 2; 2 take away 2 is 0”

“Write 0 and 4 in their proper places as 04 or 4”

Initially participants were not taught to use this verbal pattern. Rather, they were guided
to use a series of steps in their thinking:

1. a2l +3 b 24
-17 =3 ™20

This step can be thought of as renaming the subtraction expression

The rationale is as follows: “If the subtraction is compound, add the base complement of
the subtrahend to both minuend and subtrahend in order to transform the expression from
compound to simple”. That is, we add 3 to 21 to give us 24; and add the 3 to 17 to give us
20- in order to “balance account”. Hence expression 1a is transformed to 1b (above).

Subtraction procedures of this kind require that pupils learn a new and very
important mathematical concept and some pre-requisites. The new concept is
“balancing”. That is, the difference between two numbers is not altered if the same
amount is added to both minuend and subtrahend. Thus the answer for 1a and 1b (above)
is 04 in each case. The pre-requisites, already discussed, include place value, simple
addition and subtraction of whole numbers, equivalent zeros and base complements (see
page 94).
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Insert below (figure 4-14 and figure 4-15) are the works of Grace and Rubin
respectively on compound subtraction transformed to simple subtraction.

)

- i ‘
ot

Figure 4-15. Rubin’s work illustrating transformation of compound to simple subtraction

The renaming in BCA wastes time as compared to its formal application.
However, for meaningful computation of multi-digit subtraction, this is a necessary pre-
requisite. Participants had already had some understanding of “place value” and could
solve “simple addition and simple subtraction” problems. On account of that they
understood the renaming without any problem. They did all exercises correctly, including
the seatwork and the homework.

The Base Complement Additions Crutch (The BCA crutch)

After much work on the renaming of subtraction expressions, participants were
introduced to the use of “BCA crutch”. The BCA crutch is a bit different from “D crutch”
or “Crutch for borrowing”. Borrowing renames the minuend only. Thus in D the crutch is
only used in the minuend. BCA renames both minuend and subtrahend thus BCA crutch
is applied to both minuend and subtrahend (see figure 4-16, below).

1 7 27

213 237 237

-1 6 (TheD crutch) -1-6" or -16~ (The BCA crutch)
2.0 20

Figure 4-16. Renaming compound subtraction by way of crutches
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From renaming to crutch was illustrated as follows:

i. 21 +3 il 24
- 17 3 >-20 (renaming)

24

ii.
- y/ (BCA crutch)
20

Figure 4-17. Transformation process of compound subtraction expression: i. the original
expression,; ii. the renamed expression and iii. the BCA crutch

At first the experimenter thought this would be a problem to participants, since it was
their first time of doing such work. But it was not the case; they later did the work as
expected of them, by the researcher. Figure 4-18 and figure 4-19 are some exercises done
by Grace and Rubin on BCA crutch.

Figure 4-18. Grace’s work on BCA crutch

g

Figure 4-19. Rubin’s work on BCA crutch

The crutch taught in connection with the BCA procedure apparently served useful
ends. The participants during the course of the instruction used the crutch in almost all
their written work. Effort to encourage them not to use the crutch was not very successful

initially, for they continue to use the renaming and the crutch. This was particularly true
for Grace.
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The Formal Representation

The practice of using the renaming and the BCA crutch went on for some time.
Immediately after they had been shown the shorter ways, the formal representation, there
was a pronounced drop in the frequency of the use of the crutch, by Rubin. However,
Grace continued to use the renaming (especially) and the crutch. At the formal stage
participants have to note and make some observations from the renaming and/or the
crutch expressions as follows:

At the formal stage of base complement additions (two-digit numbers)

1. We consider two numbers at a time.

il. We rename the compound subtraction using base complement of the subtrahend.
Observations

Minuend and subtrahend increase or change by the value of the base complement

ie.

1. minuend: increases by the base complement of the subtrahend

il. subtrahend: 1. increases by the value of base complement; 2. ends with zero;
3. next number (on the left, the higher place value) increases by one.

iti. When base complement is not applied the next number, on the left, in the
subtrahend, does not increase.

For example:
1. Given two-digit numbers
a.72 b. 76
-36—» -40 (renaming)

. },6/ (BCA crutch)

2.a.91 b. 93

-58 > - 60 (renaming)

93

—/);8/21/ (BCA crutch)

60
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3. 27
-16 (7- 6 is simple; no transformation)

Extending BCA to three digit-numbers

1. We consider two numbers at a time.
If three-digit numbers, then note that we have two types: the first
is renaming once and the second is renaming twice.

ii. We rename using base complement of the subtrahend

Observations

Minuend and subtrahend increase or change by the value of the base complement
ie.

h. minuend: increases by the base complement of the subtrahend

ii. subtrahend: 1 increases by value of base complement; 2 ends with zero; 3. next
number (on the left, the higher place value) increases by one.

iii. When base complement is not applied the next number, on the left, the higher place
value in the subtrahend, does not increase.

Renaming once

Here either the ones column or the tens column is compound.

E.g.

1. 647 — 456 which gives us

647

456 ............ (Three digits, renaming once; for 4-5 is compound subtraction)
Here we have

a. 647 b. 697

-456 > 506 (renaming)

69

c. 647

-A56 (BCA crutch)
50

2. 583- 327 which gives us

583
- 327 (Three digits, renaming once; for only 3-7 is compound subtraction)
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a. 583 b. 586
- 327 > 30 (renaming)

6
c.584
- 321 (BCA crutch)
30

Renaming twice
Here both ones and tens columns are compound; or after renaming the ones column the

tens column, which was simple subtraction, changes to become compound.
E.g.
1. 600-512 which is

600
-512 ....(Three digits, renaming twice, for 0-1
and 0-2 are all compound subtraction)

a. 600 b. 608 c. 688
-512 - 520 - 600 (renaming)
8 8
d.6 079~
5172

20 (BCA crutch)
6.0

2. 700 — 403 which is

700
- 403 (Three digits, renaming twice; for 0-0
was simple and 0-3 was compound but after
renaming the ones column the second column
changes to become compound subtraction)
a. 700 b. 707 c. 797
S403—® - 410 — > 500 (renaming)
9 7
3
g (BCA crutch)
5 0

It is important to consider the units and the last two numbers (first), if the units are of
compound. Then the tens and the hundred columns follow in the computation of three-

62



digit numbers (This, from the researcher’s observation was a bit confusing to participants.
However, they were able to transfer their knowledge of BCA, from two- and three-digit
numbers, to all multi-digit subtractions; and it works.)

As already mentioned, Grace initially did not easily connect the observations to
the final step though she tells everything as expected of her (Please refer to excerpt 1
below).

Excerpt 1
(P: Peter G: Grace)
P: What observation do you make?
G: We added base complement to 72 to make 76 and 36 to make 40.
P: What else?
G: 36 becomes 40.
P: Is that all?
G: (Kept Quiet)
P: Consider the 2 (in 72), the BC of 6 (in the 76) and the answer 6, with respect to
addition.
G: BC added to 2 to give 6.
P: Good, note that BC added to the 2 to give the answer at that side. What else?
G: The 3 becomes 4.
P: Very good. Now do this, using renaming and crutch.
63
-25

Grace does it as shown in figure 4-20.

Figure 4-20. Grace’s subtraction process using the renaming and the crutch

P: What observation do you make?

G: Like before?

P: Can you do the work without the renaming and the crutch?
G: No.

A lot of discussion went on but Grace could not complete the task without the renaming
or the crutch. However, Rubin understood it quickly and set three examples on his own.
He did the work in the formal stage of the symbolic representation (see insert below).
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Figure 4-21. The work of Rubin: Question set by himself

Grace’s difficulty in moving from the renaming/crutch to formal stage leads the
researcher to admit that “crutches of any kind are usually opposed on the ground that: i.
they are themselves difficult to learn, sometimes being more difficult than the processes
they are expected to simplify; ii. once learned, they actually contribute little to efficiency;
and iii. once learned they become permanent parts of the total process; that is they are
seldom discarded” (Brownell & Moser, 1949, p. 65). Despite all odds, the crutches are an
integral part of skill-development procedures. Hence it is difficult to isolate their
influence from the procedures as a whole. The crutches give vivid pictures of the
transformation and procedural steps between the renaming and the formal stage of the
BCA. However, participants were advised to discard it and use the formal stage which
was the target task. Eventually, this target task of the formal stage of the symbolic
representation was hit successfully by way of subliming instructional procedure from the
enactive to the symbolic

The Sublimation of Instructional Procedures (Enactive-symbolic Procedure)

Transformation of compound subtraction to simple subtraction was revisited
using manipulatives (refer to page 55-57 above). Participants were asked to compare
expressions i. and ii. (attention was more on Grace, this time). Please refer to the excerpt
2 below.

Excerpt 2

(Peter & Grace)

Let us consider i. (refer to page 56). How do you describe it?
G: We have 32 take away 17.
P: Right. Can you make any observation with respect to tens and ones of both minuend
and subtrahend?
We have three tens and two ones; we have taken one ten and seven ones.
Okay, we want to read the answer faster so let us make adjustments. We will take the
base complement cards and in order not to change the answer we will put them back,
but on the minuend ones. Is ii. describing what I am saying?
Exactly.
Will you read ii.?
35 take away 20
Now let’s make comparisons of the two. First the minuends (what was already there)
and then the subtrahends (what was taken away).

TATaQ
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32, now 35. Increased by 3.

Where from the 3?7

The rest of 7.

That is the base complement of 7. Good. What about the side taken away?

It was 17 but now 20.

Now compare the two rods for subtraction (the part taken away). Our attention now is
on the number of ten rods.

1 ten now 2 tens.

Is there an increase?

Yeah. Increased by one.

Now go through all what we have done and see whether what we are saying works.
Okay.

TOATQATO

QFOTA

At this point she set her own questions and answered them without using the renaming or
the crutch. She then began to sing a song; the context of which was not known to the
researcher. She continued to sing and dance till their parents came back home, from
work.
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CHAPTER 5 - RESULTS OF THE STUDY

The two students Grace and Rubin, came to the intervention with some
knowledge related to simple addition and subtraction which was useful because the BCA
algorithm requires such knowledge as prerequisite. However, neither of them said that
math was their best subject. Three main categories of observations arising out of the
development of the intervention, the tests, and the interviews regarding participants’
knowledge of subtraction were made: (a) observations before the intervention (b)
observations during the intervention and (c) observations after the intervention. The
purpose of this chapter is to report on the results of the research by way of the key
observations of participants’ behavior before, during and after intervention.

Observations Before the Intervention
Students Had Some Understanding of Place Value

During the development of the intervention students were found to be using the D
crutch. When questioned about the use of the crutch Rubin explained that “10 ones is a
ten, 10 tens is a hundred, and 10 hundreds is a thousand; so if you cannot subtract you
can go to the next place which is ten and borrow one ten which equals 10 ones.” This
explanation indicates Rubin has some understanding of the concept of place value. To
build on the participants’ knowledge of place value, in the intervention, numeration cards
were used for instruction of place values, base complements, compound subtraction
expression and transformation of compound subtraction to simple subtraction (Please
refer to chapter 4). The development of the instructional sequence went on in the
direction as suggested by Bruner (1964) i.e. enactive, iconic and symbolic phases.
Enactive phase is the concrete representation level. At this stage, students manipulated
materials directly, modeling various numbers with single cards, longs and flats. At the
iconic phase the students took a step away from the concrete materials and physical
actions to mental images. In this phase the child pictures an operation, such as
subtraction, by remembering his actions in the enactive phase and recreating those
actions with pictures or other images (Refer to Appendix C). Once the child learns to
think about his performance in terms of the symbols then we note he is acting
symbolically.

Since participants had already formed a concept of place value exchanging 1 ten
for 10 ones, 1 hundred for 10 tens was not a problem. They were able to form
representations of various amounts with the cards as directed by the researcher, without
many problems. Their initial difficulties were not with place value per se but rather on the
order of arrangement of the cards. The students were initially confused as to how to start
to arrange the cards on the flats. But after telling them of each column as a ten and the
fact that arrangements ought to start from the left to the right, the numeration continued
smoothly. Participants were able to show 21, 32, 23, 72, etc. therefore some of these
examples were used to advance the instruction.
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For BCA algorithm, an understanding of place value is necessary, but no
extensive use is made of it, during computation directly. When the next higher place
value of the subtrahend is 9, application of base complement makes it 10— even here the
rule of place value is adhered to (That is, ten numbers at a place is equal to one at the
next higher place and vise versa). A typical example is “732-195”. Here the transformed
expression, after applying BCA, is “737-200”. This was where I anticipated some
problems. But as indicated above participants were able to transfer their learning situation
successfully without my intervention in that situation.

Participants Had Some Informal Knowledge Related to Simple Subtraction

In the first interview session with Rubin, when he was asked to do 9-6 he started
with “I will take 9 away from 6 and that makes 3 left”. Though there was a mistake in his
language, the first expression indicates a take away model (separation from whole), as
did his second response. When asked whether that is all, he continued, “You could also
put 9 and to this you can take away 6, and that will make 3” using his fingers (Refer to
excerpt 3, lines 14 and 16). When the researcher mentioned yet another strategy, counting
on from 6 to 9, Rubin indicated he knew that method, too (Excerpt 3, lines 23 - 24).
Rubin also indicated he has seen a counting down strategy, as well (Excerpt 3, lines 27 -
28). When Grace was asked to do 8-5 she made a mental computation. She figured out
what number had to be added to the 5 to give 8 (Excerpt 3, line 187). She might be using
“counting on” or she might have recalled a number fact. Neither of the students
demonstrated more than one strategy; they only acknowledged their knowing of other
strategies when the researcher raised them.

BCA is based principally on compensation and use is made of simple addition and
simple subtraction. With simple addition students could even use any of their traditional
additive strategies, since operation is based on the digits 1, 2, 3, ...9, and sometimes on 0
and 10. The base complement plus the minuend is so easy that a pupil could use counting
on, counting all, counting up to and many others which are all simple for pupils to handle
with or without manipulatives. The excerpt below informs us that students may use one
particular strategy but have others that they may not often use unless prompted (Refer to
Excerpt 3).

Excerpt 3

(Peter & Rubin) (Peter & Grace)
Interview # 1 Interview # 1
11. P: Oh that is good- you have good 186. P: How will you do this work?

memories. E e mm how many ways 8-5

can you work this?  9-6 187. G: I can now think in my head. How
12. R: E-e... umm you try to figure out a number
13. P: Can I see how you do it? that you have plus the 5 that equals
14. R: I will take 9 away from 6 and that to 8.

makes 3 left. 188. P: Okay.
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15. P: Okay. Is that the only way? We have | 189. G: And that will be the number
got other ways. 190. P: Is that all?
16. R: You could also put 9 and to this you | 191. G: Yeah.
can take away 6, and that will make | 192. P: Think of other ways that you can

3. use to get this.

17. P: Okay. And so you mean you can use | 193. G: That is what I am using.
your fingers? 194. P: Are you sure?

18. R: Yeah. 195. G: Yeah.

19. P: Then you count 9 using your fingers | ...
you take away 3. Is that what you 198. P: Okay. What about when you start

mean? from 5 and count on “6, 7, and 8”7
20. R: You take away 6?7 Good! Can you give me the answer?
21. P: Is that all what you know? 199. G: Yeah.
22.R: Yeah. 200. P: Do that and let me see.
23. P: Now a certain boy used this method; | 201. G: 6, 7 and 8 (keeping track using the
he started from 6 and then he fingers).
counted on 7, §, and 9. 202. P: Okay. Can you use it for this?
24. R: Oh yeah. I have done it before. 9-4
25. P: You used that before? 203.G:5,6,7,8,and 9.
26. R: Yeah. 204. P: So, the answer is?

27. P: It seems this is counting on. We also | 205. G: 5
count down to i.e. from 9 you count | 206. P: Good. You see that there are so

how many steps to arrive at 6. So many ways of doing it? Some

we have 8, 7 and 6. That gives 3. people also can count down. From 9

Have you used that before? you can count 8, 7, 6, 5 (G comes in
28.R: Yeah here to count down together).

207. G: I think I know that.

Participants Used the Decomposition Crutch

The formal stage for each of the algorithms is purely abstract and is based on
abstraction from the renaming and/or the crutch. At the formal stage, of the symbolic
phase, the target task for each algorithm is such that it is extremely difficult for one to
determine whether the author is using the D or the BCA- unless the one interviews the
author. The crutch, however, could be determined. For D renames the minuend in
compound subtraction computation, the D crutches are marks in the minuend. The BCA
renames both minuend and subtrahend and thus has “crutch-marks” in both minuend and
subtrahend.

Before intervention participants were tested to find out their entry behavior with
respect to how they understand and do subtraction. Participants were observed to be using
the D crutch throughout their work. The following are extracts from the pre-intervention
test and discussion on D algorithm.
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Figure 5-1. Pre-intervention-test work sheet for Rubin (left) and pre-intervention-test work sheet

for Grace (right)

Figure 5-2. Revision exercise on the D algorithm (Rubin’s work)
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Figure 5-3. Revision exercise on the D algorithm (Grace’s work)

The crutch is a symbolic aid in subtraction computation as shown above. In D, it
is characterized by marks in the minuend and superscript(s) and/or subscript(s). The
crutch can also be seen as the compressed form of the renaming. For example 24 — 18 is
(2 tens + 4 ones) — (1 ten + 8 ones). Since subtraction at ones place cannot be done (for
whole numbers), the minuend (2 tens + 4 ones) is renamed as 1 ten +14 ones; and from
here the subtraction continues. Thus we have:

(1 ten +14 ones) — (1 ten + 8 ones) or
1 ten +14 ones
- (1L.ten+ 8 ones) (D renaming)

1
The above expressions are compressed as 214 (D crutch)
-18

At this stage, in grade 5, the researcher was expecting Rubin to be using the formal stage
of the D, which is a mental reflection on the renaming or the crutch procedure. But
contrarily he was also using the D crutch, just like his younger sister. It was not clear to
the researcher whether Rubin was using the D crutch because the younger sister was
using it, or he was not discouraged to depend on it at school.

The Place Value Strategy Had Been Taught But Was Not Used

In the discussion of subtraction, participants were given a set of subtraction
questions to do and then give explanation for their work. In her work, Grace explained 86
— 27: subtracting 7 from 6 is not possible (She was doing whole number subtraction), so I
go to 8 and borrow a one to 6. Six is now sixteen and I take 7. Eight reduces to 7 and 7
take away 2 is 5. Rubin also explained 86 — 27 the same way as Grace did above. He also
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explained 1809 — 1732, as he has done it: 9 take away 2 is 7, write 7 down. 0 take away 3
we can not do, take one from the eight and 8 becomes 7 and 1 turns to a 10. 10 +0 is 10
and 10 take away 3 is 7. 7 — 7 is 0 and 1-1 is 0. All the explanations were made using
simple subtraction; and the use of simple subtraction is very important sub-skill for BCA
algorithm.

Rubin was asked whether he had employed any other method apart from the
above. His answer was “No”. The researcher then introduced the place-value method
where subtraction is done first by considering the highest place-value item, then the next,
and so on (Refer to example below).

1809 — 1732 86 - 47
1809 — 1000 86 - 40
809 - 700 46 -7
109 -30 46 -6
79-2 40-1
77 39

Figure 5-4. The place value strategy

When asked whether they had been using it before Rubin said “Not really” and
Grace replied “No”. While Rubin said he had been taught to subtract that way before,
Grace said she had not been introduced to that method of subtraction. Rubin was then
asked why he was not using such a method which appear to be simple- he gave no reply.

Subtraction like 86-40 in figure 5- 4 (above) is a bit confusing to some students.
This type is one that may end up with a kind of compound subtraction. Here subtraction
pattern changes, getting to the end of the subtraction procedure. Also, it may not be
economical, to some students, for it is a waste of time and paper, for a trivial question of
that sort (according to researcher’s experience). Moreover, it was not of his interest to use
it for the intervention. But they need to know of it. After all, in mathematics we may use
more than one method for computing any particular problem.

Students Used Only the Decomposition Algorithm for Compound Subtraction
Computations

During the pre-intervention discussion the researcher reminded the participants of
the possibility of using the “place value™ strategy, when doing compound subtraction
(figure 5-4). However, they did not use it, not even once. Rubin claimed to have been
taught it but he did not use it. Rather he continued with the use of the D crutch, which
was an indication that he was using the D algorithm. For Grace, she made it clear that she
had not been taught the place value strategy and that was her first encounter with it.
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Please refer to figures. 5-2 and 5-3 above; they show Rubin and Grace’s work on
compound subtraction. Notice how they used D even after being reminded of the
possibility of using the “place-value” strategy.

It appears that the participants of this study must have been exposed to the D
algorithm because that was precisely what they used in their subtraction computations
before the intervention. Other approaches, if there were any taught in their math classes,
might not have been emphasized for their use at school.

Participants Made Many Subtraction Errors

There are lots of errors associated with the use of D algorithm. Some of these,
according to my own experience, are reversal errors, borrowing without reducing the
minuend and borrowing across zero. Referring to question 8 of Grace’s work in the pre-
intervention test she did her work as shown below:

Figure 5-5. Grace’s work on borrowing

Her work shows clearly that she borrowed one from the minuend 3 (3 in the minuend)
without reducing it. Hence her answer zero (0) in the tens column. It was clear that she
was using the D crutch but she forgot to reduce the 5 in the minuend- though she had in
mind that she reduced it to 4 looking at the superscript 4. The 13 superscript again shows
that she was borrowing without reducing.

During the pre-intervention interview Grace was given 537 — 439 to work using
any strategy she could think of. Working it she got “~-108”. In her reply to a question from
the researcher she said “The answer is a hundred and ninety eight”. This answer shows
that she had no idea of integers. But since the research is delimited to whole numbers
only, the researcher did not say anything about integers. He rather used questions as
prompts, to help her realize her mistakes and correct her work without tackling integers.

Excerpt 4
(Peter & Grace)
Interview # 1
241. P: That is

537

-439
242. P: Okay. Let’s see your strategy
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243. G: (Working on it)

244, P: You got what... -1...

245. G: Hundred and ninety eight

246. P: Go ahead; explain it

247. G: When we get minus that means below zero. So that is how
248. P: You see which one is below zero 500 or 4007

249. G: Umm a the whole number

250. P: Okay now. How did you get your 8?

251. G: From 17-9

252. P: Okay How did you get the 9?

253.G:12-3

254. P: And now how did you get the minus one?

255. G: Ma

256. P: You see you have got —1 because you took 5 from 4
257. G: (She laughs)

The above question (line 241) was lifted from the pre-intervention test for
discussion with Grace, during the pre-intervention interview. But here too she displayed
the same type of errors. Doing away with her negative sign, we clearly observed that she
subtracted from 5 without reducing it to 4. She had also made a reversal error- that is
subtracting the numbers irrespective of which is the subtrahend or minuend. When she
was further asked whether 623 — 435 = 212 is right her answer was “I think that is right”
(Refer to excerpt 5 below)

Excerpt §
(Peter & Grace)
271. P: Okay. Now if somebody does it this way
If we have 623

- 435 and the person got 212
272. G: 1 think that is right
273. P: Hmm?
274. G: I think that is right
275.P: Why?
276. G: Here he went borrowing and also you have 3 and you can’t take 5 from 3 because
is a higher number.

Did Grace really understand how to subtract using the D algorithm, at all? Obviously she
did. Considering the fact that she got almost all of the pre-intervention tests and the
seatwork correct, using the D algorithm. Rubin got all the pre-intervention test questions
right. However, when he was asked about whether 537 — 439 = 108 (which was Grace’s
work; only that he did not know) is right or wrong he said the 0 (zero) is wrong, the rest
are right. At the researcher’s prompting he saw that the “1” is also wrong. As Rubin was
not able to see at a glance that 537 — 439 = 108 was wrong, he was given 721 — 364 = 443
to endorse it as right or wrong. But interestingly he said it is right (excerpt 6, below).
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Excerpt 6

(Peter & Rubin)
Interview # 1
51. P: Now what about if the person did it this way?

The question is now 537-439 and the person wrote 108 as the answer

52. R: ...Still the 0 is wrong.

53
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.

. P: The 0 is wrong. Is that all?

R: Yeah.

P: Are you sure this side only... is wrong?
R: Yeah.

P: Are you sure? Look at it carefully

R: Yeah.

P: Are you sure? Look at it carefully

P: Yousee5...

R: Ooh.

P: Ehee yousee-

R: Okay, the 1 there is wrong

104. P: O. K. Now what is wrong with this. A student does this

105.
106.
107.
108.
109.
110.
111.

112.
113.
114.
115.

116.
117.

118

721
-364

And the student’s answer is 443. You look at it.

R: It’s right.

P: What is wrong?

R: Nothing is wrong.

P: Nothing is wrong? Rubin you see ...

R: Oh, I see. Yes.

P: Yeah I am glad that you’ve seen something wrong. And now what is wrong?

R: Okay. So 4-1 can’t do so we have to borrow from the 2, and then 2 turns into 1
and the 1 turns into 11. So 11-4 is umm 7 so the 3 is wrong and 6-1 we can’t do;
take away from the 7 so this is already wrong.

P: That is wrong. Oh, yeah.

R: Okay, then.

P: So, what should be the answer?

R: The answer should be— let’s see. The answer should be— Oh yeah, the other 4 is
wrong.

P: You look at this side “What is it?”

R: 3.

. P: You have done the same mistake.

Rubin’s performance during the pre-intervention interview was quite surprising. He did

not

get any question wrong during the test and the general discussion. However, he was

turning things upside down and back to front. Even in his speech instead of “one take
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away six” he said “six take away one.” (Refer to line 111.) Could there be any reasons for
these mistakes?

Observations During the Intervention

Fifth Grade Participant was Faster in Being Able to Perform the Base Complement
Additions Algorithm

In terms of participants’ rate of learning, Rubin was observed to be faster in
getting the new algorithm. During the fourth session, for instance, he got all the exercises
correct using the BCA algorithm at the formal stage. From the renaming and crutch to the
formal stage took Grace a bit longer time. Whereas Rubin understood them and was
jubilating over his achievement (understanding of BCA at the formal stage), Grace kept
on using the renaming and the crutch. She wept as her brother teased her- using a “tongue
language”. She continued to weep until their parents came and her father consoled her
explaining that she should not expect to understand everything all the time. It was
difficult for her to connect the prerequisite knowledge she had acquired to the target task-
the formal stage. Must I end the lesson? I asked myself. On account of Grace’s emotional
response, I ended the session immediately and advised that her older brother himself
teach her before the next session. I had in mind that as a brother he could use more
appropriate language for her so that she could understand the formal stage — which is one
of the essences of peer discussions.

Rate of learning, to some extent, depends on the learner’s understanding of the
subject matter in relation to the manipulatives. Because physical interaction is essential to
effective learning, the researcher made extensive use of physical materials at the enactive
phase of representation to help Grace catch up with her brother, Rubin.

BCA algorithm has eight sub-skills: place value, simple addition of whole
numbers, simple subtraction of whole numbers, equivalent zeros, base complements,
identification of simple and compound subtraction, transformation of compound
subtraction to simple subtraction and the use of base complement crutch. In each of these
sub-skills Rubin was observed to be faster. He was faster at arranging the manipulatives
and in answering questions based on on-going activities. However some questions remain
for another study.

1. Are these rates of learning differences dependant on age?
2. Isit a factor of experience, thus the grade level?

3. Isit a matter of gender?

75



Grace Kept on Using the Base Complement Additions Crutch

While the researcher expected the participants to use the formal stage of the BCA
algorithm, Grace continued to use the renaming and the BCA crutch. The participants
entered the research using D crutch (Refer to pre-intervention test work sheets:

Figure 5-1). After going through the eight pre-requisites for base complement algorithm
the participants were expected to use its formal stage of the symbolic phase of the
instructional sequence for BCA. But they continued to use the renaming or the crutch for
some time, especially Grace. She understood all the pre-requisites but could not connect
to the target task, which was formal use of the algorithm. One may be tempted to
conclude that the students used the crutch because they were already familiar with the use
of the D crutch. But this is not an acceptable explanation since each of the two algorithms
is based on different concepts. The borrowing algorithm is based on renaming values in
the minuend (or place values in the minuend). But BCA algorithm is based on
compensation (or balancing or equivalent zeros) to rename both minuend and subtrahend.

In order to avert the problem of holding on to a crutch long after an algorithm is
first learnt (Brownel & Moser, 1949), the researcher de-emphasized the use of BCA
crutch.

“Instructional Sublimation” Contributed to Grace’s Understanding of the Target
Task, in the Use of Base Complement Additions Algorithm

Instructional sublimation (Refer to chapter 2: definition of terms) is skipping parts
of the instructional sequence backward and forward (or forward and backward) to help
the learner to move back and forth in developing procedural fluency. The researcher
sublimed instruction forward and backward to help Grace, especially, to move back and
forth in her understanding of the formal stage of the use of BCA algorithm in subtraction
that involves renaming. As has been indicated earlier, her worry about not getting the last
stage of the instruction while her brother showed incredible mastery of it made her weep
bitterly and this led to an abrupt end of the day’s lesson. The researcher went home
thinking of the best way of connecting Grace’s knowledge to the formal stage, for she
had been successful in all the eight sub-skills. At the next contact period the researcher
decided to start all over from the enactive phase, then skipping the iconic come straight to
symbolic, in all aspects of instructions. (When attention shifted to Grace, Rubin was just
drawing unnecessary things on his worksheet.) At last this instructional strategy of
sublimation worked for Grace.

Participants Used Only the Formal Stage in Computing Compound Subtraction in
Their Intervention Test

Before intervention students were using the D crutch, as heuristics, to help them

to complete the test that was based on compound subtraction. With the introduction of
BCA algorithm, initially, participants were using the renaming and the crutch (the crutch
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especially). This was really supporting the claim by Brownell and Moser that “crutches of
any kind are usually opposed on the ground that once learned they become permanent
parts of the total process; that is they are seldom discarded” (Brownell & Moser, 1949, p.
65). The good news is that after the researcher stressed on discarding the BCA crutch, the
students were able to do so when the formal stage was introduced— though Grace found it
a bit problematic (see figures 5-6 below).

77



Intervention Test: work sheet Post-Intervention Test: work sheet
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Figure 5-6. Participants’ worksheets: For the intervention (B) and post-intervention (C)
tests.
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The formal stages of D and BCA algorithms are such that they can only be
determined by interviewing the person who did the computation. From the work above
one may ask, “Did the participants use the D or the BCA?” “How can one know whether
the students used D, since they have been using that for at least four years?” It must be
recalled that Rubin and Grace could not use the formal stage of the D algorithm, during
the pre-intervention test and class discussions before the intervention (refer to “Pre-
intervention-test work sheets” above, page 69). During these times Rubin was expected to
be using the formal stage of the D algorithm, at his grade level but he was not. However,
the researcher did not encourage them to discard the D crutch during these periods.
Therefore, it was quite clear that at the time of the post intervention test if they exhibited
“A formal stage calculation” of multi-digit subtraction then participants used the BCA
algorithm. Furthermore, the participants saw borrowing to be time consuming and thus it
was quite obvious that they would not use it, even at the formal stage, during a test, once
they knew of an easier approach.

Observations After the Intervention

Participants Could Use Both Decomposition and Base Complement Additions
Algorithms

One remarkable thing about problem solving in mathematics is that a person can
use more than one method in solving a problem. In compound subtraction computations,
the students were observed to be using the D algorithm, prior to the intervention. At that
point, Rubin was observed to be sticking to his traditional algorithm, D, even when he
was reminded of an alternative strategy (refer to pp. 71-72 above). But after the
intervention he claimed to be able to use both D and the BCA algorithms (Refer to line
543-544 of the transcribed interview under excerpt 12 below.) Looking at the comments
of the participants one may conclude that these students might be exaggerating. It is
possible that they wanted to satisfy the researcher as well as their parents. Consider the
comment made by Rubin as a response to a question by the researcher:

1. P: Yeah. Okay. Umm tell me why you used this method
Can you tell me something about it?

2. R: Because you taught us isn’t it? And it is much more easier than borrowing;
because borrowing you have to do all the stuff and you get mixed up.

3. P: Have you been using “Borrowing” since we started this study?

4. R: Yes, I have tried it sometimes

The above is an extract from a discussion with Rubin during the intervention. After the
question, 7102 — 4235, was given to Rubin he was asked to work and then explain it. (He
was not told which algorithm to use.) After working it he used BCA algorithm to explain,
hence line 1 above. The statement “Because you taught us” (line 2) may suggest that
participants were using the BCA algorithm simply because the person who taught them
was there. The other part of the same line 2 indicates that he gets mixed up. This part
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could be explained by the fact that there might be interference in knowledge of the D, by
introduction of something meaningful to their understanding (otherwise they would not
even use the new one). However, from item 4 Rubin has been trying to do subtraction
work using the D algorithm. In addition, he demonstrated his ability to do subtraction that
involves renaming using D algorithm— though there were errors here and there. (Refer to
excerpt 7 below.)

Excerpt 7
(Peter & Rubin)
669. P: Can you use borrowing to check the answer?
670. R: Yes.

671. P: Go ahead.

672. R: 5-7 we can’t do so we go to the 4 and take 1; 1 is 10 so 5 turns to 15. 15-7
is 8 the 4 turns to 3, 3-6 we can’t do so we borrow 1 from the 2; 1 is 10 so
4 turns to a 14; 14 — 6 1s 8. Now 2 reduces to 1; 1-8 we can’t do so we
borrow 1 form 0, we can’t do so we go to 7 and borrow 1; 1 is 10 and 0
turns 10. 10 take away 1 we cando; 1is 10so 1 turnstoa 11, 11-8is 3. 0
isnow 9, 9-1 is 8; 7 take away 1 is 6, 6-3 is 3.

673. R: Borrowing takes longer time. It is too long.

It must be recalled that errors in computation using borrowing were exhibited
even before the intervention. Hence the errors in item 672 above are not a surprise. It
appears that he knew exactly what he was doing but he made some mistakes. Rubin’s
errors might be due to his nervousness or over ambition. Rubin may have been nervous in
this context; he was able to do the subtraction sums correctly when no one was watching
him. He may also feel that subtraction is an easy task and was therefore careless.

There was something remarkable about Rubin’s way of doing subtraction, after
the intervention. Whenever he was asked to do subtraction work using D method, he
would first use the BCA algorithm, get the answer down, and then use that as a check for
the work done using the D algorithm (Excerpt 8).

Excerpt 8

(Peter & Rubin)

572. P: Now I have seen that you’ve used BCA.

573. R: I fit [sic] do it in borrowing method.

574. P: Okay. (The question was 9124102-6146747)

575.R: 2 take away 7 you can’t do, so you have to borrow from the 0. You can’t borrow
from the 0 so have to borrow from the next digit, which is 1, and bring it to 0.
The 0 behind it turns into 9; then the digit behind it turns into 12. 7 take away 12
1s 5. Now it’s 4 take away 9 (P: comes in “9 take away 47). 9 take away 4 is 5.
Now it’s 4 take away 9 (P: comes in again “9 take away 4”). 9 take away 4 is 5. 0
take away 7 you can’t do so you have to borrow from the 4. 4 turns to 3 so 10
take away 7 is 3. Now 3 take 6 you can’t do, so have to borrow from the 2. Nnn
has to borrow from the 2. 2 turns to 1 and the 3 turns into a 13. 6 take away 13
is 7. Now 1 take away 4 you can’t do, so you have to borrow from 1 ahead of it. 1
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turns to 0, 2 turns into 12. 12 take away 4 is 8. 11 take away 4is 8. ...1 (not clear)
so 11. So 4 take away 11 is 7. O.K. now 0 take away 1 you can’t do. Have to
borrow from the 9. Turns into a 8. 0 turns into a 10. 10 take away 1 is 9. Then 6
take away 8 is 2.

576. P: 6 take away 87 Is it 8 take away 67

577. R: Oh, 8 take away 6

580. P: Okay. Now let’s continue. So now what I have observed is that I told you to
use “Borrowing” but you used BCA [Rubin comes in quickly and said “Yes™];
you made use of “Base complement” as a check to your answer for the
“Borrowing”. That’s very good, because it is one of what I expect. Sit well and
let’s continue.

581. R: Okay.

The question is “Why did Rubin not use decomposition to get the answer and then
check with base complement additions?” (line 580, excerpt 8). Note the student’s
response to being asked to subtract with the D method (line 571, excerpt 9). The D
method appears to require too much effort. As well, it takes a longer time to do the
computation (refer to line 673 exert 1). Two things must be noted: 4 method that appears
to be more complicated when using it and a method that takes longer time to do.
Complicated work does not necessarily imply it takes a long time to work out; if the
student knows exactly what he/she is doing will be able to do it in a reasonable amount of
time. The former will, of course, imply the later when there is lack of understanding.
Using the place value method in doing multi-digit subtraction could provide a useful
example here. A student who does not have mastery over its use has a problem. Such a
method appears longer and a bit problematic to some students. However, it is a nice
method, and though long, may not take much time.

Students Could Do Subtraction of Whole Numbers with Less Difficulty than Before
Intervention

During the post-intervention interview with Rubin, he was asked to use both D
and BCA algorithms. He agreed, and then asked if he could be given more digits to work
on. He requested a question with ten or more digits. This really shows his confidence in
doing multi-digit subtraction. He has now got an algorithm (BCA) which once applied
can be checked by performing the second algorithm (D).

There was one very important observation made in the interviews. Rubin breathed
deeply whenever he was asked to use both algorithms. Did this indicate that making the
digits longer was a problem? Since the researcher did not know which of the possibilities
was related to Rubin’s deep breath, the best thing, the researcher could have done was to
ask Rubin why he breathed like that. The researcher did not. Rather, he gave a seven-digit
question to Rubin rather than a 10 or 11 digit one. The researcher was concerned that if
Rubin failed to do the questions properly he might become discouraged. Thus to avoid
any embarrassment a seven-digit subtraction question was set for Rubin (excerpt 9, lines
563-566, below).
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8123102 - 6146747

Figure 5-7. A seven-digit question set for Rubin

After the question was set, Rubin insisted that he was able to do as many as 11 digits in a
subtraction question. This was an indication that, his deep breath was not really a matter
of difficulty in doing the work but rather satisfaction. He intended to use the BCA as a
check and vise versa, so he has no problem at all; and this was what he did when the
question was given to him. The moment he started to explain his work it became clear
that he was using BCA algorithm. Meanwhile he was asked to use the D algorithm. A
close study of participants’ behaviors during and after the intervention clearly indicated
that they find it easier to do multi-digit subtraction computation using the BCA
algorithm. Below are exercises that were set by each participant for the other. Grace’s
work was not well arranged so the researcher re-arranged them for Rubin to do

(figure 5-8, left). The one set by Rubin (on the right, figure5-8) was okay.

Figure 5-8. Participants’ further work on multi-digit compound subtraction

The theory of hierarchies has contributed a lot to this study. The awareness, that
there is the need to break down the entire instruction into smaller units of a teaching
sequence and to give treatment from simple to complex, so that transfer of knowledge
could enhance learning, has made the whole learning situation conducive to
understanding of the BCA algorithm; and thus a very successful intervention. The BCA
algorithm, was taught using only two and three-digit numbers; but participants were able
to transfer this knowledge to 4, 5, ...11 digits (excerpt 9, lines 553-559 below).
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Excerpt 9
(Peter & Rubin)
Interview # 2
549. P: I know that you already know “Borrowing”.
550.R: Yes.
551. P: And this has come to add to it.
552. R: Okay.
553. P: So I will like you to use both borrowing and base complement additions.
554. R: Okay. Can you make it a little bit more longer?
555. P: (He laughs). Longer! You mean more digits?
556. R: Yeah.
557. P: Okay. (Then Rubin sings.)
558. P: No problem. I will make it for you.
About how many digits do you like it?
559. R: Ten. Actually eleven this time.
560. P: And you are going to use both “Borrowing” and “BCA” (Rubin comes in
immediately saying, “Yes”)
561. P: Okay.
562. R: (He breathed deeply.)
563. P: This one is 7 digits. I want you to do only 7 digits (The question was initially
812-614, but because of his challenge it was changed to 8123102-6146747)
564. R: I want to do 11. A special challenge.
565. P: You do this first; use the Borrowing (S: Okay) and then BCA.
566. R: Okay (He silently works the 7-digit- number subtraction work). At the end he
said, “Okay.”
567. P: Explain it the borrowing way.
568. R: N hu hu. 2 take away 7 you can’t do so the Base Complement of 7—
569. P: —no, no, no. I say use borrowing (They all laughed.)
570. P: I say use borrowing I didn’t say use BCA.
571. R: O o o h! Too long. Oh, okay (he shouted).

Participants Were Able to Determine Errors in Multi-digit Subtraction with Less
Difficulty than Before the Intervention

Before the intervention students could not easily determine errors in compound
subtraction computation (excerpt 10, lines 66-69 and lines 316-332). With the
introduction of BCA, after the intervention, they could easily look at an expression and
determine whether it was right or wrong and why it was wrong (excerpt 10, lines 649-660
and 687-694 below). This was achieved by way of discussion during the intervention.

Interpretive discussion could be organized in several ways. The most common is
student-to-teacher discussion in the whole class situation and student-to-student
discussion in large or small group or student pairs. Student-to-teacher discourse was
mainly used in this study. Student-to-teacher discussion is generally diagnostic and
enhances student self-communication. Questions like, “What is wrong with the second
one?” (line 66), “How did you check your answer?” (line 612), “If somebody does this ...
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is the person right or wrong?” (line 649), “How did you do it? How did you get your
answer?” (484), “Is this correct or wrong?” (line 610), “What makes it wrong?” (lines
653, 691), help the students to reflect on their thinking processes; and the end result is

reasoning out.

Excerpt 10

(Peter & Rubin)

Interview # 1

(The question is now 537-339 and the

person wrote 108 as the answer)

66. P: Now let’s continue. What is wrong
with the second one?

67. R: Actually this is right

68. P: Just like the first one?

69. R: I see no, no, no, it’s not right, it’s
not right.

70.P:Ehee

71. R: This is not right, 1 is right but the 0
is not right.

72. P: The 1 is right? Is the 1 right?

73. R: And the 8 is right but the 0 is not
right.

74. P: This time 1 is right, 0 is not right but
8 is also right So the person did not
reduce the 3. That is why we got the
8. Thank you. Have you ever done
such mistakes before?

75. R: Yes.

Interview # 2
610. P: Is this correct or wrong?
4003
-2007
1006
611. R: No the answer is 1996
612. P: How did you check your answer?
613. R: I used base complement

(Peter & Grace)
Interview #1
316. P: If we have
7001
-5004

and the person writes 1007. Look at
it. In the first place is it correct?

317. G: Hmmm no

318. P: Yeah, what is wrong? Which parts
are wrong and which parts are
correct?

319. G: These two parts. (She shows.)

320. P: Which parts?

321. G: The...[the tape is not clear]

322. P: Are they wrong?

323. G: Yeah.

324. P: Are you referring to the answer or
the figure 70017

325. G: The one that I am looking is
this...then...[not clear]

326. P: Ah? Again—

327.G: ...

328. P: Aha. Look at it well. We have 7001
and then 5004.

329. G: This 1s right (referring to the
work).

330. P: Is it right?

331. G: Yeah (They all laughed)

332. P: Are you sure it is right? (She is not
certain. At first she said no it is
wrong. Now she says yeah, it is
right.)

333. G: Yeah.
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Interview # 3
649. P: Okay, if somebody does this work:
9024
- 4034
4090

Is the person right or wrong?

650. R: (Kept quiet but looking at the
work.)

651. P: You look at it and say what
happened.

652. R: Wrong.

653. P: What makes it wrong?

654. R: The answer is 4990.

655. P: How did you get the answer?

656. R: 4-4 is simple, 4-4 is 0; 2-3 we can’t
do the base complement of 3 is 7,
7+2 1s 9; 0 goes up 1, the base
complement of 1 is 9, 9+0 is 9; 4
goes up by 1, 9-5 is 4.

657. P: So what makes it wrong?

658. R: Umm, the zero there is 9.

659. P: Which zero?

660. R: The one near 4.

Interview # 2
482. P: If somebody does this work is the
person right?
723
-456
233
483. G: No it must be 267.
484. P: How did you get your answer?
485. G: I used base complement.

Interview #3
687. P: Okay, if some body does this work
9036
-4058
5088
Is the person right or wrong?

688. G: (Kept quiet but looking at the work
and smiled.)

689. P: You look at it well.

690. G: It is wrong!

691. P: What makes it wrong?

692. G: 6-8 is compound, so the base
complement of 8 is 2, 2+6is 8; 5
goes up 1, 3-6 we can’t do, the base
complement of 6 is 4, 4+3 is 7; 0
turns 1, 0-1 we can’t do, the base
complement of 1 is 9,9+0is 9. 4
goes up 1, 9-5 is 4.

693. P: So what makes it wrong?

694. G: The answer is 4978.

Learning is a product of our thinking and talking through social interaction and
physical contact with the environment. These experiences stimulate our thinking.
However, the learning that occurs is dependent on how the physical activity is related to
the subject matter. The manipulatives, the thinking, as well as the talking are all
interrelated. The ability to determine errors is dependent on the understanding of the
subject matter, which is the product of the interaction with manipulatives, the thinking

and talking about the manipulatives.
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Excerpt 11

(Peter & Grace)

695

696
697
698
699
700

701
702
703
704
705
706

706.
707.
708.
709.
710.
711.
712.

713
714
715
716

. P: Well done. Okay, another person does this work
84205
-33827
51622

If you are asked to check the answer which method will you use?

. G: I will use base complement.

. P: Why?

. G: Because it takes less time to do the question with base complement.

. P: What makes it wrong?

. G: 5-7 is compound so base complement of 7 is 3, 3+5 is §; 2 turns to a 3, 0-3 we
can’t do, base complement of 3 is 7, 7+0 is 7; 8 turns to a 9, 2-9 we can’t do, so
BCof9is 1, 142 is 3; 3 turns to a 4, 4-4 we can do, 4-4 is 0; 8-3 we can do, 8-3 is
5.

. P: Compare your answer to what is there. Is there any difference?

. G: Yes. My answer is 50378. Only the 5 up there is correct.

. P: Can you use borrowing to check the answer?

. G: Yes.

. P: Do it by borrowing.

G: 5-7 we can’t do so we borrow 1 from the next number but 0 has nothing. Go to
the 2 and take 1; 1 means 10 so 0 becomes 10 and we take away 1; 1 is 10 s0 §
turns to 15. 15-7 is 8. 10 take away 11s 9, 9-2 is 7. 2 take away 1 is 1, 1-8 we
can’t do, so we borrow 1 from the 4, 1 is 10 so 1 turns 11, 11-8 we can do, 11-8 is
3. 4 turns to 3, 3-3 we ca do so 3-3 is 0; 8-3 we can do, 8-3 is 5.

P: Thank you Gladys.

P: Now, let us go back a bit. What is base complement additions?

G: You taught us.

P: Do you understand it?

G: Yeah!

P: Can you explain it?

G: Give me an example.

. P: Take any example and explain it.

. G: Hmm ..can I use 84205-33827?
.P: Yes.

. G: 5-7 we cannot do so base complement of 7 is 3, 3+5 is 8 (P comes in here)

717. P: Do you remember, from the beginning, we discussed that

21 is equal to each of the following? [22-18; 23-19; 24-20; 25-21; 26-22 ...]
-17

718. G: Yeah!
719. P: How do you understand it?
720. G: We add the same number up and down and the answer is not changed. Okay, in

base complement additions you add base complements up and down to
subtraction we cannot do; and the same work turns to be easier to work.
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721. P: Good! But how do you do this: 21-17=?

722. G: 1-7 we cannot do so base complement of 7 is 3, 3+1 is 4; 1 becomes 2, 2-2 is 0.

723. P: Why 3+1 is 4 and 1 becomes 2 but not working with 24-20 since you say the
work is compound so we add base complement up and down...

724. G: Yes that is it. Look here (she was using numeration cards to explain) the
complement added to the 1 at ones side is 4 making 24-20. Simply add the
complement to the ones there and the number of tens taken away increases by
one... you see?

725. P: Good. Thank you

The use of numeration cards, in the intervention, gave the participants the
opportunity to interact meaningfully on both social and physical levels. Questions were
posed to participants for discussion— especially to determine whether each subtraction
entry was right or wrong and then to allow students to provide reasons for their answers
(refer to excerpts 10 and 11 above). Discussion, during the intervention, helped students
clarify their thinking. In many cases, it encouraged students to articulate their thoughts
and also helped in formulating them. Many a time when we talk (mathematics talk) we
are put in a position in which we have to explain concepts or principles to others.
Determining errors with explanation helped students to develop meaning for their
knowledge. Talking exposes our thinking to others who can examine it and comment on
it. In this way, the interpretive discussion was diagnostic. In addition, participants’
analysis of subtraction expression showed that the speaker had knowledge of the
discussion at stake.

Participants Appeared to be More Confident and Efficient with Base Complement
Additions than with Decomposition.

During the post-intervention interviews, participants made it clear that they prefer
BCA to D, in computation of multi-digits compound subtraction. The students used BCA
with confidence and air of satisfaction and efficiency. This gave the researcher the
impression that BCA is a superior teaching and learning tool for compound subtraction.
Hence post-post-tests and interviews, which happened almost a month after the post-tests,
were used to assess retention of the newly learned algorithm (BCA). Excerpt 9 shows
participants’ confidence with the BCA. It appears that once they understood and used
BCA they had difficulty in using the borrowing method even when directed to do so (see
excerpt 12, lines 439-463). Rubin’s expression, “Yeah borrowing involves some kind of
many take away, add, take away like that before the subtraction itself” suggests how
relatively uneasy it was for him to use the D at this point in time. He expressed that BCA
is much easier (excerpt 12, lines 646-648). As discussed, when restricted to use the D
algorithm, the participants usually used BCA and recorded their answers down before
using the D algorithm. It must be recalled that when the place value method was
introduced Rubin claimed to know it but he never used it either. It could be, assumed,
that the strategy was not efficiently learned or alternatively that they use the method with
which they feel most comfortable.

Efficient learners, usually, are learners who assume responsibility for their own
learning and set their own goals. Apparently all learners do this but the teacher’s role is to
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enhance this process. Learners who know the purpose of their learning have control of it.
Many students do not know why they use certain strategies. A typical example can be
seen in the use of equal additions. Before 1949 students used equal additions without
knowing why. Hence Gagg (1954) wrote about it as not so logical and that many children
only have to believe that it is accurate.

Purpose can exist at many levels. An overall purpose might be “Why am I using
this strategy? Does it go with the question or the context? Why must I use a simpler but
equivalent question? The focus must be on the task. (Refer to Figure 4-9: A set of
equivalent expressions, under renaming subtraction expressions, in chapter 4).

Teaching students about equivalent expressions (see page 52) helped them learn
to distinguish simple forms of expressions and to realize that any expression could be
transformed into a simpler form for subtraction. The listing of the 8 pre-requisites, before
the students, for the target task became very useful and important for them. Usefulness
and importance of any computation process can come from the teacher’s explanation.
Thus purpose is largely a motivational device but it also serves in an operational sense.
When learners know what they are studying and why they are engaged in a particular
activity, they are more likely to participate fully and whole-heartedly in the activity.

Excerpt 12

(Peter & Grace) (Peter & Rubin)
Interview # 2 Interview # 2
439. P: Now I want you to use the 536. P: The question is

borrowing for this 7102

9124 - 4235

- 4156
Will you do it for me?

440. G: The base complement of 6 537. R: Okay. (He took in deep breath.)
441. P: No, no I say use borrowing. Am I supposed to do it?
442. G: The 4 is not bigger than the 6 so 538. P: You will do it and then explain it as

we have to borrow from the 2. With well.

that one is a 14 (then she got stuck) | 539. R: Okay. (He then did the work
443. P: Okay. You work it using the BCA quietly.)

after that explain.

461. P: Okay. Now umm I will like you to
use the strategy to work this one.
This time it is
73451
- 35672

Use your strategy. The method that
you used to work the other one; the
one that you like

540. R: Okay. 2 take away 5 can’t do it;
BCofS5is5;addto2is 7.3
increased by 1, so to take away 4
can’tdo it. So BCof4is 6 add to 0
i.e. 6. Then 2 increases by 1 take
away 3 we can’t do so BC of 3 is 7;
7+1 is 8 and the 4 goes up by 1. 7
take away 5 we can do, so 7 take
away 5 is 2.

541. P: Yeah. Okay. Umm tell me why you
used this method. Can you tell me
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462. G: I am going to use the one that you
don’t have to borrow.

463. P: Okay.

464. G: The BC of 2 is 8. 8+1 is 9. Change
7toan 8. BCof8is2.5+2is 7 You
change the 6 to a 7. BC of 7 is 3. 3+
4 is 7. You change the 5 to a 6. BC
of 6 is 4. 3+4 is 7. You change that
to a 4. 7 take away 4 is 3.

465. P: Now why didn’t you use,
borrowing?

466. G: I didn’t use borrowing because I
think it’s much harder to do and
sometimes I make simple mistakes.

Interview # 3

679. P: Which questions did you use
borrowing and which did you use
base complement additions?

680. G: I did not use borrowing.

681. P: Which method did you use?

682. G: Base complement for all for all my
work.

683. P: Why?

684. G: Base complement is much easier
and faster.

685. P: Are you sure?

686. G: Yes.

something about it?

542. R: Because you taught us isn’t it? And
it is much more easier than
borrowing; because borrowing you
have to do all. The stuff and you get
mixed up.

543. P: Have you been using “Borrowing”
since we started this study?

544, R: Yes, I have tried it sometimes.

545. P: Are you getting mixed up?

546. R: Oh yeah.

Interview # 3

641. P: Which questions did you use
borrowing and which did you use
base complement additions?

642. R: None of them for borrowing.

643. P: Which method did you use?

644. R: T used base complement for all.

645. P: Why?

646. R: Base complement is much easier

647. P: Are you sure?

648. R: Yeah. Borrowing involves some
kind of many take away, add, take
away like that before the
subtraction itself.

661. P: Good. Okay. Another person does

this work:
70245
- 31867
38482
If you are asked to check the
answer which method will you use?

662. R: Base complement.

663. P: Why?

664. R: That is easier to do.

In the pre-intervention, reversal errors as well as borrowing across zero and
borrowing without reducing minuend were observed. After learning BCA, all these
became minimal in participants’ subtraction calculations. After learning the BCA
algorithm, participants were able to do multi-digit compound subtraction more easily.
Furthermore, participants were able to determine errors in multi-digit subtraction with
less difficulty than they did before the intervention. This was really a mark of
improvement in participants’ subtraction-skill development.
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CHAPTER 6 - SUMMARY, CONCLUSION AND RECOMMENDATION

Summary of the Study

According to research studies on the learning of subtraction algorithms, students
have shown vast differences in success using the decomposition (D) and equal additions
(EA) algorithms. Most of the research dates back to the late 1930s and 1940s. An updated
investigation of the subtraction algorithm seemed appropriate. In this study an algorithm,
in compound subtraction, was introduced to participants. Then the researcher
investigated, by way of testing and interviewing, whether the intervention made sense to
participants. D was the traditional algorithm commonly used in United States, Canada
and most part of the world. Base Complements Additions (BCA), though not new, was a
novel algorithm for the students.

In the pre-intervention session two equal sets of subtraction questions were given
to participants to try. The purpose was to observe the participants’ various strategies for
subtraction and then follow it up with interviews to find out strategies they use for
subtraction that involves renaming. It was assumed that students enter the classroom with
some informal knowledge about what is to be taught. The main objective of this session
was to determine their entry behavior.

Intervention sessions followed the initial interviews. These were a sequence of
instructions that were given to the participants. It took five contact-hours in the residence
of the participants. After this intervention a second set of questions was given to
participants to do. The purpose was to find out if the participants made sense of the
intervention. It was assumed that students would use their traditional D algorithm if the
intervention was not so meaningful to them. The post-intervention came two weeks after
the intervention. In this session participants were given a third but parallel set of
subtraction questions on compound subtraction. After the test they were interviewed the
next day, for investigations pertaining to retention and subtraction skill-development.

The post-post intervention was an unscheduled session to test for the reliability of
findings in the post intervention interviews. It was comprised of two, different but
parallel, sets of questions and interviews. The computational tests and interviews were
two main evaluation instruments used to assess participants’ computational skills in
solving subtraction problems, their understanding of the subject matter and ability to
solve word problems.

All the interviews were audiotaped, in each phase, to investigate the subject
matter. Students’ working papers were also collected and analyzed. The evaluation
instruments were all designed and administered by the researcher. Pre-intervention,
intervention and post-intervention was the design used for the study.
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Findings From the Study

Analyses from participants’ working papers, the tests and the transcribed
interviews brought out the following findings from the research study:

1. Students have more than one strategy for doing simple subtraction; but with
compound subtraction there was only one method students used, before the
intervention.

The implication of this finding was that with simple subtraction there was
flexibility in the paper-and-pencil approach. However, with compound subtraction,
failure to understand the D algorithm might lead to inability to correctly complete
computation, in terms of paper-and-pencil work. It could even discourage the students
from doing mental arithmetic. But in problem solving students are usually encouraged to
find alternative approaches to solving any given problems. For students to use only one
method for solving compound subtraction obviously does not encourage problem solving
in students with respect to paper-and-pencil multi-digit compound subtraction. During the
revision lesson Rubin disclosed, after researcher’s prompt, that he was once taught how
to subtract by way of place-value strategy. But even after discussing it he never used it.
As the adage goes “You can lead a horse to water but you cannot make it drink”. It is
clear that students must be exposed to a variety of methods and they have to decide which
one to use to solve a given problem.

2. The notion that there was only one method used for solving compound subtraction,
has changed after the intervention. The interviews indicated the possibility of an
additional strategy which students were more confident with.

The main purpose of this research was to introduce BCA to participants and find
out whether they would make sense of it. Participants’ confidence in BCA is a clear
indication that they really mastered the intervention procedure. Otherwise they would
have reverted back to using D (borrowing) a week or two after the intervention.

3. Students made many errors when working with “borrowing” (the previously learnt
algorithm). With the introduction of the new algorithm students were seen to make
few mistakes with respect to multi-digit subtraction computations. Reversal errors,
for instance, in participants’ expressions and answers, did not happen with the use
of BCA. Participants, in the study, were able to do eleven-digit subtraction exercises
without making other errors associated with D (borrowing).

Compound subtraction that involves, at least, three renaming appears complex
when D is applied. Sometimes the subtraction could involve a series of subtracting and
adding before the actual subtraction is made. Thus when the student forgets to keep track
of the procedure, this brings about errors such as borrowing without reducing the
minuend, borrowing across the zero and reversal errors. BCA, however, uses only simple
addition and simple subtraction. Further, the numbers involved in BCA calculations are
the digits 1, 2, 3, ... 9. With BCA, compound subtraction is transformed to simple
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subtraction. Thus I speculate at this point, that many people (students and non-students)
would feel comfortable with BCA, in terms of multi-digit subtraction that involves
renaming.

4. Before the intervention students could not easily determine errors in
compound subtraction computations. With the introduction of BCA, after the
intervention, they could easily look at subtraction expressions and determine
whether they are right or wrong and why. Thus it was easier for students to
determine right or wrong subtraction expressions with BCA than with
borrowing.

Students’ ability to easily determine right or wrong subtraction expressions with

. BCA, is an indication that there is improvement in their arithmetic competence. Their

 knowledge base in compound subtraction may have been expanded. Another implication

is that participants understand the computational procedures of BCA from the beginning

to the end. And they used their answers they got from working with BCA to check those
they got by way of D.

The general implication, here, is that BCA is a powerful tool for computing
subtraction that involves renaming, for these participants. Thus BCA algorithm compares
very favorably with the conventional D algorithm.

Conclusion

The purpose of this study was to explore students’ understanding of multi-digit
subtraction given an intervention. However, the study began by determining students’
existing strategies for subtraction. From the study it was found that:

e With respect to simple subtraction participants used “separating from whole

or take away”, “counting on” and “counting down to” models in their
computation of simple subtraction;

e For compound subtraction participants used only the D algorithm.

In this study the researcher was able to shed some light on the teaching and
learning of compound subtraction by BCA. Particular effort was made to determine
whether the teaching and learning of compound subtraction by the method of BCA would
be useful to participants for skill development, if objectified. From the findings, the
following general conclusion could be made.

o The base complement additions algorithm was an effective teaching and learning
tool for subtraction that involves renaming for the participants in this study.

The post-intervention test and interviews and the post-post intervention test and
interviews indicated a change in participants’ entry behavior; hence one can argue that
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participants have a preferred algorithm to use in the computation of multi-digit compound
subtraction. In all cases, post-intervention, they self selected BCA when asked to
subtract.

Participants did subtraction computation, even, up to eleven digits. It might be
inferred that the instructional sequence, the mental math and the numerous practice
problems offered thorough and comprehensive intervention coverage for participants.
The end result was that with BCA students could easily determine wrong or right
subtraction work, at a glance, which they had found difficult when D strategy was used. It
must be recalled that prior to the study the participant in grade 4 had already been taught
the method of D when she was in grade 3. Similarly, the participant in grade 5 had been
introduced to the traditional D algorithm in grades 3 and 4.

Interestingly, the BCA intervention covered only five contact periods but the
students did not go back to using the D even after six weeks. There is little doubt that
these students found BCA to be a powerful tool for compound subtraction. This is
consistent with the observation made by early researchers, including Jerman and
Beardslee (1978); when comparing the relative efficiency of D and equal additions, equal
additions had been shown to be a superior teaching tool. In their observation, however,
meaning and understanding were not factors. But in this study the researcher attempted,
by way of physical representations, to build in opportunities for BCA to be meaningful to
the students. This research also supports the consensus of the audience of Gyening’s
presentation (1993) that Equivalent Zero Addition (from which BCA was derived) has
the potential to compare favorably with the D algorithm.

The equal additions and the BCA are similar for they are both based on
compensation. In equal additions one is required to add 10 to both minuend and
subtrahend, whereas in BCA one is only required to add base complement(s) of the
subtrahend to both minuend and subtrahend. The instructional activities for BCA cover
the enactive (through the use of numeration cards, Dienes blocks, straws etc.), iconic
(pictorial and diagrammatic representations) and symbolic phases of conceptual
representation as suggested by Bruner (1966). The instructional sequence developed for
this research, therefore offers possibilities for modeling the BCA subtraction algorithm;
hence attending to the deficiency noted in earlier research (Brownwell & Moser, 1949;
Gagg, 1956). Given a way of modeling BCA, it has potential to be a very useful tool for
teaching and learning subtraction that involves renaming.
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Recommendations
For Instruction

Teachers should break down the target task into sub-tasks and make sure each is
adequately treated and meaningfully understood before tackling the target task. A
successful intervention depends on the adequacy of pre-requisites. For a successful
intervention of BCA, at the formal stage, the following pre-requisites are recommended:

a. Place value

b. Simple addition of whole numbers

c. Simple subtraction of whole numbers

d. Equivalent zeros

e. Base complements

[ Identification of simple and compound subtraction

g. Renaming compound subtraction expression by way of base
complement additions (transformation of compound subtraction to
simple subtraction).

h. The use of BCA crutch.

Since the adequacy of each of the sub-procedures depends on the adequacy of the
frames for concepts involved it (Halabisky, 1981, p.108), the subject matter of each
subordinate task must be developed in such a way that they will be most beneficial to
learning of the target task. The use of physical materials is, therefore, recommended for
each subordinate task.

For Further Research

It is recommended that, a thorough and comprehensive study be made in grades 1,
2 and 3 to find out what stage of the instructional sequence (above) is viable at these
grade levels. This recommendation is made in light of the fact that the participant in this
study, who was in grade 4, was not, initially, finding it easy to operate at the formal level
of the symbolic phase of the instructional sequence.

The results also suggest several related areas for possible research studies; the
possible target-task of which might be a focus on the formal stage of the symbolic phase
of BCA. Why? The reason is that it appears operating at the formal stage might not be
possible at these grade levels. It seems that introducing BCA to first, second and third
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graders must cover certain depths of the instructional sequence only, in order not to over
burden learners with instructions. Teaching and learning of BCA at these grade levels

must be “conceptual” to provide a rich knowledge base for future “procedural” learning
of BCA.

The researcher furthermore recommends that, a thorough and comprehensive
study be made in grades 6, 7 and 8, using the “deep-end approach to mathematical
instruction”. This must be conducted to find out whether the symbolic phase of the
instructional sequence (above) could be applied, at these grade levels, without the
enactive and the iconic phases. This recommendation is in light of the fact that the
participant in this study, who was in grade 5, found the whole instructional processes
very comprehensive; and was able to easily transfer the knowledge to eleven and more
digits and also to numeration systems (i. e. bases 5, 4, 3). It seems, to the researcher, that
it is easier to operate at the symbolic phase of the instructional sequence if students
understand “balancing”. The principle of balancing, also known as compensation, is
applied in many subject areas and disciplines. These include algebra, calculus, mechanics
and physics. Thus the application of only symbols at the above grade levels must be
considered meaningful, if students understand and thus can explain what they are doing.
At these grade levels remedial instructions in the form of iconic representation is
recommended, should learners find problems in getting the formal stage of the symbolic
phase.

A study of two children is not sufficient to generalize findings. Thus for validity
of the BCA intervention to uncover exaggerations and oversimplifications in this study, a
large scale comparative study of D and BCA in grades 4 and 5, in terms of subtraction-
skill development is recommended.

For Dissemination of Knowledge on the Base Complement Additions Algorithm

Based on this study, the researcher believes that BCA is a useful strategy for
elementary aged school children. However, it does not appear to be a common strategy
developed in textbooks or known to math teachers. Hence educational administrators and
teacher educators should consider refresher courses, workshops and/or seminars for
classroom teachers to acquaint them with this method of working compound subtraction
sums.

With respect to problem solving, it is recommended that BCA be promoted as a
strategy for computing multi-digit compound subtraction. It both provides students with
another algorithm for subtraction and it helps pupils appreciate the notion of balance
(equivalence) at their initial school ages.
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FACULTIES OF EDUCATION AND EXTENSION
RESEARCH ETHICS BOARD

Graduate Student Application for Ethics Review

Name: Peter McCarthy Student ID: 397588

E-mail:.  pm@ualberta.ca

Project Title: Exploring students’ understanding of subtraction given an
intervention.

Project Deadlines:

Starting date: January, 2000 Ending date August, 2001
If your project goes beyond the ending date, you must contact the REB in writing for an extension.
Status:

___ Master's Project ‘/ Master's Thesis ____Doctoral Thesis — Other
{Specify)

The applicant agrees to notify the Research Ethics Board in writing of any changes in research design after
the application has been approved.

' November 6, 2000

Signature of Applitant Date

The isor of the study or course instructor approves submission of this application to the Research
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re of Supervisor/instructor Date

ETHICS REVIEW STATUS
___ Appilication not approved

xpedited review approved by Unit Statutory member/Alternate
... Review approved by Researgh Ethics Board

WW VX ‘%’V 7 2040

Signatdré’of REB Member Date {
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PARENTS LETTER

Date:
Dear Parents,
Your child will be involved with a study about how he/she reacts to a new method of
subtraction for a period of two months or twelve contact hours. The instructor Peter
McCarthy, is a fully trained teacher with 12 years of classroom teaching experience. He
developed the sequence of instruction in the lessons in partial fulfillment of his master’s
research project.

The purpose of the study is:

That I am trying to learn about how students subtract

That I am trying to explore students’ understanding of subtraction that involves
renaming, given an instruction.

Your child will be given some renaming-subtraction questions to do, interviewed as to
how he/she did the work and then a new approach to solving renaming-subtraction will
be introduced to him/her. A day after the intervention your child will be given another
renaming-subtraction questions to do but will not be interviewed. Two weeks after the
intervention a third set of renaming-subtraction questions will be given to your child to
do after which he/she will be interviewed. Time for each set of questions will be 40
minutes and each interview will take 40-60 minutes. The researcher is not interested in
the scores of your child but how he/she understands and does the work. All interviews,
will be audio taped and transcribed; and will be outside the normal class periods.
Transcripts will be given to participants for confirmation. Participation in this project is
entirely voluntary. It is your decision whether or not to allow the results to be used in the
research study.

The data collected will only be used for the purpose of my research. Only the results will
be reported, with no reference to individual children. The experimenter will assign
pseudonyms to ensure confidentiality and anonymity.

If you have any questions regarding the instructional sequence, or you want to withdraw
your child from the project, contact Mr. McCarthy (at U of A, 492-3760 or at home, 988—
2418) or his advisor, Prof. Elaine Simmt (Department of Secondary Education, Education
South, University of Alberta, Edmonton, at 492-0881).

This project has been reviewed and approved by the Faculties of Education and
Extension Research Ethics Board for research involving Human subjects.

Thank you for your cooperation.

Sincerely

PETER MCCARTHY
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University of Alberta

Research Consent Form

I , hereby consent
(print name of parent/legal guardian or independent student)

for to be
(print name of student)

interviewed by Peter McCarthy.

I understand that:
e my child may withdraw from the research at any time without penalty
¢ all information gathered will be treated confidentially and discussed only
with your supervisor
e any information that identifies my child will be destroyed upon
completion of this research

e my child will not be identifiable in any documents resulting from this
research thesis.

I also understand that the result of this research will be used only in the research thesis,
presentations and written articles for other educators.

For further information concerning the completion of the form, please contact Peter
McCarthy (Department of Secondary Education, University of Alberta, at 492-3760)
Or his advisor, Prof. Elaine Simmt (University of Alberta at 492-0881).

Signature of parent/legal guardian or independent student

Date signed:
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APPENDIX B

Pre-Intervention Test Items -A

Intervention Test Items -B

Post-Intervention Test Items -C

Post-Post-Intervention Test Items
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Name
1). 86 2). 42-38=
-27
4). 66 5. 70-14=
-37
7). 216-197= 8). 537
-439
11). 791 12). 816
-287 -527
14). $7.26 15). $5.15
-$0.63 -$1.63
17). 4070 18). 8005
-2589 -3664

Time: 40min

3).56
-28
6). 80
- 23

10).6 05
-147

13). 800

=212

16).$5.6 3
-$3.26

19). 7000
-2873

20). David has $1809 in his account. If he uses $1732 for his

school fees, how much money does he have?



Name

1). 56
-28

4). 61
-49

7). 209 —18 8=

11). 757
-238

14). $7.56

-$0.84

17). 6537
-1899

2). 55-23=

5). 61—-49=

8). 547
-449

12). 609

=517

15). $5.16
-%$1.73

18). 7794
-1988

Time: 40min

3).52

-26

6). 80

~ =24

10). 7 0 1
-232

13). 960

-487

16).$5.6 3
-$3.27

19). 700 1
-3095

20). Johnson has $301 in his pocket. Joyce has $258 in her

purse. How much less money does she have than Johnson?
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Name

7). 150-164=

1). 717
-468
14). $8.26

-$2.63

17). 4008

-3264

2). 61-49=

5).83-47=

8). 878
-359
12). 711

-693

15). $6.15

-$4.63

18). 8009

-5637

Time: 40min

13). 816
-579
16).$9.63

-$3.26

19). 200 1

-1856

20). G.F Handel was a composer. He was born in 1685 A.D.

and he died in 1759 A.D. At what age did he die?
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APPENDIX C

Iconic Representations of Activities-BCA
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Numeration Flash cards
(Iconic Representations of Activities-BCA)

[ ]

Figure i
Small = one
Figure iii
Flat = hundred
Figure i
Long = ten

The small card is the unit of the numeration flash cards. The small represents one (Figure

i).

The long could be a unit to the flat numeration card. It contains 10 small numeration
cards. The long represents a ten (Figure i1).

One flat contains 100 ones or 10 longs. 10 flats are equivalent to a thousand (Figure iii).

1 2 3 4 5 6
Figure iv
Base complements
For any digit, what adds up to ten is the base complement of the digit, in base ten.
To each of these digits the number of empty spaces on the column is the base
complement.
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Numeration

Numeration flash cards are displayed
according to the number indicated

Mode of representation:

The conventional method of representation
is from the bottom left to the top. After the
first column on the leftmost side is filled
then comes the next. As we fill from left to
right, bottom left to the top, we keep track
with the number till the counting is
complete. Figures v, vi, and vii are array of
21, 23, and 32 respectively.

" Figure vi " Figure vii
23 32
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Modeling Subtraction

Subtracting a number is generated the same

way as displaying the numeral- from left to

right and bottom to the top. Description on

the left shows that originally 21 cards were

displayed and latter 17 of them were taken

away- thus a model of 21-17.

Figures ix, x, xi and xii (below) represent

the models 22-17, 23-15, 21-12 and 32-13

respectively.
Figure viii
21-17
Figure ix B Figure x
22-17 23-15
Figure xi Figure xii
21-12 32-13
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THE TRANSFORMATION (RENAMING)
This is regrouping without altering the number of cards present.

Figure xi a, shows 21 cards of which 17 are taken away. This leaves 4 cards; three, as the
complement of the seven cards taken away on the middle column and one, on the last
column. In the transformation process the complement cards are removed to the last
column. Figure xi b (below) is a transformation of figure xi a (below).

Figures xii a and xii b, xiti a and xiii b, and xiv a and xiv b (below) are subtraction
models and their corresponding transformations.

Figure xia Figure xi b
21-17 24-20

Figure xii a Figure xii b
23-15 28-20
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Figure xiiia Figure xiii b
21-12 29-20

Figure;(‘i\; a Figure xiv b
32-13 39-20
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