
University of Alberta

ON THE APPLICATION OF MULTI-CLASS CLASSIFICATION IN

PHYSICAL THERAPY RECOMMENDATION

by

Jing Zhang

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

c⃝Jing Zhang

Fall 2012

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single

copies of this thesis and to lend or sell such copies for private, scholarly or scientific

research purposes only. Where the thesis is converted to, or otherwise made available in

digital form, the University of Alberta will advise potential users of the thesis of these

terms.

The author reserves all other publication and other rights in association with the copyright

in the thesis, and except as herein before provided, neither the thesis nor any substantial

portion thereof may be printed or otherwise reproduced in any material form whatever

without the author’s prior written permission.



Examine Committee

Osmar R. Zaiane, Department of Computing Science

Douglas Gross, Department of Physical Therapy

Vadim Bulitko, Department of Computing Science

Jeremy Beach, Department of Medicine



Abstract

Selecting appropriate rehabilitation treatments for injured workers has been a chal-

lenging task for clinicians and health care funders. Currently, clinicians are unable

to identify the optimal treatment for a patient with absolute confidence and are

looking for assistance from other research fields, such as Machine Learning.

This thesis aims at building a knowledge-based clinical decision support system

using machine learning algorithms. We have found that with proper data prepro-

cessing, the RIPPER algorithm can extract meaningful, editable and interpretable

decision rules from a severely imbalanced multi-class clinical dataset.

Moreover, the extracted rule set is integrated into our prototype Work Assess-

ment Triage Tool (WATT), a web-based online decision support system. It has an

easy-to-use interface and provides useful recommendations to help clinicians make

better decisions.



Table of Contents

1 Introduction 1
1.1 Thesis Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background and Related Works 6
2.1 Rehabilitation process and classification of injured workers . . . . . 6
2.2 Clinical Decision Support System . . . . . . . . . . . . . . . . . . 8
2.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Supervised Learning . . . . . . . . . . . . . . . . . . . . . 9

2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Data Analysis 12
3.1 Preliminary Dataset (June 2011 - Sept. 2011) . . . . . . . . . . . . 12
3.2 Second dataset (Sept. 2011 - Dec. 2011) . . . . . . . . . . . . . . . 12
3.3 Final dataset (Jan. 2012 - May 2012) . . . . . . . . . . . . . . . . . 13

4 Machine Learning algorithms and Data Preprocessing Methods 15
4.1 Machine Learning Algorithms . . . . . . . . . . . . . . . . . . . . 15

4.1.1 Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.2 C4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.3 Associative Rule Classification By Category (ARC-BC) . . 17
4.1.4 RIPPER . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.5 Support Vector Machine . . . . . . . . . . . . . . . . . . . 22

4.2 Data Preprocessing Methods . . . . . . . . . . . . . . . . . . . . . 22
4.2.1 Oversampling . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.2 Data Cleaning Methods . . . . . . . . . . . . . . . . . . . . 24
4.2.3 AdaBoost.NC . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.4 Feature Selection, Encoding and Discretization . . . . . . . 25
4.2.5 Data Visualization . . . . . . . . . . . . . . . . . . . . . . 27

5 System Requirements and Evaluation 28
5.1 System Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2.1 Human Baseline . . . . . . . . . . . . . . . . . . . . . . . 31



6 Experiment Design and Evaluation for Separated Models Approach 33
6.1 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.1.1 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . 34
6.2 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . 35

6.2.1 Analysis of the separated models approach . . . . . . . . . 35
6.2.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 Experiment Design and Evaluation for Single Model Approach 45
7.1 Building A Single Model . . . . . . . . . . . . . . . . . . . . . . . 45

7.1.1 Direct Approach . . . . . . . . . . . . . . . . . . . . . . . 46
7.1.2 Decomposition Approach . . . . . . . . . . . . . . . . . . 46

7.2 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2.1 Analysis of the single model approach . . . . . . . . . . . . 49
7.2.2 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.3 Prototype System WATT . . . . . . . . . . . . . . . . . . . . . . . 65
7.3.1 Program Duration Prediction . . . . . . . . . . . . . . . . . 68
7.3.2 Resolving Rule Conflicts . . . . . . . . . . . . . . . . . . . 68
7.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8 Conclusion 71
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.2 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . 73
8.3 Future Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Bibliography 76

A Final Rules in WATT 81
A.1 Positive Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.2 Negative Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



List of Tables

2.1 Overview of methods for solving class imbalance . . . . . . . . . . 11

3.1 Class Distribution of LEFS . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Class Distribution of DASH . . . . . . . . . . . . . . . . . . . . . 13
3.3 Class Distribution of OMPQ . . . . . . . . . . . . . . . . . . . . . 13
3.4 Class Distribution of the Final Dataset . . . . . . . . . . . . . . . . 14

5.1 Confusion Matrix For a Two-class Classification Problem . . . . . . 31
5.2 Physicians’ Performance On Extracted Records . . . . . . . . . . . 32

6.1 10-Fold Cross Validation (RIPPER-LEFS) . . . . . . . . . . . . . . 40
6.2 10-Fold Cross Validation (Naive Bayes-LEFS) . . . . . . . . . . . . 41
6.3 10-Fold Cross Validation (C4.5-LEFS) . . . . . . . . . . . . . . . . 41
6.4 10-Fold Cross Validation (SVM-LEFS) . . . . . . . . . . . . . . . 41
6.5 10-Fold Cross Validation (RIPPER-DASH) . . . . . . . . . . . . . 42
6.6 10-Fold Cross Validation (Naive Bayes-DASH) . . . . . . . . . . . 42
6.7 10-Fold Cross Validation (C4.5-DASH) . . . . . . . . . . . . . . . 42
6.8 10-Fold Cross Validation (SVM-DASH) . . . . . . . . . . . . . . . 43
6.9 10-Fold Cross Validation (RIPPER-OMPQ) . . . . . . . . . . . . . 43
6.10 10-Fold Cross Validation (Naive Bayes-OMPQ) . . . . . . . . . . . 43
6.11 10-Fold Cross Validation (C4.5-OMPQ) . . . . . . . . . . . . . . . 44
6.12 10-Fold Cross Validation (SVM-OMPQ) . . . . . . . . . . . . . . . 44

7.1 Experiments in Direct Approach . . . . . . . . . . . . . . . . . . . 47
7.2 10-Fold Cross Validation On the Cleaned-up Final Dataset (RIPPER) 51
7.3 10-Fold Cross Validation On the Cleaned-up Data (Class 0 Sam-

pled) Using RIPPER . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.4 Evaluation On the Test Set (RIPPER) . . . . . . . . . . . . . . . . 53
7.5 Evaluation On the Test Set (Naive Bayes) . . . . . . . . . . . . . . 54
7.6 Evaluation On the Test Set (C4.5) . . . . . . . . . . . . . . . . . . 54
7.7 Evaluation On the Test Set (All Experiments) . . . . . . . . . . . . 55
7.8 Evaluation On the Test Set (Numeric-Variable-Encoding, Naive Bayes) 56
7.9 Evaluation On the Test Set (Nomial-Encoding, Naive Bayes) . . . . 56
7.10 Evaluation On the Test Set (Numeric-Variable-Encoding, C4.5) . . . 57
7.11 Evaluation On the Test Set (Nominal-Variable-Encoding, C4.5) . . . 57
7.12 Evaluation On the Test Set (OVA-All Experiments) . . . . . . . . . 58
7.13 Evaluation On the Test Set (OVO-All Experiments) . . . . . . . . . 59
7.14 Evaluation On the Test Set (ARIPPER) . . . . . . . . . . . . . . . 61
7.15 Statistics For Column 1 to 4 . . . . . . . . . . . . . . . . . . . . . 63
7.16 Statistics For Column 5 to 8 . . . . . . . . . . . . . . . . . . . . . 63
7.17 Evaluation On the Test Set (Numeric-Variable-Encoding, ARC-BC) 64



7.18 10-Fold Cross Validation Using RIPPER to Generate Rules Com-
paring to the Physicians’ Performance on Extracted Records (Physi-
cians/RIPPER) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



List of Figures

2.1 WCB-Alberta Continuum of Care Model for the Management of
Claimants with Soft-Tissue Disorders (2010 version) . . . . . . . . 7

4.1 A Decision Tree Example . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 RIPPER algorithm (Reproduced from Figure 1 in [16]) . . . . . . . 19

6.1 Class Distribution of LEFS Before and After Sampling . . . . . . . 36
6.2 Class Distribution of DASH Before and After Sampling . . . . . . . 36
6.3 Class Distribution of OMPQ Before and After Sampling . . . . . . 37
6.4 Visualization of LEFS after Sampling . . . . . . . . . . . . . . . . 37
6.5 Visualization of DASH after Sampling . . . . . . . . . . . . . . . . 38
6.6 Visualization of OMPQ after Sampling . . . . . . . . . . . . . . . . 38
6.7 Visualization of LEFS after Tomek Links Cleaning . . . . . . . . . 39
6.8 Visualization of DASH after Tomek Links Cleaning . . . . . . . . . 39
6.9 Visualization of OMPQ after Tomek Links Cleaning . . . . . . . . 40

7.1 Class Distribution Before and After Sampling-Final Dataset . . . . 49
7.2 Dataset Visualization After Sampling . . . . . . . . . . . . . . . . 50
7.3 Dataset Visualization After Cleaning . . . . . . . . . . . . . . . . . 50
7.4 Dataset Visualization After Sampling (prog0 sampled) . . . . . . . 52
7.5 Dataset Visualization After Cleaning(prog0 sampled) . . . . . . . . 52
7.6 WATT Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.7 Conflict Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



List of Publications

• Jing Zhang, Douglas Gross, and Osmar Zaiane. On the application of
multi-class classification in physical therapy recommendation (submitted).
IEEE International Conference on Data Mining, 2012

• Gross DP, Zhang J, Steenstra I, Cooper J, Barnsley S, Haws C, McIntosh G,
Amell T, and Zaiane O. Development of a computer-based decision-support
tool using machine-learning strategies for selecting appropriate
rehabilitation interventions. Odense International Forum XII Primary Care
Research on Back Pain, 2012

• Gross DP, Zhang J, Steenstra I, Cooper J, Barnsley S, Haws C, McIntosh G,
Amell T, and Zaiane O. Development of a computer-based decision-support
tool using machine-learning strategies for selecting appropriate
rehabilitation interventions. BMJ Occupational and Environmental
Medicine, 2012



Chapter 1

Introduction

Work-related musculoskeletal injuries have been responsible for the long-time lay

off and high cost in health care among injured workers [12][36][43][34][8][48][42].

While the majority of individuals with such conditions return to work quickly, a

small minority suffers from delayed recovery and this has become heavy burdens

on their personal, social and economic lives [9][27]. Ideally, effective rehabilitation

programs for those most at risk would be identified. This is a classification pro-

cess which involves assigning claimants to appropriate rehabilitation programs that

lead to successful return-to-work (RTW) based on their clinical and work-related

characteristics. However, current referral for rehabilitation program follows a trial-

and-error fashion since clinicians are not completely confident of identifying the

best intervention which patients will respond to among various options [24] and

thus the rate of successful RTW among those injured workers is not high and could

be further improved.

As mentioned, most injured worker return to work quickly. For those whose

recovery have not occurred within 4 to 6 weeks, further assessment followed by an

intervention is necessary to avoid chronic pain and disability. Various interventions

are available including physical conditioning or functional restoration programs

[52], worksite-based interventions [53], and interdisciplinary biopsychosocial re-

habilitation (i.e. chronic pain management programs) [37] [23]. If a patient going

through an intervention successfully returns to work within a pre-determined time,

1



the intervention is considered as appropriate with a positive outcome. Otherwise, it

is considered as a failure with a negative outcome and the patient has to go through

subsequent assessments and interventions. Although it is possible that multiple re-

habilitation programs can lead to return-to-work for a patient, we cannot find out

what they are since it is impossible to let a patient go through multiple programs at

the same time in order to observe the outcomes. We could let a patient go through

a sequence of different programs, but each time the patient completes a program,

he’s not the same person anymore since his health conditions may have changed

due to the previous rehabilitation. Therefore, an important assumption in this thesis

is that for each patient there exists only one appropriate program. If a patient is

correctly categorized into the true appropriate program, he will absolutely return to

work. Otherwise, there will be no successful RTW. Under the assumption above,

we could determine a patient’s return-to-work status in advance based on the clas-

sification result.

The main purpose of this thesis is to construct a classification model using ma-

chine learning that categorizes an injured worker into his own appropriate rehabil-

itation program. Machine Learning (ML) algorithms are capable of mining useful

patterns in various forms from empirical data (i.e., past records of patients including

their characteristics, rehabilitation program and program outcome) to generate class

descriptions to distinguish different categories of objects (i.e., clinical characteris-

tics that fit a certain type of rehabilitation programs). If the model could achieve

good classification performance (e.g., higher classification accuracy or other mea-

surements than human experts’), it would facilitate the rehabilitation recommenda-

tion process and improve the success rate of RTW.

This model will be included into an easy-to-use Clinical Decision Support Sys-

tem (CDSS), which is receiving attentions from an increasing number of researchers

in clinical practice. Computerized CDSS has shown the potential to augment hu-

man clinical decisions [50][51].

Most of the current CDSS utilize a knowledge base (rules or guidelines) man-

ually constructed by human experts. Machine learning algorithms are capable of

constructing a knowledge base automatically without human inputs and have the

2



potential of discovering something the human experts have overlooked. Together

with the experts’ own expertise which could be injected into the knowledge base,

a CDSS equipped with a model generated from ML algorithms would become a

powerful assistant in the intervention selection process.

1.1 Thesis Statements

This dissertation elaborates on building a clinical decision support system (CDSS)

using machine learning algorithms. We aim at addressing the following statements:

• TS1: Machine learning algorithms could create meaningful, editable and in-

terpretable models (e.g. a set of Disjunctive Normal Form (DNF) rules) as

the knowledge base of the clinical decision support system.

• TS2: Previous methods handling class imbalance in classification are only

validated on binary datasets. Their effectiveness is unknown for multi-class

datasets. Combinations with class decomposition may be more effective.

• TS3: The rule-based classification model could provide multiple recommen-

dations. The quality of a recommendation could be measured by the quality

of the underlying rules through different metrics. Confidence and Chi-Square

could be two promising measurements.

1.2 Thesis Contributions

In this dissertation, we build a web-based decision support system that incorporates

a knowledge base (consisting a set of classification rules generated from machine

learning algorithms). This approach combines the advantages of the knowledge-

based (KB-DSS) and the non-knowledge-based DSS (NKB-DSS) together:

• We use machine learning algorithms to generate a classification model effi-

ciently without the need for expert input (an advantage of NKB-DSS).

3



• The machine learning algorithms can mine meaningful rules. Some might

have not been discovered by the domain experts before (another advantage of

NKB-DSS).

• By using rule-based machine learning algorithms, we obtain a classification

model consisting of a set of Disjunctive Normal Form (DNF) rules which are

interpretable and editable by the clinicians (an advantage of KB-DSS).

During the process of constructing our knowledge base (a multi-class classifi-

cation model), we have encountered severe class imbalance and overlap in our data.

In order to mitigate their negative impacts, we have compared and analyzed var-

ious data preprocessing methods and provide insights of how popular methods in

literature work on real life clinical datasets. We have found that the combination

of SMOTE + Numeric-Variable-Encoding + Supervised Discretization + Tomek

Links/NCR + RIPPER can produce meaningful recommendation rules as evaluated

by our domain expert and have shown promising classification potential in indepen-

dent test evaluations.

Additionally, we present our prototype system Work Assessment Triage Tool

(WATT). Based on the individual and clinical characteristics of a worker, WATT

provides multiple rehabilitation recommendations. All recommendations can be

sorted based on different criteria and the supporting rules of each recommendation

can be displayed to explain why such a recommendation is made. The system

provides a recommendation pool for the clinicians to choose from so that they can

make better decisions and possibly increase the efficiency of the decision-making

process.

1.3 Thesis Organization

The rest of this dissertation is organized as follows. In chapter 2 we briefly introduce

the clinical background of rehabilitation treatment in physical therapy, the concept

and property of (clinical) decision support system, and machine learning. In chapter

3, we analyze the datasets we are using along the timeline of this research. Chapter

4



3 also includes the details of the evaluation metrics in our experiments. Chapter

4 introduces the machine learning algorithms, data preprocessing and visualization

methods in our experiments. Chapters 5 and 6 detail two different sets of exper-

iments design, report their results and analysis respectively. Finally, we conclude

the overall contributions and future study of this thesis in Chapter 7.

5



Chapter 2

Background and Related Works

2.1 Rehabilitation process and classification of injured

workers

Figure 2.1 shows a continuum care model for injured workers (provided by Work-

ers’ Compensation Board-Alberta). In general each injured worker receives a return-

to-work (RTW) assessment (including personal and clinical characteristics) after a

few weeks of recovery therapy. The physician and case manager make a rehabili-

tation recommendation based on the assessment result, however, the case manager

has the right to override the physicians decision. The feature of each program is

listed as follows [23]:

• “other” intervention (prog0): No rehabilitation or a single service provider.

Basically it means a patient′s health condition does not require any treatment

or no treatments could help the patient return to work.

• Complex Service (prog3): Comprehensive pain management program for pa-

tients with chronic pain and multiple complex barriers to RTW.

• Provider Site Based Service (prog4): Interdisciplinary rehabilitation at a des-

ignated rehabilitation facility.

6



Figure 2.1: WCB-Alberta Continuum of Care Model for the Management of

Claimants with Soft-Tissue Disorders (2010 version)

• Work Site Based Service (prog5): The intervention takes place at a worksite

instead of at a rehabilitation facility.

• Hybrid (prog6): A hybrid program of prog4 and prog5.

The classification of the injured workers is to map a patient R to a rehabilitation

program y:

R : (f1, f2, ..., fn) → y ∈ {prog0, prog3, prog4, prog5, prog6}

where y is a correct class for R iff

∃ A clinician or case manager recommended y for R

and

Rsubjected to y RTW in a pre-determined time t.

In this thesis, the pre-determined time t is defined as the 30th day after a patient’s

admission to assessment. f1 to fn stands for the characteristics of a patient.

7



2.2 Clinical Decision Support System

Decision Support Systems (DSS) are computer-based information systems that as-

sist people to make decisions more effectively and efficiently. Although there is no

universally accepted definition of DSS [4], the followings are the common features

that DSS share:

• DSS are designed to assist, rather than replace, the decision-makers. They

should allow the decision makers to inject their own insights into the decision

process.

• They incorporate models in various formats (such as a knowledge base or

intelligent algorithms) as well as the data.

• They should improve the quality of the decision with an easy-to-use access.

Clinical Decision Support Systems (CDSS) are specifically designed for decision

makers in health care to improve tasks such as medical diagnosis or clinical prog-

nosis.

CDSS are usually categorized into two types: Non-Knowledge based and Knowl-

edge based CDSS. The knowledge-based CDSS are built on a set of IF-THEN rules

and associations [7]. These rules are usually provided by domain experts [40][10]

and decisions are made by testing instances against the rules. The system allows

the users to edit the knowledge base with their own insight. The Non-Knowledge-

based CDSS incorporate intelligent algorithms (i.e., machine learning) to extract

useful patterns from past experiences or in the clinical data. The clinicians are

less willing to use it since the extracted patterns are usually not interpretable [7].

A good combination is to use rule-based machine learning algorithms to generate

rule-based models as the knowledge base. In this way, we can utilize the advantage

of the algorithms while providing model interpretability and editing.

8



2.3 Machine Learning

2.3.1 Introduction

Machine Learning aims at designing algorithms to analyze and induce knowledge

from empirical data. Such knowledge is applied in many tasks such as classification,

regression and clustering.

2.3.2 Supervised Learning

The data used by machine learning algorithms are represented using a set of fea-

tures. Those features can be either continuous or discrete. If a known label (or

a pre-specified output value) is given to each instance in the dataset, the learning

process is called supervised learning.

Classification

Classification is part of the supervised learning problem. In classification, machine

learning algorithms learn from pre-labeled data to discriminate instances from dif-

ferent classes. Given a test instance, the trained model categorizes the instance by

assigning a class label to it.

Regression

Regression is similar to classification except that it learns from data with known

output which is continuous rather than discrete (class label).

2.4 Related Work

Researchers have been developing clinical decision support systems to assist de-

cision making in various clinical situations including acute care and chronic dis-

ease management [51][50], drug prescribing and management [32], the diagnosis

of low back pain [40] and lumber spine imaging modalities [10]. These systems

9



share a common ground that they are based on a knowledge base (such as a set of

guidelines or rules) manually constructed by human experts without the participa-

tion of intelligent computer algorithms. Usually clinicians tend to not fully trust

non-knowledge-based systems since the evidence generated by many computing

algorithms is not interpretable [7].

Regarding the class imbalance problem, researchers in machine learning and

data mining have been working on various solutions including resampling tech-

niques (oversampling the minority class examples [41][14] and undersampling the

majority class examples [38]), recognition-based learning (one class learning) [35]

and cost-sensitive learning [20]. However, class imbalance may not be the only

reason that deteriorates the classifier′s performance since Batista [44] have reported

that for linearly separable dataset the classifier′s performance is not susceptible

to imbalance. Class overlap, however, is actually another factor that hinders the

classifier′s performance. A variety of methods can be applied to solve this prob-

lem including Edited Nearest Neighbor (ENN) [57], Nearest Neighbor Cleaning

Rule (NCR) [39] and Tomek Links [1]. These methods were originally proposed as

under-sampling techniques but can also be used as data cleaning methods. Combi-

nations of the oversampling techniques and data cleaning methods have also been

proposed to balance the dataset and clean up the overlaps to form better defined data

clusters [6]. There are other variations of the above methods. Borderline SMOTE

[30] only samples on the minority class data on the borderline since only the bor-

derline data defines the boundary between different class clusters. SMOTEBoost

[15] is a combination of SMOTE and Boost. Instead of assigning larger weights on

hard examples (usually the minority class data), SMOTEBoost samples on the mi-

nority classes to change the distribution of the dataset. ENN and NCR are actually

derived from Condensed Nearest Neighborhood (CNN) [31]. CNN tends to remove

redundant majority class data and is considered as an under-sampling technique.

Table 2.1 provides an brief overview of methods proposed by various researchers.

10



Methods References Summary

Random Oversampling [40] Simple duplication of minority

class examples

SMOTE [14] Generates synthetic data for minor-

ity classes

Borderline SMOTE [30] Variation of SMOTE (only sample

on borderline minority data)

SMOTEBoost [15] Combination of SMOTE and

Boosting

Condensed Nearest

Neighborhood (CNN)

[31] Removes redundant majority class

data (undersampling)

Edited Nearest Neigh-

bor (ENN)

[57] Remove noisy data based on K-NN

comparison

Nearest Neighbor

Cleaning Rule (NCR)

[39] Variation of ENN (only remove ma-

jority class data)

Tomek Links [1] Remove borderline data or noise

SMOTE + Tomek Link [6] Combination of Oversampling and

data cleaning

SMOTE + ENN [6] Combination of Oversampling and

data cleaning

Recognition-based

Learning

[35] Learn only the minority classes

Cost-sensitive Learning [20] Provide cost information to bias the

classifier (in a good way)

AdaBoost.NC [55] Handling multi-class imbalance

without class decomposition

Table 2.1: Overview of methods for solving class imbalance

11



Chapter 3

Data Analysis

The data in our research are extracted from a Canadian provincial compensation

database at Workers Compensation Board (WCB) Alberta. At the beginning of this

research, the data were not finalized and kept evolving until late December 2011.

Therefore, we have 3 datasets in total and they are briefly explained as follows.

Different datasets are used in different stages of this research.

3.1 Preliminary Dataset (June 2011 - Sept. 2011)

This dataset consists of only 100 records. Almost half of them have missing values

in a large portion of variables. Therefore, it is not meaningful to use this dataset to

train a classification model. But it did provide useful knowledge about the nature

of the variables.

3.2 Second dataset (Sept. 2011 - Dec. 2011)

This dataset is much more evolved (with more features and instances) in comparison

of the preliminary dataset. It consists of 5007 data and is used for the separate model

approach (detailed in Chapter 5). Since it is possible that the different injuries could

influence the clinicians’ decision-making, we divide the dataset into three parts

based on the patients′ injury type and analyze them separately. The three types of

12



injury are Leg Injury (LEFS), Arm Injury (DASH) and Low Back Injury (OMPQ).

These three datasets suffer from severe class imbalance as the original dataset

does. Table 3.1 to 3.3 show the class distribution of these datasets respectively.

Class prog0 prog3 prog4 prog5 prog6

num of records 680 18 374 4 75

Table 3.1: Class Distribution of LEFS

Class prog0 prog3 prog4 prog5 prog6

num of records 1097 13 584 17 138

Table 3.2: Class Distribution of DASH

Class prog0 prog3 prog4 prog5 prog6

num of records 857 12 628 8 152

Table 3.3: Class Distribution of OMPQ

3.3 Final dataset (Jan. 2012 - May 2012)

The final dataset consists of 14,484 records of claimants undergoing Return-To-

Work (RTW) assessment and program. It has 200 features including the individual

and clinical characteristics collected during the assessment and is our major focus

in this research. As we mentioned in Chapter 1, not all records have a successful

RTW result. If an intervention was unsuccessful, the claimant would have to go

through subsequent interventions. In order to train a classification model that pre-

dicts successful interventions, the machine learning algorithms need to learn from

only the successful records in the data instead of all of them. In other words, the

algorithms should mine the relationship between the patients’ characteristics and

13



their rehabilitation program in records with positive outcome. Therefore, we ex-

tracted 4876 successful records for the algorithms to learn a positive classification

model (In fact, there are more records with successful RTW status but those with a

large number of missing values are removed in data cleaning). The rest of the data

consisting of unsuccessful records (without missing data severely) are used to train

a negative model. The positive and negative models are explained in Section 7.3.

The extracted dataset is also highly skewed as shown in Table 3.4.

Class prog0 prog3 prog4 prog5 prog6

num of records 1828 84 2286 96 582

Table 3.4: Class Distribution of the Final Dataset

14



Chapter 4

Machine Learning algorithms and

Data Preprocessing Methods

In this chapter, we introduce the system design, the algorithms and data preprocess-

ing methods we are using.

4.1 Machine Learning Algorithms

In this section, we briefly describe the following algorithms including Naive Bayes,

C4.5, Associative Classifier, RIPPER and Support Vector Machine. We would like

to compare algorithms from different categories on handling a multi-class classifi-

cation problem.

4.1.1 Naive Bayes

The naive Bayes algorithm [49] applies the Bayes theorem to compute the likeli-

hood that an unseen object belongs to a certain class Ci (i = 1, 2, ..., k) given the

attribute values in the object. The algorithm assigns the object to the class with the

maximum likelihood. It relies on a naive assumption that given the class label, all at-

tributes are mutually independent. Although the assumption seems over-simplified,

it has shown its competitiveness in many practical situations.

15



Equation 4.1 shows that given a test case t with feature values of f1 to fn, we

can use Bayes rule to calculate the probability that t belongs to class Ci (i = 1, 2, ...,

k) as follows.

p(Ci|f1, f2, f3, ..., fn) =
p(Ci)p(f1, f2, f3, ..., fn|Ci)

p(f1, f2, f3, ..., fn)
(4.1)

Based on the assumption of conditional independence, Equation 4.1 can be repre-

sented by Equation 4.2 as follows.

p(Ci|f1, f2, f3, ..., fn) =
p(Ci)

∏n
j=1 p(fj|Ci)

p(f1, f2, f3, ..., fn)
(4.2)

Then according to the maximum a posteriori (MAP) decision rule, the test case t is

classified by Equation 4.3 as follows.

classification(t) = argmax p(Ci)
n∏

j=1

p(fj|Ci) (4.3)

4.1.2 C4.5

C4.5 [46] is a well-known decision tree algorithm introduced to produce explicit

models that users can interpret. Figure 4.1 shows a decision tree that describes a

mortgage model. Each node in the tree represents a selected feature and the tree

branches out based on the values in the node. The leaf node represents a class.

A new instance is classified by testing the feature at each node and following the

branch of the tree based on the observed value in the instance. This process repeats

until the instance reaches the leaf node and it is assigned to the class represented by

the leaf.

The decision tree is formed by choosing the most useful feature as the internal

node recursively. Specifically, the algorithm calculates the information gain from

splitting the data on each feature and the one with the highest information gain is

chosen. This criterion is applied recursively from the root node to all internal nodes

and terminates when a node contains instances from only one class.

C4.5 algorithm also has a pruning stage to simplify the tree and reduce the

probability of overfitting the training data. The pruning is done by replacing an

internal node by a leaf node in its subtree if such replacement results in an expect

error rate that is no greater than that without pruning.

16



Figure 4.1: A Decision Tree Example

4.1.3 Associative Rule Classification By Category (ARC-BC)

Associative rule classification is derived from the association rule mining tech-

niques. Instead of mining all possible rule associations, it only discovers associ-

ations between a set of features and a class label. We use the Associative Rule

Classification-By Category (ARC-BC) [58] algorithm in this research. ARC-BC

mines associative classification rules in each category separately and therefore does

not overlook the minority classes when class imbalance is present. The rules that

pass through a local minimum support threshold σ are gathered and grouped into

different categories based on the associated class label. These rules form the final

classifier. A given test instance could be covered by multiple rules with different

class labels. To make the final decision, for each prediction, the algorithm calcu-

lates the average rule confidence of all rules supporting it. The prediction with the

highest average rule confidence prevails.

4.1.4 RIPPER

Repeated Incremental Pruning to Produce Error Reduction (RIPPER) [16] is a clas-

sification rule learner that generates Disjunctive Normal Form (DNF) classification

17



rules. Each classification rule has a form of

r : (Rule Antecedent) → y

The left hand side of the rule (Rule Antecedent) is a test of attribute conjunction

while the right side of the rule is the class label. A rule r covers an instance t if

t’s attribute values satisfy the rule antecedent. In the following example, only I2 is

covered by Rule r.

• r: (Age > 30)and(Income > 6000)and(Status = Married) →

Mortgage = Y es

Several instances:

• I1: (Age = 29)and(Income = 7500)and(Status = Single)

• I2: (Age = 32)and(Income = 6100)and(Status = Married)

• I3: (Age = 35)and(Income = 4500)and(Status = Divorced)

For a binary classification problem, the RIPPER algorithm generates classifica-

tion rules in the following way:

1. Choose the smaller class as the positive class.

2. Set the other class as the negative (default) class.

3. Learn the rule set that separate the positive class from the default class.

Figure 4.2 presents how the RIPPER algorithm build a rule set in step 3. The

RIPPER algorithm builds up the rule set by keeping to add a new rule at a time

until it meets the stop criterion: either there are no positive examples left or the

description length of the rule set after adding the new rule is d bits (usually 64

bits) larger than the previous smallest description length. Each time a new rule is

extracted, all the examples covered by this rule are eliminated from the data.

The RIPPER algorithm builds a single rule in the following steps:

1. Split currently uncovered examples into a growing and pruning set.

18



Figure 4.2: RIPPER algorithm (Reproduced from Figure 1 in [16])

2. On the growing set, it starts with an empty rule (an rule with no antecedent).

3. Add a new condition into the rule antecedent as long as this addition maxi-

mize FOIL’s information gain criterion [45].

4. Repeat Step 3 until no negative examples from the growing set are covered

by this rule.

5. Prune this immediately on the pruning set.

To prune a rule, RIPPER deletes any final sequence of rule antecedents that

maximizes v, which is defined as

v =
p− n

p+ n

The notation p and n stands for the number of positive and negative examples in the

pruning set covered by this rule respectively.

RIPPER algorithm includes an optimization process as a postprocessing stage

to improve the original rule set. It searches for possible variants of r by:

• Adding new conditions to extend the original rule

• Growing a new rule to replace the original rule

19



Each time a rule variant is generated, RIPPER compare the original rule set

with the one using the variant instead of r. The rule set that minimizes minimum

description length (MDL) principle [47] is then chosen. This process is repeated

for each rule in the original rule set until all rules have been processed.

For multi-class problem:

1. RIPPER sort the classes in ascending order based on the class size.

2. It chooses the smallest class as the positive class and the rest is considered as

the negative class.

3. A rule set for the positive class is learned.

4. Repeat step 2 and 3 for the next smallest class.

The rules generated from the RIPPER algorithm are ranked in ascending or-

der based on the number of examples in the class. An unknown instance is tested

against the rules in that order. The first rule that covers the test instance “fires” to

make the classification and the testing phase ends.

However, since our CDSS need to provide multiple recommendations for clin-

icians to choose, we make the following modifications on the default RIPPER al-

gorithm and refer to it as the alternate RIPPER algorithm (ARIPPER) in the rest

of the thesis. For a given test instance, instead of firing the first rule that covers it,

all covering rules are gathered. If the predictions of these rules are not consistent,

ARIPPER groups rules with the same prediction together. In this way, the system

outputs multiple recommendations, each with several underlying rules as evidence

supporting it.

For a decision support system, it is sufficient to provide multiple recommen-

dations for user to choose. To facilitate the users’ decision-making process, the

recommendations could be ranked based on their quality. The quality of a rec-

ommendation is measured by the strength of the supporting rules combined as a

whole. To compare the strength of each group, we use the following four different

measurements:

20



• Highest Average Rule Confidence (HARC): HARC is adopted from the ARC-

BC algorithm. It calculates the average rule confidence of all rules supporting

a prediction.

• Single Rule with Highest Confidence (SRHC): SRHC is a variation of the

confidence-based measurement. Instead of measuring the average confidence

like HARC, it only looks at the single rule confidence and uses the one with

the highest confidence as a recommendation’s quality.

• Highest Weighted Chi-Square (HWCS): HWCS is a measurement adopted

from CMAR, i.e., Classification based on Multiple Association Rules [2]. It

calculates the weighted rule Chi-Square value of all rules supporting each rec-

ommendation. The weighted Chi-Square measure is defined by Equation 4.4

in CMAR [2]:

Weightedχ2 =
n∑

k=1

χ2χ2

maxχ2
(4.4)

where n is the number of rules in a group. χ2 stands for the Chi Square value

of a single rule. maxχ2 represents the upper bound of χ2 and is defined in

Equation 4.5 in CMAR [2].

maxχ2 = (min{sup(P ), sup(c)} − sup(P )sup(c)

|T |
)2|T |e (4.5)

where |T | stands for the total number of data instance in the training data. For

each rule R: B→c, sup(B) and sup(c) stand for the support of the rule body

B and the support of the class label c respectively. Additionally,

e =
1

sup(p)sup(c)
+

1

sup(p)(|T | − sup(c)

+
1

(|T | − sup(P )sup(c)
+

1

(|T | − sup(P )(|T | − sup(c)

• Single Rule with Highest Chi-Square (SRHCS): SRHCS looks at the Chi-

Square of each single rule and uses the one with the highest Chi-Square value

as the quality of a recommendation.

21



4.1.5 Support Vector Machine

Support Vector Machine (SVM) is a supervised learning algorithm for data classifi-

cation based on statistic learning theory [54]. It was first proposed by Vapnik [17] in

1995. It has shown good performance in fields such as text classification and image

recognition. Given a set of labeled two-class instances (x1, y1), (x2, y2)..., (xn, yn)

where y belongs to {1,−1}n, SVM aims to learn a hypothesis that maps X to Y by

solving the following optimization problem:

min
w,b,ξ

1

2
wTw + C

n∑
i=1

ξi

subject to

yi(wTϕ(xi) + b) ≥ 1− ξi

ξi ≥ 0.

C is the penalty parameter of the error term. ϕ is the function that maps X to a

higher dimensional space. ξi is the slack variable which measures misclassification

degree of xi. Then SVM finds a linear separable hyperplane that separates the

binary class data with the maximal margin in that space. The optimal hypothesis

given by Equation 4.6.

f(X) =
n∑

i=1

yiαiK(Xi,X) + b (4.6)

where K(Xi,X) = (ϕ(Xi), ϕ(X)) is called the Kernel function. The hypothesis can

vary based on the kernel function used.

4.2 Data Preprocessing Methods

The class distribution in the dataset is severely imbalanced as shown in Chapter 3.

Normally, with the presence of class imbalance the classifier may be biased towards

the majority classes while the minority classes may be insufficient for learning.

Possible solutions for this circumstance can be organized into three categories:

cost-sensitive learning, recognition-based learning and resampling. Since it is not

22



possible for us to obtain the cost of misclassification during the project, we focus on

the last two techniques. Recognition-based learning is applied through the RIPPER

algorithm. Resampling techniques are used in the data preprocessing.

We use a variety of known resampling techniques including 1) over-sampling:

Random Oversampling [41] and SMOTE [14] and 2) data cleaning (undersampling)

methods: Tomek Links [1], Edited Nearest Neighbor (ENN) [57], Neighbor Clean-

ing Rule (NCR) [39]. We use these methods not only to mitigate the class imbalance

but also to clean up the noise (such as majority class examples invading the minority

classes and vice versa) in the data space.

However, since these methods are only validated in the literature on the binary

datasets, their effectiveness is unknown for multi-class imbalance problems [55].

So we apply the resampling techniques directly on the dataset (detailed in Chapter

5 and 6) as well as combining class decomposition with the resampling techniques

(detailed in Chapter 6). We also compare the class decomposition approach with a

new method called AdaBoost.NC [55]. The details of each method are described in

the following sections.

4.2.1 Oversampling

Random Oversampling

Random Oversampling (RO) [41] simply replicates data from minority classes to

balance the class distribution.

Synthetic Minority Oversampling Technique (SMOTE)

SMOTE [14] stands for Synthetic Minority Oversampling Technique. It manipu-

lates the feature values of minority data examples that are nearest neighbors to each

other in order to form new synthetic minority class data. It generalizes the data

space and thus can avoid overfitting to some extent.

23



4.2.2 Data Cleaning Methods

Tomek Links

If two data examples from different classes are the 1 nearest neighbors to each other,

they form a Tomek Link (TL) [1]. And either both of them are borderline points or

one of them is a noise invading the data space of the other class. Generally, both

points in a Tomek Link can be removed.

Edited Nearest Neighbor Rule

Edited Nearest Neighbor (ENN) Rule [57] is an undersampling method that re-

moves data examples whose class label differs from that of at least two of its three

nearest neighbors.

Nearest Cleaning Rule

NCR [39] also finds each data example whose class label differs from the class of at

least two of its three nearest neighbors. But unlike ENN, NCR aims at preserving

the minority data by doing the following removal: If the target example belongs

to the majority class, remove it. Otherwise, remove its nearest neighbors which

belong to the majority class.

SMOTE + Tomek Links

The main reason for this combination is that the synthetic data from minority class

might invade the majority class too deeply and with the cleaning of Tomek Links,

we could avoid potential overfitting. This approach was first proposed by Batista

[5] in Bioinformatics.

SMOTE + NCR

This combination shares the same reason as SMOTE + Tomek Links. Since NCR

only removes data points from the majority classes, this combination aims at mak-

ing more space for both original and synthetic minority class examples.

24



SMOTE + ENN

This combination also shares the same reason as SMOTE + Tomek Links. However,

ENN is likely to remove more data than Tomek Links and NCR do since its data

removal criterion is less strict.

Random Oversampling + Tomek Links/NCR/ENN

Although random oversampling does not cause the invasion problem of SMOTE, it

is possible that the original data has class overlap and require data cleaning. So is

the data after random oversampling.

4.2.3 AdaBoost.NC

AdaBoost.NC [55] is a new classification ensemble using negative correlation learn-

ing. It introduces diversity in the ensembles by exploiting ambiguity terms. It is

similar to the AdaBoost [3] technique proposed by Freund and Schapire: it builds

classifiers sequentially and introducing weights to training examples. Instead of

simply assigning weights to hard examples, AdaBoost.NC introduces correlation

information (obtained by measuring the difference among the current classifiers)

into weights. It is considered as a cost-sensitive solution and claims that it is able

to effectively handle multi-class imbalance without class decomposition [55].

4.2.4 Feature Selection, Encoding and Discretization

Feature Selection

Since the system has a limit of 30 variables as mentioned in Section 5.1, a fea-

ture selection process is required. Before we apply any automatic feature selection

methods, we consulted the experts from the Department of Physical Therapy to

check each variable and eliminate those that are absolutely irrelevant from the per-

spective of clinical practice. Further feature selection is done by the combination of

Correlation-based Feature Subset Evaluation [29] and Linear Forward Search [26].

It is briefly described as follows:

25



1. Suppose we have an initial dataset with n features F1, F2..., Fn

2. Sort the features according to their individual predictive ability to the class

label:F ′
1, F

′
2..., F

′
n

3. Select the top K features from the sorted features as a target set:F ′
1, F

′
2..., F

′
K

4. Choose a subset of the target set with the highest predictive ability to the

class.

In general, this feature selection method favors an individual feature that is

highly correlated with the class but much less correlated with other features.

Feature Encoding

Some of the features can be interpreted as either nominal or ordinal variables.

Thus, by using different encoding approaches, two types of datasets are created.

They are denoted as Nominal-Variable-Encoding and Numeric-Variable-Encoding.

In Numeric-Variable-Encoding, these variables are encoded as numeric variables

to preserve the order information while in Nominal-Variable-Encoding we simply

treat them as nominal variables. Note that for the second dataset we only used

Numeric-Variable-Encoding while for the final dataset both encoding methods are

applied.

Feature Discretization

Since many machine learning algorithms work better with discrete features, nu-

meric features are sometimes discretized using supervised discretization based on

Fayyad & Iranis Minimum Description Length (MDL) methods [25]. This method

utilizes a heuristic algorithm to minimize entropy for discretizing a continuous vari-

able into multiple intervals.

26



4.2.5 Data Visualization

Data visualization provides a visual representation of data so that one can get a

deeper understanding of the data in a more intuitive way. However, since it is diffi-

cult or even impossible to visualize high dimensional data (over 3 dimensionalities),

a data compression process that reduces data dimensionality is required. In this pa-

per, we utilize the Principal Component Analysis (PCA) [33] to achieve the goal of

data compression. PCA reduces dimensionality by projecting n-dimensional data

onto a k-dimensional space (n > k) which minimizes the projection error. In this

thesis, k is set to 2. The compression is done by using the PCA analysis embedded

in Weka [28] while the visualization is done using Python Orange [19].

27



Chapter 5

System Requirements and

Evaluation

5.1 System Requirements

The system we are developing has the following requirements:

• The classification model should be interpretable. The users should be able

to see the evidence supporting the recommendations made by the system.

Rule-based algorithms are more desirable (i.e, ARIPPER).

• The system should provide multiple predictions with support evidence (e.g.,

supporting rules or guidelines) so the users can choose the most appropriate

one under different considerations.

• The system should include a limited number of variables (preferably no greater

than 30 as required in the system’s specification).

• The system should use web-based technology to provide easy and ubiquitous

access on devises equipped with a modern browser.

28



5.2 Evaluation

To measure the effectiveness of our CDSS, a control experiment in clinical practice

will be required. Specifically, we will need two groups of patients, one receiving

only clinicians’ recommendations of rehabilitation program while the other taking

recommendations from clinicians with the assistance of the CDSS. By comparing

the outcome of both group (success rate of return-to-work in one round of assess-

ment and program), we could determine if the CDSS is making any difference.

However, such kind of evaluation is not feasible at current stage because we need to

wait for enough new patients and the completion of their rehabilitation programs.

This will take up 3 to 5 years in the future.

Therefore, at current stage we evaluate the system by measuring the classifica-

tion capability of the model and compare it with the human experts’ classification

performance. Specifically, a dataset will be split into a training and test set. The

model is created on the training set and is then tested on the test set. The classifi-

cation capability of this model is represented by how the model classifies instances

of patients in the test set. To compare with the human experts, we need to compute

how well human experts classify patients as a baseline. Currently, the measurement

for the baseline is limited due to the following reasons:

• For a past record of patient with positive outcomes, the associated program is

considered to be the true label of this record.

• However, for a past record of patient with negative outcome, the true label of

this record is unknown.

• A confusion matrix cannot be formed and measurements based on the matrix

are not available.

The only option available for the baseline is the successful rate of return-to-

work, which is defined as

Successful rate =
number of records with positive outcome

number of all records
.

29



Since we can determine the outcome of a program based on the classification result,

the successful rate of return-to-work can be redefined as

Successful rate =
number of correctly classified instances

number of all instances
.

This is the same definition as classification accuracy and is used to measure the

classification model for the purpose of comparison with the baseline.

As mentioned in Section 5.1, the system should provide multiple predictions.

However, for each instance in the test set, there is only one associated label. Since

the goal is to build a decision SUPPORT system, the system is not supposed to make

the final decision for the clinician by choosing one program from multiple predic-

tions. But without a final decision, we cannot measure the classification model by

comparing the final prediction with the true label. To resolve this issue, we propose

a measurement called potential classification accuracy (PT) for ARIPPER defined

as follows:

PT =

∑N
i=1C(Pi, li)

N

where Pi stands for the set of all predictions made by the model for test instance i,

li represents the true label of instance i and N is the total number of instances in

the test set. Function C(Pi, li) is defined as

C(Pi, li) =


1 if li ∈ Pi,

0 otherwise
i = 1, 2, ..., N.

This means that if the true label of a test instance matches with one of the predic-

tions, we count it as a successful classification. Therefore, PT represents the highest

classification accuracy a model can possibly achieve if the system is asked to make

a final decision itself. The higher PT is, the higher possibility the model includes the

right recommendations in its multiple recommendations. We are assuming that the

clinician is capable of making the right decision if the true appropriate recommen-

dation is included in the predictions. We can compute the quality of each prediction

and narrow down the recommendation pool by choosing only those rank at the top

based on the quality value. Different quality measurements (e.g., HARC, SRHC,

HWCS and SRHCS) can lead to different potential classification accuracy.

30



Although we can only use classification accuracy to compare with the baseline,

for completion we do include other measurements including Sensitivity, Specificity

and their geometric mean G-Mean. Table 5.1 shows the confusion matrix for a

two-class problem.

Positive prediction Negative prediction

Positive class True Positive (TP) False Negative (FN)

Negative class False Positive (FP) True Negative (TN)

Table 5.1: Confusion Matrix For a Two-class Classification Problem

• Sensitivity: Sensitivity is defined as TP
TP+FN

. In medical diagnosis, sensi-

tivity describes the proportion of actual positive examples that are correctly

identified.

• Specificity: Specificity is defined as TN
TN+FP

. In medical diagnosis, speci-

ficity measures the proportion of actual negative examples that are correctly

identified.

• Geometric Mean (G-mean): There is a trade-off between sensitivity and

specificity. G-mean is a more harmonic measurement defined as√
sensitivity ∗ specifity.

5.2.1 Human Baseline

The human baseline here is derived from the final dataset. Out of 14484 records,

there are 8522 successful recommendations made by physicians (with or with-

out missing data in the record). Therefore, the current human baseline is 58.8%

(8522/14484). Sensitivity, specificity and G-Mean are not applicable when ana-

lyzing the whole dataset, but we can analyze them on the extracted 4876 records.

The total number of the physician’s success is 3970 out of 4876, which gives a

classification accuracy of 81.4%. Table 5.2 shows the analysis on the physician’s

performance on the extracted data with sensitivity, specificity and G-Mean.

31



Sensitivity Specificity G-Mean

Prog0 0.75 0.91 0.83

Prog3 0.75 0.99 0.86

Prog4 0.86 0.85 0.85

Prog5 0.89 0.99 0.94

Prog6 0.81 0.97 0.89

Overall 0.81 0.95 0.88

Table 5.2: Physicians’ Performance On Extracted Records

32



Chapter 6

Experiment Design and Evaluation

for Separated Models Approach

6.1 Experiment Design

There are three types of injuries in our dataset including Leg injury (LEFS), Back

Injury (OMPQ) and Arm Injury (DASH). It is possible that the type of injury may

influence the decision of the clinicians. Therefore, we separate the second dataset

based on the injury type and build three classification models.

As shown in Chapter 3, these datasets suffer from severe class imbalance. Since

some of the minority classes have so few examples, a train-test split only makes it

more difficult for algorithms to learn anything useful. Therefore, for each dataset,

we use all the data as training set and apply the following preprocessing on it.

Independent test sets can be acquired in later stages of the research in the future.

At this stage of our research, we only applied the combination of SMOTE +

Tomek Links to mitigate the class imbalance and remove the potential class over-

laps. The reason that we only use SMOTE is that some of the minority classes have

so few examples and SMOTE can at least generate synthetic data to generalize the

data space and possibly provide more information for machine learning algorithms

to learn. On the other hand, Random Oversampling only replicates the original data

without introducing anything new and is therefore less useful.

33



6.1.1 Data preprocessing

For each injury dataset, we apply the same data preprocessing as follows. To mit-

igate the class imbalance, we sample on the minority classes. Instead of simply

balancing the data into a uniform distribution, we use a progressive sampling ap-

proach to change the class distribution:

1. Choose one minority class and fix the rest.

2. Increase the size of the selected class by a certain percentage P.

3. Train a RIPPER classifier on the sampled dataset. If the true positive rate

of the selected class increases significantly (By significant, we mean that the

increase is greater than 2%), undo the sampling and repeat step b with a larger

percentage P and step c. However, if the size of the sampled class is greater

than that of the largest class in the dataset (exceptions will be explained in

details) or the increase is less than 2%, stop the sampling process.

4. Choose P as the final sampling percentage.

After sampling, we use feature selection and discretization to further process the

data. Tomek Links Cleaning method is then applied to clean up the data space. Data

points from different classes that form a Tomek Links are considered as marginal or

noisy points, and generally can be removed. Principal Component Analysis (PCA)

was then used to visualize the dataset. The details of the cleaning process are stated

as follows:

1. Extract each pair of classes.

2. Identify the Tomek Links between these two classes.

3. Visualize the data using the first two components in PCA.

4. Remove noise or borderline points based on visualization (not necessarily re-

moving both points in the link). If such cleaning improves the overall perfor-

mance of the model, merge the cleaned up classes back to the whole dataset.

Otherwise, undo the cleaning.

34



5. Repeat step 1 to 4 until all possible pairs of classes is processed.

We remove data points in the Tomek Links under different conditions:

• Data points from one class invade the other (but not in the opposite direction).

These points are considered as noise and should be removed.

• Class overlap happens at their borderline. Remove the overlap points from

both classes.

• A large portion of both classes are overlapped with each other. Preserve the

one with higher interest (i.e., lower misclassification cost) but remove the

other.

After sampling and cleaning, we can train models on the processed dataset.

6.2 Results and Discussions

6.2.1 Analysis of the separated models approach

After the sampling process, each dataset has a different class distribution as shown

in Figure 6.1, 6.2 and 6.3.

Then PCA is applied to visualize the sampled dataset as shown from Figure 6.4

to 6.6. Note that for the sake of readability, all the data visualization in this thesis

is only performed on a 10% stratified subset of the original dataset.

We can see that there are class overlaps between almost each pair of classes.

Tomek Links is applied to clean up the mess. Figure 6.7 to 6.9 visualize the datasets

after cleaning that are ready for training purpose.

6.2.2 Discussion

For each injury dataset, 4 classifiers are trained and validated in 10-fold cross vali-

dations as shown in Table 6.1 to 6.12.

Although the performance of these algorithms is very promising in the 10-fold

cross validation, independent test evaluations are still required to examine their true

35



Figure 6.1: Class Distribution of LEFS Before and After Sampling

Figure 6.2: Class Distribution of DASH Before and After Sampling

36



Figure 6.3: Class Distribution of OMPQ Before and After Sampling

Figure 6.4: Visualization of LEFS after Sampling

37



Figure 6.5: Visualization of DASH after Sampling

Figure 6.6: Visualization of OMPQ after Sampling

38



Figure 6.7: Visualization of LEFS after Tomek Links Cleaning

Figure 6.8: Visualization of DASH after Tomek Links Cleaning

39



Figure 6.9: Visualization of OMPQ after Tomek Links Cleaning

classification ability. However, we were unable to get more minority class data for

our research at that time. Independents test dataset will be provided in the future

for additional evaluations.

Sensitivity Specificity G-Mean

Prog0 0.943 0.867 0.904

Prog3 1.000 0.996 0.998

Prog4 0.681 0.963 0.810

Prog5 0.909 0.997 0.952

Prog6 0.911 0.978 0.944

Overall 0.863 0.966 0.913

Table 6.1: 10-Fold Cross Validation (RIPPER-LEFS)

40



Sensitivity Specificity G-Mean

Prog0 1.000 0.867 0.931

Prog3 1.000 0.999 0.999

Prog4 0.635 0.995 0.795

Prog5 0.909 1.000 0.953

Prog6 0.972 0.968 0.970

Overall 0.884 0.971 0.926

Table 6.2: 10-Fold Cross Validation (Naive Bayes-LEFS)

Sensitivity Specificity G-Mean

Prog0 0.818 0.858 0.838

Prog3 0.990 0.975 0.982

Prog4 0.642 0.922 0.769

Prog5 0.909 0.996 0.952

Prog6 0.887 0.969 0.927

Overall 0.802 0.951 0.873

Table 6.3: 10-Fold Cross Validation (C4.5-LEFS)

Sensitivity Specificity G-Mean

Prog0 0.997 0.865 0.929

Prog3 0.917 1.000 0.957

Prog4 0.710 0.983 0.835

Prog5 0.886 1.000 0.941

Prog6 0.972 0.995 0.983

Overall 0.896 0.974 0.934

Table 6.4: 10-Fold Cross Validation (SVM-LEFS)

41



Sensitivity Specificity G-Mean

Prog0 0.957 0.858 0.906

Prog3 0.937 0.992 0.964

Prog4 0.592 0.980 0.762

Prog5 0.802 0.988 0.890

Prog6 0.925 0.957 0.941

Overall 0.846 0.961 0.902

Table 6.5: 10-Fold Cross Validation (RIPPER-DASH)

Sensitivity Specificity G-Mean

Prog0 1.000 0.869 0.932

Prog3 0.984 0.996 0.990

Prog4 0.661 0.988 0.808

Prog5 0.931 0.998 0.964

Prog6 0.949 0.990 0.970

Overall 0.896 0.974 0.935

Table 6.6: 10-Fold Cross Validation (Naive Bayes-DASH)

Sensitivity Specificity G-Mean

Prog0 0.960 0.824 0.890

Prog3 0.730 0.993 0.852

Prog4 0.547 0.967 0.727

Prog5 0.733 0.987 0.851

Prog6 0.903 0.960 0.931

Overall 0.817 0.954 0.883

Table 6.7: 10-Fold Cross Validation (C4.5-DASH)

42



Sensitivity Specificity G-Mean

Prog0 1.000 0.861 0.928

Prog3 0.429 1.000 0.655

Prog4 0.671 0.962 0.803

Prog5 0.509 1.000 0.713

Prog6 0.967 0.958 0.962

Overall 0.854 0.963 0.907

Table 6.8: 10-Fold Cross Validation (SVM-DASH)

Sensitivity Specificity G-Mean

Prog0 0.827 0.839 0.833

Prog3 1.000 1.000 1.000

Prog4 0.723 0.892 0.803

Prog5 1.000 0.999 1.000

Prog6 0.904 0.976 0.939

Overall 0.810 0.952 0.878

Table 6.9: 10-Fold Cross Validation (RIPPER-OMPQ)

Sensitivity Specificity G-Mean

Prog0 1.000 0.871 0.933

Prog3 0.991 0.999 0.995

Prog4 0.766 0.985 0.868

Prog5 1.000 1.000 1.000

Prog6 0.919 0.980 0.949

Overall 0.888 0.972 0.929

Table 6.10: 10-Fold Cross Validation (Naive Bayes-OMPQ)

43



Sensitivity Specificity G-Mean

Prog0 0.924 0.840 0.881

Prog3 0.946 0.992 0.969

Prog4 0.721 0.933 0.820

Prog5 0.986 0.996 0.991

Prog6 0.828 0.980 0.901

Overall 0.827 0.957 0.889

Table 6.11: 10-Fold Cross Validation (C4.5-OMPQ)

Sensitivity Specificity G-Mean

Prog0 0.999 0.871 0.933

Prog3 0.928 1.000 0.963

Prog4 0.807 0.943 0.872

Prog5 0.814 1.000 0.902

Prog6 0.819 0.998 0.904

Overall 0.880 0.970 0.924

Table 6.12: 10-Fold Cross Validation (SVM-OMPQ)

44



Chapter 7

Experiment Design and Evaluation

for Single Model Approach

On the final dataset, we decided to build a single model instead of three. There are

two reasons:

• Although the minority classes in the final dataset have more data instances,

separating the dataset would result in the data insufficiency as mentioned in

Chapter 5.

• Using a single model can simplify the prototype system since we only need

to integrate one model instead of three.

7.1 Building A Single Model

To build a single classification model, we simply ignore the factor of injury by

removing injury-related features since they are mutually exclusive and cause a large

number of missing values if grouped together. In this approach, the dataset is split

into training and test set because the minority classes in this dataset can afford such

action. Since the data preprocessing methods are only validated on binary datasets

and might be ineffective on the multi-class datasets, we divide our experiments into

two parts: Direct Approach and Decomposition Approach.

45



7.1.1 Direct Approach

In this section, we present the direct approach. In short, we apply sampling and

other data preprocessing methods directly on the multi-class dataset. Since we have

two sampling methods, three cleaning methods and two types of datasets as well

as whether to use discretization, 18 variations of the experiments are designed in

the direct approach. Note that for nominal-encoding dataset there is no need to do

discretization, which is the reason that we have 18 variations instead of 24. The

following experiments share the same procedure as the experiments in Chapter 5.

The only differences are the underlying methods and datasets. Table 7.1 lists all the

experiments in the direct approach.

Two aspects that should be noted are:

• There is no need to apply discretization on the Nominal-Encoding dataset.

• The Tomek Links method in Chapter 5 is applied manually. However, it

requires many steps and takes a long time. For all the experiments in Chapter

6, all the methods are applied automatically through computer programs.

We also include the AdaBoost.NC method in direct approach because it claims

to be effective to handle multi-class imbalance without class decomposition. To

use AdaBoost.NC, we first balance the dataset by sampling on the minority classes

using Random Oversampling as suggested by the author. That is to say, after sam-

pling, the dataset has a uniform distribution. We then apply AdaBoost.NC with

different algorithms as base learners on the sampled data.

7.1.2 Decomposition Approach

Instead of applying any methods on the multi-class dataset directly, we first decom-

pose the dataset into several binary datasets. The number of binary datasets varies

depending on the decomposition strategy (either One-vs.-All or One-vs.-One).

Most of the binary datasets are still imbalanced and require sampling. We sam-

ple on the relative minority class in each binary dataset. The size of the minority

class after sampling should be close to but smaller than that of the majority class.

46



Sampling Dataset Discretization Cleaning

SMOTE Numeric Yes ENN

SMOTE Numeric Yes NCR

SMOTE Numeric Yes TL

SMOTE Numeric No ENN

SMOTE Numeric No NCR

SMOTE Numeric No TL

RO Numeric Yes ENN

RO Numeric Yes NCR

RO Numeric Yes TL

RO Numeric No ENN

RO Numeric No NCR

RO Numeric No TL

SMOTE Nominal No ENN

SMOTE Nominal No NCR

SMOTE Nominal No TL

RO Nominal No ENN

RO Nominal No NCR

RO Nominal No TL

Table 7.1: Experiments in Direct Approach

47



Each binary dataset can produce a binary classifier. To make the final decision,

one needs to combine all the individual predictions. In the One-vs.-One approach,

we use the voting strategy that the prediction receiving the most votes prevails.

In the One-vs.-All approach, one usually accepts the prediction with the highest

prediction probability. However, since the dataset is imbalanced, using such strat-

egy would still make a biased prediction towards the majority class. Thus, we use

the imbalance rate [55] to combine the probability prediction of all binary classi-

fiers: we take the product of prediction probability and the imbalance rate of its

corresponding class as a final weight. The test instance belongs to the class with

the highest weight. The imbalance rate of a class is defined as the inverse of the

proportion of instances in that class over the whole population in the dataset. We

further divide the experiments into the following two categories:

• Class decomposition + SMOTE/RO + NCR/ENN/Tomek Links + Discretiza-

tion/No Discretization + Numeric-Variable Encoding/ Nominal-Variable En-

coding (OVA: One-vs-All): In this approach we first decompose the dataset

into 5 binary datasets. Each binary dataset contains the data from one positive

class and all other classes are considered as one negative class.

We use SMOTE/Random Oversampling to sample on the minority class in

each binary dataset. Then we apply NCR/ENN/Tomek Links as a data clean-

ing method to clean the data space. After the cleaning, five binary classifiers

are created using different learning algorithms. To make a prediction for

an unknown instance, each classifier generates a probability of that instance

belonging to the positive class and we combine them with imbalance rate

mentioned above.

• Class decomposition + SMOTE/RO + NCR/ENN/Tomek Links + Discretiza-

tion/No Discretization + Numeric-Variable Encoding / Nominal-Variable En-

coding (OVO: One-vs-One): this approach is almost the same as the OVA

approach except for two parts: 1) We divide the training set into 10 binary

datasets and 2) we use voting when combining the predictions from each bi-

nary classifiers.

48



7.2 Results and Discussions

7.2.1 Analysis of the single model approach

Direct Approach

Since all the experiments share the same procedure, we only provide the details of

one experiment. The rest are summarized together in the analysis.

SMOTE + Tomek Links + Discretization + Numeric-Variable-Encoding: we

first sampled on the minority class using SMOTE. The final sampling percentage

obtained for each minority class is 900%, 900% and 300% respectively. Figure 7.1

shows the class distribution before and after the sampling.

Figure 7.1: Class Distribution Before and After Sampling-Final Dataset

We can visualize the sampled dataset using PCA with the first two components

as shown in Figure 7.2. We can see that on the left side prog 3 has a minor overlap

with prog 6 while prog 5 have deeply invaded prog 6. On the right side, prog 0 and

4 are completely mixed together.

We apply Tomek Links Cleaning on the sampled dataset. Figure 7.3 visualizes

the dataset after Tomek Links cleaning. Table 7.2 shows the 10-fold cross validation

on the cleaned-up dataset using RIPPER algorithm.

49



Figure 7.2: Dataset Visualization After Sampling

Figure 7.3: Dataset Visualization After Cleaning

50



Sensitivity Specificity G-Mean

Prog0 0.259 0.964 0.500

Prog3 0.976 0.999 0.822

Prog4 0.929 0.822 0.874

Prog5 0.840 0.991 0.912

Prog6 0.963 0.988 0.975

Overall 0.845 0.961 0.901

Table 7.2: 10-Fold Cross Validation On the Cleaned-up Final Dataset (RIPPER)

The only drawback here is the low performance on class 0. There are two pos-

sible reasons to explain the low performance on prog0:

• Since prog0 and prog4 are mixed with each other all the time, it is possible

the features we use cannot effectively separate them (currently we have 30

features).

• We can see from Figure 7.2 that a large portion of prog0 is removed and the

rest of it (those useful examples) may not be sufficient for training model.

Thus, we sample on prog0 as a possible solution. Since the feature selection pro-

cess is data dependent, it is possible that we can select new and effective features

to separate prog0 and 4. Sampling on prog0 may cause further overlapping be-

tween prog0 and 4. But those points will be removed later as noise while the useful

examples will be reinforced. We choose to sample 60% on prog0 and apply the

same procedures above. 19 features are selected and the visualization using PCA is

shown in Figure 7.4.

Clearly, we can see that part of prog0 is now separable from prog4. We then ap-

ply the Tomek Links cleaning on the new dataset. Figure 7.5 visualizes the dataset

after the cleaning. Those points from prog0 mixing with prog4 are removed while

those separable remain in the data space.

We then train a model using the RIPPER algorithm on the cleaned-up dataset.

This model has a better performance on prog0 as shown in Table 7.3.

51



Figure 7.4: Dataset Visualization After Sampling (prog0 sampled)

Figure 7.5: Dataset Visualization After Cleaning(prog0 sampled)

52



Sensitivity Specificity G-Mean

Prog0 0.606 0.979 0.770

Prog3 0.973 0.994 0.983

Prog4 0.958 0.890 0.923

Prog5 0.804 0.979 0.887

Prog6 0.907 0.969 0.938

Overall 0.865 0.966 0.914

Table 7.3: 10-Fold Cross Validation On the Cleaned-up Data (Class 0 Sampled)

Using RIPPER

Although the model works well in 10-fold cross validation as shown in Ta-

ble 7.3, the evaluation is biased. An evaluation on the test set is required. Table 7.4

shows the evaluation on the test set using RIPPER algorithm. We also trained an-

other two classifiers using Naive Bayes and C4.5 (SVM is not presented here since

the training time is too long). Their evaluations on the test are shown in Table 7.5

and 7.6.

Sensitivity Specificity G-Mean

Prog0 0.557 0.577 0.567

Prog3 0.000 0.996 0.000

Prog4 0.629 0.591 0.609

Prog5 0.000 1.000 0.000

Prog6 0.034 0.993 0.185

Overall 0.508 0.877 0.668

Table 7.4: Evaluation On the Test Set (RIPPER)

For other experiments in direct approach, we follow the same evaluation pro-

cess. Each model is evaluated using 10-fold cross validation and on the test set.

We summarize the evaluation on the test set for all the experiments using direct

53



Sensitivity Specificity G-Mean

Prog0 0.071 0.961 0.261

Prog3 0.000 1.000 0.000

Prog4 0.969 0.069 0.260

Prog5 0.000 1.000 0.000

Prog6 0.000 1.000 0.000

Overall 0.482 0.870 0.647

Table 7.5: Evaluation On the Test Set (Naive Bayes)

Sensitivity Specificity G-Mean

Prog0 0.426 0.695 0.544

Prog3 0.111 0.990 0.332

Prog4 0.664 0.498 0.575

Prog5 0.000 0.998 0.000

Prog6 0.155 0.956 0.385

Overall 0.492 0.873 0.655

Table 7.6: Evaluation On the Test Set (C4.5)

54



approach (except for AdaBoost.NC) in Table 7.7. Since it is not practical to detail

the performance of each model in each experiment like our example experiment,

we only report three measurements as shown in the last three columns in Table 7.7

with the form (N3/N5/Accuracy). N3 and N5 stands for the number of test instances

from prog3 and 5 respectively that are correctly classified. There are 9 test instances

in total in these two classes respectively. The accuracy here is the overall accuracy

(in percent) on the whole test set.

Sampling Dataset Discretize Cleaning Bayes C4.5 RIPPER

SMOTE Numeric Yes ENN 0/0/48.4 0/0/49.4 0/0/48.6

SMOTE Numeric Yes NCR 0/0/47.5 4/0/48 1/0/45.1

SMOTE Numeric Yes TL 0/0/48.2 1/0/49.2 0/0/50

SMOTE Numeric No ENN 8/2/32 1/0/32.2 3/2/32.4

SMOTE Numeric No NCR 8/1/30.5 5/1/39.5 4/1/44.3

SMOTE Numeric No TL 8/2/28.9 2/0/40.4 4/2/45.3

RO Numeric Yes ENN 5/4/33.2 0/2/37.5 2/1/33.4

RO Numeric Yes NCR 5/5/36.1 1/2/42.4 2/2/31.8

RO Numeric Yes TL 5/4/36.3 0/1/42.2 3/1/39.3

RO Numeric No ENN 7/6/31.8 3/1/36.7 2/0/34.2

RO Numeric No NCR 9/6/33.2 4/1/45.7 5/1/46.9

RO Numeric No TL 9/6/32.4 3/1/42 2/0/41.2

SMOTE Nominal No ENN 5/2/43.6 3/1/45.5 2/0/42.2

SMOTE Nominal No NCR 7/2/40.4 4/3/45.3 6/0/39.8

SMOTE Nominal No TL 7/2/43.6 2/1/44.9 3/0/46.3

RO Nominal No ENN 7/5/34.2 1/0/35.7 3/1/30.1

RO Nominal No NCR 8/5/35.9 1/1/42.8 4/3/45.3

RO Nominal No TL 8/5/34.6 1/0/40.4 1/2/38.9

Table 7.7: Evaluation On the Test Set (All Experiments)

55



AdaBoost.NC + Numeric-Variable-Encoding/Nominal-Variable-Encoding: We

use naive Bayes and C4.5 as the base learner in this approach. Table 7.8 and 7.9

show the evaluation on the test set using base learner Naive Bayes. Table 7.10

and 7.11 show the evaluation on the test set using base learner C4.5. The overall

classification accuracies for these four experiments are 32.4%, 28.6%, 37.9% and

37.5% respectively.

Sensitivity Specificity G-Mean

Prog0 0.169 0.934 0.169

Prog3 1 0.856 1

Prog4 0.41 0.779 0.41

Prog5 0.444 0.724 0.444

Prog6 0.293 0.872 0.293

Overall 0.317 0.829 0.317

Table 7.8: Evaluation On the Test Set (Numeric-Variable-Encoding, Naive Bayes)

Sensitivity Specificity G-Mean

Prog0 0.142 0.951 0.368

Prog3 0.889 0.889 0.889

Prog4 0.424 0.784 0.576

Prog5 0.667 0.674 0.670

Prog6 0.241 0.867 0.458

Overall 0.309 0.827 0.506

Table 7.9: Evaluation On the Test Set (Nomial-Encoding, Naive Bayes)

Decomposition Approach

For the decomposition approach, instead of displaying all the results, we only

present those that are representative. Table 7.12 shows the results using OVA de-

56



Sensitivity Specificity G-Mean

Prog0 0.317 0.833 0.317

Prog3 0.555 0.949 0.555

Prog4 0.393 0.815 0.393

Prog5 0 0.983 0

Prog6 0.793 0.633 0.793

Overall 0.408 0.852 0.408

Table 7.10: Evaluation On the Test Set (Numeric-Variable-Encoding, C4.5)

Sensitivity Specificity G-Mean

Prog0 0.268 0.823 0.469

Prog3 0.667 0.908 0.778

Prog4 0.380 0.776 0.543

Prog5 0.222 0.931 0.455

Prog6 0.569 0.716 0.638

Overall 0.363 0.841 0.552

Table 7.11: Evaluation On the Test Set (Nominal-Variable-Encoding, C4.5)

57



composition while Table 7.13 shows the results using OVO decomposition. The

results here follows the same format in Table 7.7. In some experiments the minor-

ity classes are completely misclassified and have low overall classification accuracy.

We omit their results by filling the corresponding cells with “X”.

Sampling Dataset Discretize Cleaning Bayes RIPPER

SMOTE Numeric Yes ENN 8/4/35.6 3/2/43.2

SMOTE Numeric Yes NCR 9/4/28.3 3/3/37.7

SMOTE Numeric Yes TL 8/4/34.6 2/2/37.1

SMOTE Numeric No ENN X X

SMOTE Numeric No NCR X X

SMOTE Numeric No TL X X

RO Numeric Yes ENN 9/6/23.9 3/0/47.3

RO Numeric Yes NCR 9/6/17.2 4/0/13.5

RO Numeric Yes TL 9/6/16.8 3/1/12.9

RO Numeric No ENN X X

RO Numeric No NCR X X

RO Numeric No TL X X

SMOTE Nominal No ENN X X

SMOTE Nominal No NCR X X

SMOTE Nominal No TL X X

RO Nominal No ENN 9/6/9.8 1/0/39.5

RO Nominal No NCR 9/6/6.5 2/2/31.1

RO Nominal No TL 9/6/6.9 2/3/12.9

Table 7.12: Evaluation On the Test Set (OVA-All Experiments)

58



Sampling Dataset Discretize Cleaning Bayes RIPPER

SMOTE Numeric Yes ENN 9/4/40.6 4/1/47.9

SMOTE Numeric Yes NCR 9/4/36.9 4/1/34.0

SMOTE Numeric Yes TL 7/3/41.6 0/0/48.9

SMOTE Numeric No ENN X X

SMOTE Numeric No NCR X X

SMOTE Numeric No TL X X

RO Numeric Yes ENN X X

RO Numeric Yes NCR X X

RO Numeric Yes TL X 1/1/43.2

RO Numeric No ENN X X

RO Numeric No NCR X X

RO Numeric No TL X X

SMOTE Nominal No ENN X X

SMOTE Nominal No NCR X X

SMOTE Nominal No TL X X

RO Nominal No ENN 9/4/32.8 1/0/42.6

RO Nominal No NCR 9/4/19.3 2/0/35.2

RO Nominal No TL 9/4/35.2 0/0/45.8

Table 7.13: Evaluation On the Test Set (OVO-All Experiments)

59



7.2.1.1 Direct Approach For ARIPPER

Clearly, we can see from Table 7.7 to 7.13 that none of the experiments outperforms

the human baseline on overall classification accuracy, regardless of whether or not

to use class decomposition. However, in the direct approach, we are using the

default setting RIPPER setting of firing the first rule that covers the test instance.

To see how it works under the alternate setting (recommending multiple programs

and pick the most appropriate one as the prediction), we did further evaluations only

for ARIPPER. Table 7.14 shows the evaluation on the test set using ARIPPER.“DS”

is short for Discretize while PT is short for potential. PT means that if any of the

predictions matches with the true label, we count it as a correct prediction. It is

the maximum classification accuracy this model can achieve if given an appropriate

prediction selection criteria. Some cells in Column WCS and SRHCS are filled

with ′-′ because the results are not applicable due to the zero division problem when

calculating the Chi Square statistics.

Note that in rules generated from RIPPER algorithm, there is a default rule with

empty rule body and neither confidence nor Chi Square is applicable. So for each

test instance, we assign to it both the selected prediction and the default prediction.

If either of them matches with the true label, we count it as a correct prediction.

7.2.2 Discussions

Based on the results shown above, we can see that none of the models (using default

algorithms) outperforms the human baseline on the test set in the direct approach,

although they all did well in the 10-fold cross validation. The class decomposi-

tion approach did not make any difference. However, the naive Bayes algorithm

is working better than other algorithms in predicting minority class examples. The

AdaBoost.NC method also shows its efficacy in classifying minority classes. But

it is difficult to ensure good classification results on both the majority and minority

classes at the same time. This is a tradeoff with the presence of class imbalance.

The nature of the rehabilitation program is also somewhat responsible for the

misclassification between the majority classes (according to the confusion matrix,

60



Sampling Dataset DS CL HARC SRHC WCS SRHCS PT

SMOTE Numeric Yes ENN 54.30 53.48 41.39 42.01 76.23

SMOTE Numeric Yes NCR 75.20 71.72 61.27 62.29 87.29

SMOTE Numeric Yes TL 72.95 72.13 48.15 47.74 78.27

SMOTE Numeric No ENN 37.91 37.91 39.14 39.14 44.87

SMOTE Numeric No NCR 53.28 53.28 52.66 52.66 54.92

SMOTE Numeric No TL 56.35 56.35 56.56 56.56 56.96

RO Numeric Yes ENN 60.45 60.65 – – 72.34

RO Numeric Yes NCR 59.84 58.61 – – 68.03

RO Numeric Yes TL 68.65 68.65 – – 73.56

RO Numeric No ENN 51.64 51.64 – – 53.27

RO Numeric No NCR 67.83 67.63 – – 70.90

RO Numeric No TL 53.89 53.89 – – 54.92

SMOTE Nominal No ENN 46.93 46.31 43.65 43.65 50.82

SMOTE Nominal No NCR 45.90 45.69 46.52 46.52 50.82

SMOTE Nominal No TL 60.24 60.24 59.43 59.43 61.27

RO Nominal No ENN 46.93 36.88 – – 38.52

RO Nominal No NCR 63.24 63.24 – – 63.93

RO Nominal No TL 51.43 51.43 – – 53.07

Table 7.14: Evaluation On the Test Set (ARIPPER)

61



not shown). As we are told by the experts from WCB and Department of Physical

Therapy, prog0 and prog4 are similar to each other. A large portion of people

receiving prog4 actually does not need prog4. But in order to make sure that people

do return to work, they are assigned with prog4 in the end. Additionally, prog6 is

a hybrid program of prog4 and prog5, which makes it even more complicated in

classification. The data visualization in Chapter 5 and 6 also confirms this issue as

we can see the overlap between these classes.

ARIPPER shows different performance on the test evaluation. As shown in Ta-

ble 7.14, we have 9 out of 18 results with potential above the human baseline. These

results indicate that we may still have a chance to apply certain extraction methods

to select predictions and make the system more accurate than the baseline. The top

performance is given by the combination of SMOTE + Numeric-Variable-Encoding

+ Discretization + NCR. It achieves 3 highest classification accuracies out of 4 mea-

surements. The one in the second place is SMOTE + Numeric-Variable-Encoding +

Discretization + TL. It achieves the highest accuracy by using SRHCS and second

place using HARC. Additionally, we can randomly fix 3 columns out of the first

4 and vary the rest to find the best choice in that column. For example, by fixing

column 2 to 4, we compare the SMOTE and the Random Oversampling method.

Row 1 is compared to Row 7 because they have the same value from col 2 to 4

but sampling method varies. Three out of five measurements are comparable in-

cluding HARC, SRHCS and Potential. The Random Oversampling method gets 2

wins while SMOTE gets only 1. In this way, we make all possible comparisons and

accumulate the wins. The one with the most wins prevails. Table 7.15 shows the

statistics of the wins for each column. We can see that the best choice for each col-

umn are SMOTE, Numeric-Variable-Encoding, Discretization and TL respectively.

This is in fact the second best combination. So the combination of each column

does not necessary produce the best combination, but it is close.

We can examine the prediction selection criteria from column 5 to 8 in a similar

way. For each row, we compare the value from column 5 to 8 and get the column in-

dex with the maximum accuracy. Table 7.16 shows the statistics of the accumulated

wins. We found that HARC is the best approach for selecting predictions.

62



SMOTE 15

Random Oversampling 11

Numeric-Variable-Encoding 14

Nominal-Variable-Encoding 1

Discretize 21

No discretize 3

Tomek Link 12

NCR 10

ENN 0

Table 7.15: Statistics For Column 1 to 4

HARC SRHC WCS SRHCS

10 1 0 0

Table 7.16: Statistics For Column 5 to 8

63



The only problem with the evaluation here is that we still have two predictions

for each test instance because of the empty rule body of the default rule. Currently

we haven’t found a proper way to overcome this problem with RIPPER. Since ARC-

BC does not have the empty rule problem, we have trained an ARC-BC classifier on

the dataset processed by the combination of SMOTE + Numeric-Variable-Encoding

+ Discretization + Tomek Links and test it on the test set. The result is shown in

Table 7.17.

Sensitivity Specificity G-Mean

Prog0 0.132 0.958 0.355

Prog3 0.588 0.458 0.519

Prog4 0.856 0.274 0.484

Prog5 0.105 0.969 0.319

Prog6 0.069 0.952 0.256

Overall 0.471 0.747 0.593

Table 7.17: Evaluation On the Test Set (Numeric-Variable-Encoding, ARC-BC)

ARC-BC algorithm is also not working well on this one test. Besides, the num-

ber of rules extracted by ARC-BC is much greater than that produced by RIPPER

since RIPPER rules are more compact. Currently our prototype system implements

the RIPPER rules trained from the combination of SMOTE + Numeric-Variable-

Encoding + Discretization + Tomek Links since the rules are considered to be very

meaningful from clinical perspective (more details in Section 7.3). As a decision

SUPPORT system, a high “potential” should be sufficient since the clinician is the

one who makes the final decision. To further evaluate the system, we need to do

additional validations in real clinical settings.

64



7.3 Prototype System WATT

In this section, we introduce our prototype CDSS Work Assessment Triage Tool

(WATT). It is a web application that is accessible through browsers (JavaScript en-

abled) on all platforms. The tool integrates both the positive and negative model

generated by the RIPPER algorithm, specifically, generated from the combination

of SMOTE + Numeric-Variable-Encoding + Discretization + Tomek Links + RIP-

PER but on different data. The positive model is built using all 4876 records (train-

ing and test sets are merged back together) while the negative model is built using

records with unsuccessful RTW status. Table 7.18 shows the 10-fold cross valida-

tion of the RIPPER algorithm in the experiment that generates our rule set.

Sensitivity Specificity G-Mean

Prog0 0.75/0.615 0.91/0.980 0.83/0.776

Prog3 0.75/0.936 0.99/0.992 0.86/0.964

Prog4 0.86/0.976 0.85/0.876 0.85/0.925

Prog5 0.89/0.757 0.99/0.993 0.94/0.867

Prog6 0.81/0.963 0.97/0.985 0.89/0.974

Overall 0.81/0.891 0.95/0.973 0.88/0.931

Table 7.18: 10-Fold Cross Validation Using RIPPER to Generate Rules Comparing

to the Physicians’ Performance on Extracted Records (Physicians/RIPPER)

Figure 7.6 shows a screen capture of the tool interface. The tool integrates

20 features including: admjob, modwrkcd, Prencode, curwork, Diag-Grp, AC-

TOADMC, Occupationa, VAS, the following SF36 items: (2, 4, 5, 7, 12, 14, 18, 21,

25) and an additional feature funAbility provided by the domain expert externally.

The meaning of each feature is explained in the following list. All the decision

support rules are presented in the Appendix I.

• admjob: job attachment and working status at RTW assessment (whether the

worker had a job to return to)

65



• modwrkcd: availability of modified work

• Prencode: National Occupational Classification Code [13]

• curwork: currently working or not

• Diag-Grp: ICD9 diagnostic code which describes the nature of the injuries

• ACTOADMC: calendar days between injury to assessment admission

• Occupationa: the ‘Occupation’ item from the Pain Disability Index (PDI)

[11]. PDI is a self-report questionnaire that measures the degree of different

aspects of your life are disrupted due to chronic pain. ‘Occupation’ in PDI

measures the rate of disability on a 0-10 scale of occupational activities.

• VAS: Pain Visual Analogue Scale (VAS) out of 10 [18]. VAS is a measure-

ment of the pain severity level on a scale of 0-10.

• SF-36: This is a health outcome measure including vitality, physical func-

tioning, bodily pain, general health perceptions, physical role functioning,

emotional role functioning, social role functioning, and mental health [56].

• funAbility: Whether the worker demonstrate pre-accident functional abilities.

The tool works like a questionnaire. To use the tool to make the recommen-

dations for a certain claimant, one simply selects a value in each of the drop-

down menus or enters a value in the textbox according to the characteristics of

that claimant and then press the Predict button. Recommendations made by the

system will be presented under the form. Each recommendation has the following

attributes:

• The name of the rehabilitation program recommended.

• The prediction of the program duration if the claimant took that program (this

is done by linear regression).

• The average rule confidence of the underlying rules supporting a recommen-

dation.

66



Figure 7.6: WATT Interface

67



• The number of rules supporting a recommendation.

• The user can also view the details of the underlying rules by pressing the

Rules button.

These features provide a way to measure the quality of the recommendations so

the users can make a decision with more confidence.

7.3.1 Program Duration Prediction

The duration of a rehabilitation program is an important factor to be considered

when making recommendations. Therefore, we trained a linear regression model

with 20 features including the 19 features extracted in earlier section as well as the

predicted program label. This linear regression model predicts the duration of the

rehabilitation program based on the clinical characteristics of the patient and the

program recommended.

7.3.2 Resolving Rule Conflicts

Since both the positive and negative models are integrated into the system, it is pos-

sible that a given instance is covered by both positive and negative rules making

contradictory recommendations. There may not always be negative recommen-

dations, but when there are, they may be in conflict with the positive rules. For

example, Figure 7.7 shows a situation where conflict happens for a patient. The

positive model makes three recommendations while the negative model makes two.

The rehabilitation program Complex is in the middle of this conflict. To resolve

any possible conflicts, users can compare different metrics of the recommendations

or view the specific rules to decide to accept or reject a recommendation. Cur-

rently our domain expert suggests the user cancelling out the predictions involved

in conflicts.

68



7.3.3 Discussion

We have presented our prototype system at a meeting with rehabilitation experts

from WCB and discussed the classification rules with a broader team on March 6th,

2012. During the demo of our system, several patient records are presented as test

cases. The experts were invited to make a recommendation for these patients. It

turned out that they did not agree with each other. However, once we showed the

recommendations with supporting evidence made by our system, they all converged

and reached an agreement on one recommendation as proposed by our system. This

demo has illustrated the potential of our prototype system in facilitating the reha-

bilitation recommendation process. The classification rules were also evaluated by

the experts and were considered as meaningful in clinical practice. We plan to do

additional evaluation by measuring each rule on a scale to quantify how meaningful

a rule is in the future.

69



Figure 7.7: Conflict Case

70



Chapter 8

Conclusion

8.1 Conclusions

In this dissertation we designed and implemented a prototype of our decision sup-

port system, as well as tackled the multiple-class imbalance problem encountered

in building the system′s knowledge base using various data preprocessing and ma-

chine learning algorithms. In summary:

1. In Chapter 2 we introduced the background of the rehabilitation treatment

for injured workers in our research. We then described the concept of the

decision support system (DSS) and its clinical application (CDSS). We fur-

ther elaborated the differences between different CDSS categories and then

moved on to the machine learning concept that is fundamental for building

the knowledge base of the CDSS.

2. We explained the timeline, datasets and evaluation metrics of our research

in Chapter 3. We briefly analyzed the statistics of each dataset we had and

explained the multi-class imbalance problem and the limitations of the eval-

uation. Since the meaningful evaluation for the human baseline is currently

limited to classification accuracy, we are currently stuck with it when doing

comparison.

3. Chapter 4 states the system requirements for our prototype system and intro-

71



duces a variety of machine learning algorithms and data preprocessing meth-

ods. Each algorithm is briefly introduced through a concrete example and

modifications to any algorithm are also specified. We also include the intro-

duction of the feature selection, discretization and data visualization methods

in this chapter.

4. In Chapter 5, we explained the separated model approach on the second

dataset. Due to the lack of data in the minority classes, we have to use all

the data in the training process instead of following the standard train-test

split process. We applied the combination of SMOTE + Tomek Links on

each injury dataset and then trained different classifiers using RIPPER, C4.5

SVM and naive Bayes algorithms. The classifiers are evaluated through 10-

fold cross validation and have shown promising classification performance.

However, without independent test evaluations, it is impossible to tell the

general classification ability on unseen examples. Therefore we must wait

for additional data to test the generalization ability of the separated models in

the future.

5. Finally, in Chapter 6 we addressed our thesis statements. On the final dataset,

we aimed at building a single classification model regardless of the injury

type. All the following experiments are done on a 90%-10% train-test split

of the dataset. In the direct approach, we apply 18 possible variations of

data preprocessing combinations on the training set. All algorithms are then

applied on each of these processed datasets. The corresponding classifica-

tion models are evaluated through 10-fold cross validation and tested on the

test set. Although the cross-validation looks promising, their performance on

the test set is unfortunately no match to the human baseline on classification

accuracy. However, the rules extracted from the combination of SMOTE +

Numeric-Variable-Encoding + Discretization + Tomek Links + RIPPER are

considered as meaningful rules and are now integrated into the prototype sys-

tem for further evaluation on clinical samples. Additionally, we redo all the

above experiments with class decomposition since the data cleaning meth-

72



ods are only validated on binary datasets. Unfortunately, The classification

accuracy of all models on the test set is still lower than the human baseline.

Therefore, class decomposition does not improve the overall classification

models. It is worth noticing that naive Bayes algorithm makes good predic-

tions of the minority classes with or without class decomposition. ARIPPER

is then tested in another set of experiments. By using HARC and SHRCS

measurement, the ARIPPER model can actually achieve over 71% accu-

racy with the potential of 87% with preprocessing combination of SMOTE

+ Numeric-Variable-Encoding + Discretization + NCR.

8.2 Summary of Contributions

This MSc dissertation makes the following contributions:

1. By using machine learning algorithms to extract decision rules, we combine

the advantage of both the knowledge-based DSS and non-knowledge-based

DSS together. The rule-based machine learning algorithm is able to extract

editable and interpretable rules and may also mine facts that are not discov-

ered by domain experts.

2. We have compared and analyzed a variety of methods and algorithms to

tackle the multi-class imbalance problem encountered during the knowledge

extraction process. We have found that models generated from the combi-

nation of SMOTE + Numeric-Variable-Encoding + Discretization + Tomek

Links/NCR with ARIPPER can produce higher classification accuracy than

the human baseline on the test set. The one with Tomek Links also produces

meaningful recommendation rules as evaluated by our domain expert.

3. Our prototype decision support system Work Assessment Triage Tool (WATT),

which integrates our rule-based model, provides a recommendation pool (both

positive and negative recommendations) to facilitate the clinical process.

73



8.3 Future Study

In this dissertation we have compared and analyzed a variety of methods and algo-

rithms to tackle multi-class imbalance problem in classification. There are certain

limitations and much could be done to extend the proposed work.

1. Due to the class imbalance, it is difficult for machine learning algorithms to

learn models that make good predictions on both the minority and majority

classes at the same time. The tradeoff is inevitable. We hoped that we could

get more data for the minority classes in later stage of this research. More-

over, an analysis of the misclassification cost between different classes would

be beneficial as well.

2. The criterion for a successful treatment can vary and in result the datasets

for positive and negative modeling can be different. Selecting an appropriate

criterion for this issue is worth investigating. We would also like to know

how the case managers make decisions since they have the power to override

the clinicians′.

3. The major misclassification happened between prog0/4 and prog5/6. The re-

habilitation programs represented by the class label in each pair are similar to

each other in nature. A deeper analysis of how the human experts differenti-

ate them would provide insight for developing new strategies in tackling the

classification problem.

4. For the separated models based on injury type, additional independent tests

are required in the future if the data become available. We would apply all

the 18 variations of experiments presented in single model approach to each

injury dataset.

5. In the single model approach with ARIPPER, three combinations have rela-

tively high potential in classification accuracy. Currently, we are using only

the confidence-based and chi-square-based criteria to select the appropriate

predictions, and there is still room for improving the models to reach their

74



own potential by using other criteria. Additionally, the final decision con-

sists of two predictions including a default prediction of the largest class. To

narrow it down to only one prediction, we could:

(a) Train a set of binary classifiers. Based on the final two predictions, the

corresponding binary classifier is used to classify the instance.

(b) Use other rule-based algorithms that do not generate default rule with

empty rule body. And we could try more experiments with the ARC-BC

algorithm.

6. Currently, we are focusing on the positive model. In fact, it is also possible

to integrate the negative model in the evaluation. Based on certain criteria,

we can use negative predictions to cancel out some positive predictions and

narrow down the decision pool.

75



Bibliography

[1] Two modifications of cnn. Systems, Man and Cybernetics, IEEE Transactions
on, SMC-6(11):769 –772, nov. 1976.

[2] CMAR: accurate and efficient classification based on multiple class-
association rules, 2001.

[3] Peter L. Bartlett and Yoav Freund. Adaboost is consistent. In In Advances in
Neural Information Processing Systems, 2006.

[4] A. Basnet. Formulation of Decision Support Systems (DSS) Architectures for
Highway Toll Plazas: A Thesis in Computer Science. University of Mas-
sachusetts Dartmouth, 2006.

[5] Gustavo E. A. P. A. Batista, Ana L. C. Bazzan, and Maria Carolina Monard.
Balancing training data for automated annotation of keywords: a case study,
2003.

[6] Gustavo E. A. P. A. Batista, Ronaldo C. Prati, and Maria Carolina Monard.
A study of the behavior of several methods for balancing machine learning
training data. SIGKDD Explor. Newsl., 6(1):20–29, June 2004.

[7] E.S. Berner. Clinical Decision Support Systems: Theory And Practice. Health
Informatics. Springer, 2007.

[8] Martin BI, Deyo RA, and et al Mirza SK. Expenditures and health status
among adults with back and neck problems. JAMA, 299:656–64, 2008.

[9] Martin BI, Deyo RA, Mirza SK, and et al. Expenditures and health status
among adults with back and neck problems. JAMA: The Journal of the Amer-
ican Medical Association, 299(6):656–664, 2008.

[10] C Craig Blackmore, Robert S Mecklenburg, and Gary S Kaplan. Effectiveness
of clinical decision support in controlling inappropriate imaging. J Am Coll
Radiol, 8(1):19–25, 2011.

[11] Pollard CA. Preliminary validity study of the pain disability index. Percept
Mot Skills, 59, 1984.

[12] Health Canada. Economic burden of illness in canada, 1998. 2002.

[13] Human Resources Development Canada. National occupational classification:
Occupational descriptions. 2001.

76



[14] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip
Kegelmeyer. Smote: synthetic minority over-sampling technique. J. Artif.
Int. Res., 16(1):321–357, June 2002.

[15] Nitesh V. Chawla, Ar Lazarevic, Lawrence O. Hall, and Kevin W. Bowyer.
Smoteboost: improving prediction of the minority class in boosting. In In
Proceedings of the Principles of Knowledge Discovery in Databases, PKDD-
2003, pages 107–119, 2003.

[16] William W. Cohen. Fast effective rule induction. In In Proceedings of
the Twelfth International Conference on Machine Learning, pages 115–123,
1995.

[17] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
Learning, 20:273–297, 1995. 10.1007/BF00994018.

[18] NICOLA CRICHTON. Information point: Visual analogue scale (vas). Jour-
nal of Clinical Nursing, 10:697–706, 2001.

[19] Toma Curk, Janez Demar, Qikai Xu, Gregor Leban, Uro Petrovi, Ivan Bratko,
Gad Shaulsky, and Bla Zupan. Microarray data mining with visual program-
ming. Bioinformatics, 21:396–398, February 2005.

[20] Pedro Domingos. Metacost: A general method for making classifiers cost-
sensitive. In In Proceedings of the Fifth International Conference on Knowl-
edge Discovery and Data Mining, pages 155–164. ACM Press, 1999.

[21] Gross DP, Zhang J, Steenstra I, Cooper J, Barnsley S, Haws C, McIntosh G,
Amell T, and Zaiane O. Development of a computer-based decision-support
tool using machine-learning strategies for selecting appropriate rehabilitation
interventions. Odense International Forum XII Primary Care Research on
Back Pain, 2012.

[22] Gross DP, Zhang J, Steenstra I, Cooper J, Barnsley S, Haws C, McIntosh G,
Amell T, and Zaiane O. Development of a computer-based decision-support
tool using machine-learning strategies for selecting appropriate rehabilitation
interventions. BMJ Occupational and Environmental Medicine, 2012.

[23] Gross DP, Zhang J, Steenstra I, Cooper J, Barnsley S, Haws C, McIntosh G,
Amell T, and Zaiane O. Development of a computer-based decision-support
tool using machine-learning strategies for selecting appropriate rehabilitation
interventions. 2012.

[24] Haldorsen EM. The right treatment to the right patient at the right time. Occup
Environ Med 2003, 60:235–236, 2003.

[25] Fayyad and Irani. Multi-Interval discretization of Continuous-Valued at-
tributes for classification learning. pages 1022–1027, 1993.

[26] Martin Gutlein, Eibe Frank, Mark Hall, and Andreas Karwath. Large-scale
attribute selection using wrappers. In CIDM, pages 332–339, 2009.

[27] N.M. Hadler. Occupational musculoskeletal disorders. Raven Press, 1993.

[28] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-
mann, and Ian H. Witten. The weka data mining software: an update. SIGKDD
Explor. Newsl., 11(1):10–18, November 2009.

77



[29] Mark A. Hall. Correlation-based Feature Subset Selection for Machine Learn-
ing. PhD thesis, Department of Computer Science, University of Waikato,
Hamilton, New Zealand, April 1999.

[30] Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. Borderline-SMOTE: A new
Over-Sampling method in imbalanced data sets learning. pages 878–887.
2005.

[31] P. E. Hart. The condensed nearest neighbor rule. IEEE Transactions on Infor-
mation Theory, 14:515–516, 1968.

[32] Brian Hemens, Anne Holbrook, Marita Tonkin, Jean Mackay, Lorraine Weise-
Kelly, Tamara Navarro, Nancy Wilczynski, R Brian Haynes, and the CCDSS
Systematic Review Team. Computerized clinical decision support systems for
drug prescribing and management: A decision-maker-researcher partnership
systematic review. Implementation Science, 6(1):89, 2011.

[33] Gordana Ivosev, Lyle Burton, and Ron Bonner. Dimensionality reduction
and visualization in principal component analysis. Analytical Chemistry,
80(13):4933–4944, 2008.

[34] Rapoport J, Jacobs P, Bell NR, and Klarenbach S. Refining the measurement
of the economic burden of chronic diseases in canada. Chronic Dis Can,
25:13–21, 2004.

[35] Nathalie Japkowicz. Concept-learning in the presence of between-class and
within-class imbalances. In Proceedings of the 14th Biennial Conference of
the Canadian Society on Computational Studies of Intelligence: Advances in
Artificial Intelligence, AI ’01, pages 67–77, London, UK, UK, 2001. Springer-
Verlag.

[36] Power JD, Perruccio AV, Desmeules M, Lagace C, and Badley EM. Ambu-
latory physician care for musculoskeletal disorders in canada. J Rheumatol,
33:133–9, 2006.

[37] K. Karjalainen, A. Malmivaara, M. Van Tulder, R. Roine, M. Jauhiainen,
H. Hurri, and B. Koes. Multidisciplinary biopsychosocial rehabilitation for
subacute low back pain among working age adults. Cochrane Database Syst
Rev, 2, 2003.

[38] S. B. Kotsiantis and P. E. Pintelas. Mixture of expert agents for handling
imbalanced data sets, 2003.

[39] Jorma Laurikkala. Improving identification of difficult small classes by bal-
ancing class distribution. In Proceedings of the 8th Conference on AI in
Medicine in Europe: Artificial Intelligence Medicine, AIME ’01, pages 63–
66, London, UK, UK, 2001. Springer-Verlag.

[40] Lin Lin, Paul Jen-Hwa Hu, and Olivia R. Liu Sheng. A decision support
system for lower back pain diagnosis: Uncertainty management and clinical
evaluations. Decision Support Systems, 42(2):1152 – 1169, 2006.

[41] Charles X. Ling and Chenghui Li. Data mining for direct marketing: Problems
and solutions. In KDD, pages 73–79, 1998.

[42] Hadler NM. Occupational musculoskeletal disorders. 3rd ed. Philadelphia,
PA: Lippincott Williams and Wilkins, 2005.

78



[43] Coyte PC, Asche CV, Croxford R, and Chan B. The economic cost of muscu-
loskeletal disorders in canada. Arthritis Care Res, 11:315–25, 1998.

[44] Ronaldo C. Prati, Gustavo E. A. P. A. Batista, and Maria C. Monard. Class im-
balances versus class overlapping: An analysis of a learning system behavior,
2004.

[45] J. Quinlan and R. Cameron-Jones. Foil: A midterm report. In Machine Learn-
ing: ECML-93, pages 1–20. Springer, 1993.

[46] J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1993.

[47] J.R. Quinlan. Mdl and categorical theories (continued). In MACHINE
LEARNING-INTERNATIONAL WORKSHOP THEN CONFERENCE-, pages
464–470. Citeseer, 1995.

[48] Logan R and Reeder P. Occupational injuries and diseases in canada,
19962005. Ottawa: Human Resources and Social Development Canada,
2007.

[49] Irina Rish. An empirical study of the naive bayes classifier. In IJCAI-01
workshop on ”Empirical Methods in AI”.

[50] Pavel Roshanov, Shikha Misra, Hertzel Gerstein, Amit Garg, Rolf Sebaldt,
Jean Mackay, Lorraine Weise-Kelly, Tamara Navarro, Nancy Wilczynski,
R Brian Haynes, and the CCDSS Systematic Review Team. Computer-
ized clinical decision support systems for chronic disease management: A
decision-maker-researcher partnership systematic review. Implementation
Science, 6(1):92, 2011.

[51] Navdeep Sahota, Rob Lloyd, Anita Ramakrishna, Jean Mackay, Jeanette
Prorok, Lorraine Weise-Kelly, Tamara Navarro, Nancy Wilczynski,
R Brian Haynes, and the CCDSS Systematic Review Team. Computerized
clinical decision support systems for acute care management: A decision-
maker-researcher partnership systematic review of effects on process of care
and patient outcomes. Implementation Science, 6(1):91, 2011.

[52] Frederieke Schaafsma, Eva Schonstein, Karyn M Whelan, Eirik Ulvestad, Di-
anna Theadora Kenny, and Jos H Verbeek. Physical conditioning programs
for improving work outcomes in workers with back pain. Cochrane Database
Syst Rev, (1):CD001822, 2010.

[53] S.H. van Oostrom, M.T. Driessen, HC De Vet, R.L. Franche, E. Schonstein,
P. Loisel, W. van Mechelen, and J.R. Anema. Workplace interventions for
preventing work disability. Cochrane Database Syst Rev, 2, 2009.

[54] V.N. Vapnik. The Nature of Statistical Learning Theory. Statistics for Engi-
neering and Information Science. Springer, 2000.

[55] Shuo Wang and Xin Yao. The effectiveness of a new negative correlation
learning algorithm for classification ensembles. In Proceedings of the 2010
IEEE International Conference on Data Mining Workshops, ICDMW ’10,
pages 1013–1020, Washington, DC, USA, 2010. IEEE Computer Society.

79



[56] Gandek B Ware JE. The sf-36 health survey: development and use in mental
health research at the iqloa project. International Journal of Mental Health,
23, 1994.

[57] Dennis L. Wilson. Asymptotic properties of nearest neighbor rules using
edited data. Systems, Man and Cybernetics, IEEE Transactions on, 2(3):408–
421, July 1972.

[58] Osmar R. Zaı̈ane and Maria-Luiza Antonie. Classifying text documents by as-
sociating terms with text categories. In Proceedings of the 13th Australasian
database conference - Volume 5, ADC ’02, pages 215–222, Darlinghurst, Aus-
tralia, Australia, 2002. Australian Computer Society, Inc.

[59] Jing Zhang, Douglas Gross, and Osmar Zaiane. On the application of multi-
class classification in physical therapy recommendation (submitted). IEEE
International Conference on Data Mining, 2012.

80



Appendix A

Final Rules in WATT

A.1 Positive Rules

1. (funAbility=1) ⇒ Consider immediate return

2. (admjob=1) and (2≤s1f364≤3) and (s1f367≥3) and (1≤VASa≤2) and

(Prencode=7) ⇒ Worksite-Based Program

3. (admjob=1) and (4≤s1f3614≤5) and (s1f367≥3) and (s1f3612≥3)

⇒ Worksite-Based Program

4. (admjob=1) and (2≤s1f364≤3) and (s1f367≥3) and (Prencode=7) and

(2≤s1f362≤3) and (2≤s1f365≤3) ⇒ Worksite-Based Program

5. (admjob=1) and (3≤s1f3614≤4) and (s1f364=2) and (2≤s1f362≤3)

⇒ Worksite-Based Program

6. (admjob=1) and (3≤s1f3621≤4) and (s1f364≥3) ⇒ Worksite-Based Pro-

gram

7. (admjob=1) and (4≤s1f3614≤5) and (s1f364=2) ⇒ Worksite-Based Pro-

gram

8. (admjob=1) and (2≤s1f364≤3) and (s1f3621=4) ⇒ Worksite-Based Pro-

gram

81



9. (admjob=1) and (134≤ACTOADMC≤197) and (2≤s1f3612≤3) and

(s1f364=2) and (s1f367≥3) ⇒ Worksite-Based Program

10. (admjob=1) and (2≤s1f362≤3) and (s1f364≥3) ⇒ Worksite-Based Program

11. (admjob=1) and (3≤s1f3614≤4) and (1≤s1f3612≤2) and (s1f367≥3) ⇒

Worksite-Based Program

12. (admjob=1) and (3≤s1f3621≤4) and (s1f3614=4) ⇒ Worksite-Based Pro-

gram

13. (admjob=1) and (2≤s1f364≤3) and (50≤ACTOADMC≤90) and

(s1f367≥3) and (3≤s1f3618≤4) ⇒ Worksite-Based Program

14. (admjob=1) and (2≤s1f364≤3) and (s1f3614≥5) ⇒ Worksite-Based Pro-

gram

15. (admjob=1) and (7≤OCCUPATIONa≤8) and (s1f364=2) and

(modwrkcd=0) ⇒ Worksite-Based Program

16. (admjob=1) and (4≤s1f3614≤5) and (modwrkcd=1) and

(3≤OCCUPATIONa≤4) ⇒ Worksite-Based Program

17. (admjob=1) and (2≤s1f364≤3) and (s1f3618=3) ⇒ Worksite-Based Pro-

gram

18. (admjob=1) and (3≤s1f3614≤4) and (s1f3621=4) and (3≤s1f362≤4) ⇒

Worksite-Based Program

19. (admjob=1) and (4≤s1f3618≤5) and (s1f364≥3) ⇒ Worksite-Based Pro-

gram

20. (admjob=1) and (2≤s1f3612≤3) and (s1f3614≥5) ⇒ Worksite-Based Pro-

gram

21. (admjob=1) and (4≤s1f3614≤5) and (2≤s1f364≤3) and (4≤s1f3618≤5) ⇒

Worksite-Based Program

82



22. (admjob=1) and (4≤s1f3614≤5) and (1≤s1f3625≤2) ⇒ Worksite-Based

Program

23. (admjob=1) and (3≤s1f3618≤4) and (50≤ACTOADMC≤90) and

(s1f3621=4) ⇒ Worksite-Based Program

24. (admjob=1) and (3≤s1f3614≤4) and (s1f367≥3) and (3≤s1f362≤4) and

(modwrkcd=1) ⇒ Worksite-Based Program

25. (admjob=1) and (VASa=1) and (4≤s1f3625≤5) ⇒ Worksite-Based Program

26. (admjob=1) and (0≤ACTOADMC≤180) and (curwork=1) and

(modwrkcd=0) and (2≤s1f365≤5) ⇒ Complex

27. (admjob=0) and (0≤s1f365≤1) and (7≤VASa≤8) ⇒ Complex

28. (admjob=0) and (1≤s1f3612≤2) ⇒ Complex

29. (admjob=0) and (660≤ACTOADMC≤1375) and (3≤s1f362≤4) ⇒ Com-

plex

30. (admjob=0) and (4≤s1f362≤5) ⇒ Complex

31. (admjob=0) and (1≤s1f367≤2) ⇒ Complex

32. (admjob=0) and (4≤s1f3625≤5) and (Prencode=6) and (s1f3612=2) ⇒ Com-

plex

33. (admjob=0) and (2≤s1f3618≤3) and (2≤s1f367≤3) and (1≤s1f364≤2) ⇒

Complex

34. (0≤s1f367≤1) and (1≤s1f3614≤2) ⇒ Hybrid

35. (admjob=1) and (2≤s1f365≤3) and (modwrkcd=1) ⇒ Hybrid

36. (admjob=1) and (2≤s1f367≤3) and (modwrkcd=1) ⇒ Hybrid

37. (admjob=1) and (2≤s1f3614≤3) and (modwrkcd=1) ⇒ Hybrid

83



38. (admjob=1) and (modwrkcd=2) and (Prencode=7) and (2≤s1f3614≤3) and

(197≤ACTOADMC≤404) ⇒ Hybrid

39. (admjob=1) and (3≤s1f3621≤4) and (s1f3612≥3) ⇒ Hybrid

40. (admjob=1) and (Prencode=7) and (modwrkcd=2) and (2≤s1f367≤3) and

(s1f3612≥3) ⇒ Hybrid

41. (admjob=1) and (2≤s1f362≤3) and (modwrkcd=1) ⇒ Hybrid

42. (admjob=1) and (2≤s1f3612≤3) and (modwrkcd=1) ⇒ Hybrid

43. (admjob=1) and (modwrkcd=2) and (Prencode=7) and (2≤s1f3612≤3) and

(s1f3621=4) ⇒ Hybrid

44. (admjob=1) and (modwrkcd=2) and (Prencode=7) and (1≤s1f364≤2) and

(s1f3614=2) ⇒ Hybrid

45. (admjob=1) and (4≤s1f362≤5) and (s1f3612≥3) ⇒ Hybrid

46. (admjob=1) and (modwrkcd=2) and (Prencode=7) and (2≤s1f3612≤3) and

(s1f364=2) ⇒ Hybrid

47. (admjob=1) and (4≤s1f3621≤5) and (modwrkcd=1) ⇒ Hybrid

48. (admjob=1) and (modwrkcd=2) and (Prencode=7) and (2≤s1f3614≤3) and

(90≤ACTOADMC≤134) ⇒ Hybrid

49. (admjob=1) and (modwrkcd=2) and (6≤OCCUPATIONa≤7) and

(Prencode=7) and (3≤s1f362≤4) ⇒ Hybrid

50. (admjob=1) and (modwrkcd=2) and (2≤s1f362≤3) and (4≤s1f3618≤5) ⇒

Hybrid

51. (admjob=1) and (modwrkcd=2) and (2≤s1f362≤3) and

(197≤ACTOADMC≤404) ⇒ Hybrid

52. (admjob=1) and (1≤s1f3612≤2) and (s1f362=3) and (modwrkcd=1) ⇒ Hy-

brid

84



53. (admjob=1) and (7≤OCCUPATIONa≤8) and (s1f362≥5) ⇒ Community

Single Service Provider

54. (s1f365≥3) and (curwork=1) and (s1f364≥3) and (0≤OCCUPATIONa≤1)

⇒ Consider vocational rehab/no further rehab

55. (admjob=0) and (0≤s1f364≤1) and (0≤s1f3614≤1) and (0≤s1f365≤1) ⇒

Community Single Service Provider

56. (s1f365≥3) and (curwork=1) and (VASa=3) and (s1f3618≥5) and

(50≤ACTOADMC≤90) ⇒ Community Single Service Provider

57. (s1f364≥3) and (s1f3614=4) and (0≤OCCUPATIONa≤1) ⇒ Consider vo-

cational rehab/no further rehab

58. (ACTOADMC≥2152) ⇒ Consider vocational rehab/no further rehab

59. (1375≤ACTOADMC≤2152) ⇒ Consider vocational rehab/no further rehab

60. (660≤ACTOADMC≤1375) and (0≤s1f364≤1) and

(modwrkcd=0) ⇒ Community Single Service Provider

61. (s1f365≥3) and (curwork=1) and (50≤ACTOADMC≤90) and (s1f3618≥5)

and (Prencode=7) ⇒ Community Single Service Provider

62. (s1f3614≥5) and (s1f3621=4) and (s1f367≥3) and (0≤ACTOADMC≤50)

⇒ Community Single Service Provider

63. Default ⇒ Provider-based (Functional Restoration Program)

A.2 Negative Rules

1. (curwork=1) and (s1f3612≥2) and (s1f3612≤3) ⇒ Not Hybrid

2. (curwork=1) and (s1f365≥2) and (s1f365≤3) ⇒ Not Hybrid

3. (curwork=1) and (s1f3613≥1) and (s1f3613≤2) ⇒ Not Hybrid

85



4. (curwork=1) and (s1f367≥2) and (s1f367≤3) ⇒ Not Hybrid

5. (curwork=1) and (s1f3613≥2) and (s1f3613≤3) ⇒ Not Hybrid

6. (s1f3621≥5) and (s1f3621≤6) and (Diag-Grp=7) ⇒ Not Complex

7. (ACTOADMC≥946) and (ACTOADMC≤3275) and (Diag-Grp=7) and

(s1f365≥1) and (s1f365≤2) ⇒ Not Complex

8. (VASa≥9) and (VASa≤10) and (ACTOADMC≥946) and

(ACTOADMC≤3275) ⇒ Not Complex

9. (s1f3625≥2) and (s1f3625≤3) and (Diag-Grp=3) ⇒ Not Complex

10. (s1f3618≥1) and (s1f3618≤2) and (Diag-Grp=7) ⇒ Not Complex

11. (s1f367≥2) and (s1f367≤3) and (Diag-Grp=3) ⇒ Not Complex

12. (VASa≥9) and (VASa≤10) and (ACTOADMC≥375) and

(ACTOADMC≤946) ⇒ Not Complex

13. (s1f3621≥5) and (s1f3621≤6) and (Diag-Grp=3) ⇒ Not Complex

14. (ACTOADMC≥946) and (ACTOADMC≤3275) and (Diag-Grp=7) and

(s1f367≥2) and (s1f367≤3) ⇒ Not Complex

15. (s1f365≥1) and (s1f365≤2) and (Diag-Grp=7) ⇒ Not Complex

16. (s1f367≥1) and (s1f367≤2) and (Diag-Grp=3) ⇒ Not Complex

17. (OCCUPATIONa≥8) and (OCCUPATIONa≤9) and (Diag-Grp=7) ⇒

Not Complex

18. (s1f3621≥6) and (ACTOADMC≥946) and (ACTOADMC≤3275)

and (s1f3612=2) ⇒ Not Complex

19. (Diag-Grp=8) and (admjob=0) ⇒ Not Other (not prog0)

20. (curwork=1) and (Diag-Grp=6) ⇒ Not Other (not prog0)

86


