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Abstract

Pattern databases in combination with IDA* search have proved extremely successful in optimally 

solving a variety of single-agent search problems. Pattern databases use retrograde search and ab

straction to produce a memory-based heuristic lookup table. Perimeters similarly use retrograde 

search, but without abstraction, to produce a memory-based heuristic. While traditionally separate 

lines of research, this thesis introduces the two approaches, partial pattern databases and compressed 

partial pattern databases, which combine the approaches of pattern databases and perimeters in a 

general way. Partial pattern databases and compressed partial pattern databases are tested on the K -  

pancake puzzle and the fifteen sliding-tile puzzle. Compressed partial pattern databases are shown 

to lead to performance improvements on both domains.
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Chapter 1

Introduction

1.1 Motivation

Single-agent search is used for a variety of real-world applications and is regularly applied in do

mains such as the gaming industry, robotics, and bioinformatics. Worldwide, the total revenue of 

the video game industry is estimated at $30 billion USD [34]. Pathfinding is a single-agent search 

problem critical to many genres of video games that must be very efficient. For example, real-time 

strategy games coordinate the movements of hundreds of units and must be able to pathfind within 

milliseconds.

Robot planning uses single-agent search. NASA’s Mars rovers, Spirit and Opportunity, use 

autonomous pathfinding for navigation over 55 million kilometers away [4]. A little closer to home, 

the Hubble Telescope uses the planning system, Spike, for scheduling tasks [23]. Approaches for 

solving single-agent search tasks can be effective in solving planning tasks [10].

In the computational biology community, single-agent search is used for the important problem 

of sequence alignment [36]. Sequence alignment is used for comparing genes, finding evolutionary 

linkage, and predicting structure [17].

Single-agent search is a versatile tool for solving problems that can be restructured into an op

timal path finding problem on a graph. It is important to improve upon current techniques to solve 

larger, more challenging applications. Pathfinding, robotic planning, and sequence alignment can 

all be easily scaled up to exceed the computational limits of today’s techniques.

1.2 Problem Definition

The question of how to use memory in single-agent search is multifaceted. Explicitly stored graphs, 

memory-based search algorithms, and memory-based heuristics all must compete for the same lim

ited resource. With the increasing capacity of memories (1 Gigabyte and more) and refined heuristic 

techniques, today some previously intractable problems can be solved quickly; but memory will 

always a critical limiting factor in this field.

One use of memory is to create and store a heuristic or improve an already existing heuristic. In

1
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the case of the puzzle domains, e.g., the Sliding-Tile puzzle, if-pancake, Top-Spin, Rubik’s Cube, 

Towers of Hanoi, and Sokoban, virtually all the available memory can be used for the heuristic. 

There are two reasons for this. First, the puzzle domains have implicit successor functions, thus 

eliminating explicit storage of the graph in memory. Second, the linear-space IDA* search algorithm 

has been shown to be effective on puzzles [26]. In fact, IDA* is the primary search algorithm 

for these domains because of its low-memory requirements, simplicity, and speed, even though it 

generates more states than some other techniques.

The memory-based heuristic often takes the form of pattern databases. Pattern databases are a 

proven, powerful, and flexible technique that use available memory as a heuristic lookup table [6]. 

Domain abstraction reduces the size of the state space by merging multiple states into a smaller 

number of abstract states [ 19]. Each abstract state has an entry in the pattern database for its heuristic 

value. Retrograde search is used to fill in the heuristic values by searching backwards from the 

abstract goal to all abstract states. The pattern database size is dependent upon the abstraction 

granularity; finer-grained abstractions require more entries in the database and more memory, but 

yield better heuristics [19, 40].

Increasing the number of pattern database lookups for each state improves the heuristic quality. 

Taking the maximum value over the values of multiple pattern database lookups for a single state 

is one simple and general example [21]. Other approaches take advantage of domain-specific prop

erties such as symmetry, additivity, and duality [7, 14, 50]. This procedure continues pushing the 

state-of-the-art to new heights, but only for a subset o f puzzles.

Alternatively, perimeter search uses no abstraction at all [9]. Retrograde search builds a perime

ter around the predetermined goal which is stored in memory. The forward search can use multiple 

perimeter states to improve the heuristic values, which in turn reduce the size of the search tree. A 

variety of methods have been presented which further improve the heuristic, but are dependent upon 

specific properties of the heuristic itself [9,24, 35].

Pattern databases and perimeter search have traditionally been two disjoint areas of research. Yet 

these approaches are similar: both use backwards search from the goal, store heuristic information 

in memory, and use the heuristic to improve the forward search. This thesis examines combining 

these techniques in a simple and effective way.

1.3 Approach to the Problem

This thesis presents two new heuristic table-lookup techniques that separate the level o f abstraction 

from the memory bound: partial pattern databases and compressed partial pattern databases. Partial 

pattern databases are closely linked with perimeters. However, where perimeters use states in the 

original state space, partial pattern databases use abstract states at any abstraction level. The most 

appropriate abstraction level is determined through testing. Compressed partial pattern databases are 

more like pattern databases, storing each entry in a memory-efficient manner. However, while the

2
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pattern database abstraction level is dependent upon the memory limit, compressed partial pattern 

databases are free to use any abstraction level.

Our work approaches the problem from a general standpoint instead of utilizing domain-specific 

properties. Similar to taking the maximum over multiple pattern databases [21], the new techniques 

presented in this thesis are applicable across all puzzle domains.

While the approaches taken are general enough to be applicable to all possible puzzle domains, 

this thesis specifically examines the Fifteen Sliding-Tile and K -pancake puzzles. IDA* search is 

used for the forward search because of its low memory requirements [26, 50]. To determine the 

scalability of these database techniques, the 8 ,10 ,12 , and 13-pancake puzzles are tested.

1.4 Research Contributions

The contribution of this thesis is three-fold. The first is the introduction of two new types of heuristic 

lookup tables. Perimeter search and pattern databases have long been separate lines of research. This 

work examines the similarities between the two methods and attempts to combine the strengths of 

each. The approach taken is general enough to be applicable to many domains and the memory- 

based table can be reused over multiple problem instances with a fixed goal.

Secondly, empirical testing demonstrates the benefits and disadvantages of these techniques. 

Two contrasting puzzle domains are tested: one with a large branching factor and one with a small 

branching factor. The coarse abstraction of pattern databases allows for more cutoffs shallower in 

the search. The lack of abstraction of perimeters causes a higher number of cutoffs deeper in the 

search, which is important due to the duplicate nodes caused by IDA* search. Testing shows the 

appropriate choice of abstraction granularity for each puzzle can improve performance over that of 

a full pattern database.

Finally, the worst-case node expansion formula proposed by Korf and Reid for pattern databases 

can be applied to these new lookup tables [31]. This thesis examines the use of Korf and Reid’s 

formula to predict the worst-case node expansion given the heuristic distribution of a partial pattern 

database. If accurate, this formula would allow for intelligent database selection without running ex

haustive experimentation. Much of this work will appear in proceedings of the Seventh International 

Symposium on Abstraction, Reformulation, and Approximation in July 2007 [1].

1.5 Outline

This thesis is organized as follows. Chapter 2 introduces the search domains, search techniques 

including IDA*, and uses of memory in single-agent search. Different variations on perimeters and 

pattern databases and their applicability to these domains are discussed in depth.

Chapter 3 introduces two new heuristic lookup table techniques and discusses the advantages 

and disadvantages of each. Chapter 4 and Chapter 5 present a thorough empirical analysis o f the

3
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performance of each individual technique. In addition, general approaches are combined to yield 

a stronger algorithm. A theoretical formulation of the worst-case performance is shown to work 

on one of the tested domains, which provides a tool used for choosing the most appropriate pattern 

database.

Finally, in Chapter 6, conclusions, limitations, and possible future work are discussed.

4
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Chapter 2

Related Work

2.1 State Space Representations

A single-agent search problem is structured as finding a minimum-cost path between a start node s 

and a goal node t  on a weighted, directed graph G. The cost o f a path is the sum of the costs o f all 

edges on the path, while the path length is the total number of edges on the path. The graph consists 

of a set of nodes (set V ) and directed edges (set E )  where each edge e(u, v) G E  has an associated 

non-negative edge cost c(u, v). A node n ' is a successor of node n  if there exists an edge e(n, n ') 

from n  to n 1. Similarly, n  is the predecessor of n ' . Given unlimited memory, a graph G  can always 

be represented explicitly, all nodes and edges of G  are stored in memory. A real-world example of 

such a graph is the connectivity of the world wide web; each node represents a website and each 

directed edge represents a link from one website to another. As this example shows, these types of 

graphs can be very large, so fitting them in memory can be problematic.

The graph structure of a state space is represented implicitly in some domains, such as puzzle 

domains. Puzzle domains are simple and readily understandable, yet demonstrate the important 

principles of real-world problems [38]. This makes them an ideal and interesting testbed for re

search. The Arrow Puzzle [25], Sliding-Tile Puzzle, A-pancake Puzzle, Top-Spin, Rubik’s Cube, 

and Towers of Hanoi are examples of such puzzles. This thesis specifically examines the the A - 

pancake puzzle and the Fifteen Sliding-Tile puzzle (henceforth the Fifteen Sliding-Tile puzzle shall 

be refer to as the fifteen-puzzle).

The A-pancake puzzle consists of a stack of A  pancakes, all of different sizes, numbered 0 to 

A  — 1 (Figure 2.1). There are A  — 1 operators, where operator k  (1 <  k  <  A  — 1) reverses the 

order of the top k — 1 pancakes. An individual pancake will be referred to as a tile and its placement 

in the stack as a location. A  state is an arrangement of tiles in specific locations.

The fifteen-puzzle is comprised of a four by four grid of 15 distinct tiles, with one location 

empty. The empty location is called the blank. Valid operations include swapping the blank with 

one of up to four adjacent tiles. Figure 2.1 shows the goal state of the fifteen-puzzle.

For puzzle domains, the search space can be restructured as a graph by mapping each possible

5
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Figure 2.1: Goal states for 8-pancake (left) and fifteen-puzzle (right).

state to a node in graph G, and each applicable operator to an edge of unit weight (c =  1). The set 

of all states is called the search space, S . An operator transforms a state, s, into its successor state, 

s ', at a specified cost. Not all operators can apply for every state; for example, the fifteen-puzzle 

cannot move the blank up when it is in the top-most row. A successor function generates the set of 

successor states using the set of possible operators for state s. Similarly, the predecessor function 

generates the set o f states with s' as their successor. For puzzle domains, the successor function is 

compact, consisting only of a set o f rules for the applicability of given operators. Also, in puzzle 

domains, operators have unit-cost (c =  1) and are reversible (undirected edges). Our analysis is 

valid in the more general context of directed, weighted graphs.

Now that there is a compact representation of weighted, directed edges, the graph no longer 

needs to be explicitly stored. Memory can be used for other purposes. This is crucial for examining 

large state spaces; the fifteen-puzzle has a state space of 161/2 «  1013 states, and the if-pancake 

puzzle is of size K \  [41],

2.2 Heuristics in Search

Search through a state space (or graph) is used to find an optimal path from the start state to the 

goal state. A search algorithm traverses a tree with the start state at the root of the tree. Using 

the successor function, a state generates its child states. A state is expanded after generating all 

the state’s children. Search algorithms apply different techniques for generating and expanding 

states [38].

In uninformed search, state expansion is dependent only upon the visited part of the graph. To 

speed up search, informed or heuristic search uses domain-knowledge in the form of a heuristic [38]. 

In single-agent search, heuristics are estimates of the remaining cost from the current state to the 

goal state. Search procedures utilize this information to prune or cut off states that do not need 

to be expanded. This makes the search tree much smaller than it otherwise would be. This thesis

6
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examines heuristic search.

Heuristics originally were hand-designed using context-sensitive information. The fifteen-puzzle’s 

Manhattan Distance heuristic is an example of this approach [38]. This heuristic examines each tile 

in the fifteen-puzzle. Each tile has a lower bound on the number of moves (distance) necessary to 

get this tile to its individual goal location: the change in the x  dimension plus the change in the y  

dimension. Since each tile has to move this minimal amount, simply sum the distance each tile has 

to move to get a lower bound on the number of moves required to solve a given instance.

t i le  15

M  an h a tta n D ista n ce  =  | locx (tile) — goalLocx (iile)\ +  | locy (tile) — goalLocy (tile)\
t i le = tile  1

However, designing heuristics for domains can be tedious and some puzzles, like the /T-pancake 

puzzle, currently have no known strong human-designed heuristic. Section 2.4 will outline some 

methods for generating heuristics using abstraction.

An admissible heuristic does not overestimate the cost to the goal [16]. In many heuristic search 

algorithms, using an admissible heuristic can guarantee finding an optimal solution [16, 26], A 

heuristic is consistent if the heuristic difference between any two connected states is less than or 

equal to the edge weight between those states:

|fi(s) — fi(s ')| <  c (s ,s ')

This property can be checked locally by examining all successors to all states in the state space. 

Consistency implies admissibility, but admissibility does not imply consistency [38].

Bidirectional-Pathmax

Search algorithms can improve inconsistent heuristics during search by enforcing consistency lo

cally. If a state s has a successor or predecessor s' where |/i(s ') -  h (s )| >  c(s, s '), then s ’s heuristic 

value can be increased to h(s ')  +  c(s, s ') . Mero propagates heuristic corrections only to a state’s 

successors (pathmax) [37].

If a depth-first search technique is used with an inconsistent heuristic, the heuristic can be im

proved through the use of bidirectional-pathmax (BPMX) [14]. BPMX propagates heuristic im

provements to both successors and predecessors [14]. This technique uses no extra memory in 

IDA* and takes very little time.

2.3 Memory in the Heuristic Search Algorithm

Memory is often a limiting factor in single-agent search. There are three primary ways to use 

memory: (1) explicitly in the graph representation, (2) in the search algorithm, or (3) in the heuristic. 

The first o f these is not directly applicable to puzzle domains, so this thesis concentrates on the latter 

two. This section presents how memory can be applied to the search algorithm itself in order to 

improve the performance of heuristic search.

7
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2.3.1 Best-First Search

Best-first search techniques expand the apparent best state (the state most likely to lead to a solution) 

according of some criteria [38]. Memory is used to keep track of an open list and closed list. The 

open list consists of the set of generated but not yet expanded states. The closed list consists of 

the set of expanded states. At every step, the best apparent state is removed from the open list and 

expanded. Expanding a state causes all successors to be generated and placed on the open list, unless 

they have already been visited. The specific details depend on the algorithm used. The expanded 

state itself is then placed on a closed list. In effect, the open list is the search frontier (leaf states) 

and the closed list is comprised of the interior, expanded states.

One such method is Dijkstra’s algorithm [8], which finds the minimal cost paths to a goal in a 

graph with non-negative edge weights. States are selected for expansion off the open list based on 

the lowest-cost path to a state. Each state is only expanded once. This method is uninformed because 

it uses no heuristic [42]. The following algorithm (A*) introduces a heuristic, which, in most cases, 

improves performance significantly.

A*

A* is a classic algorithm that expands states in order of increasing priority [16]. A* keeps track of 

states via an open list and closed list. The closed list is composed of states already expanded. It 

is used to (1) prevent unnecessarily re-visiting these states (via transpositions and cycles) and (2) 

reconstruct the solution path from the start to the goal. The open list is comprised of generated but 

not-yet expanded states. It is used to prevent transpositions and choose the next state for expansion.

States on the open list are prioritized by /  (low /-values mean high priority).

f { s )  = g{s) +  h (s )

where g(s) is the minimal cost of a path from the start to s found so far and h(s) is the heuristic 

(estimated cost from state s to the goal). f ( s )  is the estimated cost from the start to goal on a path 

constrained to go though state s. The state s with the lowest /-value is expanded, whereby (1) s 

is taken off the open list and placed on the closed list and (2) all successor states of s are either 

added to the open list if not already on the open or closed list, updated if already on the open list, or 

updated and added to the open list if already on the closed list. Ties are typically broken in favor of 

the state with the higher g value.

A* can use a large amount of memory for the closed and open lists; in the worst case (if the 

heuristic is zero), the space complexity is 0(15]), where |5'| is the size of the state space. Because the 

graph representation is implicit, the state space is generally much larger than the available memory 

size. A* requires every visited state to remain in memory, either in the closed list or open list. When 

millions of states are generated per second, the memory can be filled in minutes.
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2.3.2 Reducing A*’s Memory Requirements

The high memory requirements of A* is a major deterrent for use in large state spaces. Recent 

research investigates approaches that reduce the memory requirements of A*.

Frontier Search

Frontier search, by Korf et al. , is a search technique that reduces the number of states stored on the 

closed list [28,32,33]. This technique works well for domains with reversible operators (undirected 

edges) as will be discussed here, but can also be extended to directed graphs [33]. In an undirected 

graph, when a state is expanded, its successors may be on the closed list. However, a state on the 

closed list will only be re-generated if one of its successors is on the open list. Therefore, the closed 

states whose successors are all closed can be eliminated.

To reconstruct a path, an intermediate ancestor state along every potential solution path is stored. 

All closed states now point to one of these ancestor states. The path is reconstructed by recursively 

solving the two remaining subproblems: the path from the start to the ancestor state, and the path 

from the ancestor state to goal [32],

Breadth-First A*

Zhou and Hansen present an adaptation on frontier search to further reduce memory requirements 

with their Breadth-First A* search algorithm [51,54], Instead of expanding the best state according 

to the /-value, Zhou and Hansen use breadth-first state expansion. The states that exceed a cost 

bound are discarded and only the states on the frontier are kept in memory. The cost-bound is 

determined by repeating the search with an increased cost bound (this is called iterative-deepening 

and is discussed in Section 2.3.3) or by finding an upper bound using weighted A* [39]. This 

approach can often expand the exact same states as frontier search. In experimental results, breadth- 

first frontier search stores fewer states in memory than frontier search.

s ta r t s ta r t

Frontier Breadth-First A*

Figure 2.2: Frontier search and breadth-first A* search trees (based on [51]).

2.3.3 Memory-Limited Search

Recall that A* and frontier search have memory requirements proportional to the size and width of 

the search space respectively. The following techniques have memory bounds linear in the solution

9
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length, freeing the programmer from the memory limitations of larger problem spaces. However, 

using such a small amount of memory has drawbacks in the form of state re-expansion. Therefore, 

numerous techniques utilize user-defined memory bounds to augment this algorithm.

Many of the strategies in the following sections have their roots in two-opponent games. Depth- 

first iterative deepening has been used for over 30 years in chess-playing programs [46], transposi

tion tables were introduced in 1967 by Greenblatt [15] et al., and retrograde search has been used to 

create end-game databases (perimeters) to reduce storage and improve heuristics [48].

IDA*

Iterative Deepening A* (IDA*) is a minimal-memory search technique that repetitively uses depth- 

first, cost-bounded searches while increasing the cost-bound f rnax [26]. The memory requirements 

are proportional to the solution length due to the depth-first nature of the search. IDA* has proven 

to be successful on puzzle domains because of its speed, simplicity, and negligible memory require

ments.

After each iteration in which the goal is not found, the bound f max increases to the smallest 

/-value of the generated but not expanded states. By iteratively deepening the cost-bound in this 

way, IDA* and A* expand similar states.

However, each of these states may be expanded many more times than A* because of two rea

sons. First, multiple searches result from iteratively deepening the cost-bound. This is not of much 

concern for puzzle domains however. In puzzle domains, the number of states generated increases 

exponentially with the cost bound. Therefore, the computation done at lower-depth levels is dom

inated by the deeper searches. In addition, all edges (operations) are of unit cost. So every depth 

increment will be at least one, limiting the number of iterations to at most the solution length.

s s

Cycle Transposition

Figure 2.3: Example of a cycle and transposition in a search tree.

Second and more importantly, IDA* cannot detect duplicate states like A* and is therefore sus

ceptible to cycles and transpositions. A cycle is a sequence of operators that return to a previously 

seen state (Figure 2.3). A transposition is a state reached from different paths in the search tree 

(Figure 2.3).

An example of a cycle in an undirected graph is moving from state s to a successor s', then 

moving back to s. Cycles can be eliminated simply by comparing the current state against the

10
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states in the current path (stored on a stack); the memory and time complexity is proportional to the 

solution length. However, reducing transpositions in IDA* is more difficult than reducing cycles. A 

variety of approaches to this problem are discussed below.

2.3.4 Memory-Enhanced IDA*
Combining A* and IDA*

On one end of the spectrum, IDA* search uses very little memory but expands states multiple times 

because of transpositions. On the other end, with a consistent heuristic A* search expands states 

once, but uses a massive amount of memory. The following techniques combine the two approaches 

into a limited-memory algorithm.

Sen and Bagchi’s algorithm MREC uses iterative depth-first searches, like IDA*, but MREC 

builds the closed list until a memory limit has been reached [45]. The closed list is statically stored, 

no states are added or removed after it is built. On every search iteration, the closed list is used to 

make additional cutoffs.

MA* and SMA* use A* search until a memory limit is reached, keeping the closed and open 

lists in memory [3, 43]. After this phase, the search continues starting from the open list states. 

Memory is reallocated to the current search states by retracting the least promising open list states. 

Additionally, the /-values of states are propagated back through the search tree during the state- 

retraction step. These techniques efficiently use memory to reduce duplicate states while retaining 

some previously learned information.

Transposition Tables

As previously mentioned, one of the main difficulties with IDA* is transpositions. One fast and 

simple way to reduce transpositions is with a memory-based table [41]. Each entry in this hash table 

stores a state along with the cost bound to which that state has been searched. The data structures 

are simple, access-time is constant (and fast), and size can be arbitrary, making these approaches 

very desirable.

Transposition tables are one application of this approach. When a state is expanded during 

search, the transposition table records the state and the cost bound to which the state has been 

searched. When the search reaches this state again, the state can be pruned if the cost bound is 

less-than or equal-to the recorded cost bound. States are only added or updated in the transposition 

table, not over-written. Therefore any other states mapped to the same location by the hash function 

are ignored.

Finite State Machines

Another technique for reducing transpositions is by predetermining which operator sequences lead 

to cycles and transpositions. One simple example is eliminating the operator that leads to the parent

11
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state. For instance, in the if-pancake puzzle, applying operator x  twice in sequence leads back to 

the parent state.

Taylor and Korf use a finite state machine (FSM) to eliminate forbidden operators that lead to 

duplicate states [47]. However, not all operators are applicable to every state. For example, if the 

blank is in the top row of the fifteen-puzzle, it cannot move up. So an operator is pruned only if it 

matches specific preconditions.

To create the FSM, an initial breadth-first search generates all states in the search tree until a 

limit is reached. The aim is to acquire a single optimal sequence of operators to each reached state. 

Therefore, the duplicate states are identified along with their operator sequences. These operator 

sequences are added to a forbidden list along with their preconditions.

traditional bidirectional search. As such, perimeter search requires a predecessor function in addition 

to the successor function. Originally proposed by Dillenburg and Nelson, perimeter search performs 

two successive searches [9]. The first search proceeds in the backwards direction from the goal, 

forming a set of expanded, perimeter states P , which encompass the goal. A state s  is on the 

perimeter if s G P , inside the perimeter if it was expanded during perimeter creation, and outside 

the perimeter if it was not expanded. Every state in P  is also inside the perimeter. Any state outside 

the perimeter must pass through some state on the perimeter to reach the goal. Many techniques can 

be applied to generate the perimeter (see Figure 2.4): Breadth-first search creates a constant-depth 

perimeter [9, 35]; A* creates a constant-evaluation perimeter [9]; and expansion based on heuristic 

difference creates another kind of perimeter [24],

Constant-Depth Perimeter Constant-Evaluation Perimeter Heuristic-Difference Perimeter 

Figure 2.4: Different kinds of perimeters.

If the perimeter is generated for one problem instance, then the backward and forward searches 

are performed in series. The backward search forms a perimeter and, if the start state is not found,

2.4 Memory Used for a Heuristic

2.4.1 Perimeters

Perimeter search is a type of bidirectional search technique that avoids some of the problems of

12
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it is followed by the forward search. However, if the perimeter is constructed for use on multiple 

problem instances with the same goal, then the interior of the perimeter, set A , is stored. When the 

forward search begins, if the start is in set A , the actual cost to the goal is known so the heuristic is 

corrected to this value. Otherwise the start is outside the perimeter and the forward search begins.

The second, forward search progresses either from the start to the perimeter, called front-to-front 

evaluation, or from the start to the goal, called front-to-goal evaluation. Front-to-front evaluation cal

culates the heuristic value of a state based on the estimated cost through every state on the perimeter 

(Figure 2.5). Although larger perimeters provide better heuristic values, the heuristic takes increas

ingly longer to compute. Additionally, front-to-front evaluation requires for a heuristic estimate to 

exist between any one state to every state on the perimeter.

By contrast, search using front-to-goal evaluation requires only an existing heuristic to the goal 

(Figure 2.6). The heuristic values of states found to be inside the perimeter are corrected using 

the exact cost to the goal. The heuristic values of states outside the perimeter can sometimes be 

corrected; here are two different approaches using front-to-goal evaluation. Using a depth-limited 

perimeter where d is the cost-bound, d is a lower bound on the true cost to the goal for all states 

outside the perimeter [5,44]. Or given a consistent heuristic, a correction factor is equal to the lowest 

difference between the actual cost to the goal and the estimated heuristic cost to the goal [24]. The 

correction factor is now added to the original heuristic if outside the perimeter.

Any search technique will work for the forward search, but IDA* and similar low-memory 

search techniques are most commonly employed [9, 35, 24]. IDA* is also the search technique 

used throughout this thesis.

m in u .. m \  -I- n (m  nnn lW  —

s ta r t

Figure 2.5: Front-to-front heuristic.

h(n ,goa l) P

sta r t

Figure 2.6: Front-to-goal heuristic.
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2.4.2 Pattern Databases

Introduced by Culberson and Schaeffer, pattern databases require an abstraction mechanism to re

duce the state space [6]. The original space, S , consists of the set of states that can reach the goal 

through a series of operators. An abstract space is a set of abstract states, where every state in the 

original space maps to some corresponding state in the abstract space. The abstraction used in this 

thesis is domain abstraction [21]. The abstraction is created by renaming specific tiles to the same 

name, x. These re-named tiles are called don’t-care tiles while the other tiles are unique tiles. In the 

case of the fifteen-puzzle, the blank will always be a unique tile. Abstraction-N  refers to a specific 

abstraction with N  unique tiles (the actual tiles vary with the domain). Figure 2.7 shows one pos

sible abstraction-6 for the 8-pancake puzzle and fifteen-puzzle. A coarse-grained abstraction has 

fewer unique tiles (and hence has fewer abstract states) than a. fine-grained abstraction.

x  

x  

2 

3

_________4

5

6 

7

Figure 2.7: Abstraction-6 for 8-pancake puzzle and fifteen-puzzle.

The basic idea of pattern databases is the use of abstraction and retrograde (backwards) search 

to create a heuristic lookup table [6]. Retrograde search starts from the abstract goal. The search 

proceeds backwards applying all applicable reverse operators until the abstract space is entirely 

enumerated. The costs from the abstract goal in the abstract space are recorded in a table and used 

as a heuristic in the forward search. This produces an admissible and consistent heuristic.

Enhancements

Maxing is a general technique, initially presented by Culberson and Schaeffer, then further devel

oped by Holte et al. [6, 21]. Maxing uses the maximum heuristic value of a state over two separate 

heuristics. Any two admissible heuristics can be maxed into an admissible heuristic. Holte et al. 

have found that that maxing over two smaller pattern databases can yield better search performance 

than a single larger pattern database.

Domain-specific knowledge has subsequently been applied to take advantage of specific proper

ties. Some examples include symmetry [6], additivity [12], and duality [14, 50]. These techniques
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can dramatically improve performance by using multiple heuristic evaluations.

Holte et al. have investigated generating and caching parts of pattern databases during search 

in [20, 22]. Similarly, Zhou and Hansen have demonstrated a technique whereby provably unneces

sary parts o f the pattern database are not generated (given an initial consistent heuristic and upper 

bound on solution length) [52]. Felner and Adler further built upon on this procedure using instance 

dependent pattern databases [11]. This thesis approaches this problem from the opposite position; 

can part of a pattern databases and/or a perimeter be created and used over multiple problem in

stances with the same goal state? Holte et al. also consider this approach in [20].

Disk-Based Pattern Databases

In general, larger pattern databases yield better heuristics; this in turn reduces the number of states 

generated in solving a problem [27]. Unfortunately, the pattern database size is limited by the size of 

memory. Zhou and Hansen approach this problem by building pattern databases that are larger than 

memory, then loading in the relevant portions of the pattern database during search [53]. During the 

forward search, states on the open list are sorted. Then the required portions of the pattern database 

are loaded into memory in a predetermined order, minimizing the amount of I/O.

2.4.3 Perimeter and Pattern Database Comparison

Perimeters and pattern databases are similar in many respects. Both perimeters and pattern databases 

require a predecessor function. The predecessor function enables retrograde search from the goal. 

Both procedures can also be improved by using domain-specific properties: perimeters can use an 

existing heuristic function for front-to-front heuristic improvement; and pattern databases can use 

symmetry [6], additivity [30,12], and duality [14,50].

The two techniques also differ in critical ways. First, pattern databases require a state abstraction 

mechanism, which perimeters avoid. This allows perimeters to be applied to domains without any 

known abstraction. Also, pattern databases have a table entry for every abstract state (Figure 2.8(a)), 

while perimeters only have a table entry for part o f the state space (Figure 2.8(b)). As a result, each 

state in the perimeter must store a state identifier as well as the cost to the goal. In general, any partial 

set of the original or abstract space requires extra memory to store the state identifier information 

(Figure 2.9(b)). Perimeters fall into this category, as do instance-dependent pattern databases. On 

the other hand, because pattern databases cover the entire abstract space, heuristic values may be 

indexed by their s ta te lD  (the state need not be stored for each entry) (Figure 2.9(a)).

2.4.4 Combining Perimeters with Pattern Databases

Perimeter search works well for correcting pre-existing heuristics [9,35,24], while pattern databases 

work well in domains where no human-generated heuristic exists [6], In Chapter 3, a new, general 

method for combining these two techniques into a single lookup table is proposed and investigated.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



/  \  '

(a) Full PDBs. (b) Perimeters.

Figure 2.8: Coverage of original space by lookup tables.
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(a) Full PDBs. (b) Perimeters.

Figure 2.9: PDB storage strategies.
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Culberson and Schaeffer use a pattern database as a heuristic simultaneously with a perimeter 

(the perimeter was called an end-game database) [5]. Because the pattern database only provides 

a heuristic to the goal state, perimeter search must use a front-to-goal evaluation technique. If a 

state is in the perimeter, the actual cost to the goal is known and is used for the heuristic value. A 

perimeter with cost bound d has the following property: d is a lower bound on the cost to the goal 

o f states outside the perimeter. This means that for any state s not inside this perimeter, h{n) > d 

and will be corrected accordingly. In fact, as long as d is defined as above, this can be applied to any 

shaped perimeter.

Ariel Felner uses a perimeter to seed a pattern database [13]. The pattern database is built using 

the perimeter as the goal state. This represents an alternative procedure for combining the techniques 

of perimeter search with pattern databases, but differs significantly from the new approach presented 

in Chapter 3.

For every state on the perimeter, Kaindl and Kainz track the difference between the actual cost 

to the goal and the heuristic value [24]. The minimal difference value for all states on the perimeter 

will be called the heuristic correction factor. The perimeter is built by expanding the state with 

the smallest difference, to increase the heuristic correction factor. If the heuristic is consistent, they 

admissibly add the heuristic correction factor to every state outside the perimeter. A pattern database 

is a consistent heuristic, so this technique is applicable. However, Felner has shown the following 

is true for the fifteen-puzzle using our abstraction method: given an abstract state a with an abstract 

cost c to the abstract goal, there exists a state in the original space mapping to a with a cost c from 

the goal [13]. The same is true for the A'-pancake puzzle. Consider using a perimeter built by 

expanding states with the lowest heuristic value [24]. To obtain a correction factor equal to one, the 

perimeter must have at least as many entries as the pattern space. Because of the additional memory 

required by perimeters to store the s ta te lD  (see Figure 2.9(b)), this method is impractical for puzzle 

domains.

2.5 Conclusions

From the introduction of IDA* in 1985, to today (22 years), search efficiency on hard problems has 

improved by four orders of magnitude [12]. Most of this improvement has attributable to the efficient 

use of memory to improve the search heuristic(s). First, the use of perimeters with the Manhattan 

Distance heuristic gave improvements on the fifteen puzzle. Then, the invention of pattern databases 

has proven effective on many domains. Finally, domain-specific information has been incorporated 

to improve search efficiency of the fifteen-puzzle, the A'-pancake puzzle, and the Towers of Hanoi, 

allowing for solutions to harder and harder problems. Research presented in this thesis builds upon 

this continuing trend of improving memory-based heuristics.
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Chapter 3

New Lookup-Tables

3.1 Motivation

Recently, pattern database techniques have incorporated perimeter ideas to use finer-grained abstrac

tions rather than full pattern databases. Specifically, instance-specific pattern databases and hierar

chical search [52, 11, 20] store subsets of full pattern databases, allowing the use of finer-grained 

abstractions that could not otherwise fit in memory. Typically pattern databases are precomputed 

for a fixed goal. Thus the build time can be amortized over multiple search instances. However, 

instance-specific PDBs and hierarchical search recompute some parts of the pattern database for ev

ery search instance. The technique proposed in this thesis (partial pattern databases) is not instance- 

specific; it reuses the same database over multiple search instances with the same goal (like full 

pattern databases).

Based on Korf and Reid’s work, Holte et al. conjecture that increasing the low heuristic values 

that are seen during search has more of an impact than the consequential lowering of high heuristic 

values [31, 21]. Examine this conjecture further. Figure 3.1 shows how this approach can affect 

IDA* search. Assume the following: the start state is far away from the goal state, this is the last 

iteration of IDA* search, and all states in the last iteration are expanded (worst-case analysis). The 

states are grouped by g- value on the x-axis. The y-axis depicts the number of states on a logarithmic 

scale. The solution length for this instance is 12.

IDA* expands states in a depth-first manner, but this analysis groups states with the same g for 

analysis. The start state is the only state with g — 0. If all states with the same g- value are expanded, 

this is called the brute-force expansion phase. Brute-force expansion starts at g =  0 and continues 

until the lowest g- value encounters a cutoff. At this point the heuristic causes additional cutoffs at 

every higher p-value, reducing the effective branching factor. This is called the cutoff phase.

In Figure 3.1 the brute-force expansion phase occurs at states with small g values, following 

exactly the brute-force branching factor. The cutoff phase occurs in states with higher g values. On 

the last iteration, f max is equal to the cost from the start to the goal. The start state has g (sta rt)  =  0, 

and h(sta rt) < f max ■ Therefore, / (s ta rt) = g (s ta rt)  +  h(sta rt) < f max. Since a state s in the

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C/3
•a4>•daC3O,
X
W

<D■O
63
2;

le+14

le+12

le+10 -

le+08

i i i i i i i r
Brute-Force Search--------

Heuristic Search with Pattern Database

le+06

10000
Cutoff Phase

- Brute-Force 
_  Expansion 

Phase

Figure 3.1: Phases of search

search tree is cutoff iff / ( s )  >  fm ax, the start state is expanded; all its children are generated.

To cause a cutoff for low g-values, the heuristic must be high. In Figure 3.1, when g is 3, then 

h must be greater than 9 to cause a cutoff. However, in this example, the total number of states 

in the brute-force expansion phase is smaller than the number of states in the cutoff phase. Maxing 

improves the low heuristics, reducing the number of states expanded in the cutoff phase. This is done 

at the cost of lowering the high heuristic values, increasing the number o f states in the brute-force 

expansion phase. Think of this as extending the brute-force expansion phase. Because the brute- 

force expansion phase has few states, the extra state expansions are outweighed by the improved 

cutoff phase.

The approach proposed in Section 3.2 stores part of a fine-grained full pattern database (one that 

is larger than could normally be used), while all states not held inside the database get assigned some 

default heuristic value. Like maxing [21], this approach also increases low heuristic values while 

decreasing high heuristic values. This is accomplished with only one database, which means only 

one table lookup, as opposed to multiple lookups. This approach has the potential to speed up search 

because of the reduced time spent on heuristic evaluation and because improving the low heuristic 

values could cause enough cutoffs to reduce the number of states generated by IDA*.

3.2 Partial Pattern Databases

A partial pattern database (PPDB) consists of a set of abstract states A  and their cost to the abstract 

goal, where A  contains all states in S  with cost to the abstract goal less than d. d is a lower bound on 

the cost of any abstract states not contained in A. In essence, a partial pattern database is a perimeter
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in the abstract space (with the interior states stored). Any state n  in the original space has a heuristic 

estimate to the goal: if the abstraction of a state is in the partial PDB, return the recorded cost; 

otherwise, return d. This heuristic is both admissible and consistent.

Admissibility. A partial PDB consists of a subset of abstract states, A, from a full PDB of the same 

abstraction. All states in A  have a heuristic value less than or equal to d and the heuristic value in 

the full PDB is the same as in the partial PDB. All states outside A  have a heuristic value greater 

than or equal to d in the full PDB and equal to d in the partial PDB. Because the partial PDB always 

returns a value equal to or less than the full PDB and the full PDB is an admissible heuristic, the 

partial PDB is also admissible. □

Consistency. The full PDB is a consistent heuristic, therefore the states in A  are consistent between 

themselves. The states outside A  are consistent between themselves because every state has the same 

heuristic value (d). For every state in A  with a successor outside of A , named s and s ' respectively, 

the following condition holds: h fuupD B(s') > d > h(s). The following condition holds for the 

full PDB because it is a consistent heuristic: |h(s) — h (s ') | <  c (s ,s ') . For the partial PDB, the 

consistency property holds because h(s) > d: \h(s) — d\ < c(s, s '). All states outside A  with a 

successor inside A  follow similarly. □

Building a partial PDB is similar to building a perimeter, only in the abstract space. Retrograde 

search is performed from the abstract goal, recording heuristic values. When a memory limit is 

reached, the perimeter building stops and heuristic values are used for the forward search, d  is the 

minimum cost of all abstract states outside the perimeter. Note that all abstract states in A  with cost 

equal to d can be removed from the perimeter to save memory. This will not affect the heuristic.

Partial PDBs occupy the middle ground between perimeters and pattern databases. At one ex

treme, a partial PDB with no abstraction reverts to exactly a perimeter (with the interior states 

stored). At the other extreme, a partial PDB with a coarse-grained abstraction covers the entire ab

stract space and performs exactly like a full PDB. However, the main drawback to partial PDBs is 

that a partial PDB cannot store the data as efficiently as a full PDB.

3.2.1 Memory Requirements

A full PDB encompasses the entire abstract space (Figure 3.2(a)); every state visited during the 

forward search has a corresponding heuristic value in the lookup table. The PDB abstraction level 

is determined by the amount of available memory. Finer-grained abstraction levels are not possible 

because the memory requirements increase exponentially with finer abstractions.

Partial PDBs generally do not cover the entire abstract space (Figure 3.2(b)). During the forward 

search, if a state is not contained in the partial PDB lookup table, d is returned. Partial PDBs add 

flexibility over full PDBs by allowing the use of any abstraction level. However, there are drawbacks 

with respect to memory requirements.
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Figure 3.3: PDB storage strategies.

Because pattern databases cover the entire abstract space, the heuristic values in the lookup table 

are indexed by their unique state identifier, s ta te lD . Therefore, a table of the exact size of the 

abstract space can be used and there is no need to store the s ta te lD  (Figure 3.3(a)). Memory is 

only used to store the abstract cost to the goal. On the other hand, partial PDBs only cover part 

of the space. As a result, each state in the partial PDB must store the s ta te lD  in addition to the 

abstract cost to the goal (Figure 3.3(b)). This requires extra memory for every table entry.

In the studied domains, the fifteen-puzzle and the if-pancake puzzle, partial pattern database 

entries require nine times more memory than full pattern database entries due to the cost o f storing 

the s ta te lD .  This is a severe limitation on the effective use of partial pattern databases.

3.3 Compressed Partial PDBs

For perimeters and partial pattern databases, the added cost of storing a state’s identification in

formation is an expensive use of memory. Also, if a hash table is used, it should have a reason

able fill-factor to maintain efficiency; but space is inevitably wasted space on empty table positions. 

Therefore, this thesis presents a compressed version of a partial PDB that does not store the s ta te lD
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and can be filled to any convenient fill-factor. This is called a compressed partial pattern database 

(CPDB).

Given an abstraction granularity, the hash function maps each abstract state to a location. For 

all abstract states mapped to the same location, the minimum heuristic value is stored (to preserve 

admissibility) (Figure 3.3(c)). The heuristic value returned for all states hashed to this location is 

this stored minimum. This heuristic value is guaranteed to be admissible, but it may be inconsistent.

Admissibility. Every entry in a full PDB, P D B ,  maps to some entry in a compressed partial PDB, 

C P D B ,  o f the same abstraction. For every heuristic lookup from C P D B ,  the returned value is 

either the same as the P D B  lookup, less than P D B  because some other abstract state with a smaller 

heuristic mapped to the same location, or d  (which is less than the P D B  lookup). Therefore, the 

C P D B  heuristic is admissible. □

Possible Inconsistency. Suppose a state s has a state s ' as a successor where c(s, s') =  1, P D B  is a 

full PDB, and C P D B  is a compressed partial PDB with the same abstraction as P D B . h p D s{s ) =  

hcPD B(s) =  5. If s' has the same hash value as the goal state then I i c p d b ( s ' )  =  0 because s' 

and the goal collide in the hash table. If C P D B  were consistent, then 4 <  I i c p d b ( s ' )  <  6. This 

condition does not hold; therefore, this example C P D B  is not consistent. □

The creation of compressed partial PDBs occurs as a preprocessing step. Therefore, this step 

can use extensive computing resources, for example using machines with more memory or using 

disk-based algorithms. One technique is to build a full PDB at a fine-grained level using a machine 

with a large amount of memory. Full pattern databases can be computed very efficiently in terms of 

memory and time by using iterative-deepening depth-first search. On every iteration, once a state 

gets expanded, a visited flag is set and the state is only expanded again if the distance to the goal 

is less than the current value. On the next iteration all flags are reset. Search is stopped when an 

iteration makes no new changes to the pattern database. Every heuristic value in the database is then 

hashed to the compressed partial PDB, where each entry is the minimum heuristic value. This is 

the approach used in Chapter 5. The main drawback to this approach is that it does not scale well 

to very fine-grained abstractions. However, the results in Chapter 4 indicate that very fine-grained 

abstractions are not necessary.

A second technique is to use iterative-deepening depth-first search from the abstract goal, filling 

the partial PDB directly. A table entry is updated if it is lower than the existing entry. However, 

unlike with normal PDBs, if a state’s heuristic value is larger than the entry in the table, it cannot be 

cut-off without breaking admissibility. Search can be stopped when an iteration does not improve 

an entry in the table or when filled past a predetermined threshold. Therefore, this depth-first con

struction method must use a complementary technique to remove transpositions; this thesis uses a 

transposition table [41]. This is the technique used in Chapter 4.
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A third technique is to use breadth-first search. This removes transpositions, but uses a large 

amount of memory for construction. However, delayed duplicate-detection is an efficient disk-based 

algorithm that can be used to do this [29]. In the interest of simplicity, this thesis does not attempt 

this technique.

One item worth consideration is the hashing function. As the author has found out, a simple 

modular hashing scheme can introduce regularity in the table. In the worst case, a fine-grained 

compressed partial PDB can revert to exactly the coarser-grained version. Also, depending on the 

hash function, the table may not fill to 100%. Therefore, when building the compressed PDB, the 

stopping condition should not be based solely on the fill-factor.

3.4 Conclusions

Partial PDBs and compressed partial PDBs separate the abstraction granularity from the memory 

limit. The hope is that varying the abstraction granularity will lead to better search performance, as 

maxing does [21]. Compressed partial PDBs are much more memory-efficient than partial PDBs, 

but are more difficult to build. Both techniques are admissible, but only partial PDBs are guaranteed 

to be consistent.
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Chapter 4

Experiments on the K -Pancake 
Puzzle

The abstractions used for the A-pancake puzzle have don’t-care tiles as the low indexed tiles. For 

example, abstraction-7 for the 12-pancake puzzle refers to the abstraction tx x x x x 5 6 1 % 9 \ 0  

11,’ with a; as a don’t-care. Note that abstraction-11 is the finest-grained abstraction and is the same 

as the original space because there are 12 distinct tiles.

All tests are run using IDA*. The two move cycle (returning to the parent state) is eliminated by 

disallowing the reverse operator. BPMX is implemented when explicitly stated, but will only have 

an effect when using inconsistent heuristics. In our studies, the compressed partial pattern database 

is the only inconsistent heuristic.

4.1 Performance with a Constant Number of Entries

This section reports the average number of states generated during the forward search as our metric. 

Each data point is an average of 100 random starting states. Partial pattern databases of various 

abstractions are used for the heuristic. The number of entries in the partial PDB remains constant 

(specified in the results tables), while the level of abstraction varies. Note that this is only a com

parison between heuristic lookup-tables with the same number of entries; normal and compressed 

pattern databases make much more efficient use of memory than partial pattern databases. Section

4.2 cross-compares these techniques when memory is fixed.

4.1.1 Partial PDBs

Table 4.1 shows the average number of states generated on the 8, 10, 12, and 13-pancake puzzles 

using partial PDBs. The 14-pancake puzzle is not reported due to the excessive time required to 

build the compressed PDBs. The partial PDB is built to a cost bound d, shown in parentheses. 

Each puzzle fixes the number of entries in the partial PDB to exactly the number of entries of a full 

PDB with \K /2 \  unique tiles. For instance, the 12-pancake puzzle partial PDBs each have 665,280
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entries (six unique tiles). The top data point of each column generates the same number of states as a 

full pattern database, while the bottom data point generates the same number of states as a perimeter. 

The purpose of this experiment is to determine if changing the granularity of a PDB can improve 

performance (while keeping the number of entries constant).

With the same number of entries, but using a finer-grained partial PDB, the average number of 

states generated reduces for the 8,10, and 12-pancake puzzles. Note however, that in the 12-pancake 

puzzle, abstraction-7 produced fewer states than abstraction-8. Search performance is very sensitive 

to the cost-bound of the partial pattern database. The increase in states generated from abstraction-7 

to abstraction-8 is because abstraction-7 has a larger cost-bound d than abstraction-8.

Consider two partial pattern databases with the same cost-bound d, but one being based on a 

coarser granularity than the other. The finer-grained database will dominate the coarser-grained one

i.e. for every state n  in the space, h fine(n) > h coarse(n ) . Abstraction-8, 9, 10, and 11 on the 

12-pancake puzzle demonstrate this principle.

This trade-off between abstraction granularity and database cost-bound will be seen throughout 

the results. Think of this intuitively as follows: making a partial PDB finer-grained improves the 

heuristic value of states inside the database at the cost of states outside the database if d gets smaller. 

At some point the heuristic outside the partial PDB becomes so inaccurate that the performance suf

fers. Refining the abstraction further from this point generally produces worse performance. Analo

gous results are documented in [21], where increasing small heuristic values improves performance, 

but only up to a point.

4.1.2 Compressed Partial PDBs

Tables 4.2 and 4.3 show the average number of states generated over 100 search instances using 

compressed partial PDBs. The compressed database is filled to 70% full, after which the current 

iteration is finished and the remaining untouched entries are filled in. The 8 ,1 0 ,1 2 , and 13-pancake 

puzzles are examined. Table 4.2 uses IDA* without BPMX and Table 4.3 uses IDA* with BPMX. 

The purpose of these tables is to analyze performance compared to partial PDBs of the same ab

straction and number of entries, and to determine the effect of BPMX on search efficiency.

The top entry of each column of Tables 4.2 and 4.3 match closely with the performance of a full 

pattern database (shown at the top of the corresponding columns in Table 4.1). At this abstraction 

level, each entry corresponds to one abstract state; if the compressed partial PDB were filled to 100% 

and had no hash collisions, then it would be identical to a normal PDB. However, these conditions 

do not hold in general, so the top entries in each table do not match exactly.

Examine two corresponding entries in Tables 4.1 and 4.2, the entry for 12-pancake at abstraction- 

7. For the partial pattern database (Table 4.1), there is an average of 178,464 states generated. For the 

compressed partial PDB without BPMX (Table 4.2), there are 635,649 generated states on average. 

Keep in mind that both databases have the same number of entries, but the entries themselves are
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Number of 
Unique Tiles

8-Pancake 
1,680 entries 

(cost-bound d)

10-Pancake 
30,240 entries 
(cost-bound d)

12-Pancake 
665,280 entries 
(cost-bound d)

13-Pancake 
1,235,520 entries 
(cost-bound d)

4 2,065 (7)
5 682 (5) 48,408 (9)
6 403 (5) 14,268 (6) 1,316,273(11) 25,833,998(12)
7 335 (5) 8,251 (6) 178,464 (8) 3,106,345 (8)
8 7,370 (6) 183,172 (7) 4,097,683 (7)
9 7,242 (6) 167,584 (7) 3,851,260 (7)
10 165,390 (7) 3,820,667 (7)
11 164,951 (7) 3,816,931 (7)
12 3,816,546 (7)

Table 4.1: Average number of states generated using a single partial PDB on if-pancake puzzle.

Number of 
Unique Tiles

8-Pancake 
1,680 entries 

(cost-bound d)

10-Pancake 
30,240 entries 
(cost-bound d)

12-Pancake 
665,280 entries 
(cost-bound d)

13-Pancake 
1,235,520 entries 
(cost-bound d)

4 2,065 (7)
5 1,399 (6) 48,414 (8)
6 1,891 (6) 28,839 (8) 1,316,284(10) 25,834,132(10)
7 2,366 (6) 40,558 (7) 635,649 (9) 12,021,692 (9)
8 54,026(7) 861,365(9) 16,216,581 (9)
9 68,488 (7) 1,096,865 (8) 23,152,643 (9)
10 1,381,920(8) 32,159,310(8)
11 1,708,840(8) 44,332,028 (8)
12 51,689,205(8)

Table 4.2: Average number of states generated using a single compressed partial PDB filled to 70% 
on the IT-pancake puzzle.

Number of 
Unique Tiles

8-Pancake 
1,680 entries 

(cost-bound d)

10-Pancake 
30,240 entries 
(cost-bound d)

12-Pancake 
665,280 entries 
(cost-bound d)

13-Pancake 
1,235,520 entries 

(cost-bound d)
4 2,065 (7)
5 1,024(6) 48,414(8)
6 1,227 (6) 18,026(8) 1,316,284(10) 25,834,132(10)
7 1,564(6) 22,117(7) 358,585 (9) 6,481,829 (9)
8 29,867 (7) 379,655 (9) 6,599,913(9)
9 39,080 (7) 520,648 (8) 10,142,002(9)
10 677,805 (8) 15,214,336(8)
11 841,576 (8) 22,068,332 (8)
12 27,498,382 (8)

Table 4.3: Average number of states generated using a single compressed partial PDB filled to 70% 
on If-pancake puzzle. Using BPMX.
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different.

The compressed partial PDB generates more states than the normal partial PDB for three reasons. 

First, the table is only filled to 70% full, but this has a small effect because the unreached entries are 

filled with d, limiting the heuristic error. Second, the heuristic values in the perimeter are degraded 

by taking the minimal value of all states hashed to the same location. Third and most importantly, 

the heuristic correction of d  is not applied to all states outside the perimeter. Because of collisions 

in the heuristic table, states outside the perimeter overlap with states inside the perimeter. Thus, the 

heuristic correction factor, d, is not applied to any states outside the perimeter that collide with a 

state inside the perimeter.

However, because of the construction method, the partial pattern PDB does not necessarily dom

inate the compressed partial PDB. Overlapping states cause the table to fill more slowly than the 

partial PDB. Thus the final cost-bound d  may be greater in the compressed partial PDB than the 

partial PDB. This is seen in our example with the 12-pancake puzzle at abstraction-7: the partial 

PDB is built to d — 8 while the compressed partial PDB is built to d =  9.

In Table 4.2, as the granularity becomes finer, the point of diminishing returns is reached. In all 

examples, this occurs after adding one more unique tile to the original PDB abstraction. For the 8, 

10, 12, and 13-pancakes, the optimal granularity is 5, 6, 7, and 7 unique tiles respectively. Further 

refining of the abstraction only causes the number o f generated states to increase. This is due to the 

poor high-valued heuristics.

BPMX is an important improvement when using the inconsistent compressed partial PDBs. On 

the 12-pancake puzzle, with abstraction-7, using BPMX (Table 4.3), there are 358,585 generated 

states on average. This is an 44% improvement over not using BPMX (635,649 states generated).

The improvement factor is the improvement over the original abstraction (top entry in Table 4.1). 

This factor increases with puzzle size. Without BPMX, the 8 ,10, 12, and 13-pancake puzzles’ best 

improvement factors are 32%, 40%, 52%, and 53%; indicating that savings may scale favorably to 

larger problems. With BPMX, the best improvement factors are 50%, 63%, 73%, and 75%. This 

re-enforces the usefulness of incorporating BPMX into the search algorithm.

4.2 Performance with Constant Memory

As stated, partial pattern databases need extra memory to store the s ta te lD .  In the case of the 

10-pancake puzzle, the amount of memory used to store the s ta te lD  is about nine times larger than 

the heuristic value that is stored. To directly compare partial PDBs with full PDBs and compressed 

partial PDBs, the memory must be kept constant. So the number of entries in the partial PDB is 

limited appropriately.

The implementation of partial pattern databases uses the C++ standard template library, and 

as such gives little control over memory allocation. Therefore, the following formula is used to 

calculate the approximate number of entries that can fit into the memory limit if implemented as a
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hash table. Each full PDB entry consists of one byte, as does each compressed partial PDB entry. 

Each partial PDB entry consists of nine bytes (one for the heuristic value and eight for the s ta te lD ). 

Additionally, extra room is required to keep the hash table operating efficiently; we allow a 70% fill 

factor. Therefore, the approximate number of entries for the partial PDB that fits into the designated 

number of bytes is calculated using the formula: e n tr ie spartiaiPDB =  (b y te s /9 ) * 0.7.

10-Pancake Puzzle
Memory Limit Normal PDB Best Partial PDB Best Compressed Partial PDB

(bytes) (unique tiles) (unique tiles) (unique tiles)
3,628,800 40 (9) 2,003 (7) 40 (9)
1,814,400 200 (8) 4,628 (7) 70 (9)

604,800 1,216(7) 16,147 (6) 417 (8)
151,200 7,756 (6) 78,073 (5) 2,695 (7)
30,240 48,408 (5) 511,794 (5) 18,026 (6)

5,040 337,021 (4) 3,299,716(4) 135,352 (5)

Table 4.4: Average number of states generated using a single PDB of the best abstraction granularity. 
The tests are performed on the 10-pancake puzzle while keeping memory constant.

Table 4.4 directly compares the performance of the three heuristic techniques (full PDBs, partial 

PDBs, and compressed partial PDBs) on the 10-pancake puzzle while keeping memory constant. 

The purpose of this experiment is to determine which technique makes the best use of available 

memory. The partial pattern databases have the number of entries calculated to fit into an efficient 

hash table of the allocated memory. The compressed partial pattern databases are filled to 70%. 

Each data entry is the average number of generated states over 100 random instances. For the partial 

PDB and compressed partial PDB, all different number of unique tiles are tested; this table shows 

only the best result. The associated number in parentheses depicts the number of unique tiles used 

to generate the data point. For each memory limit, the best-performing database is shown in bold. 

BPMX is used in combination with the compressed partial PDB.

Partial PDBs by themselves are not an efficient use of memory and as a result, performance 

suffers. In all tested cases, partial PDBs generate at least an order of magnitude more states than 

normal PDBs. However, the compressed partial PDBs are an efficient use of memory. The top row 

covers the entire space at the finest granularity; this is a perfect heuristic. In this case the normal PDB 

has slightly better performance because the compressed partial PDB is only filled to 70% (this is not 

apparent in the table because of averaging). For every row except the first, the improvement factor is 

between 60% and 65%, indicating similar performance gains when using finer-grained abstractions.

4.3 Analysis of the 12-Pancake Puzzle

This section analyzes the performance of partial pattern databases on the 12-pancake puzzle. Sec

tion 4.3.1 examines the distribution of heuristic values in the pattern database and during runtime.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A single search instance is examined in Section 4.3.2 and Korf and Reid’s estimates on worst-case 

performance are shown to hold in Section 4.3.3.

4.3.1 Static and Runtime Heuristic Distribution

Holte et aids analysis in [21] explains that improved lower valued heuristics can improve search 

performance. To show this, they examine static and runtime heuristic distributions. This section 

examines similar results to verify this claim.

Table 4.5 shows the distribution of entries in partial PDBs for the 12-pancake puzzle. Each 

column represents a partial PDB and each data point shows the number of entries in the partial PDB 

with the specified heuristic value (left column). Each partial PDB has no more than 665,280 entries. 

A partial PDB can have fewer entries than the limit because all entries with a heuristic value of d 

can be removed without affecting the heuristic. The purpose of this table is to show the heuristic 

distribution of entries contained in the PPDB and to differentiate between the distribution of heuristic 

values over the entire state space (Table 4.6).

Every abstraction has only one entry with a heuristic value of zero. This corresponds to the 

abstract goal state. The partial PDB is filled until it reaches 655,280 entries. The coarser-grained 

abstractions fill more slowly, while the finer-grained abstractions fill more quickly. After the memory 

limit has been reached, all entries with a value of d are removed to save memory.

h
11

b
10

lumber of 1 
9

Jnique Tile 
8

s
7 6

0 1 1 1 1 1 1
1 11 10 9 8 7 6
2 110 100 90 80 70 60
3 1,099 989 863 727 587 449
4 9,883 8,553 7,038 5,488 4,023 2,733
5 77,937 65,245 50,690 36,421 23,885 13,917
6 533,397 426,630 307,149 197,996 111,831 52,898
7 - - - - 391,115 137,041
8 - - - - - 216,065
9 - - - - - 173,590
10 - - - - - 62,359
11 - - - - - 6,161

d = 7 7 7 7 8 12
sum = 622,438 501,528 365,840 240,721 531,519 665,280

Table 4.5: Heuristic distribution of entries in each PPDB on the 12-pancake puzzle with 665,280 
entries (or less).

Table 4.6 shows the distribution of heuristic values over the entire state space for a PPDB of 

665,280 entries. This is not the number of entries; this is the total number of states in the entire state 

space that have a specific h value. Notice that as the abstraction level becomes more fine, fewer
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states in the state space are contained in the PPDB. More states are missed, causing more states to 

have the heuristic value o f d. For example, in abstraction-11, 99.9% of the states have a heuristic 

value of d, while abstraction-6 has 0% of the states having a heuristic value of d.

Coarser abstraction levels, on the other hand, allow for higher heuristic values because of deeper 

backwards search. In abstraction-6, d = 12, but in abstraction-11, d =  7. Coarser abstraction 

groups some states with smaller heuristic values together. The backwards search quickly covers 

lower-valued states, but retains memory for larger heuristic values. Correspondingly, this increases 

the average heuristic value.

h
11 10

Number of 1 
9

Jnique Tiles 
8 7 6

h
0 1 2 6 24 120 720
1 11 20 54 192 840 4,320
2 110 200 540 1,920 8,400 43,200
3 1,099 1,978 5,178 17,448 70,440 323,280
4 9,883 17,106 42,228 131,712 482,760 1,967,760
5 77,937 130,490 304,140 874,104 2,866,200 10,020,240
6 533,397 853,260 1,842,894 4,751,904 13,419,720 38,086,560
7 478,379,162 477,998,544 476,806,560 473,224,296 46,933,800 98,669,520
8 0 0 0 0 415,219,320 155,566,800
9 0 0 0 0 0 124,984,800
10 0 0 0 0 0 44,898,480
11 0 0 0 0 0 4,435,920

d = 7 7 7 7 8 11
davg — 7.00 7.00 6.99 6.99 7.82 8.03
su m  — 479,001,600 479,001,600 479,001,600 479,001,600 479,001,600 479,001,600

Table 4.6: Static heuristic distribution over entire state space for PDB with various abstraction levels 
on 12-pancake puzzle.

Table 4.7 shows the heuristic values of the states generated during search (runtime). As noted 

in [21], the distribution of runtime heuristic values for abstraction-6, which is equivalent to the full 

PDB, is more heavily influenced by low values. The high heuristic values cause cutoffs early in 

the search tree, when the //-values are still small, and do not get visited often. The low heuristic 

values cause later cutoffs and get visited much more often. This is why the average heuristic value 

at runtime is so small.

For finer abstractions, this distribution is much different; most heuristic values are clustered 

around d. For the low g valued states, there are fewer cutoffs and all heuristic values are d. When 

the cutoffs start occurring (at high g values), the heuristic is more accurate, and fewer states are 

generated with small heuristic values (search phases are further explained in Section 4.3.2). The 

combination of these two effects makes the average heuristic value (avg h val) large for finer ab

stractions and small for coarse abstractions.
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h
! 1 10

dumber of 
9

Unique Til 
8

ss
7 6

h
0 1 9 152 1,617 16,835 245,663
1 1 40 468 3,440 25,486 272,765
2 6 45 503 3,890 31,448 359,354
3 6 46 512 3,961 30,914 326,102
4 6 46 507 3,766 27,616 271,302
5 5 44 473 3,349 22,933 196,050
6 6 43 422 2,744 16,752 119,149
7 309,335 309,356 309,541 310,478 10,348 54,030
8 0 0 0 0 33,290 17,393
9 0 0 0 0 0 2,878
10 0 0 0 0 0 206
11 0 0 0 0 0 3

d = 7 7 7 7 8 11
avg h val = 7.00 7.00 6.96 6.74 3.92 2.84

sum 309,367 309,629 312,577 333,247 215,622 1,864,895

Table 4.7: Runtime heuristic distribution of generated states for PDB with various abstraction levels 
on 12-pancake puzzle.

Note that the average heuristic value across the state space is largest for the coarse-grained 

abstraction-6 (Table 4.6). The increased d in abstraction-6 pulls up the average heuristic, while 

abstraction-11 is dominated by its lower d. This is interesting, as the best-performing PPDB is of 

abstraction-7, which has neither the lowest or highest average heuristic values. During runtime, the 

opposite happens; abstraction-6 has the lowest average heuristic and the fine-grained abstractions 

have the highest average heuristic (Table 4.7). In abstraction-6, most generated states have low 

/i-values, while in the finer-grained abstractions, most generated states have h = d. Once again, 

abstraction-7 has a heuristic value in between the extremes. This indicates that for partial pattern 

databases, the average heuristic value (both static and runtime) is not a good indicator of search 

performance.

4.3.2 Examination of a Single Instance of Search

This section examines the states expanded on a single iteration of IDA* in-depth for abstraction-6, 

7, and 8. The domain used is the 12-pancake puzzle. The purpose of this analysis is to quantify what 

is happening during search. The solution length for this problem is 12 and only the last iteration 

(fm ax  =  12) is examined. This iteration is fully expanded (worst-case analysis). In-depth tables are 

located in Appendix B (Tables B.1-B.6). Figure 4.1 summarizes the results of these tables.

The PPDB for abstraction-6 produces the exact same heuristic values as a PDB of the same 

abstraction level; this is why the PPDB and PDB searches match identically (Figure 4.1). The initial 

heuristic estimate is 9. Cutoffs start occurring fairly quickly at a g equals 3, previous to which the
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search is following brute-force search. The brute-force branching factor on the 12-pancake puzzle 

is 11 for the first iteration, and 10 for all others.

Abstraction-7 starts with an initial estimate of 8. The heuristic values tend to stay mostly around 

8, until cutoffs start to occur at g =  5. Note that because cutoffs occurred at states with larger g- 

values, more states were generated with smaller ^-values. However, after the first round of cutoffs, 

the number of states drops dramatically. This is because the heuristic value of 8 (where much of 

the heuristic distribution is located) now causes cutoffs. At high g-values, the search tree follows 

precisely the same as a search with the full PDB search.

Abstraction-8 takes this to a further extreme. Because the majority of heuristic values equal 7, 

the brute-force section of search extends a full ply further. However, because the heuristics contained 

in the PPDB are more accurate, the number of states drops Significantly.

le + 14  , 1 1 : 1 ,----------------
Brute-Force Search --------- -

le+12 -  Full PDB and PPDB, Abstraction-6,665280 Entries — i—  _
M PPDB, AbstractiOn-7,665280 Entries -
B " Full PDB, Abstraction-7,3991680 Entries
55 le+10 -  PPDB, Abstraction-8,665280 Entjk
•a |_ Full PDB, Abstraction-8,19958400JE : s o

o le+0803
Cl
Xr_n

le+06o .

&
■§ i oooo’
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100

1
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9

Figure 4.1: Comparison of PDBs vs. PPDBS. Number of expanded states at each depth g for a 
single search instance and single iteration (f max =  12) run to completion.

Phases

Compare a PDB and PPDB, where the unique tiles of the PDB are a subset of the unique tiles of 

the PPDB. An example is a full PDB using abstraction-6 and a PPDB using abstraction-7. State 

expansion can be thought of in three phases:

1. Brute-force expansion for full PDB and partial PDB,

2. Cutoffs for full PDB, brute-force expansion for partial PDB, and

3. Cutoffs for full PDB and partial PDB. The finer-grained abstraction partial PDB will have 

more cutoffs.

32

i i i : i r
Brute-Force Search 

Full PDB and PPDB, Abstraction-6,665280 Entries 
PPDB, AbstractiOn-7,665280 Entries 

Full PDB, Abstraction-7,3991680 Entries 
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In the first phase, all possible states are expanded because an h value that results in a cutoff has 

not yet been found. The branching factor is equal to brute-force search. This phase ends when the 

full PDB returns a heuristic sufficiently large enough to cause a cutoff.

The second phase happens when the full PDB causes cutoffs, but the PPDB is still expanding 

according to the brute-force tree. This happens because the PPDB may only be able to store a subset 

of the heuristic values in the full PDB. The values stored are the low ones, which cause cutoffs later 

in search.

The third phase starts when heuristic values in the PPDB start causing cutoffs. For PPDBs, since 

the majority of heuristic values equals d, a large decrease in states occurs when g + d > f  max ■ For 

abstraction-6, this occurs when g =  3; for abstraction-7, when g =  4; and for abstraction-8, when 

g — 5. During this last phase, state expansion using the PPDB once again exactly follows the state 

expansion using the full PDB of the same abstraction.

Brute-Force 

Expansion Phase
Cutoff Phase

Abstraction-6
[0,2]

he = he

[3,12]

he — he

[0,4] [5,12]
Abstraction-7

/17 =  he h i  <  he h*r ^  he

[0,5] [6,12]
Abstraction-8 <©II00 h8 < he h8 >  he

9 0 3 6 9 12

Figure 4.2: Phases of search for abstraction-6,7, and 8.

This is empirically shown in Figure 4.1 which plots the brute-force search, search using PPDBs, 

and search using the corresponding full PDBs with the same abstraction levels. Each search with a 

PPDB expands states following the brute-force expansion curve exactly. After cutoffs start occur

ring, the curve drops to follow the full PDB curve with the same abstraction level.

Figure 4.2 illustrates where each phase occurs. The partial PDBs correspond to the three partial 

PDBs from Figure 4.1. Each partial PDB is compared to a full PDB of abstraction-6. The first line 

is the partial PDB at abstraction-6. This database has exactly the same entries as the full PDB at 

abstraction-6 and therefore, the same brute-force and cutoff phases. In the second line, abstraction-7 

is compared to abstraction-6. The beginning of the brute-force search phase, from g equals 0 to
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2, abstraction-7 expands the same states as the abstraction-6. However, abstraction-7’s brute-force 

phases lasts longer, and has inferior heuristic values during the second phase (from g equals 3 to 4). 

The last phase, from g equals 5 to 12, abstraction-7’s heuristic values are better than abstraction-6’s 

heuristic values.

A similar trend is seen for abstraction-8 in the third line. The brute-force expansion phase lasts 

longer, when 3 >  g > 5, abstraction-8 has inferior heuristic values than abstraction-6. But the 

cutoff phase has better heuristic values. As the abstractions get more fine-grained, the low ^-values 

are sacrificed for the higher g- values.

4.3.3 Korf and Reid Estimates

This section examines Korf and Reid’s formula for predicting the worst-case number of state ex

pansions on a single iteration of IDA* [31]. This number of states expanded E  is approximated

by
f m  a x  + i

E (N , fm a x ,  P) = W m a x - 9  +  1)
9 = 1

where N g is the number of states expanded in brute-force search, f rnax is the cost bound, g is the 

cost so far, and P{x)  is the fraction of total states in the search space whose heuristic is less than or 

equal to x . Because the /f-pancake puzzle is so regular, N g can be estimated without defining the 

equilibrium fractions used in [31]. The 12-pancake puzzle has a branching factor of 11 for the first 

move, and 10 for every following move because the reverse operator is eliminated. Thus

N  =  (  119 i
9 \  11 *  10s - 1 i f g  >  1

P(x )  is approximated using the static distribution of heuristic values over the state space to estimate 

P  (calculated from Table 4.6).

Table 4.8 through Table 4.10 compare the predicted number of expanded states with the actual 

number of expanded states. This is for a single iteration of IDA* where f max =  12, run until the 

level is complete. Two tests are run. The first test pays no attention to a start state’s actual solution 

length (so lL eng th  >  0); the second test only examines the start states which have a solution length 

greater than or equal to 12. The results are averaged over 1000 unique starting states when the 

solution lengths when ignoring the solution length. Of the 1000 starting states, there are 269 with a 

solution length greater-than or equal-to 12. The results for the last column are averaged over these 

269 starting states. The number of entries in each PPDB is held constant at 665,280. The purpose 

of this table is to determine whether the worst-case approximation formula accurately predicts the 

actual performance.

When the solution lengths are ignored (so lL eng th  > 0), the Korf and Reid formula predicts the 

actual number of states extremely closely for all partial pattern database abstractions. Recall that 

abstraction-6 performs the same as a full pattern database. This is because the branching factor is
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9 Brute-Force estimated actual
(so lL eng th  >  0)

actual
(so lL eng th  >  12)

0 1 1 1 1
1 11 11 11 11
2 110 109 110 110
3 1,100 987 986 849
4 11,000 6,997 7,042 4,762
5 1.1 * 105 34,244 34,582 17,355
6 1.1* 10B 115,847 117,010 43,838
7 1.1 * 107 283,829 286,457 83,452
8 1.1 * 108 537,202 540,852 128,716
9 1.1 * 109 853,175 859,024 174,848
10 1.1 * 101U 1,107,804 1,116,678 202,741
11 1.1 * 1011 1,157,407 1,165,713 205,248
12 1.1 * 1012 1,653,439 1,663,942 269,667

total: 1 ,222* 109 5,751,052 5,792,408 1,131,600

Table 4.8: Estimated worst-case state expansion compared to the actual worst-case state expansion 
when f max =  12 for abstraction-6 on the 12-pancake puzzle.

known exactly and the many heuristics with value d, allow for a large, predictable reduction in states 

when g +  h > f max. This result is unrealistic, though, because 80% of the solution lengths are less 

than 12, so we are counting extra states that are not normally expanded.

When we examine only states with solutions greater than or equal to 12, the approximation is 

very inaccurate. In the case of abstraction-7, the estimated total number of expanded states over

estimates by a factor of eight. The brute-force phase of the search is estimated accurately, but the 

cutoff phase (in bold) grossly overestimates the number of states. In abstraction-6,7, and 8, the Korf 

and Reid formula overestimates the number of expanded states with g =  12 by a factor of 5, 8, and 

16 respectively. Holte has previously observed this prediction inaccuracy when start state’s solution 

lengths are taken into account [18].

This error in the approximation is caused by limiting the analysis to starting states with solutions 

greater than or equal to the depth examined. This is reasonable to do because IDA* does not continue 

to a deeper depth if the solution is found. What happens in the search instances where the solution 

length is less than 12 is that the goal is found through many paths, but the states around the goal 

continue to be expanded repeatedly. Because of transpositions, these states can be expanded an 

impressive number of times before being cutoff. This increases the number of states expanded with 

large g-values.

4.4 Conclusions

On the 76-pancake puzzle, partial pattern databases are not an efficient use of memory. This is 

because they store the s ta te lD .  Compressed partial PDBs are an efficient use of memory and
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9 Brute-Force estimated actual
(so lL eng th  > 0)

actual
(so lL ength  > 12)

0 1 1 1 1
1 11 11 11 11
2 110 110 110 110
3 1,100 1,100 1,100 1,100
4 11,000 11,000 11,000 11,000
5 1.1 * 105 14,647 14,467 4,346
6 1.1 * 10e 38,692 38,005 8,231
7 1.1 * 107 78,740 76,842 12,837
8 1.1 * 10b 129,189 125,174 17,270
9 1.1 * 109 183,256 176,675 21,139
10 1.1 * 101U 214,947 206,327 22,865
11 1.1 * 1011 220,459 211,080 22,958
12 1.1 * 1012 275,573 262,691 27,064

total: 1 ,222*  109 1,167,724 1,123,484 148,932

Table 4.9: Estimated worst-case state expansion compared to the actual worst-case state expansion 
when fmax =  12 for abstraction-7 on the 12-pancake puzzle.

search performance can be further improved by using BPMX to exploit their inconsistency. The 

best abstraction level for compressed partial PDBs is slightly more fine-grained that the full PDB.

Careful analysis of single search instances shows that by sacrificing high-valued heuristics for 

improved low-valued heuristics, search performance can be improved. Korf and Reid’s formula can 

be used to predict the worst-case performance of partial pattern databases on the 12-pancake puzzle. 

However, if solution lengths are taken into account, the prediction can be significantly inaccurate.
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9 Brute-Force estimated actual
(so lL eng th  >  0)

actual
(so lL eng th  >  12)

0 1 1 1 1
1 11 11 11 11
2 110 110 110 110
3 1,100 1,100 1,100 1,100
4 11,000 11,000 11,000 11,000
5 1.1 * 10& 110,000 110,000 110,000
6 1.1 * 1 0 6 13,267 13,367 1,567
7 1.1 * 1 0 7 23,548 23,867 2,141
8 1.1 * 10s 34,744 35,312 2,620
9 1.1 * 109 44,974 45,731 2,986
10 1.1 * 1010 49,052 49,767 3,081
11 1.1 * 1011 49,603 50,076 3,086
12 1.1 * 1012 55,115 55,180 3,366

total: 1 ,222*  109 392,525 395,521 141,070

Table 4.10: Estimated worst-case state expansion compared to the actual worst-case state expansion 
when f max =  12 for abstraction-8 on the 12-pancake puzzle.
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Chapter 5

Experiments on the Fifteen-Puzzle

The following tests on the fifteen-puzzle are run with IDA*. This domain contrasts with the K -  

pancake puzzle by having a smaller branching factor (2.1 on average) and an existing heuristic. 

The heuristic is the maximum of the Manhattan Distance heuristic and the pattern database. The 

two-move cycle is eliminated by disallowing reverse operators. Results with partial PDBs are not 

reported because they were extremely poor for this domain.

5.1 Small Databases

The tests in this section use abstractions with don’t-care tiles as the low-indexed tiles. The blank 

is always one of the unique tiles. For example, abstraction-7 for the fifteen-puzzle refers to the 

abstraction ‘b X  X  X  X  X  X  X  X  X  X  10 11 12 13 14 15,’ with x  as a don’t-care. Relatively small 

compressed partial PDBs are built (about 33MB) in this section to examine the effects o f changing 

the parameters. The compressed partial PDBs are built using depth-first search and a transposition 

table. BMPX is not used on these tests unless specified.

5.1.1 Varying Abstraction Granularity

Figure 5.1 varies the abstraction granularity of the compressed partial PDB. The size of the com

pressed partial PDB is 33,554,432 bytes. The purpose of this test is to determine which abstraction 

granularities give the best performance, given our memory limit. The database is filled to 99%.

The total number of states generated over the 100 Korf problem set [26] is listed on the y-axis. 

The abstraction (number of unique tiles) is listed on the x-axis. On the secondary x-axis (top) is 

listed the total number of abstract states in the abstract state space.

On the left side of the graph, the size o f the abstract state space is less than the size of the 

database. Therefore, only a small portion of the database is even being used and the performance 

is dominated by the Manhattan Distance heuristic. Moving to the right, the abstraction becomes 

more fine-grained. Abstraction-15 has no abstraction at all and acts like a perimeter. The abstrac

tions at the center of the graph provide the best performance. The abstraction whose full PDB size

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



16 240 3 K

Size of Abstracted State Space 

5 Million 4 Billion 20 Trillion

-a<o

ucu
o
wu

T3o
2

u
x>e
'z

4e+10

3.5e+10

3e+10

2.5e+10

2e+10

1.5e+10

le+10

5e+09

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Unique Tiles 

Figure 5.1: Varying abstraction granularity on the fifteen-puzzle (DB=33MB).

most closely matches the 33 million entries is abstxaction-7 with 57,657,600 abstract states. One 

might expect abstraction-7 to perform the best. However, the finer-grained abstractions-8 and 9 out

perform abstraction-7. This shows that finer granularity on the fifteen-puzzle can also provide better 

search performance.

5.1.2 Varying d

Figure 5.2 varies the cost bound d  used when building the compressed partial PDB using no abstrac

tion. The size of the compressed partial PDB is 33,554,432 bytes. The heuristic is the maximum of 

the Manhattan Distance heuristic and the compressed partial pattern database. The purpose of this 

test is to understand (1) how the database fills up and (2) how search performance is affected by the 

fill of a compressed partial PDB.

The total number of states generated over the 100 Korf problem set is listed on the y-axis. The 

compressed partial PDB is built to a cost bound of d, shown on the x-axis. The fill percentage is 

listed on the secondary y-axis (right side). Abstraction-15 (no abstraction) is used.

The compressed partial PDB is at most 33 million entries and the branching factor of the fifteen- 

puzzle is only 2.1. Therefore, it takes a large d before the database fill becomes noticeable. We see 

an exponential growth caused by the branching factor up to about 50% full, then the fill tapers off. 

This is because states begin overlapping significantly with already-existing states in the database.

The performance improves with the larger d and correspondingly larger fill factor. This is ex

pected, as increasing d increases the heuristic values. But similarly, at the highest d, improvement 

in performance slows because the heuristics haven’t changed very much. In addition, building a 

compressed partial PDB in a depth-first manner can take exponentially longer to increase d by one.
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Figure 5.2: Varying d  on the fifteen-puzzle (DB=33MB). No abstraction is used.

This approach shows that getting one last ply deeper is not always useful if your fill is already high.

5.2 High-Performance Tests

The abstractions used for the fifteen-puzzle are as follows: abstraction-8 is the fringe  [6], ‘b x  x  3 x  

x  x l  x  x  x  11 12 13 14 15’; and abstraction-9 adds one more unique tile, ‘b a ;x 3 a ;a :a ;7 a :a :1 0  11 

12 13 14 15’ (Figure 5.3). The heuristic used is the maximum of Manhattan Distance and the PDB 

or compressed partial PDB lookup.

X X 3

X X X 7

X X 10 11

12 13 14 15

X X 3

X X X 7

X X X 11

12. 13 14 15

Figure 5.3: Abstraction-8 (left) and abstraction-9 (right) used for the fifteen-puzzle.

Each test is run over all 100 Korf problem instances [26]. The databases compared are the 

full pattern database with abstraction-8 (P D B s)  and the compressed partial pattern database using 

abstraction-9 (C P D B f). C P D B q is created from the full PDB using abstraction-9. Both P D B s  

and C P D B q are of size 518,918,400 bytes. IDA* is used with bidirectional pathmax (BPMX) in 

order to take advantage of the inconsistency in the compressed partial PDBs. The two-move cycle 

is eliminated by disallowing reverse operators.

The columns of Table 5.1 are as follows:

40

-o o——o 100

Total number of Nodes — e—  
Percent of Database Full -  -  e -  -

40 *

10
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PDB BPMX Fill d avg. small avg. medium avg. large total

P D B s DC 100 64 283,309 6,929,803 80,291,808 1,067,439,170
C P D B g Yes 50 38 792,425 14,465,508 123,546,247 1,840,334,929
C P D B g Yes 60 39 651,152 12,181,920 101,463,007 1,525,898,811
C P D B g Yes 70 40 554,045 10,529,666 86,096,055 1,304,112,453
C P D B g Yes 80 41 487,551 9,361,520 75,459,248 1,149,450,912
C P D B g Yes 90 43 409,084 7,943,644 62,933,272 965,285,000
C P D B g Yes 98 66 330,510 6,473,794 50,611,367 780,456,393
C P D B g No 98 66 539,065 9,917,842 82,560,198 1,242,278,013

Table 5.1: Number of states generated on the fifteen-puzzle using a single PDB technique and 
Manhattan Distance while keeping memory constant.

•  The PDB is the type of pattern database used: either the full pattern database P D B s  or the 

compressed partial pattern database C PD Bg.

•  BPMX  tells whether bidirectional pathmax is used: Yes it is used, No it is not used, and DC  

(don’t care) means that BPMX has no effect.

•  Fill shows the percentage of memory that is expanded when creating the pattern database. Be

cause of the hashing scheme, however, even when filled as much as possible, 2% of C P D B g  

remains unused.

•  For P D B s > d is the largest value in the database. For C P D B g ,  d is the cost bound (as defined 

in Chapter 3).

•  The small problems are the problems that result in searches with less than 1,000,000 generated 

states when solved with P D B s  ■ Medium  problems require between 1,000,000 and 31,999,999 

generated states. The hard problems require greater than or equal to 32,000,000 generated 

states. There are 43 small problems, 48 medium problems, and 9 hard problems. The average 

number of states expanded in each of the three problem sets are reported.

•  total is the total number of generated states over the 100 Korf problem instances. This is not 

the average number of generated states.

At less than 90% full, using BPMX, C P D B g  generates more total states than P D B s  ■ C P D B g  

generates slightly fewer states when at 90% full, and at 98% full the total number of generated states 

is decreased by 27%. However, this result can be slightly misleading, since the total is dominated 

by the largest searches (which generated over three orders of magnitude more states). With and 

without BPMX, the small problems have worse performance using C P D B g  than P D B s  • However, 

the large problems have improved performance when using BPMX and filled to 80% or more. When 

C P D B g  is 98% full, the small, medium, and large problems have -95%, 6%, and 36% improvement 

respectively, in average number of states generated. The use of CPDBs results in poor performance 

on small problems, but the performance improves with the problem difficulty.
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The last row shows the importance of using BPMX in the fifteen-puzzle to improve performance. 

Using BPMX leads to a 37% reduction in the total number of states generated when C P D B g  is 

98% full. This pushes the performance ahead of PDBs,.  Small, medium, and large instances benefit 

equally from BPMX, improving the number of generated states by 39%, 35%, and 39% respectively. 

This indicates that the influence of BPMX may not depend on instance difficulty.

5.3 Conclusions

Compressed partial pattern databases are shown to be effective on the fifteen-puzzle. Like the K -  

pancake puzzle, the best abstraction granularity is slightly more fine-grained than the full PDB that 

best matches the memory limit. Also, the performance improvement is shown to closely match the 

fill of the compressed partial PDB. However, total reduction in states generated on high-performance 

tests is only 37%, which is significantly smaller than the improvement on the A-pancake puzzle.
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Chapter 6

Conclusions

6.1 Summary

Search in the puzzle domains with a minimal-memory search technique, such as IDA*, allows all 

available memory to go toward the heuristic. Pattern databases and perimeters are memory-based 

heuristic techniques (described in Chapter 2). They both require a predecessor function to perform 

retrograde search for the purpose of improving or creating a heuristic. However, pattern databases 

additionally require an abstraction mechanism. The similarities between the two techniques allows 

us to combine approaches in a general way.

In Chapter 3, this thesis presents two new heuristic lookup table techniques, partial pattern 

databases and compressed partial pattern databases, which merge the ideas of front-to-goal perimeter 

search and full pattern databases. Partial pattern databases act similarly to perimeters but with 

abstraction; partial PDBs store a subset of abstract states around the goal to use as a heuristic. 

Compressed partial PDBs act more like a normal pattern database; each entry stores the minimum 

value of all abstract states mapping to the same location.

Both techniques decouple the abstraction granularity from the memory limit, allowing the pro

grammer to choose the best available abstraction for a given domain and memory limit. They are 

both applicable to domains with a predecessor function and a space abstraction technique; can be 

used for multiple search instances with a single goal; and a heuristic calculation requires one simple 

table lookup. Both partial PDBs and compressed partial PDBs are admissible, but only partial PDBs 

are guaranteed consistent.

Partial pattern databases however are not an efficient use of memory; every heuristic entry must 

additionally record the s ta te lD .  This limitation is undesirable. Thus compressed partial PDBs 

remove the s ta te lD ,  storing heuristics in a memory-efficient manner (like normal PDBs). As a 

result, compressed partial PDBs lose information which is partially recovered when using IDA* 

with bidirectional pathmax.

Chapter 4 shows that partial PDBs are not memory efficient in either of our domains, the K -  

pancake puzzle or the fifteen-puzzle. In the A'-pancake puzzle, a three-fold improvement in the
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average number of states generated was achieved. Chapter 4 also explains why our approach yields 

fewer states, increasing low heuristic values can have a positive effect. The Korf and Reid formula 

for predicting worst-case performance of IDA* for full PDBs does not work well for partial PDBs 

on the 12-pancake puzzle. Therefore, this may not be a viable approach for choosing the best 

abstraction granularity. The fifteen-puzzle performance does not produce as large an improvement 

(Chapter 5). A finer-grained CPDB outperforms the full PDB by 37% when filled to 98%. For both 

test domains, BPMX has proven useful in correcting inconsistency caused by compressed partial 

PDBs.

6.2 Limitations and Future Work

One immediate conclusion that might draw from this thesis is that abstraction should always be 

used with perimeters. However, the perimeter approach used in this thesis (partial pattern databases 

without abstraction) provides only a front-to-goal heuristic. Traditional perimeter search requires 

multiple heuristic lookups to create a front-to-front heuristic that further improves search perfor

mance [9, 35]. Because partial pattern databases only provide a heuristic estimate to the goal, they 

cannot in general use multiple lookups to improve the heuristic. However, Section 6.2.2 presents 

one domain where this might be possible.

Building compressed partial PDBs requires careful attention. Using a modular hash function 

can sometimes result in a heuristic lookup table that is exactly the same as a coarser-grained nor

mal PDB. There are various methods with which to build a compressed partial PDB, but to do so 

efficiently requires extra memory or disk. The construction of full PDBs is much more efficient in 

comparison.

The optimal level o f abstraction in Chapter 4 was chosen by exhaustive experimentation. Chap

ter 4.3 presents a possible way for choosing the most appropriate abstraction granularity based on 

the heuristic distribution of the PDB. However, this is not a general approach. If this technique is 

useful for other domains, choosing the best abstraction may prove problematic.

There are a fair number of possible extensions that are not tested in this thesis. The most inter

esting ones are discussed here.

6.2.1 Domain-Specific Improvements

This thesis presents, implements, and tests partial PDBs in as general terms as possible. This tech

nique can be further incorporated with other general methods. For example, the maximum can be 

taken over multiple heuristic lookup tables,whether they be PDBs, partial PDBs, or compressed par

tial PDBs [21]. As well, domain-specific adaptations and improvements can be integrated into this 

framework. Two glaring examples are additivity in the 15-puzzle and duality in the pancake puzzle 

(Section 6.2.2).
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On the 15-puzzle, partial PDBs can always be made into additive versions by ignoring specific 

tile movements [30]. Fan Yang, Joseph Culberson, and Robert Holte generalized the definition 

of additivity and applied it with great effect to the Jv-pancake puzzle [49]. Compressed partial 

PDBs can effectively compress larger full additive pattern databases into memory-efficient versions. 

However, it is suspected that this approach may not prove very advantageous, as additivity was 

originally invented to combine heuristic values of two large pattern databases. This approach on 

the fifteen-puzzle will increase the granularity of one pattern database at the cost of decreasing 

granularity of another pattern database. Or two databases might be used instead of three. It is 

doubtful that the improvement in heuristic values will offset the loss caused by this approach.

6.2.2 Front- to-Front Heuristics

This thesis examined the use of a simple front-to-end heuristic lookup table. Recall, however, that 

perimeters proved useful when combined with a heuristic that could estimate the distance between 

any two states in the state space. This is called front-to-end heuristic search.

On the pancake puzzle, any pattern database technique to get a heuristic to the goal can be used. 

By using the general duality principal [14], it is possible to get an admissible heuristic between any 

two states. First, map the operator sequence II between two states onto the goal to get state n d. 

Then, look up h (n d) from the PDB. This allows for front-to-front heuristic improvement using a 

partial pattern database. The perimeter search techniques described by Dillenburg and Nelson [9], 

and Manzini [35] would be applicable.

6.2.3 Breadth-First A* and swapping

Section 4.3 shows graphically how cutoffs start occurring at specific g-values. Regular PDBs gen

erally have higher heuristic values and cause more cutoffs during search on the states with a low 

(/-value, while finer-grained partial PDBs have lower heuristic values and cause the search to cutoff 

more states with a high (/-value. The benefits of both PDBs can be gained by taking the maximum 

value. However, both PDBs still have to fit in memory and would require two lookups.

IDA* expands states in a depth-first manner, meaning that the current state being examined 

could have any .(/-value at any time. However, if states are expanded in a breadth-first manner, using 

breadth-first A* [54], then states are expanded by increasing (/-value. The states with a low g occur 

at the beginning of the search while states with a large g occur near the end. For the states at the 

beginning of the search (with a low (/-value), only high valued heuristics will cause a cutoff.

Examine partial pattern databases. Compare two partial PDBs with abstractions where the 

coarse-grained abstraction has unique tiles that consist of a subset of the unique tiles from the fine

grained abstraction. The coarse-grained PDB dominates the fine-grained PDB on states with low 

(/-values, but the fine-grained PDB dominates the coarse-grained for states with high (/-values. Since 

states are expanded in increasing order of g, only the dominating partial PDB for the current value
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of g is needed. At some time the current g- value will increase to the point where the other partial 

PDB now dominates. Swap out the first partial PDB and use the second one exclusively, for the 

period that the second partial PDB dominates.

The search time now becomes additionally dependent on the time it takes to swap partial PDBs 

in and out of memory. Therefore, this strategy would be useful only on large search instances. 

Preliminary testing shows that swapping tables of 500 megabytes takes 14 seconds, so this strategy 

should be viable.

Breadth-first search takes up a certain amount of memory itself, keeping track of states on the 

open list. Using a PDB for the heuristic will require the sharing of memory between the heuristic 

and the search technique. By using a partial PDB for the heuristic, memory can be periodically 

freed for other purposes (the search technique) by eliminating the portions of the partial PDB that 

no longer have an impact on the search. For example, if minimum g-value increases by one, all the 

highest entries in the partial PDB can be removed and hmax decreased by one, while still causing 

all the same cutoffs.

Taking this a step further, if two partial PDBs are kept in memory at the same time, the partial 

PDB not in use can be swapped out of memory while the search continues. This approach is similar 

to double buffering of the screen in graphics applications.

This technique should work well with partial PDBs because they are predictable. If two partial 

PDBs are defined as previously mentioned, one partial PDB will dominate for a consecutive set of 

g-values. The second partial PDB will dominate for the other ^-values. We can determine the exact 

time to swap one partial PDB for the other.

6.2.4 Binary Decision Diagrams

As this thesis has shown, partial pattern databases utilize memory inefficiently. They must store 

the full s ta te lD  with the heuristic value. Almost always the s ta te lD  takes much more memory 

than the heuristic, in the tested domains, about nine times more memory. This thesis combats this 

problem by eliminating the state information and taking the smallest heuristic value in compressed 

partial PDBs. However, compressed partial PDBs lose a lot o f information. Is it possible to losslessly 

compress partial PDBs?

Marcel Ball and Rob Holte are investigating the use of binary decision diagrams and algebraic 

decision diagrams to losslessly compress partial pattern databases. The hope is that the s ta te lD  

can be compacted such that the performance improvement will overtake the extra memory required 

for a partial PDB as compared to a full PDB. Current results for the A'-pancake puzzle and fifteen- 

puzzle show that the compression enables the increase of d  by one or two. This causes a minor 

improvement in the number of states expanded by IDA*. However, additional time is required for 

quering the binary and algebraic decision diagrams, resulting in more time overall [2 ].
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6.3 The Final Word

There has been a lot of interest in recent years regarding the use of perimeters in combination with 

pattern databases. There are problems with combining the techniques in a general way. This thesis 

presented a few approaches in Chapter 2. This is a tricky problem, therefore much research has 

exploited domain-specific properties to get to maximal performance gain.

The main contribution of this thesis was the new approach to combining perimeters and pattern 

databases. Partial pattern databases and compressed partial PDBs are general enough to be applied to 

any single-agent search domain with a predecessor function and an abstraction mechanism, and can 

be used over multiple problem instances with the same goal. Compressed partial PDBs combined 

with BPMX prove most effective on the if-pancake puzzle, and less successful on the fifteen-puzzle.

The second contribution of this thesis is the new analysis technique used on the 12-pancake 

puzzle. States in the search tree are grouped by their g value. This allows analysis on how the 

heuristic distribution will affect the search tree. This also explains why maxing can sometimes 

prove very desirable.

Much interesting research has been done over the past 15 years in speeding single-agent search 

with abstraction. This thesis presents a technique whereby the abstraction used is more fine-grained 

than a full pattern database. One future possibility is the use o f multiple abstraction granularities for 

improved performance and reduced memory requirements. This thesis frees the single-agent search 

community to use the different abstraction levels to best find solutions.
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Appendix A

Number of States Generated on the 
K -pancake Puzzle with various 
abstractions

The tables reported in Chapter 4 were built by taking the best possible abstraction level. This Ap

pendix shows the testing of each abstraction level that was used to produce the tables in Chapter 4. 

The average number of generated states over 100 test problems are reported.

The abstraction level and the number of entries are varied. The abstractions used for the K -  

pancake puzzle have don’t-care tiles as the low indexed tiles. For example, abstraction-7 for the 

12-pancake puzzle refers to the abstraction ‘x  x  x  x  x  5 6  7 8 9 10 1 1 with a; as a don’t-care. When 

using a compressed partial pattern database, it is filled to 70% full.

All tests are run using IDA*. The two move cycle (returning to the parent state) is eliminated by 

disallowing the reverse operator. BPMX is used when explicitly stated, but will only have an effect 

inconsistent heuristics. In our case, this is the compressed partial pattern database.

A.l 8-Pancake Puzzle

abstraction 0 1 2 3 4 5 6 7
abstract state 

space size
1 8 56 336 1,680 6,720 20,160 40,320

entries j
40,320 25
20,160 110

6,720 427
1,680 2,065

336 10,477
56 58,192

8 365,793
1 2,490,999

Table A .l: 8 -pancake puzzle with full pattern database.
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abstraction 0 1 2 3 4 5 6 7
abstract state 

space size
1 8 56 336 1,680 6,720 20,160 40,320

entries J,
40,320 2,490,999 365,793 58,192 10,477 2,065 427 110 25
20,160 2,490,999 365,793 58,192 10,477 2,065 427 110 30

6,720 2,490,999 365,793 58,192 10,477 2,065 427 149 71
1,680 2,490,999 365,793 58,192 10,477 2,065 682 403 335

336 2,490,999 365,793 58,192 10,477 3,593 2,227 1,990 1,933
56 2,490,999 365,793 58,192 19,392 12,848 11,763 11,582 11,540

8 2,490,999 365,793 107,798 74,821 70,100 69,348 69,227 415,168
1 2,490,999 2,490,999 2,490,999 2,490,999 2,490,999 2,490,999 2,490,999 2,490,999

Table A.2: 8 -pancake puzzle with partial pattern database.

abstraction 0 1 2 3 4 5 6 7
abstract state 

space size
1 8 56 336 1,680 6,720 20,160 40,320

entries J,
40,320 2,490,999 365,793 58,192 10,477 2,065 427 110 25
20,160 2,490,999 365,793 58,192 10,477 2,065 427 110 110

6,720 2,490,999 365,793 58,192 10,477 2,065 428 428 428
1,680 2,490,999 365,793 58,192 10,477 2,065 2,065 2,065 2,065

336 2,490,999 365,793 58,192 10,477 10,477 10,477 10,477 10,477
56 2,490,999 365,793 58,192 58,192 58,192 58,192 58,192 58,192

8 2,490,999 365,793 365,793 365,793 365,793 365,793 365,793 365,793
1 2,490,999 2,490,999 2,490,999 2,490,999 2,490,999 2,490,999 2,490,999 2,490,999

Table A.3: 8 -pancake puzzle with compressed partial pattern database (70% full) without BPMX.
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abstraction 0 1 2 3 4 5 6 7
abstract state 

space size
1 8 56 336 1,680 6,720 20,160 40,320

entries J.
40,320 2,490,999 365,793 58,192 10,477 2,065 427 110 25
20,160 2,490,999 365,793 58,192 10,477 2,065 427 110 47

6,720 2,490,999 365,793 58,192 10,477 2,065 428 213 257
1,680 2,490,999 365,793 58,192 10,477 2,065 1,024 1,227 1,564

336 2,490,999 365,793 58,192 10,477 5,626 6,318 8,533 10,017
56 2,490,999 365,793 58,192 36,926 38,600 42,254 47,652 55,212

8 2,490,999 365,793 289,086 216,675 311,838 313,607 382,233 382,233
1 2,490,999 1,433,689 1,433,689 1,433,689 1,433,689 1,433,689 1,433,689 1,433,689

Table A.4: 8 -pancake puzzle with compressed partial pattern database (70% full) with BPMX.
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A.2 10-Pancake Puzzle

abstraction 3 4 5 6 7 8 9
abstract state 720 5,040 30,240 151,200 604,800 1,814,400 3,628,800

space size
entries j

3,628,800 40
1,814,400 2 0 0

604,800 1,216
151,200 7,756
30,240 48,408

5,040 337,021
720 2,428,225

Table A.5: 10-pancake puzzle with full pattern database.

abstraction 3 4 5 6 7 8 9

abstract state 720 5,040 30,240 151,200 604,800 1,814,400 3,628,800
space size

entries J,

3,628,800 2,428,225 337,021 48,408 7,756 1,216 2 0 0 40
1,814,400 2,428,225 337,021 48,408 7,756 1,216 2 0 0 49

604,800 2,428,225 337,021 48,408 7,756 1,216 298 145
151,200 2,428,225 337,021 48,408 7,756 2,026 1,072 930
30,240 2,428,225 337,021 48,408 14,268 8,251 7,370 7,242

5,040 2,428,225 337,021 100,594 64,077 58,655 57,883 57,773

Table A.6 : 10-pancake puzzle with partial pattern database.
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abstraction 3 4 5 6 7 8 9

abstract state 720 5,040 30,240 151,200 604,800 1,814,400 3,628,800
space size

entries j

282,240 337,021 48,408 7,756 2,003 2,713 4,170
141,120 337,021 48,408 7,954 4,628 7,845 10,356
47,040 337,021 48,408 16,147 24,682 35,266 45,264
11,760 337,021 78,073 95,245 138,749 182,124 219,469
2,352 516,027 511,794 691,011 914,429 1,129,918 1,312,288

392 3,864,429 3,299,716 4,057,074 5,055,689 5,891,946 6,844,385 7,496,125

Table A.7: 10-pancake puzzle with partial pattern database. This table uses different amounts of 
memory that Table A .6  for direct memory comparison.

abstraction 3 4 5 6 7 8 9
abstract state 720 5,040 30,240 151,200 604,800 1,814,400 3,628,800

space size
entries J,

3,628,800 40
1,814,400 2 0 0 119

604,800 2,428,225 337,021 48,408 7,756 1,216 717 1,131
151,200 2,428,225 337,021 48,408 7,757 4,780 7,508 9,190
30,240 2,428,225 337,021 48,414 28,839 40,558 54,026 68,488

5,040 2,428,225 337,050 211,858 257,578 369,384 466,507 571,404

Table A.8 : 10-pancake puzzle with compressed partial pattern database (70% full) without BPMX.

abstraction 3 4 5 6 7 8 9
abstract state 720 5,040 30,240 151,200 604,800 1,814,400 3,628,800

space size
entries J.

3,628,800 40
1,814,400 2 0 0 70

604,800 2,428,225 337,021 48,408 7,756 1,216 417 542
151,200 2,428,225 337,021 48,408 7,757 2,695 3,845 4,738
30,240 2,428,225 337,021 48,414 18,026 22,117 29,867 39,080

5,040 2,428,225 337,050 135,352 147,512 218,664 292,115 370,064

Table A.9: 10-pancake puzzle with compressed partial pattern database (70% full) with BPMX.
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A.3 12-Pancake Puzzle

abstraction 6 7 8 9 10 11

abstract state 665,280 3,991,680 19,958,400 79,833,600 239,500,800 479,001,600
space size

entries J,

479,001,600 59
239,500,800 599

79,833,600 3,127
19,958,400 19,946
3,991,680 164,348

665,280 1,316,273

Table A. 10: 12-pancake puzzle with full pattern database.

abstraction 6 7 8 9 10 11

abstract state 665,280 3,991,680 19,958,400 79,833,600 239,500,800 479,001,600
space size

entries J,

665,280 1,316,273 178,464 183,172 167,584 165,390 164,951

Table A .l 1: 12-pancake puzzle with partial pattern database.

abstraction 6 7 8 9 10 11

abstract state 665,280 3,991,680 19,958,400 79,833,600 239,500,800 479,001,600
space size

entries J,

3,991,680 1,316,273 164,349 78,191 118,818 151,325 190,427
665,280 1,316,284 635,649 861,365 1,096,865 1,381,920 1,708,840

Table A. 12: 12-pancake puzzle with compressed partial pattern database (70% full) without BPMX.
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abstraction 6 7 8 9 10 11

abstract state 665,280 3,991,680 19,958,400 79,833,600 239,500,800 479,001,600
space size

entries J,

3,991,680 1,316,273 164,349 40,333 51,059 66,813 86,964
665,280 1,316,284 358,585 379,655 520,648 677,805 841,576

Table A. 13: 12-pancake puzzle with compressed partial pattern database (70% full) with BPMX.
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A.4 13-Pancake Puzzle

abstraction 6 7 8 9 10 11 12

abstract state 1,235,520 8,648,640 51,891,840 259,459,200 1,037,836,800 3,113,510,400 6,227,020,800
space size

entries J,
1,235,520 25,833,998

Table A. 14: 13-pancake puzzle with full pattern database.

abstraction 6 7 8 9 10 11 12

abstract state 1,235,520 8,648,640 51,891,840 259,459,200 1,037,836,800 3,113,510,400 6,227,020,800
space size

entries J.
1,235,520 25,833,998 3,106,345 4,097,683 3,851,260 3,820,667 3,816,931 3,816,546

Table A .15: 13-pancake puzzle with partial pattern database.

abstraction 6 7 8 9 10 11 12

abstract state 1,235,520 8,648,640 51,891,840 259,459,200 1,037,836,800 3,113,510,400 6,227,020,800
space size

entries J.
1,235,520 25,834,132 12,021,692 16,216,581 23,152,643 32,159,310 44,332,028 51,689,205

Table A. 16: 13-pancake puzzle with compressed partial pattern database (70% full) without BPMX.
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abstraction 6 7 8 9 10 11 12

abstract state 1,235,520 8,648,640 51,891,840 259,459,200 1,037,836,800 3,113,510,400 6,227,020,800
space size

entries 1

1,235,520 25,834,132 6,481,829 6,599,913 10,142,002 15,214,336 22,068,332 27,498,382

Table A. 17: 13-pancake puzzle with compressed partial pattern database (70% full) with BPMX.
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Appendix B

Runtime Histograms on 12-Pancake 
Puzzle

This appendix shows tables depicting the final search iteration, completely expanded, on the 12- 

pancake puzzle using various pattern databases. The solution length is 12. The g-value is displayed 

along the x  axis and the h-value is displayed along the y  axis. The number of states expanded with 

these specific h and g values form the table entries.

B.l Partial PDBs
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g
h \ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 total

0 0 0 0 0 0 0 0 0 0 17 544 12,082 199,395 0 212,038
1 0 0 0 0 0 0 0 0 17 459 9,532 144,425 0 0 154,433
2 0 0 0 0 0 0 0 17 459 9,600 145,751 0 0 0 155,827
3 0 0 0 0 0 0 17 441 8,770 129,523 0 0 0 0 138,751
4 0 0 0 0 0 16 366 6,829 97,867 0 0 0 0 0 105,078
5 0 0 0 0 13 272 4,755 64,902 0 0 0 0 0 0 69,942
6 0 0 0 8 183 2,729 34,780 0 0 0 0 0 0 0 37,700
7 0 0 6 101 1,229 13,991 0 0 0 0 0 0 0 0 15,327
8 0 2 34 315 3,508 0 0 0 0 0 0 0 0 0 3,859
9 1 6 44 505 0 0 0 0 0 0 0 0 0 0 556
10 0 3 26 0 0 0 0 0 0 0 0 0 0 0 29
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0  _ j 0 0 0 0 0 0 0 0 0

expanded 1 11 110 929 4,933 17,008 39,918 72,189 107,113 139,599 155,827 156,507 199,395 0 893,540

Table B. 1: Histogram Results for partial PDB with abstraction-6 on 12-pancake puzzle.



to
ta

l

28
,3

14
22

,9
42

23
,1

10
21

,1
57

17
,7

30
13

,7
41

9,
12

1
4,

93
1

11
,8

17

o o © o

15
2,

86
3

CO o o o O o o O O O o o o o o

(N

26
,8

31 o o O o o o o o O o o o

26
,8

31

1,
42

7
21

,6
83 o O o o o o o O o o o

23
,1

10

o
i-H

VO
in 1,

20
3

21
,8

51 o o o o o o o o o o

23
,1

10

Os o 56 1,
20

3
19

,9
97

o o o o o o o o o

21
,2

56

0 0 o o 56

00o

16
,7

21

o o o o o o o o
in
0 0
0 0

t> o o o 52 96
2

12
,9

05

o o o o o o o

13
,9

19

VO o o o o r -

79
4 VOo

in
oo"

o o o o o o

9,
34

7

lO o o o o o 42 57
7

4,
56

4

o o o o o

5,
18

3

o o o o o o 0 0
CO 33

8
10

,6
24

o o o o
oo

CO o o o o o o o 29 1,
07

1

o o o o

1,
10

0

<N o o o o o o O o o o o o o o

i-H o o o o o o o o - o o o o I—1

o o o o o o o o o - o o o o -

0 0  /  

/  ^
o <N CO in VO r - o o Os

o
i-H

<N ex
pa

nd
ed

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ta
bl

e 
B.

2:
 H

ist
og

ra
m

 
Re

su
lts

 
for

 p
ar

tia
l 

PD
B 

wi
th 

ab
st

ra
ct

io
n-

7 
on 

12
-p

an
ca

ke
 

pu
zz

le
.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

g
h \ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 total

0 0 0 0 0 0 0 0 0 0 0 2 138 3,206 0 3,346
1 0 0 0 0 0 0 0 0 0 2 132 2,812 0 0 2,946
2 0 0 0 0 0 0 0 0 2 132 2,816 0 0 0 2,950
3 0 0 0 0 0 0 0 2 132 2,794 0 0 0 0 2,928
4 0 0 0 0 0 0 2 122 2,503 0 0 0 0 0 2,627
5 0 0 0 0 0 2 112 2,150 0 0 0 0 0 0 2,264
6 0 0 0 0 2 93 1,656 0 0 0 0 0 0 0 1,751
7 1 11 110 1 ,1 0 0 10,998 109,905 0 0 0 0 0 0 0 0 122,125
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

expanded 1 11 110 1 ,1 0 0 1 1 ,0 0 0 1 1 0 ,0 0 0 1,770 2,274 2,637 2,928 2,950 2,950 3,206 0 140,937

Table B.3: Histogram Results for partial PDB with abstraction-8 on 12-pancake puzzle.
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g
h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 total

0 0 0 0 0 0 0 0 0 0 17 544 12,082 199,395 0 212,038
1 0 0 0 0 0 0 0 0 17 459 9,532 144,425 0 0 154,433
2 0 0 0 0 0 0 0 17 459 9,600 145,751 0 0 0 155,827
3 0 0 0 0 0 0 17 441 8,770 129,523 0 0 0 0 138,751
4 0 0 0 0 0 16 366 6,829 97,867 0 0 0 0 0 105,078
5 0 0 0 0 13 272 4,755 64,902 0 0 0 0 0 0 69,942
6 0 0 0 8 183 2,729 34,780 0 0 0 0 0 0 0 37,700
7 0 0 6 101 1,229 13,991 0 0 0 0 0 0 0 0 15,327
8 0 2 34 315 3,508 0 0 0 0 0 0 0 0 0 3,859
9 1 6 44 505 0 0 0 0 0 0 0 0 0 0 556
10 0 3 26 0 0 0 0 0 0 0 0 0 0 0 29
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

expanded 1 11 110 929 4,933 17,008 39,918 72,189 107,113 139,599 155,827 156,507 199,395 0 893,540

Table B.4: Histogram Results for PDB with abstraction-6 on 12-pancake puzzle.
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