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Abstract
Memory is critical to understanding animal movement but has proven challenging to study. Advances in

animal tracking technology, theoretical movement models and cognitive sciences have facilitated research in

each of these fields, but also created a need for synthetic examination of the linkages between memory and

animal movement. Here, we draw together research from several disciplines to understand the relationship

between animal memory and movement processes. First, we frame the problem in terms of the characteris-

tics, costs and benefits of memory as outlined in psychology and neuroscience. Next, we provide an over-

view of the theories and conceptual frameworks that have emerged from behavioural ecology and animal

cognition. Third, we turn to movement ecology and summarise recent, rapid developments in the types

and quantities of available movement data, and in the statistical measures applicable to such data. Fourth,

we discuss the advantages and interrelationships of diverse modelling approaches that have been used to

explore the memory–movement interface. Finally, we outline key research challenges for the memory and

movement communities, focusing on data needs and mathematical and computational challenges. We con-

clude with a roadmap for future work in this area, outlining axes along which focused research should yield

rapid progress.
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INTRODUCTION

Animal movements and their underlying mechanistic basis have

intrigued biologists for generations. Key studies established the link

between spatial learning and movement (e.g. Von Frisch 1967;

Sutherland & Gass 1995), while optimal foraging theory (Charnov

1976), search theory (Rosenzweig 1981) and home range behaviour

(Moorcroft & Lewis 2006; B€orger et al. 2008) have identified funda-

mental issues surrounding animal movement in heterogeneous land-

scapes. Navigation studies, particularly those drawing upon

geographic perspectives of navigation (Golledge 1998; Kitchin &

Blades 2002) and animal spatial cognition (e.g. O’Keefe & Nadel

1978; Thinus Blanc 1996), highlight just how sophisticated animal

movements can be.

Recently, the link between memory and movement received much

theoretical attention in the context of home range behaviour

because attraction towards memorised localities will generate

bounded, reoccurring space use patterns (e.g. biased random walks

where the bias is towards previously visited localities; B€orger et al.

2008; Van Moorter et al. 2009). However, home range behaviour is

only one aspect of the eco-evolutionary interface between memory

and movement. Other aspects include the co-evolution of cognitive

and movement capacities, the inference of memory use from move-

ment patterns and the role of movement behaviour in shaping

memory. With this review, we aim to provide a broad perspective

of the memory–movement interface.

Overall, an animal’s navigation and motion capacity determine

how an individual will move relative to external forcing factors and

internal states (Nathan et al. 2008). Among navigation mechanisms,

random search behaviours and perceptual cues have been extensively

studied (summarised in Mueller et al. 2011a; Hein & McKinley

2012), whereas the important role that memory plays in driving ani-

mal movement remains a major challenge. Better understanding of

the role of memory will provide a deeper understanding of complex,

emergent movement phenomena, such as migration, nomadism and

home range behaviour (Mueller & Fagan 2008). Explicit focus on
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behavioural mechanisms integrating information acquisition (learn-

ing) and retention (memory) is essential for developing a robust por-

trait of where and when particular movement behaviours are likely

to emerge as adaptive solutions and give rise to different movement

patterns (Table 1).

Many early investigations of animal movement and memory relied

on manipulative experiments in fixed arenas (reviewed in Paul et al.

2009). Increasingly, such studies are complemented by large data sets

of animal tracking data made possible by advances in technology

and miniaturisation (e.g. Collins et al. 2006). Indeed, recent, dramatic

increases in data availability have spurred great attention to move-

ment ecology (Nathan et al. 2008). However, developments in this

field remain heavily driven by technology and the rapid accumulation

of new data. Efforts to use these data to understand the mechanisms

underlying movements and the role of memory have proven diffi-

cult, although researchers are tackling the new data sets with increas-

ingly sophisticated modelling techniques (e.g. Gautestad et al. 2013).

However, tracking technologies can not only provide highly

resolved movement data but additionally also collect data with acceler-

ometers and physiological sensors to yield extensive data sets for indi-

vidual animals. These new technologies allow researchers to quantify

specific behaviours (e.g. feeding) or physiological states (e.g. preg-

nancy) during the track, providing much greater insight into the fac-

tors responsible for the observed movement decisions. Cognitive

processes, such as sensory perception and memory, are fundamental

to the behaviour–environment interface. Full understanding of how

cognitive processes are influenced by, and give rise to movement pat-

terns will require better remote sensing data of the environment ani-

mals move in to complement tracking data, novel perspectives on

data analysis and new approaches for mathematical and computational

modelling. Ultimately, understanding the links between cognitive

processes and movement patterns will also require coupling tracking

data with carefully controlled behavioural experiments and improved

linkages with theoretical frameworks for spatial memory emerging

from psychology, neuroscience and animal cognition will improve

understanding of how memory influences movement (Fig. 1).

To achieve this synthesis, we first define different types of memory

and characterise the costs and benefits of memory by drawing upon

the literatures in psychology and neuroscience. We then turn to the

fields of behavioural ecology and animal cognition where we review

the dominant theories and conceptual frameworks that link memory

with movement. Third, we turn to movement ecology and summarise

recent, rapid developments in the types and quantities of available

movement data, and the suite of statistical measures applicable to

such data. Fourth, we discuss the advantages and interrelationships

of diverse modelling approaches that have been used to explore the

memory–movement interface. We conclude by outlining key data,

computational and modelling challenges for the memory–movement

community. We identify several axes along which focused research

should yield rapid progress and offer a road map for future research.

PSYCHOLOGICAL PERSPECTIVES: SPATIAL VS. ATTRIBUTE

MEMORY

Memory may be defined many ways (Tulving 2000), but here we

restrict the definition to the acquisition, encoding, storage and

retrieval of information (Baddeley 2004). Acquisition of a particular

memory may be genetic (e.g. inherited genetic triggers for migration,

inherited avoidance of a predator) or obtained within an individual’s

lifetime via direct experience or social communication. Encoding

and storage refer to the processing of acquired information, often

involving reduction and consolidation (Craik & Lockhart 1972).

Retrieval is the context-dependent use of memorised information

(i.e. using past experiences to inform decision making and affect

subsequent behaviours).

Memory is one of many cognitive and information-use processes

that may affect movement and navigation. However, differentiating

between memory and other such processes (e.g. following marked

trails, goal-oriented movement driven by perception) is extremely

challenging (Table 1), and there exists a general need for a theoreti-

cal framework that can formally disentangle the different cognitive

and information-use processes that might influence movement.

Further complicating the matter is that multiple cognitive pro-

cesses are associated with memory. For example, information mem-

orised can be used for inference, such as when an animal infers the

current state of a (potentially unvisited) location based on informa-

tion remembered from visits to neighbouring locations (e.g. Fron-

hofer et al. 2011). Also connected here is the decision-making

concept of the ‘Bayesian forager’ (Klaassen et al. 2006; Van Gils

2010) in which information an animal gained while visiting a patch

(e.g. prey density, proximity of resources) influences the decision of

whether to stay or not in the next patch.

Many typologies of memory exist (e.g. Schacter 1992). Here, we

distinguish two types of memory that are particularly germane to

animal movement, acting on different kinds of information: spatial

memory encodes spatial relationships or configurations, whereas attri-

bute memory encodes the attributes of local features. Both can act

together and strongly influence movement.

Spatial information allows an animal to reduce uncertainty with

regard to its position with respect (e.g. distance and direction) to geo-

graphical objects/locations (Table 2). Spatial information may include

some sensory characteristics of a specific location (e.g. the geomagnetic

field intensity, or the local landscape view) but may also include the

speed and direction of current and past movement bouts (Table 2).

Attribute information, in contrast, allows animals to reduce uncer-

tainty with regard to location-independent characteristics of objects

or object classes. Information in attribute memory may be as simple

as abundance or types of food, and can be linked to spatial infor-

mation, so that, for example, food patch quality can be spatially

encoded: the location of a patch is spatial information and patch

quality is an attribute. Memorisation of resource quality or abun-

dance allows animals to choose among alternative pathways, as

occurs in bumblebees (Lihoreau et al. 2011). The same attribute,

however, may be encoded for many locations or may be spatially

independent (e.g. Clark & Gronlund 1996). In the context of move-

ment behaviour, the time passed since a location was last visited is

another aspect of attribute memory, and it is especially useful in

avoiding recently explored areas (Van Moorter et al. 2009).

Moreover, other attributes, such as food quality, can also be time-

dependent, yielding time-dependent effects on movement (e.g.

perishability of resources: Clayton & Dickinson 1998; seasonal or

weather-dependent visitation of fruit-bearing trees: Janmaat et al.

2006). Values associated with attribute memory may also affect the

accuracy, precision and persistence of the associated spatial

memory. For example, a valuable resource, or a dangerous area,

may be retained in the animal’s memory with higher resolution and

for longer periods than will locations with more neutral attributes

(e.g. Milinski 1994; Wolf et al. 2009). In the following sections,
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unless specifically mentioning attribute memory, all references to

memory refer to spatial memory.

EVOLUTIONARY PERSPECTIVES: COSTS, BENEFITS AND TRADE-

OFFS INVOLVING SPATIAL MEMORY

Spatial memory provides animals with many advantages. At local

scales, these benefits include improved choice of critical locations,

such as food caches, nesting locations or hiding sites for dependent

young. At larger scales, spatial memory aids navigation in landscapes

that feature complex spatial structure, rare but essential sites that

must be relocated (e.g. calving grounds, nesting beaches), or

resources that are only available periodically (e.g. Bingman & Cheng

2005; Janmaat et al. 2006; Papastamatiou et al. 2013).

However, memory is not physiologically free. Both memory stor-

age capacity (metabolic overhead of bigger brains) and the process

Figure 1 Schematic outlining the contributions of movement ecology and other disciplines to research at the interface of animal movement and memory. Discipline-

specific logic chains lead to complementary approaches for studying memory-driven movement. However, spatial memory is central to both frameworks, providing a

nexus for synthesis.

Table 2 Basic orientation tasks, providing a comprehensive classification of the functionalities of spatial memory, listed from simplest to most complex

Task ID

Orientation

task

Required spatial memory

(genetic or learned)

1 Move towards a peak or valley in a perceived gradient field At minimum, none. However, memorising the slope of the field increases efficiency,

allowing the estimation of the extent to which the current movement direction is the

correct one

2 Determine whether an animal is currently at the goal location Unique site identifier (to match against the sensory input)

3 Move towards a specific goal along a perceived gradient field

in one dimension (n fields in n dimensions)

At minimum, the gradient field’s value(s) at the goal. This allows calculation of the

absolute difference between the memorised and perceived values so that the task in

identical to that of row 1. Improved efficiency is achieved by memorising of the slopes

of the fields and their orientation with respect to a compass

4 Move back towards a previously visited goal based on path

integration

Bearing and distance to the goal. A computation based only on directions (i.e. without

distance weighting) can provide accurate approximations in some cases, but usually leads

to large errors in homing direction

5 Move towards a goal based on a series of sequentially perceptible

beacons (i.e. ‘signposts’, that are not necessarily visual)

Unique site identifiers for each of the beacons

6 Move towards a goal based on a series of perceptually

disconnected beacons

If the beacons are identifiable as localities along a gradient field, this task is a more

complex version of task 3, requiring, at minimum, remembering the field value at each

beacon. Otherwise, this task requires a series of unique site identifiers for each of the

beacons, each coupled with a bearing to the next beacon

7 Move towards a goal based on a set of landmarks that are

simultaneously perceptible from both the current and goal

locations (i.e. the same landmark-based system of reference

can be used at both places)

At minimum, memorisation of the goal location in the landmark-based system of reference.

The navigation task itself can be performed using gradient fields

Execution of these tasks depends not only on memory capacities but on the required level of computational sophistication. Each task may be motivated by attribute

memories with or without explicit spatial links. Notice that a single movement phase (e.g. bird migration) may encompass multiple tasks (e.g. gradient following comple-

mented by goal identification).

© 2013 John Wiley & Sons Ltd/CNRS
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of encoding and retrieving memories (brain activity) incur energetic

and material costs (Dukas 1999; Burns et al. 2011). For example,

memory formation and maintenance involves DNA methylation, a

type of DNA modification that alters patterns of gene expression

(Day & Sweatt 2010). In addition, accurate memory may require

redundancy, encoding information across many neuronal pathways

so that if one is inaccessible, the memory is not lost (Dukas 1999).

More deeply engrained memories are expected to require more

brain tissue and incur higher metabolic overhead.

Unfortunately, current frameworks for modelling memory-based

movement generally do not consider, even in an elementary fashion,

physiological costs and time demands for learning that could con-

strain movement. For example, studies that compare the efficiency

of different movement strategies involving spatial memory typically

do not incorporate the costs of memory, such as the cost of infor-

mation acquisition and/or retention (Mueller et al. 2011a; Fronhofer

et al. 2013). Linking fitness to increased spatial memory is a difficult

empirical problem, but it provides interesting modelling opportuni-

ties. Even if memory affords only small increases in movement effi-

ciency on a per step basis, such effects would compound across the

lifetime of animals, and in a modelling context such benefits could

be explored in detail. In parallel, biologging sensors can be used to

quantify energy expenditure in free-ranging animals, making it possi-

ble for future studies to actually measure the costs of animal search

patterns and memory in habitats of varying complexity (e.g. Gleiss

et al. 2011).

A less obvious cost is memory interference. As memory capacity

increases, the likelihood that two memories will interact or con-

found also increases. Interference can occur as new memories

degrade the accuracy of old memories (known as retroactive inter-

ference) or old memories prevent the accurate acquisition of new

memories (known as proactive interference) (Bouton 1993).

Depending in part on whether memories are closely related in con-

text, memory interference can lead to mistaken recollections

(Bouton 1993). Such mistakes could produce costly errors in naviga-

tion, foraging or risk assessment. Thus, animals need mechanisms

for prioritising information storage based on the importance of the

memory to their life history and the reliability of the information

(Dukas 1999; Burns et al. 2011). Interference costs and mechanisms

for prioritising information have been little studied with regard to

movements; including these aspects in future studies on movement

strategies may provide a more complete picture of memory

processes in animal movements.

Larger memory and cognitive capacity also require prolonged

sleep. Sleep is needed for the consolidation of long-term memory

(e.g. Stickgold 2005), and the need increases with brain size (e.g.

Lesku et al. 2006). The costs of sleep include lost foraging opportu-

nities, decreased use of energy-conserving mechanisms such as tor-

por, and increased risks of predation because vigilance necessarily

decreases during sleep (Lima et al. 2005; Roth et al. 2010). Memory-

based movement models currently neglect these costs, but they

could be incorporated via explicit consideration of distinct behavio-

ural phases (Morales et al. 2004; McClintock et al. 2012) in models,

facilitating consideration of the interplay between movement

exploration and the amount of sleep within an individual’s overall

behavioural budget.

Finally, encoding extensive sets of interrelated memories may

require a protracted and potentially costly learning period. Juvenile

periods, when inexperienced individuals are learning to forage and

avoid predators, are associated with low foraging success and high

mortality rates (Dukas 2009). Parental care can reduce these costs

to juveniles, but only through direct costs to parental energy and

time, which can reduce adult survival, mating opportunities, and can

delay production of future offspring (Alonso-Alvarez & Velando

2012). Learning also occurs laterally via social or cultural transmis-

sion, but even those types of learning will involve costs, such as the

risks of learning false information (van Schaik 2010). Moreover,

acquiring useful information about the environment may involve

exploratory movements, which can increase energy costs and preda-

tion risks (Sih & Del Giudice 2012).

Considering these several costs of memory, we can make several

predictions. First, due to the temporal costs of learning, memory

may be less useful in short lived animals where instinctive geneti-

cally coded behaviours will be favoured. Likewise, after completion

of their learning phase, species with long learning periods might be

expected to exhibit different (e.g. more ‘refined’ or systematic) spa-

tial patterns than those with short-learning periods. Lastly, if early

learning and memorisation of the landscape are indeed costly,

among-individual differences in initial conditions (e.g. physiological

states, pedigrees, natal sites) should impact how animals use space

after the conclusion of their learning periods.

Costs and benefits of memory as a series of adaptive trade-offs

Animals have limited capacities for processing and storing informa-

tion accurately over the long term, creating possible trade-offs with

the benefits of memory. For example, the benefits of memory may

trade-off against sensory capacity for information collection, which

lessens the need to rely on memory. Another key trade-off exists

between the quantity and quality of memories, meaning that only

some memories will be encoded in detail. Mechanisms for prioritis-

ing long-term memory based on importance and reliability are

needed to prevent memory interference (e.g. Anderson 2000). For-

getting is the major mechanism for mitigating interference, and

memory that does not lose irrelevant or unimportant information

does not function properly.

Yet, another trade-off involves the capacity, duration and preci-

sion of memory because memories will decay unless reinforced

and maintained (Fig. 2). Decay in the intensity or precision of spa-

tial memories could strongly affect how animals move through a

landscape, lessening fidelity to favoured areas (Avgar et al. 2013a).

Moreover, partially decayed memories may produce mismatches

between perceived and encoded information, which could intro-

duce error in movement or navigation decision-making processes.

Likewise, heavy reliance on memory when moving in dynamic

landscapes may not allow an animal to update memorised land-

scape information with current environmental conditions (Boyer &

Walsh 2010). The series of constraints and trade-offs outlined

above help establish when, and in what kinds of landscapes, mem-

ory will be most useful for animal movement. For example, mem-

ory would be of little benefit in spatially homogeneous, temporally

stable landscapes or in landscapes featuring temporal dynamics

that are rapid and/or unpredictable (McNamara & Houston 1987).

In contrast, memory should be particularly valuable in landscapes

of intermediate complexity (with predictable spatiotemporal depen-

dency) where remembering several locations and their attributes

would be sufficient to accrue fitness benefits through efficient

navigation or timely returns (Fig. 3).
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COGNITIVE PERSPECTIVES: COGNITIVE MAPPING AND OTHER

NAVIGATING PROCESSES

Cognitive mapping

Cognitive mapping is a series of psychological transformations for

acquiring, coding, storing, recalling and decoding spatial information

and attribute information in memory. Although memory-based

behaviours may rest on simpler processes such as path integration,

there is clear evidence that animals can also form complex represen-

tations of their worlds (Bingman & Cheng 2005). More recently, the

debate has shifted from whether cognitive maps exist to the form

that such maps actually take (e.g. Euclidean vs. topological maps;

Asensio et al. 2011; Normand & Boesch 2009).

Cognitive representations of spatial information may be of either

egocentric (i.e. structured relative to one’s own position) or exocen-

tric (i.e. structured relative to landscape features) formats (Klatzky

1998). Some research communities use autocentric vs. allocentric

instead of egocentric versus exocentric, but the dichotomies convey

the same meaning. Exocentric storage may be analogous to the way

a human might understand a folding road map where information

is stored completely independent of the self (Slocum et al. 2009). A

key question is the extent of the system of reference used

(Benhamou 1997, 2010): is it universal (as for a road map) so that a

single one can cover the life-time home range of an animal or is it

only effective over a restricted range, so that any important distant

place requires its own local system of reference?

Evidence remains elusive that animals navigate by universal exo-

centric mapping alone. Furthermore, animals that appear to use

exocentric representations might actually navigate by a mixture of

egocentric and local exocentric methods that connect the animal’s

current position to other locations with the help of trails, external

sensory fields, path integration and related approaches (Benhamou

1997, 2010). For many species, this mix could provide a functional

navigation system that closely approximates the benefits of universal

exocentric mapping.

Current consensus is that, in young animals, or older animals

exposed to a novel landscape, spatial information is first used to

encode egocentric spatial memory, but tends later to be involved in

exocentric encoding. As spatial information becomes more com-

plete, egocentric memories are gradually connected, leading to the

emergence of effective exocentric representations (e.g. Benhamou

1997; Aznar-Casanova et al. 2008). Modelling the role of this learn-

ing process in memory presents many exciting opportunities for

theoreticians.

(a) (b)

(c) (d)

Figure 2 Spatial memories decay with time, and these decays may include decreases in intensity (black to grey transition from a–c) and spatial precision (expansion of

shaded cells from a to b) or both (from a–d). These figures show the interaction between resource selection and memory when memory is summarised within fine (a and

c) and coarse (b and d) grids. Panels (c and d) represent cases where the decay of memory is more rapid leading to a lower overall intensity of memory and reduced

contrast between high and low memory areas. Time-dependent changes in the intensity and precision of spatial memories could be included in mechanistic movement

models through their influences on, respectively, the strength and directionality of movement vectors.
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Landscape features and navigating processes

Animals use three basic memory-driven mechanisms (which can be

combined or used in parallel) to move towards a specific goal: bea-

con/gradient-based navigation and location-based navigation (both

of which depend on landscape features), and landscape-independent

route-based navigation.

In beacon-based navigation (Table 2, tasks 2, 4 and 6), animals

memorise the perceptual (e.g. olfactory) signature of one or more

beacons (i.e. conspicuous objects that are closely associated to the

final goal or to intermediate goals along the route leading to the

final goal). The animal thus reaches the final goal by moving from

one beacon to the next, each time moving up the local gradient of

perceptual information provided by the beacon’s relative size in its

field of view. Gradient-based navigation (Table 2, tasks 1 and 3) is

conceptually similar to beacon-based navigation, but the goal loca-

tion is memorised with respect to stimuli continuously varying in

space (gradient fields) rather than discrete objects (beacons).

Location-based (or eidetic) navigation (Table 2, task 7) rests on

goal memories defined by the spatial relationships between the loca-

tion of the goal location and those of surrounding nearby objects,

called landmarks, forming an exocentric frame of reference. This

form of navigation may involve spatial memory restricted to a sim-

ple snap-shot of the set of landmarks as perceived from the goal,

or much more complex forms of spatial memory involving complex

exocentric cognitive mapping (Benhamou 2010).

In route-based navigation (Table 2, task 5), an animal memorises

its position relative to its starting point to which it is seeking to

return using path integration. This animal equivalent of dead reck-

oning, which has been demonstrated in a number of central place

foraging hymenopteran species (e.g. Wehner et al. 1996), requires lit-

tle memorization. As currently understood, the animal continuously

updates its position with respect to the starting location by combin-

ing translational and rotational information collected en-route.

Hence, the only piece of information that must be committed to

memory at any given time is the current homing vector (Table 2).

Using route-based navigation requires an ability to estimate the

direction of movement. Such ability can be compass-based, relying

on the earth’s magnetic field or the positions of the sun or stars.

Precise solar navigation can be achieved using a time-compensated

sun compass (e.g. Perez et al. 1997).

ECOLOGICAL PERSPECTIVES: DETECTION OF MEMORY

PROCESSES IN ANIMAL MOVEMENT DATA

Return points and recursion distributions help identify memory-

driven movements

Analyses of movement recursions, in which animals repeatedly

return to particular locations (called return points), can help identify

memory-driven movement processes (Table 1). Movement recur-

sions exist at different scales. For example, at landscape and

Figure 3 Heuristic representation of the functional utility of memory for animal movement in heterogeneous landscapes. Memory is most valuable (i.e. provides the

greatest fitness benefit) in landscapes with moderate levels of spatio-temporal complexity. In contrast, highly homogeneous landscapes do not feature enough

distinguishing features to aid navigation based on memory, and highly heterogeneous landscapes are so complex that memorising information sufficient for navigation

would incur extensive costs.
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continental scales, migratory animals return to breeding and over-

wintering grounds year after year. Within landscapes, animals may

repeatedly visit locations in their home ranges, such as reproductive

sites, resting sites or resource locations (e.g. water holes, kill sites).

At the finest scales, movement recursions may constitute an effi-

cient foraging of trap-lines or means of performing area-restricted

searches to locate resources or specific targets (Benhamou 1994).

However, the existence of movement recursions is not a reliable

indicator of memory. At fine scales, recursive movements may stem

from reactive response to a stimulus or perception of targets (e.g.

moths circling a light bulb at night). At larger scales, where it is

more likely that movement recursions are memory-driven because

re-visited areas are beyond an animal’s perceptual range, analyses of

movement data can help identify return points and gauge the

importance of memory (Benhamou & Riotte-Lambert 2012). Mea-

sures of site fidelity, such as those from the breeding site literature

(Haas 1998), may be particularly useful for identifying memory-

related recurrent movements. Likewise, high movement precision

and low navigational variance may also be strong indicators of

memory-guided movement processes, such as homing (Hagstrom

2013).

Analyses of return delays may be particularly useful indicators of

how memory influences movement decisions. Consider three sce-

narios in which an animal searches for resources in the vicinity of a

memorised site such as a water hole or nest. In the first, an animal

searches using an unconstrained biased correlated random walk

(Benhamou 1994), in which case we would expect return delays to

a memorised site to be exponentially distributed. Alternatively, if

some physiological factor (e.g. thirst, nestling hunger) constrains the

animal to return to the memorised site, this constraint should

increase regularity of return delays. Such regularity would manifest

as a distribution of return delays in which the mode, median and

mean are closer together, and of smaller variance than an exponen-

tial distribution with the same mean, and the duration of consecu-

tive return delays should be independent (i.e. not correlated) of

each other. Finally, animals whose visits to the memorised site fol-

low some external periodic driver (e.g. predation risk tied to solar

or lunar cycles) should feature return delays with reduced variation

but autocorrelation between delays. For example, if an animal fre-

quents a water hole on a daily schedule, an early visit to the water

hole one day, with a corresponding intervisit period of less than

24 h, will likely be followed by an intervisit period of more than

24 h as the animal regains its schedule. This periodicity is rein-

forced, generating negative autocorrelation in return periods,

because temporarily ignoring the internal driver of the visit (e.g.

thirst) is far less dangerous than ignoring the diurnal cycle of the

external driver (e.g. predation risk).

Fourier analyses can efficiently highlight the types of periodic

return behaviours expected when memory drives movement

(Bar-David et al. 2009; Li et al. 2012; Riotte-Lambert et al. 2013). As

a complementary tool, wavelet analyses can identify of episodes dur-

ing which periodic behaviour is expressed. For example, if an ani-

mal alternates episodes of periodic behaviour with longer episodes

of aperiodic behaviour, Fourier analyses will detect the existence of

periodicity but will not characterise whether that periodicity occurs

uniformly through the data set. In contrast, wavelet analyses make

it possible to show when the periodic behaviour is expressed in a

long-term movement data set (March et al. 2010; Riotte-Lambert

et al. 2013).

In some contexts, such as marine systems, return points can be

difficult to detect directly. We are then challenged with the task of

identifying goal-oriented movements without knowing what the goal

is, or if it has been reached. In such cases, we can sometimes use

the structure of an animal’s movements to identify goal-oriented

movements. An animal’s net displacement might be compared to

the predictions of a random walk at multiple spatial scales and used

to identify the spatial scales over which orientation occurs (Benha-

mou 2006). Alternatively, a more mechanistic approach may enable

identification of local attractors based on a model of multistate ran-

dom walks (McClintock et al. 2012). When memory is at play, we

anticipate that oriented movements can operate at spatial scales

beyond the perceptual range of the animal (Mueller & Fagan 2008).

While long distance goal-oriented movements do not necessarily

require memory (e.g. tuna in open ocean may be able to hear

sounds 10s or 100s of kilometres away; Girard et al. 2004), in cases

where the scale of orientation are demonstrably much greater than

the perceptual range of the animal (e.g. Brooks & Harris 2008;

Papastamatiou et al. 2011), memory effects are more likely.

Once return points and return delays have been identified, an

individual’s behaviour can be analysed in a time-dependent fashion

(Fig. 4). For example, memory may be statistically identified by the

prevalence of least-cost paths between return points beyond sensory

range (Asensio et al. 2011). Similarly, memory may be expressed as

biases towards return points, which can be detected by fitting biased

correlated random walks to data from movement paths (McClintock

et al. 2012). For example, paths between key landscape features that

become increasingly direct as an animal gains experience provide

strong evidence of memory in movement processes (e.g. Papastama-

tiou et al. 2011). Given the difficulty of observing animals through

long-learning periods, relocating animals to novel environments may

prove exceptionally helpful in the identification and characterization

of movement processes.

Systematic searches as memory-driven movement without return

points

One qualitatively different manifestation of memory is the emer-

gence of ‘systematic’ searches in movement pathways (Table 1). For

example, an animal relying on systematic searches can adjust its

search radius based on previous information of the spatial location

of a movement target. In addition, memories gained during previous

foraging events would give rise to movement strategies that maxi-

mise, or at least increase, encounters with patches of similar size

and dispersion (Mueller et al. 2011a). As such, it would be worth

investigating whether one statistical indicator of memory could be

an improved match between the scale of searches and the scale of

resources as an animal gains experience. However, perceptual ranges

and habitat patterns need to be considered to exclude the possibility

that movements are simply a response to environmental stimuli

rather than memory (Brooks & Harris 2008).

Exhaustive systematic searches also require memory because ani-

mals must remember and avoid searching in previously visited areas

(e.g. Fronhofer et al. 2013). Thus, a nother good indicator of mem-

ory-driven movement is systematic avoidance of certain areas due

to perceived risks or delays in resource renewal. However, such

avoidance may be accomplished by marking behaviour, in which

case avoidance is not necessarily a memory-based process (e.g. Reid

et al. 2012). Detecting systematic avoidance is the logical inverse of
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the recursion analyses discussed above, and presents a challenging

analytical task.

THEORETICAL PERSPECTIVES: MODELLING AT THE MEMORY–

MOVEMENT INTERFACE

Insights from a diversity of modelling approaches

Recent research has demonstrated a variety of promising modelling

approaches for the connection of movement and memory

(Table S1). Roughly speaking, those modelling approaches can be

differentiated as having heuristic, mechanistic and phenomenological

dimensions. Often, models do not purely belong to one of these

three types, but mix different elements (Fig. 5).

Heuristic (or conceptual) studies help to describe broad causal

relationships that are independent of particular mechanisms. This

approach has been employed, e.g. to define a general paradigm for

movement ecology (Nathan et al. 2008) and to classify differences

in population-level spatial distributions in relation to individual

movement behaviours and resource dynamics (Mueller & Fagan

2008; Mueller et al. 2011b).

Mechanistic models are routinely used to investigate the specific

manners in which memory processes and movement are linked.

Agent-based models have proven particularly useful for the incorpo-

ration of memory-based movement decisions. Examples include stud-

ies of the connections between cognitive abilities and foraging success

(e.g. Boyer & Walsh 2010), investigations of the emergence of home

ranges via familiarity and memory effects (B€orger et al. 2008; Van

Moorter et al. 2009; Berger-Tal & Avgar 2012), and the potential to

infer individual memory capacities based on observed movement and

environmental data (Avgar et al. 2013a). Even more intricate system

simulations provide a tool for studying the contributions of memory

to complex movement phenomena such as animal migration (Tang &

Bennett 2010). An alternative mechanistic approach replaces agent-

based and system simulations with an Eulerian description of animal

movement. Rather than following many realizations of a stochastic

process that describe possible movement paths of individuals, the

Eulerian approach provides an approximate solution via a determinis-

tic system of equations that describe a density function for the

expected space use of individuals over time. Such deterministic mod-

els are expressed as advection-diffusion or integrodifferential equa-

tions that approximate a system of coupled master equations. While

the inclusion of memory in such an approach would be new, the

underlying mathematical structure of such Eulerian modelling

approaches is well established (see, for example Moorcroft & Lewis

2006). One promising area for further development may be to include

memory into Eulerian models via analysis of ‘step selection functions,’

which are mathematical expressions for the behavioural choices

involved in movement decision making as influenced by environmen-

tal covariates (Fortin et al. 2005) (Table S1).

Phenomenological models, which are effectively statistical in nat-

ure, seek to summarise observed movement patterns and to estab-

lish associations between variables without necessarily testing causal

relations. For example, such models have been used to detect cor-

(a) (b)

Figure 4 Analysis of movement in a time-dependent fashion, and especially for individuals newly introduced in an environment, can help identify the use of memory.

Scenarios with (panel a) and without (panel b) memory-based movement are illustrated. Panel (a) represents an increase in efficiency of the movement between return

points (black dots) with increased knowledge of the environment. Straight lines represent the most efficient movement (dashed lines). In complex environments, the most

efficient movement between return points may not be straight and could be better represented by least-cost paths.
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relations between space use and environmental variables (Fortin

et al. 2005; Barraquand & Benhamou 2008; Avgar et al. 2013b; Best-

ley et al. 2013). Inferring memory usage is more challenging, how-

ever, because memory processes interact dynamically with

movement and can never be observed directly. The application of

such statistical models to the study of memory and movement

requires first identifying pattern-based indicators of memory effects

(e.g. recursions – see previous sections) and, depending on the reli-

ability of those indicators, using their occurrence and intensity to

gain statistical inference regarding memory usage.

Recent models at the memory–movement interface involve vari-

ous combinations of heuristic, mechanistic and statistical models

(Fig. 5). For example, mechanistic and statistical approaches can be

used together to test whether memory partly explains observed

movement paths (e.g. Avgar et al. 2013a; Gautestad et al. 2013) or

to segment heterogeneous movement data into different, internally

homogeneous activity periods (e.g. resting, moving, foraging) that

can be more easily analysed (e.g. Morales et al. 2004). Hierarchical

modelling approaches, which account for observed patterns gener-

ated by putative hidden processes changing in space and time

(Patterson et al. 2008), could also be used here. For example, hidden

Markov models segment paths by mixing mechanistic modelling of

the movement process (as biased and/or correlated random walks)

with a statistical procedure for distinguishing and clustering the

component walks (Morales et al. 2004; McClintock et al. 2012). An

alternative segmentation can be accomplished using models that

mix heuristic and phenomenological perspectives to explore data on

residence time (i.e. the time spent by an animal in the neighbour-

hood of a location; Barraquand & Benhamou 2008). Movement

bouts so identified must be regrouped categorically based on resi-

dence time prior to analysis using mechanistic movement models.

Biological memory is an extremely complex and often poorly

understood phenomenon. Consequently, quantitative models

must abstract and simplify memory processes, leading to useful

approximations of the underlying biology. These approximations

will improve as these modelling approaches mature.

Advantages of particular modelling tools and techniques

Several modelling techniques show particular promise for use at the

memory–movement interface (Table 1, Table S1). For example,

machine-learning algorithms, such as artificial neural networks and

reinforcement learning, can be used to formulate decision processes

of animals faced with many internal and external cues (Dalziel et al.

2008; Tang & Bennett 2010). Such approaches have provided

insight into both the tension between long- and intermediate-term

memory and discussions about conditions under which spatial

cognition may emerge (e.g. Anderson 2000).

Hidden Markov and state-space models provide flexible frame-

works for accommodating the hierarchical structures necessarily

involved in modelling memory-driven movement (Table S1). Exam-

ples of such hierarchical considerations are the need to infer infor-

mation about unobserved processes from observed patterns

(Patterson et al. 2008) and the need to consider competing objec-

tives that may lead to switching among alternative behavioural states

(McClintock et al. 2012).

Experimental psychologists and neurobiologists have long consid-

ered Bayesian decision making as a plausible mechanism for the inte-

gration of hierarchical sources of information with varying levels of

uncertainty (K€ording 2007). Under some circumstances, simple linear

approximations, reminiscent of linear operators, may perform as well

as the more computationally demanding Bayesian processes (Dukas &

Lange 2009). A different approach requires explicit assumptions

about the spatiotemporal dependence of information resolution

(Farnsworth & Beecham 1999). Regardless of the modelling formula-

tion, explicit consideration of the hierarchical structure of information

is needed to successfully combine movement and memory.

The above issues highlight in broad terms the types of complexi-

ties that characterise memory and its inclusion in movement mod-

els. More specifically, these complexities may be decomposed based

on the definitions of memory provided above and in Table 2. At

the simplest level, spatial memory may be used to answer the ques-

tion ‘have I been here before?’ (e.g. Dalziel et al. 2008). When this

memory is coupled with a time stamp (i.e. a temporal attribute

memory), a substantially more complex question can be answered:

‘when was I last at a given location that is not my current location?’

Answering this question requires memorization of the spatial and

temporal relations between the individual and multiple goals (e.g.

Van Moorter et al. 2009). Spatially independent attribute memory

may be used to compare the expected utility of different possible

movements to the currently experienced value; this is a component

of many optimal foraging models but is readily expandable to mem-

ory-driven movement (e.g. Berger-Tal & Avgar 2012). In contrast,

spatially linked attribute memory can be used to answer questions

ranging in complexity from ‘what do I remember about my current

location?’ to ‘which is the least-cost path between multiple variable
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Figure 5 Triangular schematic representation of the relationships among

heuristic, mechanistic and phenomenological/statistical modelling approaches for

the study of spatial memory in ecology. Several relevant articles are positioned in

the triangle, illustrating the extent to which they include elements of the three

modelling approaches. References cited in this figure appear in the Supporting

Information (see Appendix A): 1: Avgar et al. (2013a); 2: Bar-David et al. (2009);

3: Benhamou (1994); 4: Benhamou & Riotte-Lambert (2012); 5: Bennett & Tang

(2006); 6: Berbert & Fagan (2012); 7: Berger-Tal & Avgar (2012); 8: Boyer &

Walsh (2010); 9: Breed et al. (2012); 10: Dalziel et al. (2008); 11: Fronhofer et al.

(2013) ; 12: Gautestad & Mysterud (2010); 13: McClintock et al. (2012);

14: Mills-Flemming et al. (2010); 15: Mueller & Fagan (2008); 16: Mueller et al.

(2011b); 17: Nathan et al. (2008); 18: Shaw & Couzin (2013); 19: Van Moorter

et al. (2009); 20: Wolf et al. (2009).
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food patches?’ To date, models of memory-based movement rely

on and implement many different aspects of memory. In future

efforts, much progress and clarity could be gained by explicitly

acknowledging the complexity and functionality of the modelled

memory mechanism, leading to tests of whether a specific

mechanism is both necessary and sufficient to account for a

particular movement pattern.

CURRENT CHALLENGES: DATA NEEDS AND QUANTITATIVE

OPPORTUNITIES

Specific data sets could accelerate research on memory-based

movement

When investigating the role of memory in animal movement, a key

challenge is that researchers have incomplete knowledge about the

individual’s information status at the beginning of the observation

period. Improved data sets may be obtained via at least three exper-

imental strategies. The first is to translocate individuals into novel

environments where they have no previous knowledge. While this

can be logistically challenging, researchers could take advantage of

conservation programs, such as reintroduction and translocation

programmes to establish new populations or displace problem ani-

mals (e.g. Fryxell et al. 2008; Wolf et al. 2009). A second approach

would leverage experimental manipulations undertaken in areas

undergoing rapid environmental change. Experimental addition or

removal of resources or movement barriers could provide useful

insights into animals’ use of memory. Third, researchers could tag

juveniles and monitor them as they develop (and, perhaps, return to

their natal site to reproduce), thus obtaining extensive data on ani-

mals’ movement histories (Hazen et al. 2012). This approach, in

combination with genetic identification and parentage analysis,

affords additional advantages including tracking of site fidelity

throughout ontogeny.

In addition to historical space-use data, ancillary data on animal

physiology and environmental properties may also provide insights

into how memory influences movement. Environmental data can

be important because it allows researchers to identify animals’ use

of landmarks, whereas physiological data can identify successful

foraging events that may prompt recursive movements (e.g.

Weimerskirch et al. 2007) or hazardous encounters that prompt

future avoidance. Such ancillary data would be most useful for the

study of memory-based movement if their temporal and spatial

scales match those of the movement observations (Avgar et al.

2013a), but aligning these scales of observation is not always sim-

ple. While there has been great progress in the remote sensing of

landscape data (e.g. chlorophyll, snow cover), the temporal and

spatial resolution of environmental data remains coarse relative to

the scale of movement data (Bestley et al. 2013; Papastamatiou

et al. 2013).

Research designs must consider spatial error in location estimates

and the spatial and temporal resolution of important covariates. For

example, coarser spatio-temporal resolution may be satisfactory for

satellite tracking of animals on landscape scales, allowing for longer

time records on a given battery. In contrast, other research ques-

tions, such as those focusing on the interplay between memory and

motivation, may require such fine scale data that only the smallest

relocation errors could be tolerated. Experimental studies of mem-

ory and movement, such as those used in bumblebees or humming-

birds (e.g. Osborne & Clark 2001), will be critical for disentangling

memory from oriented movement behaviours constrained by

individuals’ perceptual range.

Memory-driven movement affords complex mathematical and

computational challenges

Because memory is a complex cognitive process and the patterns it

affects are represented by multidimensional time-series data, accurate

representations of movement processes may require considerable

computational power, especially in agent-based models. Often, ani-

mal movement problems are decomposed into many sub-problems

that can be concurrently handled by high-performance and parallel

computing resources (e.g. Tang & Wang 2009). The degree of parall-

elization required depends on problem size, characterised by factors

such as spatio-temporal configuration, the number of individuals

modelled, the behavioural complexity of individuals and the number

of Monte Carlo simulations required. If movements can be affected

by both memory and interactions among individuals, many replica-

tions of interacting groups will be needed to gain insight into the

long-term expectation of space use. Overall, even modest increases

in behavioural complexity in memory-driven models may lead to

substantial increases in computational demands. Nevertheless, such

approaches allow for the investigation of individual variation in

exploratory behaviour that may be essential to understanding the

role of memory in movement. Careful consideration of the appropri-

ate parallel computing architecture and programming strategy will

facilitate exploration of complex movement models involving mem-

ory (Tang & Wang 2009).

In a similar vein, mathematical analysis of partial differential equa-

tion models arising from random walks may provide a useful path

forward. Such models can yield steady-state solutions equivalent to

a home range or territory (Moorcroft & Lewis 2006), but they

would be new to the memory-movement problem. One of the

major challenges associated with this approach is that complex

behaviours (such as discrete or continuous behavioural states, hier-

archical perception and context-dependent resource selection) are

difficult to capture in mathematical form. Further, these behaviours

may not yield steady-state solutions – especially in the face of tem-

porally and spatially dynamic resources. However, the nonlocal nat-

ure of this class of models should prove fertile ground for applied

mathematicians. Going forward, key opportunities for analyses

include development of relatively simple models that provide robust

predictions of short-term space use, and models that examine how

short-term expectations shift through time. Understanding the

mechanistic links between fine-scale movement models and broad-

scale shifts in short-term expectations will be a major goal of this

approach, increasing opportunities for modellers to move forward

when connecting to biological systems.

Models of movement that can accommodate interactions among

moving individuals, such as interference and information-sharing,

are challenging but essential for making the transition from individ-

ual-level issues to questions at the population- or species-levels.

Overall, memory-based models incorporating interactions among

individuals (whether intra- or interspecific) seem especially difficult

but of potentially great value, particularly as a means of exploring

the tension between individual and collective learning. Few models

have actually explored the effects of memory in this context, but

some conceptual frameworks exist (e.g. Sueur et al. 2011). An inter-
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esting opportunity would be to pivot from existing mathematical

models that can accommodate fixed perceptual ranges (such as par-

tial integrodifferential equations) to models where the perceptual

range and structure is flexible and can be modified to reflect the

benefits (or disadvantages) of collective learning. Game-theoretic

approaches, in which the relative fitness of different strategies could

be examined, should be especially beneficial here. Such approaches

could build on ideas in Noonburg et al. (2007), which raised the

game-theoretic question of how an animal might choose a

movement behaviour so as to maximise its fitness when there are

other players with similar goals. Biologging technologies can inform

these models, and there are now transmitting/receiving ‘business

card’ tags, which can identify when and where particular tagged

animals associate with each other (e.g. Holland et al. 2009).

Connecting models with animal movement data is a particular

challenge because the memory process itself is hidden. As with

many complex models, maximization of multi-dimensional likeli-

hood surfaces in memory-based movement models will be difficult,

with the possibility of local peaks or ridges dominating the process.

Recently, the method of data cloning (Lele et al. 2007) has been

developed to aid model fitting, and this approach makes it possible

to maximise complex likelihoods using a modified Monte Carlo

Markov Chain. Approximate Bayesian computation (Csill�ery et al.

2010) is another computationally intensive emerging area that seems

promising for parameterising memory-based movement models with

intractable likelihoods. With this technique, a metric describing an

animal movement pattern is defined, and parameters are modified

until the metric most closely represents the corresponding measure

as calculated directly from movement data. As we collect more data

at finer detail, we expect models to evolve from simple caricatures

to more realistic and complex depictions of spatial memory and

animal movement.

Functional navigation and mathematical representation of spatial

memory

In computational modelling of memory-based movement, substan-

tial progress towards a more robust representation of animals’ func-

tional navigation systems may be possible by borrowing approaches

from computational cartography (Slocum et al. 2009). For example,

memory-based movement models could employ a multi-‘layer’

approach, with each layer associated with a particular goal such as

food acquisition, mate finding or territory defence. Coupled with a

hierarchical decision-making system, such a layered approach to

modelling would require the animal to first decide which goal it

wanted to pursue, and then retrieve the appropriate layer. This

modelling approach would greatly facilitate exploration of how

moving animals prioritise the integration of information from differ-

ent sources and at different spatiotemporal resolutions based on

reliability and relevance. For example, desert ants in the genus

Cataglyphis employ several navigation mechanisms to return to their

nest and they are able to shift between these mechanisms based on

available sensory information (B€uhlmann et al. 2011). The biological

process of memory decay (Fig. 2) could also be represented

mathematically within this layered framework. For example, time-

dependent changes in the intensity and precision of spatial

memories could be included in mechanistic movement models

through their influences on, respectively, the strength and direction-

ality of movement vectors.

CONCLUSION

Although behavioural ecology, cognitive science, animal tracking

and computational and statistical ecology are all well-established

fields, movement ecology, at the confluence of these fields, is still

in its infancy. We have outlined new synergies arising among these

fields in studies of how memory influences animal movement. At

this interdisciplinary intersection, theoretical behavioural ecology

provides conceptual frameworks for exploring the interplay between

movement behaviour and memory. Cognitive science yields neuro-

logical and behavioural details that lend realism to this theoretical

framework. Advanced animal tracking technologies are providing

large amounts of detailed data with which this theoretical frame-

work can be confronted. Computational and statistical ecology are

developing the tools necessary for sensible and robust confronta-

tion. At this emerging research interface, as in many others, mean-

ingful progress requires in-depth interdisciplinary efforts. We hope

that this article will inspire such efforts to move the field forward

into new directions.
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