THE WL++ ENVIRONMENT FOR MODEL-DRIVEN ENGINEERING
OF CROSS-PLATFORM MOBILE APPLICATIONS

by

Blerina Bazelli

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

©Blerina Bazelli, 2014

Abstract

With the proliferation of mobile devices and the adoption of mobile applications
as the de-facto mediators for most daily-life activities, including communication,
shopping and edutainment, the systematization of mobile software engineering has
become an important research problem. Mobile-application construction must be-
come more systematic, flexible and adaptable, and less costly with reduced time to
market. Code-generation techniques based on domain-specific languages present
both opportunities and challenges for the construction of such applications. In this
thesis, we propose an abstract model to represent catalogue-style mobile applica-
tions and a graphical code-generation environment, namely WL++, for creating
such mobile applications, based on specifications of the application back-end data
model and its user-interaction behavior. Our framework enables the rapid develop-
ment of multi-platform mobile applications, relying on state-of-the-art technologies
such as Worklight and Backbone.js. More specifically, WL++ allows developers to
create diagrammatic models of the to-be-generated application’s logical model and
annotate them with information regarding the user interface widgets used to inter-
act with the model elements. Then, it produces a relational back-end for storing the
model data, a set of RESTful APIs for accessing and updating the back-end, and
a multi-platform application that relies on the IBM Worklight framework to access
the APIs and render the relevant data through the chosen widgets. We describe the
WL++ mobile-app generation framework and we illustrate its functionality with

three applications.

i

Acknowledgements

First, I would like to thank my supervisor Dr. Eleni Stroulia for her valuable guid-
ance throughout these two years of my research journey. With her expertise in the
field of Software Engineering, assistance and patience she gave me the necessary
motivation to accomplish more goals than I had initially imagined. The Master
Early Achievement Prize, travel grants and the several conferences I had the chance
to attend are the result of a great supervision combined with hard work.

[would also like to express my gratitude to my family and especially my fiancé
Nikos. Through their love, advice, and support I learned to make my own decisions
and follow my dreams.

Finally, I would like to thank IBM CAS Research Canada for funding this

project.

i

Contents

Introduction

1.1 Thesis Overview @ v i v v it e
1.2 Contributions e e e e
1.3 ThesisOutline e

Literature Review

2.1 Native & Cross-Platform Mobile Apps

2.2 Mobile Application Construction IDEs

2.3 The Model-View-Controller Pattern
2.3.1 Model-View-* Frameworks

2.4 Model-Based Code-Generation Environments
2.4.1 Domain Specific Languages
242 DSLDesigningTools
243 Code Generators e

2.5 Mobile Application Development Tools

The WL++ Application Construction Framework
3.1 Cross-Platform Applications with IBM Worklight
3.2 Modular User Interfaces with Backbone
3.2.1 Backbone Templating Engine
3.3 The WL++ Metamodel
3.3.1 The Logical Model of WL++ Applications
3.3.2 The Metamodel Definition
3321 Constraints
The Application Specification Plugin
The Process of Code Generation
3.5.1 Defining the Application’sData
3.5.2 Defining the Views and Navigations
3.6 Code GenerationEngine
3.6.1 The StringTemplate Templating Engine
3.6.2 External Libraries.
The generated Back-End
Application Code Structure
Reverse Engineering with WL++
3.9.1 Constructing Models from JSON Responses of RESTful
Web Serviceso
3.9.2 Constructing Models from XSD Schemas

ad d
e

ot
NN

v

4 Contact Manager: An Illustrative Example
4.1 Contact Manager vs. Employee Directory
4.1.1 Functionality Comparison
4.1.2 LOCComparison v v v v v v v v v

Evaluating the WL++ Framework

5.1 Physitivity: A Physical Activity TrackingApp
5.1.1 Physitivity vs WL++ Physitivity
5.1.1.1 Functionality Comparison

5.1.1.2 LOC Comparison

5.2 Hourly Rounds: A Patient’s Visiting App Operated By Nurses

5.3 Comparison of Applications in Terms of Complexity

6 Conclusions & Future Directions

64
74

74
77

81
81

87
93

95

List of Tables

2.1

4.1
4.2

Comparison of popular cross-platform mobile frameworks based
on the OS they support, developing language, IDE, Licence and the
type of the output application

Comparison of the Employee Directory app and the Contact Man-
ager app in terms of functionality
Comparison of the Employee Directory App and Contact Manager
App based on the Lines of Code (LOC)

Comparison of the Physitivity app with the WL++ Physitivity app
in terms of functionality
Comparison of the Physitivity app and WL++ Physitivity app in
terms of Linesof Code (LOC)
LOC of the functionality that has been implemented in Physitivity
but not generated in WL++-Physitivity
The manual effort needed to accomplish a requirement
Complexity comparison among the generated applications

Vi

List of Figures

f—

f—

o
—

98]
—
=

98]
—
oo

|78}

|78}

|78}

[SSRUSRISRINRIS RIS RIS RIS

LY LI L) L) W
—— O
W= O

[SS U]

USRS}

[SSRUSRUSRUNRIS RIS

O~ = LI —

—_——
N n

S 2 B2 P2 2 B 1 S b —

oo

~N N R W ot

o 0

Platform Choices (2011-2013) [1]

Comparison of MV* frameworks/libraries based on their size in kB
[23] . o e

The role of adapters in client-server communication [15]
The Worklight Mobile Browser Simulator
The interaction among Backbone components [31]
The Backbone Router
An example of an underscore template
Conceptual Model of catalogue-based applications
The ECore Metamodel Representation
A graphical editor is generated from a Metamodel by using the Eu-
GENiatool
GMF Dashboard Overview [27]
The WL++ Application Specification Plugin
LoginView
The set of buttons of the WL++ plugin
The Java classes (3.13a, 3.13c, 3.13e) and the corresponding
JavaScript Backbone entities (3.13b, 3.13d, 3.13f)
The resource set displayed in a tree view representing an example
graphical diagram composed of a Form View view
Model to Code Transformation with WL++
An example of a template being rendered by the StringTemplate
ENZINE e e e e e
The IBM Worklight Project Structure. Three environments have
been added (Android, Blackberry 10 and iPhone)
A subset of the API invocation response
The WL++ console populated with attributes retrieved from an API
Invocation Lo e e e
The date formats defined to determine if an instance value is type
ofDate
Manually defining the type of an attribute
The XMI generated based on the JSON response
The model generated from the APl invocation
The application diagram created for the movie database example . .
The properties section of the Form View
Screenshots of the application generated based on the model ex-
tracted from the APl invocation.
An example of an XML schema. (Source: http://www.
w3schools.com/schema/) v ...
The XMI generated based on the XML schema in Figure 3.28

Vii

3.33
4.8

49

5.2
5.6

The model collection created from the XML schema. Two more

attributes (time, myLocation) were manually added

Screenshots of the NoteApp application generated based on the

model extracted from the XSD schema

The local database where the information of the Note App applica-

tionisstored.o
XML data produced after the creation of two sample notes

A subset of the REST APIs generated by WL++ code generation

ENEINE o e e e e

The Contact Manager app generated with WL++ (a-c) and the Em-

ployee Directory app [S](d-e)

Physitivity (a-c¢) and WL++ Physitivity (d-f)
Hourly Rounds before the manual modification (a-d) and after (e-f) .

viii

Chapter 1

Introduction

The shift from utilitarian cell phones for communicating through phone calls and
text messages to stylish devices with the capabilities of a personal computer hap-
pened in a very short time frame. The ubiquitous availability of these devices has
made them the primary mode of accessing information and services on the Internet.
According to Pew [32] as of May 2013, 63% of adult smartphone owners (in North
America) use their phones to go online and 34% of smartphone Internet users go
online mostly using their phones, and not using some other device such as a desktop
or laptop computer.

Due to the broad usage of mobile devices (e.g., smartphones, tablets), providers
are highly motivated to deliver mobile applications to enable users to access their
information and services. The question then becomes choosing a platform on which
to deliver these applications. Android and iPhone owners are equally common
within the cell-owner population as a whole (Figure 1.1), although this ratio dif-
fers across various demographic groups [1]. Given this market picture, applica-
tion developers are highly motivated to deliver their applications at least on both
platforms. If one were to follow traditional software-engineering methodologies,
mobile-application development would need to comply with the native program-
ming languages of each target operating system: for instance, Android applications
require the knowledge of the Java programming language whereas iPhone appli-
cations are developed in Objective C. Parallel development on multiple platforms
implies increased effort, higher cost, and more difficult maintenance and evolution,

challenges that get exacerbated by the highly-competitive mobile-app market.

Cell owner platform choices, 2011-2013
% of cell phone owners who say their phone is ...

B0%
60% - 1%
4%
2%
0% - 2% s .
10% 20%
20%
15%
19%
May 2011 February 2012 May 2013

WiPhone M Android Blackberry Windows

Source: Pew Research Center’s Internet & American Lite Project April 26-May 22, 2011,
January 20-February 19, 2012, and April 17-May 19, 2013 tracking surveys. For 2013 data,
n=2,252 adults and survey includes 1,127 cell phone interviews. All surveys include
Spanish-language interviews.

Figure 1.1: Platform Choices (2011-2013) [1]

Technologies such as Phonegap' and IBM Worklight> offer middleware ser-
vices on which developers can create dynamic web-based applications that can be
compiled into platform-specific code. These applications are in fact dynamic web
applications that run on the device’s internal browser (web view); they look and
feel like native applications due to the aforementioned technologies [33] that enable
the use of native User Interface (UI) widgets and access to the device’s hardware
components (e.g., camera, accelerometer, GPS etc.). Although native applications
provide full access to the device’s features and offer better user experience in terms
of performance [6], cross-platform applications are a valid choice when the appli-
cation user-interaction model is relatively simple, the application does not need to

meet extremely fast response times, and development resources are at a premium.

1.1 Thesis Overview

The recent rise of frameworks such as Phonegap and IBM Worklight, technolo-

gies such as HTMLS5, CSS3 and JQuery Mobile, offer great potential in the field of

http://phonegap.com
http://www—03.ibm.com/software/products/en/worklight

cross-mobile application development. Also, given the number of mobile applica-
tions that already exist, one could say that they play an important role in our lives.
However, developing mobile applications is a time consuming process and needs
developers with expertise. By combining all the aforementioned technologies, we
would be able to build a framework that could allow mobile applications developers
to create cross-platform mobile applications easily and efficiently.

This work focuses on a broad family of applications namely catalogue-style ap-
plications. This category of applications exhibits to have several commonalities
such as data insertion, review, deletion etc. Focusing on this class of applications
enables us to develop a model of the application data and the services manipulating
this data. Consequently, we assume that the data elements are (a) structured en-
tities consisting of multimedia attributes, and (b) collections of these entities. We
further postulate that the most important (and typically desired) features for these
applications are (a) creation of new entities to be added to application repository,
(b) retrieval of (potentially escalating) entity details given an entity identifier, (c)
faceted search (given a combination of entity properties and desired value ranges
for them return a collection that matches the input criteria), and (d) entity-state
manipulation through RESTful APIs accessing and updating selected instances.

Roy Fielding, in his dissertation [10] explained REST (Representational State
Transfer) as an architectural style that relies on a stateless and simple client-server
communication. REST takes advantage of the existing HTPP protocol and client
applications may send HTTP requests through this protocol to a RESTful web ser-
vice in order to create, retrieve, modify, or delete data. These actions are performed
through predefined methods namely GET, POST, PUT and DELETE. Moreover, a
RESTTful web service relies on resources which are conceptual entities represented
by nouns. The aforementioned methods may change or not an entity. For instance,
the GET method only retrieves entities and therefore cannot change its contacts
whereas the POST, PUT, and DELETE methods are able to change existing entities
permanently. Other architectural styles include DCOM (Distributed Component

Object Model)?, CORBA (Common Object Request Broker Architecture)?, SOAP
(Simple Object Access Protocol)’ to replace DCOM and CORBA, RPC (Remote
Procedure Call)® etc. A RESTful service is usually preferred especially when it
comes in messaging frameworks for mobile web services; a REST mobile web
server (MWS) outperforms a SOAP MWS, in terms of server utilization and re-
quest waiting time [2], and in terms of efficiency and scalability [26]. Furthermore,
RESTful services allow the transmission of different data formats, including JSON,

which is more lightweight than XML which is typically transmitted through SOAP.

1.2 Contributions

To support the systematic development of such multi-platform applications, first
we propose an abstract model describing catalogue-based applications and second,
a code-generation environment integrated within the Eclipse IDE namely WL+ +.
The target audience of this framework is developers. Therefore, WL++ aims in as-
sisting developers in generating the application’s front-end user interface, its local
and back-end storage and the RESTful APIs necessary for the above functionalities.
Furthermore, it is also capable of generating mobile clients that can be deployed in
multiple platforms based on existing back-ends. The plugin user interface is com-
posed of an editing area and a set of predefined widgets. Through drag and drop
actions of widgets into the editing area users are capable of creating links among
components in order to build the proper diagrams that describe the application’s
architecture. Then, the applications diagrams are converted into source code, in a
model-driven engineering process. Users are also able to either generate mobile
applications that are deployed locally or applications accompanied by back-ends.
Furtheremore, WL++ can take as input an existing back-end service in the form of
the APIs it uses to access the back-end and construct the modeling part of the ap-

plication diagram in a reverse engineering process. Finally, the code-construction

3http://technet.microsoft.com/en-us/library/cc958799.aspx

*http://www.corba.org/

Shttp://www.w3.org/TR/soap/

Shttp://technet.microsoft.com/en-us/library/cc787851 (v=ws.10)
.aspx

framework includes a general monitoring service that observes the API calls and
the data exchanged between the application and the back-end server. This data is
optionally stored into a database in JSON format, in order to be consumed by a
downstream domain-specific analysis-and-recommendation algorithm. The moni-
toring component could be used to forward recommendations as push-notifications
to the mobile application. Consequently, this work makes three important contribu-
tions:

First, it proposes a modeling language for specifying the data models and the user
interaction of catalogue-style applications.

Second, it offers an integrated environment for enabling developers to specify and
generate their applications.

Third, it evaluates this model-driven methodology with three example applications:
a contact manager application to store contacts information, an application to keep
track of one’s daily physical activity and an application operated by nurses when

visiting their patients.

1.3 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 reviews the background
of this work, in terms of the technologies that have given rise to the popularity of
mobile web-based applications and the related research on systematizing the de-
velopment of mobile applications. In Chapter 3, we describe the architecture and
the tools based on which the framework was built. We also present the features of
WL++ and how the input application model is translated into the desired source
code. In Chapter 4 we describe the process of generating a contact manager applica-
tion by using the WL++ application specification plugin. The process of generating
two additional mobile applications (Physitivity and Hourly Rounds) is described in
detail in Section 5. Finally, we conclude with a discussion about our future plans in

Chapter 6.

Chapter 2

Literature Review

In this chapter, we discuss the related research by starting with an overview of the
differences between native and cross-platform mobile applications (Section 2.1).
Then, we introduce and compare the existing frameworks used to deploy cross-
platform applications into different platforms (Section 2.2). Next, we describe the
Model-View-Controller pattern and highlight the importance of applying it when
developing web applications (Section 2.3). Finally, we introduce the concept of
Domain Specific Languages (DSLs) and mention several popular DSL designing
tools (Section 2.4). Finally, a discussion about code generation tools (Section 2.4.3)
follows along with several projects motivated by the objective to support the devel-

opment of both native and cross-platform mobile applications (Section 2.5).

2.1 Native & Cross-Platform Mobile Apps

Large software providers, such as Google, Apple, and Nokia to name a few, have
been competing against each other in offering Software Development Kits (SDKs)
to support developers in building mobile applications on their platforms. Typically,
each one of these SDKs includes a device emulator for testing purposes. An SDK
assumes expertise with a single programming language and produces mobile appli-
cations that can only be deployed on the corresponding platform. For instance, to
develop applications targeting the Android platform, developers should download
the Android SDK and be fluent in Java. On the other hand, the development of

iPhone/iPad applications requires the download of the Xcode IDE and the knowl-

edge of the Objective-C programming language. This means that developers dedi-
cate some cognitive effort in order to become familiar with its underlying program-
ming model. Although, native applications are able to take full advantage of all the
device’s features and thus potentially offer a better user experience, they are funda-
mentally limited in their deployment scope and consequently in their adoption.

The operating system market share changes rapidly and therefore it is diffi-
cult, practically impossible, to predict which operating system(s) will become more
prevalent even in the near future [17]. It should also be noted that the operating
systems’ market share may change per region making the decision of what oper-
ating systems to support even harder. With that being said, in the case where an
application aims to be used by a large population, ideally it should be developed to
run on at least the top three or four dominant operating systems.

However, developing an application for multiple operating systems takes a sig-
nificant amount of time as the application must be developed and tested multiple
times. It also requires either developers having multiple skills (i.e., able to pro-
gram in different programming languages) or several teams of developers working
on each application separately. To make matters worse, multiple applications are
more difficult to be maintained. Finally, when there is a need for an update, changes
should be implemented and send to all the operating systems separately whereas in
the web-based applications case changes are implemented much faster and updates
are sent to all the devices at the same time regardless their operating systems.

It is only relatively recently that cross-platform development tools, such as
Phonegapl, became able to access the hardware of mobile devices, such as ac-
celerometer, camera and GPS. This ability has been instrumental in the adoption
of the cross-platform mobile-application development practice. At the same time
the overall functionality and capabilities of these tools have been continuously im-
proving. One dimension of improvement arises from the fact that the underlying
technologies leveraged by these tools, (i.e., HTMLS5, CSS3, and JavaScript) are con-
tinuously improving. In addition, most cross-platform tools, including Phonegap,

can be extended with special-purpose plug-ins, written in the native programming

http://phonegap.com/

language of each target platform, to leverage each platform’s specific features. The
Phonegap community has been very active in this regard and a wide variety of plug-
ins have already been implemented. As an example, there is a plug-in for Android
devices which produces native notifications; the generation of these notifications
and their context are controlled by Phonegap in JavaScript. Finally, substantial
progress has been made in developing user-interaction extensions that imitate the
look-and-feel of purely native applications, (i.e., JQuery Mobile?, Sencha Touch?,
and app-UI*) and techniques to improve the application responsiveness (i.e., with

image preloading, and hardware acceleration).

2.2 Mobile Application Construction IDEs

In Table 2.1 we present a list of cross-platform mobile application tools, with
Phonegap, Rhomobile and Appcelerator being the most popular among them [19].
While Phonegap and Rhomobile follow a similar philosophy, Appcelerator differs
significantly in terms of the way it accesses native features through a JavaScript
API and the type of the generated application (web-based vs. native). IBM Work-
light is a full mobile application platform built on top of Phonegap. The advantages
of Worklight over Phonegap include the application server, a mobile-browser sim-
ulator and a set of adapters used to achieve the communication of an application
with a back-end. The commonality among the first three listed frameworks is the
fact that the final application is a web-based application although they offer the
ability to generate hybrid and native applications by using programming languages
specific to each platform (e.g., Phonegap applications can take advantage of native
features through plugin developed in the targeted platform language). On the other
hand, as mentioned before, Appcelerator Titanium, MoSync, and ifactr (based on
Xamarin), produce as output a native application. In fact, although Appceletator
supports four platforms to date, the way it has been developed makes the support of

more platforms harder.

2http://jquerymobile.com/
3http://www.sencha.com/products/touch
4http://triceam.github.io/app-UI/

Framework Mobile OS Support Language IDE Dpe];iris;);;rce f;, i’]:?(:::?:"
iPhone, Android, Depending on
Blackberry, WebOS, HTML, CSS, the IDE Apache Public,
Phonegap Windo:'-g Mobile, Javascript supported II)_‘icence v2 Web-based
Symbian, Bada by the OS
Rhomobile Tone, Android Jafg;;fs&)y RhoStudio MIT Web-based
iPhone, Android,
IBM Worklight Windows Mobile, 1ML 55 Folipes No Web-based
Blackberry avascrip
iPhone, Android, Apache Public
Appcelerator Titanium Windows Mobile, Javascript Titanium Studio II)_‘icence V2 ’ Native
Blackberry
iPhone, Android,
MoSync Windows Mobile, C/IC++ Eclipse GPL v2 Native
Blackberry, Symbian
iPhone, Android,
ifactr Windows Mobile, C# Visual Studio No Native
Blackberry, Symbian

Table 2.1: Comparison of popular cross-platform mobile frameworks based on the
OS they support, developing language, IDE, Licence and the type of the output
application

Cross-platform applications require less effort and fewer resources than native
applications for their development and maintenance; consequently they tend to be
less expensive than their native counterparts. Furthermore, technologies such as
HTML, CSS and Javascript are widely used and therefore it is much easier to
find skilled developers who are familiar with them that it is to find developers
with expertise in each native technology stack. These are the main reasons why
multi-platform application development is beginning to emerge as the more popu-

lar mobile-application development paradigm.

2.3 The Model-View-Controller Pattern

Without using the right tools and applying the proper architectural patterns usu-
ally web applications become difficult to debug and maintain as the code grows.
This usually leads to less efficient writing and repetitive code. The Model-View-
Controller (MVC) concept was introduced in 1988 as an extremely useful software
engineering pattern used to build user interfaces in Smalltalk-80 [21].

According to the MVC architectural pattern, any application (desktop, mo-

bile and/or web-based) can be structured into three main components (Model(s),

View(s), Controller(s)). The application’s models represent the application’s data.
Views are responsible for the data to be displayed. A view may be composed of
UI components such as buttons, input forms, date fields etc. and allows users to
interact with the application. Moreover, multiple views can be developed as nested
sub-views within a single view. This is considered as a good practice as it allows
smaller views to be reused within the same or across applications. Finally, con-
trollers handle the user input and update the proper models when necessary.
Although the concept remains the same, there is a variance of implementations
of the MVC pattern. In the Active Model MVC pattern, when the model is changed,
it notifies the proper views whereas in the Passive Model MVC pattern, the model
does not take any action and the Controller is responsible to notify the views when
a model changes. In the first case, we have the Observer Synchronization according
to which multiple views share a single data model. The View acts as an Observer to
the Model and therefore, when the Model is updated, the View is notified regarding
the change and then requests the new data [13]. In the second case, the controller
needs to have a reference of the views to be updated (Flow Synchronization) [12].
When the MVC pattern is not applied in the development stage of an applica-
tion the aforementioned objects tend to be tightly coupled. There are significant
benefits regarding the MVC pattern. First, it decouples views/models by allowing
the controller taking care of events that may indicate data changes and thus, notify
the proper views to change as well by displaying the modified data. With that be-
ing said, MVC also allows the development of multiple user interfaces without the
need of modifying the business logic. The code is easily debuggable and maintain-
able as although user interfaces may change over time the main functionality of the
application usually remains the same. Furthermore, by applying the MVC pattern,
a project could be developed by a team of developers where small groups could
work on the User Interface, Models and Business logic (Controller). This tech-
nique allows teams to develop a piece of software without the need to know all the
requirements from the initial phase of the project. For instance, the business logic

can be developed even if the user interface requirements are not fully delivered.

10

2.3.1 Model-View-* Frameworks

As mentioned before, there is a wide variety of patterns such as MVC, (Model View
View Model) MVVP, (Model View Presenter (MVP). Generally, the Model and
View components remain the same across all these patterns. The last component
however, may be a Controller (e.g., MVC), a Presenter (e,g., MVP) or anything that
works best for the developer. In this case we have the Model View * (MV*) pattern.
JavaScript frameworks do not usually follow the MVC pattern in its strict definition
and therefore they belong to the category of MV* frameworks.

There are several such MV* client side JavaScript frameworks/libraries (e.g.,
Angular.js, Backbone.js, knockout.js, Ember.js) developed for single page web ap-
plications. Angular.js is also referred as MVW where W stands for "whatever works
for you" [24]. However, depending on the application to be developed some frame-
works may be more suitable than others. Generally, before deciding on what frame-
work one should use the following factors may be considered: 1) the amount of
AJAX calls (communication) with a back-end, 2) the structure’s similarity with the
back-end (a RESTful service composed of classes that may represent the models
on the client side), 3) event-binding (views are notified on model change events
and automatically adapt), 4) dependence on other libraries, 5) documentation and
strong community that could support developers, 6) evolution and improvement
over time (e.g., bug fixes, new features). McKeachie [23] compared the most popu-
lar JavaScript MV* frameworks in terms of maturity, community, size, dependency
etc. The maturity of a framework is usually determined by factors such as the num-
ber of users, the documentation (how often it is updated), how stable is the API
etc. Taking into account these factors, Backbone.js seems to be the most mature
framework followed by Angular JS, Knockout and Ember.js. From the community
perspective McKeachie considered as a good factor the GitHub watchers indicator.
Based on that, the most established frameworks are Backbone.js and Angular JS.
Another factor that may play a role when deciding on which framework fits one’s
needs is its size (since these frameworks may reside on the client side, the loading
time is important as a framework with few lines of code is loaded much faster).

Some frameworks have strong dependencies on other libraries whereas others not

11

(while allowing the user to import the libraries of their own preferences) and there-
fore are more lightweight. In Figure 2.1, Backbone.js, Spine, Knockout and CanJS
are only a few kilobytes and that is the reason why they are usually referred as li-
braries and not frameworks. On the other hand, Ember, Batman and Angular.js are

considered more as frameworks rather than libraries.

SIZE (ke mIN-GIID)

3

2
W
; I I

AMGULARJS BEACKBODME BEATMAMN CANJS EMEBER KHOCKOUT SPIME

B o

Figure 2.1: Comparison of MV* frameworks/libraries based on their size in kB [23]

2.4 Model-Based Code-Generation
Environments

In this section we briefly explain what a Domain Specific Language [37] is and
what are its benefits over a General Purpose Language. Then, we mention few
Model-To-Code code generation environments such as XPand, Acceleo and Xtext

and explain how the models defined by developers are translated into source code.

2.4.1 Domain Specific Languages

A Domain Specific Language (DSL) is a language focused on a specific domain
space [37]. Therefore, it is only worth using it when solving a problem that be-
longs in the domain that the DSL is designed for [11]. Domain specific languages
have become very popular. The CSS markup language, HTML, SQL and MATLAB
are few examples of the plethora of DSLs that exist and are broadly adopted and
used nowadays. In order to design a DSL, it is important first to analyze in detail

the application domain by extracting all the features (common and less common

12

(application specific)). Defining a new DSL has advantages and drawbacks; first,
although DSLs enhance quality, productivity, reliability, maintainability, portability
and reusability of the code, there is a cost regarding the designing and the imple-

mentation as well as testing the DSL in multiple case studies.

2.4.2 DSL Designing Tools

Tools that support the development of DSLs can come in a form of either textual
syntactic editors or graphical editors. Some textual syntactic editors include Xtext>,
EMFText® and MPS’. These tools allow developers to define the text syntax for their
own DSLs from an ECore® metamodel and offer several features such as syntax
coloring, value validation and quick fixes proposals. Apparently, these editors have
not been developed as standalone but are usually tailored as external plugins to
existing IDEs such as Eclipse (Xtext, EMFText) and IntelliJ IDEA® (EPS).

Besides the textual editors through which users can describe an application
model via a DSL, there are many Graphical Editors (e.g., GMF, MetaEdit+, AToM,
Spray) that support the description of application models through a graphical repre-
sentation of the specific DSL'’s features. There have been efforts to compare popular
graphical DSL editors; however, the results vary as each graphical editor exhibits
to have advantages/disadvantages over other competitors. Beatens et.al. [3] com-
pared three DSL graphical editors (GMF, MetaEdit+ and AToM) in terms of their
architecture and development process. Both MetaEdit+ and AToM are standalone
applications whereas GMF is an Eclipse plugin. Also, AToM and GMF are free
and can be adopted mostly by researchers whereas MetaEdit+ is offered through a
license and therefore is more suitable for industrial purposes. For our framework
we chose to use GMF as it is an open source tool and can be used within the Eclipse
environment (which we were already familiar with). Other studies [38] revealed
that Spray would be a great solution for research purposes because it is open source

and has a strong community that supports and keeps developing it. Furthermore,

Shttp://www.eclipse.org/Xtext/
Shttp://www.emftext.org/index.php/EMFText
Thttp://www.jetbrains.com/mps/
dhttp://www.eclipse.org/modeling/emf/?project=emf
http://www.jetbrains.com/idea/

13

Spray is also built on top of EMF just like the GMF tool. On the other hand, Mag-
icDraw may be a good solution for industrial environments. It is offered through a
license, is well-documented and has an easy-to-use user interface.

Finally, tools for developing programming languages and Domain Specific Lan-
guages include Xtext'? and tools to generate code based on the DSL include Xtend'!
and Acceleo!'?). The aforementioned frameworks/toolkits use an editor that requires
the user to insert several commands based on the DSL specified in order to gener-
ate the desired output. The translation of these commands to actual code (output)
is done through tools such as Xtend and Acceleo. Xtend also offers a simplistic
way to write Java code which later is transformed into actual Java code. However,
both Xtend and Acceleo are able to perform model to text transformations. More
specifically, they rely on templates which a developer created and code is injected
in these templates according to the application models. They may get as input an
Ecore Metamodel and generate any type of files (.java, .txt, .html etc.) according to

the templates.

2.4.3 Code Generators

Model Driven Engineering techniques aim to generate code from a high level
model which is described in a DSL. Code Generation Environments serve as tools
that take as input the high level model (either in a textual or diagrammatic form)
and generate the desired code. However, the type of the output (generated code)
can only be determined by the developer and therefore, code generation tools work
based on templates. For instance, we suppose that we have developed a DSL for an
online shopping website. To represent a product, we use two attributes: name and

price. We define such a model using the following syntax:

Product [
name:String,
price:Double

W b =

]

Ohttp://www.eclipse.org/Xtext/
Uhttp://www.eclipse.org/xtend/
2http://www.eclipse.org/acceleo/

14

Then, the developers decide that the above code must be transformed into a
Java class. Therefore, through specific rules, the components of the DSL must be
associated with the desired components of the to-be-generated Java class through a

template which would be represented by the code snippet below:

I |class <<this.name>> {

2 <<FOREACH attribute AS attr ITERATOR it>>
3 private <<attr.type>> <<attr.name>>;

4 | <<ENDFOREACH>>

501

The output then would be a Java class according to the template along with the

information retrieved from the instance model defined in the DSL:

1 |class Product {
2 | String name;

3 | Double price;
4|}

In order to perform model to code transformations, one would need a code
transformation language tool such as XPand'?, Xtend'* or Acceleo'®. XPand and
Acceleo are offered through the Eclipse Model To Text Project (M2T). All those
tools are able to parse the model and based on specific templates to give the desired

output.

2.5 Mobile Application Development Tools

There are several mobile app development tools where each one has different goals
to accomplish. Cabana for example is a multi-platform mobile development sys-
tem developed to be used by students in introductory computer-science courses [9].
Students are able to create cross-platform mobile applications by modeling them
as a set of nodes, connected to each other. The nodes represent screens, buttons
and custom code modules responsible for the applications’ logic, which must be

implemented in JavaScript. Although, Cabana meets its educational/pedagogical

Bhttp://www.eclipse.org/modeling/m2t/?project=xpand
Y http://www.eclipse.org/xtend/
B http://www.eclipse.org/acceleo/

15

objectives, its features do not provide sufficient support for the development of
real applications. First, its user-interaction model in terms of a screen-navigation
graph is limited and makes the development of complex entities difficult. More
importantly, however, it does not support the generation of back-ends, which is an
essential part for the majority of mobile applications.

The work closest to ours is MD?, a model-driven approach for cross-platform
application development [16]. MD? defines a domain-specific language in terms
of which the to-be-generated application is represented as a set of nested models.
The language was developed in Xtext and therefore, the tool used to generate the
code is Xtend. Then, source code is generated for Android and iOS platforms
through the Android and iOS engine respectively. Furthermore, a back-end (Java
Service) is generated for the applications with capabilities of simple CRUD (Cre-
ate Retrieve Update Delete) operations. This gives the ability of communication
between the application and the local/remote back-end. The MD? framework is
clearly motivated by similar objectives as our work. However, it adopts a different
code-construction methodology that involves two different compilers for the two
target platforms. This decision implies that MD? covers fewer platforms than our
framework, requires more complex application modeling, and can potentially result
in better performing applications with more varied and versatile look-and-feel.

On the other hand, our WL++ framework focuses on a particular class of ap-
plications, with fairly simple interaction constraints which can be met by adopting
a common middleware layer that can be compiled into more platforms. The end
users of our tool are developers; we therefore took into consideration the fact that
the generated code must be understandable and maintainable over time. To that end,
WL++ adopts Backbone.js'®, a JavaScript framework that enables the clean sep-
aration (and smooth integration) of user-interface from (with) business-logic con-
cerns. Also, the generated source code includes comments to assist developers in
making further changes. We believe that the capabilities of cross-platform frame-
works have been expanded and therefore applications generated by these tools are

becoming more competitive to native ones. Besides, the code base that is shared

http://backboneis.org/

16

among different platforms (Android, iOS, Windows) makes them popular by tar-
geting larger groups of users. Finally, through WL+ +, developers can also generate
mobile clients based on existing back-ends, a functionality that is missing from
MD?2.

Ribeiro et al. [29] developed a DSL for Mobile Applications, namely XIS-
Mobile. Following the MDD approach, they extended the XIS UML profile project
through which developers can model web applications [8]. According to the XMI
Mobile approach, a native application can be generated by defining four major
views: Entities View (that represent the entities of the application), UseCases View
(responsible for the operations that could be performed on the data), Architectural
View (allows the connection of the application with external entities/services) and
the User-Interface View (where navigations and user interface components are be-
ing defined). Through the XIS-Mobile language, simple native applications target-
ing the Android and the Windows Phone platforms are generated. In their work,
the evaluated their language by developing a To-Do List application. However, this
work is still in its very initial steps.

Botturi et al. [4] tried to solve the problem of interoperability of mobile appli-
cation by extracted the common features of several mobile application platforms
(Android, Windows Phone, i0S). Therefore, they attempted to design a single ver-
sion of an application that could eventually be translated into the a platform specific
application (e.g., Android) by using Model-Driven engineering techniques. So first,
developers need to specify the structural, behavioural and navigational aspects of
the to be generated application. Then, transformation rules map each platform inde-
pendent component to a platform specific one. Therefore, the generated application
is also a native application and several transformation rules for each platform should
be created.

Currently, there is a plethora of mobile applications available in the market.
The available SDKs allow the community to develop applications at a rapid pace.
Gasimov et al. [14] examined the existing mobile applications and categorized
them into four major categories based on their purpose: (a) transaction, (b) con-

tent dissemination, (c) social networking, and (d) personal productivity and leisure

17

based. Moreover, they mentioned the main challenges regarding the development
of mobile applications (power consumption, cross-platform compatibility and soft-
ware quality) and proposed the idea of standardization of mobile hardware/software
protocols [18]. Our WL++ framework is generally targeted towards personal pro-
ductivity and leisure applications and has been inspired by two different mobile
applications that our group had already developed, before embarking in the effort
to systematize mobile-application development with a framework. More specifi-
cally, we have already implemented two multi-platform self-management mobile
applications for e-health, namely EASI and Physitivity [36], and it is on the basis

of this experience that we are developing WL++.

18

Chapter 3

The WL++ Application
Construction Framework

In this chapter we discuss the software architecture of WL++ and how this architec-
ture emerges from the three major components it integrates. The first component is
IBM Worklight, a comprehensive cross-platform mobile-application development
and deployment environment (Section 3.1). The second component is Backbone,
a framework that defines the organization of the produced mobile applications, in
a manner that should facilitate the process of extending and maintaining them in
the future (Section 3.2). Finally, the third component is our own WL++ appli-
cation modeling plugin, that relies on the Graphical Modeling Framework (GMF)
for designing and constructing mobile applications. In Sections 3.3 and 3.4 we
explain the metamodel that led to the construction of the WL++ plugin and the
clusters of components it includes. Next, we present the code generation engine
of WL++ along with the templates and external libraries used to generate cross-
platform applications with supporting back-ends (Section 3.6). Section 3.7 and
Section 3.8 describe the back-end generated and the code structure of the mobile
application respectively. Finally, Section 3.9 lists the steps to be followed in or-
der to generate a mobile application from an existing back-end through a reverse

engineering process.

19

3.1 Cross-Platform Applications with IBM
Worklight

IBM Worklight is a tool designed to support multi-platform application develop-
ment. To that end, it provides an intuitive structure for cross-platform applications.
We chose the Worklight IDE as it is a full mobile application platform leveraging
a powerful Javascript library (Phonegap) through which it accesses native features
of the mobile devices. Phonegap has been broadly adopted by cross-platform mo-
bile application developers as it supports a wide variety of platforms. The IBM

Worklight framework is composed of several components:

* Worklight Studio

It allows the development of native, hybrid and standard web mobile appli-
cations. The Worklight framework is built on top of Phonegap, a Javascript
library also known as Cordova. Therefore, it supports all the platforms sup-
ported by Phonegap (e.g., Android, i10S, Windows). Phonegap is a well doc-
umented library that allows the access to devices’ APIs through native code
and there are already plenty of open source mobile applications developed
based on that. Worklight Studio also offers a “What You See Is What You
Get” (WYSIWYG) editor, which allows developers to preview the HTML

pages before they are complied in a real browser.

* Worklight Server

It allows the communication between the mobile application and the remote
back-end by using adapters. These adapters belong to the server-side of the
application and serve the purpose of sending/retrieving data from back-ends
from/to the client application. Adapters are composed of several procedures
(functions) being invoked by the client application when a communication
with a back-end is required. Then, the back-end returns the data which is
received within the adapter and finally transmitted in the client application
(Figure 3.1). Worklight gives the option of choosing among four different
adapters: (a) HTTP adapter, (b) SQL adapter, (c) Cast Iron adapter and (d)

20

App

JMS adapter. The HTTP adapter is used in cases where RESTful or SOAP
services need to be invoked whereas the SQL adapter is used when there is not
a middleware between the application and the external database. Therefore,
it is developed to execute SQL queries in order to perform operations such as
insert, update, delete etc. Finally, the Cast Iron can be used to retrieve data
from enterprise data sources and the JMS adapter allows the communication

with a JMS-enabled messaging provider.

Worklight Server
Procedure
— %
Procedure cell
JSONHTTP
JavaScript Back-end
Code application
Response JSON M‘TOCEE;? e Back-end format|
JSONHTTP (if necessary)
Auto-conversion
JSON Optional XML 16 XML Back-end format
XSLT (if necessary)
T

Figure 3.1: The role of adapters in client-server communication [15]

Worklight Device Runtime Components

Although Phonegap offers the ability to access native device features across
multiple platforms through a single code base (HTMLS, CSS3, JavaScript),
IBM Worklight goes a step further by providing significant advantages over
using only the Phonegap library to build cross-platform mobile application.
More specifically, Worklight integrates security features by having an on-
device encryption and offline authentication. Also, the run time skinning
feature allows developers to adapt the application in run time accordingly
depending on the mobile device it runs on (in terms of operating system,

screen resolution etc.).

Worklight Console

Through the Console, developers can view their deployed applications

21

along with their environments. By adding a new environment developers
are able to view the application through the browser on a web simulator
associated with the added environment (Android, 10S etc.) (Figure 3.2).
Each simulator has different properties such as device’s dimensions and
therefore developers can use these properties to fully test their application
on different devices. Furthermore, developers can also test the Cordova
API (accelerometer, camera, geolocation, network etc.). For instance, to
test the accelerometer in case of an accelerometer implementation devel-
opers can set the proper values through the console and then check the
simulator’s response. Finally, the console allows the addition of several sim-

ulators at the same time side by side which is useful for comparison purposes.

Cordova p))
Apple iPhone 4 ¥ = &5 Rotate 3¢ |

» Device
» Events HelloWorld
» Accelerometer
» Battery
» Camera

» Capture

» Compass

» Contacts

» File

» Geolocation

» Network

Figure 3.2: The Worklight Mobile Browser Simulator

* Application Center
It provides an enterprise application store for sharing applications across an

organization for use in that organization.

Resources common to all platforms exist in a common directory. Platform-

specific optimizations and skinning can be done on a per-platform basis, through

22

environment-specific directories. The contents of the environment-specific direc-
tories are integrated with those of the general-purpose directories in order to com-
pile platform-specific applications. At compilation time, platform-specific CSS and
Javascript assets are concatenated with the corresponding platform-independent
ones, and platform-specific HTML files and images replace similarly named
platform-independent ones. This model is dictated by the interpretation rules of
the corresponding languages. In CSS and Javascript, subsequent definitions replace
existing ones; therefore concatenation ensures that platform-independent specifica-
tions will be applied as long as no platform-specific ones have not been defined.
This is not the case with HTML, and this is why asset replacement is required. This
latter behavior, however, implies that HTML templates need to be defined at both
levels in our case will be merged, not replaced. Only, templates with the same name

that are redefined will be replaced.

3.2 Modular User Interfaces with Backbone

Backbone is one among a new breed of JavaScript tools conceived to superimpose
a conceptual structure, akin to the model-view-controller pattern, to web applica-
tions through models, collections, and views. With this structure, it is possible to
construct a set of reusable components that can be utilized by multiple applications.
The model construct supports key-value bindings and custom events. Essentially
following the inversion-of-control pattern, when the state, i.e., value, of the model
changes, interested views, i.e., views associated with the model key, get notified.
Closely related is the collection construct: collections group models and provide a
API for model manipulation. Additional functionality can be added to both models
and collections. Backbone also provides the capability to map models and collec-
tions to a RESTful interface, thus supporting the archiving of the model state in
back-end repositories. In addition, in WL++ we have added functionality to map
models directly to storage locally on a mobile device.

The Backbone-relational library supports the creation of multiple models and

collections, with explicitly defined relations to one another, that may be reused

across all WL++ applications. Each model also contains domain-specific attributes
and functionalities, which are easily modified while maintaining the same structure
of relations. In this manner, we are able to effectively design and develop reusable
logical models for the application family, rather than reusable individual data struc-
tures, which is what the Backbone models effectively are.

At the presentation layer Backbone provides the view construct. Typically, a
view is associated with a model (or a collection) and an element on the HTML
page, and it is responsible for rendering the contents of the (collection of) model(s)
(Figure 3.3). Views also declare events and the logic to handle those events. Each
view is typically associated with an HTML template, and may contain sub-views
which independently handle their own content. In our architecture, nested views
are created for the existing models to be displayed, and typically for the members

of a collection.

creates and
handles input

and modifies

queries and
syncs with

Figure 3.3: The interaction among Backbone components [31]

The router handles the URL changes through hash tags. In order to navigate
from one screen to another, the old view must be destroyed (it is a good practise
to destroy old views in order to avoid memory leaks) and the new view must be
initialized. When an event occurs, such as a button click for example, then the hash
tag may change. Every hash tag is mapped to a function within the router which
initializes the new view with the proper model or collection to provide the data
needed from the template to be rendered (Figure 3.4). Backbone depends on the
underscore.js library that serves as a templating engine used to generate the HTML
to be injected into the DOM. However, Backbone allows the use of other templating

libraries as well such as handlebars.js.

24

I |app.Router = Backbone.Router.extend: {
2 routes: {

3 url 1 : function 1,

4 url 2 : function 2,

5 e

6 url n : function n

? }f

8

9 function 1 : function{

10 var view = new View ({

11 model : model

12 collection: collection
13 })i

14 }

15

16 }

Figure 3.4: The Backbone Router

3.2.1 Backbone Templating Engine

Typically, in each Backbone view a single (or multiple) template(s) are compiled us-
ing the underscore’s library command _template(‘template to be compiled’). Every
template is composed of the text that is displayed without modifications, essentially
the generic and reusable text, and multiple variables (each one specific to each par-
ticular application). When a template is compiled, these variables take the value
passed to the template as a parameter. By using the underscore.js library devel-
opers can declare variables within their templates by using the delimeters of their
choice (% in our case). Whenever the compiler identifies a variable, it replaces it
with the proper value that usually is extracted from the models and/or collections of
models. All the templates are defined as multiple scripts of type “template” within
usually a single HTML file and are rendered whenever the template belongs to the
view to-be-rendered. Because the views differ across applications, these scripts are
generated through the application specification plugin based on the views, models
and their attributes.

In Figure 3.5 an example of such a template is presented. As we can see there
are two variables declared: “data.name” and “data.age” (the “data™ variable is a
JSON object) (Figure 3.33a). Also the script includes HTML tags that will be
parsed and interpreted by a web browser. The template is rendered through the

25

1 |<script type="template" id="tmpl">
2 |<div>
3 <h2>Name: %data.name%</h2>
4 <h2>Age : %data.age%</h2>
5 |</div>
6 |</script>
(a) Template to be compiled
I |var template = _.template($("#tmpl™).html());
2 | $el.append(template (data));

(b) Compiling and adding the template into the DOM while passing the data object as a
parameter

1 | <div>
2 <h2>Name: Tom </h2>
3 <h2>Age : 23 </h2>
4 | </div>
(c) The HTML added into the DOM
1 Name: Tom
2 Age : 23

(d) The text to be displayed

Figure 3.5: An example of an underscore template

underscore function _.zemplate() and then the “data” object is passed as a parameter
(Figure 3.33b). After the proper data is injected into the variables, the output can
be appended into the DOM (Figure 3.5d).

3.3 The WL++ Metamodel

In this section, we first describe the logical model of catalogue-style applications
and how this model corresponds to specific Backbone components. Then, we define

the metamodel necessary to build our application specification plugin.

3.3.1 The Logical Model of WL++ Applications

The logical model underlying the design of WL++ application framework is con-
ceived to support many of the features one would expect from a catalogue-style

application. Users can record entries of different types, which can later be modified

26

or deleted. These entries are persistent on the device, and can be archived at the
server side through a RESTful interface for remote storage [7]. Past entries can be
displayed as a list where each list item allows the editing of the entry. Moreover,
the list is filterable based on properties of the data model. This architecture also
allows many points of customization, such as, for example, to the attributes of the
models and the templates of the views. Limited coupling between the components
of the system allow for views to be rearranged and customized as necessary.

The development of families of applications through the adoption and refine-
ment of architecture frameworks in specific contexts is an established software-
reuse practice. In principle, the objective in designing and developing application
frameworks is (a) to implement general behaviors that many application instances
share in reusable components, and (b) to design a process for systematically and
consistently specializing and integrating these components in the context of spe-
cific applications. The Model-Driven Engineering (MDE) methodology advocates
the definition of abstract models, capturing the behaviors of a family of related
applications, and their systematic transformation into executable and deployable
assets [20, 30]. Following this paradigm, the process of generating a software sys-
tem is faster and less error-prone as the code generated has been previously tested.
Furthermore, as models represent abstractions of parts of the systems, it is much
easier to be understood by users/developers. According to Weigert and Weil [40]
the application of model-driven engineering methods has led to multiple benefits
such as productivity and quality improvement. By concealing low-level code details
through the use of models results into more stable and reusable models throughout
the system. In addition, inspections on the generated code have become sparser due
to the less error-prone auto-generated code.

In Figure 3.6 we can see the conceptual model of the WL++ application fam-
ily, composed of the major Backbone components (models, views, and navigations).
The core of the application model is the Application itself, which consists of mod-
els, views and adapters. Each model may have multiple representations such as text,
location, date, image etc. On the other hand, a view may be either a dashboard, a

form view, a list view or a login view. These views are associated with models

27

Application ==

1..n
0. '"IViewk%i{ Navigation|

| [
| Dashboard | | Login View |

| Form Vlew| | List Vlew|

T |
|Date| |Checlkbox| |Ima9e|

Numeric | Clock| | Variable |
Hidden Text

Figure 3.6: Conceptual Model of catalogue-based applications

|Click| |Function|

which represent the data to be rendered and displayed to the end-users. Further-
more, since there is no controller in Backbone, views are also responsible for event
handling. For this purpose, the “click” event component is available through which
developers can add “click™ events and specify the actions to be performed when
such an event is triggered. Also, a “function” component represents a customized

function that can be implemented manually by the developer later on.

3.3.2 The Metamodel Definition

Based on the above conceptual model, we constructed a metamodel using the Em-
fatic language'. Emfatic is a language that has been developed to represent in a
textual form Ecore models by using a special syntax. After we defined all the com-
ponents of the application’s model, we generated the Ecore Metamodel by using the
EuGENia? tool. The Ecore metamodel diagram is depicted in Figure 3.7. Through
the Emfatic language, we can create the basic objects to be displayed as widgets
in the application specification plugin’s user interface and also allow the permitted
connections among these objects. Currently, there is a basic set of widgets that are
essential in the development of a complete mobile application. These widgets are
separated in six clusters as shown in Figure 3.7: (a) Objects, (b) Connections, (c¢) Ul

Components-Variables (d) Views (e) Events and (f) Back End. The Objects cluster

"http://www.eclipse.org/epsilon/doc/articles/emfatic/
2http://www.eclipse.org/epsilon/doc/eugenia/

28

A

= Name : EString

B Diagram

Egmf.diagram

£ ApplicationDiagram

=gmf.node

:E' DB : EString

|'= Table : EString
:E' Type : EString

E ModelCollection

mgmf.node

0..*
0.7 0..1
sqlAdapterhttpAdapter Models
o === ===smeEe=s—— === = |
0 Connect IE SQLAdapter 0 HTTPAdapter 1/E Model

= Domain : EString :

o Port : EString
= View : EString

: tmgmf.node

0.1 0..1
connections ~ 2PPDiagram modelCollection
_______________ AR ANER U TSNSl vhohittia ety .

o

I = Protocol : EString jf representations
""" 7====n |fagmf.node = Type : EString :: 0.*
0.1 h F = Path : EString i
memme - I 1 ;
1 |H Navigation 1 : 1 &= gmf.node I}D Representation
B ; R e imtestetltestentvilosionlueet—E e =y
1 =gmflink |] P e ~——— T e Nrk=n
LIRS : O Numeric | OText O Location | [H Checkbox :
0..1 Views : o Label : EString :
o+ ! Egmf.node| ‘Egmf.node| |Zgmf.node @gmf.node i
to e n :
: O Date 0 HiddenText O Clock ll
I I
O View =gmfn...| [=gmfnode | |=gmf.node H
1 I
H O Variable | [01mage '
P C :
: Egmf.node| Egmf.node :
I—————= ——————————————————————————
o Emm=m————— e e e N 'T]-L-- \7 ----------------- A
i @ oginView i
O Event] Dashbo‘ard - = Model : EString I
o.x 1.° Model : EString o Display Attributes : EStri i
;\rentsl © Retrieve_Attributes : EString B L(;sg?naylr.l_RL ' IESl::rf:g. ning H
----------------- a! - 2:326::725'"1':“:95“'"9 5 Retrieve_Attributes : EString H
5 : : T owL Kdap-uter : EString = Retrieve_From : EString 1
DFBuur:;:;l.ogsmn g : : o Procedure : EString = Save_to : EString :
. I o .]
= Alert : EString : : Retrieve_When : EString E=gmf.node :
o Call_From : EString I'y |=gmf.node I
= Parameters : EString : i H ListView :
Egmf.node : P--l 0 FormView = Model : EString :
H ' = Model : EString = Display_Attributes : EString '
] I = Display_Attributes : EString Z ge:r!e"e_?ﬁ”bf"éesi : EString i
i] |zswe:eung cRewiev b vy | |
o Set_Attribute_Value ... f=gmf.node = Edit : EBooleanObject '
= Model : EString Iy = I
= Alert : EString : : gmf.node :
E=gmf.node H : 0. Clicks J
e e e e e e

Figure 3.7: The ECore Metamodel Representation

29

includes high level components such as the ApplicationDiagram for the views and
the ModelCollection for the models. The Connections cluster includes the navi-
gation links to connect the views by representing this way the screen navigations.
The UI Components-Variables cluster has all the widgets related to the user inter-
face that allow users to insert data with different types (e.g., Numeric, Date, Text,
Hidden Text etc.). Different types of views are available within the Views clus-
ter. Views represent forms, lists, dashboards etc. The Events cluster’s widgets are
added within the Views and represent events or functions to be executed when an
event is triggered. Finally, from the Back-End cluster users may select the type of
Worklight adapters that suits their needs in order to generate a supporting back-end

to the application.

.gmfgraph

EuGENia ‘ ECore | EUGENIa
EMF
M f:> Metamodel % .gmftool
.gmfmap

Figure 3.8: A graphical editor is generated from a Metamodel by using the EuGE-
Nia tool

Finally, we use the EuGEN:ia tool to generate the GMF editor based on the meta-
model specified. In fact, there are four plugins generated (Figure 3.8):
(a) Diagram editor plugin: The application specification plugin consisting of the ed-
itor and the palette. The GMF framework provides only a group of widgets namely
Objects. Nevertheless, we are able to customize the way the widgets appear in the
palette by using the Epsilon Object Language. Basically, we created a file with
a .eol extension that specifies the different clusters of widgets. This file must be
placed along with the Ecore metamodel file before the plugin is generated.
(b) Edit plugin: It includes all the providers necessary for the model elements to be
displayed on the user interface. It also has a label property for all the models which
is displayed along with the model when dropped on the editing area.
(c) Editor plugin: The editor plugin is a generated example editor to create and

configure instances of a model.

30

(d) Test plugin: It provides templates and methods to parse the resource set created
from a metamodel instance.

EuGEN!ia is a tool that facilitates the generation of the Ecore metamodel and the
above plugins. However, this process can also be done manually through the GMF
Dashboard (Figure 3.9) by first selecting the Ecore metamodel and then generating
the components as follows: .genmodel = .gmfgraph = .gmftool = .gmfmap. The
generated diagram project is an Eclipse plugin project that can be exported and

installed as such.

A JF'e al Def Mode
N GRAPHICAL .(raphical Def . odel

- JFRAMEWORR

4 Select / Edit / Create

#] Domain Model

6 Mapping Model

Select [Edit [Create Select [Edit / Create

[T ree
Transform

[Domain Gen Model & Tooling Def Model e Diagram Editor Gen Model

<not specified> Derive <not specified

Select / Edit [Reload Select [Edit [Create Select / Edit / Create
Generate diagram editor

<not specified>

Figure 3.9: GMF Dashboard Overview [27]

3.3.2.1 Constraints

During the construction phase of the metamodel, the Emfatic language provides
constraint-related commands. Defining constraints is important as it assists users
while creating their own diagrams (components may be added/connected only to
specific ones etc.). For this purpose, we were able to define several constraints that
could lead to valid diagrams and make the building of diagrams an easier process
by reminding developers the actions that are allowed and the ones that are not.
First, Views can only be added within the application’s diagram objects and also
a Model within the Model Collection object. By following this rule, views and
models are separated and therefore a model can be re-used across multiple views.
Also, the Navigation Connection is able to only connect Views. The relation

among views and models is indicated through the views’ properties (where models

31

can be declared). Therefore, in order to be consistent, there is only allowed to add
a Navigation between two views, which represents the navigation from a screen to
another.

A Worklight Adapter must be placed outside of the Application Diagram and
the Model Collection as conceptually it does not belong to any of these objects.
UI and Variables components can be only added within models. The metamodel
specifies a list of such components that can be included in a model component. In
the case that we desire to change the order they appear on the Form View, we could
modify the aforementioned list by reordering the widgets.

Finally, Events components can be only attached to Views. Since the views
represent the user interface through which users are able to interact with the ap-
plication, events such as the click event and custom functions (that can perform
calculations and/or modify models’ attribute values) can be attached in a list form

to the proper views.

3.4 The Application Specification Plugin

We conceptualized an easy-to-use graphical user interface with a drag-and-drop in-
teraction. The application specification plugin is composed of three parts: (a) the
editing area, (b) the property console and (c) the palette (Figure 3.10). The editing
area allows the creation of application diagrams through the available widgets con-
tained in the palette. As mentioned before, the predefined widgets are separated in
six groups (Objects, Connections, Ul Components-Variables, Views, Events, Back-
End) so that developers can easily find and select the widget they need. Widgets can
be dragged and dropped in the editing area. However, due to the restrictions spec-
ified while generating the metamodel, some widgets must be placed within other
components. Each one of the components may have multiple properties which are
displayed in the property console after a widget is placed in the editing area and is
selected. Below we explain the components contained in each cluster along with
their properties.

> Objects

32

) deauitd wlpn_dagaam 3 =n

Ok

e i o4 “-a

Figure 3.10: The WL++ Application Specification Plugin

The Application Diagram is the main component that consists of the views of
the to-be-generated application. Therefore, there is a restriction rule which permits
only View components to be added in the application diagram. The Application
Diagram has one property namely “name” that indicates the application’s title and
is displayed on top of the first screen of the application.

Each Model corresponds to a Backbone model component. A model has a
“name” property that is essential when it comes to declaring the models to the
proper Views. Usually an application consists of several models. All these models
are declared within the Model Collection object.
> Connections

The connections among views are declared by “Navigation™ arrows. These con-
nections can be added only between views and essentially represent the Backbone’s
routing system. A Navigation type of connection has three properties: name, from
and to, where from and to are the connected views.
> Events

Every application offers some events to allow end-users to interact with it and
also event handling methods to process the input information. We have defined the
Click event as a widget that may be added into the Views and it can either perform
actions within an existing button (e.g., Save button included by default in a Form
View) or new buttons that are created when events are added into the views. The

properties of a Click event are: Name: the label of the button, Model: the model

33

associated with the event (e.g., a model’s attribute may change while this event
takes place), ID: the button’s ID (if there is no such button ID, then it is created
automatically), Alert: the alert property is useful and can be used in case where we
have a special message to display when a button is clicked (for instance, a message
informing the user that the entry has been saved successfully).

Most of the times, applications have functions that may compute and return a
value based on user’s input. Therefore, in such cases, we need a Function widget
representing a custom function. In our case, theFunction widget has five properties:
Name: it indicates the function’s name, Model: the models associated with it (this
essentially means that attributes of this model can change values), Set Attribute
Value: the command to be executed while the attribute of the model is specified to
change, Alert which is similar to the Alert attribute of the Click event above.
> UI Components-Variables

The Text widget can be added as an attribute to a model. It has a label property,
which is defined by the user during the creation of the UML diagram. This wid-
get appears as a text field where the mobile-application user may enter their textual
input. The Hidden Text widget is displayed as an input box on the mobile applica-
tion user interface; however, the typed symbols are hidden and appear as stars. This
widget may be useful in cases of user registration/login forms. Similarly to the Text
and Hidden Text widgets, the Numeric widget is also displayed as a label along
with a numeric input field, accepting numerical values as input. This type of widget
would be appropriate in cases of telephone numbers, product prices, age etc.

The Clock widget represents a date-time picker in the application user interface,
initialized with the device’s time. The Date widget results in a date-time picker in
the application user interface, implemented using the Mobiscroll JavaScript library.
The Location widget can be used to indicate that an attribute is a location repre-
sented by a pair of latitude-longitude coordinates. The widget accesses the device’s
GPS through the HTMLS5 Geolocation API and stores these values in the local mo-
bile application’s database. A Checkbox is represented by a label along with a
checkbox. The Image widget appears as an image box along with a button to up-

load images by selecting pictures from the mobile device’s picture library. It could

34

be easily expanded into a widget accessing the device’s camera in order to capture
picture/video instances. Sometimes, there is a need for an internal variable that does
not have a visual representation. Such kind of variables are declared by using the
Variable widget.

> Views

A typical mobile application has multiple views and usually a Dashboard that
assists the navigation among the rest of the views. Based on the requirements and
the experience we gained from two applications belonging to the field of healthcare
developed from scratch we concluded that four types of View objects are sufficient
to build a fully functional catalogue-based application. The available views are
listed and explained analytically below.

As mentioned before, Dashboards include other Views and therefore they pro-
vide a way to navigate from the main screen to Forms and Lists. By default the
Dashboard is composed of several icons/buttons that represent the Views. Icons
specific to each view are provided with the framework; however, developers are
able to modify them by replacing the existing icons with customized ones. The
Dashboard widget has few properties: Model: the model associated with this view,
WL Adapter: the adapter in case where an interaction with a back-end should take
place, Procedure: the adapter’s procedure to be called, Retrieve From: the REST
URL, Retrieve When: a condition that serves as a filtering function when data is
retrieved, Retrieve Attributes: the attributes to be retrieved, Save To: the collection
where the data must be stored (locally).

The Login View serves the purpose of user verification when there is a back-
end involved and users must log in in order to have access to the data or enter new
data which needs to be stored in an external database. Figure 3.11 shows a Login
view composed of a Text widget for the username input and a Hidden Text widget
for the password.

The Form View is responsible for displaying the model attributes representa-
tions to the end-users. Through this view users are able to enter their entries and
save the data locally or remotely. A Form View has the following properties: Model:

the model associated with the View, Display Attributes: the corresponding model

35

Lagin

username

Password

Figure 3.11: Login View

may have multiple attributes; however, we may need to display only a subset. This
is possible through the Display Attributes property where a developer may declare
the attributes to be displayed in the Form View. The List View is an optional wid-
get, which serves as a view where all the existing entries are displayed. By clicking
a list item, it gives the users the ability to delete an entry or edit it and save it again.
The List View properties include: Model, Retrieve From: The REST URL or the
collection to retrieve the entries to be displayed in the list, Retrieve When: a condi-
tion, Retrieve Attributes: attributes to be retrieved from an external or local source,
Display Attributes: the list of attributes to be displayed, Edit: a boolean property
indicated whether a list is editable or not.
> Worklight Adapters

The IBM Worklight Framework offers several ways to achieve an interaction
with different kind of back-ends. We have decided to support two of them (HTTP,
SQL) as they are the most commonly used. Through the HTTP Adapter, mobile
applications can interact with a back-end via a RESTful web service that is also
generated by the WL++ application specification plugin. The SQL Adapter wid-
get is used when a direct connection between the client application and an existing
database is required. In this case, there is a local database and therefore the adapter

is responsible for the execution of the SQL queries.

3.5 The Process of Code Generation

A developer may develop an application either from scratch or based on an exist-
ing back-end. The former requires the analysis of the application to be generated
into models and views whereas the latter implies that the models along with their
attributes are implicit in the API. Therefore, there are two ways of generating code:
(a) from scratch, and (b) based on an existing RESTful back-ends or Schemas. Al-
though both cases require different steps, the process is similar from the point where
the application’s models are defined. Below we briefly explain the process of gen-
erating code in both cases by referring to the WL++ components. A more detailed

explanation is given through examples in Sections 3.9 and 4.

3.5.1 Defining the Application’s Data

In the case where an application is developed from scratch, there should be at least
a Model Collection and an Application Diagram component populated with models
and views respectively. In order to define the models, the developer has to create a
new instance of the metamodel by populating a Model Collection widget with the
necessary models. The model definition depends on the developer’s perception of
the application. This means that a developer may specify different models from
another developer with both set of models to generate similar applications in terms
of functionality. Next, Ul-component widgets are added within each model to rep-
resent the model’s attributes. Since each representation is associated with a specific
type, developers do not need to define the attributes’ types. Essentially, the models
and their attributes represent the application’s data as we mentioned before in the
Model-View-Controller pattern.

So far the Model Collection component is created from scratch. However, in
the case where there is already an existing design that makes explicit the models of
the application, then the Model Collection could be generated based on that design.
WL++ supports two different code generation components: (a) based on RESTful
back-ends that return JSON responses when invoked, and (b) XSD Schemas. In

the first case, the developer gives as input an URI that is automatically invoked by

37

WL++. Alternatively, developers can also give as input a JSON response. Then, a
JSON parser parses the response in order to display the model’s attributes extracted
to the developer. This process is done when clicking the “Extract Attributes from
JSON” button (Figure 3.12). At this point developers can add, delete, or modify the
attributes extracted and then generate a representation of the models (XMI file) that
is compatible with the WL++ code generation engine. This step is done by clicking
the “Generate XMI" button (Figure 3.12). Based on the XMI representation, a
new diagram that depicts the Model Collection components with the models and

attributes is generated.

o Generate Code

D Extract Attributes from JSON
* Generate XMl

7 Parse XSD

Figure 3.12: The set of buttons of the WL++ plugin

3.5.2 Defining the Views and Navigations

When the models are defined, the next step is to create the user interface in terms of
views and the router in terms of navigations among the views. Each view may rep-
resent a dashboard, form or list of items and therefore it is associated with specific
models. Although the construction of models is not necessary to be done before
the construction of views, it is more convenient as views must be associated with
the proper models. When the views are added in the application diagram, the de-
veloper specifies the routing among them by adding navigations from one view to
another. After the completion of the diagram, the “Generate Code” button is clicked

to generate the application (and the back-end) (Figure 3.12).

38

3.6 Code Generation Engine

Along with the generation of the .diagram plugin, there are generated several Java
interfaces and implementation classes representing the components of the Ecore
metamodel. For instance, a node is represented as a Java class while the elements
that this node may contain as a list of attributes (along with getters and setters
methods).

In Figure 3.13 we can see how the Java implementation of the components de-
fined in the Ecore metamodel is related to the Backbone components. First, the
Model class has a “name” attribute which corresponds to the Backbone model’s
name, a list of representations which are the Backbone model’s attributes. Each
attribute has a default value and is declared within the store object in order to be
stored in the device’s database. Therefore, the attributes “name” and “list of at-
tributes™ are information to be injected in the template specified by the “template”
attribute. (Figure 3.13a, 3.13b).

A View entity is associated with a specific (collection of) model(s) and is re-
sponsible for the HTML-based templates which this View expects to be appended
in the DOM element (Figure 3.13c). The output View file follows the Backbone
view’s structure and it includes the templates’ initialization and the handling of the
events that may occur while the end-user interacts with the application. For exam-
ple, an event may be a click of a button or a change of an attribute value; if such
events occur then the view handles them through proper functions. The “render”
function renders the template by adding specific data extracted from the associated
with the view (collection of) model(s) (Figure 3.13d).

Finally, the Navigation entity includes a list of routes and the corresponding
functions. The routes are extracted from the connections among the different views
(stored as a <from, to> combination) while the functions are responsible for initial-
izing the new view by passing the proper (collection of) model(s) (Figure 3.13e).
This information is declared within the property console. The JSRouter also con-
tains a “changePage” function that takes as parameter the page to be rendered. This

function first destroys the old view(s) and then it replaces them with the new one.

39

1 [Model {
2 name,
3 <list of attributes>,
41}

(a) Model
1 |Models.name=Backbone.RelationalModel.extend({
2 relations|[],
3 store: {<list of attributes>},
4 defaults{<list of attributes>}
501

(b) ISModel
1 |[View {
2 name,
3 model (s),
4 event (s),
5 <list of templates>
6 |}

(c) View
1 |Views.name=Backbone.View.extend ({
2 initialize:function(){...},
3 events:{...},
4 render: function () {...}
501

(d) ISView
I |Navigation {
2 <list of routes>
3 <list of routing functions>
41}

(e) Navigation

I |Router.Routing=Backbone.Router.extend({
2 initialize:function(){...},
3 routes: {
4 <list of routes>:<list of routing functions>
5 "
6 changePage: function(page) {...}
T\1)i

(f) JSRouter

Figure 3.13: The Java classes (3.13a, 3.13c, 3.13e) and the corresponding
JavaScript Backbone entities (3.13b, 3.13d, 3.13f)

The above implementations of the Java classes, represent only the skeleton of

40

the classes while they miss significant functionality. Therefore, additional methods
were added in order to be able to add the proper functionality and generate the
desired output. These methods are mainly responsible for the calculation of new
values and template rendering (by passing data to the proper templates).

An instance of the Ecore metamodel is created when a new WL++ project is
initialized through the Eclipse IDE. Then, two files are generated: (a) a .diagram
file representing the diagram editor (editing area and palette) and (b) a .wipp file
that represents the information of the diagram in a textual format and is updated
when the developer hits the Save button. Basically, GMF produces a representation
set of the components depicted in the diagram in a separate file that includes all
the information regarding the models, attributes, their representations, connections
and labels. Figure 3.14 shows an example of a .wlpp file that is produced from a

diagram containing a Form View widget within an Application Diagram widget.

r_‘ Resource Set

@ platform:/resource/test/defaultb.wipp
¥ 4 JS Model
¥ Application Diagram

Selection | Parent | List | Tree | Table | Tree with Columns

£ Properties 53 o E P v e g
Property Value

Display Attributes =

Model =

Name =

Figure 3.14: The resource set displayed in a tree view representing an example
graphical diagram composed of a Form View view

The plugin generated by EuGENia provides us with classes that are able to parse
the application’s diagram representation file. Therefore, while traversing the re-
source set, for each component (e.g., model, view, navigation, adapter) an instance
of the corresponding to that component Java class is initialized. In fact, components
are associated with the proper predefined templates. As we can see in Figure 3.15,
the resource set (XMI representation) of the application diagram is the input that is

parsed by the WL++ code generation engine in order to identify the modes, views

41

and properties and initialize the proper Java classes (we will get back to this point
in the future). Since there are templates defined within the Java implementation of
the resources, the proper data is passed into these templates that are then rendered

by producing the desired output (mobile application files, back-end related files).

~ Mobile App'"m_

= B

Java Interfaces &
Implementation

25 XMI P[] |crasses Output
Representation (:> & (—_—> <
=’ Service

Database
~ Structure

Figure 3.15: Model to Code Transformation with WL++

3.6.1 The StringTemplate Templating Engine

The WL++ plugin integrates the StringTemplate® Java Templating Engine based
on which the output files are generated. StringTemplate is a lightweight and ver-
satile library as it allows the use of self-defined delimiters while defining the vari-
ables. These templates are rendered by the Java classes generated based on our
Ecore metamodel and populated by several methods where additional functional-
ity and calculations have been manually added. Generally, these templates include
the structure of the files to be generated and multiple parameters that represent
customized functions to be injected based on the diagram built. In fact, by using
the StringTemplate engine, it is possible to inject data within the templates by ei-
ther defining a “get” attribute that return the value of a specific attribute or a “get”
method returning a calculated value or a list of values within the Java class. Then
the attribute’s (method’s) name is declared as an attribute within the template and
it gets the results returned by the Java class when the template is rendered. For ex-

ample, a form view may have several events (click, blur, change etc.) These events

Shttp://www.stringtemplate.org/

42

events: {
obj.events; separator=

}

L

(a) The events section of the Form View String Template

I |public Vector<String> getEvents() {
2

3

4

5 return events;

6 |}

(b) Compiling and adding the template into the DOM while passing the data object as a
parameter

I |events: {

2 r

3 r
4 r
5 r

6

7 }

(c) Compiling and adding the template into the DOM while passing the data object as a
parameter

Figure 3.16: Anexample of a template being rendered by the StringTemplate engine

according to the Backbone documentation must be defined within the view they
belong to. Therefore, in the template we define the skeleton of the events section
that follows the Backbone structure (Figure 3.16). Typically, for each event there
is a variable which is mapped to the “get” method defined in the Java class. When
the template is rendered then the “getEvents” method is executed. The return state-
ment returns the events to the template which then replaces the attribute “events”
with the list of events separated by a new line (Figure 3.16¢) as indicated by the
separator="\n" command.

WL++ includes twelve main templates associated with each one of the follow-

ing components:

* Views: Dashboard, Login View, Form View, List View

The views correspond to the pages that a user may navigate to. These views

are constructed based on the predefined templates and the application dia-

43

gram. A template consists of the skeleton of a particular view which then is
populated with user interface components represented by the widgets speci-

fied in the application specification diagram.

Core: Client Model, UI Representation

A model is created based on the model’s attributes added during the con-
struction process of the application’s diagram. Developers are responsible
for defining their own models and specifying their attributes. As these at-
tributes correspond to Ul representations, we have defined a file that includes
all the UI representations of each attribute. For instance, a text widget is
represented by a text input form while a checkbox widget by a label and a

checkbox component.

Router: Applications’ Router

The router plays the role of the controller; it associates URLs to views in
order to allow end-users to navigate from one screen to another. This tem-
plate specifies the router’s syntax according to Backbone where the routes
are added based on the navigation arrows among views created through the

WL++ graphical editor.

WL Adapter: adapter-impl, adapter-xml These files are constructed by fol-
lowing the skeleton of a typical Worklight adapter. Besides the default pro-
cedures performing CRUD operations, specific parameters are replaced with
the proper data retrieved from the application’s diagram. This data consists
of the REST service’s URI, port, parameters passed to the RESTful service
etc. Alternatively, in the case of the SQL adapter the username, password,

database name and port must be declared.

REST: Server Model, REST, Database

The Server Model reflects the client model (Backbone model) and is imple-
mented in Java. Therefore, a template representing a Java class is filled with
attributes retrieved from the application’s model. Since each attribute is as-

sociated with a Java type (e.g., text widget corresponds to a String attribute,

44

a GPS location to a set of two double attributes etc.) we define these at-
tributes and generate getters and setters methods for each one of them. The
Database.Java file focuses on the communication of the service with the exter-
nal Database and therefore, there reside the CRUD operations implemented.

Finally, the REST URI paths are defined in the REST.Java file.

There are also defined few sub-templates related to specific modules such as the
local-storage module. These sub-templates are injected by the code-construction
engine into the main templates when needed. For instance, the local-storage tem-

plate is used for data that needs to be stored into a web-sgl database on the device.

3.6.2 External Libraries

Besides the Phonegap library which is built within Worklight, the main JavaScript
library used is Backbone.js. However, we have used few extra external libraries that

are explained in detail below.

* MobiScroll

MobiScroll* is a lightweight library (approximately 20kB) that provides de-
velopers with native looking user interface widgets regarding date and time
data. End-users can select a date by scrolling or increasing/decreasing date
values through plus/minus buttons. It also includes a theming feature through
which a developer can specify whether a datetime picker widget should look
like a native Android component or an iOS one for example. This can be eas-
ily defined through the parameter “theme” as “theme: android” or “theme:
ios” respectively. Although MobiScroll started as a free datetime picker wid-
get, now it has expanded its functionality and offers many more widgets such
as Calendar, Range, Color, Rating, Temperature etc. However, users need to

purchase the new version of this library.

* FastClick FastClick® is an open source project aiming to eliminate the delay

of the event-to-be-fired after a user has touched the device’s screen. This

4http://mobiscroll.com/
Shttps://github. com/ftlabs/fastclick

45

delay is relatively small (approximately 300ms) and it happens due to the
fact that the device’s browser waits to detect if there will be a second touch
(in case of where a user may intend to perform a double tap). However,
when developing cross-platform applications, the responsiveness is important
and therefore, such libraries are extremely helpful in making web-based apps

behave as native ones.

* JQuery Mobile

There is a wide variety of libraries/frameworks (such as Sencha Touch,
JQuery Mobile, PhoneJS®, Kendo UI") that are able to handle events, allow
navigation among different pages, make requests to external web services
and databases through AJAX call etc. Those frameworks are designed to
create responsive web-based applications by leveraging HTMLS and CSS3
features. PhonelS and Kendo UI are built based on JQuery whereas Sencha
Touch has a different philosophy and fundamental differences from the
one of JQuery [28]. Although both frameworks at this point are mature
with a rich documentation including many examples and demos, Sencha
Touch appears to be a more proper solution for Graphics-Driven applications
whereas JQuery is mainly used for Form-Driven applications. Moreover,
JQuery Mobile syntax is much easier and closer to the HTML syntax without
being complicated by JavaScript code as it happens in the case of Sencha
Touch. Although Sencha Touch is developed especially for mobile apps
and seems to be faster compared to JQuery Mobile, JQuery Mobile covers
a large area of browsers and mobile devices [28]. Previous experience with
JQuery Mobile and the nature of application we intend to develop played an

important role in its adoption and integration in the WL++ framework.

* Backbone WebSQL

Shttp://propertycross.com/phonejs/
"http://www.telerik.com/kendo-ui

46

The Backbone WebSQL? library provides an implementation of the Back-
bone.sync option in order to sync data from/to the application and the Web-
SQL. By using the Web SQL Database API developers can create databases

that can be queried using various SQL statements.

3.7 The generated Back-End

Along with the mobile application that is deployed on a mobile phone and runs
locally, the WL++ plugin generates a RESTful API through which the mobile ap-
plication can send/receive data to/from external databases. This communication is
established via a set of built-in adapters within the Worklight framework (Section
3.1). More specifically, through the HTTP adapter a mobile application is able to
connect with a RESTful web service. The REST APIs supported by our plugin
implement the CRUD and filtering operations relying on the attributes of the ap-
plication models. Filtering is often useful when we have to deal with long lists of
entries. For example, a shopping catalog that contains a large number of different
products would not be possible to be reviewed in order to find a specific product
quickly.

In Figure 3.17 we can see the output layers of the WL++ application specifica-
tion plugin. The generation of the RESTful web service depends on the presence of
an HTTP adapter. When such an adapter is detected by the code generation engine,
then a RESTful web service is generated. The web service’s files are compatible
with a web service implemented using the Jersey” framework.

To that end, we developed a generic adapter through the Worklight interface
which is customized based on the mobile application to be generated. The HTTP
adapter is deployed by the Worklight server (See top layer of Figure 3.17). The
communication between the application and the back-end would be also possible by
using AJAX requests. Although, the Worklight adapters also use AJAX, they offer
advantages such as security and transparency of the retrieved data among others.

A common characteristic of the latest mobile applications is that of “push no-

8https://github.com/MarrLiss/backbone-websqgl
https://jersey.Java.net/

47

Figure 3.17: The different layers of the auto-generated components

tifications”. As users interact with the application by storing/receiving data, the
application often responds through notifications, typically containing information
extracted based on the user’s interaction history or that of his/her peers. For this
purpose, WL++ includes a monitoring service which lives on the server side and
keeps track of all the API calls that have been invoked. It also records the data ex-
changed between the mobile application and the back-end server in a JSON format.
Therefore, this data can be further analyzed and used in order to make recommen-

dations by sending notifications from the server to the mobile device.

3.8 Application Code Structure

The output of the WL++ code generation engine is a “gen” folder, that includes the
application files and the corresponding back-end files, assuming that the application
design indicates the need for a back-end. The structure follows a typical Worklight
project (Figure 3.18). This practice allows developers to quickly set up a Work-

light project and transfer the files from the generated folder to the corresponding

48

VﬁContactManager
» = Java Resources
» =, JavaScript Resources
¥ = adapters
¥ = RestAdapter
| filtered.xs|
P |&| RestAdapter-impl.js
“ RestAdapter.xml|
¥ = apps
¥ ;= ContactManager

i» I blackberry10}
¥ = common
> (= css
P (= images
vEis
» (= libs
P (= models
P (= router
P (=-views
['u_'a| index.html
(> B iphone |

Egapplimtinn—descrlptar,xml
=/ build-settings.xml
P (= bin
(= components
P (= server

(= services

Figure 3.18: The IBM Worklight Project Structure. Three environments have been
added (Android, Blackberry 10 and iPhone)

Worklight project, to be deployed.

A Worklight application consists of three main file categories representing (a)
references required for the application development and deployment, (b) the ap-
plication and its adapters, and (c) server-customization components. When a new
project is created, then a typical “Hello World™ application is automatically gener-
ated by the framework. This project is composed of several JavaScript, HTML, and
CSS files under the “common’ folder.

Therefore, the WL+ +- produced files are all stored under the “‘common” folder.
Basically, this folder contains all the files shared among the targeted environments
(Figure 3.18). A user may add new environments such as Android or iOS when
needed in order to be able to extend or override the common files so the application
may look/behave differently while deployed in different platforms. Furthermore,
a Worklight project has files responsible for the framework’s initialization (e.g.,

the initOptions.js file ensures that the Worklight JavaScript framework is initial-

49

ized). These files, are generated automatically and imported into the HTML files
by WL++, as it happens while creating a new Worklight project.

While Backbone does not require any special structure regarding the files, the
experience we gained from the parallel developing of prototype applications led us
to the decision to categorize the generated files into four separate folders: (1) libs,
(2) models, (3) views and (4) router (Figure 3.18). This practice assists the process
of navigation and modification of the proper files when needed.

The libs folder contains all the essential libraries such as Backbone related li-
braries, JQuery and JQueryMobile as well as other libraries related to special wid-
gets (e.g., Mobiscroll.js and underscore.js). The models folder typically contains
the JavaScript files that describe all the models of the application. When there is a
collection of models, it is also placed in the same file as the corresponding model
from which it is composed of. The views folder is responsible for the user-interface
rendering. Usually, a view is associated with a (collection of) model(s) and ren-
ders the relevant information into specific template components. Finally, the router
folder contains the URL paths and the functions for creating the proper views ac-
cording to the URLs. When users navigate from one view to another then the router
creates the proper views and renders them according to the template associated with
each view (and/or sub-view).

A Worklight project may have one or multiple adapters in order to communicate
with existing back-ends and all of them reside in the adapters folder. Apparently,
an application that does not require any connection with a back-end, does not need
any adapters to be implemented. The need for a back-end is indicated by the devel-
oper when a Worklight Adapter widget is added in the application diagram, created
using the WL++ plugin. In this case, two more folders are generated: (a) the
adapters folder and (b) the restAPI folder. For each adapter, two files are generated
namely, adapterxml and adapter-impl.js. This structure is specified by Worklight;
more specifically, when a new adapter is added, a new folder is created under the
general adapters folder. The adapter.xml file has important information related to
the back-end, such as the URL and the port number of the web service, and also,

the names of the procedures (functions) which are implemented in the adapter-

50

impl_js file. Essentially, the adapterxml file plays the role of the controller which
invokes the proper procedures an event is triggered on the application side. There-
fore, Worklight decides (a) the organization of the front-end files (HTML, CSS and
JavaScript) and (b) the high-level structure of the REST APIs that will link to re-
mote databases through a RESTful API, whereas Backbone decides in some more
detail the structure of the files.

Besides the adapter files, WL++ generates the restAPI folder which has mul-
tiple Java files in order to be copied in a Web Service project. The code is respon-
sible for the communication of the application (through the adapter) with a remote
database through a set of RESTful APIs. The APIs correspond to basic CRUD and
filtering operations (search by specific attributes). More specifically, the first time
the mobile application is launched, a remote database is created with two tables, (a)
for data storage and (b) for API monitoring purposes. When new data is entered,
then the corresponding procedure is invoked in order to send a POST request to
the server with the data entered; therefore, the Web Service stores this information
in the database while the monitoring service keeps track of the API calls and the

transmitted data.

3.9 Reverse Engineering with WL++

So far we have described the generation of a mobile application with a supported
back-end from a modeling diagram assuming that there does not exist any back-
end and therefore it must be generated by the WL++ plugin. However, there are
existing back-ends that need mobile clients in order to access the data through pre-
defined APIs. The data models are implicit in the API and therefore, we developed
a process for semi-automatically extracting data models from these APIs instead of
defining them from scratch as explained before. Below we explain the process of
constructing models and generate cross-platform mobile clients through RESTful
back-ends that support JSON responses (Section 3.9.1) and through XML Schema
Definitions (XSDs) (Section 3.9.2).

51

3.9.1 Constructing Models from JSON Responses of RESTful
Web Services

The application specification plugin is able to take as input the existing back-end
in terms of the APISs it uses and construct the main models based on the retrieved
response after an API call has been invoked.

The reverse engineering component requires as input either RESTful URLs
specified by the developer (including instance values for the query parameters) or
the JSON response returned after the URL invocation. For example, we could give
as input the following URL that retrieves the “Soul Surfer” movie details (e.g.,
“release date”, “rating”, “actors”) from the Rotten Tomatoes Movie Database!©.
The URI requires an API key which means that the user must obtain one by

registering first, the query (in this case the title of the movie for which the details

are to be found) and the total number of pages to be returned.

“http://api.rottentomatoes.com/api/public/v1.0/movies.json?apikey=apikey &q=Soul
9%?20Surfer&page_limit=1"

The first step is to analyze the URL by using the Steiner’s URL analysis method
and extract the query parameters [34]. According to the Steiner’s REST URL anal-
ysis tool, an URL is composed of the base, path, method name (e.g., GET, POST)
and the parameters. In our case, the URL is composed of three parameters: apikey,
q and page_limit. These parameters along with their values are stored in order to
be displayed to the developer later on along with the parameters extracted from the
JSON response. Therefore, WL++ consumes the above URL and sends an HTTP
request. The JSON response (Figure 3.19) is parsed while the parameters and their
instance values are stored and displayed in the WL++ console (along with the
attributes extracted from the URL itself) (see Figure 3.20). The WL++ console
represents a table with four columns. The column Attributes includes the parame-
ters extracted from the URL and the JSON response. The column “Type” represents

the type of each attribute (e.g., Text, Numeric, Date) whereas the column “Instance

Ohttp://www.rottentomatoes. com/

52

value” is the value of the parameter for which we need to determine the type of the
parameter. Finally, the column “Response/Request” indicates the source of each
attribute (Response if the attribute was extracted from the JSON response and Re-

quest if the attribute was extracted from the URL).

I|{

2 "total": 2,

3 "movies": [{

4 mid": ''771037147",

5 "title": "Soul Surfer",

6 "year": 2011,

7 "mpaa_rating": "PG",

8 "runtime": 106,

9 "critics_consensus": "",

10 "release_dates": |

11 "theater™: "2011-04-08",

12 "dvd": "2011-08-02"

13 |

14 "ratings": {

15 "critics_rating": "Rotten",
16 "critics_score": 46,

17 "audience_rating": "Upright",
18 "audience_score": 76

19 }

Figure 3.19: A subset of the API invocation response

The “Type” column is automatically populated with the type of each attribute.
The JSON response has no information regarding the type of attributes. Therefore,
we attempted to determine their types from their instance values. For example,
by checking if a String can be converted into an Integer or a Date type, we can
annotate this attribute as of type Numeric or Date respectively (Algorithm 1). Gen-
erally, if an instance value is type of Integer, Double or Float then the attribute is
annotated as Numeric. For the Date type, we check if an instance value has the
same format as several predefined Date formats (Figure 3.21). As we can see in
Figure 3.19, although the attribute “dvd™ has a value of “2011-08-02" which is re-
turn by the service as a String, it is automatically annotated with the type Date in

the WL++ console (Figure 3.20) as it matches the date format defined in line 7 of

53

= Properties [Z] wiop &2 & [%’ * i

Attribute Type Instance Value Response/Reguest
abridged_cast string [{'mama" " Annasophia Robb®id": " 162659139°, characters":["Bethany.. Responsa
alernare s1ring “hacp:J fwww rottentomatoes. com fmj soul_surfer/” Response
apikey String <api key> Reguest
audience_rating String “Upright* Response
audience_score Mumaric 7 Response
cast String "hittp:/ | api.rottentomatoes.com/api/public/v 1.0 /movies/ 77103714, Response
clips String "hpjjapi.rottentomaroes. com/api/public /v 1.0 /movies (77103714, . Response
Critics_consensus s1ring "There's an amazing true story ar the heart of Soul Surfer -- and unf... Responss
critics_rating String “Rotter® Response
critics_score Numeric 46 Response
detailed String “http: | [contentd.flixstar.com/movie/ 1L/ 15/57 /11155754 _det.jog” Response
dvd Date “2011-08-02" Responza
id_id string “F71037147" Response
imdi s1ring “1596346" Response
Add Delate Close

Figure 3.20: The WL++ console populated with attributes retrieved from an API
invocation

Figure 3.21.

Algorithm 1 Determining an attribute’s type based on its instance value
1: procedure GETATTRIBUTET YPEFROMINSTANCEVALUE(attribute)
if (attribute.getInstanceValue() is (Integer or Double or Float)) then
return Numeric;

if (attribute.getInstanceValue() is Boolean) then
return Checkbox;

if (artribute.getInstanceValue() is Date) then
return Timestamp;

if (artribute.getInstanceValue() is String) then
return Text;

b A A

However, there are cases where the type of an attribute is not determined cor-
rectly. For example, the attribute “year” has an instance value of “2011”. This
value is annotated as Numeric (as it can successfully be converted into a number
and it does not match any of the date formats) although it represents a Date type
of attribute. For these cases, the plugin allows developers to modify the type of
the attributes by simply clicking on the type cell next to the specific attribute and
selecting the proper type from a drop-down list of types (Figure 3.22). Further-
more, through the Add and Delete buttons (at the bottom of the WL++ console),
developers can add new attributes, and delete existing ones.

When the process of defining the attributes is completed, by clicking the “Gen-
erate XMI” button, an XMI representation of the model composed of the attributes

shown in the console is generated (Figure 3.23). The XMI representation follows

54

"M/dd/yyyy"
"dd.M.yyyy"

"M/dd/yyyy hh:mm:ss a"
"dd.M.yyyy hh:mm:ss a"
"dd.MMM.yyyy"
"dd-MMM-yyyy"
"yyyy-mm-dd"
"yyyy-MMM-dd"

eI e BT R T S

Figure 3.21: The date formats defined to determine if an instance value is type of
Date

thumbnail String “http://content8.flixster.com/movie/11/15/57/11155754_mob.jpg"
title String “Soul Surfer”
total Numeric F
year Date v 2011
Integer
Add Delete Double

String

Figure 3.22: Manually defining the type of an attribute

the structure of the XMI generated by the GMF framework. Essentially, this is the
.wipp file that was generated during the forward code generation process (Section
3.6). Therefore, we used a template to populate with models, their attributes and
types as required by the GMF framework in order to initialize an instance model-
ing diagram and then to generate the application files using the WL++ application
specification plugin.

Consequently, the next step is to convert the XMI representation of the model(s)
into a graphical representation where developers can add views and navigations, and
associate the views with the proper models. The model along with the attributes
that were generated automatically from the invocation of the API is depicted in
Figure 3.24. Because each attribute was annotated with a type by WL++, the model
appears to have been created by selecting the proper widgets from the palette (the
types of the attributes correspond to the types of the widgets defined within the
palette). For example, for the URL parameter “title” and the response parameter
“synopsis” the Text widget was used. The “runtime” attribute represents the length
of the movie in minutes and therefore its type was identified as a Numeric widget.

Both the “critics_score” and the “audience_score™ are parameters that represent the

55

[}

10
11
12

<?xml version="1.0
xmi:version="2.0"

" encoding="UTEF-

1" ?2><WLPP:JSModel
xmlns:xmi="http://www.omg.org/

XMI" xmlns:xsi="http://www.w3.0rg/2001,
LSchema-instance"” xmlns:WLPP="http://
ualberta.ca">
<modelCollection>
<Models Name="movies. json">
<representations xsi:type="WLPP:Text" Name="
title"/>
<representations xsi:type="WLPP:Numeric" Name="
runtime" />
<representations xsi:type="WLPP:Date" Name="
theater"/>
<representations xsi:type="WLPP:Numeric" Name="
ritics_score"/>
<representations xsi:type="WLPP:Numeric" Name="
audience_score" />
<representations xsi:type="WLPP:Text" Name="
synopsis"/>
</Models>
</modelCollection>
</WLPP:JSModel>

Figure 3.23: The XMI generated based on the JSON response

score of the movie given in a number that ranges from O to 100. They both are

specified as Numeric widgets whereas the “theatre™ attribute is depicted as a Date

widget since it represents the date when the movie was released.

Finally, when new views are added to the application diagram, a mobile ap-

plication can be generated by following the same process as in the forward code

generation (Section 3.5.1). To illustrate this process, the developer may add three

views: a Form View and a List View to display the movie-related data, and a Dash-

board for navigation purposes as shown in Figure 3.25. Both the Form View and the

List View are associated with the ‘Movie” model through the views’ properties as

shown in Figure 3.26. The code generated results in the MovieDatabase application,

two screenshots of which are depicted in Figure 3.27.

56

=' |m
¢ Palette P
o% ModelCollection m @ a O~
T Movi (= Objects
Al title (= Connections
(= Ul Compone... <
[z runtime &ITG’“
| HiddenText
i theater % Numeric
{0) Clock
121w critics_score
¥ Date
[Z2%; audience score @ Location
- [ACheskbox
Al synopsis = Views
[~ Events

I‘ahck&d l
OEBs “=0

Figure 3.24: The model generated from the API invocation

MovieDB
‘ [MovieDatabase
NavigateTo
', NavigateTo
— = NavigateTo <
1= AddMovie MyMovies
NavigateTo

¥ Palette
o ModelCollection e__\ b
m Qe
Movie
(= Objects £
[iz% total ApplicationDiagram
Modelw
Al title (= Connections <

[Z3% runtime

% theater

|1 Zif; critics_score

5, NavigateTo

[Z3% audience_score

Al synopsis

[~ Ul Components-V... <
Al Text

_ 7 eide—

= Views e
[pashboard

= Elvelms <0
0 Click
fx Funetins—

(= Back End o0

u HTTPAdapter

Figure 3.25: The application diagram created for the movie database example

"= FormView

| Property

Value

Cort— Display Attributes
Appearance Model
Name
Save to

[=year, title, runtime, theater

1= Movie
1= AddMovie

= MovieCollection

Figure 3.26: The properties section of the Form View

57

MovieDatabase

Title

Soul Surfer

Runtime

106

Theater

02/08/2011 12:00 AM

(a) Dashboard View (b) Form View

Figure 3.27: Screenshots of the application generated based on the model extracted
from the API invocation

58

3.9.2 Constructing Models from XSD Schemas

Another way of constructing models by using WL++ is by giving as input an XML
schema Definition (XSD). XSD schemas describe the structure of XML documents.
WL++ has a built-in XSD Parsing component which parses the given file in order
to construct the proper models. Below we can see an example of an XSD schema

(Figure 3.28).

1 |[<?xml version="1.0"2>

2 |<xs:schema xmlns:xs="http://www.wi.o0org/2001
XMLSchema">

3 |<xs:element name="note">

4 <xs:complexType>

5 <XS:sequence>

6 <xs:element name="to" type="xs:string"/>

7 <xs:element name="from" type="xs:string"/>

8 <xs:element name="heading" type="xs:string"/>

9 <xs:element name="body" type="xs:string"/>

10 </xs:sequence>

11 </xs:complexType>

12 |</xs:element>

13 |</xs:schema>

Figure 3.28: An example of an XML schema. (Source: http://www.
w3schools.com/schema/)

XSDs are composed of complex and primitive types of attributes. Unlike JSON,
an XSD schema explicitly provides type information for each element attribute and
therefore the type-inference step above is not necessary. For example, in Figure
3.28, the element note is a complex type composed of several elements: to, from,
heading and body and all these elements are type of String as indicated by the “type”
attribute of the element. The steps to be followed to generate a mobile application
from the XSD schema of Figure 3.28 are listed below:

Step 1.
First, the tool parses the XSD schema in order to extract all the elements along
with other information such as their “name™ and “type” attributes. The parsing is

done by using the Xerces2 Java Parser!! library which is also able to validate XSDs.

Mhttp://xerces.apache.org/xerces2-7/

59

Typically, each complex type that includes primitive types can be represented as a
model. Therefore, after the parsing process is completed, the complex elements
extracted from the XML schema can be converted into models. More specifically,
a complex element represents a model and its primitive elements the model’s at-
tributes. Since the XSD schema has also the types of the attributes we do not need
instance values as in the case of the JSON response to determine each attribute’s
type. In our example, WL++ detects one model namely note including four String
attributes (to, from, heading and body). The set of the detected models is then con-
verted into an XMI representation (Figure 3.29) using our existing template (that

was used previously during the models generation from JSON responses).

1 [<?xm]l version="1.0" encoding="UTF-8"2>
<WLPP:JSModel xmi:version="2.0" xmlns:xmi="http:
Www.omg.org/XMI" xmlns:xsi="http://www.w3.o0rg
2001 /XMLSchema—-instance” xmlns:WLPP="http:
jalberta.ca"><modelCollection>
3 |<Models Name="Note">
4 <representations xsi:type="WLPP:Tex" Name="to"/>
5 <representations xsi:type="WLPP:Text" Name="from
" />
6 <representations xsi:type="WLPP:Text" Name="
heading"/>
7 <representations xsi:type="WLPP:Text" Name="body
" />
8 </Models>
9 |</modelCollection>
10 |</WLPP:JSModel>

Figure 3.29: The XMI generated based on the XML schema in Figure 3.28

As long as the XMI representation of the models is generated, a WL++ ap-
plication diagram can be also generated. However, this diagram does not include
views and navigations which have to be added manually by the developer. The
models could be also modified by adding, editing, or deleting attributes. In this ex-
ample we noticed that the labels of the attributes to and from are reserved words in
SQL. Because SQL queries are executed to create the local database and to store/re-

trieve data, the developer must avoid using reserved words that may cause potential

60

L Palette [
O‘% MadelCollection

[\ * (= -

A A A L
Note

= Objects

A] sendTo (= Connections

Vi NavigateTo
Al sendfrom => Ul Components-Varia...
A] heading G

[pashboard
AJ body & LoginView

"= FormView
() time ListView

9 mylocation (= Events £

) Click
Jx Function

.=~ Back End

Figure 3.30: The model collection created from the XML schema. Two more at-
tributes (time, myLocation) were manually added

conflicts. Therefore they should either modify these labels before generating and
launching the application or change the model attributes’s values after the applica-
tion is generated. Consequently, we suppose that the developer decides to modify
the to label to sendTo and the from label to sendFrom as the former solution is eas-
ier and more efficient. The developer also adds two more attributes to the model
namely time which is a Clock widget and myLocation of type Location (Figure
3.30). The attribute time will be initialized with the devices local time and represent
the date/time creation of the note whereas the myLocation attribute will indicate the
user’s location when the note is saved.

Step 2.

After the addition of the views and adapter(s) (if necessary) then an application (and
back-end) are generated by clicking the “Generate Code” button. For this example,
the developer has added only three views, a Dashboard, a Form View and a List
View to display the stored notes. In Figure 3.31 the Form View of the application
is depicted along with the List View were existing notes are displayed. As we can
see in Figure 3.32 the location of the user is stored as a set of latitude and longitude
values.

Step 3.

61

Create Note

Send To

Send To"Peter’
Peter Send From:“Amy”
Heading: Boak-Library”
BodyPlease don't forget the book!"
Send From Time:"2014-08-19T05:1 6:00.000Z°
My Location:{"latitude”53.5037044,longitude™-113.505757699099,

Am
y Send ToAmy"
Send From:"Petar"
: Heading:Late"
Headi ng Body~1 am running late. Too much traffie”
Time:"2014-08-19T05:1 7:00.0002"

. My Location:{latiiude"53.5037052, 1ongilude™=-113.5057774
Book-Library g { = o ¥

Body

Please don't forget the book!

Time

18/08/2014 11:16 PM

(a) Form View (b) List View

Figure 3.31: Screenshots of the NoteApp application generated based on the model
extracted from the XSD schema

As the set of views has been constructed, the last step is to define the navigations
among them by adding connection links that are translated into the application’s
router. Finally, if we suppose that there is a back-end service consuming XML data
instead of JSON, the WL++ plugin can produce XML instances of the data entered
based on the model created following the XSD structure. According to our example,

the XML produced by the addition of two data models is depicted in Figure 3.33.

62

id |send... |send... heading |body time myLocation
1 Peter | Amy Book-Li... | Please d... | Mon Aug 18 201... | {"latitude™53.5036705,"longitude"”:~113.5056778}
2 Amy Peter Late I'm runn... | Mon Aug 18 201... | {"latitude®:53.503707899999995 "longitude™-113.5057662}

Figure 3.32: The local database where the information of the NoteApp application
is stored.

<note>
<sendTo>Peter</sendTo>
<sendFrom>Amy</sendFrom>
<heading>Book-Library</heading>
<body>Please don't forget the book!</body>
<time>"2014-08-19T05::16:00.000Z"</time>
<myLocation>{"latitude":53.52701839999999%9¢6,"
longitude":-113.52650299999999}</myLocation>
8 |</note>

~N R W=

I |<note>

2 <sendTo>Amy</sendTo>

3 <sendFrom>Peter</sendFrom>

4 <heading>Late</heading>

5 <body>I'm running late. Too much traffic.</body>

6 <time>"2014-08-19T05:17:00.000Z"</time>

7 <myLocation>{"latitude":53.527009199999995, "longitude

":-113.52650639999999}</myLocation>
8 |</note>

Figure 3.33: XML data produced after the creation of two sample notes

Chapter 4

Contact Manager: An lllustrative
Example

In this chapter, we describe the process of generating a Contact Manager application
by using the WL++ application specification plugin. The application is composed
of two parts (a) a client application that can be installed on devices supporting
a wide variety of platforms and (b) a RESTful back-end service that allows the
access of an external database for the purpose of storing and retrieving contacts.
More specifically, the Contact Manager aims in adding contacts (along with a set
of attributes such as name, phone number, e-mail etc.) by storing them locally on
the mobile device and externally on a remote database. Also, these contacts should
be displayed in a list where users would be able to edit and/or delete them. Finally,
there is a filtering operation regarding contact’s attributes; for instance, “search by
name”, “search by e-mail” or “search by custom query”.

This type of application has been already built by developers multiple times as it
is considered an application that includes many features and illustrates successfully
the use of new frameworks/technologies. We found plenty of implementations in
public code repositories and personal blogs [5, 22, 25]. Below we explain in detail
the steps that need to be followed in order to generate a Contact Manager applica-
tion using the WL++ application specification plugin:

Step 1. Through the Eclipse IDE we first create a General Project (Figure 4.1).
Step 2. Then, we right click on the created project and select New WLPP Diagram

which creates an instance of a WL++ modeling diagram (Figure 4.2). We name this

64

New Project

Select a wizard

Create a new project resource

Wizards:

type filter text

122 Java Project
¥ = General
1| Faceted Project
= Project
b= CIC++
P = CVS
» = Eclipse Modeling Framework
» = Graphical Modeling Framework
> (= Java
P (= JavaScript
> (= Maven
P (= Examples

Y i e
|\2/. < Back | Next> | Cancel Finis

Figure 4.1: Creating a New General Project

metamodel instance “cm”. A new set of files is created with extensions .wlpp and
wipp_diagram (Figure 4.3). The former includes information regarding the domain
model while the latter contains graphical related information. Both these files are
tightly associated as when the .wipp_diagram file is modified and the “Save” button
is clicked, then the .wipp file is automatically updated with the new information.
Similarly, when the the .wipp file is modified, its graphical representation is also
updated. After a new project is created, the .wipp_diagram file is selected by default
and therefore we are able to see the tools that are available for creating a diagram
in the palette.

Step 3. The diagram is composed of two major components: (a) the application di-
agram which contains the views that will be added later on, and (b) the application
model collection for the models to be defined. Therefore, we first drag the Appli-
cation Diagram widget from the palette (from the Objects cluster) and drop it in

the editing area. We name it “Contact Manager™ as this indicates the application’s

65

800 New Example

Select a wizard
Creates WLPP diagram.

Wizards:
[type filter text)

[d] WLPP Diagram
» = Epsilon
P (= GMF (Graphical Modeling Framework) Plug-ins
P = XML

) < Back Next > [cancel | Finish

Figure 4.2: Creating a New Metamodel Instance

title. Then, we drag and drop a Model Collection widget next to our Application
Diagram (Figure 4.4).

Step 4. At this point the developer has to decide the models that the application
is composed of. This process depends on the developer and their perception of the
application. In the case of the Contact Manager, we assume that there is a model
representing a Contact. Therefore, we select the Model widget from the palette,
drag it to the editing area and label it “Contact”.

Next, we add a set of attributes to the Contact model. There is no limit on the
number of attributes to be added and therefore we can add all the attributes we
consider important for a typical Contact Manager application. For this particular
example, we were influenced by a similar application, which was developed us-
ing the Phonegap framework [5]. Therefore, we included some of the properties
belonging to the Employee Directory application (i.e., Name, Last Name, Phone

Number, E-mail and Picture). These properties are declared within our model by

66

8enon Java - ContactManager/cm.wlpp_diagram - Eclipse Platform "

T NP0 R HG @ A o v v

| Tahoma K : | v v v —v

|5_f;\£v Jawive

1= | L{5Resource %’Ja\aa

[# Package Expl 32 = 8 d) cm.wlpp_diagram §3 =&

=
5s ¥ .= Palette B =
v Eclioﬂﬂﬂ‘;‘i“?" [Ul Components-Varia...
cm.wlpp_diagram R
[} default.wipp & Views v
[pashbeard
[IETEAYE A
= Events £
0 Click
Fx Funcrio=
] Properties 53 = T =0

Figure 4.3: Application Specification Plugin User Interface

ok Palene [
FECETEE
N L= Objects
ContactManager % ModelCollection
ApplicationDiagram
Wodel
=+ Connections
(= Ul Components-Ya... &
0 Date
@ Location
= Views
[pashbeard
& LoginView
=+ Events
% Back End
ﬁ HTTPAdapter

. SQLAdapter

Figure 4.4: The application diagram after the addition of the Application Diagram
and the Model Collection widgets

selecting the proper widget types. Therefore, for the properties Name, Last Name
and E-mail we selected the Text widget as it represents a text field on the applica-
tion’s graphical user interface whereas for the Phone Number attribute we selected
the Numeric widget. The latter appears as a number field on the user interface
(thus, it only accepts numerical values). We decided to have a Birthday property
so we added a Date widget as well. Finally, for the Picture attribute we dragged
and dropped the Image widget to our model. This widget is composed of an im-
age box and a button to select images from the mobile device’s image library. The

order in which the aforementioned attributes were added to our model is the same

67

as the one they appear on the form view to be displayed on the mobile device. In
the case where we would like to change the properties’ order (for example, to have
the property E-mail appear before the property Phone Number), we could simply
modify the order of the properties’ list on the application diagram and re-generate
the application). Alternatively, we could modify the generated HTML file (Figure
4.5).

ﬂ & Palette b

@& e

. = Objects
o% ModelCollection - T

ApplicationDiagram

Contact Model
MName — . =
Al [~ Connections
= Ul Components-Va... <
ﬁI LastName — =
i Date
Location
123w PhoneNumber 9 -
= Views
AJ v [Q) Dashboard
& LoginView
i Birthday >
= Events
L3 Picture [~ Back End

ﬂ HTTPAdapter

- SQLAdapter

Figure 4.5: The model collection including a model namely “Contact™ along with
several representation

Step 5. Next, we add the proper views to the Application Diagram. First we drag
and drop a Dashboard view widget which contains two more views and serves
the purpose of navigation through the different views. The “AddContact” view is
a Form View and must be connected by a Navigation type of connection to the
dashboard in case where we would like to navigate to this view via the dashboard.
If we decide our contacts to be displayed in a list we should also add a List View
and connect it to our dashboard (Figure 4.6). So far, we already have the application
diagram that results to a cross-platform mobile application to be deployed locally
on the mobile device storing our contacts’ information on a Web SQL database

(device browser’s storage) [39].

68

. Palette b

h B el
. . Objects
ContactManager o% ModelCollection —
ApplicationDiagram
Contact Model
AT name ModelCollection
[ContactManager I % s
(= Connections
LastName
NavigateTo Al =+ Ul Components-Va... <
-
Date
PhoneNumbe
NavigateTo E eneRumBer 9 Location
= AddContact NavigateTo

. MyContacts AL E-Mai Checkbox
= Views &

i Birthday E] Dashboard

NavigateTo i LoginView

L5 Picture _E FormView

ﬂ REST Adapter |- Events

(= Back End 0

u HTTPAdapter

Figure 4.6: The Contact Manager Application Diagram

Step 6. We continue by adding a Worklight Adapter (Figure 4.6) to generate a back-
end service for our application by dragging the HTTP Adapter widget to the editing
area (an adapter cannot be added in the Application Diagram or the Model Col-
lection). Along with the adapter, a RESTful-service that not only supports CRUD
and filtering operations but also creates the database structure is generated. The
database structure is defined by our model’s attributes. For example, in our case the
database’s table would be composed of seven columns namely id, Name, LastName,
PhoneNumber, EMail, Birthday and Picture (for the picture’s path).

Step 7. Finally, in order to generate the output, we click the “Generate Code”
button which is located at the bottom of the palette. When the code generation
process is completed, a folder containing the application’s files namely “gen”
is generated. Figure 4.7 depicts the structure of files of the output folder. The
“adapters” folder is generated only when there is a Worklight adapter on the
application’s diagram. The “js” folder has the JavaScript code (libraries, models,
views, router) of the mobile application. Finally, the “restApi” folder contains the
files related to the RESTful web service. In Figure 4.8, we can see a subset of the
REST APIs generated. The paths are constructed based on the adapter’s name,

the application’s name and the model’s name which the API is referred to. All the

contacts stored in the database can be also accessed through a browser by entering

69

the following URL (if using a server that runs locally on port 8080):

“http://localhost:8080/REST/ContactManager/Contacts™

The above URL triggeres the “getContacts” method which when executed
returns all the contacts stored in the database in a JSON format. Through the
following URLs we can search contacts by attributes such as (a) by id, (b) by name

or (¢) by a customized query such as “id >1 and name="Ray™:

(a) “http://localhost:8080/REST/ContactManager/Contacts/search/id”,
(b) “http:/Nlocalhost:8080/REST/ContactManager/Contacts/search/name”,
(c) “http://localhost:8080/REST/ContactManager/Contacts/search/q™

¥ [=gen
» (= adapters
> (= css
P (= images
¥(i=]s
» (= lib
¥ = model
b [2] contact.js
¥ = view
b & AddContact.js
> ‘E ContactManager.js
b [MyContacts.js
> Fﬁ initOptions.js
> [&] main.js
> & router.js
P (= restApi
[Z] index.html

Figure 4.7: The file structure of the generated folder

In order to deploy the generated application, the output files that correspond
to the application need to be copied to a Worklight project and the ones related to
the RESTful web service to a web service project. The IBM Worklight framework
allows developers to add different environments and therefore support multiple mo-
bile platforms. By doing this, it is easy to export installation files for each platform

and use them to install the generated application on real mobile devices. More

70

specifically, the effort of a developer that needs to deploy the generated application
in different platforms has to do with the generation and extraction of the installation
files specific to each platform. On the other hand, the generated RESTful web ser-
vice must be uploaded on an online server so that the application is able to access
the external database through the APIs that were defined. Each API call is moni-
tored by the monitoring service that keeps a record of it on a table of the external
database. The specific API and the data sent through the service are stored in a
JSON format.

Figure 4.10 depicts the storyboard of the Contact Manager application (four
views and the available navigations from one view to another). For instance, users
can navigate from the “Dashboard” to the “Add Contact™ or “My Contacts™ view
and from the “Add Contact” to the “My Contacts” view. The navigation is possible
through the event handling that exists within the views (e.g., when the Save button
is clicked on the “Add Contact” view, then the application navigates to the list view
that contains the contacts). From the list view, end-users can either navigate back
to the dashboard or edit a specific entry (“Edit Contact”). Finally, Figure 4.9 shows
three different screenshots of the generated application (Figure 4.9a, 4.9b, 4.9¢)
along with two screenshots of the Employee Directory that was developed from
scratch by Christophe Coenraets (Figure 4.9¢, 4.9¢e). The first two ((Figure 4.9a,
4.9b) represent the data entry screen (Form View) which is conceptually related
to the Employee Directory view in Figure 4.9d whereas the Figures 4.9¢ and 4.9¢
show the entries of the Contact Manager and Employee Directory respectively in a

list view.

Figure 4.10: Storyboard of the Contact Manager Application

71

I |@Path("/Contacts™)

2 |public class Rest {

3

4 private DatabaseCRUD DB;

5

6 public Rest () throws ClassNotFoundException, SQLException{
7 DB = new DatabaseCRUD();

8

}

9

10 @POST

11 @Path("/createDB")

12 @Produces (MediaType.TEXT PLAIN)

13 public String createDB() throws ClassNotFoundException,
SQLException{

14 DB.createDB();

15 return "Datzbase Created”;

16 }

17

18 @GET

19 @Produces (MediaType. JSON)
20 public String getContacts () throws ClassNotFoundException,

SQLException{

21 return DB.getContacts();

22 }

23

24 BGET

25 @Path("ssarch/[id}1")

26 @Produces (MediaType. JSON)

27 public String getContactById(@PathParam("id") String id)
throws SQLException, ClassNotFoundException{

28 return DB.getContactById(id);

29 }

30

31 BGET

32 @Path("search/{name} ")

33 @Produces (MediaType. JSON)

34 public String getContactByName (@PathParam(''name'') String
name) throws SQLException, ClassNotFoundException{

35 return DB.getContactByName (Name);

36 }

37

38 BGET

39 @Path("=search/g")

40 @Produces (MediaType. JSON)

41 public String getContactByQuery (@Context UriInfo urilInfo)
throws SQLException, ClassNotFoundException{

42 String query = urilInfo.getRequestUri().getQuery();

43 return DB.getContactByQuery (query);

44 }

45 |}

Figure 4.8: A subset of the REST APIs generated by WL++ code generation engine

72

R 4 .l 10:08 ame

Existing Entries

[
Lot N ‘Moo

Bhonn Numbar, TEMBEZE3
E M "oy nooed@mal con”
Sathdey. "Fridun 11 1978

Phona Mumber
TE04852933

E Mail
raymoare@mai.com

Birthday

11061878

Ficture

By Wil Jun 07 1 D87

Msa: I roan®
Lt hinm; “Willnema*
Bhone Mumbar, STTER4TS
E hai: '

: meswldmail o’
Sitndey Toe Wor 14 16787

Employes List

Kathleen Byme
Salos Aepresentativa

Gary Donowvan
View Manager Markaling
Iames King

View Direct Reports Paula Gates

h Safaare Architect
<

Email
rmacre @fakemnai.com Ay Jones
Sales Aegresentative
Call Office
B17-000-0005
Paul Jones
call Cell A Maragar

James King
Prasident and CEQ

Eugene Lea

(d) (e)

Figure 4.9: The Contact Manager app generated with WL++ (a-c) and the Em-
ployee Directory app [5] (d-e)

4.1 Contact Manager vs. Employee Directory

In this Section we compare the Contact Manager application generated by
WL++ with the Employee Directory in terms of functionality and lines of code
(LOC) for different file categories (Table 4.2). The latter is a Phonegap application
developed manually by Christophe Coenraets [5].

4.1.1 Functionality Comparison

Both applications have similarities in terms of functionality and architecture as they
both use the Backbone.js library. In the case of the Contact Manager, the main
model is a single Contact whereas in the case of the Employee Directory the model
is an Employee. Both applications can display an instance of the model and also
all the existing models included in the model collection (Figure 4.9a-4.9d, 4.9¢c-
4.9¢). There is also a "Home" button through which users can navigate to the Home
page and a "Search" input filed to search for contacts/employees based on specific
keywords. However, in the case of the Contact Manager, the Contacts are added one
by one by the users using an input form. On the other hand, the Employee Directory
assumes that there is a database that includes all the employees and therefore it uses
several SQL queries to populate the list of employees. Table 4.1 presentes the

similarities and differences of both apps in terms of functionality.

Functionality Employee Directory | Contact Manager
Insert new entries Form Database
View a single entry v v

Browse through a list of entries v v

Search entries based on keywords v v
Navigate to home screen v v

Table 4.1: Comparison of the Employee Directory app and the Contact Manager
app in terms of functionality

4.1.2 LOC Comparison

In total the Employee Directory is composed of 1344 LOC whereas the Contact
Manager application has 753 LOC (excluding the LOC belonging to the back-end

as the Employee application does not have a back-end implementation). The SQL

74

queries regarding the population of the list of employees consist of 116 LOC. How-
ever, this functionality can be mapped to the form view of the Contact Manager
application that is used as an input form to add new contacts. Below follows a de-
scription of the differences between the two application in terms of functionality,

file categories, and lines of code:

* HTML: This category includes the LOC of all the HTML files. Both appli-
cations are single page applications and therefore, there is one HTML file
which contains the most essential templates/library imports that are always

present in every application.

e Other . REST Total
HTML | Models | Views JavaScript Templates | CSS | WL Adapters service | (excluding back-end)
Employee Directory 26 31 202 469 167 449 0 0 1344
Contact Manag 92 55 196 117 21 272 158 445 753

Table 4.2: Comparison of the Employee Directory App and Contact Manager App
based on the Lines of Code (LOC)

* Models: The Employee Directory application architecture is very similar to
the Contact Manager as they both leverage the Backbone.js library to separate
the user interface from the application logic. Therefore, we compared the
LOC of the model defined on the Employee Directory (model: Employee)
over the LOC defined on the Contact Manager (model: Contact).

* Views: In the case of the Employee Directory app, there is a single file rep-
resenting the views of the application which consists of 202 LOC. On the
other hand, Contact Manager has three separate files representing each view.
WL++ generates a different file for each view in order to facilitate the main-
tenance of the application in the later stages of development. The LOC in the

case of the Contact Manager application are in total 196.

* Other JavaScript: There are additional JavaScript files in both applica-
tions. The Employee Directory handles the communication with the de-
vice’s database by doing a manual construction of SQL queries in order to

fetch/store data in the database. However, for this purpose, WL++ uses the

75

Backbone-WebSQL! library (as mentioned in Section 3.6.2, which is respon-
sible for the retrieval/storage of the data. Furthermore, in this category, we
have included the file including the code that instantiates all the models, col-

lections, views and the local database.

* Templates: Although there are multiple templates defined, we counted the
LOC of the templates that were used for this application. More specifically,
we calculated the total LOC of the templates by subtracting the LOC of the
initial HTML file (before the code generation) and the HTML file (after the
code generation). By doing this, we know how many LOC have been added
in the initial HTML file and therefore, how many LOC of the templates have
been used for this specific application. In our case there were 21 LOC added.
On the other hand the Employee Directory has five templates (167 LOC in

total), which are used when users navigate from one screen to another.

* (CSS: We defined our CSS file as a static file, which is the same for every ap-
plication to be generated. This file is copied in the CSS folder of the generated
application the same way the libraries are copied to the lib folder. This way,
more CSS files can be added and switched according to the developer’s pref-
erences. In our case, the CSS file has 272 LOC compared to the Employee
Directory that has 449 LOC.

* WL adapters & Restful Web Service: Although, the Employee Directory does
not have a back-end, we have included the WL++-adapters and the RESTful
service back-end in the chart in order to calculate the total LOC generated by
WL++. Since the back-end is composed of the adapters and the web-service,

in total there are 603 LOC.

'https://github. com/MarrLiss/backbone-websql

76

Chapter 5

Evaluating the WL++ Framework

In the previous chapter we have already described the steps followed to develop the
Contact Manager application by using WL++ as proof of concept. In this chapter,
as a means of evaluating our WL++ framework, we describe two real-world appli-
cations we have developed with WL++: (a) a physical activity tracking application
to increase one’s daily physical activity (Section 5.1) and (b) a patients’ visiting
application to support nurses going through their rounds (Section 5.2). For each
of these applications, we discuss the motivation behind their development and the
development process using WL++. We also report some descriptive statistics on the
application size and complexity reflecting the degree to which WL++ contributed

to the overall application development.

5.1 Physitivity: A Physical Activity Tracking
App

Physitivity is a cross platform mobile application that aims to encourage users to
increase their daily physical activity. When installed, it is aware of a few typical ac-
tivities (walk, run, bike or climbing stairs) but, more interestingly, it enables users
to define new types of activities based on their own everyday life, such as doing
laundry or shoveling snow for example. The application is also aware of the user’s
calendar and location. While active, the application locates the user’s location every
15 minutes, suggests nearby activities based on the user’s calendar availability and

displays an alert. When users engages in an activity, they can record the activity’s

77

duration and intensity, in units relative to the activity. For example, when record-
ing stair climbing, the number of steps is recorded and the qualitative tempo of the
activity, i.e., light, moderate, and vigorous. Additionally, users may provide mean-
ingful tags to each activity. At any time, users may see their history, based on the
activity types and chosen tags, or a graphical overview. When the physical activity
is outdoors, the app uses the smart-phone GPS to simplify (and improve the quality
of) data recording. If users plan to perform an activity such as walk, run or bike
from their current location to a destination location, they can simply indicate the
two locations on a map and start. Until users indicate that an activity has stopped,
the device GPS will periodically record the user’s current location and thus record
the activity trace and time. Of course, users can always add new past entries and
edit or delete existing ones.

Physitivity has been developed before WL++ as part of the “Smart-Condo™
course based on requirements developed with Occupational Therapists and
Physical-Activity experts during this course. Simultaneously, EASI, an application
for people with diabetes was also developed by a different team within the context
of the same course at during the same timeframe. With EASI users were able to
record their blood glucose, food, physical activity and insulin intake [35]. Based
on the experience gained from both these applications in terms of architecture,
functionality and user interface components, WL++ was created. For evaluation
purposes, we attempted to re-develop Physitivity by using the WL++ framework.
The application diagram of Physitivity is shown in Figure 5.1. Below are listed the
main steps to be followed in order to create the application diagram and generate

Physitivity:

Step 1.

First we add the mandatory components (Application Diagram for the views and
Model Collection for the models). Next, we continue by defining the models along
with their attributes within the Model Collection section. In this case, the Model
Collection is composed of five models namely: “Activity”, “Walk”, “Run”, “Per-

sonal Activity” and “Stairs”. The “Walk™ and “Run” activities are similar conceptu-

78

ally and therefore share similar attributes. More specifically, several attributes were
added for these activities namely: fromLocation, toLocation, fromTime, toTime,
duration, light, moderate, vigorous.

For the fromLocation and toLocation attributes we drag and drop the Text
widget from the palette. As a result, both these attributes are displayed as text in-
put fields where end-users are able to type their location by giving meaningful tags
(e.g., “home™, “office”, “university” etc.). For the fromTime and toTime attributes
the Clock widget is selected as it needs to be initialized with the device’s local time.
Since we have the time an activity starts and ends, let’s supposed that the applica-
tion should also display the duration of an activity to the users. For this purpose, we
also add a Numeric widget namely duration. Later on we will explain where the
calculation takes place and how it is indicated by the developer though the applica-
tion diagram. Finally, three Checkbox widgets are added representing the activity’s
intensity (light, moderate and vigorous). Ideally, a Radio Button widget would be
more suitable in this case since only one option has to be selected. However, as
currently the plugin does not support a radio button widget, we chose the checkbox

one assuming that end-users will only check one of the three available options.

©% ModelCollection <= Palette [
walk k=
Physitivity Al framtacstion = Ohjects
ApplicarionDia...
AJ otocasion Model
= walk MauigataTa [Activities 7= persanalActivity o, ModalCallection
) fromTime = .
o Start Walking . MaigateTh | = STAIT ® L= Connections
Heiget NavigaraTn S, NavigateTa
) aTim
o Stop Walking = = srairs o Stop @ =+ Ul Compone... &
— Text
B [z crarian “_I
1 Star Running NavigzeTe NavigaeTo HidgerText
MavigataTe
& Stop Rumm (¥ uam g Memeric
10| nrdn
- e 9 - MyPersonal Activities A
0
" [F] waterare - \;“ i,
Lt Views =
NavigateTe. NavigateTe E Dashboard
Vigorous
MavigaraTe’ & Loginview
= FormView
MyActivities Rur =
ListView
Stairs [=* Events
5 Click
Activity Jx Function
(= Back End
Persnralhok 1 rrTeadaper
. SOLAdapter
oBe "-°

Figure 5.1: Physitivity Application Diagram

Next, we add a “Stairs” model which is composed of three attributes: (a) de-

79

scription, (b) location and (c) stairs. The description is a 7ext widget and repre-
sents the location of the stairs taken. Users can specify the location by using one or
multiple tags. The location attribute is a Location widget that gets the current loca-
tion of the user using the mobile device’s GPS. The Location widget does not have
a user interface component but is only represented by a set of latitude-longitude
values that are stored on the device’s local storage. Finally, the stairs attribute is a
Numeric widget representing the total number of the stairs taken.
Step 2.
After the definition of the models, we populate the Application Diagram component
with the essential views. The main screen of the view to be displayed when the
application is launched is a Dashboard View (namely Activities) which leads to
the rest of the views (the ones that are connected to the Dashboard). For each
Activity within the Model Collection, we add a Form View and thus, there are four
form views in total: Walk, Run, Stairs, Personal Activity. Finally, we continue by
adding two separated List Views: (a) My Activities which includes all the activities
except from Personal Activities and (b) My Personal Activities used to store only
personal activities. The form/list views are associated with a particular (collection
of) model(s) through their properties (specified in the WL++ property console).
Step 3.
So far, only the models and the views have been specified. However, we need
to add the navigations from one view to another. The navigation is indicated by
adding navigation links among the views to be connected. As we can see in Figure
5.1, the Activities Dashboard screen leads to all the Form views (Walk, Run, Stairs,
Personal Activity) and also to the List views (MyActivities, My Personal Activi-
ties). Furthermore, when a Run or Stairs activity is added, end-users navigate to
the My Activities list whereas in the case of a Personal Activity in the My Personal
Activities list.

To trigger events, the Click widget from the Events cluster is selected. By
adding this widget to the views, there is a click event that can be triggered under
specific conditions specified through the Click widget properties. First, we specify

an ID for the event and as explained in section 3.4 in the case where this ID does

80

not exist, a new event is created. For instance, the Walk view has two such events:
(a) start and (b) end. The property “Set Attribute Value™ of the Click widget has
been set as : “fromTime=new Date()”. Thus, when the “Start Walking” button is
clicked, the fromTime attribute of the Walk model is initialized with the device’s
local time. Similarly, when the “Stop Walking” button is clicked, the toTime at-
tribute is initialized with the device’s time. By having the starting/ending time of
the activity, we can simply calculate and set the value of the duration attribute when
the “Save” button is clicked.

When the Application Diagram and the Model Collection are populated, then

the “Generate Code” button must be clicked to generate the Physitivity application.

5.1.1 Physitivity vs WL++ Physitivity

In this section we compare the two applications: (a) the Physitivity developed as
a course project and (b) the Physitivity generated using our WL++ framework in

terms of functionality along with some code statistics.

5.1.1.1 Functionality Comparison

As described before, Physitivity exhibits some features that are not generated
through WL++. First, it uses the mobile-phone’s GPS to locate the user and it
integrates Google maps. Therefore, it is able to display one’s walking/running path
on a Google map by locating the user every minute. It is also integrated with the
Google calendar service (as long as the user logs in with a valid Google account)
which it uses to send notifications regarding activities to be performed while the
users are not busy (according to their calendar’s free time slots). Despite of the
user’s availability, the recommendations are made based on the user’s current lo-
cation and history of activities. More specifically, when a user is located within a
range of 500 meters of the place where an activity has already taken place, the user
is notified to re-perform this particular activity. Furtherfore, it uses the device’s
accelerometer to count the number of stairs when a stairs activity starts. Finally,
all the activities are presented to the users through a graphical representation for an

easier overview (per month, week, day) that shows the overall progress.

81

By using our WL++ framework we were able to generate a simpler version of
this application. In Table 5.1 we compare the two applications in terms of func-
tionality. The cells indicated with x represent the functionality that currently cannot
be generated through the WL++ framework. However, the implementation of the
accelerometer, graphical representations of data as well as the integration of google
services is a matter of extensions to the current plugin. Similarly to the Image
widget that is able to take an image using the device’s camera or choosing an exist-
ing image, other components that access the device’s features through the Cordova

APIs can be added by extending the WL++ application specification plugin.

Functionality Physitivity | WL++ - Physitivity
Dashboard

View per Activity
Add/Edit/Delete Activity
Tagging Activities

Color Themed Activities
Date/Time Picker

GPS Location

Google Maps

Activity Intensity

History of Activities
Back-Button Navigation

Home Navigation
Accelerometer

Google Calendar

Notifications

Filtering

Compute Duration/Activity
Graphical Representation/Chart

ENENENESENENENENENENENENENENENENENEN
RN IR IR RN RS AN I ESENEIENENENEN

Table 5.1: Comparison of the Physitivity app with the WL++ Physitivity app in
terms of functionality

5.1.1.2 LOC Comparison

In order to give an overview of the amount of code generated automatically through
the framework, we categorized the files into specific categories similarly as we did
with the Contact Manager application. Table 5.2 depicts the lines of code of the
Physitivity compared to the lines of code of the application generated with WL+ +.
First, we observe that for each file category the prototype application prevails re-

garding the lines of code. Both applications have the same models except from

82

the Biking model (included in the prototype app). Because the functionality is
similar to the Walk/Run activities, the Biking activity is not included in the auto-
generated application. As we can see in Table 5.2, the number of LOC regarding
the Models is very close for the two applications (266 and 213 for the Physitivity
and WL++ Physitivity respectively). The HTML file category as for Physitivity has
618 LOC compared to 135 for the WL++ Physitivity. The former includes more
templates and has slightly more complicated user interface. Moreover, for each ac-
tivity users can either select to add a new activity that will be performed at the same
time or a past activity. For all these cases, there are different templates although a
single template could be used and changed on the fly when needed. This is a bad
practice which leads to a high number of LOC and makes the maintenance difficult.
The same practice is observed with the Views and the Templates. The CSS related
files contain themes and more specifically a special JQuery theme that was needed
in order to be able to mark each activity category with a different color. Finally, the
Other Javascript category includes files such as the Backbone router and the main

javascript file responsible for the launch of the application.

) Other Total
HTML | Models | Views JavaScript Templates | CSS | Total (Excluding LOC not used)
Physitivity 618 226 1741 430 534 | 1478 | 5067 2473
WL++- ++ Physitivity 135 213 771 164 89 272 1644 1644

Table 5.2: Comparison of the Physitivity app and WL++ Physitivity app in terms
of Lines of Code (LOC)

As mentioned above, the prototype application includes pieces of functional-
ity that were not generated by using the current version of WL++. For each one
of the requirements (listed in Table 5.2 and marked with x), we counted the LOC
referring to each one of them. In other words, the LOC for each requirement in-
dicate the manual effort needed to implement a specific functionality. Therefore,
in Table 5.3 we can see the total LOC for each functionality that is included in the
prototype Physitivity app but not generated in the Physitivity version developed us-
ing the WL++ framework. In total there are 829 LOC that need to be manually
added in the generated version of Physitivity (1644 LOC). This essentially means
that developers using the WL++ plugin would generate 66,48% of the Physitivity

83

code. Furthermore, since Physitivity has already gone through maintenance (few
requirements changed, and Backbone.js was integrated in a later phase of the de-
velopment), there are in total 2594 LOC that are not used from the application
(although these parts of code are spread throughout the app, a big part of it resides
in the CSS file).

Functionality HTML | CSS | JavaScript | Total LOC
Color Themed Activities 1 0 20 21
Google Maps 7 0 238 245
Accelerometer 0 0 79 79
Google Calendar 0 0 98 98
Notifications 9 9 95 95
Graphical Representation/Chart 55 14 222 291
Total 63 14 752 829

Table 5.3: LOC of the functionality that has been implemented in Physitivity but
not generated in WL+ +-Physitivity

The top layer of Figure 5.2 shows three screenshots of the Physitivity applica-
tion (Figure 5.2a, 5.2b, 5.2c) whereas the bottom layer the corresponding screen-
shots of the same application generated using the WL++ framework (Figure 5.2d,
5.2e, 5.2f). As we can see, the dashboards look similar in terms of the layout used
(Figure 5.2a, 5.2d). The Physitivity application has two additional functionalities
(achievements and settings) that are not included in the WL++ Physitivity. The
second set of screenshots ((Figure 5.2b, 5.2e) shows an instance of the addition of
a new Walking activity. As mentioned before, Physitivity has been integrated with
Google Maps and requires a valid Internet connection to be able to keep track of
the user’s location. Besides that, the two applications have similar headers (both
include a “Back” button which keeps track of the navigation history and it is able
to take the user to the previous accessed screen). The “Save” button in Physitivity
is located in the main area whereas in the WL++ Physitivity in the header. Essen-
tially, in the first case users need to hit the “Save” button to stop the activity and in
the second the “Stop Walking” button. However, by hitting “Save” in both applica-
tions, the activity details are stored on the device. Furthermore, both applications
store a starting and ending time of the activity. In the first case, this is done in the

background, since the time is not shown on the user interface. More specifically,

84

when the “Start” and “Stop” buttons are clicked, a timestamp attribute is attached to
the corresponding activity model. In our case, users can see the time on their screen
and are able to modify it if this is a past activity. Furthermore, for each activity
there are three options of activity intensity (Low, Medium, High for Physitivity and
Light, Moderate, Vigorous in the case of WL++ Physitivity). Finally, the last set
of screenshots (Figure 5.2c, 5.2f) represents an instance of the Date/Time picker
widget. Users are able to add past entries or edit their existing entries by modifying

the starting/ending time of their activities.

85

Walking # Home

= vty 20/02/2013 0910 A

o+ |+]+
20 02 13

Activity

University Home

IFtensity
Low Mediurn High

Tracking : from Univarsity to Home Heurs Mirtes
Start) Save

|_M-0D s

Dchiewements

From Locason
Uninversity

Ta Lecaton
Hasne.

From Time

11082014 B:04 PM
TaTime
11082014 826 P
Light
B Moderste
Vigorous
Start Walking

Stap Walking

My Persanal Actiuitios

(d) (e) ()
Figure 5.2: Physitivity (a-c) and WL++ Physitivity (d-f)

86

5.2 Hourly Rounds: A Patient’s Visiting App
Operated By Nurses

The Hourly Rounds is a mobile application intended to be operated by nurses.
Nurses working in the Glenrose Rehabilitation Hospital came in contact with the
Computing Science Department asking for a mobile application that could assist
them during the patients’ visiting process. More specifically, the nurse has to check
on a patient every hour. If the patient is awake they ask three questions: (a) “Do
you need to go to the toilet?” (b) “Do you have pain?” and (c¢) “Do you need
anything?”. They can also make a comment of anything interesting about the pa-
tient (e.g., in case where the patient is sleeping or has a request). This process is
called Hourly Rounding. So far, nurses have been printing out forms with the above
questions that they fill out every time they visit a patient. Although filling out the
forms does not take a significant amount of time, it has been noticed that several
times more than one nurses may visit the same patient simultaneously. Moreover,
the collected data is not quite useful since it cannot be processed or analyzed in any
way.

The requirements were developed by the nurses requesting the Hourly Rounds
application. First, they requested an application with a back-end including nurses
and patient hospitalized along with few information such as their room numbers.
Essentially, on every shift, the list of the patients’ rooms to be visited must be
displayed on the nurse’s mobile device. As the nurse goes around, she should be
able to see the form with the questions to be answered, comment and save the entry.
When the entry is successfully saved, she must be able to see the next patient to
be visited. On top of that, after an hour of the last visit of a patient, this patient
should re-appear on the list. Finally, all the information entered by the nurses must
be stored permanently on a single database. Below are listed the steps that describe
the development of the Hourly Rounds application by using the WL++ application
specification plugin:

Step 1.

Based on the requirements we got from the nurses, we used the WL++ framework

87

to generate a prototype of the Hourly Rounds application. The modeling diagram
developed for this application is depicted In Figure 5.5. As we can see we have
declared two models, (a) Visit and (b) Entry. The Visit model represents the pa-
tient to be visited and has two attributes: (a) bed for the bed number which is a
Numeric widget and (b) a Variable widget namely checked which represents the
status of the visit; if its value is set to frue it means that a nurse has already checked
on the patient, otherwise the values is set to false. The Entry model is related to
the log of each patient. According to the requirements we have three questions and
a commenting section. Therefore, we declared the questions as Checkbox widgets
since the answer has only two states (yes/no) whereas for the commenting section
we used the Text widget. Although the checkboxes are named as “q1” (first ques-
tion), “q2” (second question), “q3” (third question), this property functions as the
checkbox’s ID. On the mobile device we have the real questions displayed (the text
that has been set through the checkboxes’ label property (Figure 5.3)). Finally, the
last attribute of the Entry model is a Clock widget that timestamps the entry while
itis saved. By adding this widget, nurses do not need to manually set the time every

time they visit a patient.

4 Checkbox
Property Value
C
ore Label = Do you feel pain?
Appearance Name i=q2

Figure 5.3: Properties of the checkbox widget

Step 2.

Next, we construct the application diagram as follows: first, we add a Dashboard
view (namely Rounds). Through the Dashboard, nurses can navigate to two avail-
able list views (a) Visits and (b) Entries. The Visits list is populated with the pa-
tients’ to be visited. This list is initialized when the application is connected to the
back-end requesting the visits through a RESTful APIL. As nurses browse through
the patients’ list which only includes the number of the patients’ beds, they can
click on a certain bed and view the form to be filled. When they hit the “Save” but-

ton, they navigate back to the patients’ list as indicated through the “Navigation”

88

link from the Entry view to the Visits view. The Entries view contains all the forms
that have been already saved. The only path to view the list of the existing entries
is through the Dashboard. Therefore, by navigating back to the Dashboard, the En-
tries view can be easily accessed. Each entry can be edited and re-saved (which
results to an update of the information locally and externally).

Step 3.

We also defined an adapter in order to generate a RESTful web service for our
application. The need for a back-end is twofold: (a) to be able to retrieve the
patients to be visited and display this information to the nurses through their mobile
devices and (b) to store the forms that have been filled out on an external database.
The name of the adapter and the procedure responsible for the request that needs
to be sent and retrieve the visits is indicated on proper views; in our case, this
information is included within the Dashboard view (Figure 5.4). This means that,
when the application is launched, the information retrieved from the back-end is

stored on the Visit Collection and displayed on the Visits list view.

£ Properties §3 WL+ +

E pashboard

Property Value
Core Model i= Visit
Appearance Name I= Rounds
Procedure I= getVisits
Retrieve Attributes '=ql, g2, g3, comments
Retrieve From =
Retrieve When I= checked=false
Save to 1= allVisits
WL Adapter I=REST

Figure 5.4: Properties of the Dashboard view

In Table 5.4, we have listed the requirements and marked the ones that were suc-
cessfully accomplished by generating the Hourly Rounds application. The mobile
application and the back-end were generated by WL++ . We first manually entered
sample data in the database and then run the application in order to test it. As we
can see, the visits were displayed in a list view and when clicked they led to a form
with three questions and a commenting section (Figure 5.6¢). When a form was

filled out and saved, we were able to see this entry locally through the Entries list

89

.2 Palette >

o ModelCollection Iy & &
Hourly Rounds Visit (= Objects 40
ApplicationDia...
E Rounds NavigateTo . E bed Model
Entries - o4, ModelCollection
checked
= Connections
Entry "%, NavigateTo
. NavigateTo Ul Components-
NavigateTo al =
[Views
—_ Entry CI2 = Events 40
— . 4 Click
Visits NavigateTo i) serChecked J
q_:, Fx Function
NavigateT
avigatelo = Back End €0
A] Comments i HrTPAGapter
G) time . SQLAdapter
i ResT

Figure 5.5: Hourly Rounds - Application Digram

view and externally on the Entries table of the database. The checked variable were
“false” by default but converted to “true” when an entry was saved. Through the
list properties, we specified that the entries that should be displayed are the ones for
which the checked variable is “false”. Therefore, the patients that had been visited
by a nurse were no longer displayed on the list. The functionality that we had to
implement manually was to display on the list the patients that had not been visited
for an hour. Since we had the timestamp of the last visit of the patient, it was easy
to add an hour and compare it with the device’s time. If this difference was equal
or greater than an hour, then the checked variable’s value was becoming “false”
again and the list was re-rendered. Nonetheless, this functionality could be also im-
plemented on the back-end side by adding a trigger (special rule) on the database.
More specifically, when an entry is saved, then through the trigger we instantiate
a new variable with the time that the patient must be visited next and modify the
“checked” variable to false. Regarding the user interface, we slightly modified the
CSS file in order to change the colours and style of the title and the information

displayed on the list. We also replaced the default images with customized ones

90

(Figure 5.6e). Finally, during the demo of the application to nurses, they noticed
that the answers to the three questions were recorded as “true” and “false™ (Figure
5.6d). Therefore, we modified these values to “Yes™ and “No” instead (Figure 5.6f).
The Hourly Rounds application will be trialed soon by few nurses at the Glenrose

Rehabilitation Hospital.

Requirement Manual Effort Needed
Get Visits from a back-end No
Display visits to the nurse No
Associate a visit with a patient No
Display a form for each patient No
Save the form locally No
Save the form externally No
Display a list of all the entries No
Remove patients from the list when a nurse visits them | No
Add patients that have not been visited for an hour Yes

Table 5.4: The manual effort needed to accomplish a requirement

91

Hourly Rounds

Entries

Do you teed pai? Snlse
hingalse
PR
Time 2014-08- 1308 000007

D e war > o i il alsa

COFmanE:
Tina"2014-08-13TOE-02-00. 2002

Do you wart 12 9o 1 i kit 4sisa

Do you wart o go i he
e et Salem

Do alss

Cormant™
Ting 3014 08-15T0S- 6000007

(d) (e)

92

Entries

Do you want to go 1o the tollet?
Do you feel pain?
Da you need anything?

Comments

Tima

1308/2014 11:63 AM

Do you wark o go i the folel?: Ve
Do you fasd pain?. Ko

Do you need anytung?: Ko
Corments -

Time: 2014-08-13TD603 00,0002

Do you wark o go i tha iel?: Mo
D0 0w fogl pa?. o

Do you niseed anying™:
Commans: Tha patiant was asloop.
Time: 2014-08-13TDED0 00,0002

Do youwark o g b e et b
sl e

Do you need anyiing”. Yes

Comments: -

Time: 2014-08-13TDED2100. 0002

Do you wark o go i the folel?: Mo
Do you fes! pain™. Mo

Do you need anying?. Yae
Commants: -

Time: 2014-08-13TD605 00,0002

Tima: 3014081370606 00,0002

®

Figure 5.6: Hourly Rounds before the manual modification (a-d) and after (e-f)

5.3 Comparison of Applications in Terms of
Complexity

By integrating the Backbone library in our WL++ framework, we achieved to
generate similar applications in terms of architecture. Therefore, Backbone offers
developers the ability to quickly learn the structure of the applications and therefore
results in a more efficient maintenance process. However, as we observed by all
the generated applications (Contact Manager in Section 4, Physitivity in Section
5.1 and Hourly Rounds in Section 5.2), they all have different requirements and
therefore one may be more complex compared to the others in terms of the number
of components it needs to be generated and the plethora of the generated files as
well.

In order to compare the applications based on their complexity we constructed
Table 5.5, where we can see the number of the different components generated
for each one of the applications that have been discussed before. Based on these
results, Physitivity seems to be the most complex application that was generated
in terms of models, views and templates. For this application in particular, we
had to use seven views in total to represent the different activities as well as the
lists of the activities. On the other hand, the Contact Manager and Hourly Rounds
applications have three and four views respectively. The Contact Manager was
used as an example and as such is the least complex application of all composed of

a Dashboard, a Form and a List view.

Models | Views | Routers | Templates | HTML files | Adapters | Time (sec)

Contact Manager 1 3 1 7 1 1 307
Physitivity 5 7 1 12 1 0 955
Hourly Rounds 2 4 1 9 1 1 486

Table 5.5: Complexity comparison among the generated applications

For single page application a good practice is to have the templates in a single
HTML file (where the libraries are also imported) and thus, for every application
that is generated through the WL++ plugin, there is a single HTML file along

with a single Backbone router component. Finally, the Contact Manager and the

93

Hourly Rounds applications have supported back-ends and therefore they include a
Worklight adapter each compared to the Physitivity which was developed for local
use only.

Finally, we measured the time needed to generate the applications using the
WL++ application specification plugin. The time that was required to create the ap-
plication diagram and specify the properties of each component is 307 seconds, 955
seconds and 486 seconds for the Contact Manager, Physitivity and Hourly Rounds
respectively.

Therefore, for a developer who is familiar with the WL++ plugin and already
knows the constraints of the existing metamodel, the time that takes to generate a
catalogue-based cross-platform mobile application is only few minutes. The least
complex application (Contact Manager) took approximately 3 minutes whereas
Physitivity (an application that had a more complex composition) took approxi-
mately 16 minutes. Usually, the time that takes to develop an application from
scratch may take several weeks or even months. For example, the prototype of the
Physitivity application took approximately 2-3 months to be developed. However,
using the WL++ plugin to create the application diagram that represents it, the
time to generate about 66% of the application was significantly reduced to only 16
minutes.

On top of that, the files are structured into folders to facilitate the process of de-
ploying the application within a Worklight project. If a developer had to construct
from scratch all the application files, not only it would take significantly more time
to write the source code but also the first version of the code would be more er-
ror prone and therefore, the necessary debugging would also be even more time

consuming.

94

Chapter 6

Conclusions & Future Directions

In this thesis, we presented the WL++ framework built by integrating three ma-
jor tools: IBM Worklight, Backbone.js and the Graphical Modeling Framework.
The WL++ application specification plugin leverages model-driven engineering
techniques to create cross-platform mobile applications along with supported back-
ends. Before developing our WL++ plugin, we first defined a general model that
describes common features of a subset of applications falling under the catalogue-
based category. Based on this model, we developed a set of widgets, through which
developers are able to design the proper application diagrams and generate mobile
applications.

Backbone.js played an important role as it separates the user interface from
the business logic of the generated applications. Our proposed framework also of-
fers flexibility to developers by deciding whether they want their application to be
connected to external databases via RESTful APIs or not. RESTful APIs are auto-
matically generated based on the models defined and their attributes. These APIs
support basic CRUD/Filtering by specific attributes operations and the definition of
the external database structure. Additionally, the reverse engineering component of
the WL++ plugin allows the automatic construction of models based on existing
RESTful web services or XSD schemas.

The contribution of this work is threefold:

* We have designed a modeling language to specify data models and user
interface components of catalogue-style applications. More specifically,

the modeling language is composed of components to specify the data mod-

95

els of the application, their attributes through predefined user interface com-
ponents such as Text, Numeric, Checkbox, Image etc. Moreover, the model-
ing language includes view components along with events such as the click
event along with customized functions. Developers are able to define the
navigations among views by using the Navigate To connection link. Finally,

back-ends can be generated by specifying the proper Worklight Adapters.

* We have developed a framework to allow developers generating easily
and efficiently cross-platform applications. The WL++ application spec-
ification plugin offers developers to ability to specify the necessary compo-
nents through drag and drop actions. The available widgets are grouped into
clusters to facilitate the process of the application model construction. Two
lines of code generation are available: (a) from scratch, and (b) based on
existing RESTful APIs and XSD schemas. Through the reverse engineering
process, the Model Collection component where the models are specified is

generated in a semi-automatic way.

* We have evaluated our framework by using three example applications:
(a) a Contact Manager Application, (b) Physitivity: a Physical Activity
Tracking Application and, (c) Hourly Rounds: an Application Operated
by Nurses while Visiting their Patients. The Contact Manager applica-
tion was developed to illustrate the process a developer follows in order to
generate an application. A prototype of the Physitivity app was developed
from scratch prior to the WL++ framework development and therefore we
attempted to re-generate it. Finally, the Hourly Rounds application was re-
quested by the nurses of the Glenrose Rehabilitation Hospital. As shown by
the time measured to generate these application the manual effort needed by a
developer in order to generate them from scratch is significantly reduced. The
time needed to create the aforementioned applications ranges from approx-
imately 5 minutes to 16 minutes whereas an application such as Physitivity

make take up to several months to be developed.

In the future, we aim to add more essential widgets/attributes such as radio but-

96

tons and labels. Also we plan to integrate and allow the design of more complicated
data model structures (e.g., nested models, inheritance from an abstract model).
The design of multiple CSS files would be desired as it allows users to choose the
user interface that better fits their needs. Finally, regarding the reverse engineering
process, we would like to extend WL++ in such a way where the integration of

multiple RESTful web services would be possible.

97

Bibliography

(1]

(2]

(3]

[4]

[3]

[6]

[7]

Smartphone Ownership 2013. Smartphone ownership
2013. http://www.pewinternet.org/2013/06/05/
smartphone—ownership-2013/, 2013. [Online; accessed 8-March-
2014].

Fahad Aijaz, M Chaudhary, and Bernhard Walke. Performance comparison of
a SOAP and REST mobile web server. Context, 2009.

Nick Baetens. Comparing graphical DSL editors: AToM3, GMF, MetaEdit.
University of Antwerp, 2011.

G Botturi, E Ebeid, Franco Fummi, and Davide Quaglia. Model-driven design
for the development of multi-platform smartphone applications. In Specifica-

tion & Design Languages (FDL), 2013 Forum on, pages 1-8. IEEE, 2013.

Coenraets C. The employee directory applica-
tion. http://coenraets.org/blog/2011/10/
sample—-app-using-the-phonegap-database-api/, 2011.

[Online; accessed 9-March-2014].

Andre Charland and Brian Leroux. Mobile application development: Web vs.

Native. Communications of the ACM, 54(5):49-53, 2011.

Jason H Christensen. Using RESTful web-services and cloud computing to
create next generation mobile applications. In Proceedings of the 24th ACM
SIGPLAN conference companion on Object oriented programming systems

languages and applications, pages 627-634. ACM, 2009.

98

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Alberto Rodrigues Da Silva, Jodo Saraiva, Rui Silva, and Carlos Martins.
XIS-UML profile for extreme modeling interactive systems. In Model-Based
Methodologies for Pervasive and Embedded Software, 2007. MOMPES’07.
Fourth International Workshop on, pages 55-66. IEEE, 2007.

Paul E Dickson. Cabana: a cross-platform mobile development system. In
Proceedings of the 43rd ACM technical symposium on Computer Science Ed-
ucation, pages 529-534. ACM, 2012.

Roy Thomas Fielding. Architectural styles and the design of network-based

software architectures. PhD thesis, University of California, Irvine, 2000.

Martin Fowler. Domain Specific Languages. http://martinfowler.
com/bliki/DomainSpecificLanguage.html, 2004. [Online; ac-
cessed 17-September-2014].

Martin Fowler. Flow synchronization. http://martinfowler.com/
eaaDev/FlowSynchronization.html, 2004. [Online; accessed 16-

September-2014].

Martin Fowler. Observer synchronization. http://martinfowler.
com/eaaDev/MediatedSynchronization.html, 2004. [Online;
accessed 16-September-2014].

Anar Gasimov, Chuan-Hoo Tan, Chee Wei Phang, and Juliana Sutanto. Visit-
ing mobile application development: what, how and where. In Mobile Busi-
ness and 2010 Ninth Global Mobility Roundtable (ICMB-GMR), 2010 Ninth
International Conference on, pages 74-81. IEEE, 2010.

Nathan Hazout. Handling backend responses in adapters. https:
//www.ibm.com/developerworks/community/blogs/
worklight/entry/handling_backend_responses_in_
adapters?lang=en, 2014. [Online; accessed 27-July-2014].

Henning Heitkotter, Tim A Majchrzak, and Herbert Kuchen. Cross-platform

model-driven development of mobile applications with MD2. In Proceedings

99

of the 28th Annual ACM Symposium on Applied Computing, pages 526-533.
ACM, 2013.

[17] Adrian Holzer and Jan Ondrus. Trends in mobile application develop-
ment. In Mobile Wireless Middleware, Operating Systems, and Applications-
Workshops, pages 55-64. Springer, 2009.

[18] Hagen Hopfner, Jonas Pencke, David Wiesner, and Maximilian Schirmer. To-
wards a target platform independent specification and generation of informa-
tion system apps. ACM SIGSOFT Software Engineering Notes, 36(4):1-5,
2011.

[19] Cowart . Pros and cons of the top 5 cross-platform
tools. http://www.developereconomics.com/
pros—cons—top-5-cross—-platform-tools/, 2013. [Online;
accessed 9-March-2014].

[20] Stuart Kent. Model-Driven engineering. In Integrated formal methods, pages
286-298. Springer, 2002.

[21] Glenn E Krasner, Stephen T Pope, et al. A description of the model-view-
controller user interface paradigm in the smalltalk-80 system. Journal of ob-

Ject oriented programming, 1(3):26-49, 1988.

[22] OpenDJ Contact Manager. OpenDJ Contact Manager. https://svn.

forgerock.org/commons/mobile/contact-manager/trunk,

2013. [Online; accessed 9-March-2014].

[23] Craig McKeachie. Choosing a JavaScript MVC framework. http://www.
funnyant.com/choosing-javascript-mvc—framework/,

2013. [Online; accessed 23-June-2014].

[24] Igor Minar. -. https://plus.google.com/+IgorMinar/posts/
DRUAkZmX jNV, 2010. [Online; accessed 19-September-2014].

100

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Mobile-Spot-D-Project. Mobile-Spot-D-Project. https://github.com/
DomenicoColandrea86/mobile-spot-d-project, 2013. [On-
line; accessed 9-March-2014].

Gavin Mulligan and Denis Gracanin. A comparison of SOAP and REST im-
plementations of a service based interaction independence middleware frame-
work. In Simulation Conference (WSC), Proceedings of the 2009 Winter,
pages 1423-1432. IEEE, 2009.

Graphical Modeling Project. - http://www.eclipse.org/
modeling/gmp/, -. [Online; accessed 21-September-2014].

Mitch Pronschinske. Cage match! Sencha Touch vs.
jQuery Mobile. http://css.dzone.com/articles/
sencha-touch-v-jquery-mobile, 2012. [Online; accessed 27-

June-2014].

André Ribeiro and AR Silva. XIS-Mobile: A DSL for mobile applications. In
Proceedings of SAC 2014 Conference, ACM, 2014.

Douglas C. Schmidt. Guest editor’s introduction: Model-Driven Engineering.

Computer, 39(2):25-31, 2006.

Mathias Schifer. JavaScript application architecture = with
Backbone.js. http://www.slideshare.net/molily/
Jjavascript-application—-architecture-with-backbonejs,

2012. [Online; accessed 2-August-2014].

Mobile Technology Fact Sheet. Mobile technology fact
sheet. http://www.pewinternet.org/2013/06/05/
smartphone—ownership-2013/, 2013. [Online; accessed 8-March-
2014].

P Smutny. Mobile development tools and cross-platform solutions. In
Carpathian Control Conference (ICCC), 2012 13th International, pages 653—
656. IEEE, 2012.

101

[34] Thomas Steiner. Automatic multi language pro-
gram library generation for REST APIs. http:
//www.lsi.upc.edu/~tsteiner/papers/2007/
automatic-multi-language-program-library—-generation—-for/
rest—-apis-masters—-thesis—-2007.pdf, 2007. [Online; accessed
6-August-2014].

[35] Eleni Stroulia, Shayna Fairbairn, Blerina Bazelli, Dylan Gibbs, Robert Led-
erer, Robert Faulkner, Janet Ferguson-Roberts, and Brad Mullen. Smart-
phone application design for lasting behavioral changes. In Computer-Based
Medical Systems (CBMS), 2013 IEEE 26th International Symposium on,
pages 291-296. IEEE, 2013.

[36] Eleni Stroulia, Dylan Gibbs, and Blerina Bazelli. Towards families of person-
alized mobile applications. In Services (SERVICES), 203 IEEE Ninth World
Congress on, pages 166-169. IEEE, 2013.

[37] Arie Van Deursen, Paul Klint, and Joost Visser. Domain-specific languages.

Centrum voor Wiskunde en Informatika, 5, 2000.

[38] Ivan Vasiljevi¢, Gordana Milosavljevi¢, Igor Dejanovi¢, and Milorad Fil-

ipovi¢. Comparison of graphical dsl. University of Novi Sad, 2013.

[39] W3.org. Web SQL database. http://www.w3.0rg/TR/
webdatabase/, 2010. [Online; accessed 17-September-2014].

[40] Thomas Weigert and Frank Weil. Practical experiences in using model-driven
engineering to develop trustworthy computing systems. In Sensor Networks,
Ubiquitous, and Trustworthy Computing, 2006. IEEE International Confer-
ence on, volume 1, pages 8—pp. IEEE, 2006.

102

