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Abstract

The first essay develops a new conditional jump model to study jump dynamics in 

stock market returns. We propose a simple filter to infer ex post the distribution of 

jumps. This permits construction of the shock affecting the time t conditional jump 

intensity, and is the main input into an autoregressive conditional jump intensity 

model. The model allows the conditional jump intensity to be time-varying and 

follows an approximate ARM A form. Daily stock returns are analyzed using the 

jump model coupled with a GARCH specification of volatility. We find significant 

time-variation in the conditional jump intensity and evidence of time-variation in 

the jump size distribution. The conditional jump dynamics contribute to a good in- 

sample and out-of-sample fit to stock market volatility, and capture the rally often 

observed in equity markets following a significant downturn.

The second essay develops a new bivariate jump model to study jump dynamics 

in foreign exchange returns. The model extends a bivariate GARCH parameteriza

tion to include a correlated jump process. The conditional covariance matrix has 

the BEKK structure, while the bivariate jumps are governed by a Correlated Bivari

ate Poisson (CBP) function. Using daily data we find evidence of both independent 

currency-specific jumps and jumps common to both exchange rates. The essay con

cludes by investigating a time-varying structure for the arrival of jumps that relaxes 

the assumption of a constant and bounded jump correlation imposed by the CBP 

function.

The third essay extends the recent empirical literature on risk-adjusted Hotelling 

Rules for exhaustible resources by allowing time-varying risk premia in resource asset
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returns. Monthly metal prices for four metals (lead, copper, silver, and zinc) are used 

to estimate a Bivariate GARCH-M model derived from the risk-adjusted Hotelling 

rule and the consumption-based Intertemporal Asset Pricing Model (IAPM) of re

source asset returns. The model is also augmented with the Correlated Bivariate 

Poisson jump component to study the effect of market crashes on resource returns. 

The results basically reject the hypothesis that a time-varying risk premium provide 

a key component in modeling nonrenewable resource asset returns.
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Chapter 1 

Introduction

Modeling financial asset returns is a challenging task. With every day, new data 

points are available and there are frequent discoveries of (often puzzling) empirical 

characteristics. The goals in this dissertation are twofold. The first objective is a quest 

for a better understanding of market dynamics. Improved knowledge regarding the 

elements determining market movements may increase the ability of the government 

to provide stability in the financial system. Furthermore, the private sector can 

benefit from a less risky investment environment. The second objective is to provide 

accurate forecasts of the financial series, which has important implications for risk 

management, optimal hedging, and production planning related to various types of 

financial instruments.

Classical linear models, although often well-suited to the understanding of rela

tionships between economic variables, are ill-suited when used as a forecasting tool 

with respect to the financial markets. This results mainly from the complexity of 

financial markets and the speculative nature of the system. A shift of focus from lin

ear modeling to nonlinear modeling has occurred in the literature and well-developed 

nonlinear models have been presented in various contexts with great success. A best 

nonlinear model for the financial markets is difficult to identify. However, there is a 

common belief that in general these models perform well in a variety of situations 

with the most appropriate model depending on the particular series being studied, the

1
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1.1. MOTIVATIONS

time period selected, and the sample size (see Gengay, Ballocchi, Daorogna, Olsen, 

and Pictet (2002), Gengay, Daorogna, Olsen, and Pictet (2002), Daorogna, Gengay, 

Muller, Olsen, and Pictet (2001)).

1.1 M otivations

The unifying theme of this thesis relates to the possibility of identifying predictable 

components of asset returns. There are two main focuses pertaining to market crashes 

and risk premia. A question immediately arises, as no crashes should have occurred 

if they are predictable. The results of this thesis will allow us to argue that more 

information can be gained by carefully examining the history of dramatic market 

movements than by simply naming them crashes with total ignorance. It may be 

impossible to accurately predict when the next “1987” crash will come, but predictable 

components can be found with careful investigation.

Market crashes from hereon forward will be referred to as jumps that should 

be carefully defined not only to include the severe downturns of the market, but any 

unusually large movements following the entry of unanticipated news into the market. 

Looking at jumps from a statistical perspective, consider a data series that is normally 

distributed and, therefore, the chance of the occurence of an observation beyond three 

standard deviations is very low. For example, in the case of Canadian dollar, given 

that it has experienced returns of 0.01% per day on average for the last ten years 

with a standard deviation equal to 0.25%, a 1% jump (or a half-cent jump in terms 

of level) on a single day would be an unlikely event. Historically, though it happens 

so often that a normal distribution can not be used to explain this phenomenon. We 

denote these abrupt changes as crashes or jumps in this thesis.

A few questions motivate the line of research in this thesis. These include: “Is 

there a systematic pattern in the arrival rate of market jumps?” , “Do the magnitudes

2
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1.2. THE SOLUTION STRATEGY

of these jumps have implications for future jumps?”, “Does the likelihood of jumps 

remain constant over time?”, “What can be learned from the past that can be used to 

infer currency or stock market jumps in the future?” , “Will market jumps spill over 

from one market to the next?”. This thesis attempts to answer these questions in a 

analytical and technical framework and presents nonlinear models that are capable 

of answering these questions in an hypothesis testing framework as well as through 

direct incorporation of stylized facts. The proposed models will be applied to three 

different markets: stock markets, foreign exchange markets, and commodity (metal) 

markets.

Risk premia are the focus of the most important areas in the literature due to 

the potential profit implications. The difficulty of modeling such a component comes 

from the fact that the sources of risk premia are usually unknown. Risk premia may 

depend on market volatility, characteristics of a particular series, and some type of 

benchmark portfolio. This thesis intends to shine light on time varying risk premia 

in metal prices with various nonlinear modeling strategies.

1.2 The Solution Strategy

Market crashes or jumps, in statistical terms excess kurtosis, can be modeled in many 

different ways. For example, a fat tailed distribution such as the Student t distribu

tion, Double Exponential distribution, Gram Charlier distribution or Generalized t 

distribution can be used to allow for leptokurtosis. Alternatively, one can allow the 

variance of the distribution to change over time, as in the popular GARCH model 

which has been used extensively in the finance literature. As the variance varies over 

time, extreme observations become more probable.

The third and the most accountable solution, as will be argued in this thesis, is 

modeling these extreme market movements with Poisson jumps. Empirically, Poisson

3
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1.2. THE SOLUTION STRATEGY

jumps can create a distribution as flexible as any of the fat-tailed distributions, and 

also allow for the possibility of non-zero skewness. Flexibility refers to the ability 

of the Poisson jump model to capture excess kurtosis. One of the most important 

benefits of using this jump model is that it allows an interpretation of leptokurtosis 

in terms of the frequency and size of crashes, as opposed to degrees of freedom equal 

to a particular number in the Student t distribution. A definite advantage is being 

able to predict the frequency of market crashes using the Poisson jump model.

Empirical researchers have concluded that allowing for a time-varying variance is 

not adequate in modeling the excess kurtosis in financial time series. Incorporation of 

jump components can fill this gap. Market volatility changes over time, in a manner 

that is dependent on its past history, as this history provides an important element for 

investment decisions. Similarly, market participants observe market jumps/crashes 

and their reaction to new unexpected information is likely to be determined by what 

they did in the past, which is reflected in the crashes themselves. A time dependent 

jump frequency may be an essential element for understanding financial series.

This thesis will also examine implications of using various types of modeling strat

egy to capture risk premia in metal returns. The first approach is to model risk premia 

in proportion to the conditional covariance between metal returns and a benchmark 

portfolio formulated as a bivariate GARCH-M model. The rationale is that as the 

market becomes more volatile, agents would demand a higher return to bear the in

creasing risk. Risk premia are generated by the market participants as suitable level 

of compensation. As an extension to the bivariate GARCH-M model, the effect of 

unusually large movements on risk premia is also examined by the incorporation of 

systematic jumps.
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1.3. CONTRIBUTIONS

1.3 Contributions

The thesis is organized into three main chapters, supplemented by introductory and 

concluding chapters. Chapter Two develops a new conditional jump model that is 

used to study jump dynamics in stock market returns. We proposed a simple filter 

to infer ex post the distribution of jumps. Applying the simple Bayes rule to the 

Poisson distribution allows us to infer the realization of jumps after observing the 

returns. This permits construction of the shock affecting the time t conditional jump 

intensity (frequency), and is the main input into an autoregressive conditional jump 

intensity model. The model allows the conditional jump intensity to be time-varying 

and follows an approximate ARMA form.

The time-series characteristics of 72 years of daily stock returns are analyzed using 

the jump model, coupled with a GARCH specification of volatility. We find significant 

time-variation in the conditional jump intensity and evidence of time-variation in the 

jump size distribution. The conditional jump dynamics contribute to a good in- 

sample and out-of-sample fit to stock market volatility, and capture the rally often 

observed in equity markets following a significant downturn.

Chapter Three generalizes the model in a bivariate framework and develops a new 

bivariate Poisson jump model to study jump dynamics in foreign exchange returns. 

The new model extends a multivariate GARCH parameterization to include a bivari

ate correlated jump process. The conditional covariance matrix has the BEKK (Baba, 

Engle, Kraft, and Kroner 1989) structure, while the bivariate jumps are governed by 

a Correlated Bivariate Poisson (CBP) function. Testing for correlated jumps and 

time-varying jump intensity are discussed and hypothesis testing based on likelihood 

ratio and Ljung Box statistics are proposed.

Using daily exchange rate data for two currencies from the foreign exchange mar

ket, we find evidence of both independent currency specific jumps, as well as jumps

5
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1.3. CONTRIBUTIONS

common to both exchange rates. A relationship between the correlated jump intensity 

and the correlations between returns is established. The chapter concludes by inves

tigating a time-varying structure for the arrival of jumps that relaxes the assumption 

of a constant and bounded jump correlation imposed by the CBP function.

Chapter Four extends the recent empirical literature on risk-adjusted Hotelling 

Rules for exhaustible resources by allowing time-varying risk premia in resource asset 

returns. Monthly metal prices for four metals (lead, copper, silver, and zinc) are used 

to estimate a Bivariate GARCH-M model derived from the risk-adjusted Hotelling 

rule and the consumption-based Intertemporal Asset Pricing Model (IAPM) of re

source asset returns. The second part of the analysis augments the bivariate model 

with the Correlated Bivariate Poisson jump component to study the effect of extreme 

market movements on resource returns. Evidence of time varying risk premia is found 

in copper and silver prices; however, the sizes of risk premia in general are too small 

to be important for empirical application. The results basically reject the hypothesis 

that time-varying risk premia provide a key component in modeling nonrenewable 

resource asset returns.

In summary, this thesis proposes a set of models that are capable of

• capturing excess kurtosis often observed in financial time series, thus avoid

ing erroneous inferences and exploiting additional information available in the 

series.

• allowing the intensity of jumps to follow a learning process, capturing the pos

sibility of market participants frequently adjusting for their mistakes.

• modeling simultaneous as well as unique jumps in multiple series, thereby gain

ing efficiency from this unexplored relationship.

• performing hypothesis tests on the characteristics of market crashes (such as the

6
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1.3. CONTRIBUTIONS

presence of jumps, time varying frequency, and correlated jumps) as well as on 

economic theories (i.e. the Risk-Adjusted Hotelling rule in resource economics).

This research project develops a new set of econometric models with accompanying 

tools for interpretation, implementation, cross validation, and hypothesis testing. 

This research provides an avenue for further innovations in the fields of nonlinear 

econometrics, empirical finance, and natural resource economics.

7
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Chapter 2 

Conditional Jump Dynam ics in 
Stock Market Returns

2.1 Introduction

Over past decades several stylized facts have emerged regarding the statistical be

havior of speculative market returns. The most important of these empirical findings 

are: (i) asset returns are approximately a martingale difference sequence; (ii) the 

conditional variance is time-varying; and (iii) the unconditional distribution displays 

leptokurtosis. Conventional wisdom on volatility dynamics suggests that GARCH 

and stochastic volatility (SV) models provide a good first approximation to these 

stylized facts by modeling the autoregressive structure in the conditional variance. 

Both the GARCH and SV models are designed to capture smooth persistent changes 

in volatility. These models are however not suited to explaining large discrete changes 

which are often found in asset returns. A host of studies has investigated the nature 

of leptokurtosis in financial series. In most speculative markets, an allowance for dis

crete jumps in returns is necessary to better match statistical features observed in the 

data (Andersen, Benzoni, and Lund (1999) and Gallant, Hsieh, and Tauchen (1997)), 

as well as to reconcile mispricing in options markets (Bakshi, Cao, and Chen (1997), 

Bates (1996), Das and Sundaram (1999), and Jorion (1988)). A large literature has

8
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2.1. INTRODUCTION

investigated the importance of jumps from a statistical and asset pricing perspective.

Allowing for jumps in asset returns introduces two additional random variables: 

jump intensity and jump size. The jump intensity refers to the average number of 

jumps that occur in the returns during a fixed time interval. The Poisson distribution 

is the most popular choice for modeling the intensity. For the jump size distribution, 

since no prior knowledge is given, the normal distribution is frequently used in the 

literature.

To explore the importance of time-variation in the jump intensity in a more gen

eral framework, we propose a new discrete time model in which the conditional jump 

intensity follows an endogenous autoregressive process. To make estimation straight

forward we assume that the conditional jump intensity can be projected onto ob

servables contained in the most recent information set. In our model, jumps axe 

unobserved and therefore difficult to analyze directly. The first step in our approach 

is to propose a filter to infer ex post the distribution of jumps at time t. Using the 

filter we next construct the shock in the expected number of jumps as observed by 

the econometrician. This shock at time t provides the basic input into next period’s 

conditional jump intensity. Our model of autoregressive conditional jump intensity 

(ARJI) specifies the conditional jump intensity follows an approximate ARMA pro

cess.

There are several advantages to our approach for exploring time-variation in the 

jump intensity. First, since the jump intensity has an ARMA functional form, it is 

possible to parsimoniously capture many forms of autocorrelation. Second, the model 

is easy to estimate via maximum likelihood estimation and asymptotic inference is 

available. A byproduct of estimation is the filter which provides ex post inference 

regarding the latent jump dynamics. Although we project the conditional jump in

tensity onto past observables, we expect our model will provide a good approxima-

9
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2.1. INTRODUCTION

tion to a process where the jump intensity follows a latent stochastic process. Such 

a model would require simulation methods for estimation, while our model does not. 

Finally, multi-period forecasts of future expected jumps can be directly calculated in 

our model.

Time-variation in the jump intensity may formulate only one part of the condi

tional jump dynamics in stock returns. In particular, the distribution governing the 

jump size may be time-varying. To investigate this we make the standard assumption 

that the jump distribution is normally distributed, but allow the conditional mean 

and variance of the jump size to be a function of observables. For example, we esti

mate models that permit the jump variance to be related to lagged squared returns 

and a GARCH variance factor. In addition, we explore whether the mean of the 

conditional jump distribution is asymmetrically related to the most recent positive 

or negative return. The motivation for this asymmetry is to consider whether jump 

dynamics might capture the stock market rally frequently observed after a crash.

Jump dynamics in stock market returns are studied using the ARJI model coupled 

with a GARCH specification, and applied to over 72 years of daily returns on the Dow 

Jones Industrial Average (DJIA) price index. Using the filter we find a constant jump 

intensity for the DJIA is violated, and a low order ARJI model adequately captures 

the time-variation in the conditional jump intensity.

The empirical results indicate that the autocorrelation in the conditional jump 

intensity in stock returns is positive and very persistent. Similar to the GARCH 

parameterization of volatility, a high probability of many (few) jumps today tends to 

be followed by a high probability of many (few) jumps tomorrow. Unconditionally 

jumps are infrequent; however, conditionally jumps show significant time-variation 

over our sample of data. For example, during the 1940s the daily jump intensity 

ranges from only 0.03 up to 2.02. This indicates there are periods in the 1940s

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.1. INTRODUCTION

where almost no jumps are expected (0.03) and periods where several jumps (2.02) 

are expected. Before both the 1929 (in-sample) and the 1987 (out-of-sample) stock 

market crashes we find evidence of an increase in the conditional expected jump 

intensity.

Allowing the conditional variance of the jump size distribution to be linearly 

related to a measure of market volatility, such as past squared returns, improves the 

models’ in-sample fit and the out-of-sample forecasts of volatility. Our model identifies 

the rally after a significant stock market downturn. For instance, any decrease in the 

market of 2.5 percent or more, implies a positive conditional mean in next period’s 

jump size distribution. Therefore, the day after a stock market crash, the likelihood 

of a jump next period does not necessarily decrease but the likelihood of a negative 

jump decreases, and the likelihood of a positive jump increases.

Finally, previous research (Bates (2000), and Chernov, Gallant, Ghysels, and 

Tauchen (1999)) has investigated whether there is a relationship between the jump 

intensity and a SV specification of volatility. In our model the analogous relationship 

is between the conditional jump intensity parameterization and the GARCH speci

fication. In general, we found mixed results. After permitting the variance of the 

jump size distribution to be a function of the GARCH variance we found no evidence 

that the GARCH process affects the conditional intensity specification for our data 

set. However, in a similar specification in which lagged squared returns affect the 

jump size distribution rather than the GARCH variance, we found that the GARCH 

variance is positive and significant in affecting the conditional intensity.

Time-variation in the conditional jump intensity implies time-variation in the 

volatility and also in the conditional skewness and conditional kurtosis of returns. 

Thus, conditional jump dynamics may be important in explaining higher-order mo

ments in speculative returns. The systematic persistence in the likelihood of jumps

11
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uncovered in this study may have important implications for forecasting volatility, 

risk management and derivative pricing.

This chapter is organized as follows. Section 2.2 provides a literature review. 

Section 2.3 presents a model of conditional jump dynamics coupled with a GARCH 

parameterization for financial market returns. A filter and the statistical features of 

the model are emphasized. Section 2.4 offers specification tests. Section 2.5 discusses 

competing models. Section 2.6 details the data used in the empirical application, 

while Section 2.7 reports the estimates and features of the conditional jump models 

applied to DJIA returns. Section 2.8 contains a discussion of the results. Finally 

Section 2.9 concludes.

2.2 Literature Review

The earliest evidence that financial asset return distributions tend to have thick tails 

is documented in Mandelbrot (1963) and Fama (1965). Mandelbrot (1963) shows 

that the empirical distribution is more “peaked” than the normal distribution using 

wool and copper prices. Fama (1965) (and many others) generated a large literature 

that modeled asset returns as i.i.d. draws from leptokurtic distributions such as the 

Paretian distribution.

The basic Poisson jump model of stock returns used in finance was introduced in 

Press (1967). Press (1967) labels his approach a compound events model, since it can 

be motivated as the aggregation of a random number of price changes within a fixed 

time interval. The Poisson distribution is assumed to govern the number of events 

that result in price movements, and the average number of events in a time interval is 

called the intensity. The model is capable of producing skewness and excess kurtosis 

in returns. All volatility dynamics are assumed to be the result of discrete jumps in 

stock returns, and the size of a jump is stochastic and normally distributed.

12
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Several early empirical applications have shown the usefulness of the Press model. 

Akgiray and Booth (1988), Tucker and Pond (1988) and Hsieh (1989b) find a normal- 

Poisson jump model provides a good statistical characterization of daily exchange 

rates. Using nine years of daily data for the British pound, French franc, and German 

Deutsch mark, Akgiray and Booth (1988) demonstrated that these exchange rates can 

be modeled adequately by using a mixed jump diffusion process. Their results also 

show that the jump diffusion model is superior to the stable distribution and discrete 

mixture of normal distributions.

Tucker and Pond (1988) apply a mixed jump model to 15 years of six daily ex

change rates and a thorough comparison is made with three competing models includ

ing compound normal, scaled-t, and general stable distributions. A series of pair-wise 

likelihood ratio tests concludes that the mixed jump model performs best in capturing 

the dynamics in foreign exchange rates. Hsieh (1989b) on the other hand suggests 

the mixed jump model as a useful alternative to the Student-t (Bollerslev (1987)), 

Generalized Error (GED) (Nelson (1988)) , and Normal-Lognormal mixture (Clark 

(1973)) distributions in the presence of GARCH effects. Similar results are found 

using stock returns in Ball and Torous (1983) where the presence of a Bernoulli jump 

process is verified with two years of daily data on 47 NYSE listed stocks.

The basic jump model has been extended in a number of directions. Estimation of 

continuous-time SV jump diffusion models requires simulation methods and has only 

recently been investigated in Andersen, Benzoni, and Lund (1999), Craine, Lochstoer, 

and Syrtveit (2000), Eraker, Johannes, and Poison (1999) and Chernov, Gallant, 

Ghysels, and Tauchen (1999). Craine, Lochstoer, and Syrtveit (2000) estimate a 

Stochastic-Volatility Jump-Diffusion model with Norwegian-British exchange rates 

using simulation based methods and find that jump components are an important 

feature of the data in addition to the stochastic volatility. A tractable alternative is

13
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to combine jumps with an ARCH/GARCH model in discrete time. In this case the 

GARCH parameterization explains the smooth changes in volatility while the jumps 

explain infrequent large discrete movements in the asset returns. Applications of a 

GARCH-jump mixture model include Jorion (1988), Vlaar and Palm (1993), and 

Nieuwland, Vershchoor, and Wolff (1994).

A common thread in these GARCH-jump mixture models is the assumption that 

a constant Poisson distribution directs the jump probability through time. However, 

it seems likely that the jump probability would change over time. Would we expect 

the probability of a jump in stock market returns prior to the 1987 stock market 

crash to be the same as other periods? The results in Bates (1991) would suggest 

the answer to this is no. Using S&P 500 futures options and assuming an underlying 

jump diffusion Bates (1991) finds systematic behavior in expected jumps before the 

1987 crash.

Recent research has further extended the theoretical framework to permit a time- 

varying jump distribution. For example, Das (1998) and Fortune (1999) use dummy 

variables to allow the jump intensity to change over the week. Chernov, Gallant, 

Ghysels, and Tauchen (1999) estimate specifications which allow the jump intensity 

to depend on the size of previous jumps, and a stochastic volatility factor. Eraker, 

Johannes, and Poison (1999) model jumps in both returns and volatility.

2.3 A Dynamic Conditional Jump M odel for Stock  
Returns

In this section we present a discrete time jump model with a time-varying conditional 

jump intensity and jump size distribution. First, we lay out the basic Poission Jump 

Model with GARCH variance. Next, we propose the new Autoregressive Jump In

tensity (ARJI) model and provide a detailed discussion of properties and estimation

14
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procedures. Finally, we discuss the generalization of the jump size.

2.3.1 Basic Poisson Jump M odel

Due to the vast literature showing that GARCH models provide a good first approxi

mation to the conditional variance, we combine the jump specification with a GARCH 

parameterization of volatility. The GARCH model captures the stylized fact that the 

conditional variance is time varying and the jump component models the important 

leptokurtic characteristic.

Define the information set at time t to be the history of returns, =  {B.t, . . . ,  Ri}. 

Consider the following jump model for stock returns,

l nt

Rf — n + ^2 (j>iRt-i + VhtZt + (2--0
i= l fc=l

*  ~  N ID (0 ,1), Yt,k ~ N ( 9 t,52)

where n represents the constant in returns; fa is the autoregressive coefficient for 

the ith lag and i goes from 1 to Z; zt is standard normal random variable; ht is the 

conditional GARCH variance which captures the time varying dynamics in conditional 

variance; Yttk is the jump size for the kth jump at time perod t and for each time period, 

Rt may experience 1 to nt jumps. The jump component Lfc=i Ytjk is used to capture 

excess kurtosis.

The conditional jump size Ytjk, given is presumed to be independent, and 

normally distributed with mean 6t and variance 8J. To simplify construction of the 

likelihood we specify both zt and the jump size Ytjk, as independent normal random 

variables; however, our model of the conditional jump dynamics does not depend on 

this assumption.

Let nt denote the discrete counting process governing the number of jumps that 

arrive between t — 1 and t, which is distributed as a Poisson random variable with

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.3. A DYNAM IC CONDITIONAL JUM P MODEL FOR STOCK RETURNS

parameter Xt > 0 and density,

exp(-A*)A|
•I (2 .2)

The mean and variance for the Poisson random variable are both At, which is often 

called the (jump) intensity. We will permit the jump intensity to be time-varying. The 

process which Xt follows is discussed below, but for now we assume that knowledge of 

the information set at time t —1 implies knowledge of Xt. To complete the specification 

of the conditional volatility dynamics for returns, let ht be measurable with respect 

to the information set dh-i and follow a GARCH(p,q) (Bollerslev (1986)) process. 

That is,

where et = Rt — /t — H\=i faRt-i- This specification of et contains the expected jump 

component and therefore allows it to propagate and affect future volatility through 

the GARCH variance factor.1

Imposing the restrictions of a constant jump intensity (At =  A) and a constant 

jump size distribution (9t = 9, 5? = 62), our model nests several mixed jump models 

that have been investigated in the literature. For example, Jorion (1988) estimates a 

constant jump intensity-ARCH model for foreign exchange and stock market returns, 

while both Vlaar and Palm (1993) and Nieuwland, Vershchoor, and Wolff (1994) use 

a constant jump intensity-GARCH model to capture exchange rate dynamics.

Several extensions to this model have been proposed that permit the intensity to 

be time-varying, typically driven by some exogenous vector X t thought to identify 

the likelihood of jumps. For instance, X t might include dummy variables (Das (1998) 

and Fortune (1999)), or macro variables such as interest rates (Bekaert and Gary

1An alternative definition for et that includes the conditional expectation from the jump compo
nent is Rt -  fi — Z)i=i 4>iRt-i — At6f  In our empirical application we find the former specification 
to yield a substantially better log-likelihood value.

p
ht — U! + ^ 2  cxie2̂  +  ^ 2  Piht-i (2.3)

i=1
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(1998) and Neely (1999)). A problem with this approach is the choice of news events 

or information to include in X t, Rather than follow this approach we allow At to 

endogenously evolve according to a parsimonious ARMA structure.

2.3.2 Autoregressive Jump Intensity (ARJI) M odel

Consider the following model of autoregressive conditional jump intensity, denoted 

ARJI(r,s). Let \ t = E[nt \$t-i] be the conditional expectation of the counting process 

which is assumed to follow,
r s

At =  Ao +  53 +  53 7i£t-i- (2-4)
i= 1 i= 1

The conditional jump intensity at time t is related to r past lags of the conditional 

jump intensity plus lags of £t- £t-i represents the innovation to At_j as measured ex 

post by the econometrician. This shock, or jump intensity residual, is calculated as 

follows,

£t—i — E^n,t—i | ^ t —i] At_j
OO

=  53  (2.5)
j=o

The first term on the right hand side of Equation 2.5 is our inference on the average 

number of jumps at time t — i based on time t — i information, while the second term 

in (2.5) is our expectation of the number of jumps using information at time t — i — 1. 

Therefore, £t-i represents the unpredictable component affecting our inference about 

the conditional mean of the counting process nt_,.

Let f ( R t \nt =  j, $ t - i) denote the conditional density of returns given that j  jumps 

occur given the information set Having observed Rt and using Bayes’ rule we

can infer ex post the probability that a jump of size j  occurred at time t, with the 

filter defined as,

P(n,-,■!«.)= j - 0 , 1 , 2 . . . .  (2.6)
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where P{nt =  j \ $ t - i) is given by Equation 2.2. The filter in Equation 2.6 is an 

important component of our model of time-varying jump dynamics because of its 

role in Equation 2.5 and also because it can be constructed for purposes of inference. 

For example, the probability that at least one jump occurred can be assessed as 

1 — P(nt =  0|<ht). The filter may be particularly useful in revealing misspecification 

in the simpler constant intensity specification. The constant intensity specification 

assumes that the probability of jump is constant over time which implies that the 

difference between the probabilities produced by the filter and the Poisson density 

should be zero.

The conditional density of returns is completed by integrating out the discrete 

valued variable nt, governing the number of jumps. This conditional density of returns 

can be written as,

Equation 2.7 shows that this model is nothing more than a discrete mixture of dis

tributions, where the mixing is driven by a time-varying Poisson distribution. The 

assumptions in Equation 2.1 imply that the distribution of returns conditional on the 

most recent information set and j  jumps is normally distributed as,

Construction of the likelihood and maximum likelihood estimation follow by it

erating on Equations 2.4, 2.6 and 2.7. Equation 2.7 involves an infinite sum over 

the possible number of jumps nt. In practice we truncate the maximum number of 

jumps to a large value r, so that the probability of r  or more jumps is zero. This is 

empirically checked for a particular dataset and set of estimates in that, to machine 

precision, Equation 2.2 is 0 for j  > r. A  second check on the choice of t  is to consider 

f  > r  to ensure that the likelihood and parameter estimates do not change.

OO

P (* ,|« ,- i)  =  '£ f ( R , \n ,  = (2.7)
j=o

(2 .8)

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.3. A DYNAM IC CONDITIONAL JUM P MODEL FOR STOCK RETURNS

In this model the conditional jump intensity is time-varying and, under certain 

circumstances enunciated below will have an unconditional value. To derive the 

unconditional value of Xt, first note that is a martingale difference sequence with 

respect to $t_i, since,

^[£t|$t-i] =  — A* =  A* — A* =  0 (2-9)

and therefore, E[£t] =  0, and Cov(£t, £t-t) =  0 , * > 0. Another way to see this result is 

to note that is by definition nothing more than the rational forecast error associated 

with updating the information set. This is, =  E[nt |$ t] — E[nt |$t_i]-

By using the approximate ARMA form for the evolution of At from Equation 2.4 

many of the results for ARMA models are directly applicable to this model. For 

example, assuming the roots of the polynomial (1 — Yh=i P iL %),  where L is the lag op

erator associated with Equation 2.4, lie outside the unit circle then the unconditional 

value of At exists and is,

B[A,] =  (2.10)
1 2^i= 1 Pi

Furthermore, conditional forecasts of the future jump intensity can be formed using 

Equation 2.4. To illustrate, consider the case where r = s — 1. Then

E[At+i|$ t_i] =  |  A‘ (1 +  p +  ' "  + pi - i } + p iXt i >  i. (2-n )

Recall that At is measurable with respect to the information set $ t_i. If \p\ < 1, then 

as i becomes large the forecast approaches the unconditional value in (2 .10).

For the Poisson distribution to be well defined Xt must be positive. Note that in 

the case of r =  s, Equation 2.4 can be rewritten as
r r

A* =  A0 +  — 7i)A  t - i  +  'sjr'JrY iE \r i t- i \$ t- i \-  (2-12)
i=1 i= l

Subject to reasonable startup conditions that ensure A* > 0, i = — r + 1, . . . ,  0, then 

a sufficient condition for A* > 0 for all t is A0 > 0 , pi > 7*, and 7 , > 0 . To estimate
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the ARJI model, startup values of A j and & for i < 0 must be set. In our empirical 

application discussed in the next section, we set startup values of the jump intensity 

to the unconditional value in Equation 2.10 and & =  0. Alternatively these values 

could be estimated or the values could be arbitrarily set, since asymptotically the 

first observation is negligible to the likelihood function.

Consider the intuition behind the evolution of the conditional jump intensity in 

the ARJI model. Suppose we observe > 0 for several periods. This suggests 

that the jump intensity is temporarily trending away from its unconditional mean. 

This model effectively captures systematic changes in jump risk in the market. The 

likelihood of large discrete changes in foreign exchange markets or crashes in stock 

markets may change considerably over time. The ARJI model can capture systematic 

changes and also forecast increases (decreases) in jump risk into the future.

The ARJI model of Xt is convenient from both an estimation and forecasting 

perspective and should be useful in capturing time-series dynamics similar to those 

which an ARMA model can capture. As we show in the empirical section the linear 

specification for At appears to work well for daily stock returns. However, other 

functional forms that include nonlinearity may be very useful. In this case lags of At, 

£t, and other variables in the information set may enter a nonlinear function driving 

the conditional intensity parameter at time t.

The time-series model of Xt is not a true ARMA model in that it is not driven 

by an unforecastable innovation, but rather a measurable one with respect to 

However, we would expect that this model will provide a good approximation if Xt 

did follow a true latent ARMA structure. Such a model would require simulation 

methods to compute the likelihood while ours does not.
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2.3.3 Tim e Varying Jump Size

Up until this point our model has focused on the conditional dynamics governing the 

number of jumps. However, the distribution of the jump size which is postulated to be 

Gaussian may also change and display conditional dynamics. To explore this further 

we consider the following two extensions of the model. The first allows the conditional 

mean and conditional variance of the jump size distribution to be conditionally normal 

and a function of past returns,

@t — Vo + WiRt-iD(Rt-i) + 772i?t_i(l — D(Rt_ i)) (2-13)

% = Co2 +  Ci^2- i  (2.14)

where D(x) =  1, x >  0 and otherwise 0 , and t]0, 771,772, Co, and Ci are parameters 

to be estimated. This specification of the conditional mean of the jump size allows 

some flexibility concerning where jumps axe centered. For example, if during the last 

period the market had experienced a gain (decline) then today’s conditional mean of 

the jump size would be rjQ +  r}iRt- \ , (770 +  rfcRt-u). Thus, the first moment of the 

jump distribution can respond to whether last period’s market return was positive or 

negative and to its magnitude. This formulation may explain the rally after a stock 

market crash through a change in the jump direction. For this, we would expect 

772 < 0. To investigate whether the jump size variance might be sensitive to the 

overall level of market volatility we allow R%_i to affect Sf. We label the extension in 

(2.13)-(2.14) as A R JI-R ^.

A second extension of interest is whether the variance of the jump size is a function 

of the GARCH volatility. The formulation for 9t is the same as in (2.13), but now,

% =  Co +  Ci ht, (2.15)

which we refer to as ARJI-/it . The difference between these two specifications (2.14 

and 2.15) of the jump size variance is that while the lagged squared return is a proxy
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for last period’s market volatility, ht is a prediction of the time t GARCH volatility 

component of our model. If the variance of the jump size is sensitive to contempo

raneous market volatility then this final specification of the conditional variance of 

jumps may capture this effect better than (2.14).

To derive the conditional mean and variance of our model first redefine (2.1) so 

that Rt — B t + Ct where Ct =  Yt,k, is the jump component and B t = R t~  Ct is 

the remainder. Since our GARCH-jump model is a discrete mixture of distributions

the ith uncentered moment of Ct is,
00

E[Ci\$t- 1] =  5 > [ C ? k  =  i > 0. (2.16)
3=0

Then the first two conditional uncentered moments (See Appendix) of Ct are,
00

E[Ct\9±.i] = E M P f a  =  =  OtXt (2.17)
3=0

and
00

£ [ C ? |$ t_i] =  Y.U(62, + o l )  + e ! ( f - j ) ) P ( n t = m - i )
3=0

00 00 

=  (6t +  =  j \ * t - i )  +  Ot -  j ) p (n t =  j \ $ t - i )

= +  9 t) \ t +

and hence

Var(C't |$ t_1) =  (5t2 +  ^)A t. (2.18)

Using these results the conditional mean and variance of the returns are
i

= h +  y i  <t>iRt-i +  9tXt (2.19)
i—1

Var(i2t |4?t_x) =  ht + (5% + d^)\t. (2 .20)

Note that time-variation in \ t and the conditional jump size distribution affect both 

the conditional mean and conditional variance of the returns. The conditional vari

ance of returns is an increasing function in the jump intensity while the conditional

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.4. SPECIFICATION TESTS

mean of returns can be increasing or decreasing depending on the sign of 9t. The 

conditional jump dynamics also imply conditional skewness and kurtosis. Similar cal

culations (See Appendix A), or drawing on the results in Das and Sundaram (1997) 

show the conditional skewness (Skew) and conditional kurtosis (Kurt) to be,

Skpwf/? 1$ 1 =  At(fl? +  3 9t6?)
( * ' * “ !) {ht + \ t6? + A*0t2)3/2 ( )

Kurtfi? 1$ 1 =  3 -1- +  6W  +  3St) no)( t_l) (ht +  \ t5? +  At0t2)2 ' ( }

2.4 Specification Tests

In order to evaluate the in-sample and out-of-sample performance of the proposed 

models we consider several specification tests that are based on the integral transfor

mation of Rosenblatt (1952).

Consider a candidate model with conditional density f ( R t \$t-i, 0 ), where 0  is 

the known parameter vector. Rosenblatt (1952) shows that if the data are drawn 

from the density /(•) then the series defined from,

rR t
=  [  f(v\$t_i,Q)dv  (2.23)

J —  OO

will be uniform i.i.d. or U(0,1). Therefore testing whether or not ut ~  i.i.d. (7(0,1) 

provides a test for correct model specification.

The first test we consider is a Pearson goodness-of-fit test for ut suggested by 

Vlaar and Palm (1993). Under the null hypothesis of a correctly specified model,

t  (n‘ ~  X2(g -  1), (2.24)
i=i

where g is the number of equally spaced groups, and n, is the number of observation 

of ut that occur in group i. After g is chosen, rn = Y^t^i lit where,

J 1 if (i -  1 )/g < u t < i/g , .
lt |  0 otherwise ' '
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for 1 < % < g.

To focus on the dynamics of the conditional distribution, Palm and Vlaar (1997) 

and Berkowitz (2001) recommend applying an inverse normal transformation to the 

data {ut}J=l in order to test if the transformed data {vt}J=l are independent standard 

normal. Under the null hypothesis of a correctly specified model, vt is normally 

identically distributed or N ID (0,1). Let vt = F _1(ut), where is the inverse

of the standard normal CDF. We consider a likelihood ratio (LR) test for do =  ai =  

• • • =  a5 =  0 , a =  1, in the following regression,

vt = a0 + axvt- i  H h a5ut_5 +  crvt (2.26)

against an unrestricted alternative hypothesis that only maintains that vt is normally 

distributed. Under the null hypothesis of a correctly specified model the LR statistic 

is distributed as x2(7).

The final test is based on Diebold, Gunther, and Tay (1998) and evaluates graph

ically whether or not ut ~  i.i.d. U(0,1). This is done through a histogram of {ut}J= i 

and estimates of the autocorrelation functions of successive powers of ut. For a cor

rectly specified model ut will have the density of the uniform distribution while the 

powers of ut should display no evidence of autocorrelation. Like the Pearson goodness- 

of-fit test, the density estimate of ut provides a measure of a model’s ability to capture 

the unconditional distribution of returns, whereas the estimates of the autocorrela

tion functions of powers of ut assess the adequacy of the conditional distribution. It 

should be noted that all of the tests in this section ignore parameter uncertainty and 

in practice the tests are applied to models with an estimated parameter vector.

2.5 Alternative Models

The ARJI model is just one of the many alternatives available to model excess kurto

sis. In theory, any thick tail distribution can be used to capture leptokurtosis. For ex-
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ample, The Student-t, Gram Charlier, Power Exponential, and Generalized Student-t 

distributions are very popular in the literature. We will estimate these models and 

compare the results of out-of-sample volatility forecasts to the ARJI model in Section 

2.7. This section will briefly discuss the properties of each competing model.

2.5.1 Student-t Distribution

The Student-t distribution is one of the most popular distributions for dealing with ex

cess kurtosis. A GARCH model with Student-t distribution has proven to be superior 

to the normal distribution in many applications (Bollerslev 1986, Bauer, Nieuwland, 

and Verschoor 1994). The Student t density function is defined as

where v represents the degrees of freedom and P is the gamma function. This distri

bution allows the error term to have a thick tail probability governed by the degrees 

of freedom parameter. The smaller the value of v, the higher is the probability of 

obtaining large realizations of ut. As l /v  approach 0, this distribution will be iden

tical to the normal distribution. Since the Student t distribution is symmetric, the 

possibility of skewness is eliminated.

2.5.2 Gram Charlier Distribution

To allow for both skewness and leptokurtosis, a GARCH model combined with the 

Gram Charlier distribution has been proposed by Lee and Tse (1991). The Gram 

Charlier density is defined as

(2.27)

GC(ut) = (j)(ut)(p(ut)

^ ( u t )  =  (1 +  A s f f s M / e  + /24)

(2.28)

(2.29)
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H3(ut) = U t~ 3 u t 

H±{ut) =  — 6 u\ + 3.

(2.30)

(2.31)

where (j>{ut) is the standard normal density and H is a Hermite polynomial. The 

Gram Charlier denisty has a straight forward interpretation. For example, A3 is the 

standardized measure of skewness and A4 represents the excess kurtosis. The Gram 

Charlier density collapses to the normal density when both A3 and A4 are equal to 

zero. This distribution can also be generalized to incorporate the higher moments. 

Details can be found in Kendall and Stuart (1969).

The limited applications of this distribution in the literature may be attributable 

to difficulties associated with estimation. Note that the GC function is well defined 

if and only if GC integrates to one and remains positive at all times. Problems can 

arise with respect to the second component, <p(ut) depending on the parameters (A3 

and A4) as well as the Hermite polynomials (H3 and H4). Imposing restrictions on 

the parameters provide a possible solution. However, this may implicitly impose 

unreasonable assumptions on the skewness coefficient. Alternatively, one may use the 

semi-non-parametric (SNP) approach developed by Gallant and Tauchen (1989) to 

avoid this problem. For the purpose of this chapter, we estimate this Gram Charlier 

distribution using maximum likelihood methods with no restrictions imposed in order 

to preserve the interpretation of A3 and A4. The same strategy is adopted in Lee and 

Tse (1991).

2.5.3 Exponential Power Distribution

The Exponential Power distribution was first introduced by Box and Tiao (1973). 

The density function is given by

EP{ut) =  ic(ut)ezp[-c(7 )|ut |1/7] (2.32)
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(2.33)

(2.34)

The main advantage of this distribution is the fact that it nests several distributions 

as special cases. For example, the EP distribution becomes the normal density when 

1 / 7 = 2 . 0; the Double Exponential (Laplace) distribution when 1 / 7  =  1; and the 

uniform distribution when I / 7  = 00 . Estimation of this model by maximum likeihood 

estimation is straightforward, and the only restriction imposed is 7  >  0 .

2.5.4 Generalized t Distribution

McDonald and Newey (1988)’s Generalized t (GT) distribution goes one step further 

by nesting the Exponential Power, Normal, Cauchy, Double Exponential (Laplace), 

and Student t distribution as special and limiting cases. The density function is 

defined as

GT(u,) = ------------------ - -----------------r  (2.35)
2 h ,q ^ B ( l / p , q )  ( l  +  i s j ? ) 5+ '

where B is the Beta function, and p and q are parameters that control the shape of 

the density. The larger the values of p and q, the smaller is the probability of the 

occurrence of extreme values (thinner tails). The kth moments will only exist when 

k<pq.

The Box and Tiao (1973) Exponential Power distribution is a limiting case of 

the Generalized t when q approaches infinity. When q —>■ 00 and p = l, the GT 

distribution is identical to the Double Exponential. The normal distribution with 

variance a2 can be obtained by setting q —> 00 , and letting p=2, and ht = y/2a. The 

Student t distribution can be derived from the normal distribution without q —»• 00 . 

The Cauchy distribution can be derived from the Student t by setting q =  1/2.
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2.6 Data

Table 2.1: Summary Statistics (1928 - 1984)
Mean Standard

Deviation
Skewness Excess

Kurtosis
Q(15)

Rt
0.0107

(0.0090)
1.1167

(0.00189)
0.0565

(0.2923)
18.5198
(2.4160)

148.00
[0 .00]

\Rt\
0.7130

(0.0069)
0.8595

(0 .0202)
4.1255

(0.2893)
34.4842
(5.0985)

20400.00
[0 .00]

R?t
0.0124

(0.0004)
0.0522

(0.0048)
18.3919
(1.7728)

527.512
(79.8848)

9620.00
[0 .00]

Summary statistics for daily Dow Jones Industrial Average (DJIA) returns from Oct 1, 
1928 to Dec 31,1984. Q(15) are modified Ljung-Box Statistics robust to heteroskedas- 
ticity for serial correlation with 15 lags. Standard errors robust to heteroskedasticity 
are in parentheses, and p-values are in square brackets.

The data consist of daily close, intraday high and low for the Dow Jones Industrial 

Average (DJIA). Returns are defined as 100 times the first-difference in the logarithm 

of the close of the DJIA index from October 1, 1928 to January 11, 2000. The data 

set contains 18,947 observations in total.

Summary statistics are reported in Table 2.1 for the sample from 1928 until the 

end of 1984. Standard errors that are robust to the heteroskedasticity are provided in 

parentheses. Although the skewness coefficient is not significantly different from zero, 

the deviation from normality is apparent in the excess kurtosis which is 18.52. Evi

dence of time dependence is found using the modified Ljung-Box statistic (West and 

Cho (1995)) which is robust to heteroskedasticity and reported for autocorrelations 

up to 15 lags in the last column of Table 2.3. The modified Ljung-Box (LB) statis

tics  sh ow  stron g  serial correlations in b o th  th e  levels and th e  squares of th e  return  

series. This is consistent with the results in Brock, Lakonishok, and LeBaron (1992) 

which show that the serial correlations in DJIA returns is significant but unstable 

and depends on the sample period.

28
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The statistical properties of the data series can also be examined by the visual 

plot in Figure 2.3. The dramatic movements in the 1930s are clearly shown. Volatility 

clustering is unquestionable as high volatility this period tends to be followed by high 

volatility next period. The GARCH variance structure is appropriate for modeling 

this phenomenon.

Figure 2.1: Density Plot

0.6
normal

data
garch0.5

0.4

0.3

0.2

0.1

0
-10 5 0 5 10

Number of Jumps

Figure 2.1 provides a denisty plot for the data, the normal distribution, and the 

GARCH model. The curve with the highest peak is derived from the dataset. There 

is no surprise that the data does not match the normal distribution (the lowest curve) 

well as, excess kurtosis is reported in the summary statistics. A similar comparsion 

is performed with the GARCH residuals. A GARCH(1,1) model is estimated and the 

density is plotted on the same diagram and note that it shows significant improvement 

compared to the data. However, there is still considerable distance between the two 

curves implying room for improvement.

29
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2.7 An Application to Stock Market Returns

2.7.1 Estim ation Results

Estimation of all models is conducted with data from 1928 until the end of 1984, 

and the remaining data from 1985-2000 is reserved for out-of-sample analysis. For all 

models a r  = 20 was selected as the truncation point for the distribution determining 

the number of jumps, based on the selection method discussed in Section 2.3. Table 

2.5 presents the estimation results for the GARCH-constant jump intensity model 

over various sub-samples while Table 2.6 presents the results for all models over the 

full in-sample period. Misspecification tests based on the modified Ljung Box (LB) 

statistic are reported for autocorrelation in the squared standardized residuals (Q2) 

and the jump intensity residuals (Q&) for 15 lags at the bottom of each table. We 

found it necessary to use an AR(2) to capture autocorrelation in the conditional mean 

of stock returns for all models. Similarly, all models use a GARCH(1,1) and where 

appropriate an ARJI(1,1) specification which LB statistics suggest is adequate for the 

in-sample period. In the following we use ARJI to denote the ARJI(1,1) model.

Estimates for the constant jump intensity model over the different sample periods, 

1928-50, 1951-69, and 1970-84 are displayed in Table 2.5. This model imposes the 

restrictions At =  A, 9t =  6 , and S2 =  S2 in the ARJI model. These results provide 

evidence of changing jump dynamics over time. For example, the jump intensity 

parameter A is 0.1512 for the full sample (reported in Table 2.6 under constant) but 

varies substantially across different sub-samples. A is 0.1116 in 1928-50, and increases 

to 1.6742 in 1951-69. In the 1951-69 period the estimates indicate that the jump 

component is more important while the GARCH effects diminish compared to other 

period results. Both 9 and 5 in Table 2.5 display instability over the sub-samples. 6 

is estimated as high as 1.4624 and as low as 0.2711.

Evidence of time-variation in A is also supported by the Ljung-Box statistics for
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£t. Recall that £t is the measurable shock constructed by the econometrician using 

the ex post filter. In a correctly specified model should not display any systematic 

behavior, otherwise it could be exploited to improve the model. We test for depen

dence in in the constant jump model using the modified LB statistics denoted Q^t 

in Tables 2.5 and 2.6. In Table 2.6 the Q^t statistic rejects the constant intensity 

assumption.

Table 2.6 reports a series of model estimates for the simplest constant intensity 

jump model, the ARJI model with a constant jump size distribution, and the fully 

dynamic jump models, ARJI-/it and ARJI-jR^_1. The log-likelihood for the constant 

intensity jump model is -18315.61 which represents an increase of 356.0 compared to 

a plain AR(2)-GARCH(1,1) model (estimates not reported) with no jumps. This sug

gests jumps in the DJIA may be important. Moreover, the ARJI parameterization, 

which allows the conditional jump intensity to vary over time provides an improve

ment in the likelihood as compared to the constant intensity model. The likelihood 

ratio (LR) test of a constant jump intensity (7  =  0) against the ARJI specification 

is 79.02. This test is nonstandard since under the null hypothesis the constant jump 

intensity is unidentified (under the null hypothesis if |p| < 1, then Xt =  A0/ ( l  — p)).2 

Although methods such as Davies (1987) and Hansen (1996) could be employed to 

obtain a p-value, the magnitude of the test statistic suggests that the ARJI pa

rameterization provides a significant statistical improvement over the constant jump

2Given that the time varying intensity is defined by

At =  Ao +  p A f_ i +  7 & - 1

which can be rewritten as

At =  Y^~p +  +  P & - 2 +  P2& - 3 +  •■■]

Therefore, testing the presence of time varying jump intensity can be formulated as testing H0:
7  =  0
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intensity model. In addition, the ARJI model captures the autocorrelation in that 

was found in the constant intensity model. The p-value for the Q^t statistic is 0.01 

for the constant intensity model while it is 0.83 for the ARJI model.

The p parameter in the ARJI model is estimated to be .9153 with an asymptotic 

standard error of 0.02 and provides a measure of the persistence in the conditional 

jump intensity. This suggests that a high probability of many (few) jumps today 

tends to be followed by a high probability of many (few) jumps tomorrow. However, 

unconditionally, jumps are infrequent. The unconditional jump intensity (defined in 

(2.10)) is only 0.1547, which is very close to the A reported in the constant intensity 

model in Table 2.6. 7  measures the sensitivity of At to the past shock, 1. A 

unit increase in results in a dampened effect of only 0.5 on next period’s jump 

intensity.

Figure 2.3 (see end of chapter) displays returns, the conditional intensity, and 

the conditional standard deviation for the ARJI specification. This figure shows 

considerable variation in the conditional jump intensity. To illustrate, consider the 

1940s where the daily jump intensity ranges from only 0.03 up to 2.12. This indicates 

that there are periods in the 1940s where almost no jumps are expected (0.03) and 

periods where several jumps (2 .12) are expected.

What effect does time-variation in At have on the distribution of the number of 

jumps? Figure 2.2 provides two snapshots of the Poisson distribution governed by At 

for two dates in our sample period against the Poisson distribution with the constant 

intensity assumption Xt =  A. This figure shows that small changes in At can have 

important effects on the Poisson distribution. Furthermore, the risk associated with 

the realization of jumps in the constant intensity model is considerably understated 

compared to the ARJI model as depicted in this figure.

Figure 2.4 displays the predictive content that Xt has in forecasting a jump around
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Figure 2.2: P (nt =  from the ARJI and constant intensity model
0.9
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the 1929 crash. In-sample, this model suggests that days before the crash on October 

28th at least one jump was expected. A 95% confidence interval for the effect of one 

jump on returns is (—2.7,1.91). In fact, two or three jumps were not unlikely, since 

their probability of occurring just days (October 24th) before the crash was .22 and 

.08 respectively.

The last two columns of Table 2.6 report estimates for two models that extend the 

jump dynamics in the ARJI specification. Both the ARJI-Rj_ 1 and ARJI-/it models 

allow the conditional mean and conditional variance of the jump size distribution to be 

a function of past returns. As measured by LR tests both models provide a significant 

improvement over the simpler ARJI specification. Also note these extensions do not 

appear to alter the dynamics found in the conditional intensity. For example, At is 

still very persistent and p is .91 and .84 in the A R J I - a n d  ARJI-ht formulations, 

respectively.

Our estimates of these final models provide evidence that the jump direction is 

asymmetric and sensitive to the state of the stock market. In both the A R JI-R ^
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Table 2.2: Specification testts
constant ARJI A R JIA A R JI-R ^

In-Sample 

Pearson goodness-of-fit

LR test

163.930
[4.45e-5]
18.798
[0.008]

171.945
[7.74e-6]
10.380
[0.168]

126.798
[0.031]
11.428
[0 .121]

142.564
[0 .002]
12.167
[0.095]

Out-of-Sample 

Pearson goodness-of-fit
117.982
[0 .0002]

105.338
[0.003]

82.927
[0 .121]

114.185
[0.0005]

P-values appear in square brackets. The Pearson goodness-of-fit test statistics are 
based on the integral transformation of the observed data using the respective model. 
Under the null hypothesis of a correctly specified model the test statistic is distributed 
as x 2(<7 — l)i where g is the number of bins. For the in-sample period (15149 obser
vations) g=100, for the the out-of-sample period (3798 observation) g=70. The LR 
test is a likelihood ratio test applied to vt which should be distributed as N I D (0,1) if 
the conditional distribution is correctly specified. The alternative is an unrestricted 
AR(5) model. See Section 2.4 for details.

and ARJI-ht specifications, 62 is significantly negative which implies that after a stock 

market downturn, the direction of a jump next period is more likely to be positive 

than negative.

The contribution from jumps to the conditional mean and conditional variance 

(Equations 2.17 and 2.18) of returns is shown in Figure 2.5 for the ARJI-ht specifi

cation. Generally, the effect on the first two moments is small, but occasionally can 

be large, particularly for the conditional variance. Note that the conditional mean is 

affected by the asymmetric jump direction.

Given the large data set used in this study it is not surprising that the Pearson 

goodness-of-fit test statistics in Table 2.2 identify problems in all models, although the 

p-value for the ARJI-/jt formulation is only 0.031. However, the addition of jumps 

to a plain GARCH(1,1) model does result in a dramatic improvement in the test 

values (a GARCH(1,1) model with normal innovations has a p-value 6.3e-05). The 

jump models may not be doing a good job in fitting the unconditional distribution of
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returns, but the LR test in Table 2.2 indicates that the addition of the jump dynamics 

improves the specification of the conditional distribution in all models as compared 

to the constant intensity model.

2.7.2 Out-of-Sample Analysis

This section discusses and evaluates the models in the out-of-sample period, 1985- 

2000. In all cases, model parameters were initially set at the values in Table 2.6, 

thereafter every 250 observations, the model parameters are updated by estimation 

which included the most recently available data.

The last row of Table 2.2 contains Pearson goodness-of-fit test statistics for the 

out-of-sample predictive density of the models. Similar to the in-sample results the 

ARJI-ht model performs the best among the group with the ARJI model rank

ing second with a p-value of 0.003. Figures 2.10 through 2.12 display the results 

from the Diebold, Gunther, and Tay (1998) evaluation of the forecast density for 

a GARCH(1,1) model with normal innovations, ARJI and ARJI-/it models, respec

tively. Recall that, under a correctly specified model, the ut derived from the integral 

transformation should be i.i.d. U(0,1) and display no autocorrelation. Panel (a) of 

these figures presents an estimate of the density of ut. The benchmark GARCH(1,1) 

model shows obvious problems in matching the unconditional features of the data. 

Both the ARJI and ARJI-/it models provide successive improvements compared to 

the GARCH density. Estimates of the autocorrelations of powers of ut are found in 

panels (b)-(e) of each figure. All models perform well in capturing the dynamics in 

the conditional forecast density, although there is some marginal improvement from 

adding the jump dynamics to the GARCH model.

Out-of-sample one-step ahead forecasts of volatility are evaluated against the 

Parkinson (1980) range statistic. This is the intraday logarithm of the ratio of the
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Table 2.3: Out-of-sample forecasting performance of conditional volatility, R 2
Sample period GARCH(1,1) constant ARJI ARJI-ht a r j i-r ;2, ,

1985-2000 0.269 0.262 0.264 0.307 0.392
1990-2000 0.334 0.334 0.334 0.359 0.364

This table shows the R 2 from a regression of the range statistic on a 
constant and the out-of-sample, one-period ahead forecast of the condi
tional standard deviation for the respective models. The second column 
contains results for a GARCH model estimated assuming normal inno
vations.

high to the low transaction price and is a measure of the daily latent volatility. Tra

ditional measures of volatility such as squared returns are very noisy and therefore 

practically useless as a measure of forecasting performance. The range has been used 

in many studies and the simulation results in Andersen and Bollerslev (1998) (see 

their footnote 20) show it to be a very efficient estimator compared to daily squared 

returns.

A good model should not only explain the variation of the data series within 

sample, but also accurately forecast the series out-of-sample. Figure 2.6 depicts the 

out-of-sample one-step ahead forecasts of Xt for the ARJI-ht model. Table 2.3 shows 

the R2 from a linear regression of the range on a constant and the one-period ahead 

predicted standard deviation from the models. The first row of Table 2.3 is over 

the period 1985-2000 and the second row is over the period 1990-2000. Only in the 

second sample period does the ARJI provide a marginal improvement in out-of-sample 

forecasting performance as measured by R2. However, both the A R JI-R ^  and ARJI- 

ht models perform much better than the models without jump size dynamics. Since 

the jump models are designed to explain extreme market movements, the ranking of 

the models in Table 2.3 for 1985-2000 may be sensitive to the number of significant 

stock market downturns in this period. The results for the 1990-2000 period provide 

a check on this as there are only two days with \Rt\ > 5.0 (Rt =-7.4, 27/10/97
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and Rt =-6.5, 31/8/98) in this shorter period, while there axe 6 days in 1985-90. 

The results in Table 2.3 reverse our ranking of the ARJI-i?,/_1 and ARJI-ht models 

compared to the in-sample log-likelihood values.

Estimation of our dynamic jump models remains tractable by assuming the updat

ing scheme for the conditional jump intensity can be projected onto past observables. 

As a result, ex pos£ inference regarding the jump distribution is directly available from 

estimation. Figure 2.7 displays the ex ante and ex post probabilities of at least one 

jump occurring, calculated using Equations 2.2 and 2.6 for the ARJI-R^j model.

Figure 2.8 presents further evidence, in addition to Figure 2.4, supporting the 

hypothesis that the ARJI model may contain predictive information for stock market 

crashes. The graph in the top panel plots the market returns during the month of 

October 1987 and the negative 25% crash on the 19th. The predicted conditional 

average number of jumps rises from below .2 at the start of October 87 until it 

reaches 1.37 the day of the crash. Recall that this is an out-of-sample prediction, and 

A* is based on the previous day’s information set. The value 1.37 represents over an 

eight fold increase in the conditional intensity compared to its unconditional value of 

0.1547.

2.7.3 Comparison w ith Com peting M odels

Table 2.7 presents the results from different competing models. The simple GARCH(1,1) 

is also estimated and the results are reported in the first column. Note that there is 

strong presistence in the conditional variance as a + /3 =  0.9931. The log likelihood 

value is relatively lower than those in jump models. This result confirms the impor

tance of jumps in modeling this stock index. The Student-t distribution is reported in 

the second column which has essentially the same variance estimates. The degree of 

freedom parameter is 0.1623 which show that normal distribution is not an adequate
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Table 2.4: Out-of-sample forecasting performance from different models, R 2
Sample period GARCH GARCH-t G-Charlier Exp. Power Gen-t

1985-2000 0.269 0.266 0.272 0.271 0.267
1990-2000 0.334 0.335 0.335 0.336 0.336

This table shows the R 2 from a regression of the range statistic on a constant and the out- 
of-sample, one-period ahead forecast of the conditional standard deviation for the respective 
models.

representation of this particular dataset. A fat tail distribution like Student t can 

produce a much better likelihood value by capturing the excess kurtosis.

The results from the other three flexible distributions: Gram Charlier, Exponential 

Power, and Generalized t, are very similar in terms of the variance structure. The 

Gram Charlier distribution shows that the returns exhibit negative skewness and 

the Exponential Power distribution finds the dataset to be best represented by a 

distribution between the normal and the double exponential. The Generalized t 

distribution on the other hand finds the dataset does exhibit thick tails and the 

likelihood value is very close to the Student t distribution. In summary, the Student t 

distribution seems to be adequate in modelling the return series compared to the other 

three alternatives. The out-of-sample analysis is reported in Table 2.4. The GARCH 

model with Student t distribution again dominates all the alternatives. However, 

comparing these results to the one from the ARJI models has shown that none of 

these competing models can out perform the ARJI models regardless of whether or 

not the sample includes the 87 crashes.

Finally, Figure 2.9 shows conditional skewness and conditional kurtosis for the 

1990s. Note that conditional skewness is usually negative, but can temporarily be

come positive after a sharp market drop. This implies that after a drop in the market, 

an improved daily return is the most likely occurrence.
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2.8 Discussion

All models of conditional jump dynamics estimated on the DJIA returns show signif

icant persistence in the conditional intensity. This indicates that the risk associated 

with jumps in stock market returns is systematic and should be important for deriva

tive pricing. Furthermore, the jump dynamics do not reduce the GARCH effects in 

any of the models. The GARCH parameters across all models, including a no jump 

AR(2)-GARCH(1,1) model (not reported), are very similar. The ARJI family of 

models we investigate appear to be explaining dynamics not captured in the constant 

intensity specification.

Evidence of persistence in the jump intensity is also found in the analysis of Lin, 

Knight, and Satchell (1999) applied to intra-day equity returns. Lin, Knight, and 

Satchell propose a pure jump diffusion model that allows the intensity to depend upon 

the past conditional variance. Similar to our specification this model can capture time- 

dependence in the conditional jump intensity; however, the loglikelihood function does 

not have a closed form solution.

In the last section we found a robust result with respect to a switch in the jump 

direction after a stock market decrease. Both models with jump size dynamics have a 

significant d2 < 0. Using the estimates from Table 2.6 for the ARJI-i? _̂1 model, any 

decrease in the market of 2.5 percent or more, implies a positive conditional mean 

in next period’s jump size distribution. Therefore, after a stock market crash, the 

likelihood of a jump next period does not necessarily decrease, but the likelihood 

of a negative jump decreases and the likelihood of a positive jump increases. This 

asymmetry in the jump direction is also found in the out-of-sample data period. For 

instance, there are 45 times in which returns decrease by 2.5% or more. Of the 45 

times that Rt~i < —2.5, in 31 cases Rt > 0 in the next trading day. Conditional 

on Rt- i  < -2.5, the samples averages of Rt, 9t and Xt (next period values) are 0.79,
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0.31, and 0.90 respectively. This means that, on average, after a market downturn of 

-2.5% or more, a positive jump in returns is very likely to occur in the next trading 

day.

Previous research (Bates (2000), and Chernov, Gallant, Ghysels, and Tauchen

(1999)) has investigated whether there is a relationship between the jump intensity 

and a stochastic volatility specification of volatility. In our model, the analogous rela

tionship is between the conditional jump intensity parameterization and the GARCH 

specification. In general, we found mixed results. After permitting the variance of the 

jump size distribution to be a function of the GARCH variance (ARJI-/it) we found no 

evidence (estimates not reported) that the GARCH process affects the conditional in

tensity specification for our data set. However, we did find that the GARCH variance 

was positive and significant in affecting At in the ARJI-i?|_1 model.

This study documents evidence of significant conditional dynamics in the distri

bution governing the number of jumps and the jump size. An important topic from a 

risk management perspective is the prediction of extreme volatility. Our model cap

tures this through jumps. In particular, we present evidence that before both the 1929 

(in-sample) and 1987 (out-of-sample) stock market crashes the conditional expected 

number of jumps rises. This suggests that time-series data alone may contain predic

tive content that jump models such as those explored in this chapter could exploit in 

forecasting future market downturns. One way that jump predictability may work is 

that proportionately, jumps may become more important just before a crash. Thus, 

the GARCH or SV volatility component of the conditional variance may become less 

important in describing the total volatility while jumps become more important.
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2.9. CONCLUSION

2.9 Conclusion

This chapter proposes an autoregressive conditional jump intensity (ARJI) model to 

capture jump dynamics in stock market returns. Our model extends the GARCH- 

constant jump intensity model with a time-varying jump intensity and jump size 

distribution. This chapter proposes a simple filter to provide inference regarding the 

number of jumps. The jump intensity is modeled as a parsimonious ARMA structure 

driven by an ex post measure of the jump probability.

We find significant time-variation in the conditional jump intensity and the jump 

size distribution in our application to daily stock market returns. Modeling jump dy

namics in this chapter reveals several improvements compared to the basic GARCH- 

constant jump intensity model. First, the time-varying jump intensity provides good 

forecasts of stock market volatility. Second, incorporating the autoregressive jump 

intensity exploits additional structure ignored in a constant intensity model. Third, 

the ARJI model has significantly higher ex ante probabilities regarding jumps on the 

days of stock market downturns. Finally, we find evidence of an asymmetric jump 

direction around stock market crashes.

2.10 Appendix A

• Derivations of Equation ( 2.18)

E[C*\nt = j,$t- i] = Var(Ct|nt =  j, $ t-i) + E[Ct \nt =  j, <&t-i]2

=  j%+m2
= jsl+fe?

=  3 % + j 0 2t + 3202t - j e 2t 

=  j t f  + W  + o K f - j )
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2.10. A PPEN D IX  A

E[C2\ ^ )  = ^ E [ C 2\nt = j , ^ l]p (nt = j \ ^ 1)
3=0
oo

B[C?l«.-i] =  T , U ( S t + ^ ) + » t U 2 -3) )P(r ‘, =  i \ ^ )
j=o

00 oo
= (% +  0t) =  j |$ t- i )  +  02t ]T (j2 -  j )P{n t = j\®t-i)

j = o j=o
oo oo

=  ( $ + e l ) Y , j p (n‘ =
j=0 j =0

oo

~ dt J 2 i p (nt = J\®t-i)
3=0

oo

=  (SI +  6 l ) E j P ( n ,  =  +  f?(At(l +  At)) -  $1 A,

=  (SI +  e l) \ ,  +  «?A?

Derivations of Equation( 2.21)

Skew(i2t |$ t_1) =  4
°R

where n \  is the 3rd moment around the mean for R t and an is the standard 

deviation of the returns. Assuming n = <f>i = fa =  0 and using the fact that 

skewness of normal error terms is zero, the third moment around the mean for 

R t is defined by

/ 4  =  SIC -  £’[C'|«e_1]|*t_ 1]3

=  -EIC’ IO,-!] -  3£[C|#,_i]Var(C|®,-i) -  [B[t'|<J,_,]]3

The only unknown in the above equation is E[C3\$t-i] which can be derived 

using equation 2.16
OO

=  £ £ [ C t3| i  >  0.
i=o

and

E[Cf K  =  j ,  =  E[C\nt =  j ,  $ , _ , ] ( ( £ [ < > ,  =  j, * t _ x ])2
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2.10. A PPEN D IX  A

+3V ai(C '|nt =  j , $ t_i))

= +

= j 30* + 3j29t8?
00

J=7[C43|* e_L] =  T , ( j 3̂  +  3fe,Sl)P(nt = j \ i , . l )
j = 0
00 00 

=  Y , i 3» l p (n  t =  +  E
J=0 j=0

oo oo
=  +  3«W? E - ^ f a  =  i |* « -i)

J=0 j =0

=  @t (^*(1 +  3At +  Aj)) +  3 0 ^  At(l +  A*)

= 03 A* +  303 +  03A3 +  30tS2Xt +  39t52X2

Substituting this into /j?r gives

=  ^[C'3|^ - i] -3 £ ;[C '|$ t_1]Var(C'|$t_1) - [ JB[C' |$ t_1]]3 

=  Q\Xt +  30% X2 +  Of A3 +  30t82Xt +  30t82X2 — 30tXt (82Xt +  O2Xt) — 0%A3

= 03At +  30t^A*

= t̂(&t +

Finally, the conditional skewness can be derived as

Skew(i?t |$ t_1) =

X t(0% + 3 0t82)
(ht + Xt62 + Xt0?y/2

•  D erivations o f  E q u ation ( 2.22)

We can derive the conditional kurtosis in a similar fashion.

K u r t ^ l ^ )  =  4
°R
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2.10. A PPEN D IX  A

where n4R is the 4th moment around the mean for Rt and aR is the standard 

deviation of the returns. Therefore the fourth moment around the mean for Rt 

is

4  =  E [ ^ tzt + C -  E i C l ^ } ^ } 4

= E[{sfhtzt +  C)4^ ]  -  4£[C |$t_1]£[(V 'V t +  C)3|$t-i] 

+6(E[C\$t^ ] ) 2E[(^fhtzt + C)2 -  3(JE7[C'|^ t_ 1])4

The only unknown in the above equation is E[{\fhtzt +  C)4 |<&t_i] which can be 

derived using equation 2.16

OO
£[<74|$ t_1] =  Y,E[Ct \nt =  i > 0.

3=0

and

E[Ct\nt = j,®t-i] = E[C\nt =  j, $ t - i ]4

+6(E[C\th = j, ^ _ i] )2Var(C'|nt =  j, $ t_x) 

+3(Var((7|ni =  j, ®t-i))2

= j 4et + e j2e2t (j%) + z j 2slt

= + 6j39262 + 3 fS t
OO

£[C?|«M = T ,U 1St +  6 f ^  +  3 fS t )P (n ,= j \< t , .1)
3=0

OO o o

=  '52j40tP(nt =  +  J2  Qf et St p (nt =  j  |$t-i)
J=0 j=o

oo

+  J L ^ f 6t p (nt =  j \ $ t - i )
3=0

OO oo

= 0t E 3 4P(n, = j|*w ) + 60 ? 6 ? E j3P(n, =
j=0 j - 0

oo

+ z s t E f P ( ' H  =  j \®t- i )
3=0

=  t̂ At(l +  7 At +  6Aj +  A3) +  69252(Xt(l +  3At +  Â ))
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+3<y* A t(l +  A t)

= M(0t +  ) +  Xf(794 +  180252 +  3Sf)

+ X 3(69? +  69?S?) +  X f f i

Therefore,

E(\fhtzt + C)4 =  E ( (J h tzt)4)+4E((</htzt)3)E(C)

+6  E{{sjhtztf ) E { C 2) + 4E(\Jhtzt)E(C3) +  E(C4) 

=  3 h? +  6 /it ((* 2 +  02)At +  02A2)

+ X t ( 9 4 +  60f^t +  364) +  A2(704 +  180252 +  3 64) 

+ \ 3(6e t  +  G e f f i )  +  \ 4t e}

Substituting this into n4R gives

/ 4  =  E [Jh tzt + C -  E[C\®t }̂\<4>t^ ) 4

= E[{sfhtzt +  C7)4|^ t_!] -  4E[C\$t-i]E[(y/htZt + C)3^ ]  

+6{E[C\$t-i])2E[{y/htzt +  -  3(E[C\$t- l})4

— 3h 2 +  Ght ((6f +  0j)A t +  02A2)

+ X t (94 +  602#2 +  354) +  A2(704 +  180252 +  364) 

+ A 3(6 Ot +  6 02t 82t ) +  A404 

~ 4 6 t X t ( 3 h t \ t 0 t  +  93 At +  303A2 +  93 X3 +  30t52Aj)

+6(A202(/it +  (62 +  0j)At +  02 A2) — 3A404 

=  3/i2 +  6/it((52 +  02)At) +  3((<J2 +  0t)A4)2 +  A*(04 +  6 9\8\ + 364)

= 3 (ht +  A t (8f + 02))2 +  At(04 +  6 0252 + 3<54)

Finally, the conditional kurtosis can be derived as

Kurt(i2t |$ t_i) =  4
aR
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_  o , +  6#t<St +  3£4)
(ht +  \ t8t +  X t9 t ) 2

Properties of Normal Distribution

The normal probability density function with mean fj, and variance a 2 is given 

by

f ( x )  =  — ^ = e x p _^ “^ 2//20'2.
(TV 27T

The Characteristic Function is

$(i) =  exp*”1*-0'2*2/2 

and the Moment-Generating function is

M(t)  =  e x p ^ 2*2/2.

The Cumulant Generating Function is

K( h ) =  in(expA/lexp0’2ft2/2).

The first four moments around zero are

A*i =  H 

a4 = n2 + a2

/4  =  +  3cr2)

Af4 =  A*4 +  6At2cr2 +  3<t4 

The first four moments around the mean are

H i = H 

H2 =  o2

A*3 =  0

fj>4 =  3cr4 
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• Properties of Poisson Distribution

The Poisson density function with intensity parameter A is defined by

P & - j ) - *

The Characteristic function is

$(*) =  expm(exPrt-1)

and the Moment Generating function is

M(t) = e x p ^ P * -1).

The Cumulant Generating function is

K(h) = A (exp71 -  1).

The first four moments around zero are

Ah =  A 

Ah =  A(1 +  A)

/ig =  A(1 +  3A +  A2)

Ah =  A(1 +  7A +  6A2 + A3)

The first four moments around the mean are

Ah =  A 

fX2 =  A 

Ah =  A 

fj>4 =  A(1 T 3A)
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Table 2.5: 
periods

Estimates of the Constant Intensity Jump Model for different sample

Rt =  /i +  1 4>iRt-i +  Vhtzt +  E f c L i  Yt)k

YiJt ~  NID{9,52), ht = co + a e l ,  +

P(nt = j ) =  *  ~  N ID ( 0 , 1)

Parameter 1928-1950 1951-1969 1970-1984
0.0753 0.2138 -0.0025

I1 (0.0097) (0.0331) (0.0142)

01
0.0940 0.1848 0.1623

(0.0125) (0.0154) (0.0166)

02
-0.0627 -0.0818 -0.0296
(0.0123) (0.0151) (0.0166)
0.0009 2.07E-13 0.0072U) (0.0009) (0.0005) (0.0024)
0.0596 0.1118 0.0402oc (0.0058) (0.0139) (0.0056)
0.9213 0.8008 0.9472

P (0.0069) (0.0264) (0.0074)
1.4624 0.2711 1.4300 (0.1345) (0.0346) (0.2789)

Q -0.6447 -0.1129 0.9882u (0.1147) (0.0184) (0.7942)
\ 0.1116 1.6742 0.0196A (0.0186) (0.4043) (0.0166)

n 2 52.72 27.25 19.01
[0 .00] [0.03] [0 .21]
23.74 23.66 30.14
[0.07] [0.07] [0 .01]

log likelihood -9149.74 -4213.27 -4814.20

S ta n d a r d  erro rs are  in  p a r e n th e se s , p -v a lu e s  a re  in  sq u a re  b r a c k e ts . Q2 is  
t h e  m o d if ie d  L ju n g -B o x  P o r tm a n te a u  t e s t ,  r o b u s t  t o  h e te r o sk e d a s t ic ity ,  
fo r  se r ia l c o r r e la t io n  in  t h e  sq u a r e d  s ta n d a r d iz e d  r e s id u a ls  w it h  15  la g s  
fo r  t h e  r e s p e c t iv e  m o d e ls . Q̂ t is  t h e  sa m e  t e s t  for  se r ia l c o r r e la t io n  in  
th e  ju m p  in te n s ity  r e s id u a ls .
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Table 2.6: Estimates of the ARJI Models, 1928-84

Rt -  P +  Z)Li ^ iR t-i +  V h tz t +  YJkLi Yt,k 
Yt,k ~  N {6t , St), ht =  u  +  ae?_i + 0ht-1

A* = Ao + pAt_i + 7^t_i
Vt =  Vo +  ^iRt-i-D(-Rt-i) +  ??2-Rt-i(l _ D { R t-1))

ARJI -  ht : <5? = Co2 + Ci hj, ARJI -  R?_i • % =  C02 + C i^ - i

P a r a m e t e r C o n s t a n t A R J I A R J I - i ^ , A R J I - h *

A*
0 .0 6 9 2 0 .0 5 7 0 0 .0 7 1 3 0 .1 0 9 1

( 0 .0 0 8 3 ) ( 0 .0 0 7 0 ) ( 0 .0 0 7 9 ) ( 0 .0 1 0 0 )

<h
0 .1 3 8 9 0 .1 3 3 1 0 .1 4 8 6 0 .1 2 0 9

( 0 .0 0 8 4 ) ( 0 .0 0 8 5 ) ( 0 .0 0 9 9 ) ( 0 .0 1 2 2 )

<p2
- 0 .0 5 6 1 - 0 .0 5 8 1 - 0 .0 6 3 8 - 0 .0 6 7 4

( 0 .0 0 8 3 ) ( 0 .0 0 8 5 ) ( 0 .0 0 8 5 ) ( 0 .0 0 8 4 )

U! 0 .0 0 0 5 0 .0 0 3 0 0 .0 0 2 0 0 .0 0 1 5

( 0 .0 0 0 8 ) ( 0 .0 0 0 6 ) ( 0 .0 0 0 5 ) ( 0 .0 0 0 3 )

a 0 .0 6 6 5 0 .0 3 4 6 0 .0 2 9 4 0 .0 2 0 1

( 0 .0 0 4 1 ) ( 0 .0 0 4 1 ) ( 0 .0 0 3 5 ) ( 0 .0 0 2 9 )

P
0 .9 1 9 2 0 .9 4 9 4 0 .9 5 6 4 0 .9 5 9 9

( 0 .0 0 4 7 ) ( 0 .0 0 4 7 ) ( 0 .0 0 4 1 ) ( 0 .0 0 4 5 )

Co

Cl

0 .8 7 4 4 1 .1 7 7 9 0 .8 7 2 8 0.0000
( 0 .0 9 2 7 ) ( 0 .1 0 7 5 ) ( 0 .0 7 4 0 )

0 .1 3 3 7

( 0 .0 4 4 0 )

( 0 .1 4 4 5 )

1 .6 0 4 1

( 0 .1 3 2 9 )

Vo

Vi

V2

- 0 .3 2 2 2 - 0 .3 9 6 2 - 0 .5 2 1 8 - 0 .2 9 5 5

( 0 .0 5 3 9 ) ( 0 .0 6 2 6 ) ( 0 .0 7 6 0 )

0 .0 3 2 2

( 0 .0 5 0 3 )

- 0 .2 0 6 9

( 0 .0 4 2 2 )

( 0 .0 4 2 8 )

0 .1 1 7 0

( 0 .0 3 4 8 )

- 0 .0 8 2 0

( 0 .0 2 9 2 )

Ao
0 .1 5 1 2 0 .0 1 3 1 0 .0 1 8 9 0 .0 6 9 5

( 0 .0 3 7 4 ) ( 0 .0 0 3 2 )

0 .9 1 5 3

( 0 .0 0 4 3 )

0 .9 0 9 8

( 0 .0 1 5 7 )

0 .8 4 1 2
P ( 0 .0 2 0 4 )

0 .4 9 1 9

( 0 .0 1 9 6 )

0 .5 2 3 0

( 0 .0 2 6 5 )

0 .4 4 6 1
7 ( 0 .0 7 7 3 ) ( 0 .0 8 0 1 ) ( 0 .0 6 4 0 )

Q2
1 8 .2 7 7 .5 4 1 4 .7 0 7 .9 3

[0 .2 5 ] [0 .9 4 ] [0 .4 7 ] [0 .9 3 ]

3 0 .9 6 9 .8 4 1 5 .6 0 1 4 .7 5

[0 .0 1 ] [0 .8 3 ] [0 .4 1 ] [0 .4 7 ]

lo g  l ik e l i h o o d  - 1 8 3 1 5 .6 1  - 1 8 2 7 6 .1 0  - 1 8 2 3 2 .4 5  - 1 8 1 4 3 .4 0

Standard errors are in parentheses, p-values are in square brackets. Q2 is 
the modified Ljung-Box Portmanteau test, robust to heteroskedasticity, 
for serial correlation in the squared standardized residuals with 15 lags 
for the respective models. Q^t is the same test for serial correlation in 
the jump intensity residuals. Constant is the constant jump intensity, 
constant jump size model.
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Table 2.7: Estimates of Competing Models, 1928-84

P a r a m e t e r G A R C H G A R C H - t G r a m - C h a r l ie r E x p .  P o w e r G e n e r a l iz e d - t

0 .0 3 0 4 0 .0 4 0 5 0 .0 2 4 4 0 .0 4 0 0 0 .0 4 0 5
M ( 0 .0 0 5 6 ) ( 0 .0 0 5 3 ) ( 0 .0 0 5 7 ) ( 0 .0 0 5 3 ) ( 0 .0 0 5 2 )

jL 0 .1 4 4 5 0 .1 3 9 1 0 .1 3 4 8 0 .1 3 5 4 0 .1 3 8 5
<Pi ( 0 .0 0 8 7 ) ( 0 .0 0 8 2 ) ( 0 .0 0 8 3 ) ( 0 .0 0 8 0 ) ( 0 .0 0 8 2 )

<t> 2
- 0 .0 3 9 9 - 0 .0 5 4 1 - 0 .0 5 5 6 - 0 .0 5 7 3 - 0 .0 5 4 6

( 0 .0 0 8 7 ) ( 0 .0 0 8 1 ) ( 0 .0 0 8 3 ) ( 0 .0 0 7 8 ) ( 0 .0 0 8 1 )

0 .0 0 8 0 0 .0 0 6 2 0 .0 0 8 1 0 .0 0 6 9 0 .0 0 8 2
it)

( 0 .0 0 0 9 ) ( 0 .0 0 0 9 ) ( 0 .0 0 1 0 ) ( 0 .0 0 1 0 ) ( 0 .0 0 1 2 )

0 .0 7 8 4 0 .0 7 4 4 0 .0 8 0 7 0 .0 7 7 2 0 .0 9 9 3
CX.

( 0 .0 0 4 3 ) ( 0 .0 0 5 2 ) ( 0 .0 0 5 0 ) ( 0 .0 0 5 2 ) ( 0 .0 0 7 1 )

o 0 .9 1 4 7 0 .9 2 1 1 0 .9 1 4 3 0 .9 1 6 8 0 .9 2 0 6
P ( 0 .0 0 4 5 ) ( 0 .0 0 5 2 ) ( 0 .0 0 5 2 ) ( 0 .0 0 5 4 ) ( 0 .0 0 5 2 )

l / v 0 .1 6 2 3

( 0 .0 0 7 8 )

A3
- 0 .1 6 7 2 0

( 0 .0 2 7 9 )

a 4
1 .0 6 3 3

( 0 .0 5 5 8 )

1 .3 3 7 9
1 / 7 ( 0 .0 1 9 9 )

1 .9 0 7 5
P ( 0 .0 7 4 7 )

3 .5 5 8 4
q ( 0 .4 8 1 8 )

l o g  l ik e l i h o o d - 1 8 6 7 1 .5 1 - 1 8 2 1 4 .5 0 - 1 8 3 5 7 .3 6 - 1 8 2 7 1 .6 7 - 1 8 2 1 2 .9 6

S ta n d a r d  erro rs are  in  p a r e n th e se s , p -v a lu e s  a r e  in  sq u a r e  b r a c k e ts . T h e  G r a m  C h a r lier  
(L ee  a n d  T s e  1 9 9 1 )  d e n s ity  is  d e f in e d  a s

GC(u) — <f>(u)(l +  X3H3(u)/6 +  A 4 l? 4 (u ) /2 4 )  

H3 (u) = u3 — 3 u  ; Hi (u) =  u 4 — 6  u3 +  3 .

T h e  E x p o n e n t ia l  P o w e r  (B o x  a n d  T ia o  1 9 7 3 )  d e n s ity  is  d e f in e d  a s

EP(u) = w(u)exp[—c (7 ) |u |1^7]

[r(37) l1/2 . ( r ( 3 7 )
w ( 7 )  =  ^ r3(7) c (7 ) r(7)

27

N o t e  t h a t  E P  =  D o u b le  E x p o n e n t ia l  w h e n  l / 7 =  1; E P  =  N o r m a l w h e n  l / 7 =  2 .0 ; E P  =  
U n ifo r m  w h e n  l / 7  =  oo . T h e  G e n e r a liz e d  t  d is tr ib u t io n  (M c D o n a ld  a n d  N e w e y  1 9 8 8 )  is  
d e fin e d  b y

GT{ut) = P

2htq'/PB{llp,q) (l + )

w h er e  B  is  t h e  B e t a  fu n c t io n .
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Figure 2.3: ARJI, In-Sample Rt, \ t, and <JVaxt-i{Rt)
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Figure 2.4: ARJI, In-sample Rt and Xt, (Oct 15 - Oct 28, 1929)
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Figure 2.5: ARJI-/it, In-sample conditional mean and variance from jumps
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Figure 2.6: ARJI-/it, Out-of-Sample Rt and At
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Figure 2.7: A R JI-i?^ , Probability of at least one jump P(nt >1)
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Figure 2.8: ARJI, Out-of-sample Rt and At, (Oct 1 - Oct 19, 1987)
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Figure 2.9: ARJI-/jt, Time-varying skewness and kurtosis
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Figure 2.10: GARCH(1,1), Estimates of the density of ut and autocorrelation func
tions of powers of ut.
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Figure 2.11: ARJI, Estimates of the density of ut and autocorrelation functions of 
powers of ut-
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Figure 2.12: ARJI-/tt? Estimates of the density of ut and autocorrelation functions of 
powers of ut.
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Chapter 3 

A Correlated Bivariate Poisson  
Jum p M odel for Foreign Exchange

3.1 Introduction

Jump dynamics are an important element for modeling stock market movements and 

Chapter 2 provides evidence of these systematic jumps in financial markets. A natural 

extension is to develop a multivariate model that can be used to exploit information 

across equations and most importantly that can supply a reliable learning tool for 

investigating the comovement between financial asset returns.

The potential gain in the efficiency of estimation can be substantial depending 

on the underlying information structure. A multivariate model captures additional 

information contained in the covariance between random normal error terms as well 

as that contained in the covariance between different jumps experienced by financial 

assets. Incorporating the relationship between jump dynamics may provide significant 

improvements in efficiency of estimators.

In addition, modeling the similarity of jumps in different return series can enrich 

our understanding of the dynamic relationship between returns. It is natural to 

think that since two return series experience irregular jumps or crashes at irregular 

intervals, the crashes could be classified into two categories: (i) independent jumps -
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crashes that affect one series specifically and not the others; and (ii) correlated jumps 

- crashes that impact all series simultaneously. In a financial market, there are news 

events that induce changes in one company alone. For example, a profit warning 

released by a firm will usually affect the value of its own stock alone. There are other 

news events that could shock the entire market such as reports on macroeconomic 

indicators.

A similar argument can be made for currency markets. Domestic news related 

to the local economy is one of many examples of news that may affect the value 

of one particular currency, whereas news such as that of a global financial crisis 

could easily transmit turbulence into several different currencies. In a global currency 

market, sudden and abnormal changes in any given currency can be classified as either 

independent jumps or correlated jumps.

This chapter develops a new bivariate jump model to study jump dynamics in for

eign exchange returns. The model extends a multivariate GARCH parameterization 

to include a bivariate correlated jump process. The conditional covariance matrix has 

the Baba, Engle, Kraft, and Kroner (1989) structure, while the bivariate jumps are 

governed by a Correlated Bivariate Poisson (CBP) function.

There are several advantages of using this CBP-GARCH model. Firstly, it mixes 

smooth volatility movement with abrupt changes in returns. The incorporation of 

jumps provides one possible solution to account for unconditional leptokurtosis. Sec

ondly, it allows one to identify two types of systematic jumps: jumps specific to one 

currency and jumps that affect both currencies simultaneously. Thirdly, it allows 

for the frequency of jumps to change over time, depending on market conditions. 

Fourthly, the interrelationship between currencies in such a model are driven by two 

distinct sources: normal random noises and systematic correlated jumps. Jump dy

namics may provide a better understanding of the comovement between currencies,
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which has important implications for risk management and hedging such as deriving 

the optimal hedging ratio (Baillie and Myers 1991).

We apply this model to eleven years of data on daily spot exchange rates of 

the Canadian Dollar (CD) and Japanese Yen (JY) against the US dollar. We find 

systematic independent as well as correlated jumps, with significant jump size, in 

both currencies. While the Canadian dollar on average experiences more positive 

jumps, leading to depreciation, the Japanese Yen encounters mostly negative jumps. 

In our modeling efforts, we also propose two generalizations for the jump frequency 

allowing it to be time-varying. The first approach relates the likelihood of jumps to 

the market conditions so that the arrival of independent jumps is determined by the 

currency’s volatility, whereas the arrival of correlated jumps is jointly determined by 

the volatilities in both currencies. The second approach allows the jump frequency 

to follow an approximate ARMA process driven by the unexpected number of jumps 

last period.

The chapter is organized as follow: Section 3.2 reviews the development of the 

literature. Section 3.3 describes the Correlated Bivariate Poisson (CBP) jump model. 

Section 3.4 provides a simple data description with summary statistics. Section 3.5 

applies the CBP-GARCH model to the foreign exchange rates in our data set. Sec

tion 3.6 offers conclusions.

3.2 Literature Review

Empirical research has so far failed to find a predictable component in exchange rates 

using linear models. Purchasing power parity, flexible monetary models (Frenkel 

1976), sticky price monetary models (Dornbusch 1976, Frenkel 1979), and vector au

toregressive models often fail to outperform a simple random walk model. The results 

are documented in Meese and Rogoff (1983) and basically suggest that exchange rates
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are unpredictable and the behavior of foreign exchange markets is consistent with the 

efficient market hypothesis (Fama 1970).

The failure of linear exchange rate models has led to a shift of focus towards non

linear modeling. The Autoregressive Heteroskedasticity (ARCH) model, proposed 

in the seminal paper by Engle (1982) and later generalized (GARCH) by Bollerslev 

(1986), has been most influential. This parsimonious structure implies serial correla

tion in the second moment and volatility clustering, suggesting that periods of high 

(low) volatility are likely to be followed by periods of high (low) volatility. The uni

variate GARCH model has been used extensively in the foreign exchange literature 

(Domowitz and Hakkio 1985, Hsieh 1989a, Engle and Bollerslev 1986, McCurdy and 

Morgan 1988).

Multivariate GARCH models (Bollerslev 1990, Baba, Engle, Kraft, and Kroner 

1989, Bollerslev, Engle, and Wooldridge 1988, Diebold and Nerlove 1989, Engle, Ng, 

and Rothschild 1990) emerged as a natural extension of the univariate model. The 

motivations behind the multivariate generalization are possible volatility spillover 

effects and a quest for an understanding of how one market might influence another. 

For example, if all currencies being studied are expressed in terms of a common 

denomination (U.S. dollar), any shock to the U.S. market may easily be transmitted 

to all currencies, producing similar GARCH effects.

Although multivariate GARCH models prove to be adequate in terms of account

ing for heteroskedasticity, these models do not fully capture another stylized fact: 

leptokurtosis in the unconditional distribution, often observed in financial data. Fat 

tails in foreign exchange rates are documented in many studies including Burt, Kaen, 

and Booth (1977), Westerfield (1977), Rogalski and Vinso (1978), and Friedman and 

Vandersteel (1982). Many solutions have been proposed in the literature. For exam

ple, the normal density can be replaced by a fat tail distribution such as the Student
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t distribution or Power Exponential distribution. Other alternatives include the Pois

son jump model of Press (1967) which introduces an independent jump process with 

the arrival of jumps governed by a Poisson distribution. This model has been ap

plied successfully to daily exchange rates by Akgiray and Booth (1988), Tucker and 

Pond (1988) and Hsieh (1989b). This approach is attractive as more can be learned 

from modeling leptokurtosis as a systematic pattern than by simply utilizing a fat 

tail distribution. Although jumps are unobservable, an expost filter can always be 

constructed to infer the probability of jumps.

The presence of jumps can be explained either by news content entering the market 

or, more interestingly by market microstructure - order flow recently proposed by 

Evans and Lyons (2001). The former implies that market participants may react to 

certain types of unanticipated news systematically over time. Modeling these pattern 

is no easy task, the Poisson distribution provides a simple entry point which has 

proven to be useful in empirical studies. The market microstructure approach (Evans 

and Lyons 2001) relies on portfolio shifts not being common knowledge. Dealers 

observe interdealer order flow to learn about these shift. As the market gradually 

aggregates these pieces of information, the transactions between dealers and the non

dealer public may create a series of jumps in the exchange rates that they are trading.

This chapter proposes a new bivariate jump model to study jump dynamics in 

foreign exchange returns. A multivariate GARCH parameterization in the BEKK 

form augmented with a Correlated Bivariate Poisson (CBP) function is developed to 

allow for a bivariate correlated jump process. This CBP function provides a bivariate 

discrete counting process which has been used to solve problems in various context 

such as the relationship between voluntary and involuntary job changes (Jung and 

Winkelmann 1993), and the entry and exit decisions of firms (Mayer and Chappell 

1992). Modeling of pairs of discrete dependent variables using the CBP function is
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also discussed in Gourieroux, Monfort, and Trognon (1984).

3.3 M odel

The model is a combination of the GARCH model (Bollerslev 1986) and the Poisson 

Correlation function (M’Kendrick 1926, Campbell 1934). Given an information set, 

=  (Rt, ..., Ri), the Correlated Bivariate Poisson (CBP-GARCH) jump model is 

defined as follow:

R t =  H +  (j>Rt~ i +  e* +  Jt (3-1)

where R t is a 2x1 vector of returns consisting of a constant mean fi (2x1), a random 

disturbance et (2 x 1), and a jump component Jt (2 x 1). The random disturbance 

follows a bivariate normal distribution with zero mean and variance covariance matrix

Within any single time period t, a currency may experience “n” number of jumps, 

where “n” depends on the news content entering the market. The jump component 

therefore is constructed as a sum of a series of random variables Yf.
n

Y /Yi = Yl + Y 2 + Y3 + . . .+ Yn (3.2)
i—1

Each of these random variables can be interpreted as a jump size which is governed by 

a normal distribution with constant mean 9 and constant variance S. We assume that 

these mean and variance parameters remain the same across time, but differ across 

currencies. In other words, the jump sizes for the two currencies can be characterized 

as

Ylt, i ~ N ( 9 u 6?) and Y2tJ ~  N(92,822). (3.3)

The jump component enters the mean equation with an expected value of zero 

which is achieved by subtracting the expected values from the series of random jumps.
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In a bivariate framework, the jump component is defined as

(3.4)

Jt has a bivariate normal distribution with zero mean and variance covariance matrix 

A t. The disturbance e* and the jump components are assumed to be independent.

3.3.1 The Poisson Correlation Function

Two discrete counting variables nu  and n2* control the arrival of jumps and they are 

constructed via three independent Poisson variables namely and n3t. Each

one of these variables has a probability density function given by

The expected value and variance of n*t are each equal to A,, which is also referred to 

as the expected number of jumps or the jump intensity.

The correlated jump intensity counters (M’Kendrick 1926, Campbell 1934) are 

defined as

By construction, each of these counting variables, nit, is capable of generating inde

pendent jumps as well as correlated jumps. The independent jumps are initiated by 

n*lt and n*2t in time period t. The correlated jumps are produced by the additional 

Poisson variable n*it which contributes jumps to both series.

(3.5)

(3.6)

The joint probability density function for the three independent Poisson variables

is

P{n*lt =  i,n*2t=j,n*3t = k) = e AlA^e | e  A®A| 
i\ j\ k\ (3.7)
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Using the change of variables method and integrating out n\t yields the joint proba

bility density for n lt and n2t as:

min(i,j) Xi-fc X*
P (nu = i ,n * =  m - > )  =  E  e -<ll+Al+W <3-«)

This Poisson Correlation function has been studied extensively. Teicher (1954), and 

Hamdan and Al-Bayyati (1969) derive the Poisson Correlation function as the limit 

of a bivariate binomial distribution. Martiz (1952) derives the function using the 

factorial moment generating function of a bivariate Bernoulli distribution. Marshall 

and Olkin (1985) provide a detailed description of its properties. Maximum likelihood 

estimation is discussed in Holgate (1964).

The conditional expectation is given by

E(nlt\n2t =  j)  =  Ai + j  ^  (3.9)
t  A3

and the expected number of jumps is equal to

=  A j +  A3 . (3 .10)

Since both and n2t are monotone functions of independent Poisson random vari

ables, their covariance is A3 and their correlation is always positive in the form of

Corr (72.1t, n2t) = - = = = J L = = = .  (3.11)
y  (Ai +  A3 XA 2 +  A3)

The assumption of positive correlation can be relaxed by using other bivariate dis

tributions. However, in this model, there is built-in flexibility in terms of jumps. 

Although the model assumes that the number of jumps in the two series are posi

tively related, the mean of the jump sizes can be different. This implies that it is 

possible for both series to experience a jump at the same time, but that one jump 

may have a positive effect on one series and a negative effect on the other.
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Note that the bivariate Poisson function simplifies to two independent Poisson 

process when A3=0. When either one of the independent jump intensities Ai or A2 

is equal to zero, the distribution is called semi-Poisson. In the situation of Ai =  0,

Xl = X2 = 0, the only possible values that the number of jumps can take is n it =  n2t- 

A drawback of using the Poisson Correlated function is that the correlation is 

limited to the range:

n lt and n2t will have a theoretically imposed upper bound. This assumption can be 

relaxed. Aitchison and Ho (1989) assume the jump intensity parameter itself has 

a log normal distribution. In a similar fashion, Edwards and Gurland (1961) pro

pose a compound correlated Poisson distribution arising from compounding a CBP 

function with Gamma distribution. Although these multivariate mixtures of inde

pendent Poisson distributions allow for a rich covariance structure for the counting 

variables, practical applications for regression analysis is limited due to the difficulty 

of estimation and inference.1

3.3.2 Tim e Varying Jump Intensity

To relax the assumption of constant correlation and the implicitly imposed upper 

bound, we propose two simple parametric structures for each of the A s o  that the 

likelihood of jumps may change over time. The first approach links the variations of 

jump intensity to the market conditions approximated by last period’s volatility. The 

likelihood of jumps rises as the market becomes more volatile. The second approach

1See Holgate (1964) and Aitchison and Ho (1989) for more discussion.

positive probability is only assigned to the situation where nu  < n2t. In the case of

0 < Corr(nit, n2t) < min Ai +  A3 A2 +  A3\  ^ (3.12)
A2 +  A3 J ’ \ Ai +  A3

Given a constant value for each jump intensity parameter Aj, the correlation between
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allows the jump intensity to follow a parsimonious ARMA structure governed by the 

unexpected number of jumps last period.

3.3.2.1 Conditioning on Last Period’s Volatility

The time varying jump intensities (CBP-GARCH-R2̂ )  conditioning on last period’s 

volatility are defined as

Au =  Ai +  (3.13)

A2t =  ^2 + V2r2t-1’ (3-14)

As t = M + vlrlt-x + (3.15)

where r^-i is the rate of return for currency i at time t-1. The jump intensities

are assumed to be related to market conditions which are reflected in rft_L as an 

approximation of last period’s volatility.2 Similarly, the covariance A3t is governed by 

the variations in last period volatilities from both series. This parametric structure 

not only introduces additional jump dynamics to the model, but also allows for a time- 

varying correlation between the counting variables nu  and n^t- Since Xu is realized 

at time t-1, one step ahead forecasts of the average number of jumps is also possible.

A drawback of using this simple structure is the implicitly imposed deterministic 

relationship between the intensities. Since all three intensity parameters are related 

to the same set of variables (previous period volatilities from both currencies), the

2The jump intensities are positively related to the volatilities. This assumption can be relaxed 
by using logarithms such as

A u =  exp [ A i+r?ilnr?t_i] (3.16)
\ 2t  =  exp  [A2 +  »?2lnr|t_i] (3-17)
A3t =  exp [As +  r)3lnrft_ 1 +  r^ lnr^^] (3.18)

This specification allows for both positive and negative correlation between the jump intensities and 
past volatilities.
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comovement between the series is restricted to a linear structure:

As, =  (3.19)

which will hold in any time period. A similar problem arises as we replace the past 

volatility with any other exogenous variables maintaining the assumption that the 

variables affecting the likelihood of independent jumps should also simultaneously 

affect the likelihood of correlated jumps. A possible solution is to allow for a counter

specific stochastic component entering the jump intensity similar to the stochastic 

volatility model. However, this structure will certainly complicate estimation and 

inference procedures, quite often requiring simulation methods. A more simplified 

model is desirable and the autoregressive conditional jump intensity to be developed 

in next subsection is one such model.

3.3.2.2 Autoregressive Conditional Jump Intensity (ARJI)

The Autoregressive Conditional Jump Intensity (ARJI) model was first introduced 

in Chapter 2 and it has proven to work well with stock market series in terms of 

volatility forecasting. A practical challenge is to extend this model into a multivari

ate framework. We will discuss a bivariate extension in this chapter. However, a 

multivariate model can be derived without any difficulty following the same steps as 

discussed below.

Let At =  E[n*t \<S>t-\\ be the conditional expectation of the counting process which 

is assumed to follow,
r s

At =  Ao +  Ci^t-i +  7*&-»■ (3.20)
i= l i= 1

The conditional jump intensity at time t is related to r past lags of the conditional 

jump intensity plus lags of £t. £t-» represents the innovation to At_, as measured ex 

post by the econometrician. This shock, or jump intensity residual, is calculated as
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follows,

&_i =  .E[n£_j |$t_i] — At_i
00

= (3.21)
j= 0

The first term on the right hand side of Equation 3.21 is our inference on the average 

number of jumps at time t — i based on time t — i information, while the second term 

in (3.21) is our expectation of the number of jumps using information at time t — i — 1. 

Therefore, represents the unpredictable component affecting our inference about 

the conditional mean of the counting process n*^.

Let f{R.t \n*t — j, <&t_i) denote the conditional density of returns given j  jumps 

occur, and the information set $t_i; where /  represents any density function. Having 

observed Rt and using Bayes’ rule we can infer ex post the probability that a jump 

of size j  occurred at time t, with the filter defined as,

P ( n ; = m = m H = i p ^ ”; = i .' =  0 ,1 ,2 ,... (3.22)

where P(n^ =  y | ) is defined in Equation 3.5. The key innovation of this ARJI 

model in a bivariate framework is to trace the path of unexpected jump intensities 

through the independent jump counters n*t instead of the the counters nt after the 

variable transformation. The conditional density in Equation 3.22 can be easily de

rived by integrating out the nuisance variables. For example, the density of returns 

given j correlated jumps can be obtained as

f(R t\n3t ~ k, d?t_i) — ^  ^2 f ( R t \riit =  i, n2t — j, n3t =  k, d>t-i)- (3.23)
i j

The filter in Equation (3.22) is an important component of our model of time- 

varying jump dynamics, since it enters Equation (3.21), but it also can be constructed 

and used for inference purposes. For example, the probability that at least one jump 

occurred in currency 1 could be assessed using 1 — P{n\t =  0|<Ft). The filter may
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be particularly useful in revealing misspecification in the simpler constant intensity 

specification.

3.3.3 The CBP-BEK K  Variance Covariance M atrix

Combining the GARCH model with the CBP function, the probability density func

tion for Rt given i jumps in currency 1 and j  jumps in currency 2 is defined by

f (R t\n lt = i, n2t = j, $ t_i) =  - l ^ \ H ijtt\ - ^ 2exp [-«C , (3.24)

where Uijj is the usual error term with the jump component ,7,^ representing the 

effect of i and j  jumps:

u.i],t — Rt ft îj,t —
f it  — fti — iO i + (Ai* + A3t)0i  
f2t ~  ft2 — j02 + (A2t +  A3t)02

(3.25)

Hijjt is the variance covariance matrix of the returns given i jumps in currency 1 

and j  jumps in currency 2. Under the assumption that the normal disturbance, et, 

is independent of the jump component, Hijjt can be separated into two parts: the 

variance covariance matrix for the normal random disturbance Ht and the variance 

covariance matrix for the jump component Aij)t.

The variance covariance matrix Ht for the normal disturbance is assumed to have 

the bivariate BEKK form (Baba, Engle, Kraft, and Kroner 1989) which is defined by

Hf =  C'C +  A! Ct—iCt_iA +  B'Ht_iB  (3.26)

where C is an upper triangular matrix, and A and B are 2x2 parameter matrices. 

The positive definiteness of the variance covariance matrix is ensured by the quadratic 

form. This structure allows for a very flexible relationship between the second mo

ments and their past values. Individual elements of Ht can be written as

hi,t = ci + +  2aia2iMi,t-i«2,i-i + a2iM2,t-i
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+bihitt~i + 2&i 621^12, t-i +  &2i^2,t-i, (3.27)

hi2, t =  ci2 +  a,ia\2Uitt_i +  (aia2 +  012021)^1,*-1^2,t-i +  02̂ 21 W2 ,t-i

+61612^1,t-1  +  (&1&2 +  &12&2l)^12,t-l +  &2&21^2,t-l) (3 .28)

h2,t — c2 +  a 2u 2,t-L +  2 a2 a i2 ttl,t—lW2,t—1 +  Ol2Ul , t - l

+& 2^2,t-l +  2&2^12̂ '12,t—1 +  612^1,t-1- (3 .29)

Note that both variance and covariance terms have similar structures. They are

functions of the past variances, prediction errors, past covariances, and cross products 

of the prediction errors.

This BEKK formulation provides a rich class of variance covariance structures 

for the bivariate model and it also nests Bollerslev, Engle, and Wooldridge (1988)’s 

diagonal vech parameterization as a special case when A and B are diagonal matrices 

(or equivalently 012 =  a2i =  &12 =  621 =  0).

The variance covariance matrix for the jump component Ay)t is derived from the 

assumption that the correlation between the jump sizes is constant across contempo

raneous equations and zero across time:

Corr(Ylt, Y2t) = P12 and Corr{Ylt, Y2s) =  0 t ^ s (3.30)

Therefore, conditional on i and j  jumps, the variances of the jump components Yu 

and Y2t are iS'f and j5%, respectively. The covariance will be pi2y/ij8i52 which 

completes the specification of the variance covariance matrix for the jump component 

as

Aijtt — *0? Pwy/iJ&ifa 
P12V W 2 j 81 (3.31)

The variance covariance matrix for the CBP-GARCH model lfy jt will always be 

positive definite as long as Ht is positive definite. By construction, the variance 

covariance matrix for the jump component AjJ)t is well defined given % and j  jumps
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and therefore as the sum of two positive definite matrices will also be positive 

definite.

Introducing correlated jumps in the bivariate model has important implications for 

the covariance between the currencies. Assuming that there are no jumps in the series, 

the covariance will be measured by the off-diagonal elements in the BEKK structure 

as hi2,t- The time-varying covariance will be solely determined by the characteristics 

of the normal disturbances. In the presence of jumps, the covariance between two 

currencies will be driven not only by the covariance between the normal disturbances, 

but also by the characteristics of the jumps.

In terms of portfolio diversification, the correlation between the jump sizes pro

vides important information about the correlation between the returns. For example, 

a positive correlation, p, implies increasing number of jumps will cause movements in 

both currencies in the same direction, and vice versa. In other words, as the market 

becomes more volatile, the benefit of diversification diminishes because the shocks 

tend to drive the currencies to move in a similar fashion.

With simple algebraic manipulation, we can show that the first four moments of 

the returns for currency i are given by

E(rjt|$ t-i) =  (3-32)

Var (rn | $ t-i) =  hitt +  (Ajt +  +  9?), (3.33)
qi r idb "v    (Ajt +  A3t) (Of +  3 9 $ )_________

( “ ' ‘_l) ~  (hif  +  ( \ u +  \ 3t)6? +  ( \ a +  \ 3t)e? )W '  ( 3 )

Kurt(r J $ t ,) =  3 +  (A*« +  A3t)(ff + +  36f) . .
M  t_ l)  (K t + (A*  +  A3t)5? +  ( A ft +  A3t)0?)2 ' ( }

The conditional variance is composed of the GARCH variance and the parameters

characterizing the jumps. The conditional volatility is positively related with the

jump intensity, the variance of the jump size, and the magnitude of the jump size.

Increasing the number of jumps in the returns will result in higher volatilities. The
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exact nature of the change in volatility will depend on the size of these jumps. Either

positive or negative jumps with significantly large jump size will cause the volatility 

to rise. If jump size is characterized by a large variance, jumps entering the market 

will tend to be of very different sizes creating higher volatilities in returns.

3.3.4 Ex post Filter and the Likelihood Function

Since the information matrix is not block diagonal, evaluation of the full likelihood 

is required.

For the case of the ARJI model, we can simply redefine the probability density 

function of Rt given % independent jumps in currency 1, j  independent jumps in 

currency 2 , and k correlated jumps in both currencies as

Finally, to complete the specification, the conditional density of returns is defined by

00 00

P (R t\^ t-i)  = Y ^ ^ 2 f ( Rt\n^  = i ,n2t = j ,$ t- i )P (n u  = i ,n 2t = j\$ t- i) -
i—0 j=Q

(3.36)

Although jumps are unobservable, an ex post filter can be constructed as

(3.37)

to identify jumps in the series. The log likelihood function is simply the sum of the 

log conditional densities:

N

(3.38)
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where uijk,t is given by

'U‘i jk , t  — R t  P  J i jk , t  —
rit ~ Pi — (i +  k)Qi +  (Au +  ^3t)$i 
f 2 t  ~  P 2 ~  ( j  +  +  { ^ 2 t  +  A 3t)^2

(3.40)

Aijk,t — (3.41)

and the variance covariance matrix for the jump component is

(i + k)8f pi2\ j  {i +  k)(j + k)8iS2

Pi2\J (i + k)(j + k)5iS2 (j  + k)8l

The likelihood function will be the products of this conditional density and the inde

pendent Poisson function (3.5).

To estimate the CBP-GARCH model, a truncation point must be selected for 

the probability function in Equation (3.36). We choose a truncation point which is 

sufficiently large so that the likelihood function and parameter estimates stabilize to 

a set of converged values.

3.4 Data

We use daily spot exchange rates for the Canadian Dollar (CD) and Japanese Yen 

(JY) relative to the U.S. Dollar from January 2,1990 to December 29, 2000. Table 3.1 

provides summary statistics for the rates of return expressed as one hundred times 

the first differenced logarithms.

The data set covers episodes of many currency crises including the near-breakdown 

of the European Exchange Rate Mechanism (1992-1993), the Latin American Tequila 

Crisis following Mexico’s peso devaluation (1994-1995), the Asian Crisis (1997-1998), 

and the Russian Crisis (1998). During the Asian Financial Crisis, the Japanese Yen 

experienced only a moderate devaluation between July 1997 and January 1998. The 

two currencies were mostly unaffected by these episodes of turmoil. The Bank of 

Japan has intervened in some occasions. For example, the Bank of Japan intervened 

in the market to support yen on June 30, 1998 and to support U. S. dollar on April 

3, 2000.
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The summary statistics in Table 3.1 show that there is significant excess kurtosis 

in the CD and the modified Ljung Box (West and Cho 1995) statistics indicate serial 

correlation in both the first and second moments of the returns. Similar descriptive 

statistics are found for the JY. Serial correlation exists in the squared returns. The 

excess kurtosis coefficient is slightly larger for the JY as compared to that for the CD. 

The Augmented Dickey-Fuller test shows that the two return series are stationary.

Figure 3.1 and 3.2 present plots of spot exchange rates and returns for the two 

currencies. A general trend of depreciation of the Canadian dollar is apparent for the 

last decade, while the Japanese Yen has experienced both periods of appreciation and 

depreciation over the sample period. Volatility clustering is common in both return 

series and therefore suggests the plausibility of the GARCH structure. There is no 

close relationship between the two series as the simple correlation coefficient between 

the returns is -0 .02.

3.5 Results

We will first present the results of Jorion’s (1988) Poisson-GARCH model to get a 

preliminary idea of the jump structure. The bivariate BEKK model with no jumps 

is estimated next to examine the variance covariance structure. The results from the 

CBP-GARCH model will then be presented with a detailed discussion of the jump 

component. The extended model with time-varying jump intensities is reported at 

the end of this section.

3.5.1 Poisson Jumps and the BEKK Structure

The results for the Poisson-GARCH model are presented in Table 3.2. The first thing 

to note are the strong GARCH effects and the persistence of the conditional vari

ance, with parameters a  +  /3=0.9752 for CD and 0.9817 for JY. The Poisson jump
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components are also very important in modeling these exchange rates as shown by 

the significance of both the jump intensity and size parameters. The estimated jump 

intensities are 0.2142 and 0.2056 for CD and JY, respectively. The jumps in CD are 

mostly positive with a small variance, whereas the jumps in JY have a negative mean 

and a relatively larger variance. We found it necessary to use an AR(1) to capture 

serial correlation in the conditional mean of exchange rate returns for all models: 

the corresponding coefficients are denoted as 0*. Overall, these results indicate that 

although the (previously reported) simple correlation coefficient (-0 .02) shows no indi

cation of a relationship between the returns, both exchange rate return series exhibit 

systematic jumps. These jump structures may be different, however, any attempt to 

model the two series jointly must take into account these jump components.

The bivariate BEKK model reported in Table 3.3 shows a similar GARCH effect 

to those in Table 3.2, as the conditional variances are autocorrelated with significant 

parameters ai and b\ for CD and ct2 and 62 for JY. However, based on Equations 

(3.27)-(3.29), we find no relationship between the conditional variances and covari

ance as most of the off-diagonal parameters from the A and B matrices are small and 

insignificant. The insignificance of these parameters suggests that the conditional 

variance is not affected by the past conditional covariance and similarly the condi

tional covariance is not affected by the past conditional variance. The relationship 

between returns may be complex. However the strong GARCH effect can always be 

identified with either a univariate model or a bivariate BEKK model.

3.5.2 The Correlated Bivariate Poisson GARCH M odel

The estimates of the CBP-GARCH model with constant jump intensities are pre

sented in Table 3.4. The constants, /^, are insignificant for both series and again 

strong GARCH effects are present. In comparison with the BEKK model, the
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GARCH structures are essentially the same. The estimated cross equation parameters 

are all insignificant. The parameters associated with the autoregressive conditional 

variance, b\ and 62, are of the same order of magnitude: with estimates of 0.9667 and 

0.9730 for the BEKK model and 0.9577 and 0.9821 for the CBP-GARCH model. Sim

ilarly, the estimated parameters on the squared past prediction errors a 1 and a<i are 

0.2277 and 0.1946 for the BEKK model and 0.2364 and 0.1374 for the CBP-GARCH 

model. These results suggest that adding a jump component does not qualitatively 

or quantitatively affect the conditional variance structure of the random disturbance. 

The CBP-GARCH model does, however, use additional information (jump dynamics) 

already available in the data series to better understand the comovement between the 

returns.

Turning to the jump component, all parameters related to the jump dynamics 

are highly significant. The likelihood ratio test statistic for the presence of jumps is 

408.74 with p-value equal to 0.0.3 The mean 9 and variance 5 of the jump sizes have 

values closely resembling the results from the univariate Poisson-GARCH model. For 

CD, the mean and variance are 0.0515 and 0.3311 for the univariate case and 0.0526 

and 0.3381 for the CBP-GARCH model. For JY, the mean and variance are -0.2669 

and 0.9157 for the univariate case and -0.2784 and 0.9477 for the bivariate case. Note 

that even after introducing the correlated jumps, the two currencies still appear to 

have opposite jump sizes with CD experiencing mostly positive jumps in the last 

decade and JY encountering mostly negative jumps which are five times the size of 

the ones in CD on average.

The jump intensities provide the keys to dividing the jumps into independent and

3 Testing for jumps is complicated by the lack of identification of the nuisance parameters and 
Si under the null hypothesis. Drost, Nijman, and Werker (1996) propose a kurtosis-based test and 
Khalaf, Saphores, and Bilodeau (2000) suggest a Monte Carlo test to find an exact p-value. However, 
the power of these tests is not clear.
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correlated components. In the univariate Poisson GARCH model, the jump intensity 

(the average number of jumps) in CD and JY are reported as 0.2142 and 0.2056, 

respectively. The equivalent measure in the CBP-GARCH model is Ai 4- A3=0.2276 

for CD and A2 +  A3=0.2002 for JY. Since independent jumps are initiated by Ai and 

A2, the average numbers of independent jumps in CD and JY are 0.1415 and 0.1141, 

respectively. The average number of correlated jumps, A3, in both series is estimated 

as 0.0861, implying that almost half the jumps occurring in both series are correlated, 

while the other half are independent.

There is significant correlation in the arrival of jumps between the two currencies 

which is shown by Corr(nu, n2t)=0.4033. The joint probabilities of jumps are depicted 

in panel (A) of Figure 3.5. Given the set of estimated intensity parameters from the 

CBP-GARCH model, the joint probabilities of jumps are centered at the origin and 

the probability of having over two jumps in both currencies on the same day is very 

small. This is a reasonable result given the expected number of jumps on average are 

0.2276 in CD and 0.2002 in JY which are not even close to one jump. Another possible 

explanation is that this result is due to the fact that we assume a constant correlation 

between the counting variables across time. More realistically, the probability of 

jumps may change depending on market conditions. This provides motivation for 

considering the possibility that generalizing to time-varying jump intensities may 

shed further light on the relationships of currrency returns.

Although the correlation between jump sizes p is not statistically significant, the 

LR statistic for the null hypothesis of no correlated jumps H0 : p = 0 and A3 =  0 is 

11.23 with p-value equal to 0.003. The specification tests shows no uncaptured serial 

correlations in the square and cross product of the standardized residuals. However, 

the Ljung Box statistic on the jump intensity residuals (Q?j) rejects the assumption of 

constant correlated jump intensity implying the need for time-varying jump intensity.
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3.5.3 Tim e Varying Jump Intensity

We next generalize the jump intensity parameters to be time-varying and positively re

lated to previous volatilities as specified in Equation (3.13)-(3.15). Table 3.5 presents 

the estimates of the C B P - G A R C H - ,  model with time-varying jump intensities. 

Once again note that the GARCH effect remains in the series and all the estimated 

parameters of the GARCH structure are similar to those reported in the CBP-GARCH 

model.

The jump components are significant and the jump intensity parameters Aj remain 

in the same range as before, with differences of less than 0.01 between the results from 

the two models. The most interesting results relate to the time-varying parameters 

which are on average very large in size and highly significant. Take for example the 

case of CD, the effect of last period’s volatility on jump intensity rfi is twice the size 

of the constant term Ai=0.1482. In other words, the likelihood of having jumps is 

directly related to the market conditions, reflected by the change in volatilities.

Figure 3.3 graphs the jump intensity dynamics which govern the independent and 

correlated jumps. Both Ai and A2 exhibit high variations in the sample period, and 

the assumption of constant intensities is clearly invalid. The jump intensities for CD 

and JY vary around the range of 0.1 to 1.1 and 0.1 to 1.55, respectively. It is not 

uncommon to have more than 0.5 jumps in any of the two currencies in one single day. 

Surprisingly the correlated jump intensity A3 seems to exhibit variations with higher 

magnitude compared to the other two independent jump intensities. Note that A3 has 

values as low as 0.1145 and as high as 2.9641. The results imply that the correlated 

jump dynamics are very important in understanding the comovement between the 

two currencies.

The joint probabilities created by these time-varying jump intensities are depicted 

in panel (B) of Figure 3.5. We have chosen the values Ai =  0.5699, A2 =  0.8696 and
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A3 =  2.9641 on October 8 , 1998 to examine the effect of relaxing the assumption of 

constant intensities on the joint probabilities. The graph clearly shows that the joint 

probabilities are centered around three jumps in both currencies. In fact, if we look 

at a particular number, the probability of having 2 jumps in CD and 3 jumps in JY is 

0.05. It is not uncommon to have 2 or 3 jumps jointly in both currencies depending 

on the date. This indicates that the correlated jump dynamics seem to be a source 

of the changing relationship between the two currencies.

The same conclusion can be made by looking at the correlation between nit and 

n,2t in Panel (A) of Figure 3.6. The correlation varies from 0.3655 to 0.8489 and 

the assumption of constant correlation is clearly rejected. Diagnostic statistics show 

no serial correlation in standardized residuals or squared standardized residuals. The 

likelihood ratio test statistic of no time-varying jump dynamics yields a value of 25.86 

which leads to rejection of the null hypothesis using the critical value from the %2 

distribution with four degrees of freedom.

3.5.4 Autoregressive Conditional Jump Intensity (ARJI)

The results for the CBP-GARCH-ARJI model are reported in Table 3.6. A significant 

improvement of the likelihood compared to the CBP-GARCH-R 2 model is apparent 

and the likelihood ratio test for the null of constant intensity is again rejected. Al

lowing for time-varying jump intensity again results in a set of standardized residuals 

that are free of serial correlation.

A careful examination of the jump intensity estimates indicates consistency with 

the previous results. Recall that the correlated jump intensity residuals demonstrated 

serial correlation in the CBP-GARCH model (Table 3.4). The coefficients correspond

ing to the autoregressive structure are highly significant for the correlated jump in

tensity and not for either one of the independent jump intensities. The lag intensity
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coefficients Q for the independent jumps are close to zero, whereas the same coefficient 

for the correlated jump intensity is significant and close to unity. High persistence in 

the correlated jump intensity implies any simultaneous shocks to both currencies will 

have a long lasting effect on the likelihood of having more disturbances in the future.

The time-varying CBP-GARCH-ARJI jump intensities are depicted in Figure 3.4 

and the similarity between this set of plots as compared to the ones from the CBP- 

GARCH-i?,^ model immediately appears. The correlated intensity A3 lies in the 

range of 0.0344 to 3.1985 while the same measure from the the CBP-GARCH-.Rt_ 1 

model yields a range from 0.0756 to 2.9641. Although the three intensities do exhibit 

similar relative size in the two models, the intensities in the ARJI model seem to 

experience higher variations over the time period. A noticeable difference is the 

fact that each intensity seems to follow an unique path in the ARJI model, while 

the intensities driven by a common set of previous period volatilities show similar 

movements especially for the independent jumps governing Japanese Yen A2 and the 

correlated jumps A3.

As an illustration, consider the weakness of the U.S. stock market in September 

1998. This led to a series of losses in the value of the U.S. dollar vis-a-vis other 

currencies. The Japanese Yen posted a surprising record gain of 5.71% in one single 

day on October 7. It was the biggest one day jump in 25 years and it erased nearly 

a year’s worth of losses against the dollar. Similarly, the Canadian dollar recorded 

a 1.4% appreciation on the same day. This series of events will naturally lead to an 

increase in the likelihood of correlated jumps as opposed to the independent jumps.

A definite advantage of the CBP-GARCH-ARJI model is demonstrated by the 

joint probability function in Panel (C) of Figure 3.5, where the probability of having 

the same number of jumps in both currencies is clearly higher than the other combi

nations on October 8 , 1998. In comparison, the linearly related intensities estimated
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from the CBP-GARCH-i?£_, model, although they show a similar pattern force the 

combinations around the same number of jumps to increase together. Assuming the 

base currency U.S. dollar is experiencing some sort of internal shock, this will lead to 

correlated jumps in both currencies. Naturally, in such a situation, the probabilities 

of having correlated jumps increases, while the probabilities of having independent 

jumps remain the same. This can not be captured with a linear relationship between 

the jump intensities as modeled in the CBP-GARCH-i?|_1 model. The autoregressive 

conditional jump intensity supplies additional flexibility to modeling joint probability 

of jumps.

Comparison of the two plots in Figure 3.6 provides additional evidence of the su

periority of the autoregressive structure as a modeling tool for time-varying intensity. 

The correlation between nu and n<it in Panel (B) shows a substantially higher vari

ation than the one in Panel (A). In addition, the correlation from the ARJI model 

covers almost the entire possible range of 0.0 to 1.0 , whereas the same series from the 

7 ? ^  model seems to be bounded within a much smaller interval of 0.5 between 0.35 to 

0.85. It is likely that the bounds are created by the implicitly imposed upper bound 

from the Correlated Bivariate Poisson function as discussed in Section 3.3 along with 

the linear relationship between intensities as in Equation (3.19). The autoregressive 

structure effectively removes the theoretical upper bound imposed by the Poisson 

Correlation function.

The correlation between currencies in a state of high volatility is always an inter

esting question in empirical finance. The relationships of the jump intensities and the 

correlation between currencies are depicted as scatterplots in Figure 3.7. There are 

no obvious patterns for the independent jumps in the first two plots. As the num

ber of independent jumps goes up, the correlation between currencies may change 

in different directions. Although the correlation coefficient, p, between jump sizes is
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negative and insignificant, a clear pattern can be found as the size of the correlated 

jump intensity becomes large. From the bottom scatterplot in Figure 3.7, we see 

that the correlation between currencies increases as the number of correlated jumps 

exceeds 1.5. The correlation between returns in a state of high volatility rises to the 

positive region once the number of shocks exceeds a certain threshold, creating risks 

that are difficult to diversify.

As a final specification check, root mean square errors (RMSE) and mean absolute 

errors (MAE) are examined to evaluate the in-sample and out-of-sample forecasting 

performance of conditional volatilities. The out-of-sample data cover the period 2 

January 2001 to 31 August 2001, for a total of 170 observations. The actual standard 

deviation is approximated by the absolute deviation from the sample mean \rt — r\, 

the same approach as taken in So, Lam, and Li (1999). The results are presented 

in Table 3.7. A marginal improvement can be found in any of the jump models 

as compared to the plain BEKK-GARCH result. It is difficult however to distin

guish the performance between the time-varying intensity models. Although, the 

CBP-GARCH-ARJI model is clearly superior to the other models according to the 

MAE measure. The improvements of volatility forecasts in RMSE and MAE provide 

evidence that the bivariate jump models do not overfit the data set.

In summary, the BEKK structure is adequate in modeling the conditional variance 

covariance structure between CD and JY. However, a jump component must be added 

to the model in order to fully capture the dynamics in the mean equation. With the 

Poisson Correlation function, we are able to identify independent as well as correlated 

jumps in the two currencies. A further generalization also discovers that the correlated 

jump dynamics may evolve over time which may serve as a good indicator for the 

future movement of the currencies.
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3.6 Conclusion

In this chapter, we propose a bivariate GARCH model with jumps, with an application 

to the foreign exchange market. The BEKK structure is adopted for the conditional 

variance covariance matrix and the jump component is governed by a Poisson Corre

lation function. The model is applied to eleven years of data on daily spot exchange 

rates for the Canadian Dollar and Japanese Yen against the U.S. dollar.

The model provides several improvements over existing models. First, the CBP- 

GARCH model combines the popular multivariate GARCH model with a jump com

ponent so that it can capture smooth volatility movements as well as abrupt changes 

in the rates of return. Second, using the Poisson Correlation function to govern the 

jump component, the model is able to generate correlated jumps in both series in addi

tion to the independent jumps. Third, we generalize the model to have time-varying 

jump intensities controlling the arrival of jumps which helps our understanding of 

the relationship between the jump dynamics and volatilities. Finally, allowing time- 

varying jump intensities also relaxes the assumption of constant and bounded jump 

correlation between currencies. This CBP-GARCH model has potential for use of 

asset pricing, modeling risk premia in foreign currency futures, and the modeling of 

optimal commodity hedge ratios.

Our results illustrate the empirical properties of two foreign exchange rates: the 

Canadian dollar and Japanese Yen. There are significant independent as well as 

correlated jumps in both series. The time-varying jump frequencies may provide 

important information as to how the correlation between the two currencies may 

evolve over time.
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Table 3.1: Summary Statistics (1990 - 2000)

Canadian Dollar

Mean Standard
Deviation

Skewness Excess
Kurtosis

Q(12)

Rt
0.0092 0.2985 -0.0044 5.4632 30.5

(0.0056) (0.0059) (0.1294) (0.4040) [0 .002]

l^tl
0.2197 0.2023 1.9570 8.9483 442.00

(0.0038) (0.0054) (0.1292) (0.9769) [0 .00]

R?
0.0892 0.1884 5.9460 56.2030 397.00

(0.0035) (0.0132) (0.5524) (9.5612) [0 .00]

Japanese Yen

Mean Standard
Deviation

Skewness Excess
Kurtosis

Q(12)

Rt
-0.0082
(0.0138)

0.7313
(0.0175)

-0.5871
(0.1971)

7.4230
(1.0966)

20.30
[0.06]

\Rt\
0.5187

(0.0097)
0.5156

(0.0170)
2.4366

(0.2534)
13.2530
(2.8870)

457.00
[0 .00]

Rt
0.5349 1.3583 9.2349 151.7080 396.00

(0.0257) (0.1578) (2.0228) (55.3563) [0 .00]

Summary statistics for daily exchange rate returns from January 2, 1990 to Dec 
29, 2000. Q(12) are modified Ljung-Box Statistics robust to heteroskedasticity for 
serial correlation with 12 lags. Standard errors robust to heteroskedasticity are in 
parenthesis, and p-values are in square brackets.
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Table 3.2: Estimates of the Constant Jump Models 

R t = n + + \ fh tzt + J2k=i Yt,k

Yttk ~  NID(9,52), ht = w + a eU  +  pht^

P(nt =  j )  =  z, ~  N ID (0 ,1)

Parameter Canada Japan
0.0059 -0.0106

V (0.0050) (0.0126)
A 0.0587 -0.0146
<P (0.0189) (0.0182)

0.0002 0.0006
10 (0.0006) (0 .0010)

0.0581 0.0253OL (0.0082) (0.0048)
Q 0.9171 0.9564
P (0.0089) (0.0086)
c 0.3311 0.9157
0 (0.0302) (0.1034)
A 0.0515 -0.2669
U (0.0252) (0.0877)
\ 0.2142 0.2056

A (0.0516) (0.0610)

Q
19.33 19.36
[0.08] [0.08]

a 2 8.80 14.33
H [0.71] [0.28]

InL -347.82 -2785.65

Standard errors are in parentheses, p-values are in square brackets. Q2 is 
t h e  m o d i f i e d  L j u n g - B o x  p o r t m a n t e a u  t e s t ,  r o b u s t  t o  h e t e r o s k e d a s t i c i t y ,  

for serial correlation in the squared standardized residuals with 12 lags 
for the respective models.
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Table 3.3: Bivariate BEKK-GARCH Model

BEKK Parameters Canada Japan Canada h  Japan

fJ-i
0.0043 -0.0032

C12
0.0192

(0.0049) (0.0123) (0.0085)
0.0666

<fa
0.0303

Oi2
-0.0125

(0.0195) (0.0196) (0.0072)

Cl
-0.0297

C2
-0.0909

021
-0.0210

(0.0055) (0.0134) (0.0480)

a i
0.2277

02
0.1946

&12
0.0051

(0.0175) (0.0169) (0.0024)

h
0.9667

h.
0.9730

&21
0.0077

(0.0055) (0.0050) (0.0135)

n2 9-45 n2 13.03 17.79
[0.66] %  [0.36] Wl2 [0.12]

InL -3324.032

S ta n d a r d  erro rs a re  in  p a r e n th e se s , p -v a lu e s  are  in  sq u a r e  b r a c k e ts . Q2 a n d  Q12 
a r e  t h e  m o d if ie d  L ju n g -B o x  p o r tm a n te a u  t e s t s ,  r o b u s t  t o  h e te r o sk e d a s t ic ity ,  fo r  se 
r ia l c o r r e la t io n  in  th e  sq u a r ed  s ta n d a r d iz e d  r e s id u a ls  a n d  t h e  c r o s s  p r o d u c ts  o f  th e  
s ta n d a r d iz e d  r e s id u a ls  w it h  12  la g s .
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Table 3.4: Estimates of Correlated Bivariate Poisson GARCH (CBP-GARCH) Model

B E K K  P a r a m e t e r s  C a n a d a  J a p a n  C a n a d a  Sz J a p a n

0 .0 0 5 3
P 2

- 0.0102
C12

0 .0 0 2 5

( 0 .0 0 5 0 ) ( 0 .0 1 2 7 ) ( 0 .0 1 0 9 )

0 .0 5 8 1
<t>2

- 0 .0 0 7 2
012

- 0 .0 0 7 6

( 0 .0 1 9 0 ) ( 0 .0 1 7 9 ) ( 0 .0 0 6 7 )

- 0 .0 1 5 9
C2

- 0 .0 3 2 5
021

- 0 .0 3 1 5

( 0 .0 0 6 8 ) ( 0 .0 1 5 4 ) ( 0 .0 4 0 3 )

0 .2 3 6 4
0.2

0 .1 3 7 4
612

0 .0 0 2 8

( 0 .0 1 8 7 ) ( 0 .0 1 3 9 ) (0 .0022)

0 .9 5 7 7
h

0 .9 8 2 1
&21

0.0101
( 0 .0 0 6 5 ) ( 0 .0 0 3 7 ) ( 0 .0 1 2 8 )

J u m p  P a r a m e t e r s

0 .1 4 1 5
A2

0 .1 1 4 1
A3

0 .0 8 6 1

( 0 .0 5 8 9 ) ( 0 .0 5 1 7 ) ( 0 .0 3 2 9 )

0 .0 5 2 6
62

- 0 .2 7 8 4
P 12

- 0.2020
( 0 .0 2 4 3 ) ( 0 .0 8 9 7 ) ( 0 .1 3 4 4 )

0 .3 3 8 1
82

0 .9 4 7 7
C o r r ( n u ,  n2t)

( 0 .0 3 7 0 ) ( 0 .1 0 3 8 )
0 .4 0 3 3

Q i

Qt i 

In L

1 8 .4 3

[0.10]
1 3 .8 4

[0 .3 1 ]

- 3 1 1 9 .6 4

Q l

Q&

L R ( 7 )

1 5 .4 6

[0 .21]
1 6 .5 6

[0 .1 6 ]

4 0 8 .7 4

[0.00]

Q12 

Qt,z

1 9 .7 6

[0 .0 7 ]

2 5 .4 5

[0 .01]

S ta n d a r d  erro rs a r e  in  p a r e n th e se s , p -v a lu e s  a re  in  sq u a r e  b r a c k e ts . Q2 a n d  Q12 
a r e  t h e  m o d if ie d  L ju n g -B o x  p o r tm a n te a u  t e s t s ,  r o b u s t  t o  h e te r o sk e d a s t ic ity ,  fo r  s e 
r ia l c o r r e la t io n  in  t h e  sq u a r ed  s ta n d a r d iz e d  r e s id u a ls  a n d  t h e  c r o s s  p r o d u c ts  o f  t h e  
s ta n d a r d iz e d  r e s id u a ls  w ith  12 la g s . Q& is  t h e  sa m e  t e s t  fo r  se r ia l c o r r e la t io n  in  t h e  
ju m p  in te n s ity  r e s id u a ls . L R (7 )  is  a  n o n -s ta n d a r d  t e s t  o f  ju m p s  w h ic h  is  ch i sq u a r e  
d is tr ib u te d  w ith  d f = 7 .
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Table 3.5: Estimates of Correlated Bivariate Poisson GARCH Model (CAN/JY) with
Time Varying Intensities (CBP-GARCH-J?2)

BEKK Parameters Canada Japan Canada Sz Japan

0.0057 -0.0084 0.0035
Mi (0.0050) M2 (0.0126) C12 (0.0090)
J. 0.0567

(j>2
-0.0114 -0.0035

<Pi (0.0194) (0.0189) 012 (0.0065)
-0.0140 -0.0354 -0.0348Cl (0.0070) C2 (0.0141) 021 (0.0415)
0.2160 0.1242 L 0.0023a\ (0.0214) 02 (0.0138) 012 (0.0021)

u 0.9625 L 0.9834
&21

0.0110
(0.0069) 02 (0.0036) (0.0129)

Time-Varying Jump Parameters

\ 0.1482 X2
0.1157

X3
0.0756

A i (0.0646) (0.0555) (0.0361)
0.5712 0.1167 0.2818

m (0.2979) Tj 2 (0.2089) ??3 (0.0727)
0.3675

m (0.2146)
n 0.0452 n -0.2345 -0.1757

(0.0209) V2 (0.0749) P12 (0.2395)
X 0.3061 0.8945
01 (0.0339) 02 (0.0979)

Q i
1 4 .6 2

[0 .2 6 ] Q l
1 6 .5 1

[0 .1 6 ]
Q \2

1 8 .6 8

[0 .0 9 ]

In L - 3 1 0 6 .7 1 L R ( 4 )
2 5 .8 6

[0 .3 3 E -0 4 ]

S ta n d a r d  erro rs a re in  p a r e n th e se s . p -v a lu e s are  in  sq u a re b r a c k e ts . Q2 a n d  Q12
are the modified Ljung-Box portmanteau tests, robust to heteroskedasticity, for serial 
correlation in the squared standardized residuals and the cross products of the stan
dardized residuals with 12 lags. LR(4) is the x 2 test with four degrees of freedom for 
the null of constant intensities.
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Table 3.6: Estimates of Correlated Bivariate Poisson GARCH Model with Autore
gressive Jump Intensities (CBP-GARCH-ARJI)

B E K K  P a r a m e t e r s C a n a d a J a p a n C a n a d a  &  J a p a n

0 .0 0 6 0 - 0 .0 0 7 7 - 0 .0 0 4 9
Ml ( 0 .0 0 4 9 )

M2
( 0 .0 1 2 3 )

C12
( 0 .0 1 0 8 )

A 0 .0 5 7 4
(j) 2

- 0 .0 1 1 1 0 .0 0 1 8
<Pi ( 0 .0 1 9 0 ) ( 0 .0 1 8 3 )

«12
( 0 .0 0 5 6 )

- 0 .0 0 6 7 - 0 .0 1 8 8 0 .0 4 4 6
Cl

( 0 .0 1 0 7 )
C2

( 0 .0 1 9 0 )
021

( 0 .0 4 9 8 )

0 .1 6 3 4 0 .1 0 4 4 L 0 .0 0 0 2
0 i

( 0 .0 2 4 9 )
02

( 0 .0 1 3 4 )
012

( 0 .0 0 1 4 )

0 .9 7 7 5
02

0 .9 8 7 9
021

- 0 .0 1 1 8
0 i

( 0 .0 0 6 5 ) ( 0 .0 0 2 9 ) ( 0 .0 1 1 9 )

A R J I  J u m p  P a r a m e t e r s

A i
0 .1 9 9 9

A2
0 .2 0 5 2

A3
0 .0 1 7 7

( 0 .0 6 5 8 ) ( 0 .0 7 3 2 ) ( 0 .0 0 2 0 )

Cl
6 .0 E - 0 9

C2
1 .8 9 E - 1 0

C3
0 .9 1 0 3

( 0 .0 2 7 5 ) ( 0 .0 1 2 6 ) ( 0 .0 3 3 5 )

0 .0 3 8 8 0 .3 4 4 1 0 .5 2 7 8
71 ( 0 .1 7 4 8 )

72
( 0 .2 7 4 6 ) 73 ( 0 .1 5 8 2 )

01
0 .0 3 5 7 n - 0 .1 8 9 0 - 0 .1 5 5 1

( 0 .0 1 7 6 )
V2

( 0 .0 5 0 6 )
P l2

( 0 .0 8 6 2 )

C 0 .2 8 8 3 c 0 .7 5 4 2
0 1

( 0 .0 3 0 0 )
02

( 0 .0 8 6 9 )

Qi
1 2 .5 5

Ql
1 8 .7 1

Q12
1 6 .8 5

[0 .4 0 ] [0 .0 9 ] [0 .1 5 ]

Qi 1
1 1 .4 0

Qi 2
1 3 .0 1

Qi.i
1 1 .8 4

[0 .4 9 ] [0 .3 6 ] [0 .4 5 ]

In L - 3 0 9 8 .2 2 L R ( 6 )
4 2 .8 4

[ 5 .7 1 E -0 8 ]

Standard errors are in parentheses, p-values are in square brackets. Q2 and Q 1 2  

are the modified Ljung-Box portmanteau tests, robust to heteroskedasticity, for serial 
correlation in the squared standardized residuals and the cross products of the stan
dardized residuals with 12 lags. Q is the same test for serial correlation in the jump 
intensity residuals. LR(6) is the x 2 test statistics with six degrees of freedom for the 
null of constant jump intensities.
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Table 3.7: RMSE and MAE of Conditional Volatility Forecasts

RMSE
BM BEKK CBP C B P -i^ i CBP-ARJI

In-Sample
Canada
Japan

0.2087
0.5312

0.2901
0.5306

0.1970
0.4961

0.1960
0.4956

0.1956
0.4964

Out-of-Sample
Canada
Japan

0.3457
0.5810

0.2578
0.4212

0.2479
0.3909

0.2461
0.3911

0.2440
0.3942

MAE
BM BEKK CBP CBP-i2t2_1 CBP-ARJI

In-Sample
Canada
Japan

0.4337
0.6825

0.1674
0.4202

0.1477
0.3574

0.1456
0.3532

0.1438
0.3468

Out-of-Sample
Canada
Japan

0.5103
0.6776

0.2177
0.3615

0.2029
0.3167

0.1994
0.3146

0.1943
0.3098

RMSE and MAE refer to root mean square errors and mean absolute errors, re
spectively. BM represents the benchmark forecast using last period’s true standard 
deviation. CBP, C B P -f? ^ , and CBP-ARJI correspond to the correlated bivariate 
Poisson GARCH models with constant jump intensity, time-varying jump intensity 
conditioning on last period’s volatility, and autoregressive conditional jump intensity.
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Table 3.8: RMSE and MAE of Conditional Volatility Forecasts with as 
Variance

RMSE
BM BEKK CBP CBP-i?!.! CBP-ARJI

In-Sample
Canada
Japan

0.2641
0.6654

0.2087
0.5316

0.1970
0.4964

0.1960
0.4960

0.1876
0.4862

Out-of-Sample
Canada
Japan

0.3465
0.5807

0.2582
0.4214

0.2489
0.3907

0.2470
0.3909

0.2353
0.3872

MAE
BM BEKK CBP C B P -R ^ CBP-ARJI

In-Sample
Canada
Japan

0.4338
0.6824

0.4087
0.6488

0.3843
0.5979

0.3815
0.5944

0.3727
0.5844

Out-of-Sample
Canada
Japan

0.5114
0.6777

0.4669
0.6016

0.4505
0.5630

0.4464
0.5613

0.4328
0.5525

The true standard deviation is approximated by RMSE and MAE refer to
root mean square errors and mean absolute errors, respectively. BM represents the 
benchmark forecast using last period’s true standard deviation. CBP, CBP-f?|_1, 
and CBP-ARJI correspond to the correlated bivariate Poisson GARCH models with 
constant jump intensity, time-varying jump intensity conditioning on last period’s 
volatility, and autoregressive conditional jump intensity.
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Figure 3.1: Canadian Dollar Spot Rates (A) and Returns (B) 2/1/90-29/12/00 
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Figure 3.2: Japanese Yen Spot Rates (A) and Returns (B) 2/1/90-29/12/00
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Figure 3.3: Time Varying Jump Intensities from CBP-GARCH-i^_1 Model
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Figure 3.4: Time Varying Jump Intensities from CBP-GARCH-ARJI Model 
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Figure 3.5: Conditional Probabilities of Jumps

Constant A* (Ax =  0.1141, A2 =  0.1415, A3 =  0.0861)

P(nlt = i ,n 2t =

October 8 , 1998 (Ai =  0.5699, A2 =  0.8696, A3 =  2.9641)

P(nu = i ,n 2t =  j |$ t- i)

October 8 , 1998 (Ax =  0.2098, A2 =  0.2105, A3 =  3.1985)

Note: (A) The CBP-GARCH Model with constant jump intensi
ties. (B) The CBP-GARCH-i?! , Model. (C) The CBP-GARCH- 
ARJI Model. 100
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Figure 3.6: Correlations between Jump Frequencies
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Figure 3.7: Time Varying Jump Intensities and Correlations between Returns
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Chapter 4

Time-Varying Risk Prem ia in 
Nonrenewable Resource A sset 
Returns

4.1 Introduction

Recently, the effect of introducing uncertainty into the Hotelling model has been 

considered in a number of empirical studies. For example, Slade and Thille (1995) 

examined the risk-adjusted continuous-time Hotelling model based on the theoret

ical work of Gaudet and Khadr (1991) and found that the Hotelling rule can not 

be rejected. Young and Ryan (1996) estimated the Euler equations arising from 

Gaudet and Howitt (1989) that yield the risk-adjusted ’’Hotelling” rule, and based 

on Hansen’s J-test, found that the data were not inconsistent with the model. Using 

Generalized Method of Moments (GMM) estimation they showed that a significant 

risk premium exists at the industrial-level data for certain metals (copper, lead, silver, 

and zinc). The risk premia that they calculated were treated as constants across the 

40 year span of the annual data.

The assumption of a constant risk premium is most likely not appropriate for 

metal prices. Slade (1982) demonstrates that metal prices have experienced high 

fluctuations over the period 1870-1979 which is reflected by many of the metal prices
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4.1. INTRODUCTION

following a U-Shaped pattern. Since agents perception of uncertainty (risk) may 

depend on the price movement, the risk premium demanded by the agents will change 

over time depending on the recent volatility patterns of metal prices.

Estimation of a time-varying risk premium model not only provides potential 

insight into the failure of the Hotelling rule in empirical studies, but may also improve 

the predictive power of existing models. For example, Heal and Barrow (1980) studied 

the relationship between metal prices and interest rates with the no arbitrage model 

ignoring the risk premium. Explicitly allowing for risk premia in the context of a 

general dynamic model may yield interesting general insights into the behaviour of 

the metal prices.

In attempts to fully capture all of the dynamics, several studies have found 

the presence of systematic jumps in natural resource prices (Khalaf, Saphores, and 

Bilodeau (2000), Saphores, Khalaf, and Pelletier (2000)). The occurrence of jumps 

is motivated by changes of unusual magnitude that follow the arrival of news unan

ticipated by market participants. As the market absorbs this information, a series of 

abrupt changes may be observed in the return series. This characteristic contributes 

to the return series having a fat tailed distribution. Ignoring such excess kurtosis may 

lead to mispricing of derivatives which rely on the underlining financial asset.

The purpose of this research is to consider the presence of time-varying risk premia 

in resource asset returns. To properly measure the time varying risk premia, we use 

a bivariate GARCH-M model based on the consumption-based Intertemporal Asset 

Pricing Model (IAPM). In this case, the risk premia are modeled in relation to a 

benchmark portfolio assumed to be perfectly correlated with marginal utilities in 

different time periods. As an extension to the model, we also consider the possibility of 

systematic jumps simultaneously affecting the metal prices and benchmark portfolio.

These models allow us to formally test hypotheses concerning the influence of time
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4.2. LITERATURE REVIEW

varying risk premia on returns. The risk premia are modeled as proportional to the 

conditional covariance between metal prices and the benchmark portfolio. Allowing 

the ratio of covariance and variance to enter the mean equation in the bivariate model 

allows us to test for the presence of risk premia. Our examination of time-varying risk 

premia is performed in the context of the relationship between interest rates and four 

metal prices (copper, lead, silver, and zinc) currently traded on the London Metal 

Exchange (LME).

The organization of the chapter is as follows: Section 4.2 reviews some of the liter

ature on the development of the risk-adjusted Hotelling rule. Section 4.3 specifies the 

models. Section 4.4 discusses estimation procedures and econometric issues related 

to the GARCH-M models. A description of the data set is provided in Section 4.5. 

Section 4.6 presents the estimation result, including a discussion of the characteris

tics of the time-varying risk premia found in the two models, and finally, Section 4.7 

concludes.

4.2 Literature Review

The most basic formulation of the Hotelling (1931) rule states that under a set of 

restrictive conditions (competitive market structure, no uncertainty, and no stock 

effect) nonrenewable asset returns should be equal to the interest rate. Hotelling 

formalizes this relationship in terms of the following equation:

P* (A 1 \— = r t (4.1)
Pt

where pt is the change in resource price, net of marginal cost, at time t and rt is 

the interest rate at time t. This simple Hotelling rule has motivated a voluminous 

literature that studies the relationship between interest rates and metal prices.

Many empirical studies of the relationship between resource prices and interest 

rates have been undertaken. Heal and Barrow (1980) test a series of models based
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4.2. LITERATURE REVIEW

on the idea that the return on a nonrenewable resource affects the holding decisions 

between resource markets and markets of other assets. Their arbitrage models exam

ine the relationship between the interest rate and metal prices and conclude that it 

is the change in the interest rate, rather than the level, that affects price changes.

Agbeyegbe (1989) employs Hendry’s general to specific strategy in the context 

of a simple expectations model to investigate the relationship between the interest 

rate and metal prices. A dynamic model, involving lagged dependent variables and 

first differenced interest rates, shows that the differenced interest rates are important 

determinants of metal price movements. These results lend support to the findings of 

Heal and Barrow. Smith (1981) compares five different models including the simple 

Hotelling model, a multiple rate model, a general lag model, an Almon lag model, and 

the Heal and Barrow model. Based on the forecasting performance (RMSE, MAE 

and Theil’s Inequality Coefficients), Smith concludes that Heal and Barrow’s model 

with the differenced interest rates instead of the level of the interest rate best fits 

the twelve examined minerals over the period of 1900 through 1973. These studies 

conclude that the arbitrage type of models like those of Heal and Barrow (1980) and 

Agbeyegbe (1989) are superior to the simple Hotelling model in terms of explaining 

movements.

Subsequent to these results, another stream of the theoretical resource literature 

emerged, explicitly introducing uncertainty into Hotelling-type models of optimal 

resource extraction.1 Gaudet and Khadr (1991) derive a stochastic version of the 

Hotelling rule based on an equilibrium condition in an intertemporal asset-pricing 

model. Uncertainty is introduced into the model through stochastic indices in the 

production and extraction processes. The stochastic Hotelling rule is very similar to 

the results of the standard Capital Asset Pricing Model (CAPM) in which the excess

1 Other recent extensions to the Hotelling model are discussed in Krautkraemer (1998)
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return of the resource is equal to the product of the beta coefficient and the excess 

return of the chosen portfolio. Slade and Thille (1995) estimate the model of Gaudet 

and Khadr using panel data from a set of Canadian copper mines. These firm-level 

data provide important information on extraction cost. Their results indicate that 

the hypothesis of a stochastic Hotelling rule based on the CAPM can not be rejected.

Similar to Gaudet and Khadr (1991), Gaudet and Howitt (1989) modify the simple 

Hotelling rule to account for uncertainty on the productivity of capital and of the 

natural resource in the context of a simple 2-period macro model. The equilibrium 

conditions indicate that the expected rate of increase of the net resource price should 

equal the expected interest rate, plus a risk premium which is a function of the 

covariance between the marginal utilities of consumption and the rate of net price 

increase. The sign and size of this covariance term (as the risk premium) is an 

empirical question. Young and Ryan (1996) estimate the Gaudet and Howitt model 

using Generalized Method of Moments (GMM) and find that the incorporation of a 

constant risk premium into the Hotelling equations improves the performance of their 

industry-level Hotelling model. Sensitivity analysis was performed with two utility 

specifications (Constant Relative Risk Aversion (CRRA) and Constant Absolute Risk 

Aversion (CARA)), two interest rates (30-day Treasury bills and Government Bonds), 

and net prices versus gross prices. They did not, however, allow for any variation over 

time in the risk premium. The risk premium calculated in this industry-level study 

was constructed based on estimates of marginal utility using annual consumption 

data.

Alternatively, we can impose further structure on risk premia to avoid the re

quirement of collecting data on consumption. We follow the methodology used in 

the foreign exchange literature (Hansen and Richard (1987), Hansen and Hodrick 

(1983), McCurdy and Morgan (1991,1992, and 1993)) where it is assumed that there
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is a benchmark portfolio correlated with the risk premia so that a benchmark index 

can be substituted for the consumption data. In addition, this bivariate GARCH- 

M model allows the risk premia to vary over time which relaxes the assumption of 

constant risk premium in Young and Ryan (1996).

This approach can be augmented with a systematic jump component to model the 

leptokurtosis often observed in financial data series. Systematic jumps in resource 

prices is not a new idea, and these abrupt changes are documented in many empirical 

studies. For example, Saphores, Khalaf, and Pelletier (2000) report the presence of 

systematic jumps in time series of stumpage prices based on a Monte Carlo Simulation 

test. Khalaf, Saphores, and Bilodeau (2000) investigate and confirm jump dynamics 

in weekly spot prices of copper and nickel.

The approach, outlined in further detail in Section 4.4, allows for the use of higher 

frequency data. Thus, as an extension to the current literature on uncertainty, we 

incorporate a time-varying risk premium into the basic Hotelling framework in the 

context of bivariate GARCH-M model. The risk premium is modeled by the use of a 

benchmark portfolio. Before describing the econometric methodology and the data, 

we present a basic outline of the theoretical model of Gaudet and Howitt (1989).

4.3 M odel

This section sets out the theoretical results underlying our empirical work. We will 

first discuss the risk-adjusted Hotelling rule (with risk premium) proposed by Gaudet 

and Howitt (1989) in a 2-period consumption model. Then we modify this rule in 

terms of the marginal rate of substitution (i.e., the discounted ratio of marginal rates 

of utilities) to motivate the Intertemporal Asset Pricing Model (IAPM).
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4.3. MODEL__________________________________________________________

4.3.1 Risk-Adjusted Hotelling Rules

Gaudet and Howitt (1989) consider a 2-period competitive economy which produces 

a single capital consumption good. They introduce uncertainty, as a technological 

shock in the second period, to the standard Hotelling framework which, under the 

assumption of competitive markets, produces the following first order conditions:

- U ’iCi) +  /3EU'(C2) • [1 +  p] = 0 (4.2)

-U'iCx) +  PEU'(C2) • [1 +  r] =  0 (4.3)

U'{Cx) • (Pi) -  P E U ' ( C 2) • (P2) = 0 (4.4)

Pi (i= l,2) is the relative net resource price at period i; p is the rate on an alternative

risk-free bond; U'(Ci) is the marginal utility of consumption in period i; r is the rate

of return on an alternative risky capital asset; ft is the discount factor; and E is the 

expectation operator.

The risk-adjusted Hotelling rules derived from equations (4.2) to (4.4) are

F ( ^ \  =  , Cm(U'(C2) ,A P /P )
(  P  )  '  E(U'(C2))
( A P \  Cov(U'(C2), (AP/P) — r)

E { - j r )  =  E (  r ) ------------- ------------------------

Equation (4.5) describes the equilibrium relationship between resource prices and the 

return on a risk-free bond, with the difference between the expected returns being 

the risk premium. The sign of the risk premium depends on whether the returns on 

the resource tend to be high (or low) during periods of high marginal utility (low 

consumption). In the latter case, for example, the resource asset must offer the agent 

an additional risk premium of — C°v^ u p c ^ P  ̂■ From equation (4.6) we see that 

when both assets are risky, it is their relative riskiness that determines the sign and 

size of the risk premium.
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4.3.2 The Intertemporal Asset Pricing M odel (IAPM )

The risk-adjusted Hotelling rules can also be rewritten in terms of the marginal rate 

of substitution2 Ms as

these rules requires data on consumption which can be difficult to obtain, especially 

for use with even relatively high frequency resource price data, such as monthly data 

sets. One way to overcome this problem, is to adopt the approach from the foreign 

exchange literature, (Hansen and Richard (1987), Hansen and Hodrick (1983), and 

McCurdy and Morgan (1991, 1992, and 1993)), in which the first order conditions 

are defined as a consumption-based Intertemporal Asset Pricing Model (IAPM). In 

this application of the IAPM model, the nonrenewable resource is treated as one of 

the financial assets.

To circumvent the problem of constructing a marginal utility variable (as a func

tion of consumption), we assume that there is a benchmark portfolio perfectly cor

related with Ms.3 As a result, all of the Ms terms in equations (4.7) and (4.8) can 

be replaced by the return of that portfolio. Intuitively, preferences related to having 

more consumption in the first period than the second period depends on the op

portunities given by the benchmark portfolio. It may be optimal to give up some 

consumption now because a high yield from the benchmark portfolio is expected next 

period. To introduce this portfolio formally, a benchmark portfolio with the return

2S e e  A p p e n d ix  for  t h e  d e r iv a t io n  o f  e q u a t io n s  (4 .7 )  a n d  (4 .8 ) .
3A  w ea k er  c o n d it io n  is  d e v e lo p e d  b y  B r e e d e n , G ib b o n s , a n d  L itz e n b e r g e r  (1 9 8 9 )  in  w h ic h  t h e  

b e n c h m a r k  p o r t fo lio  is  m a x im a lly  c o r r e la te d  w ith  t h e  m a r g in a l r a te  o f  s u b s t i t u t io n  in s t e a d  o f  p e r 
fe c t ly  c o n d it io n a l ly  c o r r e la te d . T h e  m a x im a l c o r r e la te d  p o r tfo lio  is  d e f in e d  a s  t h e  p o r t fo l io  w it h  th e  
s tr o n g e s t  c o r r e la t io n  w ith  t h e  m a r g in a l r a te  o f  s u b s t itu t io n  c o m p a r e d  t o  a n y  o th e r  p o r tfo lio .

Cov{Ms, A P /P )
(4.7)

Cov{M„ A P /P  — r)
m --------------w m —

(4.8)

Estimation of equations (4.7) and (4.8) or of the first order conditions that yield
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Rst  is defined as a linear combination of Ret and a risk-free bond, where Ret is the 

return of the portfolio which is perfectly conditionally correlated with the marginal 

rate of substitution. The benchmark portfolio will be conditionally mean-variance 

efficient.4

Given these characteristics, the expected return on any asset will follow the stan

dard conditional CAPM equilibrium in which the return will be a function of the 

conditional covariance, variance, and benchmark portfolio. Equation (4.7) can be 

re-expressed in terms of this conditional beta asset pricing relation, where the covari

ance between the marginal rate of substitution and risk-free rate is replaced by the 

covariance between benchmark returns and the risk-free rate. This relationship can 

be represented as

*-* (i t ) -  ■' -  Cmv Z B: i ^ ) p ) (E‘- ' (RBt) - p)• (4-9)

where the time subscripts ‘t-1’ have been added to the covariance and variance terms 

to relax the assumption of a constant risk premium.

4.4 Econometric M ethodology

The family of the ARCH-M models has been used extensively in the field of financial 

economics. Studies such as Adams and Moghaddam (1991), Fischer (1988), Lee 

(1988), and Lee and Tse (1991) successfully apply the ARCH-M model to stock 

prices, bond prices, and exchange rates to capture the variation associated with the 

conditional variance. A detailed review of the use of ARCH model in finance can be 

found in Bollerslev, Chou, and Kroner (1992), Bollerslev, Engle, and Nelson (1994), 

and Higgins and Bera (1992).

Conditionally mean-variance efficiency refers to the fact that any other portfolio with the same 
rate of returns will have a higher variance (risk).

I l l
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4.4.1 Univariate GARCH-M  m odel

The classical univariate GARCH-M model allows for the direct incorporation of a 

time-varying risk premium into an easily estimated model. It can be written as

YH\Xtt ~  N(l3'Xit + 5hit,h l) ,  (4.10)

hi = ao +  a i 4 - i  +  I4-11)

C jt-i =  Yu-1  — P'Xit- 1  — Shu- i  (4 -12)

where, in the context of a risk-adjusted Hotelling rule, Yu (i=l,...,4)5 represents the

nonrenewable asset return, /3'XuG captures the effects of the interest rate on the 

resource return, and Shu captures the risk premium which, since it is a function of 

the volatility of the resource price, is allowed to vary across time. In the spirit of Heal 

and Barrow (1980) and Agbeyegbe (1989), a more general dynamic specification of the 

relationship between resource returns and interest rates can easily be accommodated 

by expanding Xu  to include lagged interest rates and resource returns. Note that 

equation (4.11) contains a standard GARCH parameterization of the variance of the 

resource return. The restriction aq-l-71 < 1 must hold to ensure that the unconditional 

variance of the return is finite.

This model allows us to formally conduct hypothesis tests concerning the presence 

of a time varying risk premium on returns. In the spirit of Merton (1980)’s model, 

the risk premium Sht can be viewed as capturing the effects of the second term in 

equation (4.5)
Caut-i(U'(C2) ,AP/P)

E t-W iC *))
This univariate GARCH-M model avoids the problem of constructing data on 17'(C^) 

by assuming the risk premium is moving with the conditional standard deviation of

s i is used to index the individual resources, (copper, lead, silver, and zinc)
6For the simple Hotelling rule posted in equation (4.1), Xu would be a scalar (the interest rate),

the corresponding 0 would equal one, and 6 would equal zero.
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the resource return. Assuming that the risk premium in equation (4.5) is proportional 

to the volatility of the asset returns, using the conditional heteroskedastic standard 

deviation, ht as one of the regressors in the mean equation (/3'Xt + 8ht) can serve 

as a direct test for the presence of a time varying risk premium. If we cannot reject 

the null hypothesis that 5=0, this implies that the time-varying risk premium has a 

significant effect on the resource return. As noted in Gaudet and Howitt (1989), the 

sign of risk premium is not known a priori. It is an empirical matter that depends 

on the relative riskiness of the resource price and the alternative asset.

However, given that we have no proxy variables to model the change of marginal 

utilities, solely relying on the conditional variance to capture risk premia may induce 

mis-specification problem. This motivates the use of the bivariate GARCH model 

which adapts a benchmark portfolio to model the marginal rate of substitution.

A positive definite Bivariate GARCH-M specification is used for the estimation of the 

IAPM version of the risk-adjusted Hotelling model. Assuming rational expectations, 

the bivariate statistical model is defined as

Rit refers to the excess returns on the nonrenewable resource; Rst  represents the ex

cess returns of the benchmark portfolio; xb is a set of instruments (the lags of R*Dt) 

explaining the movement of the benchmark return; hiB represents the conditional 

covariance between the returns on resource i and the returns of the benchmark port

folio; hs  is the conditional variance of the returns of the benchmark portfolio; and 

finally 7  and p  are parameters.

4.4.2 Positive Definite Bivariate GARCH-M  M odel

h>Bt
(4 .13)

(4 .14)R-Bt — l B x B , t - l  +  eBt,

et\h-i  ~  N(0,Ht).
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The time-varying risk premium is captured by the term in

the mean equation (4.13). By testing the null hypothesis that fi=0, we can examine 

the effect of the time-varying risk premium on excess returns. This model can be 

viewed as a bivariate GARCH-in-Mean model in which both the conditional variance 

and covariance enter the mean equation.

The choice of the benchmark portfolio is very important as the time-varying risk 

premia consist of the covariances between the rates of return on the metals and the 

benchmark portfolio. The risk premia will not be found unless a benchmark correlated 

with the metals is used. For the extreme case, when the covariance between the 

benchmark portfolio and the excess returns is zero, the risk premium disappears in 

equation (4.9), resulting in the simple Hotelling rule.

Similar to the univariate model, certain restrictions are required to ensure station- 

arity of the model. Therefore, the variance covariance matrix Ht takes the BEKK 

form as proposed by Baba, Engle, Kraft, and Kroner (1989) to ensure positive defi

niteness:

Hf — CC' +  A! +  B'Ht_iB (4.15)

b>i,t h i B , t Ci 0 Cj + Q>it 0>Bi <H,t-1
_ h i B , t  h s , t CiB CB 0 CB ®iB , t a s £ . B , t - H i , t - l e B , t - l

dBi 
OjB 0,b + bi bsi 

biB bs
b>i,t— 1 h i B j t — 1 

h i B , t - 1  h ,B ,t- 1

bi bsi 
biB bs

A and B are symmetric matrices of parameters. C is lower triangular matrix.

A (bivariate) Student t distribution is used to allow for leptokurtic errors. The 

standardized probability density function is defined by

e i t

tBt
t(Q,Hu v)

HO H : , i=  ?(n + v/2) ■ .-i/a 1 +
1

ttHt letv - 2

— (n+v) /2
(4.16)
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where v is the degrees of freedom parameter and n(= 2) is the number of equations.

To maximize this likelihood function, the most commonly used optimizer is the 

BHHH method which is suitable for situations in which the first order conditions 

contain matrices which involve derivatives that depend on past values of disturbances. 

The standard ARCH model can also be estimated by exact Maximum Likelihood 

(EML), Quasi-Maximum Likelihood (QML) and Generalized Method of Moments 

(GMM). The EML method refers to applying maximum likelihood estimation to 

equation (4.10) and (4.11) assuming a particular distribution for the error term. 

If the underlying distribution deviates from normality, the appropriate procedure 

is Quasi-Maximum Likelihood estimation. Bollerslev and Wooldridge (1992) have 

shown that the QML estimators are still consistent and asymptotically normal and 

therefore it is chosen to estimate our GARCH-M model. However, a robust standard 

error correction is used in this situation.

The robust standard error is valid even if the likelihood function is misspecified. 

Let 9 =  (7 ,0, //j, 7^, Cj,..., Oj,..., 6j) define the parameter vector, then an approximate 

variance covariance matrix for the estimator 9 is given by

where

V0) = E{9 -  90)(9 -  e0)’ *  T~l{d2Dd-0lPd2D}

d2D = ( ± \ j 2 d2l°9 f(Y fJ )  ( j
\T J  dddd' { }

- l

O P ( f ) S
\ d lo g f ( Y j )  1 \8logf(Yt;9)]

89 89 (4.18)

#2d is the numerical approximation to the matrix of second derivatives with re

spect to the parameters and dop is the average of the period-by-period outer products 

of the numerical gradient. The standard errors are simply the diagonal elements of 

the matrix V. In a simple Monte Carlo simulation Susmel (1994) show that tests
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based on these robust standard errors are conservative compared to the outer prod

uct gradient (OPG) tests. This holds for both the normal and Student t distributions. 

Especially for the case of leptokurtic errors, the robust test tends to have size very 

close to the nominal size 0.05.

Since the information matrix is not block diagonal between the parameters in the 

conditional mean and variance model (Bollerslev and Wooldridge (1992)), consistent 

estimation requires the full model to be correctly specified. To check for correct 

specification, a series of diagnostic tests for the variance specification is needed, such 

as the Ljung and Box (1978) test for autocorrelation for both the normalized residuals 

and squared residuals.

4.4.3 Correlated Bivariate Poisson Jump M odel

Alternatively, leptokurtosis can be captured by systematic jumps. Using notations 

similar to that used in Chapter 3, we can modify our model as

where Ju is a series of jumps that is conditionally mean zero. This jump component 

is constructed by introducing two random variables: jump counter rij and jump size 

Yit as

h-Bt
(4.19)

(4.20)R -B t  — l B x B , t - l  +  J s t  +  CB t,

et \It^  ~  N(0,Ht).

nit
Jit — 'y ' (- î “t" ^iB ^i

k= 1
(4.21)

where A, is the independent jump intensity for the ith metal and XiB is the correlated 

jump intensity for the \th metal and the benchmark portfolio. The jump size is 

assumed be normally distributed with mean 0t and variance Sf:

Yit,k ~  N{9U%) , Y2tij~ N (92,522) (4.22)
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The correlation between the jump sizes are constant and are denoted as pm-

The jump counter is controlled by a Correlated Bivariate Poisson function which 

gives

nu = n*it + n*iBt , nm = n*m + n*iBt (4.23)

and pis is the constant correlation between the jump sizes. Both the metal price 

and benchmark portfolio may experience systematic jumps and the jumps can be 

separated into independent and correlated jumps. Independent jumps are initiated 

by the n*t for the metal price and n*Bt for the benchmark portfolio, whereas correlated 

jumps are governed by n*Bt.

In the presence of jumps, the time varying risk premia will be not only composed 

of the systematic risk associated with the benchmark portfolio, but also of the risk 

associated with jumps. The covariance conditional on k jumps arriving to the excess 

returns and j jumps to the benchmark is given by

Cov(Rt, R m ) = hiB =  hiB +  piB\fkjSi52 (4.24)

and the conditional variance is

Vart_i(RBt) = h B = hB + j  5\. (4.25)

Therefore, the original model can be rewritten as

hiB,t + PiByi^i +  Aifi)(Afi +  A fe )* ^ ^  ,
Rit =  7*0 +  Hi--------------------- f-------------------------{lBx B,t-l)

flBt
+J*t +  e*tj (4.26)

Rst  =  'YBx B,t-l +  JBt +  tBti (4.27)

Note that the price of risk /i* reflects the risk premia associated with the benchmark 

and systematic jumps. If the correlation between the jump sizes is pis—0, the risk 

premium term will collapse to the original form in Equation (4.14). The log likelihood 

function takes the form of Equation (3.38).
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4.5 Data

The resource data correspond to four metals currently traded on the LME: copper, 

lead, sliver, and zinc. Monthly price data are for the period January 1955 through 

December 1990. These data are obtained from the American Bureau of Metal Statis

tics. The interest rates used are the US 30-Day Treasury Bill rates from the Center for 

Research in Security Prices (CRSP) database. The monthly average operating cost 

data are extrapolated from Young and Ryan’s (1996) data which are derived from 

the mining data provided by Canadian Minerals Yearbook and The General Review 

of the Mining Industry. The operating cost data include costs associated with wages, 

materials, supplies, fuel, and energy.

Table 4.1 provides summary statistics for the four metals. The average rate of 

return for the gross price data is around 0.23% monthly over the 36 year span of 

data. The rates of return are spread evenly across positive and negative values, and 

a common decreasing trend around 1980’s for some prices is found. The decreasing 

trend has been a major problem in the primary metal industry in last two decades and 

it is evident in the lower panel of Table 4.1 where lead and zinc have negative average 

returns in 1980’s. This is consistent with the findings of high volatility in Slade (1982) 

and Slade (1991). In Slade’s (1991) paper, she concludes that the high volatilities of 

metal prices can be explained by changes in market structure. Although her data set 

covers only the period of January 1970 to December 1986, a similar pattern is found 

in our data set.

The raw metal prices are graphed in Figure 4.1 where each metal price is measured 

in U.S. cents per pound, except for the price of silver which is U.S. cents per troy 

ounce. Most metals experience high fluctuations over the sample period, except silver 

which varies predominantly within a few abnormal episodes. Figure 4.2 shows the 

rates of return on prices for these metals along with the Treasury Bills and the CRSP
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index. A different view of silver is depicted in panel (c) as opposed to the previous 

figure. Silver returns do exhibit high variations after around 1967 and most of these 

movements may be mistakenly viewed as small relatively to the big jumps in the early 

1980’s.

A simple check for normality shows that the skewness coefficients are very close 

to zero, whereas the kurtosis coefficients vary from 2.5473 to 21.9921. This indicates 

that a more general distribution should be used to model these rates of return. The 

kurtosis coefficient for silver is extraordinarily large at 21.9921, which could be due 

to speculation in the early 1980’s, spurred by activities of the Hunt brothers.

The CRSP index is chosen as the benchmark portfolio. The CRSP index is a 

value-weighted index of the US equity market including all distributions. Since the 

time-varying risk premium is a function of the correlation between the benchmark 

portfolio and the resource return, the correlation coefficients between the rates of 

return of each metal and the various benchmark portfolio are very important to the 

model. The correlation coefficients for the CRSP index is as high as 0.29 for copper 

to as low as 0.01 for zinc.

The average cost data are depicted in Figure 4.3 as percentage of the raw metal 

prices. The proportion of average cost changes substantially over these 36 years and 

in some cases the zinc market actually has average production cost that are above 

the nominal price level. The average cost remains a small portion of the silver price, 

whereas the average cost for lead varies from as low as 22% in 1955 to as high as 95% 

in 1985.

4.6 Results

Before examining the risk premia, we will first discuss the general performance of 

each model in terms of the GARCH structure, the use of the Student t distribution,
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the incorporation of systematic jumps, and difference associated with the use of gross 

versus net metal prices. A detailed comparison of the time-varying risk premia will 

be presented later in this section.

4.6.1 Gross M etal Prices

Table 4.2 reports the bivariate GARCH-M results based on gross metal price returns. 

Note that the Ljung Box statistics show that an AR(1) term must be added to the 

metal price equation to capture all of the serial correlations. The use of the bivariate 

model is supported by the significant a#, and bBi estimates which capture the cross 

equation effect. If these coefficients are zero, the conditional variances will be a 

function of only their own lagged values and the lagged error squares. In this case, 

the advantage of using the bivariate model would be undermined by not using the 

information on conditional covariances in the variance-covariance structure.

The risk premium parameters, n, are large, but insignificant in all cases. However, 

it is interesting to note that all metals report a negative risk premium parameter. The 

diagnostic statistics in Table 4.3 shows that the standard BEKK-GARCH-M model 

fits the data reasonably well and no uncaptured serial correlations can be found in 

any metals with the exception of the squared standardized residuals from lead and 

silver.

Another interesting feature of these results are the coefficients for the benchmark 

portfolio. Since the same benchmark portfolio is used for all four metals, a similar set 

of values are expected for the parameters related to the benchmark portfolio alone. 

For example, the parameters, aB and bB, have similar size in all cases and the sign 

difference is of no importance because of the quadratic form. Similarly, the constant 

term j B0 and the AR(1) term j B have values around the same range across metals. 

In addition, the constant terms are always significant, whereas the AR(1) terms are
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always insignificant. Consistency in the estimated parameters across metals is found 

with the Student t distribution.

A noticeable difference in silver, as compared to other metals, is found in the 

relatively large estimated coefficients asi and bm- It is not surprising that silver 

behaves differently from the other metals given the price surge in the early 1980’s. 

One anomaly is the large kurtosis and skewness coefficients for silver, which casts 

doubts on the usefulness of the t distribution for this metal. Since silver is a precious 

metal it may be that a precious metals commodity index might be more appropriate 

as the benchmark portfolio. Alternatively, a more general distribution allowing for 

skewness might be required for silver. However, as noted above, we rely on the robust 

standard errors to deal with any deviation from normality.

The London Metal Exchange underwent a basic restructuring in 1987. This in

volved changing from principal market to a clearing house market, the introduction 

of margins and formal options. Dummy variables are introduced into the model to 

test for the effects of restructuring on the stability of the parameters. Two types 

of dummy variables are added to test for the presence of a structural break. The 

constant dummy tests the shift of the constant term in the model, whereas the mul

tiplicative dummy checks the stability of the coefficients. The bivariate models were 

re-estimated and no structural breaks were found in the empirical models.

4.6.2 N et M etal Prices

The results which take into account the cost data are reported in Table 4.4. Note 

that with these net return series the AR(1) term in the metal equations is no longer 

required to remove all the serial correlations in the standardized residuals of the metal 

equation. The degrees of freedom parameter once again is significant in all cases, 

although the size of these parameters are relatively larger than the ones with gross
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prices, implying leptokurtic distributions. The GARCH parameters reveal similar 

patterns for the four metals and the constant terms for the benchmark portfolio are 

very consistent.

A significant negative time-varying risk premium parameter is discovered for cop

per price with the incorporation of production costs. Recall that a negative price 

parameter does not imply negative risk premium. This depends on the sign of the 

covariance term between the metal returns and the benchmark portfolio. The same 

measure for the other three metals are found to be insignificant regardless of using 

net or gross metal prices to construct the return series. The diagnostic statistics in 

Table 4.5 reveal the adequacy of using the bivariate GARCH-M model to capture 

the dynamics. The Ljung Box Statistic on the squared standardized residuals reveals 

serial correlations from the silver price and the same result was found in the case of 

gross prices.

Taking into account of the production cost does have implications for the estimated 

parameters. For example, the benefit of estimating a bivariate model is less apparent 

as cross equation GARCH parameters become small and insignificant. The other 

interesting result is the change of sign and magnitude of the risk premium parameters 

from negative to positive for 3 of the 4 metals. The dramatic change of parameter 

estimates is a direct consequence of high variations in average cost data as depicted 

in Figure 4.3.

4.6.3 N et M etal Prices w ith Conditional Jum p Dynam ics

Alternatively, the leptokurtic distribution can be modeled by the correlated bivariate 

Poisson jump model as discussed earlier and the results for this CBP-GARCH-M 

model are presented in Table 4.6. Note that uncaptured serial dependence is displayed 

by the Ljung Box statistics on the squared standardized residuals for lead and zinc.
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In general, allowing for jumps in the model does not provide significant improvement 

on either the likelihood values or the diagnostic statistics in copper, lead, and zinc.

Jump parameters are mostly insignificant and correlated jumps can be rejected at 

5% level for all metals. In other words, there are no simultaneous shocks to both the 

metal price and the benchmark portfolio. For copper, lead, and zinc, the independent 

jump intensity parameter Xg for the benchmark is always insignificant. A significant 

jump intensity Ai is found in the copper equation. However, the likelihood value has 

shown that the bivariate jump model does no better than a simple bivariate Student 

t distribution.

A noticeable improvement in the case of silver can be found in the likelihood value, 

the Ljung Box statistics, and the significance of the jump parameters. The likelihood 

value is the best overall as compared to the previous two specifications. The CBP- 

GARCH-M model is the only one model that can reject serial correlations in all cases 

at 5% level. The results suggest that silver experiences many abrupt changes over 

the last 36 years with jump sizes around -1% to 1% being the most frequent.

Turning to the time-varying risk premia, the estimated price coefficients are in

significant for copper, lead, and zinc, but significant and positive for silver. We have 

are no plausible explanations for this finding. First, a significant risk premium can 

only be found by fully capturing all the dynamics in both the metal and benchmark 

series and the CBP-GARCH-M model performs the best. Second, although evidence 

suggests that the jump model fits the silver series well and a time varying risk pre

mium is found, we have to be cautious about this finding as the significant jump 

component may merely be capturing the Hunt’s brother incident in the early 1980’s, 

creating such a large jump in the return series.
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4.6.4 Discussion

The possibility of time varying risk premia in non-renewable resource markets is 

an interesting question. However, it is difficult to identify risk premia given the 

constraint of estimating a correctly specified model. We find weak evidence of time 

varying risk premia in two metals: copper and silver. The metals prices being studied 

in this chapter are well represented by the bivariate GARCH model with or without 

augmenting the jump dynamics.

A significant negative price parameter for the time varying risk premium in net 

copper price is revealed with the GARCH-M model with Student t distribution. The 

implied risk premia are depicted in panel (c) of Figure 4.4 along with the return 

series on the top panel (a). In general, the series experiences little variation before 

1981 and only a few episodes generating large negative values for the risk premium 

in the early and late 1980s. Positive risk premia axe infrequent and mostly less than 

1%. It is of interest to note that it is only after the change in the market structure 

for copper (See Slade (1988)) that variations in risk premia over time for copper are 

observed. In general, there is no strong evidence supporting time varying risk premia 

as an important part of copper returns for most of the time horizon considered.

The time varying risk premia for silver are graphed in panel (d) of Figure 4.4 using 

the significant price parameter fi. The most important observation is the magnitude 

of these risk premia within zero to one percent for the most part with no substantial 

variations recorded until the period of the early 1980’s. These results are consistent 

with the findings in Young and Ryan (1996) where the risk premia in copper and 

silver are significant, however, with a very small size.

In summary, time-varying risk premia can be detected in two of the four metal 

prices being studied depending on the modeling strategy. The two models supply 

different results suggesting the appropriateness of incorporating the risk premia in
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empirical models. The presence of time-varying risk premia can be tested by using 

a benchmark portfolio and metal returns. These results not only provide cautionary 

notes on examining the Hotelling rule with non-renewable resource returns, but also 

extend the current empirical literature on risk premia (Slade and Thille (1995) and 

Young and Ryan (1996)).

4.7 Conclusions

In this chapter a bivariate GARCH-M model is used to incorporate time-varying risk 

premia into a simple Hotelling model. This approach is based on the transformation 

of the risk-adjusted Hotelling rule into the consumption-based Intertemporal Asset 

Pricing Model, where the time-varying risk premia are modeled by the ratio of the 

conditional covariance between metals and a benchmark portfolio and the conditional 

variance of the benchmark.

The presence of system jumps (market crashes) and its effect on risk premia are 

also examined with the same bivariate model augmented with Correlated Bivariate 

Poisson (CBP) jumps. Using four metal prices (copper, lead, silver, and zinc) covering 

four decades, we find that the time-varying risk premium is most often not an im

portant determinant of the nonrenewable resource return regardless of the modeling 

strategy.

The results reveal the consequences of mis-specification in the context of searching 

for time varying risk premia. Misleading results may come from neglecting marginal 

cost data, inadequately capturing of volatility dynamics, and failure to recognize the 

presence of systematic jumps.
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4.8 Appendix B

4.8.1 Derivation of Equation (4.7) and (4.8)

Dividing through by U'(C\) in equations (4.2) to (4.4), we have

—1 +  EM S • [1 +  p] =  0 (4.28)

—1 +  EM S • [1 +  r] =  0 (4.29)

1 • (Px) -  EM S • (P2) =  0 (4.30)

Ms = /3(U'(C2)/U'(Ci)) (4.31)

Rearranging gives:

EM sr =  1 — EM S (4.32)
AF
~F

1 — EM S =  EM Ŝ  (4.33)

Substituting equation (4.32) into (4.33) yields:

EM sr = EM s^  (4.34)

If we assume that the marginal rate of substitution Ms is constant, Equation (4.34) 

becomes

-  * ( £ )
The expected rate of increase of the net price is equal to the expected rate of return. 

Assuming that Ms is not a constant, the right hand side of equation (4.34) can be

rewritten as
A P  A P (  A P \EM S—  = EM SE —  + Cov ' '  '  '

{ * • ¥ )

Similarly, the right hand side becomes

EM sr =  EM sE(r) +  Cov(Ms, r)

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.8. A PPEN D IX  B

Substituting these into Equation (4.34) gives

A P ( A P \
EM SE —  +  Cov ( — ) = EM sE(r) + Cov(Ms,r) (4.35)

A P  C m (M „ A P /P )-C o v (M „ r)
E ~ p  ~  E ( r ) ---------------------- ^ -------------------- (4 .36)

Equation (4.8) can be derived using similar steps, utilizing the following two formulas 

from Equation (4.28) and (4.30)

pEM s = 1 -  EM S 

Pi -  EM sP2 = 0
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Table 4.1: Summary Statistics (Rates of Return 1955-1990)

Gross Metal Return Data
Copper Lead Silver Zinc T-Bill CRSP

Mean 0.2264 0.1829 0.1362 0.3817 0.4747 0.4487
S.D. 6.8874 6.0483 8.4846 5.7389 0.2533 4.3287

Skewness -0.3379 0.2852 -0.5735 0.2593 1.0209 -0.3886
Kurtosis 2.5473 3.2229 21.9921 4.9337 1.3228 2.0797

Average Over Each Decade
Copper Lead Zinc Silver T-Bill CRSP

1950’s -0.4954 -0.6028 0.1468 0.1162 0.1875 0.9907
1960’s 0.7332 0.4247 0.5465 0.1385 0.3147 0.4154
1970’s 0.2116 1.0504 1.2920 0.7362 0.5123 0.1044
1980’s 0.0875 -0.4801 -1.2900 0.3971 0.7090 0.5539

Net Metal Return Data
Copper Lead Silver Zinc

Mean 0.1414 0.2943 0.1356 0.7201
S.D. 10.8373 13.5865 8.4867 11.1358

Skewness -0.5247 -1.2275 -0.5702 4.5828
Kurtosis 46.0336 62.0524 21.9374 79.4051
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Figure 4.1: Metal Prices (1955 - 1990)
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Table 4.2: Bivariate GARCH-M model with t distribution (Gross Metal Prices and
CRSP Monthly Data)

Parameter Copper Lead Silver Zinc

7*o **-0.0018 *-0.0047 **-0.0020 -0.0018
(0.0005) (0.0028) (0.0003) (0.0024)

To **0.2250 **0.3041 **0.3196 **0.2627
(0.0537) (0.0535) (0.0574) (0.0488)

7bo **0.4121 **0.5436 **0.4448 **0.5311
(0.2209) (0.1872) (0.1851) (0.2148)

7b -0.0535 0.0446 0.0417 -0.0081
(0.0254) (0.0391) (0.0477) (0.0336)

Ci 9.90E-08 **0.0001 1.30E-08 0.00002
(0.0015) (0.0153) (0.0004) (0.0065)

CiB 0.0005 **-0.0190 0.0001 **0.0058
(0.0004) (0.0044) (0.0006) (0.0024)

CB **3.0524 **1.8525 **2.8532 **1.2786
(0.7605) (0.5794) (0.3900) (0.3406)

Cij **0.7064 **0.6272 **0.8402 **0.4397
(0.0593) (0.0919) (0.0656) (0.0605)

CtiB 0.0001 0.0004 **0.0011 **-0.0010
(0 .0001) (0.0008) (0 .0001) (0.0004)

&Bi **-7.8877 -4.8464 **-17.3967 **-7.1399
(3.0692) (3.9676) (6.0760) (2.7942)

as **0.1482 *-0.1287 -0.1146 **-0.1451
(0.0492 (0.0659) (0.0776) (0.0670)

bi **0.8175 **0.7376 **0.7643 **0.8989
(0.0208) (0.0832) (0.0216) (0.0242)

biB -0.0001 **0.0015 -0.00001 **-0.0009
(0 .0001) (0.0006) (0 .0001) (0 .0001)

bBi **6.7399 **6.3325 **10.2094 **6.2986
(2.4446) (3.1111) (2.2450) (1.7060)

bB **0.6895 **0.8930 **0.6456 **0.9333
(0.1704) (0.0659) (0.1140) (0.0281)

1/v **0.1626 **0.1333 **0.0300 **0.1045
(0.0311) (0.0324) (0.0072) (0.0290)
-8.4837 -4.8796 -0.2358 -6.8407
(5.3761) (3.7367) (1.3626) (4.4428)

log likelihood -578.01 -553.64 -458.67 -494.89

Standard errors are in parenthesis. * refers to 10% level of significance 
and ** refers to 5% level of significance.
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Table 4.3: Diagnostic Statistics Bivariate GARCH-M model with t distribution (Gross
Metal Prices and CRSP Monthly Data)

Copper Lead Silver Zinc

Qi
10.81 6.38 11.92 10.62
[0.37] [0.78] [0.29] [0.38]
10.85 19.53 20.59 15.74

Qi [0.36] [0.03] [0 .02] [0 .10]

Qb
16.04 11.09 11.01 15.87
[0.09] [0.34] [0.35] [0 .10]

/'•) 2 13.49 9.43 10.29 4.52
Qb [0.19] [0.49] [0.41] [0.92]

QiB
16.17 17.72 8.05 11.72
[0.09] [0.05] [0.62] [0.30]

Standard errors are in parenthesis, p-values are in square brackets. Q2 is 
the modified Ljung-Box portmanteau test, robust to heteroskedasticity, 
for serial correlation in the squared standardized residuals with 10 lags 
for the respective models.
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Table 4.4: Bivariate GARCH-M model with t distribution (Net Metal Prices and
CRSP Monthly Data)

Parameter Copper Lead Silver Zinc

7 i0 **-0.0030 -0.0010 0.0015 -0.0043
(0.0006) (0.0041) (0.0037) (0.0042)

7 b o **0.7350 **0.6563 **0.7788 **0.5996
(0.2091) (0.1988) (0.1939) (0.2016)

7 B -0.0350 -0.0177 0.0168 0.0335
(0.0347) (0.0322) (0.0439) (0.0531)

Ci 3.08E-06 0.0002 0.0017 0.0003
(0.0149) (0.0227) (0.1459) (0.0039)

Cffl **-0.0021 **0.0213 **0.0830 **-0.0277
(0.0010) (0.0061) (0.0334) (0.0064)

Cb **1.4456 **1.619 3.8880 **2.1850
(0.6979) (0.5507) (2.3127) (0.6229)

0>i **1.2843 **0.8378 **1.5980 **0.4388
(0.1752) (0.1543) (0.6024) (0.0859)

0>iB -0.0001 0.0011 -0.0031 -0.0014
(0.0004) (0.0015) (0.0050) (0.0016)

0>Bi 0.3174 0.4030 0.4578 1.4451
(0.6463) (0.7670) (0.8594) (1.2110)

a s **0.1868 *-0.1371 -0.2494 **0.2774
(0.0690) (0.0731) (0.1941) (0.0944)

bi **0.6608 **0.7221 **-0.4991 **0.8691
(0.0395) (0.0847) (0.0804) (0.0305)

biB 0.0001 **-0.0017 **0.0056 **0.0024
(0 .0001) (0.0007) (0 .0020) (0.0005)

bBi -0.1615 0.3348 -0.1854 -0.6550
(0.1785) (0.5629) (0.5602) (0.5771)

bB **0.9550 **0.9399 **-0.8812 **0.9031
(0.0345) (0.0383) (0.0854) (0.0424)

1 / v **0.3310 **0.2788 **0.4335 **0.3428
(0.0459) (0.0402) (0.0579) (0.0409)

V **-2.8330 6.0109 2.8985 0.0103
(1.5325) (3.8117) (2.2067) (1.9369)

log likelihood -1044.81 -801.45 -1039.21 -856.85

Standard errors are in parenthesis. * refers to 10% level of significance 
and ** refers to 5% level of significance.
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Table 4.5: Diagnostic Statistics Bivariate GARCH-M model with t distribution
(CRSP Monthly Data)

Copper Lead Silver Zinc

Qi
18.63 15.38 9.36 10.04
[0.05] [0 .11] [0.49] [0.43]
9.83 16.29 29.60 15.29

Qi [0.45] [0.09] [0 .00] [0 .12]

Qb
15.16 13.93 12.00 11.58
[0 .12] [0.17] [0.28] [0.31]
11.36 11.53 11.67 6.02

Qb [0.32] [0.31] [0.30] [0.81]

QiB
8.50 13.14 18.16 6.01
[0.57] [0 .21] [0.05] [0.81]

Standard errors are in parenthesis, p-values are in square brackets. Q2 is 
the modified Ljung-Box portmanteau test, robust to heteroskedasticity, 
for serial correlation in the squared standardized residuals with 10 lags 
for the respective models.
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Table 4.6: Estimates of CBP-GARCH-M model with normal distribution (Risk Pre
mia and Jump Components)

Parameter Copper Lead Silver Zinc

P
-1.4233 -8.4632 **0.6907 1.3149
(1.6070) (5.4123) (0.2851) (2.3517)

\ **0.0304 0.0082 **0.0811 0.0350
(0.0109) (0.0274) (0.0227) (0.0298)

X **7.5123 **0.5380 **1.3320 **0.6339
(1.4767) (0.1512) (0.2652) (0.1081)

n -0.7960 0.0121 -0.0300 0.0314
ui (1.9002) (0.1216) (0.2274) (0.1127)

0.0410 0.1057 **0.1777 0.0361
(0.0426) (0 .1010) (0.0571) (0.0478)

r 0.0036 **6.2431 7.40E-11 **6.7298
OB (0.1262) (1.8461) (0.0766) (1.8921)

Ob
**-8.4471 -0.2820 **-5.9625 -2.4352
(2.4700) (1.1355) (0.8377) (2.0786)

\ b
0.0078 0.0457 0.0104 *0.0469

(0.0079) (0.0287) (0.0140) (0.0263)
-0.9999 -0.0595 -0.2417 -0.0889

p (27.7284) (0.2819) (177.0260) (0.1188)

log likelihood -1099.85 -801.79 -1031.25 -845.13

Qi
13.13 10.75 8.66 9.30
[0 .21] [0.37] [0.54] [ 0.50]

/~)2 6.50 20.40 17.69 18.78
Qi [0.77] [0.03] [0.06] [0.04]

Qb
10.85 10.88 13.30 11.50
[0.36] [0.36] [0 .20] [0.31]

Q I
8.41 12.57 8.10 6.62
[0.58] [0.24] [0.61] [0.75]

QiB
7.98 9.25 16.78 6.20
[0.62] [0.50] [0.07] [0.79]

Standard errors are in parenthesis, p-values are in square brackets. Q2 is 
the modified Ljung-Box portmanteau test, robust to heteroskedasticity, 
for serial correlation in the squared standardized residuals with 10 lags 
for the respective models. * refers to 10% level of significance and ** 
refers to 5% level of significance.
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Table 4.7: Estimates of CBP-GARCH-M model with normal distribution (GARCH 
Parameters)

Parameter Copper Lead Silver Zinc

Tio
-0.0286 -0.0054 -0.0044 -0.0021
(0.0731) (0.0078) (0 .0211) (0.0097)

7bo
0.3235 **0.3935 *0.3681 **0.5116

(0.2145) (0.1940) (0.1977) (0.2139)

7b
0.0576 **0.0634 0.0012 0.0344

(0.0486) (0.0323) (0.0419) (0.0580)

Ci -0.0017 0.0000 0.0070 **-0.0226
(0.0885) (0.0490) (0.0649) (0.0031)

CiB
**-0.0412 -0.0052 **-0.0512 0.0011
(0.0085) (0 .0111) (0.0095) (0.0394)

CB
**-0.9669 **3.5101 *0.3777 **2.0816
(0.4183) (0.3058) (0.2134) (0.8152)

Qi **0.7237 **-0.6951 **0.9543 **0.3290
(0.0808) (0.0706) (0.0770) (0.0526)

ttiB
-0.0021 0.0006 -0.0017 -0.0013
(0.0014) (0.00007) (0.0016) (0 .0010)

CtBi
0.0022 0.0294 **0.5694 -0.0231

(0.1427) (0.6720) (0.0016) (0.7757)

Qb
**-0.1753 **0.1203 **-0.2365 **-0.2354
(0.0471) (0.0583) (0.0353) (0.0672)

i. **0.5904 **0.6251 0.0034 **-0.8146
bi (0.0674) (0.0542) (0.0150) (0.0368)
■L 0.0044 **-0.0057 -0.0013 0.0009
biB (0.0023) (0 .0012) (0.0017) (0.0068)
i. -0.3115 -1.0685 **0.9056 -0.5080
bBi (0.3196) (1.5583) (0.0354) (2.8257)

bB
**-0.9481 0.1008 **-0.9437 **0.7920
(0.0285) (0.5069) (0.0146) (0.1634)

log likelihood -1099.85 -801.79 -1031.25 -845.13

Standard errors are in parenthesis. * refers to 10% level of significance 
and ** refers to 5% level of significance.

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-10
-20
-30
-40

1960 1965 1970 1975 1980 1985 1990

Figure 4.2: Rate of Returns (1955 - 1990)
40 I ■ 11 11 i i 11 ~j—i' 1111 i 11 11 i 1111 11 i i | 111 i |
30

60
40
20

0
-20
-40
-60
-80

(a) Copper
I I I I | I I I I | I I I I | I I I I | I I I I

i ■ ■ ■ ■ i ■ < ■ ■ 1111 ■ i ■ ■ ■ ■ i ■ ■ 11111 ■ ■ i
I960 1965 1970 1975 1980 1985 1990 

(c) Silver
TTJTTTTJTTTTJT I I1 I I I |TTT^^

i ■ ■ ■ ■ i ■ ■ ■ ■ i ■ ■ ■ ■ i ■ ■ ■ ■ i ■ ■ ■ ■ i ■ ■ ■ ■ i
1960 1965 1970 1975 1980 1985 1990 

(b) Lead
I I I I I I I I I I I  I I I I I I I I I I I I I I I I I I I I I I I

■■■■■■■■ i-l-i-i
1960 1965 1970 1975 1980 1985 1990 

(d) Zinc

■ ■ i ■ ■ ■ ■ i ■ ■ ■ ■ i ■ ■ ■ ■ i ■ ■ ■ ■ i ■ ■ ■ ■ i »■ ■ ■ i
1960 1965 1970 1975 1980 1985 1990 

(e) CRSP Index

1.4
1.2

0.8
0.6
0.4
0.2

1960 1965 1970 1975 1980 1985 1990
(f) T-Bill

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 4.3: Average Cost as Percentage of Metal Price (1955 - 1990)
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Figure 4.4: Time Varying Risk Premia 
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Chapter 5 

Conclusion

5.1 Summary

This thesis provides an avenue for further development in nonlinear modeling of finan

cial asset returns. A statistical jump model is developed to better capture unusually 

large movements in financial series ranging from stock markets to foreign exchange 

markets, and commodity markets.

In Chapter 2 , we show that changes in returns of unusually large magnitude which 

occur in response to the entry of unanticipated news into the stock market can be 

successfully modeled in terms of a Poisson jump model with a time varying jump 

frequency. Furthermore, the sizes of market crashes are found to be closely related 

to market conditions in the previous period. The empirical results indicate that, for 

example, a rally is most likely to occur after a severe crash in the stock market. A new 

empirical insight into market dynamics is obtained by comparing the jump frequency 

and market movements. One-step ahead forecasts of jump frequency may serve as 

good indicators of severe market crashes.

The Correlated Bivariate Poisson jump model introduced in Chapter 3 identi

fies significant simultaneous shocks in both the Canadian dollar and Japanese Yen 

against U.S. dollar exchange rates. In addition, shocks specific to a single currency 

also become evident through appropriate statistical modeling. This finding provides 

new insight into the comovement of the two series. Furthermore, it allows for the 

construction of more accurate volatility forecasts. We have shown that the restriction
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5.1. SUMMARY

of a constant theoretical upper bound of jump counter correlation is eliminated by the 

use of an approximate ARMA intensity structure. The data reject the hypotheses of 

no correlated jumps and of constant jump frequency. We also establish a relationship 

between correlated jump frequency and correlations across returns. We find that as 

simultaneous shocks intensify, the correlations between returns tend to have a positive 

sign once the number of jumps exceed certain threshold.

Time-varying risk premia in metal prices provide the main focus of Chapter 4. A 

bivariate GARCH-M model augmented with correlated Poisson jumps is employed for 

the analysis. Of the four metals under study (copper, lead, silver, and zinc), we find 

weak evidence of risk premia in copper and silver returns, although with very small 

magnitude. The results show signs of remaining misspecification, including uncap

tured serial correlations and inadequately modeled excess kurtosis in the residuals. 

The consequences of this misspecification may include misleading results regarding 

time-varying risk premia.

To answer the questions posed in the introduction, we find evidence that there 

is a systematic pattern in the arrival rate of unusually large market movements and 

modeling this information appropriately provides a better empirical understanding of 

financial market movement. The magnitude of a crash will certainly affect the charac

teristics of future crashes. According to our results, the sizes of future jumps/crashes 

are directly related to the market’s history as captured within the rates of return. The 

likelihood of crashes does change over time, depending on the state of the market. 

Furthermore, unanticipated news leading to these crashes should be classified into 

sources that generate a large movement in a single series and into sources generating 

simultaneous large changes in multiple series. Appropriate classification allows for 

increased accuracy of inferences for various types of future market crashes.

As a cautionary note, each of the first two chapters has proposed a new statis-
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5.2. FUTURE WORK

tical model to capture systematic patterns in asset returns. These empirical jump 

models work well in variety of situations; however, the underlying source of these 

jumps remains unknown. A theoretical model has yet to be developed to reveal the 

driving force behind these statistical features. This is a drawback of my time series 

analysis. On the other hand, applying a structural model to test an economic the

ory as in Chapter Four fails to find significant jump components possibly because 

the theoretical structure may be too restrictive for modeling real world metal prices. 

Researchers should be reminded that one may only improve the model performance 

by incorporating additional information with a structure that is supported by sound 

economic theory.

5.2 Future Work

There are many potential future avenues of research that flow from the research 

undertaken in this thesis. Future research may focus on the development of the 

techniques and modeling strategies proposed or on particular applications.

The proposed modeling technique is suitable for a wide variety of situations. Any 

data series that is subject to frequent or infrequent shocks can be examined by the 

Poisson jump model. One extension is to use an alternative distribution to replace the 

Poisson function in constructing the Autoregressive Jump Intensity. A major weak

ness of using the Poisson distribution is the restriction that the mean and variance 

must be equal. This implies that as the number of jumps increases, the variance of 

the jump counter also increases. The negative binomial distribution is one possible 

candidate for relaxing this assumption.

For the multivariate framework, it would also be worthwhile to investigate dif

ferent forms of the multivariate Poisson distribution. One possibility is to introduce 

nonlinear combinations of independent and correlated Poisson variables to construct
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5.2. FUTURE WORK

a multivariate Poisson distribution. It may lead to other possible solutions to the 

theoretical upper bound imposed by the multivariate Poisson distribution which was 

used in this thesis. Developing a flexible multivariate Poisson distribution may con

tribute to areas of econometrics which currently rely on multiple discrete counting 

processes.

The GARCH-M model used in Chapter 4 can be further extended to incorporate 

measurable shocks as risk premia. The potential gain in measuring the monetary 

values of these shocks is large. There is no reason to believe that risk premia are 

uniquely driven by the conditional heteroskedastic variance and not the measurable 

shock. Market participants are likely to demand a risk premium once they learn of 

the existence of such a systematic patterns.

One potential application of the general framework expounded in this thesis is a 

closed-form option price formula given the ARJI process. Given that no simulation is 

required to estimate these models, it is possible to derive a closed-form solution for the 

option price using the characteristic function approach. An improved understanding 

of extreme market movements may have important implications in terms of the mis

pricing of derivatives.

It would also be interesting to investigate whether the ARJI model can successfully 

identify rational bubbles. Smith, Suchanek, and Williams (1988) have been able to 

create rational bubbles with a set of trading experiments. The ARJI model can be 

applied to these models in experimental economics to gain a better understanding of 

rational bubbles and market crashes.

In general, the models developed in this thesis provide a starting point for a variety 

of interesting and important extensions. Important contributions can be made in the 

areas of econometric modeling as well as forecasting tools for stock markets, foreign 

exchange markets, and commodity markets.
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