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Abstract

Belief networks are a common way of handling uncertainty in AI. A belief network represents
the joint distribution of a set of random variables. When network parameters are estimated
from a sample, the parameter values are also random variables whose distribution is given
by the sampling distribution of the true model (Frequentist perspective) or the posterior
distribution over the parameter space (Bayesian perspective). The uncertainty in parameter
values has implications for both inference and learning. In learning network structure from
data, a fundamental issue is how to handle the bias-variance trade-off — increasing model
complexity decreases bias but increases the variance in parameter values. We compare
model selection criteria for handling the bias-variance trade-off in structure learning, on
theoretical and empirical grounds. We also look at the issue of the uncertainty in belief
network inference. Once constructed, belief networks are typically used to answer queries
about marginalizations or conditionalizations of the full distribution. Inferences based on
network parameters inherit the uncertainty in those parameters. We present a method for
computing approximate error-bars around belief network inferences. An efficient algorithm

is given, and empirical evidence of its efficacy is presented.
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Chapter 1

Introduction

Belief networks (also known as Bayesian networks, graphical models) are commonly used
to model joint probability distributions in expert systems. A graph is used to represent
all direct dependencies between the variables. This structure both organizes reasoning and
reduces the dimensionality of the parameter space to the point where it is feasible to estimate
parameters from sample data. When network parameters have been learned from a random
sample, those parameters are themselves random variables, adding an additional level of
uncertainty, which may be represented by a posterior distribution over parameter values
(Bayesian perspective) or by the sampling distribution of the unknown true parameters
(Frequentist perspective).

The uncertainty in parameters is an issue when learning network structure. One can
typically obtain an improved fit to the data by increasing the complexity of the structure,
and thus the dimensionality of the parameter space; however, this increased representational
power comes at a cost, namely the increase in parameter variance. Finding the appropriate
balance between complexity and goodness of fit is a matter of handling this bigs-varience
trade-off. The trade-off may be operationalized as a scoring function on network structures
known as a model selection criterion. We argue that there is no one criterion which is the
right one — rather, the choice of a model selection criterion should reflect available prior
knowledge and the goals of the learner. Prior knowledge and utilities are often implicit,
however, and consequently difficult to formalize. Therefore, it is important to understand
the issues involved in model selection, and how different criteria behave in different contexts.
To this end, we compare a number of proposed criteria for learning belief network structure.
While we cannot endorse any particular criterion as superior to the others, we demonstrate
the differences between the criteria that are relevant for making a choice between them.

The uncertainty in parameters is also an issue when carrying out inference based on a
network model. An inference is a function of (some of) the parameters in a network, and,
being a function of random variables, is itself a random variable. For a confidence/credibility
level of (1 —§), error-bars around an estimate specify a range of values “containing” (1 —4)
of the probability mass under the distribution of that variable. Providing such error-bars
for belief network inferences is a way to quantify the uncertainty that they inherit from the
parameters. Error-bars are less informative than giving the complete distribution around
an inference, but they are typically easier to compute and reason with. Such error-bars can
be extremely useful, for example, when taking actions based on network inferences, or when
choosing whether or not to obtain additional evidence at a cost. In this dissertation we
describe a method for efficiently computing approximate error-bars for inferences, and we
give empirical results to demonstrate the effectiveness of our method.



Overview

Chapter 2 covers related work and presents our notation. Chapter 3 is an introduction
to belief networks, which covers their representation, basic properties, and the posterior
and sampling distributions of network parameters that we refer to throughout the paper.
Chapter 4 describes our work on model selection: 4.1 presents the theoretical background for
the model selection problem; 4.2 describes the setup of our empirical study of model selection
criteria; 4.3 presents the results; and 4.4 concludes with a discussion of the results and
unresolved issues. Chapter 5 describes our work on error-bars for belief network inferences:
5.1 reviews the notions of confidence regions and credible regions; 5.2 gives our derivation of
approximate error-bars for belief network inference; 5.3 describes our empirical study and
describes our results. Chapter 6 concludes the paper, summarizing our results and giving
directions for future work. Appendix A lists the properties of the distributions that we
use, for ease of reference, and Appendix B gives the derivations of some properties of belief
networks that are used throughout the paper.



Chapter 2

Preliminaries

2.1 Related Work
2.1.1 Belief Networks

Early work on induction in AI tended to focus on symbolic manipulation and logical (truth-
functional) representations. Pearl (1988) was instrumental in directing attention to proba-
bilistic methods, and, in particular, to belief networks. Basic research on the properties of
belief networks followed; Cooper and Herskovits (1992) is a source of considerable insights.
As is typical of research in any field, once basic results were established there was a flowering
of additional research exploring refinements, applications and specializations. Topics that
have received attention include: sensitivity analysis, hidden variables, incomplete data, pa-
rameter estimation, structure learning, continuous variables, approximate inference, efficient
inference, and applications for image analysis, medical diagnosis and decision making, to
name a few. Belief networks are subsumed by the more general notion of influence diagrams,
which may include test nodes and decision nodes as well as evidence variables.

2.1.2 Model Selection Criteria

There is a considerable literature on learning belief networks, and in particular, on learning
their structure; see Heckerman (1995) for a detailed overview of the subject. Note that
many researchers, including Lam and Bacchus (1994) Suzuki (1996), and Friedman and
Goldszmidt (1996) explicitly use the MDL criterion (or something close to it) to evalu-
ate candidate networks. We explore the behaviour of this MDL criterion, among others.
Friedman and Yakhini (1996) carry out an analysis of the sample requirements for vari-
ous complexity penalty approaches to belief net learning. While that work also addresses
suitability of various selection criteria, its analysis is theoretical and based on asymptotic
behaviour, and it only considers complexity penalization; by contrast we are empirically
investigating small sample behaviour over a different class of criteria, including Bayesian,
bootstrap and cross-validation criteria.

Linhart and Zucchini (1986) provide an overview of the general problem of model selec-
tion, covering AIC and cross-validation, but not MDL. Rissanen (1989) gives a detailed de-
velopment of the Minimum Description Length Principle, which is the information-theoretic
view of induction that the MDL criterion is based on. Schwarz (1978) gives an alternative
derivation of the MDL criterion (therein referred to as BIC, the Bayesian Information Crite-
rion) as a large-sample approximation of the Bayesian posterior criterion. Bozdogan (1987)
gives the derivation of AIC and a discussion of its use. Kearns et al (1997) describe experi-
ments similar to our own. They make a similar comparison between an MDL criterion and
a cross-validation criterion, and report similar behaviour in a different context: learning a
function f : [a,b] = {0,1} from noisy examples, under zero-one loss.



2.1.3 Error-Bars

Our results provide ways to compute the variance of a belief network inference as a function
of the variance of the individual parameters (under the sampling or posterior distribution,
depending on perspective). This is done using the delta-method (Bishop et al 1995): ap-
proximately propagating the variance of each parameter, based on first partial derivatives.
Kleiter (1996) performs a similar computation. His analysis is more general, in that he
considers incomplete data; however, he does not provide a closed form for the derivative,
nor does he provide an efficient way to compute this information. Moreover, our empirical
studies provide additional evidence that the approximations inherent in this approach are
appropriate.

A related topic is sensitivity analysis, which involves propagating “ranges” of parameter
values to produce ranges in the responses (see Che et al 1993, Laskey 1993, Castillo et
al 1997 and Darwiche 2000). These papers deal with the case where the user can simply
specify the “range” of a parameter value; by contrast our work considers the source of
these variances based on a data sample. In addition, our analysis involves propagating the
variance of all the parameters, whereas most other analyses consider only propagating a
single range. Moreover, except for the recent work by Darwiche (2000), none of these other
projects provides a closed-form expression for the partial derivative nor does any provide
an efficient way to compute that information. Also, some of those other papers focus on
properties of this derivative; for example, when it is O for a particular parameter. Note that
this information follows immediately and implicitly from our expression for the derivative
and our means of computing it. Finally, our analysis holds for arbitrary structures; by
constrast some other results (eg. Che et al 1993) deal only with singly connected networks
(trees).

2.2 Notation

The notation used to express statements about probability distributions and random vari-
ables is frequently a source of confusion. Here we will introduce a notation that deviates
slightly from existing conventions for reasons of clarity.

We need to represent random variables, probability distributions over random variables
and the parameters of those distributions. Our formulae may be complicated by the fact
that variables are often vector valued (discrete or continuous), and that a parameter may in
certain cases be a random variable as well. Therefore, we will drop the distinction between
parameters, variables, and random variables, and simply denote all variables with names
that begin with upper case Roman or Greek letters. The names of symbolic constants will
be in lower case Roman letters or Greek letters. A variable name in bold font will denote
the set of values it may take on. So X is a random variable that takes a value z € X. In
addition, we will occasionally use script letters, such as X, to denote an arbitrary assignment
(such as X = z).

We will denote functions as their “signatures” — by an application to variables. Where
variables are replaced by constants, this denotes a new function of lesser arity — a function
of zero arity is a constant. Function parameters may be divided into two groups by the
“conditioning bar”, which means that if all the parameters to the left of the bar are fixed
while those to the right are free to vary, then the function is a probability mass or density
function. Obviously, where variables are discrete, distributions are probability mass func-
tions, otherwise they are probability density functions. To illustrate this with an example,
suppose that we have a function P(X,Y | A, B). P(X,Y | a,b) denotes a distribution, and
P(z,y | a,b) denotes a probability (or probability density).

We introduce the following notation for probability statements. Pr[g(X) = z; P(X)]
denotes the probability that g(X) = z under the distribution P(X); in general, any state-
ment is allowed on the left. We will denote the expectation and variance of g(X) with
respect to a distribution P(X) as E[g(X); P(X)] and Var[g(X); P(X)] respectively, with



SD[g(X); P(X)] being the standard deviation. The #requency that X is assigned z in a
random sample d will be denoted Fr[X = z; d]. The co-nditioning bar will be used to denote
conditional sentences appearing on the left in any of tlzese expressions. When the reference
distribution is clear from context, we will omit it.



Chapter 3

Belief Networks

3.1 Representation

A belief network is a representation for a joint distribution over a set of random variables
X = (X,...X,). It consists of a dependency graph and a set of conditional probability
functions. The dependency graph is a directed acyclic graph, whose vertices are the random
variables. This network structure represents the assumption that the joint distribution can
be written as:

n
P(Xy...Xn) =[] Pu(X: | W)
=1
where each P;(X; | W;) is the local, conditional distribution of X;, given its parents in the
dependency graph, W;. Formally, the network structure implies that X; is independent
of all non-descendents, given its parents. The resulting set of conditional independencies
allows for a compact representation when the network is sparse.

In the most general case, the network variables may be continuous or discrete, and the
conditional probability functions may be represented in a variety of ways. In this paper we
are restricting our attention to discrete, finite-valued variables, and extensionally represented
conditional probability functions, whose parameters are an exhaustive set of conditional
probabilities that may be directly estimated from sample frequencies. In addition, we will
assume that our sample data is composed of complete tuples (all network variables assigned
a value).

The simplest representation for the conditional probability functions is as CP-tables
(see Figure 3.1). For a variable X;, X;’s CP-table is represented by a number of rows,
one for each possible assignment to W;. Each row specifies a conditional distribution of
X; as a multivariate Bernoulli distribution (see Appendix A). The parameters of these
individual distributions, taken together, are the parameters of the network. In some cases,
greater economy of representation can be attained by marginalizing over rows of a CP-
table, representing the CP-table as a tree structure (see Friedman & Goldszmidt, 1996).
The analysis of parameter variance that follows holds for this latter approach as well.

We have introduced the notation P(X) to denote the distribution given by a belief
network model. Because we will often need to refer to families of distributions over X we
need to introduce further notation. We will use P(X | ©) to denote the parameterized
class of models given by a belief network structure, where © ranges over parameter vectors
(CP-table entries). We will also have occasion to use P(X | ©, H) to denote all possible
belief networks on X, where H ranges over network structures — note that © is constrained
by H.
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0 0 0.22 0.78

Figure 3.1: A simple example of a belief network.

3.2 Parameter Estimation

A dependency graph defines a parameterized class of distributions: P(X | ©), where © =
(©1...04) is the vector of parameters (probabilities in the CP-tables). Suppose we are
given a sample d = (d; ...dn) of complete assignments to X, drawn i.i.d. from the true
distribution. The likelihood function is given by:

Ld|m,©) = [] Pt |©)

i=1

Next we define a sufficient statistic for @. Let a = (a; . ..a:) denote the conditional sample
frequencies for the parameters (@, ...©O). That is, when (O, ...0Q,) are the parameters of
some CP-table row giving the probability distribution over X for an assignment W; = w to
its parents, and X; takes values from the set {z....z,}, then (a,...a,) are the frequencies
a; = Fr[X; = z;, W; = w; d] for i = r to s. We will later use b; to denote (a, +- - - +as) — ai,
for ¢ =r to s; that is, b; = Fr[X; # z;, W; = w; d]. Given the i.i.d. assumption and a fixed
network structure, a is a sufficient statistic for © — that is, if two different samples have
the same value of a then those samples have the same likelihoods under any model within
the class of models defined by the structure.

Maximum likelihood estimation is the classic Frequentist approach to fitting parameters.
The maximum likelihood estimate for © is the vector of conditional sample proportions
0= (6,...6;), wherefori =1 to k:

~ a;
;=
a,—+b,—

Note that this is not always defined — because the parameters represent conditional prob-
abilities it is possible that no data may be observed that matches the conditioning event,

7



and thus (a; + b;) may sometimes be 0.

The maximum a posteriori (MAP) estimate is the Bayesian counterpart to the maxi-
mum likelihood estimate, and the two are equivalent when the prior is uniform. However, an
ideal Bayesian approach to prediction involves averaging over all possible parameter values,
weighted according to the posterior distribution. This is known as the predictive distri-
bution. For a natural family of belief network priors, the predictive distribution is easily
computed; it is the mean of the posterior. Below we state two important theorems that make
the Bayesian analysis of belief networks tractable. Their proofs are given in Appendix B.

Theorem 1 Conjugate Property (Cooper & Herskovits 1992) Assume a fixed network struc-
ture, and suppose that the prior distribution over the parameter space is given by a product
of Dirichlet distributions (see Appendix A), one for each CP-table row. Recall that each
row is a multivariate Bernoulli distribution which gives the distribution of a variable for an
assignment to its parents. Thus, if (©,...0,) are the parameters of some row, then they
are jointly Dirichlet distributed with parameters {a, ...a,). Denote the prior as f(©@ | a),
where @ = (a; ...a) is the concatenation of the prior parameters for all the individual
Dirichlet distributions.

Given the above assumptions, the posterior distribution is f(© | a + a), where a is the
sufficient statistic defined previously, and (@ + a) is simple vector addition. Thus, f defines
a conjugate f2mily of distributions over O.

Theorem 2 Model Averaging (Cooper € Herskovits 1992) Assume a fixed network struc-
ture, and a posterior distribution of the form described above. Then the predictive distri-
bution:

Q(X) =/ PX|0)f(®la+a)do
o)
is the average model, § = (f; ...6;), where, for i = 1 to &:

i a+a
T (a+a+B+0)

Here $ has the analogous relationship to « that b has to a — namely, when (©....0;) are
jointly distributed, for i =r to s: 8 = (r + -+~ + ;) — 4.



Chapter 4

Comparing Model Selection
Criteria

4.1 Theoretical Background

Most learning problems can be cast in the following form. First, a type of model (such as
Markov model, belief network, neural network, decision tree, etc.) is chosen, based on (often
tacit) domain knowledge. Next, within this model type a structure is chosen. This structure
defines a parametric class of models. Last, the parameters are estimated, or tuned/fit, based
on a sample. The problem of choosing the structure, or parametric class of models, is called
the model selection problem. Model selection can be viewed as an optimization problem
where there are two separate issues: (1) how to search the space of structures, and (2) what
function (model selection criterion) to optimize for. Here we explore the second issue: the
choice of a model selection criterion.

4.1.1 The Bias-Variance Trade-off

A standard approach to parameter estimation is to maximize the likelihood of the data.
Applying this principle to model selection, however, tends to result in the phenomenon of
overfitting. A more complex structure defines a larger class of models, and thus one cannot
decrease the maximum of the likelihood function by going to a more complex structure. A
higher dimensional parameter space allows for a tighter fit to the data, but increases the
variance in the parameter estimates. There are two sources of true error: (1) the error due
to bias, which can be defined as the true error of the optimal (under the true distribution)
parameters for a structure, and (2) the variance component of error, which can be defined as
the expected additional error due to the estimation of the parameters from a random sample.
Bias-error results from choosing a structure that is insufficient to represent the true model;
variance-error results from parameter estimates being suboptimal. The trade-off between
these two sources of error is called the bias-variance trade-off. When a model-selection
procedure chooses a structure that is larger than the optimal one, we say it is overfitting.
When a model-selection procedure chooses a structure that is smaller than optimal, we say
it is underfitting.

In this section we are concerned with two kinds of bias: (1) the bias in an error estimate,
and (2) the bias of a structure, or model class. Here we define these two notions.

Bias of an Estimator: The difference between the expected value of an estimate (under the
true sampling distribution) and the true value. We say an estimator is biased when its
expectation differs from the true value.

Bias of a Model Class: The minimum true error of any model in the class.



Suppose we have an unbiased parameter estimation process. Then the expectation of the
parameter estimate is the lowest true error model for the structure. For belief networks,
maximum-likelihood parameter estimation is unbiased (regardless of the true parameters).
In this case, the bias-error of the learned model is entirely due to the bias of the structure.
From a Bayesian perspective, however, we may prefer a biased estimator for the parameters,
such as the mean of the posterior. In this case, the bias-error of the resulting model will be
due to both the bias of the structure and the bias of parameter estimation. We will discuss
this issue in more detail later.

It is widely believed that one ought to handle the bias-variance trade-off through model
selection, attempting to optimize for true error by selecting a structure of just the right
complexity. Since bias and variance depend on the true distribution we are trying to learn,
however, it is not clear how we can acheive this. In fact, overfitting avoidance is generally not
Jjustifiable unless one has a prior expectation of simplicity, or one is interested in something
else besides expected error, such as a pragmatic desire for low variance or simple structures.
In practice, avoiding overfitting seems to be desirable, perhaps because the choice of model
type reflects a prior belief that a parsimonious representation exists for this type. See
Wolpert (1996a, 1996b) for more on this topic, which we will return to later in this section.

4.1.2 Error Functions

A standard measure of training error is the negative log-likelihood:
DL(d,8,h) = —log L(d | m, 8, h)

whered={d; ...dn,) is a sample of size m, h is a model structure, 8 is the parameter vector
for that model, a.nd L(d | m,8,h) is the likelihood function.! We denote it as DL because
it is the description length of the data given an optimal code based on P(X | §,h). When
d is an i.i.d. sequence of values d; ...d,, then:

m

DL(d,6,h) = > ~log P(d; | 6, h)
=1
KL-divergence (due to Kullback & Leibler, 1951; see also Cover & Thomas, 1991) is a

widely used measure of true error for distribution learning. If P(X | 6,g) is the “true”
model, and P(X | §, k) is a hypothesized model, then the KL- divergence of P(X | 6, k) from
P(X | 6,9) is given by:
P(X |6,9)

BrlP(X | 8,9); P(X 18,m] = 3 P(X | 6,)log 5 5725

This is the expected cost of encoding instances from P(X | 4,g) using a code based on
P(X | 4,h). Note that it can also be written as:
Err[P(X | 6,9); P(X | §,R)] = E[DL(X,6, k)] — E[DL(X,6, g)]

where the expectations are taken under P(X | 6,g). The second term is the entropy of
P(X | 6,9). As it does not depend on P(X | 8,h), the first term alone is sufficient to
compare models. We can form an estimate of this first term:

Fit(h,§,d) = %DL(d, 4, k)

The problem, however, is that if we use d to estimate 8 then § depends on d and so Fit(, 8, d)
is a biased estimator, underestimating E[DL(X, 4, k)]. As k grows more complex, the dimen-
sionality of § increases and the more it can be tuned to d, increasing the bias in Fit(h, ] ,d).

! We leave the estimation of # as a black box for the time being — we return to this at the end of the
section.
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Note that there are two different kinds of bias involved here: as models become more
complex, they become less representationally biased (they can represent a larger class of
distributions), but their parameters have higher variance under sampling, and so Fit(k, 8, d)
becomes more biased as an estimator of E{DL(X, 6, h)]. Model selection criteria attempt to
correct for this bias or avoid it altogether.

4.1.3 Complexity Penalty Criteria

One way to (attempt to) correct for the bias in Fit(h,6,d) is to add a complexity penalty
to the function. The major difficulty here is determining what an appropriate penalty is.
One cannot determine a priori how much bias there is in Fit(h,4,d), as this depends on
P(X | 6,g) as well as P(X | 4,h). For each structure, there exists a continuum of possible
biases in Fit(h,é,d), from zero, when the true model has zero entropy and zero variance,
on up to some maximum value, when the true model has maximum entropy. Therefore, one
cannot justify a complexity penalty simply on the grounds that it is a bias correction; one
must appeal to other considerations.

There are several well-known penalty functions, each motivated by different theoret-
ical considerations. The Minimum Description Length (MDL) criterion is based on an
information-theoretic view of induction as data compression; see Rissanen (1989) for a de-
tailed development. It is equivalent to the Bayesian Information Criterion (BIC), which
was introduced originally by Schwarz (1978) and given a Bayesian interpretation. The
information-theoretic interpretation of the MDL criterion is as the length of an encoding of
the sample as a two part code. The model defines a code for the sample, and one encodes
the sample by first encoding the model, and then encoding the data using the optimal code
given by the model.? If the model captures significant features of the data, this encoding
will be considerably smaller than the original encoding of the sample. On the other hand,
if the model represents too much about the sample, the encoding size will increase (Linhart
& Zucchini, 1986). This trade-off is similar to the bias-variance trade-off.

The MDL criterion we will use is given by:

MDL(h,d) = Fit(h,d,d) + DL(Z:M

where Dim(k) is the the number of free parameters of k. Recall that m is the sample size.
This version differs from the standard form in that we have normalized everything by 1/m
S0 we can compare it across sample sizes and with other criteria. Some low order terms (all
positive) have been dropped as well (from the MDL criterion given by Rissanen; the BIC is
exactly what we have above). It will be seen that this omission has no negative impact on
the criterion.

Akaike’s Information Criterion (AIC) comes from a different theoretical perspective. It
is an explicit attempt to correct the overfitting bias. See Bozdogan (1987) for the derivation
of the criterion. The complexity penalty is considerably smaller than MDL’s. Qur version
of AIC is given by:

AIC(h, d) = Fit(h, 6, d) + D—“%M

where e is the base of the natural logarithm, and loge converts from nats to bits.

4.1.4 Validation Criteria

An alternative approach is to use part of the data to estimate the parameters and the rest of
the data to estimate the error of the resulting model. There are drawbacks to this approach,
however. The training sample used to evaluate a structure is smaller than the sample that
will ultimately be used to train the chosen structure, and this results in a preference for

2Every probability distribution has an associated optimal code (Cover & Thomas 1991).
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simpler structures. (Once a structure has been chosen, all available data are used to estimate
the parameters of the final model.) Also, there will be increased variance in the criterion, as
opposed to the naive Fit(k,§, d), because of the smaller test-sample size. So this train-test
validation trades the bias of the naive criterion for another bias and increased variance.

Cross-validation (Stone 1974) is a more sophisticated approach which seeks to alleviate
these concerns. In cross-validation every datum in the sample is used both for training
and testing. The sample is partitioned into r subsamples, each of which is used once for
testing and (r — 1) times for training. Each subsample is tested on the model that results
from training on the remaining (r — 1) subsamples. This is called r-fold cross validation.
The most extreme case is m-fold (leave-one-out) cross-validation. We will use the simplest
version, 2-fold cross-validation, which is given by:

XV(h,d) = — [DL(d1 ...d;,6(drs1 - - -dm), h) + DL(dy41 .- -dma, 6(ds - .- ), 1)

1

m
where 7 = [m/2] and §(-) denotes the parameter estimated from the data given in the
parentheses.

Cross-validation has its problems as well. First of all, the meaning of the criterion is not
explicit — it is an average of many individual estimates which are not independent if r > 2.
Leave-one-out cross-validation is not asymptotically minimal: in the limit of sample size it
may not prefer the simplest unbiased hypothesis (Stone 1977). Worst of all, it may be very
expensive to compute, and time is at a premium when searching a large space of structures.

4.1.5 Bootstrap Criteria

Bootstrap methods are similar to validation methods, but instead of withholding data from
the original sample, a training or test sample is generated by resampling (Efron 1982).
The idea is that, by adding noise through resampling, the variance of the original sampling
process is simulated. One problem with the non-parametric bootstrap is that the empirical
variance of the bootstrapped sample tends to be lower than that of the original sample —
if the bootstrap is recursively applied over and over, with asymptotic probability 1 it will
result in a homogenous sample. Another problem is that the empirical distribution in the
sample will differ from the true distribution, and thus will have a different variance under
sampling.® The formula below shows the bootstrap criterion we will be using, where the
training sample has been bootstrapped and the original sample is used for testing.

Boot(h, d) = Fit(h, 8(d"), d)

Here d' is a sample of size m, generated from d by resampling with replacement.

4.1.6 A Bayesian Approach?

Overfitting results from the naive maximume-likelihood approach because the likelihood of
the data is based on a single (maximum-likelihood) model in the model space for each
structure. As this space increases, the mode of the likelihood function cannot decrease, and
tends to increase. The Bayesian approach to prediction, by contrast, involves averaging over
all models according to the posterior distribution over models. For a given structure, one
can compute the marginal likelihood of the data by integrating over the parameter space.
The integral under the likelihood function (coupled to the prior distribution over models),
rather than its mode, may thus be used as a way to evaluate structures.* This mitigates
the effects of increasing complexity: as complexity increases the likelihood function becomes
more peaked, increasing its mode but potentially decreasing the integral underneath after a

31t might be possible to correct for some of these problems by measuring and correcting for the difference

in variance between the two samples.
4Prior distributions are implicit where not mentioned.
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point. The bias-variance trade-off is handled implicitly — it is reflected in the shape of the
likelihood function.

This, however, is a Frequentist justification for a putatively Bayesian procedure. The
notion of overfitting is not really defined in the Bayesian paradigm: upon seeing the data,
you simply compute the posterior distribution over models and use this to carry out in-
ference. A possible Bayesian approach is to parameterize the model space by first defin-
ing a hyper-parameter that ranges over structures; then the marginalized likelihood is the
data-dependent part of the posterior distribution over structures. Ideally, prediction would
involve marginalizing over all structures according to this posterior, but for pragmatic rea-
sons one could approximate this by choosing the structure with the maximum posterior
probability, given the data. (See Heckerman 1996.)

The use of a hyper-parameter ranging over structures, however, must be viewed simply
as a device to define the prior over models. The model class for the most complex structure
contains every possible model, and so “structure” is a superfluous syntactic notion. A
uniform prior over structures, coupled with a uniform prior over the parameters for each
structure, results in a very non-uniforrn prior over the space of models, favouring those
models which appear in more structures (exactly those representable in simpler structures).
Perhaps this is desirable, being a reflection of the intuition behind choosing a particular
model type and representational framework. But it is open to the criticism of being ad hoc,
as well as the classic objection to Bayesian methods as being subjective — because many
incompatible uniform priors may be proposed as representing identical states of ignorance
(see Howson 1997).

One could carry out a Bayesian analysis of model selection as a decision problem, where
the objective is to minimize expected loss. Where KL-divergence is the loss function, and
f(©,G | d) is the posterior over models, the problem reduces to computing:

: P(X [©,G)log P(X | ©,G)
a.rgrmn,m,'/c/;%:[ i Sttt e AU ]-f(@,Gld)dOdG

. S xP(X|0,G)logP(X |0,G)
argming, 5 fo Jo — 2 x P(X|©,G)log P(X | ¥,k) - f(©,G | d) d© dG
argming, 5 — 3 x [g Jo P(X10,G)f(0,G | d)d® dG -log P(X | 9, )

Based on a fundamental result of information theory due to Shannon (see Cover & Thomas
1991), a minimum is attained at the entropy of the predictive distribution when:

P(X[ﬂ,h):/c/;)P()ﬂ@,G)f(@,Gld)d@dG

Thus, the Bayes-optimal strategy for minimizing KL-divergence is to choose the predictive
distribution, taken over all models.

This is a sort of “no free lunch” theorem (Wolpert 1996a) for model selection, as it follows
that any attempt to avoid overfitting reflects a prior bias toward simplicity. For example,
if one’s prior belief is reflected by a uniform prior over all possible models, one ought to
use the most complez structure, with a uniform prior over its parameter space, and then
take the average model from the posterior that results from Bayesian updating, which is the
predictive distribution for this prior. Of course, one might be interested in other properties
of a learning algorithm besides expected loss (like minimax properties, for example).

It is interesting to note that the marginalized likelihood has an interpretation as a val-
idation criterion. For belief networks the marginalized (predictive) likelihood (for a fixed
structure) is given by (see Appendix B):

[ r@imes©laae=T] [ P 10)5@]a+ald . .di) 4o
(] (2]

i=1
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where a(-) is the sufficient statistic for ©, given the data in the parentheses. Note that
the data, though independently distributed for a fixed model, are not independent when
integrating over all models.

This prequential criterion (Dawid & Vovk, 1999) involves iteratively computing the prob-
ability of each datum given those already seen by marginalizing over the parameters using
the current distribution over parameter space, then updating that distribution with the
current datum. Each datum is used once for testing and once for training, but the test-
ing precedes the training, so each datum’s error score is based on parameters it has not
been used to estimate, as in validation criteria. For belief networks it may be efficiently
computed, because using the average model under the posterior distribution is equivalent
to integration over the parameter space (again, see Appendix B for details). We use the
following form as a model selection criterion:

m

Preq(h,d) = — > ~log P(d: | B(d; ... ds—1), h)

i=1

where 8(d; .. .di—1) is the mean parameter vector after updating with d; ...d;—;.

4.1.7 KL-Divergence and Parameter Estimation

Maximum-likelihood estimation is not the ideal approach to minimizing KL-divergence.
Assigning a probability of 0 to any event with non-zero true probability makes the KL-
divergence infinite, whereas maximum-likelihood estimation will always assign probability
mass to observed data rather than unobserved data, if the parameterization allows it. For
example, if we were to flip a coin twice and observe heads both times, we could maximize
likelihood by assigning a probability of 1 to heads and a probability of 0 to tails. If tails
had even a very small true probability of occurring, however, our model would have infinite
KL-divergence. As the model complexity grows, and parameters are estimated based on
fewer data, it becomes increasingly likely that the KL-divergence for a maximum-likelihood
estimate is infinite.

It is therefore unrealistic to use maximum-likelihood estimates when comparing criteria
under the KL-divergence loss function. Therefore, in our experiments we will use the average
model (predictive distribution) for each structure, under uniform priors: 8; = (a;+1)/(b;+1)
for all i, when §; is the CP-table entry P;(X; = z | W; = w) and X ranges over r values.
This replaces § in all the criteria.

One consequence of using this parameter estimation method is that the asymptotic argu-
ments used to justify the AIC and MDL criteria no longer strictly hold; the AIC is designed
to correct the bias in maximume-likelihood estimates, while the MDL criterion is based on
optimizing the precision in the parameters, assuming maximum-likelihood estimation. An-
other consequence is that Fit(h,8,d) is not necessarily monotonically decreasing as model
complexity increases — using the average model instead of the maximum likelihood model
has a smoothing effect which avoids some overfitting automatically. In certain cases, as we
will see, this is sufficient to remove the bias in Fit(h, 8, d).

4.2 Empirical Study

We carried out a series of experiments where we chose a true model, drew a sample from it,
and evaluated the criteria across a set of hypothesis network structures. We also computed
the true error of each structure with the parameters estimated from the sample. This allowed
us to compare the behaviour of the criteria across a range of situations, by comparing their
evaluations to the true error function (in particular, comparing the minima).
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4.2.1 Criteria

We compared the following criteria described in the previous section:
e The “Bayesian” prequential criterion (Preq).
e 2-fold cross-validation (XV).
e A bootstrap criterion (Boot).
e Akaike’s information criterion (AIC).
e The Minimum Description Length criterion (MDL).

Each criterion takes a hypothesis structure and a sample of m data as input, and returns
a real number being the estimated error per datum. Each uses m training iterations and
m testing iterations, where a training iteration is Bayesian updating with a single datum,
and a testing iteration is computing the negative log-likelihood of a single datum. Thus, all
required the same amount of computational resources, and each assumed that the average
model (predictive distribution) would be used for each structure.

4.2.2 True Models
We considered the following domains:

e Random networks: We generated networks on 10 binary variables with 10, 20, and 30
links. In each case, we generated the parameters from a uniform distribution over the
parameter space.

e The Alarm network (Bienlich et al 1989): This is a benchmark network commonly used
in empirical studies on belief networks, constructed by medical experts for monitoring
patients in intensive care units. It has 37 variables each with 2-4 possible values, 46
links (very sparse), and 509 parameters.

e The Insurance network (Binder et al 1997): This is another widely used benchmark
network. It represents car insurance risks. It has 27 variables, 52 links and over 1400
parameters.®

4.2.3 Hypotheses

For each true model, we generated sets of hypotheses as follows. Each set of hypotheses
was a sequence of network structures that included the true structure. Starting from the
simplest network, with no links, each hypothesis in the sequence was constructed from the
previous by adding a link. Eventually the true structure appeared, followed by progressively
more complex networks with “redundant” links. (We constructed these sequences from the
true structure by randomly deleting and adding links.) By construction, the model class
defined by each hypothesis properly contained the model classes of all preceding hypotheses.
Thus, the bias with respect to the true model was decreasing up to the point where the true
structure appeared, and after that all error could be attributed to variance. We did this so
that we could observe the behaviour of the criteria as bias decreased and variance increased.

4.2.4 Experimental Design
Each experiment consisted of the following steps:

1. Fix a true model.

2. Generate a sequence of candidate network structures.

5The Alarm and Insurance networks are available at the UCI machine learning repository.
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3. Generate a sample from the true distribution.
4. Evaluate the criteria on that sample, across all structures.

5. Compute the sample error, Fit(h,d,d), and the true error Ert[P(X | 8,g); P(X | 8, h)]
for each structure.

We looked at individual experiments as well as gathering summary statistics from large
numbers of experiments — the case studies allowed us to identify patterns of behaviour; the
comprehensive studies allowed us to quantify some aspects of those patterns. Since we were
only interested in the issue of the criteria used for model selection, not the search strategy,
we based our comprehensive results on selecting the structure that minimized each criterion,
then comparing the true error of those preferred structures.

4.3 Results

Figure 4.1 shows an experiment on a randomly generated true model, for a sample of size
50. Here the true distribution was represented by a 20-edge dependency graph on 10 binary
variables, where each conditional distribution was randomly generated from a uniform Beta
distribution (see Appendix A). The z-axis shows the comnlexity of the hypothesis networks
in terms of number of links, while the y-axis shows the error in terms of bits. The entropy
of the true distribution has been subtracted from all y-values to scale them down and to
allow for comparisons between different true distributions.® In each graph all criteria are
plotted, as are the true error (Err) and the sample error (Fit).

From left to right across the graph, the hypothesis complexity is increasing, and the
true error decreases until it reaches a minimum near the true structure (¢ = 20), where
it begins to climb back up. We can observe the bias-variance trade-off in action: bias
decreases until the 20-link network, while variance is increasing continuously. The sample
error (Fit), here shown as the dashed line, continues to fall past the true structure, showing
that a naive maximume-likelihood approach to choosing a structure would lead to overfitting
here. We observed the criteria across the range of hypotheses, for different sample sizes
(m = 50, 100, 150, 200). Figures 4.2-4.4 show the same experiment as the sample size
is increased. Ideally, we would like a criterion to have the same shape, or at least the
same minimum, as the true error function. By observing how the criteria differ from this
unrealizable ideal, in different learning contexts, we get an idea of how they handle the
bias-variance trade-off.

Both the MDL and AIC criteria tend to underfit at first, and then converge on the true
network as more data are provided. MDL, in particular, has a strong bias for simplicity
that requires a lot of data to counteract. In addition, a small number of additional data
can radically change the evaluation of a structure — notice the difference in the AIC scores
from Figure 4.1 to Figure 4.2. The bootstrap criterion, by contrast, tends to overfit, a
tendency which does not diminish as sample size increases. It appears to reflect sample
error as much as or more than it reflects true error. The prequential criterion and 2-
fold cross-validation give very close evaluations, across the range of hypotheses and sample
sizes. They also match best with the shape of the true error function, having minima and
maxima at identical or nearby structures. The prequential criterion appears to be slightly
less sensitive to underlying fluctuations in the true error.

In addition to randomly generated distributions, we considered “natural” distributions
defined by benchmark networks. Here we give results on two widely used benchmarks: the
Alarm and Insurance networks. The former has 37 variables and 46 links; the latter 27 vari-
ables and 52 links. Figures 4.5 and 4.6 show the pattern observed on the Alarm network,
while Figures 4.7 and 4.8 show the same results for the Insurance network. First of all,

SNote that this makes some of the scores negative, as the empirical entropy tends to underestimate true
entropy, but this does not affect our comparisons.
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Table 4.1: Results for Randorn Networks

t m Fit Preq XV Boot AIC MDL
10 50 | 0.673424 0.045774 0.085914 0.526975 0.087324 0.253013
10 100 | 0.547661 0.005703 0.025173 0.454687 0.017614 0.130488
10 150 | 0.487156 0.007373 0.016239 0.363291 0.008755 0.047132
10 200 | 0.453187 0.003962 0.007292 0.311022 0.003405 0.020010
20 50 | 0.524959 0.058641 0.104019 0.390290 0.479635 0.765795
20 100 | 0.451487 0.020641 0.037211 0.352972 0.157028 0.643342
20 150 | 0.432322 0.015944 0.020506 0.304437 0.093406 0.486259
20 200 | 0.370868 0.003800 0.017478 0.305357 0.061886 0.317950
30 50 | 0.255416 0.047017 0.101118 0.177463 0.765639 0.981904
30 100 | 0.259497 0.016463 0.021493 0.173163 0.598727 0.969809
30 150 | 0.244873 0.008740 0.027909 0.158132 0.455095 0.889597
30 200 | 0.223711 0.008547 0.016779 0.163472 0.357849 0.866408

note that the sample error (Fit) is not monotonically decreasing as hypothesis complexity
increases. If the maximum likelihood estimate § were used, instead of 8, then Fit would nec-
essarily be monotonic, because by construction each successive hypothesis structure defines
a class of models which contains the model class of all predecessors. The effect observed
here is due to the smoothing effect of choosing the average a posteriori model within each
class, instead of the mazrimum a posteriori (or maximum-likelihood) model. This is inter-
esting because many papers have been published describing results of structure-learning
experiments on the Alarm and Insurance networks, where various methods were used to
avoid overfitting, (see Liu et al, 1998, for example) when in fact it is virtually impossible to
overfit on these networks.” We believe that the difference observed here between the random
networks and these benchmark networks is due to the fact that the benchmark networks
are locally low entropy — the conditional probability distributions for each node tend to
be highly skewed. On these networks all the data-dependent criteria worked fairly well, in-
cluding the bootstrap, because its determination by the sample error was not a deficit. The
complexity-penalty criteria underfit; again, the MDL criterion was much slower to converge
than AIC.

In our comprehensive studies we attempted to measure the difference in error that would
result from using each criterion to pick a structure. We carried out experiments of the form
described above, but instead of plotting the criteria across all hypotheses, we used each
criterion to select a hypothesis by taking its argmin across the hypotheses under consid-
eration. We then compared the true error of this preferred hypothesis (for each criterion)
with the minimum true error obtained by any hypothesis (the ideal criterion, of course,
being the true error). The additional true error of the preferred hypothesis was our depen-
dent variable. On random networks we carried out experiments for several combinations
of truth complexity (¢) and sample size (m). For each assignment to ¢t and m we carried
out 30 experiments, generating a new true model and hypothesis sequence each time. We
summarize these experiments by giving the average additional true error for each criterion.
Table 4.1 displays our results for random networks; Tables 4.2 and 4.3 present our results
on the Alarm and Insurance networks; where we carried out identical experiments to those
described on random networks, except of course that the true model was fixed. Again, each
cell represents 30 experiments.

7This also demonstrates the perils of over-reliance on benchmark problems.
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Table 4.2: Results for Alarm Network
Fit Preq XV Boot AIC

80

MDL

50
100
150
200

0.002055 0.002055 0.002055 0.130730 3.386938
0.007444 0.000000 0.000473 0.094789 0.000000
0.008488 0.000608 0.002463 0.045147 0.000608
0.003116 0.000000 0.000582 0.033719 0.000000

20

9.996832
4.657260
0.000000
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Table 4.3: Results for Insurance Network
m | Fit Preq XV Boot AIC MDL
50 | 0.190568 0.171794 0.126868 0.273680 4.692191 4.768936
100 | 0.010237 0.025124 0.024360 0.086121 1.243281 6.565789
150 | 0.000000 0.167360 0.129376 0.057607 0.669900 3.597372
200 | 0.010371 0.243592 0.147450 0.071585 0.512019 3.464004
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4.4 Discussion

Model selection involves dealing with fundamental aspects of inductive inference. The no free
lunch theorems show that there is no justification for avoiding overfitting that is independent
of prior beliefs and/or pragmatic considerations. In other words, we avoid overfitting either
because we have prior beliefs that the truth tends to be simple, or because we prefer simpler
models for pragmatic reasons — they are easier to remember, explain and reason with.
Ideally, we could pose model selection as a Bayesian decision problem — in the first case
our bias for simplicity would be reflected in the prior; in the second case our bias for
simplicity would be reflected in the loss function. However, it is often the case that we have
no clear idea of how to represent our intuitions in the prior or loss function. For this reason,
it is of interest to consider properties of various proposed model selection criteria, to see
how well or how poorly they capture our intuitions.

From our observations, we conclude that the MDL and AIC criteria display a strong
bias for simplicity that may require considerable data to outweigh. This is particularly true
for MDL. The amount of data required is much more than the amount of data required
by other criteria to get a good estimate of the true error of the structure by other criteria.
Also, a small amount of additional data can radically affect the evaluation of a structure,
and it is impossible to predict in advance how much data is required to evaluate a given
structure (as this depends on the true distribution).

In defense of the MDL criterion, however, it was not derived specifically to avoid overfit-
ting (although that is a benefit frequently claimed for it), but simply to implement the MDL
principle, which takes an information-theoretic view of induction orthogonal to the Bayesian
and Frequentist paradigms.® Furthermore, it was designed with asymptotic consistency and
minimality in mind, not small sample behaviour. Nevertheless, one should be aware when
applying the MDL principle in this context that one may end up seriously underfitting the
data.

The prequential criterion and 2-fold cross-validation displayed similar behaviour to one
another. Both converged quite rapidly in shape to the form of the true error function. This
makes them good functions to optimize for if one’s goal is minimizing expected error and
one’s prior expectations of simplicity are modest. The bootstrap criterion, by contrast,
proved to be a better estimator of sample error than of true error. Perhaps our formula-
tion was naive and a better one could be obtained (for minimal additional computation?),
however, we would not recommend the use of a bootstrap criterion based on these results.

Aside from the behaviour of particular criteria, we observed some interesting phenomena
relating to the general problem of model selection in belief networks. Very little data seems to
be required to get a good evaluation of a network, even if the true distribution is reasonably
complex; for example, a sample size of less than 50 was sufficient to get a good evaluation of
structures for the Alarm network, which has 37 variables and 46 dependencies between them.
This is surprising, given that recent work in the area of learning belief network structure (see
Liu et al, 1998, for example) uses as many as 10,000 data to learn this network. As search
spaces for model selection are very large, one could probably do much better by evaluating
more networks on fewer data. Also, we noted that the practice of taking the average model
(which is Bayes-optimal within a fixed model class) handles overfitting to some extent. In
fact, although the Alarm network has been used in several studies of structure-learning,
using the sample error of the average model to choose a structure results in no overfitting
for this learning problem. This is explained by the smoothing effect of the prior, which
increases as the model complexity increases.

We cannot conclude from this research that any one criterion is better than another,
unless we specify exactly what loss function and prior beliefs we have. We can suggest
caution in applying complexity-penalty criteria such as MDL and AIC (particularly MDL),
as they may lead to underfitting the data — they appear to be risky criteria. In some
situations they are dominated by the complexity penalty, and thus almost independent of

8We can criticize it as the BIC, however.
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the data. This is probably not desirable in most learning contexts. The bootstrap criterion,
on the other hand, seems to lead to overfitting, as it is governed more by the sample error
than by the true error. The prequential criterion and 2-fold cross-validation seem to be
relatively risk-free and assumption-light criteria suitable for a wide range of problems.

It might be possible to rehabilitate the complexity penalty criteria or the bootstrap
criterion by a more careful formulation. Recall that we were not using maximum-likelihood
parameter estimates because in most cases this results in infinite KL-divergence for more
complex hypotheses. We used the predicitive distribution instead, which is the Bayes-
optimal model within the model class for each structure. The MDL and AIC criteria were
designed for maximum-likelihood estimates (although this is a subtlety that is frequently
ignored). On the other hand, these criteria cannot be viewed as correcting bias anyway, for it
is impossible to predict, a priori, the bias in sample error as an estimate of true error. (This
can only be established asymptotically, which, as we have seen, is a rather meaningless
assertion, especially when we can derive two different criteria this way.) Our bootstrap
criterion also might be improved, by correcting somehow for the expected reduction in the
empirical variance of the bootstrapped sample. These would merely be attempts to make
these criteria more like the cross-validation and prequential criteria, however, so the value
of this exercise is not clear.

4.4.1 Future Work

There are many avenues for future research. It would be interesting to consider other
loss functions, other representations for belief networks, other model types such as Markov
models or decision trees, and additional criteria. The experimental framework we have
developed could be used to explore these and other issues. As well, we would like to carry
out a more thorough theoretical analysis of the model selection problem in general. There
are other interesting properties of learning algorithms besides expected error. We would like
to compare these criteria in terms of asymptotic consistency, minimality, and convergence
rates. Minimax properties are another interesting basis for a comparison: if an adversary
could choose the true model, knowing your model selection strategy, how could you minimize
the expected error? It would be worthwhile to complement the perspective taken here by
these alternative theoretical perspectives.
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Chapter 5

Error-Bars for Inference

5.1 Error-Bars

Two standard approaches to providing error-bars for a point estimate are Bayesian credible
regions and Frequentist confidence regions. Suppose u(8) € U is a deterministic function of
an unknown parameter 8 € ©.

Credible Region: Let f(©) be the posterior distribution of ©. A (1 — §) credible region
for u(8) is a region w in U for which Pr{u(0) € w; f(©)] = (1 —4).

Confidence Region: Let L(D | m,8) be the likelihood function for a sample D, given
8. A (1 — 6) confidence region u(f) is a region w(D) in U such that Pr{u(8) € w(D); L(D |
m, )] = (1 —§). Here w(D) is a statistic (function of the data) for which this equality holds
before d is fizred by sampling. After observing d, however, Pr[u(f) € w(d)] is independent of
L(d | m,#), and depends only on the true value of 8. Note that, because 8 is unknown, the
equality Pr{u(8) € w(D); L(D | m,8)] = (1 — §) has to hold irrespective of the value of 6.

The logic of confidence regions is somewhat more subtle than that of credible regions, and
they are sometimes wrongly interpreted as being statements about posterior probability.
Confidence regions may also be much more difficult to derive than credible regions. Here
we present a Bayesian approach to error-bars, deriving approzimate credible intervals for
belief network inferences. Assuming that the network structure is fixed, we show how to
propagate the uncertainty about the parameter values through the inference process to
derive a measure of the uncertainty of an inference.

There are two major difficulties in deriving a credible interval: (1) deriving the form of
the posterior distribution, and (2) integrating under it. Even though we have a conjugate
prior for © and computing the posterior for © is trivial, it is non-trivial to derive the
posterior of an inference based on ©. Instead, we use an approximation based on the delta-
method: propagating the variance of the parameter vector through the vector of first partial
derivatives of the inference with respect to the parameters (see Bishop et al 1995). We give
a closed form expression for these derivatives, and describe an algorithm to compute them
efficiently. This gives us an approximation to the variance of an inference. Also, as the
approximate error is a linear combination of parameters, we use a normal approximation to
its distribution, which enables us to compute the interval from the variance and mean of
the inference, using tables for the Standard Normal distribution. Finally, we give empirical
evidence that our method produces accurate error-bars in a variety of situations.

5.2 Derivation

A belief network may be used to answer arbitrary queries about the distribution it models:
any conditionalization or marginalization of the joint distribution may be the object of a

24



query. A belief network query thus takes the form Pr[Q | £], where Q and £ are assign-
ments to subsets of the network variables, called the query variables and evidence variables
respectively. If we fix @ and £ but allow © to vary, then we can consider an inference to be
a function q(©), which has a posterior distribution under f(© | @ + a), the posterior for ©.

For an arbitrary query response g(f), the actual error of this value is q(8) — q(9), when
6 is the true value of the parameter. (Recall that # is the mean of the posterior distribution
of ©, also the predictive model.) Likewise, the actual error in 8 is 8 — 8. Since 8 is unknown,
we consider the random variable Err = ¢(©) — ¢(8), and how it depends on § and the
distribution of ©.

Taking the Taylor series expansion of g(@) at @ gives us:

9(©)=q(0) +[© - 8" -¢'G) +[® - 6]T - ¢"(9) - [0 — 8)/2 + - --
Thus, we can derive an expression for ¢(0) — ¢(§):
Er=[©0©-0]T-¢@) +[0-8§T-¢"@) - [©-81/2+---
to which a linear approximation is given by:
Err=[0 -7 -¢'(8)
where ¢'(f) is the vector of first partial derivatives evaluated at f; ¢"(f) is the matrix of
second partial derivatives, and the superscript 7 denotes transposition. This expands to the
sum:
Err = (01 —61)-q1(8) +--- + (Ok — k) - g1 (6)
where each ¢/(d) is the ith partial derivative evaluated at 8.

Assuming that the parameters are all independent (we know this is not necessarily true),
and the variance of each parameter ©; is o? then each (©; — 8;) is a2 random variable
with mean 0 and variance o2. It follows that Err is a random variable, and being a linear
combination of bounded random variables, it may be approximated by a Normal distribution
with mean 0 and variance given by:

K
Var[Err; f(© | @ +a)] = 20'? - i(6)*

=1
Thus we have derived an expression for an approzimate (1 — &) error bar, +¢, such that:
Prf| Ert | > &; (O | a+a)] < 6,

by choosing € so that $(—z) = 6/2, where & is the standard normal distribution function,
and z = ¢/SD[Err; f(© | a + a)].

5.2.1 Handling Parameter Dependencies

If the parameters are not all independent then (a) we cannot take true partial derivatives,
and (b) the Normality of Err is thrown into question. We can deal with the linear effects of
such statistical dependencies, however, by multiplying the derivatives through the variance-
covariance matrix of the parameters, namely:

Var[Err; f(© | a+a)] =g (0)T -0-¢'(d)

where o is the variance-covariance matrix of f(© | a+a) and ¢’(f) is the vector of first partial
derivatives, evaluated at § (see Bishop 1995, pp. 292-297). For the case where f ©Ola+a)
factors into independent Dirichlet distributions over the parameters of each CP-table row,
we need only consider the variance-covariance matrix for each row, as all other covariances
are 0. The form of the variance-covariance matrix for a Dirichlet distribution is given in
Appendix A.
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5.2.2 Partial Derivatives of Belief Net Queries

Consider the belief net query Pr[Q | £] = ¢(8), where Q and £ are assignments to arbitrary
subsets of the network variables. Here we give a closed form expression for the partial
derivative of g(f), with respect to an arbitrary parameter 8; = Pr[B | A].

Lemma 1 The partial derivative of Pr[C] with respect to a network parameter Pr{B | A] is
Pr[C | B, A] - Pr[A].

Proof:
PrC]=> > PrlC|B=b,4A=a]-Pr[B=0b| A=aq]-PrlA=q]
a€A beEB

Pr(C | B, A] - Pr[B | A] - Pr[A] is one of the terms of this summation, and thus the partial
derivative of Pr[C] with respect to Pr[B | A] is Pr[C | B, A] - Pr[A], as claimed.

Theorem 3 The partial derivative of a query Pr[Q | £] with respect to a network parameter
Pr(B | A] is given by:

OPr[Q | £]
OPr(B | A]

Proof: Pr[Q | £] = Pr[Q, £]/Pr[€], thus,

orio ) _ o) 5454 - P01 o5

OPr{B| Al — Pr[£)?

= (Pr[A]/P1[£]) - (Pr[Q,€ | B, A] — Pr[Q | £] - Pr[€ | B, A))

It follows from Lemma 1 that:

6_3'1%[%[?]_}1] = Pr[€ | B, A] - Pr[A]
- SPr9, £l = Pr[Q,€ | B, A] - Pr[A4]
OPr(B | A] ’ ’

thus:

OPr{Q | &] _ Pr[€]-Pr[Q, € | B, A] - Pr{A] — Pr[Q, ] - Pr[€ | B, A] - Pr[A]

OPr(B| A] Pr[€]?
and so:

%Qllfd = (Pr[A]/Pr[€]) - (Pr{Q,€ | B, A] - Pr[Q | £] - Pr[€ | B, A))

as claimed.

5.2.3 Efficient Computation of Partial Derivatives

Computing the derivative directly from the formula given above would result in an excru-
ciatingly slow algorithm — useless for all practical purposes. Below we give an algorithm
for efficiently computing the partial derivatives of a given query Pr{Q | £] with respect to
all network parameters. (Here “efficient” means not appreciably more time-consuming than
the inference itself — belief net inference is known to be NP-hard.) The method described
below takes advantage of any heuristics available to speed up inference. First we describe
an approach to belief network inference known as bucket elimination, then we describe an
algorithm for computing derivatives based on this inference process, and last we discuss
other inference methods.
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Bucket Elimination

Bucket elimination, described in (Dechter 1996), is an elegant framework for belief net
inference, and also subsumes a number of inference procedures in other domains. It is a
dynamic programming algorithm which iteratively eliminates variables by marginalization.
Below we describe bucket elimination.

First we need to introduce some notation. We will use AS.u to denote a table, or function.
S is the scheme of the table, which is a set of named variables. The table is a mapping
from all possible assignments to S to the reals: AS.u : S —+ R. Next we need to define two
operations on tables, elim and join.

Join is an operation that combines several tables into a new table:

AT.v = join{AS;.uy ... ASr.u,}

when T = (J7_, S: (recall that the variables are named), and

(/\T.‘U t) = ﬁ(/\S{.U{ S; - t)

=1

where each S; : t denotes the assignment of the variables of S; to the corresponding values
in t. In other words, AT.v maps from each assignment to T to the product of the AS;.u;
on the subassignments to their schemes. Joining tables creates a new and possibly much
larger table denoting the product of the original tables, where same-named variables are
unified. This operation is similar to the relational join used in database theory (see Korth
et al 1998).

Elimination is an operation on a table that reduces its scheme by marginalizing over a

set of variables.
AT.v = elimg[AS.u]

when TCS,RCS,T=5-R and:

(ATw )= (ASu S:t:r)
reR

where S : t : r denotes the assignment of the variables of S to their corresponding values in

t and r. In other words, eliminating the variables R from a table AS.u creates a new table

mapping from a reduced scheme, which maps from an assignment ¢ to AS.u evaluated at ¢,

summed over the domains of the remaining variables. If R = 0 then elimg[AS.u] = AS.u.
Now consider the function:

y= eﬁm(U:-‘:; 5.‘) [join{ASl D1--- /\Sn.pn }]

where X = {J._| S; are the variables of a belief network, and the AS;.p; are the CP-tables.
Recall that each CP-table maps from a subset of the network variables. Here the join
represents the full joint distribution, as a mapping from all possible assignments to X; and
since all variables have been eliminated, y : — 1. As such, it is not an interesting function,
but, if we restrict X by fixing X on some dimensions (say, restricting X3 to {0} and X5
to {1}) then computing y amounts to computing any marginalization of the full joint (such
as Pr[X3; = 0, X5 = 1}). Still not very interesting, though, because we are computing these
marginalizations by constructing a table for the full joint and then marginalizing over it —
not a very efficient process. Bucket elimination is a means for computing such a function
efficiently, by eliminating variables one at a time. We describe the algorithm below.

To compute y for a given partial assignment to X, first fix X on those dimensions that
are assigned. Then create a sequence of “buckets”, bg...b,, one for each dimension of X,
and one terminal bucket, by. Next, order these buckets according to a heuristic (left as a
black box), where by always comes last in the ordering. Then place each table AS;.p; into
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the first bucket in the ordering, bj, such that X; € S;, or bg if S; = @ (for belief network
inference this never happens). Note that the subscript on b; refers to the dimension j, not
b;’s position in the ordering.

Now iterate over the buckets in order, processing them as follows. Suppose b; contains
the tables {AM;.u; ... AM;.u.}. Recall that in this collection, each M; contains X;. Create
a new table:

AT;.vj = elimx;} [join{AM;.uy ... Mr.u,}]

and place this table into the next bucket in the ordering, bs, such that X, € Tj.

When this process has run to completion, the result is obtained by processing the ter-
minal bucket, by, which contains constants (functions whose scheme is null).

This procedure reduces the complexity of computing y by taking advantage of the in-
dependencies between the tables. It requires time proportional to the tnduced tree width of
the dependency graph between the variables, given the bucket ordering (hence the need for
a good ordering heuristic — see Dechter 1996 for more details). There are some additional
modifications which can improve efficiency (rather than marginalize over some functions,
we can ignore them as they are guaranteed to sum to 1), but these details are not relevant
here.

To apply this algorithm to an arbitrary belief network inference, Pr{Q | £], we compute
Pr[Q, £] and Pr[€] using bucket elimination, and then divide to get the answer. Next we
describe an extension to bucket elimination that computes the derivatives of the initial
functions.

Computing the Derivatives

We want to compute the partial derivative of y with respect to each value in a CP-table.
Suppose AS;.p; is a CP-table, and s is an assignment to S; — then (AS;.p; s) is a network
parameter. For each CP-table, we can represent these derivatives as another function,
AS;.yp,, where:
- %

O(ASipi  s)

for all s € S. We show how to construct AS;.yp, by giving a proof of the following proposition.

(ASiyp, s)

Theorem 4 Every function AS.u that is placed in a bucket has a counterpart function
AS.y., such that:
y = elims [join{AS.u, AS.y, }]

Proof: We prove by induction on the buckets.

Basis: Prove for all tables placed in bo. Recall that y = elimg(join{Vu in bg}]. Clearly, for
all u in by:
Yy, = elimg [join{Vv in by, v # u}]

Inductive Step: Consider an arbitrary bucket b;. Let AT;.v; be the result of processing
b;j. Suppose by way of induction that we have the function ATj.y,; (note that ATj.v; was
placed in a bucket appearing after b; in the ordering). Let the contents of b; at the time of
processing be {AM;.u; ... AM,.u,}. We will show how to construct AM4.y,,, for an arbitrary
AM}y . up. Recall that:

AT;.v; = elimyx;} [join{AM;.uy ... AM - u, }]

and also that:
y = elimy; [join{ATy.v;, ATy 40, ]

by assumption. It follows that:

y = elim, [join{)\T} .}, elimx,y [oin {AM; .1 o AM )}
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The following thus gives y as a value (rather than a function):

y=> (T, > [[OMiw M;:t:z)

teT; zeX; i=1
.
y= > (\Tjy,, Tj:t) [TOMiw; M;:t: 1)
(t,I)ET,' xX; i=1

Recall that M, C T; U {X;}. Thus:

vy= Z Z(/\Tj.y:,’. Tj:m:s) H(/\Mi-ui M;:m:s)
mth s€S i=1

where S is the scheme (T; U {X;}) — Mj. Consequently,

y= Y (Mpun m)> (AT, Tjim:s) [[ OMiw M :m:s)
meM, s€ES i=1,i#h

Therefore:
AMp.yl,, = elimg [join (O0Ty90, U (Mg si e {1, .r},i # n})]
which proves our claim.

The constructive nature of our proof immediately gives us an algorithm: iterate over
the buckets in the reverse order of their original processing, constructing AM .y, for every
AM .u placed in each bucket, and thus constructing the first derivative of each of the original
tables. And because we iterate over the buckets in the reverse order of processing, we have
already computed /\Tj.y{,j when we arrive at b;, and thus a single pass over the buckets
suffices to compute all the derivatives.

Now, assuming that we respond to the query Pr[Q | £] by computing Pr{Q,£] and
Pr[€] using bucket elimination, we then compute g_g}l:{z%é][ and 5%:[%% for each belief net

parameter, Pr[B | A], and obtain —g—g;fsgll% by applying elementary calculus.

Relation to Other Inference Methods

Bucket elimination is one method for carrying out belief network inference (as well as a
number of other inferential processes in other domains). There are other approaches, for
example junction-tree algorithms (see Cowell et al 1999), which compile the belief network
into a representation whose space-complexity is potentially much greater, but for which
inference is potentially much faster. We have not looked in detail at the problem, but
believe it is possible to apply our method in this context as well.

Recent work by Darwiche (2000) describes a method for compiling a belief network into
a polynomial representation, which may then be symbolically differentiated. There appears
to be a close similarity between his approach and ours, as the polynomial can be thought
of as a symbolic representation of the variable elimination process, and the differentiation
proceeds from the leaves of the tree-representation of the polynomial to its root, tracing out
the same pattern in space as our algorithm traces out in time. We need to compare the
approaches more closely to determine the exact relationship between them, however.

5.2.4 Algorithm

Here we incorporate the results of this section into an algorithm for belief network inference:
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1. Compute the response, g(8).
2. Compute the first derivative, q'(4).
3. Compute the error-bars around g(4):

(a) Let var = 0.
(b) For each row of parameters, (8, ...8,), do:
i. Compute the variance-covariance matrix:

Orr -+- Orsg

Osr ... Ogs

using the appropriate formula for their joint distribution — see Appendix A

ii. Increment var by:
8 k]
S [$d@ 0] 40
j=r Li=r
(matrix multiplication).
(c) Let € = —y/var - #71(6/2), where ~1(-) is the inverse of the standard normal
distribution function, and § is the desired confidence/ credibility level.

4. Return q(f) *e.

5.3 Empirical Study

We carried out a number of experiments in order to assess the viability of our method. We
wanted to know whether or not the approximations used were reasonable, and whether it
would scale up to non-trivial problems. Therefore we carried out a series of experiments to
evaluate the accuracy of our approximate credible intervals.

We used the following test domains:

e The diamond graph: a network of manageable complexity with a variety of possible
inference patterns. See Figure 3.1.

e The Alarm network (Bienlich et al 1989) a benchmark network commonly used in
belief network studies, based on a medical diagnosis domain. Subsets of the network
variables are identified as query variables or evidence variables. Variables are all
discrete, but most range over 3 or more values.

* Random networks: We used networks on 10 binary variables, with 20 links drawn at
random and probability vectors (in the gold model — see below) drawn from uniform
Dirichlet distributions.

5.3.1 Experimental Design

Our experiments consisted of carrying out a set of inferences on each network and evaluating
the resulting (1—6) credible intervals by generating a sample of values distributed according
to the posterior for the query. Using this Monte Carlo method, we obtained in each case an
empirical estimate & of the actual amount of probability mass under the posterior that lay
outside the interval. 100 inferences were used to generate é in each of our experiments. |6 é|
is a measure of how accurate an error-bar is — it is the error in the confidence/credibility
level claimed for the error-bars.

Below we summarize our results on three domains: (1) the 4-node diamond graph, (2)
the Alarm network, and (3) random networks on 10 binary variables, with 20 links between
them. We looked at the effects of varying the credibility level, §, the sample size used for
training, m, and the nature of the queries.
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Figure 5.1: Examples of Error Bars

5.3.2 Results for the Diamond Graph

We studied the following inferential patterns in the diamond graph:
Pr{X]

Pr{A; | A,]

Pr{X; | X, A%

Pr[&s, X3 | A1)

Pr{X) | A4

Pr{Xs | X1

We carried out many trials of the following form: (1) generate a “true” model, by generating
probabilities for the network’s CP-tables, (2) generate a posterior distribution over the
parameters, by generating a sample of size m from the true model, and (3) evaluate the
above inferences on the resulting network.

Figure 5.1 shows the error-bars returned by each method on a random network posterior.
Here the error-bars are 90% credible intervals, and close agreement is seen between the two
methods.

Figure 5.2 compares an empirical distribution around a query response to its analytically
derived counterpart. The stepped function represents the results of a Monte Carlo simu-
lation; the smooth curve is a normal distribution with the empirical variance. This tests
the validity of the normality assumption independently of the linear approximation. The
functions are based on an empirical distribution of error (distance from the mean of the
distribution of the query response), generated by inferences on 100 models drawn from the
network posterior. This is for a single, randomly chosen posterior on the diamond graph,
and the inference is Query 6 in the list above. (Note the normal distribution is scaled by the
unit length chosen for the histogram, so there is equal area under the two distributions.)

Table 5.1 summarizes the results of a comprehensive study on the diamond network.
Each inner cell contains an average of 30 |6 — §| values, generated from experiments of the
form described previously. The outer cells are marginalizations over rows, columns, and the
entire table.

O
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Table 5.1: Results for the Diamond Graph

=01
Queryl Query2 Query3 Query4 QueryS5 Query6 | average
m =10 | 0.023667 0.027667 0.031000 0.032667 0.022000 0.039333 | 0.029389
m =20 | 0.026667 0.033333 0.025000 0.033667 0.026000 0.035000 | 0.029944
m =30 | 0.026000 0.030333 0.024000 0.031333 0.029000 0.037000 | 0.029611
m =40 | 0.026000 0.029667 0.031000 0.020000 0.027667 0.029000 | 0.027222
average | 0.025583 0.030250 0.027750 0.029417 0.026167 0.035083 | 0.029042
6=02
Queryl Query2 Query3 Query4 Query5 Query 6 | average
m =10 | 0.035000 0.050000 0.047000 0.048667 0.034333 0.055667 | 0.045111
m =20 | 0.046000 0.062667 0.051333 0.070333 0.040333 0.045333 | 0.052667
m =30 | 0.029000 0.050667 0.044333 0.059667 0.039667 0.048667 | 0.045333
m =40 | 0.040667 0.052667 0.049333 0.049333 0.040333 0.038667 | 0.045167
average | 0.037667 0.054000 0.048000 0.057000 0.038667 0.047083 | 0.047069
6=0.3
Queryl Query2 Query3 Query4 Query5 Query 6 | average
m =10 | 0.036333 0.056333 0.061000 0.072333 0.051333 0.062667 | 0.056667
m =20 | 0.047000 0.072000 0.068333 0.111333 0.053000 0.060333 | 0.068667
m =30 | 0.037000 0.058000 0.054667 0.072000 0.035000 0.053000 | 0.051611
m =40 | 0.061333 0.069667 0.060333 0.066333 0.042667 0.042667 { 0.055500
average | 0.042917 0.064000 0.061083 0.080500 0.045500 0.054667 | 0.058111
6=04
Queryl Query2 Query3 Query4d Query5 Query 6 | average
m =10 | 0.043333 0.039667 0.053333 0.075333 0.044000 0.066333 | 0.053667
m =20 | 0.047333 0.052000 0.057333 0.092667 0.052000 0.059667 | 0.060167
m =30 | 0.033333 0.045000 0.050000 0.064667 0.042667 0.049667 | 0.047556
m =40 | 0.039000 0.049000 0.059667 0.067333 0.044333 0.047000 | 0.051056
average | 0.040750 0.046417 0.055083 0.075000 0.045750 0.055667 | 0.053111
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Figure 5.2: Testing the validity of the normal approximation.

Table 5.2: Results for the Alarm Network

d=0.1 6=0.2 =03 6 =04 | average
m = 50 0.024700 0.043700 0.044800 0.040700 | 0.038475
m =100 | 0.026600 0.049500 0.059700 0.048700 | 0.046125
m =150 | 0.030400 0.053500 0.064500 0.056600 | 0.051250
m = 200 | 0.026500 0.048000 0.054300 0.054200 | 0.045750
average 0.027050 0.048675 0.055825 0.050050 | 0.045400

5.3.3 Results for Alarm

Table 5.2 summarizes the results for experiments on the Alarm network, where both & and
m were varied. Each inference was of the form Pr[Q | £], where Q was an assignment to
a single randomly chosen query variable (from the set of variables identified as such) and
£ was an assignment to 5 randomly chosen evidence variables (again, from a prespecified
set). Some (or all) of the evidence variables might have had no effect on the query variable,
others might have had a profound effect. Each inner cell summarizes 100 queries on a single
posterior distribution.

5.3.4 Results for Random Networks

Although random networks tend not to reflect typical (or natural) domains, they comple-
ment more focussed studies by exposing methods to a wide range of inputs and help to sup-
port claims of generality. We carried out experiments on networks with 10 binary variables
and 20 links, generating gold models from a uniform distribution over model parameters,
and generating random queries of various types. Here we used m = 100 throughout, and
varied the type of query. Table 5.3 displays the results of our experiments. Each query
was of the form Pr[Q | £], and #& denotes the number of variables assigned a value in &;
likewise for #Q. Each inner cell is based on 100 trials: 10 queries on 10 networks (with
both structure and posterior generated randomly.
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Table 5.3: Results for Random Graphs

#F=1

#E =2

=01
#E=3

#E=4

#E=5

average

#Q=1
#Q=2
#Q=3
#Q=4
#Q=35

0.021600
0.025900
0.024900
0.025700
0.027200

0.027200
0.025000
0.025900
0.022600
0.025300

0.028400
0.029300
0.026200
0.028400
0.026100

0.032000
0.031300
0.023800
0.025800
0.030500

0.030000
0.024500
0.025600
0.028800
0.027900

0.027840
0.027200
0.025280
0.026260
0.027400

average

0.025060

#FE=1

0.025200

#E =2

0.027680

4 =0.2
#E=3

0.028680

#E=4

0.027360

#E=35

0.026796

average

#FO=1
#0=2
#0=3
#0=4
#Q=5

0.030600
0.036000
0.035000
0.041200
0.046700

0.041600
0.036300
0.041600
0.044600
0.057600

0.044100
0.043800
0.045600
0.056400
0.066300

0.041900
0.047100
0.050700
0.063100
0.078500

0.043900
0.049600
0.057800
0.071400
0.081700

0.040420
0.042560
0.046140
0.055340
0.066160

average

0.037900

#FE=1

0.044340

#E =2

0.051240

6=0.3
#E=3

0.056260

#E=4

0.060880

#E=5

0.050124

average

#Q=1
#Q=2
#Q=3
#Q=4
#Q=5

0.041700
0.044600
0.041200
0.049800
0.056900

0.047800
0.042800
0.047400
0.056100
0.076300

0.051100
0.050200
0.051400
0.074300
0.094500

0.047500
0.051300
0.063900
0.087100
0.125100

0.059700
0.063300
0.072500
0.108100
0.139900

0.049560
0.050440
0.055280
0.075080
0.098540

average

0.046840

#E=1

0.054080

#E =2

0.064300

6=04
#E =3

0.074980

#E =4

0.088700

#E =5

0.065780

average

#Q=1
#Q=2
#Q=3
#Q=4
#Q =5

0.042000
0.044300
0.041100
0.051500
0.049500

0.049000
0.042400
0.046200
0.045200
0.071400

0.050000
0.048100
0.048000
0.064700
0.089500

0.045600
0.054400
0.059500
0.083600
0.130500

0.056200
0.064300
0.071200
0.109900
0.161500

0.048560
0.050700
0.053200
0.070980
0.100480

average

0.045680

0.050840

0.060060
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0.074720

0.092620

0.064784



5.3.5 Discussion

Our hypothesis was that our error-bars would be accurate for a large number of cases. We
tried to falsify our hypothesis by varying the following experimental parameters:

e Network structure.

o Credibility level, 4.

e Query type (Diamond network).

e Number of evidence variables (Random networks).
e Number of query variables (Random networks).

In no case did we observe a result where the average |§ — 8] exceeded 0.2. In most cases,
the error was less than /3. Note that, even if our error-bars were exact, we would get
non-zero results due to the variance in the simulation process. Therefore we believe that
these results comfortably bound the expected error of our method under the experimental
conditions. None of the variables that we manipulated had a profound effect. The strongest
effect observed was that increasing the number of variables assigned in a query tended
to increase the error in 4. One possible explanation is that, by increasing the number of
variables assigned, we tend to decrease the number of parameters involved in computing
the answer. This could make the Normality approximation less accurate, as it depends on a
limiting result for the sum of the individual parameter errors. Another possibility is that, by
increasing the number of assigned variables, the answer probability tended to become very
small, and thus floating point imprecision became more of an issue. Further experiments
could address this issue.

We found these results very encouraging — our method appears to give reasonable error-
bars for a wide range of queries and network types. This makes it a promising technique
to add to the array of data-analysis tools related to belief networks, especially as it is rea-
sonably efficient, roughly doubling the computation time per inference. There must be
pathological cases where our method will not give reasonable results, when the local linear-
normal assumption is far off the truth (although we did not find any in our experiments).
Nevertheless, error-bars are an important source of information about the underlying distri-
bution around a point estimate, and even approximate error-bars such as these can provide
valuable guidance for decision-making or learning.
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Chapter 6
Conclusion

In this dissertation we explored issues that arise because of the uncertainty in estimates
of belief network parameters. This uncertainty is represented by a posterior distribution
over parameters (Bayesian perspective) or an unknown sampling distribution (Frequentist
perspective). The uncertainty in parameter values adds a new level of uncertainty to the
uncertainty already expressed by the probabilistic model itself. We explored the implications
for learning network structure and for making inferences based on network parameters.

We looked at the problem of model selection, where the major issue is how to handle the
bias-variance trade-off: more complex models have a lower bias but more variance in their
parameters. We presented a theoretical and empirical comparison of how various model
selection criteria operationalize this trade-off. There is no “first-principles” justification for
one criterion over another, as we have shown. The choice of a model selection criterion,
therefore, ought to reflect prior knowledge and pragmatic concerns. Prior knowledge and
pragmatic concerns are often a matter of intuition, and it can be difficult to capture those
intuitions formally, as a scoring function. It is therefore of interest to compare criteria across
a variety of domains, to see how they behave in practice, in order to decide which criterion to
apply to a particular learning problem. To this end we carried out an empirical comparison
of model selection criteria.

We found that a minimum description length criterion was slow to converge, and thus
tended to underfit. Akaike’s information criterion performed reasonably well as an estimator
of true error, except on complex true distributions or small samples, where its slow rate
of convergence also led to underfitting. Both the AIC and MDL criteria are based on
asymptotics, and thus convergence rates are critical to their performance. A bootstrap
criterion led to overfitting in most cases, as it seemed to reflect sample error as much
or more than true error. The prequential criterion and 2-fold cross-validation performed
reasonably well on all the problem spaces we considered, being good predictors of true
error. Results such as these, complemented by an understanding of the theoretical issues
involved, can provide guidance in making the decision to use a particular criterion for a
particular learning problem.

We also looked at the uncertainty in inferences based on belief network parameters.
We derived approximate error-bars for belief network inferences, based on a linear approx-
imation to the error of an inference, and a Normal approximation to its distribution. By
propagating the variances and covariances of parameters through their partial derivatives
with respect to the inference, we were able to derive an approximate variance for the error
of a query, and thus provide a credible interval for it. In this derivation, we relied heavily
on the conjugate property of belief networks with Dirichlet priors (Theorem 1) to make the
analysis tractable. A major difficulty in computing the error-bars was the subproblem of
computing the partial derivatives of network parameters with respect to an inference. We
gave an efficient algorithm for solving this subproblem, based on the belief network infer-
ence procedure known as bucket elimination. Last, we presented the results of an empirical
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study showing that the approximations involved in our method are reasonable and scale up
to non-trivial problems.

Bayesian methods figured prominently in our research. In the area of model selection,
we saw how using the mean parameter vector (the Bayesian predictive distribution) rather
than the maximum-likelihood parameters made the goodness of fit a better predictor of true
error. As well, one of the more elegant model selection criteria, the prequential criterion,
has a plausible interpretation as a Bayesian method. For error-bars, credible regions turned
out to be much easier to derive than confidence regions. In both cases, the advantage of
Bayesian methods resulted from the conjugate property of Dirichlet priors, and the ease of
integrating out the parameters under the posterior.

There remain some areas for future work. In particular, we considered only belief net-
works over discrete-valued variables with Dirichlet priors. There is a broader class of graph-
ical models to which some or all of these results may be applicable. We are interested in
extending this work to other kinds of networks. There is the also the issue of “incomplete”
data — our analyses assumed® that the sample was a collection of complete assignments to
all network variables. In practice, there are cases where some values are absent, or where
one is given several heterogenous databases to learn from. Different methods for parameter
estimation are required for these situations, with consequences for theoretical analysis.

Handling uncertainty when you’re handling uncertainty is a fundamental problem in
machine learning. We often have a need to represent and reason with uncertain knowledge,
and it is often the case that such uncertain knowledge is itself the outcome of a learning
process which imparts an additional level of uncertainty. Belief networks are a general rep-
resentation scheme for uncertain knowledge about stationary domains, and belief network
inference is a general method for inference about such domains. Choosing a network struc-
ture is a difficult problem in learning a belief network from data — it involves trade-offs
between simplicity and generalizeability, bias and variance. Once a structure is chosen and
parameters are estimated, a belief network is used to do probabilistic inference. Here a dif-
ficult problem is propagating the uncertainty in the parameter values during the inference
process. These are the two problems that we have addressed. Our results provide guidance
for making the trade-offs of mxodel selection, and provide a method for giving approximate
error-bars for inferences. Together, we believe these results are an important addition to
the science of learning and reasoning with belief networks.
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Appendix A

Distributions Used

The properties of the distributions given in this Appendix are described in most inter-
mediate level texts on Mathematical Statistics. A good reference which we use is Wilks
(1962). The code that generates random variates is either based on obvious properties of
the distributions, or comes from Newman and Odell (1971).

The Multivariate Bernoulli Distribution

Suppose we have n discrete variables X ... Xn, and X; = {0,1} fori = 1 ton. An (n —1)-
variate Bernoulli distribution on these variables is given by:

n
Ber(Xi ---Xn | 61 ...6n) = [[ 6

i=1

subject to the constraints: 6, +---+6, =1, X1+ ---+ X, =1and §; >0fori=1to
n. Note that this is an (n — 1)-variate distribution because the variables are constrained
by a linear equation that defines an n — 1 dimensional surface in ®". The mean of this
distribution is & = {8, ...0,), and the variance-covariance matrix is given by:

8;(1-86;) ifi=j
—6:6; otherwise

gij =
To generate a random value from this distribution, carry out the following algorithm:

Random_Bernoulli(n, theta) =

BEGIN
x = NEW(VECTOR, n)
p = Random_Uniform(0.0, 1.0)

q=0.0
FOR i =1 TO n DO
IF (q < p AND p <= q + theta[il)
OR (q <= p AND p < q + theta[i]) THEN

xfi] = 1
ELSE
x[i] :=0
END
q := q + thetali]
END
RETURN x
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The Binomial and Multinomial Distributions

The (n — 1)-variate Multinomial distribution is a distribution on the discrete variables
A ... Ap, where the vector A is the vector sum of m instances of (X; ... X,), drawn from
an (n — 1)-variate Bernoulli distribution with parameters 6} ...6,—;. It is given by:

m!

MUlt(A1 L AR | m, 6, -'-gn) = m91A‘ ---9,,‘4"
! n!

subject to the constraints: 6, +---+6, =1, A;+---+ A, =mand 4; > 0,6; >0fori=1
to n. The expectation is (m#d; ...m#é,), and the variance-covariance matrix is given by:

_f mé:;(1—-6;) fori=j
95 = —mb.6; otherwise

The Binomial is the special case of the Multinomial for n = 2. The following procedure
returns a random value from a Multinomial:

Random_Multinomial(n, theta, m) =
BEGIN
A = NEW(VECTOR, n)
FOR i =1T0 n DO
Afil =0

1 TO m DO
Random_Bernoulli(n, theta)
j=1T0 n DO

A(i] := A(i] + x[i]

END

The Gamma Distribution

The Gamma distribution is described here because of its relation to the Beta and Dirichlet
distributions, which follow. It is a distribution on a continuous variable X whose domain is
X = (0, 00), the positive real numbers. It is given by:

Ga(X | A, p) =T(w) T (AX)# e X
where the Gamma function is defined as follows:

o0
C(p) = / X+ le=X dx
1]

Note that ['(z) = (u — 1)T'(x — 1). Thus, when u is a positive integer I'(u) = (u — 1)L
The expectation and variance of the Gamma distribution are both equal to z when A = 1.
The following procedure generates a random value from a Gamma distribution when p is
an integer:

Random_Gamma (lambda, mu) =

BEGIN

TO mu DO
= sum - ln(Random_Uniform(0, 1))

m
Q
=+
.

v O

RETURN sum / lambda
END
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The Beta and Dirichlet Distributions

The (n — 1)-variate Dirichlet is a distribution on the n — 1 parameters of an (n — 1)-variate
Bernoulli distribution; the Beta distribution corresponds to the special case where n = 2.
It is given by:
ela;—-l .. @na..—l

D(ay - -.an)

The Beta distribution corresponds to the special case where n = 2. D(aj...ay) is the
Dirichlet integral, given by:

D(al ---an) = f___f@lax—l .__@na..—l d@l .. d@n
C(a1)---T{an)

Flai+--+aa)

Dir(@l...On | 01...(1,1) =

The mean vector of a Dirichlet distribution is given by 8; = a;/(a; + - -- + ay), the mode
vector is given by §; = (a; —1)/(a1 +- - - an —n), where it exists, and the variance-covariance
matrix is given by:

ai(ay+--+an—a;) ifi=4
— J Tarr—Fen)Hai+ FantD) =7
i — otherwise
(a1+-+an)(ar+--+aa+I)

The following procedure generates a random value from a Dirichlet distribution when the
a; parameters are all positive integers (which is the case for many applications):

Random_Dirichlet(n, alpha) =
BEGIN
x = NEW(VECTOR, n)
y = NEW(VECTOR, n)
sum = 0.0
FOR i =1 TO n DO
x[i] := Random_Gamma(1.0, alphafi])
sum := sum + x[i]

END
FOR 1 =1 TO n DO
y[i]l := x[i] / sum
END
RETURN y
END

42



Appendix B

Properties of f(© | a + «a)

Here we demonstrate some important properties of the posterior distribution f(© | a + a),
which follows Bayesian updating of the prior distribution. In particular, we claim that, for
a fixed network structure, when the prior over the parameter space is given by a product
of Dirichlets, one for the parameters of each CP-table row (each row is the conditional
multivariate Bernoulli distribution of a node given its parents), then the following hold:

e Theorem 1 (Conjugate Property): The posterior has the same form as the prior and
its parameters are given by updating the individual Dirichlet distributions. In other
words, each row of a CP-table is independently Dirichlet-distributed in the posterior
distribution, as it is in the prior.

e Theorem 2 (Model Averaging): The predictive distribution, which involves averaging
over all models according to their distribution, is the model which is the mean of the
distribution over parameter space.

e Corollary of Theorem 2 (Prequential Likelihood): The form of the predictive likeli-
hood, which also involves marginalizing out the parameters of the network, but defines
a distribution over all samples of size m, is given by the product of the probabilities
of each datum, given the posterior for the data that preceded it in the sample (order
is irrelevant).

We prove these properties here for the special case where all network variables are binary, and
CP-tables are complete; the generalization to n-ary variables and marginalized CP-tables
is conceptually straightforward, but the notation becomes cumbersome. See also Cooper
and Herskovits (1992) who make these claims without proof (their proofs are available in
a technical report). Dawid and Lauritzen (1993) present more general results. We present
these results here to make the paper self-contained.

First we derive the likelihood function L(d | m, ©). Because d is a sequence d; ...d, of
i.i.d. instances of X; ... X,, we can write:

L(d|m,®) =ﬁP(di | ©)

=1

And, because we interpret our model as a conditional factorization of a joint probability
distribution, we can write:

P(d; | ©) = H.Pj(l'ij | wij)

=1
where z;; is the assignment to X in d;, and w;; is the joint assignment to W; in d;.
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Since Pj(z:; | wij) is a network parameter, or pseudo-parameter, we can rearrange the

factors as:
k

L(d|m,0) =[] o:*
i=1
where a; (as previously defined) is the observed frequency in the sufficient statistic for ©.
Next we derive the posterior density function for ©. Baye’s theorem gives us:

Ld|m,©6)f(©]«a)

f@lete) = T m 6)/(0 &) d®

We can take the parameters to be jointly Beta-distributed. in pairs, (Q;4+; = 1 — ©; when 7
is odd) and given our previous equality for the likelihood function, write the posterior as:

fO@|la+a)=
©1°102°2Be(01]ax1,02)-- Bk —1°%—10,°%Be(Or_1]ar—1.xk)
f'”fel°"ez"2Be(ellcl.az)"'eh-l"""leh""Be(ek—llak-x.ak) dB;--- dBk_,

Using the definition of the Beta distribution, and our assurnptions about the form of ©, for
i1=1tok:

;%01 %' Be(0; | i, @ip1) = 0;%(1—0;)%+19;% (1 —0;)*+ "1 D(qy, Qit1)
= 9T (1 - @;)esn*t*+1-1 D0y, 0i41)

We can then cancel the Dirichlet integrals in the top with those on the bottom, and factor
out the integration to get:

fO@le+a)=

et Tia_@y)erter-l. @ik it -1 TR g, g )ekten-!

j: ©,°1t01-1(1-0,; )e2+az—1 del---f: Ok 1*k—1Foke—171 (1@, _ )% +or—1 dO,_,

and since the integrals in the denominator are equal to Beta functions (Dirichlet integrals
with two parameters) it follows that:

f(@|la+a)=Be(®O; |a; +a1,a2 +a3)---Be(Op—1 | ax—1 + ax—1,ar + az)

a product of independent Beta distributions, one for each row of a CP-table (Q;,©;.;) (for

i odd), as claimed. Furthermore, the posterior parameters are updated by just adding the

statistic a to the prior parameters, a. This proves the binary variable version of Theorem 1.
Theorem 2 follows directly. The predictive distribution is given by:

QX |a) = / P(X | ©)£(O | ) dO

where o is the current parameter of the distribution over parameter space, regardless of
whether it is conditioned on observed data or not. Qur claim is that:

QX |a)=P(X|6)

where § is the mean of the posterior distribution, given by 8; = a;/(a; + 8;) for i = 1 to k.
Note that, for a particular full instantiation z; ...z,, P(zy .-.Zn | ©) depends on at most
one parameter per CP-table row. So the predictive distribution is given by a product of n
independent factors of the form:

&Xif1 _ O.\B:i—1 i i
/ O;Be(0; | a;, 5;) dO; = / < 1(71(01',%:’)) 0 = Dg(zc:, ]l;i,)al)
_ D+ DIB)T(as +8:) _  (el(e)T(ai+f) _ o

- I‘(a,- —+ ﬂi -+ 1)F(ai)I‘(ﬂ,-) - (ai <+ ;3.-)I‘(a,- -+ B;)I‘(a,-) - a; + B;
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as claimed.
A corollary of this is that the predictive likelihood, PL(d; ...dm | m,a), is given by a
prequential algorithm:

PL(d | m, ) [Ld|m,©)f(®]|a)d®

JIZ, Pd:|9)f(©]a)do

ST, ©:%f(0|a)do

J©:1%'(1 - 0,)"Be(O1 | a1,81) dOy

S Ok_1% (1 ~ Op_1)*-1Be(Ok—1 | ak—1,B8k-1) dOx_,

where a and b are the observed frequencies in d, and where, as previously, we take each pair
of parameters, (0;,©;1+;) (¢ odd) to be jointly Beta-distributed. Then, for each i simple
algebra gives us:

f@ia" (1 — @i)b‘ Be(ei | ai;ﬂi) dei
e'_u‘-+a"—1 1-6; bi+8;—1
= f D((cx.-,ﬁ.')) d®:
D{ai+aibi+8:

o
v
]
5

(ait+ai+bi+Bi—1)-(a:+8:)

And we can see from this that the predictive likelihood is given simply by iteratively cal-
culating the probability of each instance of the sample, then updating the parameters, and
repeating the process using the resulting model, as we can rearrange the factors on the top
and bottom of the fraction above to be in the appropriate sequence.

45



