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Abstract

In this thesis, we first introduce two basic problems of filter, the nonlinear

filtering and model selection problem. We show that both of them can be

solved by the unnormalized filter approach. Then several web based particle

filter algorithms will be discussed. We extend the resampled and branching

system on single computer platform to a web based platform. The performance

and execution time of these algorithms will be compared upon two simulation

models. We define a parameter, called ”Bootstrap Factor”, which is a reason-

able way to compare different particle filters. By Bootstrap Factor, we show

that the web based branching system performs much better than the double

resampled system.
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Chapter 1

Introduction

In section 1.1, we will review the history and discuss the current applica-

tions of particle filters. In section 1.2, two main problems, the tracking and

model selection, of particle filters will be described. We will show how to use

the unnormalized filter approach to solve these two problems. In section 1.3,

the ideas of numeric approximation and the computer implementation will be

briefly explained. Finally in section 1.4, we will show the main contributions

and outline of this thesis.

1.1 History and Current Application

The filtering theory was first proposed by Norbert Wiener during the Sec-

ond World War, in the 1940s (see [1]). The main objective of the Wiener

filter is to estimate an unknown linear time-invariant signal by inputting and

filtering a related signal to output the estimation. The Wiener filter mainly

deals with the case that the time is continuous. The discrete-time version

of Wiener filtering was derived by Andrey Kolmogorov in 1941 thus the the-

ory is also called the Wiener-Kolmogorov filtering theory (see [2]). It is a

frequency-based approach and as such can not be used effectively in real time

applications. Nevertheless, it is used in communications and motivated many

other filter theories, including the very famous Kalman filter.
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The Kalman filter is named after Rudolf Emil Kalman, who was the inven-

tor and developer of the Kalman filter. Richard S. Bucy also contributed to

the theory thus the filter is also called the Kalman-Bucy filter. This filter was

first described and published in technical papers by Swerling (1958), Kalman

(1960) and Kalman and Bucy (1961) separately (see [3], [4], [5]). It deals with

the linear Gaussian dynamic system and the main objective is to estimate the

internal state of the system from a series of noisy measurements. It is a recur-

sive estimator which means that to estimate the current state, one only needs

to know the state of the previous time step and the current measurement.

The most famous application of Kalman filter is that it was used in the Apollo

program to help send rockets to the moon.

Following after Kalman’s work, Duncan, Mortensen and Zakai, from 1967

to 1969, considered the non-linear filtering problem and independently devel-

oped an equation for the unnormalized conditional probability density function

of the nonlinear filtering problem, which is known as Duncan-Mortensen-Zakai

equation (see [6]).

Stratonavich was the first to develop the probabilistic approach to nonlin-

ear filtering problem in Russia while Kalman and Bucy were formulating the

Kalman filter theory in United States, in 1959 (see [7]). Kushner developed

the continuous nonlinear filter theory independently and a lot of subsequent

work in nonlinear filtering field was done by him in the 1970s, including the

Kushner-Stratonovich equation, which characterises the evolution of the condi-

tional distribution of nonlinear filtering (see [8]). In 1972, Fujisaki, Kallianpur

and Kunita rigorously developed the theory of stochastic differential equa-

tions for the nonlinear filtering problem. Their work was so important that he

Kushner-Stratonovich equation is often called the Fujisaki-Kallianpur-Kunita

equation (see [9]).

In the meantime, Kallianpur collaborated with Charlotte Striebel on the

stochastic differential equations which occurs in the estimation of the contin-

uous parameter stochastic processes in 1969. They developed a Bayes formula

to convert the unnormalized filter to the normalized one and their work is
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known as the Kallianpur-Striebel formula (see [10]).

The Kushner-Stratonovich and Duncan-Mortensen-Zakai equations are mul-

tiply infinite dimensional and hence not implementable on a computer. How-

ever, in 1970 Handschin and Mayne proposed the sequential Monte Carlo

method to implement an approximation of nonlinear filters on a computer

(see [11]). Their solution has become known as weighted particle filter and it

is still used today even though it often suffers from particle spread.

Then in 1993, Gordon et al. proposed the first resampled particle filter

that would move particles with low weights to locations of high weights (in an

unbiased manner) thus avoiding particle spread (see [12]). They named their

algorithm the bootstrap filter. There is no assumption about the state-space

nor the noise of the system for either the weighted or bootstrap algorithms.

The noise can be non-Gaussian and the signal equation nonlinear.

Nowadays, there are variety of exciting applications of the particle filters in

wide fields, including the defense, communications, aerospace, econometrics,

medical imaging, clickstream analysis, earthquake data analysis and weather

prediction. In the defense field, one may use the particle filter to track an

aircraft or submarine by the information obtained from radar or sonar. In the

communications field, one may use the particle filter to eliminate the noise

in signal transmission. In finance, particle filters are used to predict stock

price or estimate volatility. For the clickstream analysis, particle filters can

characterize the user and select the most appropriate ad or adapt a website

to optimize the user experience. However, the current driving application of

particle filter research is weather prediction.

1.2 Problem Description

1.2.1 Nonlinear Filtering

Nonlinear filtering deals with estimating the current state of a non-observable

signal X based on the history of a distorted, corrupted partial observation
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process Y living on the same probability space (Ω,F , P ) as X. In many prac-

tical problems the signal model lives in some complete, separable metric space

(E, ρ) and is a time-homogeneous discrete-time Markov process while the ob-

servations are finite dimensional. Thus, in this thesis, we take the signal and

observation model as the following:

SignalModel : P
(
Xk ∈ A

∣∣FX
k−1

)
= K (Xk−1, A) , X0 ∼ π0, (1.1)

ObservationModel : Yk = h(Xk−1) + Vk, Y0 = 0, (1.2)

where K is the transition kernel of the signal, FX
k−1 is the σ-algebra which

contains all the information from the signal up to previous time and h is

the sensor function, which is a measurable mapping from E to Rd. {Vk} is

an independent sequence of random variables each with a bounded, strictly

positive density function g and π0 is the distribution for initial value of signal.

Figure 1: Signal and Observation Model

Figure 1 is a visualization of a signal and observation model. The signal,

which is in the dashed circle, is a hidden Markov process that mutates by the
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transition kernal K. At each time step, the model outputs an observation in

the solid rectangle, which consists of a distorted (by the sensor function h)

signal measurement that is corrupted by random independent noise.

The main objective of the nonlinear filtering problem is to calculate the

conditional probabilities:

πk (A) = P
(
Xk ∈ A

∣∣FY
k

)
, k = 1, 2, ..., (1.3)

for all Borel sets A where FY
k

.
= σ{Yl, l = 1, ..., k} contains all the information

from the previous observations, or equivalently, to compute the conditional

expectations:

πk (f) = EP
(
f (Xk)

∣∣FY
k

)
, k = 1, 2, ..., (1.4)

for all bounded and measurable functions f mapping from E to R. In the

sequel, we refer to {πk} as the filter or the filter process.

Example 1.1. The signal and observation models are defined by:

Xk = 0.95Xk−1 + 0.3Wk

Yk = Xk−1 + Vk,

where X0, {Wk} and {Vk} are independent with standard Cauchy distribution.

It is a non-Gaussian problem. In Figure 2, we use the residual branching

particle filter (to be explained in the sequel) to track the signal Xk. The main

objective of this example is to show how a particle filter works on tracking an

unknown signal using the observations. From the picture, it is obvious that

our filter is much closer to the true signal than the observations. In another

word, the filter uses the information from observations but eliminates some of

the noise.
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Figure 2: Example of the nonlinear filtering problem

1.2.2 Model Selection

Most often, the transition kernel K in the signal model (1.1) is unknown.

In these cases, we can only guess the model by our experience or some physical

and chemical laws. However, there may be a number of possible models so

we need to choose the most likely one based upon the data and this is the

model selection problem. For example, in tracking financial data we may have

different stochastic volatility models, knowing any of them may perform best

for a period of time. Even if the model is known in form up to an unknown

parameter, we can still treat the model form with different parameters as

different models and use the model selection to identify the parameter.

The Bayesian model selection deals with determining which of a class of

signal model {x(i)}i∈I best fits the back observations {Y1, Y2, ..., Yk} by com-

paring pairwise Bayes’ factors, like:

B12
k =

EQ[lk(Y |x(1))|FY
k ]

EQ[lk(Y |x(2))|FY
k ]
, k = 1, 2, ..., (1.5)

where Q is a reference probability, Y is the pure noise with respect to Q and

lk(Y |x(i)), k = 1, 2, ... is the likelihood process that turns Yk+1 = Vk+1 into the



7

observations Yk+1 = h(x
(i)
k ) + Vk+1 for each i.

We provide a simple example to demonstrate Bayesian model selection.

Example 1.2. Consider five different signal models with the same observation:

Model Number Signal Equation Observation Equation

-2 Xk = 0.5Xk−1 + 0.3Wk Yk = Xk−1 + Vk

-1 Xk = 0.6Xk−1 + 0.3Wk Yk = Xk−1 + Vk

0 Xk = 0.7Xk−1 + 0.3Wk Yk = Xk−1 + Vk

1 Xk = 0.8Xk−1 + 0.3Wk Yk = Xk−1 + Vk

2 Xk = 0.9Xk−1 + 0.3Wk Yk = Xk−1 + Vk

X0, {Wk} and {Vk} are independent with standard Cauchy distribution.

Model (0) is the true model and others are incorrect guesses. The main

objective is to select the correct model by minimizing the final Bayes Factor:

B0,i
k =

EQ[lk(Y |x(0))|FY
k ]

EQ[lk(Y |x(i))|FY
k ]
, k = 1, 2, ..., i = −2,−1, 0, 1, 2 (1.6)

In this way, Model (i) is more likely to be the true model than Model (j) if

B0,i
k is closer to 1 than B0,j

k and we show the result in Figure 3. It shows that

Model (−1) and Model (1) are more closer to the true model, which is Model

0.
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1.3 Numeric Approximation

1.3.1 Particle Filter

To implement filters on computers, one needs a numeric approximation to

the filter. The particle filter, a sequential Monte Carlo method, is a popular

way to estimate the normalized filter. A particle filter estimates the unnor-

malized filter σk(f) by

σn
k (f) =

n∑

i=1

likf(x
i
k), k = 1, 2, ..., (1.12)

where n is the number of particles and initial particles {xi0}ni=1 are drawn

independently from π0.

Recalling the normalized filter πk(f) is recovered form the unnormalized

filter by

πk(f) =
σk(f)

σk(1)
, (1.13)

one can find particle filter estimates for πk(f) by

πn
k (f) =

σn
k (f)

σn
k (1)

=

n∑
i=1

likf(x
i
k)

n∑
i=1

lik

, (1.14)

where n is the number of particles.

1.3.2 Web Based Particle Filter

To estimate the filter accurately, one may need a large number of particles

especially when the signal and observation models are complicated. Therefore,

one computer can not deal with such a huge particle filter system and a web

based platform is necessary. On a web based platform, one can estimate the
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unnormalized filter σk(f) as

σN,n
k (f) =

N∑

i=1

n∑

j=1

li,jk f(x
i,j
k ), k = 1, 2, ..., (1.15)

and the normalized filter πN,n
k (f) as

πN,n
k (f) =

σN,n
k (f)

σN,n
k (1)

=

N∑
i=1

n∑
j=1

li,jk f(x
i,j
k )

N∑
i=1

n∑
j=1

li,jk

, (1.16)

where N is the number of computers and n is the number of particles on each

computer. Compared to the single computer platform, one can expand particle

size N times as there are totally Nn particles on the web based platform, which

is meaningful for both the performance and execution time of particle filter.

1.4 Contributions and Outline

The main contribution of this thesis is that with my supervisor Dr. Michael

Kouritzin, I extend the resampled and branching system based on the single

computer platform (see Kouritzin [13]) to a web based platform. Although the

double bootstrap method was first introduced by Christelle et. al. (see [14]),

the double residual, stratified, systematic, combined and web based branching

are totally new algorithms. By simulation results, we show that the branching

system is not only easy to be parallel implemented but also performs much

better than any double resampled system.

In Chapter 2, we will review resampled and branching system on the single

computer platform and explain how to implement resampled and branching

system on a web based platform. The algorithms will be provided. In Chapter

3, we compare the performance and execution time of the web based resampled

and branching system on the two simulation models. A parameter for com-

paring, which we call it ”Bootstrap Factor”, is defined and used to show the
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web based branching system is so much better than the web based resampled

system. For the convenience of readers, we put all the proofs and calculations

in Chapter 4, the Appendix.
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Chapter 2

Particle Filter Methods

In section 2.1, we will review the resampled and branching systems on

single computer platforms. Then in section 2.2, these two systems will be

extended to a web based platform. We will explain the general idea of parallel

implementation and the algorithms will be given.

2.1 Single Computer Platform

2.1.1 Weighted Particle Filter

The weighted particle system does not resample. In this case, the weighted

conditional expectation

σk(f) = EQ[lkf(xk)
∣∣FY

k ], (2.1)

with respect to the reference probability Q is replaced with an independent

sample average to arrive at

σn
k (f) =

1

n

n∑

i=1

likf
(
xik
)
, (2.2)

where n is the number of particles, f is a bounded function and the particles

{xi}∞i=1 are independent (π0, K)-Markov processes that are independent of the
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observations Y and the weights satisfy

lik =
k∏

j=1

wi
j, i = 1, 2, ..., n, (2.3)

with

wi
j = αj(x

i
j−1) =

g
(
Yj − h

(
xij−1

))

g (Yj)
, i = 1, 2, ..., n. (2.4)

Then, σn
k (f) is our weighted-particle estimator of σk (f) and

σn
0 (f) =

1

n

n∑

i=1

f
(
xi0
)
, (2.5)

as all particles have the same weight li0 = 1, i = 1, 2, ..., at the initial time step.

Example 2.1. Suppose there is a hidden Markov process defined by xk =

0.95xk−1 + 0.3wk, x0 ∼ π0 for k = 1, 2, ...,, where wk is a random noise with

standard Cauchy distribution. Now, we only have observations Yk defined by

Yk = xk−1+vk, where vk is a random noise with strictly, positive bounded den-

sity function g = 1
π(1+x2)

. The bounded function f in this flow chart example

is defined by:

f(x) =





30 : x > 30

x : −30 ≤ x ≤ 30

−30 : x < −30

.

The flow chart in Figure 5 gives the process of weighted particle system.
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Figure 5: Weighted Particle Filter

2.1.2 Bootstrap Particle Filter

Sometimes, the iteration of evolution of particles leads to a degeneracy

problem, that only a few particles have significant weights and all the other

particles have very small weights. Doucet et. al. have illustrated that the

degeneracy problem is unavoidable in the weighted particle filter (see [15]). To

solve the degeneracy problem, people introduce resampling into particle filters.

Here, we still use the example in 2.1 and a flow chart, Figure 6, to visualize the

resampled system, which includes bootstrap, residual resampling, stratified,

systematic and combined stratified-residual resampling particle filters.
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Figure 6: Resampled Particle Filter

Due to resampling, the weight in the resampled particle filters is just the

one-step likelihood,

lik = αk

(
xik−1

)
, i = 1, 2, ..., n, (2.6)

instead of the multi-steps
k∏

j=1

αi
j

(
xij−1

)
as the weighted one, where

αk (x) =
g (Yk − h (x))

g (Yk)
. (2.7)

Before resampling, the weight is normalized by

wi
k =

lik
lk
, i = 1, 2, ..., n, (2.8)

where lk =
n∑

i=1

lik.

Notice here we estimate the unnormalized filter σk(f) before resampling
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to avoid introducing more noise. To be clearer on notation, we use x̂ik+1 for

particle location after evolve but before resampling and xik+1 for particles after

resampling.

The bootstrap method, by Gordan et. al. (1993) (see [12]), was the first

and is still the most popular resampled particle filter. The idea of the bootstrap

method is particle xik will be selected by the probability of its normalized

weight wi
k. One possible implementation is to divide the interval [0, 1] into n

small intervals with the length of i’th interval being wi
k, i = 1, 2..., n, which is

the weight of corresponding particle. More specifically, the small interval is

[pi−1, pi], for some i = 1, 2, ..., n, where

pi =
i∑

j=1

wj
k, p0 = 0. (2.9)

Then, each time before selecting a particle, a random number um is generated

by [0, 1]-uniform distribution. If um drops into the interval [pi−1, pi), then the

particle location x̂ik will be selected for a new particle xik+1.

However, this approach is not efficient when implemented on computer

since one must compare each um to each interval [pi−1, pi]. As there are n

intervals and we need to select n particles, the computer will have O(n2) oper-

ations when resampling. To implement bootstrap resampling more efficiently,

we create the order statistics vm by

vm = u
1

m
m vm+1, m = n, n− 1, ...1, (2.10)

where vn+1 = 1 and um has [0, 1]-uniform distribution. Since vm increases in

m, then if vm+1 drops into the interval [pi−1, pi), we only need to compare vm

with the intervals [pj−1, pj] for j ≤ i instead of all j = 1, 2, ..., n. Therefore the

computer will only have O(n) operations when resampling. In Figure 7, we

visualize the bootstrap resampling by a flow chart that fits in the lowest box

in Figure 6
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Figure 7: Bootstrap Method at time step k+1

2.1.3 Residual Resampling Particle Filter

The idea of the residual resampling is redistributing fewer particles by pre-

serving the particles with high weights, which implies less noise is introduced

when resampling. This method was first introduced by Liu and Chen (1998)

(see [16]). The residual resampling method has two steps: preserve and resam-

ple. In preserve step, the multiplicity to preserve the particle location x̂ik is

defined by bnwi
k+1c, where n is the number of particles. We count the number

of preserved particles as preserve number s. Then in the resample step, we

only need to select n−s particle locations by the bootstrap method. In Figure

8, we visualize the residual resampling method by a flow chart.
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2.1.4 Stratified Particle Filter

The idea of the stratified resampling method is to generate the uniform

random number in a smaller interval, whose length is 1
n
, rather than the inter-

val [0, 1]. Thus, less randomness is introduced when resampling. This method

was first introduced by Kitagawa (1996) (see [17]). In Figure 9, we visualize

the stratified resampling method by a flow chart.

Figure 9: Stratified Method at time step k+1

2.1.5 Systematic Particle Filter

The systematic resampling method is a modification of the stratified method

by Carpenter et. al. (1999) (see [18]), which is easier and more efficient to im-

plement. The idea of the systematic method is that instead of generating the

uniform random number each time before selecting a particle, we only generate

one random number u from [− 1
n
, 0]-uniform distribution prior to resampling.

Then each time before selecting a particle location, the random number um is
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(see [19]), it is reasonable to combine these two methods together, which means

we still preserve the particles with high weights but resample the left over

particles by the stratified method. Notice that after preserving s particles by

the residual method, we only need to select n − s more particles, which can

be done using the stratified method. Therefore we divide the [0, 1] interval

to n − s smaller intervals here instead of n smaller intervals in the stratified

method. We also visualize combined resampling method by a flow chart in

Figure 11.
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2.1.7 Branching Particle Filter

The branching particle filter starts with n initial particles and each par-

ticle may be preserved, duplicated or killed during branching process based

on its weight. Instead of complete resampling in the resampled systems and

no resampling in the weighted particle filter, branching particle filter is a par-

tial resampling method. Similar to the weighted particle filter, the weight in

branching particle filter is also defined by the multi-steps likelihood

lik+1 = αk+1(x
i
k)l

i
k, l

i
0 = 1, i = 1, 2, ..., nk, (2.12)

where nk is the number of particles at time step k. We show the general steps

of the branching particle filter in Figure 12 and discuss the more detailed

branching process in Figure 13 and 14.

Figure 12: Branching System

The idea of the branching particle filter is that we preserve particles whose
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Similar as the resampled system, there are also different ways to redis-

tribute particles in the branching particle system. By the idea of stratified

resampling, we can add it into our branching system to help control particle

number and decrease noise. The idea is instead of generating the random

number by [0, 1]-uniform distribution, we generate the random number in a

smaller interval [ k−1
nk−m

, k
nk−m

], where m is the non-resample count. Therefore

the particle number can be more stable. We visualize the combined branching

process in Figure 14.
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2.2 Web Based Platform

2.2.1 Double Bootstrap

The double bootstrap, which is also called the island particle method, is

developed and studied by Christelle et. al. in 2013 (see [14]). The idea of the

island particle method is as follows: the total population of particles is divided

into the sub-populations, referred to as islands. In this way, resampling of the

total population of particles is divided into two steps: resampling between

islands and within each island. In practice, we can consider each computer as

a platform to implement one island and then a large population of particles,

which is unable to be implemented efficiently on one computer, can be divided

to multiple computers so that each computer only needs to deal with a smaller

sub-population of particles.

This web based particle filter can speed up the computation as we can

divide the whole population of particles into multiple computers.This filter

will be closer to the optimal filter, as more particles can be used at the same

time.

Hereafter, we suppose that there are N islands each with n particles. Thus,

the sub-population of particles on the island i at time step k can be expressed

by Xi
k = (xi,1k , x

i,2
k , ..., x

i,n
k ). In the double bootstrap method, bootstrap will be

used to resample between islands before resampling within each island. An

island also has its own weight, defined by:

L̂
i
k =

n∑

j=1

l̂i,jk , i = 1, 2, ..., N, (2.15)

the sum of weights of all the particles on the island. Then, during resampling,

each island can be selected by the probability of its normalized weight.
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Figure 15: Resampling Between Islands of Double Bootstrap

Example 2.2. Here is a simple example to show how resampling between is-

lands works. There are 5 islands X1
k,X

2
k,X

3
k,X

4
k,X

5
k, with normalized weight

0.10, 0.40, 0.30, 0.15 and 0.05, which are displayed in Figure 15.

Because of the randomness of resampling, here we just describe one possible

case. During resampling, firstly the forth island X4
k is selected, which means

the data of all particles on Island 4 will be copied and passed to Computer 1

to form a new Island 1. Then Island 3 is selected once and Island 2 is selected

two times due to its high weight. Thus the data of all particles on Island 3 will

be copied then passed to computer 2 and the data of Island 2 will be copied

twice then passed to both Computer 3 and 4. Finally, island 1 is selected then

its data will be copied and passed to Computer 5 to form new Island 5. Island

5 will be killed because of its low weight. Suppose there are n particles on

each island, then totally there will be 5n particles passing between islands in

this example.

After resampling between islands, the particles on each island will be re-

sampled by bootstrap independently. The algorithm of the double bootstrap

particle filter is as the following. We first give the common steps for the dou-
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ble resampled system and then give the detailed steps of bootstrap resampling

between islands and within an island.

Algorithm 1 General Steps of Double Resampled System

1: Initialization:

2: for i = 1 to N do

3: Xi
0 =

{
xi,j0
}n
j=1

are independent initial particle samples of π0, VN+1 = 1

4: end for

5: for k = 0 to T do

6: Weight by Observation: l̂i,jk+1 = αk+1

(
xi,jk
)

for i = 1, 2, ..., N, j =

1, 2, ..., n

7: Normalize Particles’ Weight: wi,j
k+1 =

̂
l
i,j

k+1

L̂i
k+1

for i = 1, 2, ..., N, j =

1, 2, ..., n where L̂i
k+1 =

n∑
j=1

l̂i,jk+1

8: Normalize Islands’ Weight: W i
k+1 =

L̂i
k+1

L̂k+1

for i = 1, 2, ..., N where

L̂k+1 =
N∑
i=1

L̂i
k+1

9: Evolve Independently: P Y (x̂i,jk+1 ∈ Γi,j ∀ i, j|FX
k ) =

N∏
i=1

n∏
j=1

K(xi,jk ,Γi,j) for all Γi,j

10: Estimate πk+1: P
N,n
k+1 =

∑N

i=1

∑n

j=1w
i,j
k+1δx̂i,j

k+1

11: Resampling Between Islands

12: Resampling Within Island

13: end for
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Algorithm 2 Double Bootstrap Particle Filter

1: Resampling between Islands

2: Pi =
i∑

m=1

wm
k+1 for i = 1, ..., N , L = N − 1

3: for m = N to 1 do

4: Draw [0, 1]-uniform Um and set Vm = U
1

m
m Vm+1

5: While Vm ≤ PL set L = L− 1

6: Set Xm
k+1

.
= X̂

l+1
k+1

7: end for

8: Resampling Within Island

9: for i = 1 to n do

10: pi,j =
j∑

m=1

wi,j
k+1 for j = 1, ..., n, l = n− 1

11: for m = n to 1 do

12: Draw [0, 1]-uniform um and set vm = u
1

m
m vm+1

13: While vm ≤ pi,l set l = l − 1

14: Set xi,jk+1

.
= x̂i,l+1

k+1

15: end for

16: end for

2.2.2 Double Residual Resampling

The double residual resampling is an extension for the residual resampling

method to a web based platform. Similar as the double bootstrap, we also

divide the total population of particles into several islands. On each island,

they are resampled by the residual resampling method. Between islands, the

residual resampling will be used as well.

Resampling between islands is separated into two steps: preserve and re-

sample. In the double bootstrap resampling, some islands with higher weight

than average may still be killed by the bootstrap method. To avoid these pos-

sible cases and eliminate unnecessary noise, we preserve islands with weight,

which is higher than the average weight of all islands, and then do resampling.

The multiplicity of each island to be preserved is bNW i
k+1c, where N is the
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number of islands and W i
k+1 is the normalized weight of each island.

Figure 16: Resampling Between Islands of Double Residual Resampling

We also use a simple example to show how it works during resampling

between islands.

Example 2.3. In this example, there are 5 islands X1
k,X

2
k,X

3
k,X

4
k,X

5
k, with nor-

malized weight 0.10, 0.40, 0.30, 0.15 and 0.05, which are displayed in Figure

16.

First of all, we need to select preserved islands. It is shown in the picture

that Island 2 and Island 3 should be preserved as their weights are higher than

the average weight of 0.2. Then, by the formula bNW i
k+1c, Island 2 should be

selected twice and Island 3 be selected once. Thus, we copy the data of all

particles of Island 2 twice and then pass them to Computer 1 and 2 to form

new Island 1 and 2. As Island 3 should be selected once then the data of Island

3 is copied once and pass to Computer 3 to form new Island 3. Therefore, the

preserve number S in this simple example is 3.

After preserving islands with higher weights, we re-calculate the weight

of each island by the formula P i
k =

NW i
k
−bNW i

k
c

R
for i = 1, ..., N , where R =

N −S. The new weight P i
k is also displayed on the left side of island. Because
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of the randomness of resampling, here we just describe one possible case of

resampling. As Island 3 and Island 4 have higher new weight, thus they are

selected and copied to pass the data to Computer 4 and 5 to form new Island

4 and 5. Island 1 and Island 5 are killed due to their lower weight.

By double residual resampling method, there are also 5n particles passed

between islands when resampling between islands in this example.

The algorithm of resampling between islands and within island for double

residual resampling particle filter is as follows:
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Algorithm 3 Double Residual Resampling Particle Filter

1: Resampling between Islands

2: Preserve: S = 0

3: for i = 1 to N do

4: M = 0

5: While M < bNW i
k+1c set M =M + 1, XS+M

k+1

.
= X̂i

k+1

6: S = S +M

7: end for

8: Resample: R = N−S; P i =
i∑

m=1

N2W
m
k+1

−bN2w
k
n+1

c
R

for i = 1, ..., N ; j = n−1,

L = R− 1

9: for M = N to S + 1 do

10: Draw [0, 1]-uniform UM and set VM = U
1

M

M VM+1

11: While VM ≤ PL set L = L− 1

12: Set XM
k+1

.
= X̂

L+1
k+1

13: end for

14: Resampling Within Island

15: for i = 1 to N do

16: Preserve: s = 0

17: for j = 1 to n do

18: m = 0

19: While m < bnwi,j
k+1c set m = m+ 1, xi,s+m

k+1

.
= x̂i,jk+1

20: end for

21: Resample: r = n− s; pi,j =
j∑

m=1

nw
i,m

k+1
−bnwi,m

k+1
c

r
for j = 1, ..., n; l = n− 1

22: for m = n to s+ 1 do

23: Draw [0, 1]-uniform um and set vm = U
1

m
m Vm+1

24: While vm ≤ pi,l set l = l − 1

25: Set xi,mk+1

.
= x̂i,l+1

k+1

26: end for

27: end for
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2.2.3 Double Stratified Resampling

The double stratified resampling is an extension for stratified resampling

method to a web based platform. Similar to the double bootstrap, we also

divide the total population of particles to several islands. On each island,

they are resampled by the stratified resampling method. Between islands, the

stratified resampling method will be used to resample as well.

There will be less randomness when resampling between islands by double

stratified resampling because of generating uniform random number over a

smaller interval, whose length is 1
N
, instead of [0, 1].

Figure 17: Resampling Between Islands of Double Stratified Resampling

We also use a simple example to show how it works during resampling

between islands.

Example 2.4. In this example, there are 5 islands X1
k,X

2
k,X

3
k,X

4
k,X

5
k, with nor-

malized weight 0.10, 0.40, 0.30, 0.15 and 0.05. We put them onto the number

line to get a serial of intervals of particle weight in Figure 17. Because of the

randomness of resampling, here we just describe one possible case. According

to the stratified resampling method, the length of random number interval

is 1
5
= 0.2. Thus at first time, it generates a uniform random number from

[0, 0.2] and this number drops into interval [0.1, 0.5], which represents Island 2.
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Similarly, second random number, which is generated from interval [0.2, 0.4],

still drops into interval [0.1, 0.5]. From the picture, we can see that Island 2

will be copied 3 times and passed to other computers due to its high weight.

Island 3 and Island 4 will be copied once. However, Island 1 and Island 5 will

be killed as no random number drops into their intervals. This can happen

when island has a low weight.

By double stratified resampling method, there are also 5n particles passed

between islands when resampling between islands in this example.

The algorithm of resampling between islands and within island for double

stratified resampling particle filter is as follows:

Algorithm 4 Double Stratified Resampling Particle Filter

1: Resampling between Islands

2: Pi =
i∑

m=1

Wm
k+1 for i = 1, ..., N , L = 1

3: for m = 1 to N do

4: Draw
[
m−1
N
, m
N

]
-uniform Um

5: While Um ≥ PL set L = L+ 1

6: Set Xm
k+1

.
= X̂

j
k+1

7: end for

8: Resampling Within Island

9: for i = 1 to N do

10: pi,j =
j∑

m=1

wi,m
k+1 for j = 1, ..., n, l = 1

11: for m = 1 to n do

12: Draw
[
m−1
n
, m
n

]
-uniform um

13: While um ≥ pi,j set l = l + 1

14: Set Xi,m
k+1

.
= x̂i,lk+1

15: end for

16: end for
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2.2.4 Double Systematic Resampling

The double systematic resampling is an extension for the systematic resam-

pling method to a web based platform. As for the double systematic particle

filter, we divide the total population of particles into several islands. On each

island, they are resampled by systematic resampling method. Between islands,

systematic resampling method will be used to resample as well.

Figure 18: Resampling Between Islands of Double Systematic Resampling

Systematic resampling method is a modification of stratified resampling

method which is more computationally efficient. It only generates one uniform

random number. Let’s show how it works for resampling between islands by

a simple example.

Example 2.5. In this example, there are 5 islands X1
k,X

2
k,X

3
k,X

4
k,X

5
k, with nor-

malized weight 0.10, 0.40, 0.30, 0.15 and 0.05. We put them onto the number

line to get a serial of intervals of particle weight in Figure18. Because of the

randomness of resampling, here we just describe one possible case. According

to the systematic resampling method, the length of random number interval

is 1
5
= 0.2 and we start from a uniform random number in [−0.2, 0], which is

−0.06. Then the random numbers for selecting island are 0.14, 0.34, 0.54, 0.74

and 0.94. Two of them drop into interval [0.1, 0.5], which represents Island 2;

two of them drop into interval [0.5, 0.8], which represents Island 3 and one of
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them drops into interval [0.8, 0.95], which represents Island 4. Thus Island 2

and 3 will be copied twice and Island 4 will be copied once. Then they will be

passed to other computers to form new islands.

By double systematic resampling method, there are also 5n particles pass-

ing between islands when resampling between islands in this example.

The algorithm of resampling between islands and within island for double

systematic resampling particle filter is as follows:

Algorithm 5 Double Systematic Resampling Particle Filter

1: Resampling between Islands

2: Pi =
i∑

m=1

Wm
k+1 for i = 1, ..., N , j = 1

3: Draw
[
− 1

N
, 0
]
-uniform U

4: for m = 1 to N do

5: Set Uk = U + k
N2

6: While Uk ≥ Pj set j = j + 1

7: Set Xm
k+1

.
= X̂

j
k+1

8: end for

9: Resampling Within Island

10: for i = 1 to N do

11: Pi,j =
j∑

m=1

wi,m
k+1 for m = 1, ..., n, l = 1

12: Draw
[
− 1

N1
, 0
]
-uniform Ui

13: for k = 1 to N1 do

14: Set Ui,k = Ui +
k
N1

15: While Ui,k ≥ Pj set l = l + 1

16: Set xi,kn+1
.
= x̂i,ln+1

17: end for

18: end for
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2.2.5 Double Combined Resampling

The double combined resampling is an extension for combined resampling

method to the web based platform. As for the double combined particle filter,

we also divide the total population of particles to several islands. On each

island, they are resampled by combined resampling method. Between islands,

combined resampling method will be used to resample as well.

Figure 19: Preserving Islands via Double Combined Resampling

Figure 20: Resampling Islands via Double Combined Resampling
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We use the same example to show how combined resampling method can

be applied to resampling between islands.

Example 2.6. In this example, there are 5 islands X1
k,X

2
k,X

3
k,X

4
k,X

5
k, with nor-

malized weight 0.10, 0.40, 0.30, 0.15 and 0.05, which are displayed in Figure 19.

Because of the randomness of resampling, here we just describe one possible

case. In preserving step, it’s same as double residual resampling, that Island

2 will be copied twice and Island 3 will be copied once. Then in resampling

step, we re-calculate the weight of each particle after preserving and put them

onto the number line. As we only need to select 2 more islands. thus the

length of random number interval is 1
2
= 0.5 as we show in Fig20. At first

time of resampling, it generates a uniform random number from [0, 0.5] and

this number drops into interval [0, 0.25], which represents Island 1. Similarly,

second random number, which is generated from interval [0.5, 1], drops into

the interval [0.5, 0.875], which represents Island 4. From the picture, we can

see that Island 1 and island 4 are both selected once.

By double combined resampling method, there are also 5n particles passed

between islands when resampling between islands in this example.

The algorithm of resampling between islands and within island for double

combined resampling particle filter is as follows:
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Algorithm 6 Double Combined Particle Filter

1: Resampling between Islands

2: Preserve: S = 0

3: for i = 1 to N do

4: m = 0

5: While m < bNwi
k+1c set m = m+ 1, XS+m

k+1

.
= X̂i

k+1

6: S = S + k

7: Resample: R = N − S; P i =
i∑

m=1

Nwm
k+1

−bNwm
k+1

c
R

for i = 1, ..., N ; j =

N − 1

8: for m = N to S + 1 do

9: Draw
[
m−1
R
, m
R

]
-uniform Um

10: While Um ≥ Pj set j = j + 1

11: Set Xm
k+1

.
= X̂

j
k+1

12: end for

13: Resampling Within Island

14: for i = 1 to N do

15: Preserve: s = 0

16: for j = 1 to n do

17: m = 0

18: While m < bnwi,j
k+1c set m = m+ 1, Xi,S+m

k+1

.
= X̂

i,j
k+1

19: end for

20: Resample: r = n − s; pi,j =
j∑

m=1

nw
i,m

k+1
−bnwi,l

k+1
c

r
for j = 1, ..., n;

l = n− 1

21: for m = n to s+ 1 do

22: Draw
[
m−1
r
, m

r

]
-uniform um

23: While um ≥ Pj set l = l + 1

24: Set Xi,m
k+1

.
= X̂

i,l
k+1

25: end for

26: end for

27: end for
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2.2.6 Web Based Branching System

The web based residual branching particle filter is an extension of the

residual branching system to a web based platform. It is relatively easy to

implement a web based branching system compared to a resampled one. We

still use the idea of island particle method, that divide the total population of

particles to several islands. Between islands, we only need to pass the weight

of the island to calculate the average weight and return it back to each island.

Sometimes, to avoid all particles on one island being killed, we may need to

pass a small amount of particles from the island with highest weight to the

one with lowest weight. Compared to the resampled system, which copy all

the data on the island to others, branching system are extremely time efficient

on passing data.

The algorithm is the same as branching system on single computer plat-

form. Figure 21 shows the idea of web based branching system.
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Chapter 3

Simulation Results

This section is organized as follows: we first introduce the two simple prob-

lems, our Test and Range-Only problems, that will be used for the comparison

purposes. Then, we compare the various double resampled particle systems

discussed above on these two problems. Next, we compare the worst of our

web based branching algorithms to the gamut of the double resampled particle

systems discussed above and show even this most basic branching algorithm

significantly outperforms all the resampled particle systems. Finally, we com-

pare all our branching algorithms to determine which variation performs the

best. For consistency, all results herein are either a typical path or an average

over 200 different sample paths.

3.1 Test Model

The Test Model refers to the scalar signal and observation pair:

Xn = 0.95Xn−1 + 0.3Wn

Yn = Xn−1 + Vn,

where X0, {Wn} and {Vn} are independent with standard Cauchy distribution.

This is a linear, non-Gaussian filtering problem. The Kalman filter does not
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apply since the noise is the Cauchy random number. Indeed, conditional

expectations of state do not exist since the noise is heavy-tailed. However,

this problem is in other respects simple.

For the model selection, we introduce the alternative models and show that

we select the correct one. We keep most of the Test Model the same and just

vary two coefficients:

Model Number Signal Equation Observation Equation

-2 Xn = 0.93Xn−1 + 0.28Wn Yn = Xn−1 + Vn

-1 Xn = 0.94Xn−1 + 0.29Wn Yn = Xn−1 + Vn

0 Xn = 0.95Xn−1 + 0.3Wn Yn = Xn−1 + Vn

1 Xn = 0.96Xn−1 + 0.31Wn Yn = Xn−1 + Vn

2 Xn = 0.97Xn−1 + 0.32Wn Yn = Xn−1 + Vn

Hence, the real model is model 0, the null model.

3.2 Range Only Model

The Range Only Model refers to the four dimensional signal and scalar

observation model:

Position Velocity

Xn = αXn−1 + Un−1 + 0.3αn Un = 0.95Un−1 + γn−1

Zn = αZn−1 + Vn−1 + 0.3βn Vn = 0.95Vn−1 + θn−1

α = 0.5, Yn =
√
X2

n−1 + Z2
n−1 + 0.1ψn,

Table 1: Range Only Model

where X0, Z0, U0, V0, {γn}, {θn}, {αn}, {βn} are independent. X0, Z0 have 10

times the standard Cauchy distribution and U0, V0 have 5 times the standard
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Normal distribution. Signal noise sources γn and θn have the standard normal

distribution while αn and βn have the standard Cauchy distribution. ψn is the

observation noise with the standard Cauchy distribution. This is a nonlinear

and non-Gaussian problem but otherwise simple.

The idea of this model comes from the radar detection. Suppose that there

is a radar station at the origin in the plane, (Xn, Zn) describes the position of

a ship and (Un, Vn) its velocity. The radar produces a noise-corrupted distance

observation between the ship and itself, which is Yn in our model. The object of

this problem is to estimate the state of the ship using the (back) observations.

For the model selection alternative models, we will keep most of the Range

Only Model the same and just vary the coefficient in front of Xn and Zn

slightly:

Model Number Signal Equation Observation Equation

-2 α = 0.48 Yn =
√
X2

n−1 + Z2
n−1 + 0.1ψn

-1 α = 0.49 Yn =
√
X2

n−1 + Z2
n−1 + 0.1ψn

0 α = 0.50 Yn =
√
X2

n−1 + Z2
n−1 + 0.1ψn

1 α = 0.51 Yn =
√
X2

n−1 + Z2
n−1 + 0.1ψn

2 α = 0.52 Yn =
√
X2

n−1 + Z2
n−1 + 0.1ψn

Hence, the real model is model 0 with the others differing slightly through α.

3.3 Comparison within Double Resampled Par-

ticle Systems

First, we compare the double resampled particle systems based on both

the error (of root-mean-square type between positional tracking estimation

and the real value) and the execution time.
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For our Test Model, the error is defined as

error =

√√√√ 1

T

T∑

k=1

(πN,n
k (f)− f(Xk))2, (3.1)

where f(x) defined by

f(x) =





30 : x > 30

x : −30 ≤ x ≤ 30

−30 : x < −30

.

where πN,n
k (f) is the filter approximation at time instant k with N islands and

n particles on each island. Xk is the signal and T is the total time steps which

is 35 in our experiments.

For our Range Only Model, the error is defined as

error =
1

T

T∑

k=1

√
(πN,n

k (gx)− g(Xk))2 + (πN,n
k (gz)− g(Zk))2, (3.2)

where πN,n
k is the normalized filter approximation at time instant k with N

islands and n particles on each island, Xk, Zk are the positional components

of the real signal,

g(x) =





1000 : x > 1000

x : −1000 ≤ x ≤ 1000

−1000 : x < −1000

.

and gx, gz denote g applied to the x and z (positional) components of the

signal.

The results for error of Test Model and Range Only Model are shown in

Table 2 and Table 3 respectively for the double resampled system algorithms

defined in Chapter 2.
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Particle Number N 500 2000 10000 50000

Double Bootstrap 7.5408 6.9203 5.3155 4.6635

Double Residual 6.6210 5.9027 5.2012 4.6467

Double Stratified 6.3037 5.6543 5.1858 4.5144

Double Systematic 6.5690 5.7674 5.2321 4.5549

Double Combined 6.2077 5.5335 5.1398 4.5096

Table 2: Average Error of Test Model

All four improved resampling methods show a significant improvement over

the bootstrap algorithm with a small particle number, 500, 2000, 10000 in

the Test Model and Range Only Model. When the particle number increases

enough all these methods approach the optimal filter. As these two problems

are not difficult as most real life problems where one has to limit the number of

particles for computational reasons, the performance with these lower particle

numbers are most important.

Particle Number N 500 2000 10000 50000

Double Bootstrap 53.6267 48.1276 47.5782 46.4845

Double Residual 52.5242 48.0185 47.1093 46.0613

Double Stratified 49.5776 47.8253 46.6373 46.0015

Double Systematic 51.2376 48.2155 47.3729 46.2636

Double Combined 51.7858 47.9969 47.0044 45.9785

Table 3: Average Error of Range Only Model

We should not just pick the method with lowest error as the speed is also
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important. The average execution time results are shown in Table 4 and Table

5 respectively.

Particle Number N 500 2000 10000 50000

Double Bootstrap 0.0043 0.0235 0.1237 0.6196

Double Residual 0.0031 0.0160 0.0892 0.4513

Double Stratified 0.0042 0.0213 0.1163 0.5927

Double Systematic 0.0035 0.0182 0.0917 0.4610

Double Combined 0.0030 0.0157 0.0792 0.4066

Table 4: Average Execution Times for Test Model

Although the residual and combined resampling are more complicated than

the bootstrap, they preserve some particles without resampling thus saving a

portion of the resampling computations. The stratified, combined and system-

atic resampling, save computations related to ordering the uniform random

variables in the bootstrap method. It is reasonable that this speed advantage

will be more significant with larger numbers of particles. For simple signal

models (like Test), a large portion of the time is consumed generating and

ordering the uniform resampling random numbers. This is efficiently done

with stratification so it is reasonable that stratified, combined and systematic

method can improve the speed of the Test Model greatly.
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Particle Number N 500 2000 10000 50000

Double Bootstrap 0.0152 0.0362 0.1893 0.8195

Double Residual 0.0081 0.0359 0.1377 0.7230

Double Stratified 0.0123 0.0373 0.1591 0.8519

Double Systematic 0.0083 0.0291 0.1368 0.6579

Double Combined 0.0098 0.0351 0.1639 0.8391

Table 5: Average Execution Times for Range Only Model

With slightly larger signals such as our Range Only Model, which has a four

dimensional signal, a lot of time is spent copying particles. Thus, the execution

time may depend more on how many particles need to be copied or resampled.

Hence, it is also reasonable that the residual and combined methods, which

reduce the number of particles resampled, can improve execution time a lot.

Naturally, the systematic method is very fast as it only uses one uniform

random variable.

The number of interactions between islands is a very important parameter

to describe the efficiency of the web based particle filter algorithm. The smaller

this number is, the less data needs to be passed between computers. Hereafter,

we define this parameter by the the number of particles passing between islands

in T time steps. In our experiments, T = 35. Given N islands and n particles

on each island in resampled system, there are nN particles passing between

islands according to the algorithms in Chapter 2. Thus, during T time steps,

there are totally nNT particles passing between islands. As in C++ platform,

the data of particle and its weight are both in ”double type”, which takes

8 bytes. Based on the formula 1mb = 1024kb and 1kb = 1024b, there will

be 8nNT
10242

mb data passing between islands during T time steps. Based on the

data of Ookla, a broadband research company that crowdsourced research and

download and upload speeds through its website SpeedTest.net, the average
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Internet speed in Canada is 16.6mb/s. Therefore we can estimate the time

spent on passing data for the resampled system on web based platform by:

time =
1

16.6

8nNT

10242
(3.3)

We show the results in Table 6 and Table 7

Particle Number Interaction Number Approximate Time

500 17500 0.0080

2000 70000 0.0322

10000 350000 0.1609

50000 1750000 0.8043

Table 6: Interaction Number and Approximate Time of Passing Data for Re-
sampled system based on Test Model

Particle Number Interaction Number Approximate Time

500 70000 0.0322

2000 280000 0.1287

10000 1400000 0.6434

50000 7000000 3.2172

Table 7: Interaction Number and Approximate Time of Passing Data for Re-
sampled system based on Range Only Model

The execution time of resampled system on web based platform are com-

posed by two factors: execution time on single computer and time spent on

passing data. We show the total time, which is added by these two factors

and the bootstrap factor based on this total time in Table 8 and 9.

To combine performance and speed, we define the “Bootstrap Factor” as:

Bootstrap Factor =
tbootstrap

t
, (3.4)

where tbootstrap and t are the approximate execution times that the bootstrap
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and improved version take to reach a fixed error.

Now, we fix the error = 5.0 in the Test Model and error = 46.0 in the

Range Only Model and show the minimum particle number, execution time

(including execution time on single computer platform and time of passing

data) and “Bootstrap Factor” for both in Tables 8 and 9.

N Time Bootstrap Factor

Bootstrap 30000 0.8955 1.0000

Residual Resampling 25000 0.6536 1.3701

Stratified Resampling 15000 0.4177 2.1439

Systematic Resampling 16000 0.4146 2.1599

Combined Resampling 12000 0.2892 3.0965

Table 8: Bootstrap Factor of Test Model with fixed Error=5.0

N Time Bootstrap Factor

Bootstrap 60000 4.8736 1.0000

Residual Resampling 52000 4.1393 1.1774

Stratified Resampling 50000 4.0691 1.1977

Systematic Resampling 55000 4.2762 1.1397

Combined Resampling 49000 3.9719 1.2270

Table 9: Bootstrap Factor of Test Model with fixed Error=46.0

The Bootstrap Factor compares speed of a method versus bootstrap algo-

rithm for a given performance, thus combining accuracy and efficiency factors.

The Combined Resampling method is the best choice for both models with
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Bootstrap Factors of 3.0965 and 1.2270. However, we will see below that

every branching algorithm will significantly outperform this.

3.4 Comparison between Web Based Branch-

ing and Double Resampled Particle Sys-

tems

In this section, we compare the double bootstrap and the best double

resampled particle system to the web based residual branching, the most basic

branching system. We show that our web based residual branching can improve

both performance and execution time. For now, we define (an, bn) = (1/r, r),

where r ∈ [1,∞], and refer to r as the resampling parameter. All particles

will resample when r = 1, which we call complete resampling. No particle will

resample when r = ∞, which means we have the weighted particle filter. We

find a good fixed choice of r for the Test Model is 2.25 and for the Range Only

Model is 5.

The error comparison is shown in Tables 10 and 11. Residual branching is

much better than the bootstrap and even the best resampled system, combined

resampling.

Particle Number N 500 2000 10000 50000

Bootstrap 7.5408 6.9203 5.3155 4.6635

Combined Resampling 6.2077 5.5335 5.1398 4.5096

Residual Branching 4.8211 4.6056 4.4185 4.2046

Table 10: Average Error of Test Model



54

Particle Number N 500 2000 10000 50000

Bootstrap 53.6267 48.1276 47.5782 46.4845

Combined Resampling 51.7858 47.9969 47.3044 46.1985

Residual Branching 46.7922 45.9687 45.5428 45.0540

Table 11: Average Error of Range Only Model

Speed is compared in Tables 12 and 13. The residual branching algorithm

is the fastest one for both models.

Particle Number N 500 2000 10000 50000

Bootstrap 0.0043 0.0235 0.1237 0.6196

Combined Resampling 0.0030 0.0157 0.0792 0.4066

Residual Branching 0.0016 0.0078 0.0408 0.1969

Table 12: Average Execution Time of Test Model

Particle Number N 500 2000 10000 50000

Bootstrap 0.0152 0.0362 0.1893 0.8195

Combined Resampling 0.0098 0.0351 0.1639 0.8391

Residual Branching 0.0035 0.0108 0.0512 0.2513

Table 13: Average Execution Time of Range Only Model

Compared with the double resampled system, the web based branching

system has huge advantage on time of passing data as it only needs to pass

the average weight and small amount of particles between computers, instead

of all particles in double resampled system. At each time step, we move 2% of
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all particles from the computer which has the highest weight to the one with

lowest weight to avoid all particles are killed on it. The interaction number

and approximate time of passing data for web based branching system can be

calculated as the follows: given N computers, at each time step, each computer

passes the average weight to one computer to calculate overall average weight

and then it returns back. Thus, the interaction number for passing weight

is 2N . The interaction number for passing particles is 2% × nN . Similar as

calculate passing data time in double resampled system, we can estimate the

time spent on passing data for web based branching system by:

time =
1

16.6

8(2N + 2%× nN)T

10242
(3.5)

We show the results in Table 14 and Table 15

Particle Number Interaction Number Approximate Time

500 1750 0.0008

2000 2800 0.0013

10000 8400 0.0039

50000 36400 0.0167

Table 14: Interaction Number and Approximate Time of Passing Data for
Web Based Branching System on Test Model

Particle Number Interaction Number Approximate Time

500 2800 0.0013

2000 7000 0.0032

10000 29400 0.0135

50000 141400 0.0650

Table 15: Interaction Number and Approximate Time of Passing Data for
Web Based Branching System on Range Only Model

Finally, to evaluate the advantage of residual branching on both perfor-

mance and speed, we provide the Bootstrap Factor in Tables 16 and 17. In
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the Test Model, residual branching is 426.4286 and 137.7131 times better than

bootstrap and combined resampled respectively. In Range Only Model, the

improvement is also very significant at 348.1143 and 283.7117. Our better

branching algorithms will be shown below to outperform yet a lot more.

N Time Bootstrap Factor

Bootstrap 30000 0.8955 1.0000

Combined Resampling 12000 0.2892 3.0965

Residual Branching 400 0.0021 426.4286

Table 16: Bootstrap Factor of Test Model with Error 5.0

N Time Bootstrap Factor

Bootstrap 60000 4.8736 1.0000

Combined Resampling 49000 3.9719 1.2270

Residual Branching 2000 0.0140 348.1143

Table 17: Bootstrap Factor of Range Only Model with Error 46

The model selection ability is also critical. For comparison purposes, we

fix the initial number of particles to be N = 10, 000 for all model selection

experiments and show the execution time for model selection in Table 18.

Web based residual branching is the fastest one for model selection as it was

for tracking. Indeed, branching has another small inherent advantage here

since model selection is based upon the unnormalized filter, which is already

computed in the branching methods.
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3.5 Comparison within Web Based Branching

Particle Systems

There are many ways to produce unbiased branching filters. The residual

branching and combined branching algorithms, introduced in Chapter 3, are

two of the simplest to implement. Neither requires any fundamental changes

to work on multiple computers. We just pass total island weight to the other

islands and transfer a very small amount of particles to even the load as shown

in Figure 21. Remember, stratification is done separately on each computer

so this does not present a problem.

We continue comparing error, speed and “Bootstrap Factor” but now

within branching particle systems. First, we consider simple residual branch-

ing and combined branching on our test model and show combined is much

better than residual and hence two levels above the double resampled particle

systems. The average error is shown in Table 19

Particle Number N 500 2000 10000 50000

Residual Branching 4.8211 4.6056 4.4185 4.2046

Combined Branching 4.3926 4.2332 4.1397 4.1093

Table 19: Average Error of Test Model

and the expected execution time is shown in Table 20

Particle Number N 500 2000 10000 50000

Residual Branching 0.0016 0.0078 0.0408 0.1969

Combined Branching 0.0024 0.0081 0.0362 0.1897

Table 20: Average Execution Time of Test Model

Finally, we combine performance and execution time (including execution
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time on single computer and time of passing data):

N Time Bootstrap Factor

Residual Branching 400 0.0021 426.4286

Combined Branching 150 0.0014 639.6429

Table 21: Bootstrap Factor of Test Model with fixed Error 5.0

Next, we apply residual branching (with r = 5), combined branching (with

r = 5), dynamic branching and effective particle branching to our Range Only

Model. We show the results in Table 22 and Table 23.

Particle Number N 500 2000 10000 50000

Residual Branching 46.7922 45.9687 45.5428 45.0540

Combined Branching 45.8054 45.5855 45.0531 44.9357

Table 22: Average Error of Range Only Model

Particle Number N 500 2000 10000 50000

Residual Branching 0.0035 0.0108 0.0512 0.2513

Combined Branching 0.0027 0.0113 0.0549 0.2549

Table 23: Average Execution Time of Range Only Model

Similarly, we we combine performance and execution time (including exe-

cution time on single computer and time of passing data):

N Time Bootstrap Factor

Residual Branching 2000 0.0140 348.1143

Combined Branching 500 0.0037 1317.1892

Table 24: Bootstrap Factor of Range Only with Error 46.0
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Chapter 4

Appendix

4.1 Girsanov’s theorem

One of the best ways of constructing particle filters is to transfer all of the

information contained in the observations to a likelihood process by way of

measure change.

In this reference probability method, a new fictitious probability measure

Q is introduced under which the signal, observation process {(Xk, Yk+1), k =

0, 1, 2, ...} has the same (process) distribution as the signal, noise process

{(Xk, Vk+1), k = 0, 1, 2, ...} does under P . In another words, this means

that the observations become i.i.d. random vectors with strictly-positive,

bounded density function g that are independent of X under measure Q.

All the observation information is absorbed into the likelihood ratio process

{Lk, k = 1, 2, ...} transforming Q back to P , which in our case has the form

dP

dQ

∣∣∣
FX

∞
∨FY

k

= Lk =
k∏

j=1

Wj, Wj = αj(Xj−1), (4.1)

and the weight function has the form

αj(x) =
g (Yj − h (x))

g (Yj)
, (4.2)
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so Lk = WkLk−1 and L0 = 1. The following result constructs the real proba-

bility P from the fictitious one Q.

Theorem 4.1. Suppose {Xk, k = 0, 1, ...} and {Yk, k = 1, 2, ...} are inde-

pendent processes and {Yk} are i.i.d. with strictly-positive, bounded density

g on Rd with some probability measure Q, and (Vk = Yk − h(Xk−1)) for all

k = 1, 2, ... Then, there exists a probability measure P such that (4.1) holds,

{Vk, k = 1, 2, ...} are i.i.d. on (Ω,F , P ) with density g and {Xk} is indepen-

dent of {Vk} with the same law as on (Ω,F , Q).

This is basically a discrete version of Girsanov’s theorem. We give the

proof for completeness, even though the ideas are well known.

Proof. Define Pn by Radon-Nykodym derivative

dPn

dQ
= Ln =

n∏

m=1

g (Ym − h (Xm−1))

g (Ym)
(4.3)

and let 1 ≤ j1 < j2 < · · · < jk ≤ n, 0 ≤ i1 < i2 < · · · < il. Then, by the

independence of X and Y under Q we have for fr ∈ B(Rd) and φp ∈ B(E)

EPn

[
k∏

r=1

fr(Vjr)
l∏

p=1

φp(Xip)

]
(4.4)

= EQ

[
n∏

m=1

g (Ym − h (Xm−1))

g (Ym)

k∏

r=1

fr(Yjr − h(Xjr−1))
l∏

p=1

φp(Xip)

]

= EQ

[
l∏

p=1

φp(Xip)

∫

Rd

g1 (y1 − h (X0)) dy1 · · ·
∫

Rd

gn (yn − h (Xn−1)) dyn

]

= EQ

[
l∏

p=1

φp(Xip)

]∫

Rd

g1 (v1) dv1 · · ·
∫

Rd

gn (vn) dvn

= EQ

[
l∏

p=1

φp(Xip)

]
k∏

r=1

∫

Rd

fr(vjr)g (vjr) dvjr ,
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where gi =

{
gfr if i = jr

g if i /∈ {j1, ..., jk}
. (4.5)

The {Pn} are consistent by (4.4). The result follows by Kolmogorov’s consis-

tency.

4.2 Unnormalized Filter

Two nice features about σk are that:

1) σk(1) provides the Bayes factor that {Ym}km=1 satisfies Ym = h(Xm−1)+

Vm over Ym = Vm, with {Vm} being i.i.d. with density function g, since

σk(1) = EQ
[
Lk1 (Xk)

∣∣FY
k

]
(4.6)

= EQ

[
k∏

m=1

g (Ym − h (Xm−1))

g (Ym)

∣∣∣FY
k

]

=

EQ

[
k∏

m=1

g (Ym − h (Xm−1)) |FY
k

]

EQ

[
k∏

m=1

g (Ym) |FY
k

]

is the ratio of marginal likelihoods for these two models.

2) πk (f) =
σk(f)
σk(1)

by Bayes rule since

EQ[πk(f)σk(1)1A] = EQ[EP (f(Xk)|FY
k )EQ(Lk|FY

k )1A] (4.7)

= EQ[EQ(LkE
P (f(Xk)1A|FY

k )|FY
k )]

= EQ[LkE
P (f(Xk)1A|FY

k )]

= EP [f(Xk)1A]

= EQ[Lkf(Xk)1A] = EQ[σk(f)1A]

for any A ∈ FY
k .



65

4.3 Variance and Failure of Weighted Particle

Filter

Now, it will be helpful in computing variances of the normalized filter and

its approximations in the sequel to define the following.

Definition 1. The observation co-variability and variability functions are

λ(x, ξ) =

∫
g(y − h(x))g(y − h(ξ))

g(y)
dy and λ(x) = λ(x, x). (4.8)

Example 4.1. Suppose that g is N(m, γ) i.e. normal with mean m and variance

γ. Then, it follows easily that

λ(x, ξ) =
1√

2π
√
γ

∫
exp

(
(y −m)2 − (y − h(x)−m)2 − (y − h(ξ)−m)2

2γ

)
dy

= exp

(
h(x)h(ξ)

γ

)

so λ(x) = exp
(

h2(x)
γ

)
.

The weighted particle filter can basically fail due to particle spread. Now

we show in this section that this problem can be so bad that adding more

particles still can not solve it. This failure is best explained by comparing Kλ

and Kλ, which are defined as,

Kλ(x, dz) = λ(x)K(x, dz), (4.9)

Kλ(x, ξ, dz, dζ) = λ(x, ξ)K(x, dz)K(ξ, dζ). (4.10)

in a setting where explicit calculations are manageable.

Example 4.2. Suppose h (x) = x and g (x) = 1√
2π
e−

x2

2 so λ (x, ξ) = exp (xξ)

by Example 4.1. Moreover, let K (x, dz) = 1√
π
e−(x−z)2dz so Kλ (x, dz) =
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1√
π
e2xz−z2dz and we have

Xk = Xk−1 +Wk (4.11)

Yk = Xk−1 + Vk (4.12)

with {(Wk, Vk)}∞k=1 being i.i.d. (N
(
0,

[
1√
2

0

0 1

])
), so the filter could be

solved by the Kalman filter if X0 is independent and Gaussian. However, one

might still use a particle filter if one wants to do model selection or if the initial

condition is not Gaussian.

Using (K
l+1

λ (x, dz) =
∫
K

l

λ (ζ, dz)Kλ (x, dζ)), we find that

K
2

λ (x, dz) =
1

π

[∫
exp

(
2ζz − z2 + 2xζ − ζ2

)
dζ

]
dz

=
1

π

∫
exp

(
− (ζ − x− z)2

)
dζ exp

(
(x+ z)2 − z2

)
dz

=
1√
π
exp

(
x2 + 2xz

)
dz for any x, z ∈ R

and

K
3

λ (x, dz) =
1

π

[∫
exp

(
ζ2 + 2ζz + 2xζ − ζ2

)
dζ

]
dz = ∞ for any x, z ∈ R.

On the other hand,

Kλ (x, ξ, dz, dζ) =
1

π
exξ−x2−z2−ξ2−ζ2+2xz+2ξζdzdζ. (4.13)

Hence, using (K l+1
λ (x, ξ, dz, dζ) =

∫ ∫
K l

λ (y, θ, dz, dζ)Kλ (x, ξ, dy, dθ) , ) we
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find that

K2
λ (x, ξ, dz, dζ)

dzdζ

=
exp (xξ − x2 − ξ2 − z2 − ζ2)

π2

×
∫ ∫

exp
(
yθ + 2

[
xy + ξθ + yz + θζ − y2 − θ2

])
dydθ

=

√
15

π
exp

(
19xξ + 16xz + 16ξζ + 4xζ + 4zξ + 4zζ − 7x2 − 7ξ2 − 7z2 − 7ζ2

15

)
.

Moreover, letting [a = 44(16z+4ζ+30x)+19(16ζ+4z+30ξ)
442−192

, b = 19(16z+4ζ+30x)+44(16ζ+4z+30ξ)
442−192

, ]

we find

K3
λ (x, ξ, dz, dζ)

dzdζ
=

∫
K2

λ (y, θ, dz, dζ)Kλ (x, ξ, dy, dθ) (4.14)

=

√
15

π2
exp

(
22a2 + 22b2 − 19ab+ 4zζ − 7z2 − 7ζ2

15
+ xξ − x2 − ξ2

)

×
∫

exp

(
− [y − a θ − b]

[
22
15

−19
30

−19
30

22
15

][
y − a

θ − b

])
dydθ

=

√
105

π
exp

(
22a2 + 22b2 − 19ab+ 4zζ − 7z2 − 7ζ2

15
+ xξ − x2 − ξ2

)
.

Substituting n = 3 as well as the values for K1
λ, K

2
λ, K

3
λ and K

1

λ, K
2

λ, K
3

λ into

EQ[γWn (f)] = π0K
n
λ (f × f)− π0 × π0K

n
λ (f × f) (4.15)

+
n∑

l=1

π0K
l−1

λ [Kλ −Kλ]K
n−l
λ (f × f) ∀f ∈ B(E)+,

we see the expected weighted particle filter variance EQ[γW3 (f)] = ∞ (since

K
3

λ = ∞) for any non-trivial, non-negative f . Therefore, taking expectations

in the L2-rates, one finds EQ[(σN
3 (1)− σ3(1))

2] = ∞ for all N so the weighted

particle filter can not really work as a model selection nor a tracking device.

Notice the variance of the unnormalized filter itself σ3(f), given in

EQ[(σn(f)− EQ(σn(f)))
2] = π0 × π0 (K

n
λ (f × f))− (π0(K

nf))2, (4.16)
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is finite as it only involves the kernals K1
λ, K

2
λ, K

3
λ.

Remark 4.1. In the above example, one might notice that the weighted particle

filter could work by just changing h(x) = x to h(x) = cx for small enough

c > 0. However, this changes the (observation equation) signal-to-noise ratio

and thereby fundamentally changes the problem. The observation equation

is derived by the physics of a given problem. It is fine to multiply the whole

observation by a constant c to obtain (Yk = cXk−1 + cVk) but not just one

term of it. However, you will see that the λ(x, ξ), and hence all calculations,

do not change by this constant observation multiplication.

This example also illustrates the importance of the observation variabil-

ity function. The unbounded nature of the observation variability function

adversely affects expected variances.
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