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Abstract

Associative classifiers have shown competitive performance with state-of-the-

art methods for predicting class labels. In addition to accuracy performance,

associative classifiers produce human readable rules for classification which

provides an easier way to understand the decision process of the model. Early

models of associative classifiers suffered from the limitation of selecting proper

threshold values which are dataset specific. Recent work on associative classi-

fiers eliminates that restriction by searching for statistically significant rules.

However, a high dimensional feature vector in the training data impacts the

performance of the model. In this study we propose Dynamic Ensemble As-

sociative Learning (DEAL) where we use associative classifiers as base learn-

ers on feature sub-spaces and a dynamic feature sampling procedure which

automatically defines the number of base learners and ensures diversity and

completeness among the subset of feature vectors. This method eliminates the

limitation of high memory requirement and runtime of recent associative clas-

sifiers for training datasets having large feature vectors without jeopardising

the accuracy of the model.

In addition, to better understand the decision process of our model, we pro-

pose an ensemble model, Classification by Frequent Association Rules (CFAR)

using associative classifiers as base learners. In our approach, instead of using

classical ensemble and a voting method, we rank the generated rules based

on frequency and select a subset of the rules for predicting class labels. This

ensemble approach CFAR also eliminates the limitation of high memory re-
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quirement and runtime of recent associative classifiers. This approach removes

the noisy rules for the classification process which further enhances the per-

formance of the model in terms of accuracy.

Further, inspired by the tremendous performance of deep neural networks,

we propose Deep Associative Classifier (DAC), an ensemble of associative clas-

sifiers that transforms features in a deep model representation. This model

has deep neural network like architecture with associative classifiers as a base

learner and overcomes some of the limitations of deep neural network archi-

tecture as well as associative classifiers.

We use 10 datasets from the UCI repository to evaluate the performance

of the models. We compare our approaches with different machine learning

models. All three of our proposed models address the limitation of recent

associative classifier of requiring high memory and long runtime along with

showing competitive performance in accuracy in contrast to various state-of-

the-art classifiers.
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Chapter 1

Introduction

1.1 Motivation

With the steady increase in use of machine learning in real-life scenarios, the

importance of classification is de facto increasing. Classification is a supervised

machine technique learning that labels the data in different distinct class la-

bels. In the present context, this process is being used in various tasks like

classification of image, text, tabular data, etc. To solve classification prob-

lems, some of the popular algorithms are Logistic Regression, Decision Trees

[32], Random Forest [10], Support Vector Machines [15] and Artificial Neural

Networks [20]. Even though these models have good performance in classi-

fication tasks, most of the classification models work in a black box fashion.

After training the model, the model remains opaque without revealing what

has actually been learned [4]. For instance, even though amazingly accurate,

neural networks, after convergence of the edge weights and node biases, are

not interpretable. In addition, during inference, they do not provide necessary

explanation for the prediction, which is troublesome in some application fields

like medical diagnosis, financial decision making, etc. Since machine learn-

ing is becoming popular and ubiquitous, explanation is now even legislated

in many jurisdictions. This has lead to many effort attempting to explain

salient features in deep learning, but also a return to rule-based classifiers.

Associative classifiers are among them.

Associative classifiers use an association rule mining approach [1] to dis-

cover frequent patterns, and lately statistically significant patterns, from which
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to derive classification rules. The test data is then classified using the rules

that are generated during the training phase. A rule is in the form of X → Y

where X, the antecedent, is a conjunction of co-occurring features, and Y , the

consequent, is a class label. Several associative classifiers have been proposed

namely CBA [29], ARC [2], CMAR [28], CPAR [38]. Rules generated by the

associative classifiers are simple and human readable thus their predictions

can be interpreted. Though the associative classifiers are competitive with the

state of the art classifiers and have a huge advantage of built-in explainabil-

ity, they suffer from the limitation imposed by the required threshold tuning,

namely support and confidence. To choose optimal support and confidence

values for a dataset requires prior knowledge about the dataset and it differs

from dataset to dataset. Another disadvantage of the mentioned algorithms

is that sometimes they produce noisy rules during the rule generation phase.

Some of the noisy rules prevail even after the rule pruning. If any rule does not

add any valid information towards the class label then the rule is considered

as a noisy rule. Noisy rules affect the performance of the model as they hinder

the classification process to classify the instance to its appropriate class label.

To solve the issue of requiring prior confidence and support values, Li and

Zaiane [27] proposed SigDirect where they used the Kingfisher algorithm [21]

to find statistically significant classification rules. This model removes the ne-

cessity of requiring threshold values which are different for different datasets.

Sood and Zaiane [34] showed though SigDirect removes the necessity of hyper

parameters, it still produces many noisy rules. Thus they proposed SigD2,

a classifier based on SigDirect with a two stage rule pruning strategy which

further removes the noisy rules from SigDirect. The improvement is promis-

ing as it reduces the number of rules without compromising the accuracy. In

fact it was shown that SigD2 outperforms other rule-based classifiers as well

as classical classifiers such as SVM, Bayesian, C4.5 and even simple neural

networks [34]. SigD2 increases the efficiency of associative classifiers as it uses

a minimum number of rules for the classification process. As we discussed

earlier, one major advantage of an associative classifier is the fact that the

rules produced for the classification process are human readable. However a
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large number of rules and noisy rules make it hard to understand the deci-

sion process. Using less rules, SigD2 makes the understanding of the decision

process of the classifier easier.

Though the performance of SigD2 is very competitive, its performance is

limited in terms of required memory and run-time if the feature vector of the

feature space is large. This limitation persists in Sigdirect too making both

the models non-scalable when the feature vector of the dataset is large. An

Ensemble of classifiers, each trained on a subset of the feature space, could

address this issue. However, one has to fix the size of the ensemble. To make

SigDirect and SigD2 scalable, we propose an ensemble model named Dynamic

Ensemble Associative Learner(DEAL) to improve the efficiency of SigD2 in

terms of memory requirement and runtime without hampering the accuracy.

As a base learner, we considered SigD2 as SigD2 outperforms other associative

classifiers [34]. In our model, we add a dynamic feature sampling technique

inspired from the work of Cao et al. [12] which eliminates the necessity of

defining the number of base learners for the ensemble model and ensures di-

versity and coverage of the feature space among the base learners. We first

sample the features randomly to form a subset of the feature vector. After

sampling, we calculate the overlap of the new subset with the previously gen-

erated subsets. If the overlap of the new subset is high, we discard the subset

and start another sampling. We stop the sampling procedure either if after

subsequent sampling, we do not find any more subset which has low overlap

with the previous subsets or all the features are covered by the generated sub-

samples. We train one SigD2 model with each of the subsamples and perform

max-vote among the class label predictions. The class label with the highest

vote is assigned to the new test instance. Our proposed method reduces the

memory requirements and makes the model faster in terms of runtime without

affecting the accuracy. On top of that, even after the ensemble, the model

remains interpretable as we can gather the rules from the base learners

Classical ensemble approaches make the final class prediction by training

the base learners and taking their vote. In DEAL, it is quite difficult to
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interpret the decision process as at first the base models who voted for the final

class are to be selected and the decision process of each of the base models

is to be determined which can be a tedious process. In the case of random

forest where the base learners are decision trees, the decision process of each of

the trees should be considered individually to understand the decision process.

We focus on this part of the ensemble to keep the ensemble model simple so

that the decision process can be inferred easily. Though DEAL solves the

limitation of SigD2 in the case of dataset with high dimensional feature vector

space, to understand the decision process of DEAL we have to go through the

rules produced by each of the base learners. Thus we propose Classification

by Frequent Associative Rules(CFAR). In this approach, we train the base

learners with a subset of the feature vectors. After training, we collect all the

rules generated by the base learners. We speculate some base learners can

produce noisy rules which do not add any information to the decision process

rather affect the performance of the model. Thus, we rank the rules based on

their frequency in the base learners. Our assumption is if a rule is produced by

many base learners, that rule has more importance in the classification process.

We gradually select rules from the pools of rules based on their frequency.

We deploy only the selected rules for the classification of test dataset. This

approach makes the model simpler as we get a very small number of rules after

the selection based on their ranking. In this process, we also have the ranking

of the rules based on their frequency, thus we can understand the importance of

a rule and features in the decision process. Following this strategy, the decision

process becomes easy to interpret. CFAR also shows competitive performance

in terms of accuracy compared to SigD2. CFAR requires less memory and

is faster than base classifiers. One advantage of CFAR is that the final rules

which are selected for classification process are even less than those generated

by SigD2. Thus the interpretation of the decision process of CFAR is more

suitable than SigD2.

Further, we consider deep learning models for classification as they have

impressive result in classification task. Deep learning models show superior

performance in comparison with other machine learning models in different
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application fields like natural language processing, image processing, predic-

tion, classification, etc. One of the main reasons for the high performance of

deep learning techniques is their layered architecture. It has been conjectured

that the success of deep learning is due to the layer-by-layer processing, the

in-model feature transformation, and the complexity of the model [40]. This

powerful layered architecture of deep learning models enhances the perfor-

mance of the model. In spite of being very efficient deep learning model has

several drawbacks including the difficulties to understand the decision process

which we already discussed. Another drawback of deep learning models is

the necessity of hyper-parameter tuning. The number of hyper parameters in

deep learning models is quiet large. To get an efficient model, these hyper-

parameters require proper tuning and it is hard to know before hand which set

of parameter will work best. In addition to this, while tuning the parameters,

it is hard to interpret the effect of changing the parameters. Deep learning

models also require a large amount of labelled training data. Training a deep

learning model with less data does not often provide good performance be-

cause of requiring large amount of data for the convergence of deep learning

models. But in many domains, large amount of data is not available. In those

domains, deep learning models become less efficient.

Being inspired from the deep leaning models, Zhou et al. [40] tried to uti-

lize the deep representation of deep neural networks while eliminating some

of the limitations of the deep neural networks by developing a an ensemble

model called the gcForest. We speculate using the idea adapted by gcForest

and further exploit the layered architecture of deep neural networks. In the

case of understanding the decision process of the classification model, associa-

tive classifiers have a huge advantage over the other models. This motivated

us to develop a new classifier that utilizes the advantage of the layer-wise

data processing architecture of deep neural networks and the interpretability

of the associative classifier that will require even fewer hyper-parameters than

gcForest, is easy to tune, requires less memory, has the potential to be explain-

able. Our endeavour in using and combining the deep representation of deep

neural networks and the simplicity of the associative classifier results in an
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ensemble model, Deep Associative Classifier (DAC) that uses associative clas-

sifiers as base learners of the ensemble and has a deep architecture. With this

approach, we seek to improve classification accuracy by utilizing the layered

architecture of the deep neural networks and associative classifiers. Further,

we try to improve the performance of the associative classifier in terms of mem-

ory requirement for datasets with high dimensions and reduce the number of

hyper-parameter to make the model more practical to tune. Deep Associative

Classifier has much fewer hyper-parameters and lower memory requirements

than gcForest. Thus the effect of tuning the hyper parameter can be easily

understandable from the result of the model. There was another limitation of

gcForest which is fixing the number of base learners in each layer and pass the

generated output to the next layer without further evaluation. In the case of

ensemble models, diversity is one of the major factor but when a large number

of base learners are trained on subsets of a small dataset, most of the base

models produce a similar result which affects the advantage of the ensemble

process. Thus in our proposed model, after training the base learner at each

layer, we analyze the generated output of the base learner and filter the output

which are exactly the same. This process ensures diversity among the base

learners which further enhances the performance of the model. Our proposed

model DAC outperforms gcForest in terms of accuracy on the majority of the

datasets we tried. While competing with the gcForest and deep neural models

in terms of accuracy, our architecture does not require high computing re-

sources i.e. GPU like the deep neural models. Moreover, in comparison with

the associative classifier SigD2 which has been used as a base learner of the

model, DAC reduces the memory requirement and runtime significantly tough

unfortunately explainability is hindered in this process.

1.2 Thesis Statement

In this study we intend to solve the drawbacks of the recent associative clas-

sifiers. For this we hypothesize the following statements:

1. Associative classifiers have huge advantage over the other classifiers as
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the rules generated for the classification purpose are human readable.

Though recent associative classifiers solve the drawback of requiring

dataset specific threshold values, the model is inefficient in the case of

dataset having large feature spaces, we speculate an ensemble model

where the base models are trained on a subset of the feature spaces can

be an efficient solution to address the drawback of the recent associative

classifiers SigDirect and SigD2.

2. Typical ensemble model needs to specify the size of the ensemble at

the beginning of the model construction. We speculate, while we need a

large number of base learners in the case of a dataset having large feature

spaces, a small number of base learners which covers the whole feature

spaces with diversity among the subsamples can reduce the number of

base learners. Thus we incorporate the idea of dynamically fixing the

size of the ensemble of each of the dataset.

3. Typical ensemble model using max-vote strategy can lead to bias and

understanding the decision process can be hard. We hypothesize that

gathering the rules from the base learners and filtering them can provide

better result and better understanding of the decision process of the

ensemble.

4. We also hypothesize that one of the important reason of excellent per-

formance of deep learning model in classification is layer by layer data

processing. We speculate that we can incorporate the idea of layer by

layer data processing using an ensemble of associative classifiers where

the training data will be processed in layer by layer fashion. We also

speculate, tuning deep learning models is quite inefficient as the number

of parameter is quite large. Using the ensemble of associative classifiers,

we intend to reduce the number of hyper-parameter so that the model

becomes easy to tune.
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1.3 Thesis Contribution

The contribution of this study is as follows:

1. We Propose Dynamic Ensemble Associative learner (DEAL) which is an

ensemble of associative classifier SigD2. DEAL removes the high mem-

ory requirements of runtime of SigD2 in the case of dataset having large

feature vector space. Side by side, DEAL eliminates the necessity of

prefixing the ensemble size as this method dynamically fixes the num-

ber of subsamples by ensuring diversity among them. We evaluate our

model with the other common classifiers which shows DEAL has bet-

ter performance than the other classifier in terms of accuracy. DEAL

also significantly reduces the memory requirement and makes the model

faster in comparison to SigDirect and SigD2.

2. We propose Classification by Frequent Association Rules (CFAR) where

instead of the classical max-vote ensemble model, we gathered the rules

produced by the base learners. We rank those rules based on their fre-

quency in the base learners. Then the rules are selected based on a

threshold which is determined automatically by the model for predicting

the class label of test data. This model is also evaluated based on UCI

dataset and shows competitive performance in terms of accuracy com-

pared to associative classifiers and DEAL . Another advantage of CFAR

is despite of being an ensemble, CFAR selects a very small number of

rules for the classification process thus the decision process of CFAR is

easily understandable.

3. We propose Deep Associative Classifier (DAC) where we implement en-

semble of SigD2 to process the training data in layer wise architecture.

This model mimics the model of deep neural network. In each layer,

base classifiers produce class probabilities of each instance along with

predicting class labels. These class probabilities are added to the origi-

nal features in the next layer. We incorporate a filter layer in between

two layers of the the ensemble which ensures the diversity among the
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base learners. We also evaluate this model based on UCI datasets. The

evaluation shows the competitive performance of the proposed model

compared to associative classifiers and simple deep neural architectures.

1.4 Thesis Outline

The rest of the thesis is organized as follows:

1. Chapter 2 reviews the related works from the literature in the area of

associative classifiers, deep learning models, ensemble models and their

various applications. Section 2.1 discusses different rule based classifiers,

associative classifiers, their working procedure and drawbacks. Section

2.2 describes the application of deep learning models and few proposed

models which mimic the deep learning model to keep the model simple

and easily tunable. Subsection 2.3 explains different ensemble models,

their advantages and applications.

2. Chapter 3 provides detailed explanation for the experiment of Dynamic

Ensemble Associative Learner. Section 3.1 explains the proposed archi-

tecture of the model. In section 3.2 we provide and explain the result of

proposed model on UCI datasets. We also make a comparative analysis

on the performance of DEAL with the other classifiers.

3. In chapter 4, we provide our experiment of Classification by Frequent

Association Rules(CFAR). In Section 4.1, we explain the architecture

and methodology of of the proposed model. In Section 4.2 we provide

the result of our experiment. Here we provide explanation on the per-

formance of the model with comparison to other classification models.

We also provide the interpretability of the model in this section.

4. Chapter 5 contains the details of our proposed method Deep Associative

Classifier. Section 5.1 explains the algorithm and architecture of Deep

Associative Classifier(DAC). We provide detailed explanation on the lay-

ered architecture of DAC and the data processing procedure. Section 5.2
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contains the experimental results and explanation of the result. We also

made comparative analysis on the performance of DAC on Section 5.2.

5. Chapter 6 concludes this thesis with the summary of the proposed meth-

ods and results. This section also includes the future prospect of the

experiments those are performed in this thesis.
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Chapter 2

Related Work

In this chapter we discuss on related work on classification, associative classi-

fication and ensemble learning models for classification. We also discuss the

associative classification process from the literature.

2.1 Classification

Classification is a process of labeling a given instance to a class label. In this

process a model is trained on labelled training data. In the training phase

the model finds patterns among the data and establish relationship between

the pattern and the class label. When a new data instance is provided for

labelling, the model use pre-discovered patterns to label the new data instance.

Till now several state-of-the-art machine learning models has been designed

for classification task. Among them support vector machine(SVM), decision

tree, naive bayes classifier, logistic regressions are noteworthy. In this section

we will discuss them briefly.

Cortes et al. [15] proposed support vector machine. This model is widely

used in classification task. Support vector machine finds a separating hyper-

plane between the data points of two different class. After plotting the input

vector in a data plane, support vector machine tries to find a separating plane.

In this process kernel plays an important role. Sometimes data points that are

not separable in one kernel might be separable in a high dimensional kernel.

This model is efficient when the datapoints are linearly separable in a high

dimensional plane. But if the datasets are very large. In that case SVM takes
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huge time to find a hyperplane between datapoints of two classes.

Decision tress proposed by Quinlan [32] is another widely used classifica-

tion model. One important feature of decision tree is the decision process is

interpretable. In decision tree, data instances are splitted based on different

features of the dataset. This forms a tree like structure. The intermediate

nodes of the tree are features. The decision of class label is taken based on

these features. The leaf nodes of the tree are class labels. There are several

phase in the tree generation. First step is the branch generation where different

branches of the trees are generated based on the data instances of the training

data. Second step is the pruning phase where noisy branches are pruned from

the tree. In the classification phase, when a new data instance is given to the

tree for classification, the datapoints is considered as the intermediate nodes

based on the features of the instance and mapped to a leaf node. The mapped

leaf node is the assigned class label of the test instance. Decision has the ad-

vantage of being explainable over other classifiers. Quinlan also proposed C4.5

[33] as an extension of decision tree algorithm which is also very efficient and

competitive. Though both decision tree and C4.5 are very competitive perfor-

mance and the decision process is human understandable, they are prone to

overfitting and noise in the training data affects the performance significantly.

Deep learning classification model proposed by Hagan et al. [19] follows

the architecture of artificial neural network. The working procedure of this

model follows layer by layer data processing like human brain. Deep learning

classification model showed excellent performance in comparison to other clas-

sification models. Deep learning model consists of connected layers and in each

layers there are interconnected nodes. Input data is processed in each of the

nodes and they are forwarded to the next layer. Being processed in each layer

and each nodes, the data is passed in the output nodes to predict the final

class label. Though this architecture has superior result than other classifier

there are some drawbacks. High volume of training data is required to train

deep learning classifiers which can be a problem in some domain like medical

data of a particular disease. Another drawback of deep learning models is the

requirement of computing resources is very high. The model needs to store
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the processed data from each nodes and each layer. Thus processing this huge

amount of data requires high computing resources. As the data are processed

and transformed at each layer of the model, the decision process is not human

understandable which can be a problem in the case of working with sensitive

data like financial decision making. Because if there is a bias or lots of noise

in the data, in the case of deep learning models, there is no way to understand

its effect from the model.

For any classification model, it is very important to understand the decision

process. Associative classifiers are interpretable and human understandable as

they generate rules and make the classification based on the generated rules.

The rules generated by associative classifier are human understandable. We

will discuss associative classifiers in the next section.

2.2 Associative Classification

Associative rule mining finds relations among the features in the transaction

data in terms of their association and correlation. For example, association

rule mining finds the relation among item ’A’ and item ’B’ from transactions

by counting the transaction where item ’A’ appears. Then it counts in how

many of those transaction item ’B’ appears. This simple strategy becomes very

important in different scenario like the retail stores to increase their sales and

profits. This strategy can be helpful to build a classification model. The rules

which are generated by the association rule mining is in the form of X → Y

where X, the antecedent, is a conjunction of co-occurring features, and Y , the

consequent, is a class label. The relation between the features to the class

label can be determined by associative rule mining approach. Further using

these rules, the class label of the test data can be predicted. Being inspired

from this idea, researchers studied associative classifier extensively in the last

few decades.

The concept of using association rules as class association rules was first

proposed by Bayardo [8]. He used apriori rule generation approach and few

rule pruning technique to increase the efficiency by extracting rules with high
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confidence. Liu et al. [29] proposed Classification Based on Association (CBA)

which uses an Apriori based rule generation approach to generate class asso-

ciation rules. In their approach, all constrained association rules from the

database are generated and ranked based on metrics. The highest matching

rule is used for the classification task. There are three steps in associative

classification process. They are rule generation, rule pruning and rule selec-

tion. Rule generation is the first approach of the associative classification

process. As we stated earlier, the class association rules are in the form of

X → Y where X, the antecedent, is a conjunction of co-occurring features,

and Y , the consequent, is a class label. The rules are generated in such a

way that the antecedent and the consequent class label co-occurs together in

transactions. Two important measures of the rules are support and confidence.

Support is calculated by the proportion of the dataset where the rules appear

in the dataset. Confidence is the relationship between antecedent and conse-

quent that is in fraction of total transactions containing the antecedent the

antecedent and the consequent appears together. Class association rules are

a special type of association rules where the antecedent are the features and

the consequent is the class label. Apriori proposed by Agarwal et al. [1] is the

most widely used rule mining strategy. Another famous rule mining strategy

is fp-growth algorithm [22]. Almost all the classifiers use one of these two

strategies in rule generation.

The next step is rule pruning strategy. In the rule generation phase many

noisy rules are generated which affect the performance of the classifier. The

rule pruning phase is very important as this removes the rules which does

not add any additional information to the classification process. Different

rule pruning strategies have been proposed by different researchers over the

years. In CBA, [29] database coverage strategy has been used. In another

study, Zaiane and Antonie [39] proposed pruning based on finding minimal

set of class association rules. They aimed at finding minimum set of rules for

classification without jeopardizing the performance of the classifier.

The final step of the classification is to select the rules for predicting the

class label of a test instance. After the rule generation and rule pruning steps,
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the number of rules still might be large and all of them might not be applicable

to the test instance. Thus the applicable rules are to be selected from the pool

of the rules. After selecting the applicable rules, in most of the cases the

number of applicable rules is more than one. Among the applicable rules, the

best rules are to be selected following heuristics. Several heuristics are there

to select rules to apply on the test instance. Some of the heuristics are sum

of confidence values, sum of support values, average of confidence values etc

which are used to find most effective rules. For each of the test instances the

rules are selected based on the heuristics. In the study of Sood and Zaiane

[34], they used three different heuristics namely sum of ln(p-value), sum of

confidence value and sum of ln(p-value)*confidence for for the rules of each of

the class labels. From their experiment, they found in most of the cases the

rules with the highest sum of the confidence values provide better result.

These three major steps are followed in all the associative classifiers. We

will describe the associative classifiers in next section.

2.3 Associative Classifier

Liu et al. [29] showed it is possible to use association rule mining to build a

classifier. Their proposed Classification Based on Association (CBA) uses an

Apriori based approach to generate class association rules. In their approach,

all constrained association rules from the database are generated and ranked

based on metrics. The highest matching rule is used for the classification task.

Their subsequent work [30] attempts to decrease noisy rules. They improved

the performance of the classifier by choosing the most accurate class associ-

ation rules for the classification task. Being inspired from this work, many

researchers came forward with different approach to improve the performance

of associative classifier, mainly differentiating themselves by proposing differ-

ent strategies to select the applicable rules during inference. Yin and Han

[38] proposed Classification based on Predictive Association Rules (CPAR).

They generate association rules directly from the training data by a greedy

approach. To evaluate each of the generated rules, they use an expected accu-
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racy and finally select the best k rules for the classification task. Li et al. [28]

proposed CMAR which is Classification based on Multiple Association Rules.

They extended FP-growth [22] frequent pattern mining method to construct

an FP-tree for class distribution association. In this approach the class asso-

ciation rules are stored in a special data structure. The generated rules are

pruned based on the confidence, correlation and database coverage. Using

multiple strong association rules with a Weighted χ2 measure, a datapoint is

labeled to the appropriate class.

Antonie and Zaiane [2] propose another Association rule based classifier

that they apply for text categorization. They put forward two different ap-

proaches; ARC-AC, considering all generated rules from the whole training

set, and ARC-BC, where data from each class is mined separately allowing the

handling of unbalanced datasets. Indeed, being based on frequency, minority

classes risk not being expressed in a predictive model when all dataset entries

are mined together. Another approach, CCCS, proposed by Arunasalam and

Chawla [5] introduces a measure named ”Complement Class Support” (CCS).

The authors claim CCS guarantees a positive correlation among the class label

and the generated rules. Antonie et al. [3] also propose a two stage associative

classifier where associative classification rules are discovered in a first stage and

in a second stage, another algorithm learns how to use those rules for class

prediction. Instead of basing the selection of rules to apply during inference

on some heuristics, they use a neural network to learn how to predict the best

rules to apply. This approach showed improved efficiency in terms of accuracy.

One limitation of associative classifiers is the generation and the need to eval-

uate a huge number of rules, among them many are noisy rules. To overcome

this problem Zaiane and Antonie [39] performed an extensive study with the

focus of reducing the number of rules without decreasing the accuracy of the

classifier. The authors propose a new pruning strategy to reduce the number

of class association rules. They also propose different heuristics for selecting

rules which can obtain high accuracy for a given instance. However, it remains

that the proper support and confidence values have to be selected and tuned.

This is one major drawback of associative classifiers inherited from association
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rule mining. The performance of the model largely depends on these values.

It is a tedious task to find the proper confidence and support values for each

of the dataset, hampering the adoption of associative classifiers.

To solve this issue, Li and Zaiane [27] propose SigDirect to find the statisti-

cally significant rules for classification, instead of frequent ones. In their strat-

egy they improvised the kingfisher algorithm [21]. To find out whether a rule

is significant or not, they used Fisher’s exact test to measure the significance

of a rule. In this method they directly mined rules from the data and pruned

them by following instance-centric pruning strategy. Their method solves the

limitation of requiring support and confidence values. This method also solves

some other limitations of the previous associative classifier. In previous clas-

sifier no statistical dependency between the antecedent and consequent was

considered.Thus many rules were generated which instead of adding further

information, affected the performance of the model. In addition to this, using

support-confidence framework includes a large number of rules. But consid-

ering statistical significance considers only those rules which adds significant

information towards the classification task. Their proposed method SigDirect

increases the accuracy of the classifier. The main contribution of their work is

eliminating the necessity of the annoying support and confidence thresholds.

However, SigDirect also has some limitation. Sood and Zaiane [34] showed

though Sigdirect produces very less number of rules comparing to other as-

sociative classifier, noisy rules still exists. In their study they showed, those

noisy rules can be further eliminated and elimination of noisy rules increases

the efficiency of the model. Thus they proposed SigD2, a two stage prun-

ing technique which can reduce the number of rules without jeopardising the

accuracy of the classifier and therefore making a learned model even more

practically interpretable.

Though Sigdirect and its successor SigD2 shows competitive result in terms

of accuracy, with the increase of the features in training dataset, memory

requirement and runtime of the dataset increases rapidly. To solve this issue

using ensemble models which we will discuss in next chapters.
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2.4 Ensemble Classification Model

The concept of ensemble model was first proposed by Dasarathy and Sheela

[16], where they proposed the idea of composite model. In They achieved

enhanced performance by deploying two or more component classifier each

trained of a separate partition of the feature domain. The optimal domain

partition criteria depends on the component classifier. Authors used Sequen-

tial Weight Increasing Factor Technique (SWIFT) for partitioning the domain

space. In their study, they showed when multiple classifiers are deployed to-

gether, they achieved better performance than each of the individual com-

ponent classifier when they are deployed separately. Following their work,

several researchers worked on this field and achieved better result using en-

semble model. Bagging [9] and Boosting [17] are most popular ensemble model

for classification problem. Several variation of bagging and boosting and dif-

ferent strategies to select the subset from the training data have been used in

different literature. In bagging, a predefined number of subset of the dataset

are selected and one classification model is trained on each of the subset of

the dataset. These classification models which are trained on the subset of the

training data are know as base classifier of the model. At the end of training

models, each of the models make the prediction of the test data independently.

At the end, class label with the highest vote is considered as the final class

label. In case of bagging approach, all the base learners are trained and make

their prediction independently. In bagging approach the base learners can be

trained in parallel as each of the base learners are trained independently. In

contrast to bagging, in boosting algorithm, base learners are trained in series.

After training one base learner, the misclassified instances by are identified and

the next base learner put extra weight to the misclassified instances. Weights

if the instances which are correctly classified are decreased for the next base

learners. The idea is to pay more attention on misclassified instances than the

correctly classified instances on the next steps. This procedure continues until

the number of base learners reaches to a predefined number or the training er-

ror reaches to a predefined threshold. At the end of training the base learners,
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voting is performed. In case of boosting algorithm, each of the base learners has

a weight based on their performance. This voting strategy is called weighted

voting. Though this strategy is susceptible to overfitting, it shows promising

result. Later Hastie et al. [23] extended this work for multi-class classification.

This boosting strategy is known as adaboosting. Another boosting strategy

is gradient boosting proposed by Friedman [18]. In gradient boosting, a loss

function is used and the objective is to minimize the loss function using gra-

dient descent method. Gradient boosting also have competitive performance.

In [7] the authors showed that bagging and boosting improved classification

performance for demographic classification of handwriting. Prusa et al. [31]

evaluated 12 different techniques that improve the classification performance

on 3 datasets for twitter sentiment classification. Based on their experimental

findings, they concluded that bagging provided superior performance as com-

pared to the rest of the techniques and significantly improved the classification

performance. Another famous ensemble model is random forest [10]. Random

forest follows the idea of bagging procedure and uses decision tree as base

learner. Unlike decision trees, random forest uses a random selection of fea-

tures to select each nodes for each of the trees. In this study author shows, in

addition to having competitive performance, random forests are more robust

to noise than boosting algorithms.

In the case of all ensemble model, subset selection procedure plays a vital

role. One of the main reason of superior performance of the ensemble models is

diversity among the base learners. Higher similarity among the subset results

in poor performance of the model due to lack of diversity among the base

learners. Thus maximizing the diversity among the base learners is one of

the main goal in ensemble model. To create diversity, more emphasis should

be given on the subset selection strategy. Brown [11] made extensive study

to define and measure diverse error in ensemble model. He showed diversity

among the base learners can be achieved using negative correlation among the

base learners. His work puts emphasis on creating diversity among the base

models so that the prediction of each model becomes independent and by this

maximum performance from a neural ensemble model can be achieved. Brown
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proved his proposition by theoretical and empirical analysis.

One drawback of the classical ensemble model is one has to fix the size of

the ensemble. That is the number of the base learner in an ensemble model

is predefined. But this process has a limitation. If the predefined number of

base learner is large and the number of feature in the training data is small

then this will result in many duplicate base learners which affects the diversity

among the base learners. On the other hand if the number of feature is large

and the number of predefined base learner is small then the base learners might

not cover the whole feature space thus many important features might not be

considered in the decision process. In classical ensemble models, the subsample

to train the base learners are selected randomly. Thus some features can be

selected multiple times and some features can be omitted in the process. In

random subsampling procedure, there is no way to control the selection of the

features. Thus this might create bias in the base learners. To address this

issue Cao et al. [12] proposed a novel sampling procedure as Cost sensitive

adaptive random subspace ensemble. Their proposed method automatically

defines the number of base learners in the ensemble process. The proposed

sampling procedure consider the overlap among the subsamples and allow a

maximum amount of overlap among each subsample. In this way they ensures

the diversity and coverage. When the method can not produce another new

subsample with the given constrains, it stops sampling and train one base

model with each of the subsample. Thus the requirement of predefined number

of subsample is eliminated.

Inspired by the outstanding performance of deep learning architecture, sev-

eral researchers came forward to make the ensemble of deep learning architec-

ture and ensemble model having layered architecture like deep learning model.

Kowsari et al. [25] proposed RandomMulti-model Deep Learning, an ensemble

of deep architecture to predict the class of different types of data like image,

text and tabular data. RMDL uses varieties of optimization technique in the

base learners which stabilizes the classification procedure along with using dif-

ferent feature extraction technique for each of the random deep models which

work as a base learner for the model. This method also uses majority voting to
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determine the final class label. Authors of RMDL showed their model works

across different data types like text, images and videos. The main contribu-

tion of their work is it solves the problem of finding suitable hyperparameter

for deep learning model as RMDL uses random parameters and feature ex-

traction techniques for each of the base learner. Though having impressive

performance, deep learning model and ensemble of deep learning model has

a basic limitation that is the requirement of large training data which is not

available in many cases. Small training data causes overfitting for deep learn-

ing model. Zhou et al. [40] tried to overcome some of these limitations of deep

neural networks by proposing gcForest, an ensemble of decision trees that ex-

ploits the significant features of a neural network like representation learning,

ability to deal with high dimensional data and model complexity. In GcForest,

training data are processed in layer-wise fashion like deep neural models. Each

layer of gcForest is an ensemble of decision trees and the decision trees act as

a node. After processing the training data at a layer, the processed data is for-

warded to the next layer forming a deep architecture. Proposed architecture

have very encouraging performance in several data type like tabular data, text

data and image data. After the success of gcForest, several researchers came

forward to propose deep ensemble architecture. Tanno et al. [36] proposed

another architecture where they used adaptive neural trees whose architecture

is hierarchical and can learn the parameters of the model over the progressive

growth. The parameters are auto-tuned according to the size of the dataset.

Sun et al. [35] also proposed a model which is inspired by the gcForest [40]

where they select important features by following some measures for classifi-

cation. The subsequent phases remain the same as gcForest, but in each step,

they choose the important features only. Both the work of Tanno et el. [36]

and Sun et al. [35] focus more on image data. Their architecture performs well

in the case of classification of an image dataset. Though our focus is on tabu-

lar data, their works provide a significant direction for our model because, in

our case, we want to develop a model which is efficient for datasets of different

sizes.

In chapter 3 we proposed Dynamic Ensemble Associative learners where we
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propose a feature sampling technique inspired from the work of Cao et al. [12].

As we discussed in previous subsection, associative classifiers are interpretable.

After making an ensemble of associative classifiers, we can still gather the rules

from the base learners and interpret the decision process. To make the inter-

pretation process simple, in chapter 4, we propose Classification by Frequent

Association Rules(CFAR) inspired from the work of W. Pascal et al. [37].

They proposed Decision snippet Features where instead of classical max-vote

strategy, they mined small frequent branches as decision snippets from the

learned decision trees of the ensemble. They showed a linear model on top

of the snippets provide competitive results and reduces the model size. Being

inspired from the performance of gcForest [40], we propose Deep Associative

classifier in Chapter 5.
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Chapter 3

Dynamic Ensemble Associative
Learning

In this chapter we provide the details of our proposed model Dynamic Ensem-

ble Associative Learning (DEAL). We further evaluate our model in compari-

son to other classifiers using UCI datasets.

3.1 Methodology

In this section we describe our methodology for the bagging approach using

SigD2 as a base learner. As mentioned above, SigD2 was shown to outperform

other rule based classifiers and certainly all other associative classifiers in terms

of accuracy and number of generated classification rules. In most cases of

bagging, the dataset instances are randomly sampled. We instead sample the

feature space and use all instances. In most known ensemble approaches, the

number of classifiers in the ensemble is predetermined and fixed. Therefore,

initially we start proceeding with the same and randomly sampling the feature

space for each classifier in the ensemble. This random sampling does not

guarantee completeness as some features may never be picked, and does not

ensure diversity among the classifiers since different classifiers in the ensemble

may end-up with exactly the same features selection. For that reason we

later introduce our dynamic sampling technique that ensures completeness and

diversity and automatically determines the necessary number of learners in the

ensemble. The procedures are explained in detail in the next sub sections.
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Algorithm 1 Subsample generation by randomly selecting features

Input: features: all features of the feature space; N: Number of the features
in each subsample
Output: 100 subsample of the feature space

1: all subsample ← []
2: for i in range(100) do:
3: new subsample ← []
4: n ← 0
5: reset features
6: while n < N
7: f ← randomly select without replacement a feature from features
8: add f to new subsample
9: n← n+ 1
10: end while
11: add new subsample to all subsamples
12: end for
13: return all subsamples

3.1.1 Ensemble with random subsample

At first, we use 100 base learners in the ensemble model. Each of the base

learners is trained on a random subsample of size N of the original feature

space. We show the process of creating random subsamples in Algorithm 1.

Following this method, we generate 100 subsamples and train the base learners

with each of the subsamples. For the random selection of all the experiments,

we use random python library and time as seed. During inference, the pre-

diction of the class label is done with each of the base learners and a vote

determines the final prediction.

Generating subsample in this way presents some limitation. A feature can

be selected every time or some of the features might not be selected at all.

Thus many important features which are strongly correlated with the class

label can be excluded from the training process. Another limitation is the

need to fix the number of base learners, in our case 100, based on common

practice in the literature. If the number of features is not large enough, there

is no need for 100 base learners. Indeed many base learners would be trained

on the same subsample of the feature space. To solve these issues we propose

a new feature sampling technique which addresses both of the limitations.
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3.1.2 Dynamic Ensemble Associative Learning

Our goal is to make sure all input features are used by at least one base

learner, and the set of base learners are diverse. Therefore, to subsample

from the feature vector, we follow a sequential procedure until all features

are selected (ensuring completeness). To ensure diversity, we make sure the

feature spaces of any pair of base learners do not overlap more than some

percentage threshold. Our method to generate diverse subsamples is provided

in Algorithm 2 and Algorithm 3. In the input of the algorithm, N is the

number of features to be selected in each of the subsamples. From previous

literature we know that if the feature vector of the dataset is large, SigD2

requires high volume of memory and run time. Therefore we limited the size

of the feature vector using N . In our experiments, we have tested across

different values for N but in all cases we used small value of N . The next

parameter of the algorithm is Ov. Ov is the maximum allowed overlap between

any two subsamples. The value of Ov is a percentage and ranges from 0 to

1. If we put a very small value close to 0 for Ov, all the subsamples would be

almost unique and the number of generated subsamples small, which results in

a small number of base learners, defeating the purpose of the ensemble. If we

use a value close to 1, the subsamples would be almost similar to subsamples

generated using a random subsampling. Thus we have to find an optimum

value for Ov. The last parameter is T which indicates how many times we

will try to get a satisfactory new subsample with our required overlap. This

is to avoid blocking infinite loops. When generating a subsample by selecting

features, if there is at least one previously generated subsample with which

overlap of the selected features of new subsample is more than Ov, we discard

the current subsample and generate a new one. T provides a boundary for

how many times we try for a single subsample. If after trying T times we

do not find any subsample with less than overlap Ov, we stop the sampling

procedure. We also keep track of whether all the features are already covered

by the subsamples or not. If all the features in feature space are covered by

the generated subsamples, we stop our sampling procedure.

25



Algorithm 2 Algorithm GenerateSubsample

Input: Features: all features in the feature space; N: Number of the features
in each subsample, Ov: Maximum overlap between any two subsamples, T:
maximum number of tries to generate a subsample
Output:Subsamples of the feature space

1: try=0;
2: all subsamples ← []
3: while try < T do
4: new subsample ← subsampleGen(Features, N)
5: if(Overlap(new subsample)< Ov) then
6: Add new subsample to all subsamples
7: try ← 0
8: else
9: try ← try+1
10: end if
11: if (all feature covered(all subsample) ==True) then
12: break
13: end if
14: end while
15: return all subsamples

Algorithm 3 shows how a subsample is generated. Here we randomly select

a feature from the feature space and add it to the new subsample. N indicates

the number of features in each subsample.

Algorithm 3 Algorithm SubsampleGen

Input: Features: all features in the feature space; N: Number of the features
in each subsample
Output: subsample of the feature space

1: subsample← []
2: n← 0
3: while n < N do
4: new feature ← randomly select a feature
5: Add new feature to subsample
6: n ← n+1
7: end while
8: return subsample

After generating a new subsample we evaluate whether the features of the

newly generated subsample has more overlap than the Ov ratio with any of

the previously generated subsamples. Between two subsample S1 and S2 where
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the features are FS1 and FS2 respectively and the number of features in each

of the subsamples is N then the overlap between the subsamples is calculated

using the following equation:

Current overlap =
FS1 ∩ FS2

N
(3.1)

If there is at-least one previously generated subsample with which the feature

overlap is greater than Ov, we discard the subsample. If there is no previous

subsample with which the newly generated subsample has overlap greater than

Ov, we consider the current subsample satisfies the required condition and

accepts the sample. After generating the subsamples, we train one SigD2

Algorithm 4 Algorithm condition satisfied

Input: new subsample: newly generated subsample, all subsamples: all
generated subsample, Ov: Maximum overlap between any two subsamples
Output: True if condition satisfied, else False

1: for each sample in all subsamples do:
2: current overlap ← calculate overlap between sample and

new subsample
3: if current overlap > Ov:
4: return False
5: end if
6: end for
7: return True

model with each of the generated subsamples. The size of the output set

of subsamples determines the size of the ensemble. We use the trained base

learners to predict the class label of the test dataset. The class label with

the highest vote of the base learners is determined as the final predicted class

label. We evaluate the model using the predicted value in terms of accuracy,

memory requirement and runtime.

3.2 Result Analysis

We use 10 different UCI datasets [6] to test our model. Before using a dataset

we discretize the numerical values as stated in [13]. We convert the features

to a binary feature vector. We used the same vector form of discretized values
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for all our experiments will all contenders. Thus the results of mentioned

algorithms can be slightly different from their original papers. For each of the

datasets, we use 80% of the data as training data and the rest 20% as test data.

We compare the result of our model DEAL with different values of N which

is the number of features for each base learner, against the result of C4.5 [33],

Random Forest [10], RIPPER [14], SigD2 and the ensemble using 100 random

sampling of features, we denote as RS. We also experiment with an ensemble

of C4.5 as base learner using our proposed feature sampling method DEAL.

The reported result is the average of 20 runs for each of the datasets. We

compare the performance of our proposed model in terms of accuracy, memory

requirement and runtime. We also provide an analysis on the performance of

DEAL for different values of Ov. Finally, we discuss the interpretability of the

prediction by DEAL.

3.2.1 Classification Accuracy

We compare the performance of our proposed method with SigD2 since it was

demonstrated to have better performance than other associative classifiers,

rule-based classifiers [27], [34]. We include RIPPER, however, since it is a

rule induction algorithm different from association rules. We also compared

the performance of DEAL with C4.5 and an ensemble of C4.5. As a repre-

sentative of the traditional ensemble approaches, we use Random Forest [10]

to compare our result. In the case of random sampling of the features (RS),

we experiment with different values of N (i.e. number of features in each sub-

sample) and different values of Ov (i.e. maximum overlap among the selected

features of base learners). From the experiment, we find the optimum result

when the value of N is between 25 and 30.
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The comparison in accuracy of C4.5, ensemble of C4.5 using proposed

sampling method, Random Forest (RF), RIPPER, SigD2, Random feature

Sampling method (RS) with DEAL using different values of N are provided

in Table 3.1 and Figure 3.1. From the table we can see, among the datasets,

in comparison with Random Forest and C4.5, Random Forest has better per-

formance than DEAL in 4 of the datasets while DEAL is a close runner-up,

and in 4 others DEAL has better performance, with one ex aequo with the zoo

dataset. In one dataset RIPPER performed better than DEAL. On average

DEAL is better. In comparison with the original SigD2, we can see that apart

from the Anneal dataset, DEAL presents an improvement for the accuracy.

The probable cause might be that some of the feature vectors in the Anneal

dataset being highly correlated which plays an important role in the class pre-

diction. DEAL selects a subset of the feature vectors thus the feature vectors

that are needed to be together get separated. Further investigation is required

for this dataset to find how the important features can be kept together. That

might improve the performance of DEAL in those datasets where some fea-

ture vectors together play an important role in class prediction. The random

sampling of the features with 100 base learners could not perform at the same

level as DEAL. In comparison with SigD2 sometimes it improves the accuracy

and in some cases the accuracy is decreased. As the random sampling is com-

pletely random, many important features might not be selected for any of the

base learners at all. This is the reason of the poor performance of RS. On the

average, DEAL with a feature vector size N = 30 and Ov = 0.6 has the best

performance. We also compare the performance of DEAL with other models

in terms of precision and recall. Figure 3.2 and 3.3 shows the precision and

recall of the models for each dataset respectively. We can see DEAL, either

with N = 25 or N = 30, has very competitive precision and recall compared

to other models.

We can get another interesting observation from Table 3.1. With the in-

crease of N , the number of features for each of the base learners, the average

accuracy increases. For better understanding of this, we experimented with

different values of N. The average accuracy for different values of N is plotted
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Figure 3.1: Accuracy of C4.5, C4.5 using sampling of Deal, Random Forest
(RF), RIPPER SigD2, and DEAL.

Figure 3.2: Precision of C4.5, C4.5 using sampling of Deal, Random Forest
(RF), RIPPER SigD2, and DEAL.
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Figure 3.3: Recall of C4.5, C4.5 using sampling of Deal, Random Forest (RF),
RIPPER SigD2, and DEAL.

in Figure 3.4. We can see a sharp increase when the value of N is increased

from 15 to 25. After 25, the average accuracy continues to increase but not

with the same steep rate.

There is a compromise to make with the required memory and runtime,

particularly due to the aforementioned limitations of the used base learner

SigD2. Therefore, we chose not to increase the number of features per base

learner more than 30. We are also interested to know the number of base

learners for each of the dataset as we mentioned the number of base learners

is determined automatically by DEAL. Table 3.2 provides the number of base

learners for each of the dataset. These are significantly less than the typical

100 or even 50 used in the literature for classical ensembles.

Dataset Feature
vector Size

#Base
Learner

Dataset Feature
vector Size

#Base
Learner

Zoo 35 4 Wine 65 13
Pima 36 4 Anneal 67 12

PageBlocks 41 8 Horse 83 19
Heart 47 7 Adult 95 21

Hepatitis 54 10 Ionosphere 155 45

Table 3.2: Number of base learners using N = 30 and Ov = 0.6

To understand the effect of different values of Ov we also experiment with
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Figure 3.4: Average accuracy of DEAL for different values of N(Number of
selected feature for each base learner)

values starting from 0.1 to 0.9 increasing 0.1 in each step. The result is pro-

vided in Figure 3.5. From the figure we can see, the performance of the model

is best when the value of Ov is in the middle. Because a small value results

in almost unique base learners and a very small number of base learners. In

the case of a large value of Ov, the results would allow repetitions of base

learners like with simple random sampling procedure. Thus in both cases the

performance is affected. We can see good performance when the value of Ov

is between 0.4 to 0.6 for N=30 and 0.5 to 0.7 when N=25 for the dataset we

used in our experiments. Thus overlap between 0.4 to 0.7 provides optimum

result for most cases.

To understand whether the improvement in accuracy by DEAL is signif-

icant or not, we performed a statistical significance test. We carried-out a

student paired t-test with the null hypothesis, that the improvement in the

accuracy of DEAL is not significant. We run the whole experiment 20 times

and recorded the average accuracy each time for each model. For DEAL we
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Figure 3.5: Average accuracy across different values of Ov

used N = 30, Ov = 0.6. The difference in the accuracy in each pair is calcu-

lated by Equation 3.2.

δ =MDEAL(test data)−Mi(test data) (3.2)

Here, MDEAL is our proposed model and the subscript i stands for the

other models. Running the models on test data provides the accuracy of the

models and δ is the difference in the accuracy.

We performed the paired t-test followed by the work of Henry et al. [24]

for pairwise comparison among the models and calculated the p-value. If the

calculated p-value is less than the threshold alpha(0.05) then we can say the

improvement by the proposed model is significant. The calculated p-values

are provided in Table 3.3.

Algorithm p-value

DEAL vs C4.5 0.0036
DEAL vs C4.5 ensemble 0.0077
DEAL vs Random Forest 0.0087

DEAL vs SigD2 0.0046
DEAL vs RIPPER 0.1190

Table 3.3: Statistical result
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From Table 3.3 we can see the p-value for each pair is less than the threshold

alpha(0.05) except for DEAL vs RIPPER. Thus, except RIPPER, for the other

models we can say, the improvement in accuracy of our proposed over other

models is significant.

3.2.2 Memory Requirements

One of the main goals of DEAL is to reduce the memory requirements for

datasets having large feature vector size. In previous sections we showed that

DEAL does not reduce the accuracy in comparison to the original SigD2 rather

in almost all datasets, it increases the accuracy. Using DEAL we can reduce

the memory requirements for datasets having a large number of features. The

memory requirements of C4.5, ensemble of C4.5 using proposed feature sam-

pling method, Random Forest, SigD2 and DEAL using N as 25 and Ov as 0.6

are shown in Table 3.4. Here we did not provide memory requirement using

the random sampling procedure as for any given number of feature vectors in

base learners, the memory requirement of SigD2 is the same. In the memory

requirements, the reported result for DEAL is the highest memory used by a

base learner in the process as we run the base learners sequentially. In the

case of Random Forest, the trees in the forest are executed in parallel. Thus

the memory requirement reported here is the memory required for running 100

decision tree in parallel.

Running base learners in parallel has a huge advantage for runtime, which

we discuss in the next subsection. Further studies are required to understand

whether this trade-off between memory requirement and runtime is feasible

by executing the base learners of DEAL in parallel. From Table 3.4 we can

see, DEAL decreases the memory requirements even in comparison with Ran-

dom Forest. The memory requirement in SigD2 increases with the increase in

features. One main reason behind this is when working with a large size fea-

ture vector, SigD2 has to go through a huge number of class association rules

(CAR). CAR increases with the increase of the feature vector size. But in our

approach, with a dataset with large feature vector size, the number or rules for

each of the base learners is reduced dramatically. In case of a dataset having
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Dataset C4.5 C4.5
with
Deal

Random
Forest

RIPPER SigD2 DEAL

Zoo 106 108 127 107 121 105
Pima 103 109 128 102 102 101

PageBlocks 111 117 134 111 112 110
Heart 105 112 129 104 107 104

Hepatitis 103 111 127 102 113 100
Wine 104 112 128 105 165 100
Anneal 107 113 129 107 150 106
Horse 109 112 128 109 235 106
Adult 195 211 252 124 257 252

Ionosphere 124 117 128 112 2519 108

Table 3.4: Memory requirement(in Megabyte) by contenders and DEAL(N =
30 and Ov = 0.6)

very large size of feature vector, our proposed sampling method decreases the

memory requirement to a significant extent.

3.2.3 Runtime

We also measure the runtime of DEAL for the same datasets in comparison

to Random Forest and SigD2. The runtime of the methods are provided in

Table 3.5. In this table we do not include random sampling (RS) as in random

sampling we have to train 100 base learners in a sequential manner which

would always require a longer runtime than DEAL. From Table 3.5, we can see

Random Forest is always the fastest except for Zoo dataset where C4.5 is faster.

Despite the fact that DEAL is an ensemble and we are not running the base

learners in parallel, DEAL is still faster than SigD2 in many cases. SigD2 beats

DEAL when the input feature space is small, because for datasets with a small

feature space, DEAL still has to go through the sampling and for not having

enough feature, DEAL has to sample many subsample and compare with the

previously generated subsamples which increases the runtime. However, with

larger feature vectors, DEAL outperforms SigD2.
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3.2.4 Interpretability of the model

One of the major advantages of our ensemble model is that the prediction of

the model is interpretable. After creating subsamples of the feature space and

training the base learners with each of the subsamples, base learners uncover

classification rules expressed in their respective feature subspace. When pre-

dicting the class label of an instance, base learners use their own rules. There

are applicable rules, applicable to the instance case, and there are applied

rules, effectively used for the decision by each base learner. The applied rules

that agree with the majority vote are kept. Using DEAL, we can easily gather

all the applied rules selected by base learners. Those would be part of the

decision explanation. In addition, the set of applied rules and the applicable

rules can be used to rank features by importance vis-à-vis the final prediction.

Rules gathered from the base learners can be grouped according to the class

label, and ranked based on their frequency among the base learners. Features

are ranked by importance for a particular class label prediction. The more a

feature appears in an applied rule, the more important it is. Features appear-

ing in applicable rules get an additional boost of importance. Table 3.6 gives

a glimpse of the individual interpretable models learned by the different base

learners. In the case of the Zoo dataset, there are 4 base learners. The learned

models are sets of human readable classification rules with their strength mea-

sures, typically sorted by these measures). In Table 3.6 we provide a subset of

these rules and the feature subspace for each base learner. At inference time,

each base learner finds the applicable rules for that instance and selects the

rules to apply for the decision. Table 3.7 shows the applicable rules per base

learner for a given test instance as well as the decision for each learner before

the vote. We can see that the consensus is for class 5 in this case and that

there is agreement for the importance of features 16 and 28. What constitutes

the decision explanation is the list of important features but also the list of

applied rules as well as applicable rules with the final class label decision as

their consequent.
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Dataset C4.5 C4.5
with
Deal

Random
Forest

RIPPER SigD2 DEAL

Zoo 0.06 0.58 0.12 0.08 3.64 6.65
Pima 1.76 3.84 0.15 0.41 0.47 0.89

PageBlocks 21.04 35.83 0.24 0.46 10.23 17.86
Heart 0.69 3.04 0.13 0.40 8.55 3.11

Hepatitis 0.23 2.62 0.11 0.26 10.41 1.25
Wine 0.17 1.27 0.11 0.33 0.46 1.05
Anneal 2.1 9.46 0.14 0.56 7.99 5.38
Horse 0.92 6.24 0.13 0.53 32.49 2.97
Adult 13.2 19.8 3.19 171.56 263.12 167.16

Ionosphere 1.86 16.13 0.12 0.32 1905.44 6.22

Table 3.5: Runtime (in Seconds) by contenders and DEAL (N = 30, Ov = 0.6)
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Test instance: [1, 2, 5, 6, 9, 10, 12, 14, 16,
19, 20, 22, 28, 29, 31, 33]
Vectorized test instance:
[0,1,1,0,0,1,1,0,0,1,1,0,1,0,1,0,1,0,0,1,1,0,1,0,0,0,0,0,1,1,0,1,0,1,0]
Applicable rules by BL 1 Applicable rules by BL 2
9, 29 → 5;(0.0250,1.000,-6.267)

16, 12 → 5;(0.0500,0.667,-11.566)
31, 16 → 6;(0.1125,0.750,-20.776)

28 → 5;(0.0500,0.667,-11.566)
1, 20 → 0;(0.4250,1.000,-45.694)

Predicted class label: 6 Predicted class label: 5

Applicable rules by BL 3 Applicable rules by BL 4
19, 28 → 5;(0.0500,1.000,-14.274) 10, 28 → 5;(0.0500,1.000,-14.274)
Predicted class label: 5 Predicted class label: 5

Table 3.7: Applicable rules from the generated rules by the base learners(BL)
and decision process of DEAL
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Chapter 4

Classification by Frequent
Association Rules

In Chapter 3, to understand the decision process of our proposed model DEAL,

we need to identify the base learners who vote for the final class label and

gather the rules from those base learners. If the number of base learners

is large, this process can be cumbersome. To simplify the interpretation of

the ensemble model, in this chapter we propose Classification by Frequent

Association Rules (CFAR) where instead of using majority voting of the base

classifiers for the final class label, we gather all the rules from the base learners.

After gathering all the rules we rank and select the rules based on their ranking

to determine the final class label. In this chapter, we compare the performance

of CFAR to DEAL and other machine learning models in terms of accuracy,

runtime and required memory.

4.1 Methodology

In CFAR we also use SigD2 as base learner and one advantage of making an

ensemble of SigD2 as well as other associative classifiers is that we can collect

all the rules learned by the base learners from the training data set. These

rules are used to label test data to a specified class label. However, selecting

all the rules might include noisy rules which might affect the performance of

the model. To solve this we select a subset of the rules which enhance the

performance of the model. For this, we introduce the term Relative Frequency
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Ratio (RFR). After collecting all the rules generated by the base learners,

we count the frequency of the rules. We find the Rule having the maximum

frequency that we note as max frequency. We calculate the RFR of any rule

R by Equation 4.1.

Relative frequency ratio(R) =
Frequency(R)

max frequency
(4.1)

To predict the class label, we need to select rules from the generated rules.

We consider a threshold T and select all the rules whose RFR is greater than

or equal to T. The process of selecting rules is provided in Algorithm 5.

Algorithm 5 Rules selection based on RFR

Input: Rules: all rules generated by base learners; T: Threshold value to
select Rules.
Output: Selected rules: rules with RFR ≥ T

1: Selected rules ← []
2: for r in Rules do:
3: if RFR(r) ≥ T:
4: Selected rules.append(r)
5: end if
6: end for
7: return Selected rules

In this approach we need to find an optimum value of T. But with our

experiment we found this value to be different for different datasets. We show

the accuracy result for our 10 datasets for different values of T in Figure 4.1

and Figure 4.2. We split the results of the 10 datasets in two figures for clarity.

Unfortunately as depicted on Figure 4.1 and Figure 4.2, there is no opti-

mum value for T for all datasets. Therefore we design our model in such a way

that the model itself can find the value of T for which we can get maximum

accuracy. To achieve this goal, we outline a 3 step ensemble classifier. We

describe each of the steps below:
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Figure 4.1: Performance of the model for different values of Threshold T

Figure 4.2: Performance of the model for different values of Threshold T
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Rule generation

In the rule generation phase, at first we try with the dynamic subsampling

procedure of DEAL but the dynamic strategy could not perform well in this

case. We will discuss on this in the later section. For CFAR, we follow the

random sub-sampling procedure and train 100 SigD2 base learners. We divide

the dataset into train and validation data. We take 80% of the whole dataset

as training data and the rest 20% as validation data. Then again we divide the

training data as training and test data in the ratio of 80% and 20% respectively.

To train each base learner we take a subset of the feature vector of size 30.

After training 100 base learners with the training data, we gather all the rules

generated by the base learners. We calculate the Relative Frequency Ratio

(RFR) for each of the rules using Equation 4.1.

Find optimum value for T

To find the optimum value for T, we try with different values in a linear search

fashion. We assume, the importance of a rule depends on its frequency among

the base learners. A rule being more frequent among base learners indicates

more importance. Thus while experimenting with different values of T, at first

we try with T = 1. We select rules from the generated rules using Algorithm

5 and predict the class label with the selected rules. In the next step, we

decrease the value of T by 0.1 upto 1.0 and with that value we perform a rule

selection and class prediction. In each step, we calculate the accuracy. From

there we determine the optimal value of T.

Prediction

The last step is the prediction. From the previous step we get the value of T

which provides best result. We select rules using that value of T and predict the

class label of the validation data. With the predicted class label, we calculate

the performance of the model. The whole architecture is shown in Figure 4.3.
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4.2 Result Analysis

We use 10 different UCI datasets [6] to evaluate our proposed model CFAR.

Before using a dataset we discretize the numerical values as stated in [13]. We

convert the features to a binary feature vector. We use the same vector form of

discretized values for all our experiments with all contenders. Thus the results

of mentioned algorithms can be slightly different from their original papers.

As we mentioned earlier, to test our model CFAR, we use 20% of the dataset

to validate our model. We further divide the rest 80% of the data into train

and test data in the ratio of 80% and 20% respectively. For all other models,

we use 80% of the data to train the model and rest 20% of the data is used as

test data.

4.2.1 Performance evaluation

We compare our model with SigD2 as Sood and Zaiane [34] showed SigD2

outperforms other associative classifiers, rule-based classifiers, and other state-

of-the-art machine learning models. To compare the result with another inter-

pretable model we consider C4.5 proposed by Quinlan [33]. As we are making

an ensemble architecture we considered the performance of random forest [10]

which is an ensemble of decision trees. Our idea was motivated by the work of

Decision snippet features (DSF) model [37], so we are also interested to com-

pare the performance of our model with it. We also considered the classical

ensemble architecture where we used 100 base learners each trained with a

subset of the feature vector of size 30. As we do not control the overlap of the

features between the subsamples there can be different overlap between the

subsamples. We measured the overlap between the subsamples and we provide

the information about overlap among the subsamples in Table 4.1. The com-

parison in the accuracy of SigD2, C4.5, Random forest, DSF model, SigD2,

classical ensemble approach, DEAL, CFAR with dynamic ensemble and CFAR

is provided in Table 4.2. We also plot the accuracy in Figure 4.5.
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Figure 4.4: Sorted frequency of appearance of the features in CFAR

Maximum Overlap 0.67
Minimum overlap 0.03

Median 0.30
St. Deviation 0.11

Table 4.1: Maximum, minimum, median and standard deviation of overlap
among the subsamples in CFAR

From Table 4.2, we can see CFAR strategy with dynamic sampling proce-

dure of DEAL could not perform well in comparison to the result of CFAR

where we use 100 base learners. One reason for this is, CFAR collects and learn

popular rules from the base learners. In the case of dynamic sampling we can

see the number of base learners from Table 3.2. The number of base learners

in dynamic sampling is significantly reduced compared to 100 base learners.

Thus the notion of frequency of the rules does not work for dynamic sampling

procedure in CFAR. With many base classifiers, CFAR can decide which rules

are important for the classification. In the case of dynamic sampling proce-

dure CFAR does not have the capacity of deciding important rules as very few

rules are generated. From empirical analysis, it can be seen that in the case of

dynamic sampling strategy, CFAR ends up selecting all the rules every time.

Thus training a large number of feature is a good choice for CFAR. Another

issue is when the number of base learners is small then the features are not
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Figure 4.5: Accuracy of C4.5, Random Forest(RF), Decision Snippet Fea-
tures(DSF), SigD2, Classical ensemble approach(CE), DEAL and CFAR

selected uniformly. We show the frequency of appearance of the features in

the base learners in Figure 4.4. From the figure we can see with the increase

of base learners the uniformity of selection of the features increases. For this

reason we go for 100 base learners with random selection of the features.

From Table 4.2, we can also see in 7 among the 10 datasets CFAR has

better performance than other classifiers and ensemble models. The random

forest has better performance than CFAR in 3 datasets among which in Anneal

dataset the margin is very large. Another interesting observation in Anneal

dataset is classical ensemble approach has better performance than CFAR.

That means in these two datasets the approach of CFAR where we select

the rules based on the Relative Frequency Ratio (RFR) does not perform

well. Further analysis is needed on this dataset to understand why CFAR is

not performing well. On Average, CFAR has better performance than other

models.
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We also perform a statistical test to understand whether the improvement

in accuracy by CFAR is significant or not. For this, we use paired t-test from

the work of Hsu and Lachenbruch [24]. In the test, our null hypothesis is the

improvement in accuracy by CFAR is not significant. We repeated the whole

experiment 20 times for each of the datasets and calculated the accuracy of

each of the models. Then we calculated the difference in the accuracy for each

pair of the model. With the difference, we calculated the p-value. This p-value

signifies whether the difference is significant or not. If the p-value is less than

the threshold value alpha(0.05) then we can reject the null hypothesis and say

the difference in improvement by our proposed model CFAR is significant. We

provide the calculated p-value in Table 4.3. From Table 4.3, we can say, in the

dataset we used, except for DSF, CFAR shows significant improvement over

accuracy.

Figure 4.6: Precision of C4.5, Random Forest(RF), Decision Snippet Fea-
tures(DSF), SigD2, Classical ensemble approach(CE), DEAL and CFAR

Algorithm p-value

CFAR vs C4.5 0.0036
CFAR vs Random Forest 0.0061

CFAR vs DSF 0.0007
CFAR vs SigD2 0.0001

CFAR vs Classical Ensemble 5.3317e-11
CFAR vs DEAL 0.0426

Table 4.3: Statistical result
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Figure 4.7: Recall of C4.5, Random Forest(RF), Decision Snippet Fea-
tures(DSF), SigD2, Classical ensemble approach(CE), DEAL and CFAR

From Table 4.3, we can see in 5 of them, the p-value is less than alpha(0.05).

In the case of DSF, the p-value is large than the threshold value alpha. Thus

we can say, except for DSF, in the dataset we used, CFAR shows significant

improvement over accuracy.

Further, we analyze the precision and recall values of the models. Figure 4.6

and Figure 4.7 show the precision and recall values of the models respectively.

From the two figures, we can see CFAR has a very competitive performance

compared to the other models in terms of precision and recall.

4.2.2 Memory Requirement

One of our main goals for making an ensemble of SigD2 is to eliminate the

limitation of requiring very high amount of memory with the increase of the

feature vector size. We measure the memory required by the models using

the python library psutil. Table 4.4 shows the memory requirement for SigD2,

CFAR and other contenders.

From Table 4.4, we can see, in the comparison of memory requirement

between CFAR and SigD2 has two different scenarios. When the size of the

feature vector is small, the memory requirement of SigD2 and CFAR are very

close. However, with the increase in feature vector size, the memory require-

ment of SigD2 increases drastically while for CFAR the memory requirement

remains stable. Thus we can say, CFAR eliminates the high memory require-
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Dataset C4.5 RF DSF SigD2 DEAL CFAR
Zoo 106 127 112 121 105 106
Pima 103 128 112 102 101 105

PageBlocks 111 124 112 112 110 107
Heart 105 129 112 107 104 119

Hepatitis 103 127 113 113 100 108
Wine 104 128 112 165 100 107
Anneal 107 129 113 150 106 108
Horse 109 128 112 235 106 108
Adult 195 253 196 257 252 255

Ionosphere 124 128 113 2519 108 136

Table 4.4: Comparision of Memory requirement(MB)

ment of SigD2 in case of a dataset with a large feature vector size. In com-

parison to DEAL, the memory requirement of CFAR is slightly higher than

DEAL.

4.2.3 Runtime

Another limitation of SigD2 is the runtime: it increases with the increase of

feature vector space. The architecture of CFAR should solve that issue as for

each of the base learners, we are taking a fixed-size subset. To understand

this, we measure the runtime of CFAR, SigD2 and other contenders. The

comparison is shown in Table 4.5. All the experiments are done on the machine

with an Intel core i7 processor and 16 GB of RAM.

Dataset C4.5 RF DSF SigD2 DEAL CFAR
Zoo 0.06 0.12 0.31 3.64 6.65 8.23
Pima 1.76 0.15 0.10 0.47 0.89 28.32

PageBlocks 21.04 0.24 0.86 10.23 17.86 21.38
Heart 0.69 0.13 0.34 8.55 3.11 67.51

Hepatitis 0.23 0.11 0.08 10.41 1.25 26.58
Wine 0.17 0.11 0.07 0.46 1.05 9.61
Anneal 2.10 0.14 0.10 7.99 5.38 23.75
Horse 0.92 0.13 0.09 32.49 2.97 23.33
Adult 13.20 3.19 1.60 263.12 167.16 200.79

Ionosphere 1.86 0.12 0.08 1905.44 6.22 27.09

Table 4.5: Comparison of Run time(seconds)
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From Table 4.5, we can see that C4.5, random forest, and DSF model are

faster than SigD2, DEAL and CFAR in classification tasks. This was expected.

However, between SigD2 and CFAR, the dataset having a small size of feature

vector, SigD2 is faster than CFAR. This is also expected since CFAR has 100

base learners which are trained sequentially. No parallel processing is per-

formed at this stage in the experiment. Thus for datasets having small feature

vector size, SigD2 is faster than CFAR. When the size of the feature vector is

large, CFAR wins by a significant amount despite the overhead of the ensem-

ble running sequentially. In the comparison of the run time between DEAL

and CFAR, CFAR requires more time than DEAL. While training CFAR, the

model considers different values for RFR and choose the best one. Selecting

rules using each RFR and evaluating them requires more time than the DEAL.

We consider this as a trade-off to make the model more interpretable.

4.2.4 Performance analysis on different sizes of the sub-
set of feature vector

In our whole experiments with CFAR we always selected a subset of the feature

vector of size 30. This is because from experiments, we found, the performance

of SigD2 to be affected if the feature vector size is greater than 30. In this

section, we conduct an experiment for a different size for the subset of feature

vector. We start the experiment by selecting subset of size 15 and in each

step, we increase the size by 5 until a size of 40. In Figure 4.8, Figure 4.9, and

Figure 4.10 we can see the average accuracy, average memory requirement, and

average runtime of the datasets for different sizes of subset of feature vector

respectively.

Figure 4.8 shows an increase of the accuracy with the increase of the size of

the subset of feature vector. In the beginning, the rate of increase in accuracy

is high but with the increase in the size of the subset, the rate of increase

slows down. This shows that the more features we can bundle in a feature

subspace for a base learner, the more CFAR can take advantage of possible

feature inter-dependence. Figure 4.9 and 4.10 show the memory requirement

and runtime increase with the increase of the size of the feature subspace.
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Figure 4.8: Average accuracy of 10 datasets for different size of the subset of
Feature vector for CFAR

Figure 4.9: Average Memory requirement of 10 datasets for different size of
subset of Feature vector for CFAR
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Figure 4.10: Average Runtime of 10 datasets for different size of subset of
Feature vector for CFAR

Beyond 30, this increase accelerates. Therefore we conclude that 30 is a good

compromise for a good accurate while considering memory requirement and

runtime.

4.2.5 Effect of Number of base learners

In our model, we use 100 base learners. We are interested to know the effect of

the number of base learners in CFAR. Thus we tested the model with a different

number of base learners. In Figure 4.11 we can see the performance of CFAR

for a different number of base learners. In this experiment, we consider the

size of the subset of the feature vector to be 30.

From Figure 4.8, we can see when the number of base learners is reduced

the average accuracy is low. With the increase of the base learners, accuracy

increases. Beyond 100 base learners, the accuracy almost reaches a plateau

then decreases. Considering the runtime there seems no advantage in having

an ensemble larger than 100.

4.2.6 Interpretability and explainability

The major advantages of the associative classifier is the production of human-

readable rules and by analyzing the rules it is easier to understand the decision
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Figure 4.11: Effect of number of base learners on average accuracy in CFAR

process of the classifier. The associative classifier is therefore in itself explain-

able. An ensemble, however, is not straight forwardly explainable. In the

classical ensemble approach, each of the base learners predicts the class label

of test instances, and the final prediction is determined by a maximum vote.

In the case of the ensemble of associative classifiers, to interpret the decision

process we need to keep track of the base learners who voted for the final class

label and then get the rules from those base learners. In this process, the num-

ber of base learners who voted for the final class label can be quite large and

we need to consider the decision process of each of the base learners. Along

with this, there can be some rules which have different weights in different base

learners. This way of interpreting results can be difficult and time-consuming

and create huge confusion.

With the CFAR approach, instead of using the max vote strategy, we collect

all the rules and select rules based on their frequency. This process reduces

the number of rules as well as eliminates the necessity of understanding the

decision process of each of the base learners who voted for the final class

label. In Table 4.6 we provide a comparative analysis of the number of total

generated rules by the base learners, number of unique rules, and number of
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rules selected by CFAR for the classification process.

Stage #Rules

Total generated rules 1848
Unique rules 569
Selected Rules 13

Table 4.6: Number of rules at each stage of the CFAR

From Table 4.6 we can see, for each of the datasets, the total number of

generated rules is very high compared to the selected rules. For example in

Horse dataset, the total generated rules are 1848. But in the case of CFAR,

only 13 rules are selected for the final prediction. Thus to understand decision

process of the classifier we need to analyze only 13 rules. In Table 4.7, we

provide the rules selected by CFAR for the final class prediction from the

generated rules with their frequency and Relative Frequency Ratio (RFR).

From Table 4.7 we can see it is very convenient to understand the decision

process of CFAR.

Selected Rules Frequency RFR
0 → 0;(0.5277,0.873,-54.379) 40 1
63 → 1;(0.0340,0.889,-6.068) 39 0.975
49 → 0;(0.0894,0.840,-4.528) 33 0.825
1 → 1;(0.3064,0.791,-57.129) 31 0.775
64 → 0;(0.1447,0.944,-13.211) 26 0.65
55 → 0;(0.1191,0.903,-8.601) 25 0.625
60 → 0;(0.1915,0.738,-4.093) 25 0.625
15 → 0;(0.4000,0.718,-8.093) 25 0.625
48 → 0;(0.1957,0.821,-8.635) 24 0.6
54 → 0;(0.1064,0.833,-5.093) 24 0.6
78 → 0;(0.1447,0.919,-11.476) 24 0.6
62 → 1;(0.0681,0.800,-9.304) 24 0.6
12 → 1;(0.0936,0.595,-5.567) 24 0.6

Table 4.7: Selected rules for final class prediction by CFAR with their count
and RFR. Each rule is in the form of ”Antecedent → Class label;(support,
confidence, -ln(p-value))” where Antecedent is a conjunction of tokenised fea-
tures. For interpretability, tokens are mapped back to features (attribute-value
pairs)
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Chapter 5

Deep Associative Classifier

5.1 Methodology

This section introduces the proposed model, the Deep Associative Classifier

(DAC). To develop our model we followed the deep neural network architec-

ture. In case of deep neural networks, the input data are processed at multiple

layers which might be a reason for their good performance. Gcforest proposed

by Zhou et al. [40] utilizes the layered architecture of deep neural networks

and builds an ensemble using a decision tree as a base learner. While our

architecture is different, we borrow the idea of the ensemble but use the as-

sociative classifier SigD2 as the base learner. In SigD2, an additional rule

pruning technique is used to prune the noisy rules which enhances the perfor-

mance of the model while significantly reducing the number of classification

rules in the model. We use different ensembles, one in each layer of our ar-

chitecture and another one at the start while scrutinizing the feature space.

Building our layered architecture follows different steps.

In the first step, our architecture performs a scanning through the feature

vectors of the dataset, this is the scanning phase of our architecture. In this

phase, a fixed-size window slides over the input feature vector and selects a

pre-specified number of feature vectors sequentially. In the work of Zhou et

al. [40], they used 3 windows at the same time. We experimented with a dif-

ferent number of windows and found that only one window is sufficient for the

model. This is discussed in detail in the experimental result section. As we

are taking the subset of the feature vector for each base learner, our reasoning
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behind adding the class probabilities created by the base learners is that they

would serve as a heuristic for the base learners of the following layer to more

accurately predict the class label. In the scanning phase, subsets of the fea-

ture vectors are formed and with each subset, a base learner SigD2 is trained.

Each base learner provides class probabilities for the instances and the class

probabilities are concatenated to the original input vector. For example, if

we have a dataset with a feature vector size of 100 and the dataset consists

of the instances of binary classes, with a sliding window size of 30, we will

have, 71 subsets of the dataset. Each of the SigD2 base learners provides class

probabilities at the end of the learning. That is as the data is of binary class,

each base learner generates two-class probabilities - one for each class. Thus,

with 71 base learners, we have a total of 142 class probabilities. These class

probabilities are then concatenated with the original features resulting in 242

features at the end of the scanning phase. The newly formed dataset with the

concatenated features is provided as an input to the next phase, the cascading

phase. Algorithm 6 shows the steps performed in the scanning phase. Figure

5.1 illustrates the scanning phase of our architecture.

Algorithm 6 Algorithm Scanning phase

Input: Features: All features in dataset
Output: Features concatenated with class probabili-
ties

1: WindowSize=30
2: NewFeatures=[]
3: n=0
4: while n+WindowSize ≤ features.length do
5: features to train ← Features[n:n+WindowSize]
6: NewFeatures.append(Sigd2.classProbabilities(

features to train)
7: n=n+1
8: end while
9: Features ← Features.concatenate(NewFeatures)
10: return Features

The next step of our model is the cascade phase. Like the scanning phase,

we again use Sigd2 as the base learner. In this step, the feature vector gener-
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Figure 5.1: Scanning phase of Deep associative classifier

ated in the scanning phase acts as an input. The features are processed layer

by layer. At each layer, we use 100 SigD2 base learners. For each base learner,

30 features are selected randomly with shuffle and replacement from the input

feature vector. For the scanning phase and the cascading phase, we selected

30 features because if the feature vector size is very large, the memory require-

ment and run time of SigD2 increases, that is the effectiveness and efficiency

of SigD2 tend to decrease with a dimension larger than 30 in terms of memory

requirement and run time. Thus we decided to run the experiment with 30

features, a hyper-parameter in our model. After training, each of the base

learners calculates the class probabilities. For example, if we consider our pre-

viously mentioned example of a dataset with binary classes, each of the base

learners produces two class probability. With 100 base learners, we have 200

class probabilities which we append to the features after the filtering process

and weight assignment. In the cascading phase, we also predict the class label

of the test dataset with each of the base learners to evaluate the accuracy at
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the current layer. The goal is to have an increase in accuracy from one layer

to the other. We perform a max vote strategy to find the final class label of

the instances and calculate the accuracy. Figure 5.2 shows the architecture

of a single layer in the model, in fact, the very first layer of the cascading

phase. The difference is that for the first layer the input feature vector comes

from the scanning phase while for any other layer its input feature vector is

the output vector of the previous layer. For example, at the end of the first

layer, new class probabilities generated by the base learners of the first layer

are appended with the input feature vector of the first layer. This updated

feature vector is the input for the second layer. The output feature vector of

the second layer acts as an input to the third layer and so on. Figure 5.3 shows

the input feature vector and output feature vector at each layer.

Before forwarding the data to the next layer, we append the class probabil-

ities from the base learners as a feature, similar to the scanning phase. But

before appending, we introduce a filter to assign weights to the repetitive class

probabilities. From our analysis, we found there are many base learners which

produce the same class probability for each of the classes for each of the in-

stances. Adding them directly to the output vector fed to the next layers

produces more identical base learners and reduces the diversity in the ensem-

ble. Thus instead of appending the identical class probabilities, we append

the matched class probabilities multiplied with a weight factor. The weight

factor is simply the count of learners generating the same class probabilities.

In other words, If there is a set of identical class probabilities repeated n times,

we only append the class probabilities multiplied by n to the output vector,

making the feature vector increase with a smaller extension. While comparing

the class probabilities, we compare them up-to 7 digits precision. Algorithm 7

shows the ensemble procedure and Algorithm 8 reveals the filtering procedure

for the new features.
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Figure 5.2: Architecture of one single layer in the cascade phase
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Algorithm 7 Algorithm Cascade

Input: Features: Concatenated features from scanning phase:
Output: Accuracy, Concatenated features for next
layer

1: NewFeatures=[]
2: prediction=[]
3: for i in range 1 to 100 do
4: subsample → randomly select 30 features from Features
5: Sigd2.train(train data)
6: predict ← Sigd2.predict(Test data)
7: prediction.append(predict)
8: NewFeatures.append(Sigd2.classProbabilities(subsample)
9: end for
10: finalprediction ← max vote(predictions)
11: accuracycalculate accuracy(test label, finalprediction)
12: if (accuracy > previous layer accuracy) do
13: NewFeatures← weightedNewFeature(NewFeatures)
14: Features ← Features.concatenate(NewFeatures)
15: else
16: accuracy ← previouslayer accuracy
17: end if
18: return Features, accuracy

Algorithm 8 Algorithm weightedNewFeature

Input: NewFeatures: generated class probabilities
Output: weightedfeature weighted class probabilities as fea-
tures

1: unique features ← unique value set from NewFeatures
2: for unique in unique features do:
3: count ← unique in NewFeatures
4: weightedfeature.append(unique * count)
5: end for
6: return weightedfeature

The number of layers in our architecture is not preset but determined

automatically. At each layer, a prediction on test data is performed. The goal

is to have an improvement of the prediction accuracy from one layer to the

other. If no improvement is noted at a given layer compared to the previous

layer, the creation of a new layer is halted and the layer with the best accuracy

is considered the final layer. Since each layer is an ensemble of SigD2 classifiers,

64



the prediction of a layer is a max voting among base learners. This prediction

is not appended in the output vector but its sole purpose is to decide whether

to continue creating another layer if the accuracy improves or to halt and

ignore the last layer if no improvement is noted. Because we cease adding new

layers when there is no progress in the accuracy, the model will converge to

a final output at the end of a particular layer. No improvement means that

we cease adding additional layers even if the accuracy is the same as the layer

before. This prevents the model from running indefinitely. The highest level of

accuracy we can get is 1 if performance keeps improving in additional layers.

As a result, the model will eventually converge to the desired result. Figure

5.3 shows the architecture of the cascading phase of the model and the whole

architecture is provided in Figure 5.4.

5.2 Experimental Results

In this section, we provide an in-depth analysis of our experimental findings.

5.2.1 Dataset and Performance Measure

We use 10 different datasets from the UCI repository [6] to evaluate the perfor-

mance of our proposed model. Before applying the algorithms to the datasets,

we discretize the numerical attributes of the dataset as stated in [13]. We then

vectorize the features. In the result, the reported feature vector size is the size

of the feature after discretization and vectorization. For all the experiments,

we use the same discretized values so that the performance is measured across

the same format of the dataset. We select these datasets so that we can eval-

uate the performance of our model on different types of datasets i.e., datasets

having a different number of records and a different number of features. By

evaluating the performance of our proposed model on these datasets, we try

to ensure that our proposed approach works well across datasets with different

sizes in records and features.
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5.2.2 Results

Our proposed model is assessed in terms of accuracy and memory requirement.

For this comparison, we select random forest, gcForest proposed by Zhou et al.

[40], SigD2 proposed by Sood and Zaiane [34] and three different deep neural

network architectures. From the rule-based classifier, we select only SigD2

because it was shown to outperform other existing rule-based classifiers. We

also calculate the memory requirements of the model and show a comparative

analysis. Finally, we conduct a statistical analysis on the accuracy to show

the significance of our results. In our experiments, we divide the dataset into

training and testing data, 80% and 20% respectively. For all datasets, we use

a window size of 30. In each layer of the cascade phase, we use 100 SigD2 base

learners. In the case of gcForest, we use the implementation [26] of gcForest

proposed by Zhou et al. [40]. As we use discretized datasets, the reported

results can be slightly different from the results reported in the mentioned

papers.

Among the deep neural network models, The first deep neural network

(DNN1) has one hidden layer and the second deep neural network (DNN2)

has two hidden layers and DNN N where we incorporated N hidden layers. In

the case of DNN N, N represents the number of layers equal to the number

of layers determined by our proposed model DAC for each dataset. DNN1

consists of one hidden layer with 256 nodes in the layer with a dropout of

0.3 and ReLU activation function. In the output layer, we use the softmax

activation function. We use the Adam optimizer with a learning rate of .0001.

In DNN2 and DNN N we use the same parameters with additional hidden

layers with 256 nodes. With DNN1 in DNN2, one more hidden layer is added,

and with DNN1 in DNN N, N-1 more hidden layers are added. For each

dataset, we utilise a different number of layers in the DNN N model, which

is dataset-specific and the number of layers are determined by our proposed

model. We execute the model for 100 epochs for each dataset. We take these

models as a general representation of the deep neural network family.
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With different combination of hyper-parameters for the deep neural net-

work architectures, the performance may outperform the classifiers mentioned

in this paper including our proposed model. But the hyper-parameter tuning

might be dataset-specific and it is not an easy task to find proper set of hyper-

parameters. We consider this as a limitation of the deep neural networks. For

this reason, we do not perform hyper-parameter tuning for each dataset for

deep neural networks rather use simple architectures for all the datasets.

Among the deep neural network models, The first deep neural network

(DNN1) has one hidden layer and the second deep neural network (DNN2)

has two hidden layers and DNN N where we incorporated N hidden layers. In

the case of DNN N, N represents the number of layers equal to the number

of layers determined by our proposed model DAC for each dataset. DNN1

consists of one hidden layer with 256 nodes in the layer with a dropout of

0.3 and ReLU activation function. In the output layer, we use the softmax

activation function. We use the Adam optimizer with a learning rate of .0001.

In DNN2 and DNN N we use the same parameters with additional hidden

layers with 256 nodes. With DNN1 in DNN2, one more hidden layer is added,

and with DNN1 in DNN N, N-1 more hidden layers are added. For each

dataset, we utilise a different number of layers in the DNN N model, which

is dataset-specific and the number of layers are determined by our proposed

model. We execute the model for 100 epochs for each dataset. We take

these models as a general representation of the deep neural network family.

With different combination of hyper-parameters for the deep neural network

architectures, the performance may outperform the classifiers mentioned in

this paper including our proposed model. But the hyper-parameter tuning

might be dataset-specific and it is not an easy task to find proper set of hyper-

parameters. We consider this as a limitation of the deep neural networks. For

this reason, we do not perform hyper-parameter tuning for each dataset for

deep neural networks rather use simple architectures for all the datasets.
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Figure 5.5: Comparison in Accuracy

5.2.3 Accuracy

A comparison of the accuracy of our model compared to other models is given

in the Table 5.1 and Figure 5.5

From Table 5.5 we can see in 2 datasets DAC outperforms all other mod-

els. Only in 1 datasets, dataset specific model DNN N outperforms all other

models and in 1 dataset DNN2 and DNN N has same performance and they

outperform all other models. For the Hepatitis dataset, the accuracy of the

associative classifier and the gcForest model is quite low as compared to the

dataset specific model DNN N. In this dataset, the decision tree-based archi-

tecture gcForest, rule-based classifier SigD2 and our proposed model could

not perform well. The core architecture of the deep neural network models

might have an advantage over the rule-based models and the gcForest model

for this dataset. In the case of the Anneal dataset, we can see that gcForest

architecture outperforms all other models. In this dataset, the Random for-

est also has the same performance as the gcForest. As the base learner for

both models is the decision tree, in the case of this dataset, the method of

the decision tree has an advantage over the other classifiers. In 3 datasets,

CFAR outperforms other classifiers. In 4 datasets DAC outperforms all DNN

models and in 8 datasets DAC outperforms its base classifier SigD2. DAC

also has better average accuracy than the other models except CFAR. We also
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Figure 5.6: Comparison of Precision

Figure 5.7: Comparison of Recall

compare the performance of DAC with other models in terms of precision and

recall. Figure 5.6 and 5.7 shows the precision and recall of the models for

each dataset respectively. We can see DAC has very competitive precision and

recall compared to other models.

To see the effect of filtering and weighting of the augmented feature, we

tested the performance of our model by removing the filtering phase. We only

generated the class probabilities and without further analysis, we added all

the class probabilities in the dataset as features. Similarly, we also tested the

performance of our model without the scanning phase. In this case, we used

the same parameters and settings as mentioned above but just removed the

scanning phase. The results of these tests are provided in Figure 5.8.

From Figure 5.8, we can see that removing the filtering or the weighting
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Figure 5.8: Comparison of accuracy with and without different component of
the proposed model

of the augmented feature components from the model has an impact on the

performance of the model. Among the two modules, filtering has more impact

on the results. In all the datasets removing the filtering step reduces the ac-

curacy more than removing the scanning step. In the case of implementing

the model without filtering, when the model generates class probabilities, we

found many base learners produce the same class probabilities for all the in-

stances. To make a good ensemble we know diversity among the base learners

is a crucial factor. But without filtering many of the base learners produce

duplicate results. With those results, in the subsequent layers, they produce

even more duplicate base learners which hampers the model.

We analysed the performance of our model when using a different number

of windows in the initial scanning step scrutinising the feature space. We

experimented with two, three and four windows. The average accuracy for the

different windows is provided in Figure 5.9.

In Figure 5.9, we can see, that increasing the number of windows in the
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Figure 5.9: Effect of number of windows in the scanning phase

scanning does not have a significant impact on the performance of the model

in terms of accuracy. However, it impacts the execution time of the model.

In our model, the layers and the base learners are trained sequentially. Thus

increasing the number of windows increases the execution time of the model.

We also analyzed the different window sizes by experimenting with window

sizes from 15 to 40 increasing by 5 at each step. We plot in Figure 5.10 the

average accuracy of the 10 datasets with the increase of the window size.

From the figure we can see that the accuracy increases with the increase in

the window size. However, there is a compromise to make. As the window

size increases, so does the feature vector output in each layer and therefore

the memory requirement.

Finally, we analyse the effect of the number of base learners in each cascad-

ing layer. Since we use a majority voting scheme, the number of base learners

can have a big impact on the performance of the model. This is a very im-

portant hyper-parameter for our model. In the case of the number of base

learners, we perform the test varying the number of base learners from 25 to
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Figure 5.10: Effect of different window size on accuracy

200 increasing by 25 base learners in each step. Figure 5.11 shows the effect

of the number of base learners on accuracy.

From Figure 5.11, we can see with the increase in the number of base learn-

ers, the accuracy increases sharply then plateaus beyond 100. In our model,

we introduce filtering at each layer of the cascading layer which keeps only

one of the base learners and increases redundancy by assigning some weight to

that one learner. Thus when we increase the number of base learners, many

redundant base learners are produced and most of them are filtered out. By in-

creasing the number of base learners beyond 100 there is no significant change

in the accuracy of the model.

5.2.4 Memory Requirement

To see how efficient our proposed model is in terms of memory requirement,

we also measure the memory needed for each model. Deep neural networks

require a high amount of memory for processing data at each layer. SigD2 also
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Figure 5.11: Effect of number of base learners on accuracy

requires a high amount of memory with the increase of the feature vector size.

We can see the memory requirements of the different models in Table 5.2. To

calculate the memory requirement for each of the model we used the python

library psutil.

From the table, we can observe the high memory requirement of deep neural

networks. The memory requirement is also high for SigD2 for a dataset with a

large feature vector. The gcForest architecture largely decreases the memory

requirements for all types of datasets. Our proposed model further decreases

the memory requirements. In the case of a dataset having a very small number

of features, SigD2 requires less memory than our proposed model. But when

the feature vector size increases, we can see a decrease in the memory require-

ment by our model in contrast to SigD2. Our model also shows competitive

performance in comparison with random forest.

To get a better understanding of the memory requirement of our model,

we tried different window sizes since SigD2 is sensitive to the size of feature

vectors. Thus we tested different window sizes from 15 to 40 increasing by
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Figure 5.12: Effect of window size in the memory requirement of DAC

5 at each step. Figure 5.12 shows the average memory requirement by our

proposed model as we increase the window size. By analyzing Figure 5.10 and

Figure 5.12, we can see the improvement in the accuracy and higher memory

requirement with the increased window size. After window size 30 though

the accuracy increases but the memory requirement also rises and the trend

of increasing memory requirement is much higher than the accuracy. For this

reason, window size 30 can be considered as an optimum window size for using

our proposed model.

5.2.5 Number of hyper-parameter and tuning feasibility

In previous sections, we mentioned, that deep neural network models have

a complicated hyper-parameter tuning process and they differ for different

datasets, In our experiment, we used a simple version of the deep learning

model and we used the same model for all the datasets, these models of deep

neural networks could not perform well in most of the datasets. But with

proper hyper-parameters, deep neural networks might perform better. Most
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of the time the hyper-parameter tuning for deep neural networks is dataset-

specific. That is, for each of the datasets the hyper-parameters could be dif-

ferent. Tuning the hyper-parameters is a tedious procedure. Moreover, in the

case of deep neural network models, it is very hard to understand the effect of

each hyper-parameter on the performance of the model.

On the other hand, gcForest architecture requires fewer hyper-parameters

than the deep neural network models. Still, several hyper-parameters are

present in their model. For the experiment, the authors found a setting where

they showed their model achieved a better performance on different types of

datasets, There can be some other settings of the hyper-parameter by which

the performance of their model can be further improved. In their case, tuning

4 hyper-parameters to find a suitable setting is also a complicated and time-

consuming process and like deep neural networks, there is no way to assume

the hyper-parameters without testing. In our model, we further reduced the

number of hyper-parameters. We have two hyper-parameters which are the

number of base learners in each of the cascading layers, and the window size.

The number of layers is determined automatically. With experiments, we

found a window size 30 is a very good choice for our model as decreasing

from 30 decreases the accuracy of the model. Increasing the window size

highly increases the memory requirement which we can see from Figure 5.10

and Figure 5.12. Still, for some other datasets, different window sizes may

improve the performance of the model. Table 5.3 shows the number of hyper-

parameter in the case of the deep neural network models, gcForest and our

proposed model.

Considering the complexity of tuning hyper-parameters for deep neural net-

works and gcForest, changing the hyper-parameters for our proposed model

is quite an easy task. In the case of our model, if we increase the number of

base learners at each layer, the effect of the change that is whether there is

an improvement in the performance can be directly observed. In the case of

changing the window size, the change in the accuracy and memory require-

ments is also directly discernable from the result. Decreasing the window size

makes the model faster but decreases the accuracy, and increasing the window
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size requires much memory while still improving the accuracy. By changing

the window size it is easy to determine a good window size for a dataset

which is an easier task than testing the model with different settings of many

hyper-parameters in the case of deep neural networks and gcForest.

From Table 5.3, we can see that gcForest requires 4 different parameters

to be tuned. Finding a proper settings by tuning 4 different parameter is

not an easy task as different combination can work for different dataset. But

in our model,if we consider the window size is fixed then, we have one hyper-

parameter which is the number of base learners in each of the cascading layers.

Tuning this one parameter is very easy to increase or decrease the number of

base learners in each of the layers. In case we want to know how our model

performs in case of a different number of base learners, changing only the

number of base learners is sufficient and we can directly observe the effect

of changing the number of base learners from the result. Side by side, if we

consider the window size as a hyper-parameter,finding a combination of two

hyper-parameter will not be a difficult task. Changing both of the hyper-

parameter, the effect of the change is directly observable. Thus having these

two parameter makes our model more suitable for tabular dataset.

5.2.6 Statistical Analysis

Finally, we conducted a statistical analysis to show the significance of the im-

provements in our proposed model. For this, we performed the student paired

t-test with the null hypothesis, that the improvement in the accuracy of our

model is not significant. We run the whole experiment 20 times and calculated

the average accuracy for each model. In this case, we used a window size of

30 and 100 base learners in each layer of cascading phase. Then we calculated

the differences in accuracy by δ = MDAC(test data) −Mi(test data). Here

MDAC is our proposed model and the subscript i stands for the other models.

Running the models on test data provides the accuracy of the models and δ

is the difference in the accuracy. Then with the differences, we performed the

paired t-test which is inspired by the work of Henry et al.15. We used their

model to calculate p-values for each of the mentioned classification models
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against our proposed model. The calculated p-values are provided in Table

5.4.

Algorithm p-value
DAC vs Random Forest 0.0235

DAC vs gcForest 0.0030
DAC vs SigD2 0.0114
DAC vs DNN1 3.2084e-10
DAC vs DNN2 0.0209
DAC vs DNN N 0.0268

Table 5.4: Statistical result

From Table 5.4 we can see the p-value for each pair is very low. Thus we

can reject the null hypothesis and conclude that the improvement in accuracy

of our proposed model is significant.
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Deep neural networks gcForest DAC

• Activation functions

• Number of hidden layer

• Number of Nodes in hid-
den layer

• Number Feature maps

• Kernel size

• Learning rate

• Dropout ratio

• Momentum

• weight regularization
penalty

• Weight initialization

• Batch size

• Number of Forests

• Number of Trees in each
forest

• Tree growth

• Sliding window sizes (3
different sizes)

• Number of base learners

• Window size

Table 5.3: Hyper-parameters
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Chapter 6

Conclusion

6.1 Summary

In this study, we propose Dynamic Ensemble Associative Learning (DEAL)

where we use SigD2 as a base learner and present a feature sampling method

which eliminates the need to fix the size of ensemble while ensuring diver-

sity and feature space coverage. Evaluating the model over different datasets,

reveals an increase of the accuracy. DEAL solves the limitation of SigD2

requiring huge memory and runtime if the feature vector space is large. Mem-

ory requirement and runtime of DEAL does not increase with the increase in

feature vector like SigD2. Along with decreasing the runtime and memory

requirement, we designed DEAL in such a way that the decision process of

DEAL is human readable and explainable. The sampling method of DEAL

provides promising results when using SigD2 as a base learner since it ensures

diversity and feature space coverage.

Further, we propose another ensemble technique Classification by Frequent

Association Rules (CFAR) using SigD2 as base learner where instead of the

classical max voting strategy we aggregate all the rules generated by the base

learners and select frequent rules for the classification task. An experiment

with 10 different datasets shows CFAR increases the accuracy in most cases.

CFAR also eliminates the limitation of high memory requirement and runtime

of SigD2 in case of a dataset having a large feature vector size. In CFAR,

instead of the classical ensemble process, we design the ensemble in such a way

that the decision process remains human-readable and explainable, and can be
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understood by analyzing a very small number of rules. Along with providing

promising performance in terms of accuracy, memory requirement, and run

time, CFAR also preserves interpretability. Understanding the decision process

of CFAR is easier than any other ensemble model.

In addition to this, we propose Deep Associative Classifier(DAC) where

we present an attempt at exploit one of the main reasons behind the success

of deep learning: the layered and deep representation learning. Our proposal

expands on the idea of the gcForest by using a rule-based classifier, SigD2, as a

base learner, introduces a filtering process to tackle diversity in ensembles, and

further reducing hyper-parameters. One of the main questions we try to answer

while building DAC is Can we have a deep architecture with fewer hyper-

parameters, low memory requirement and exploit a layer-wise data processing

architecture of deep neural networks while making use of a rule-based base

learner?. To answer this question and overcome some of the limitations of deep

neural networks, gcForest, and some hindrances of associative classifiers, we

designed a deep associative classifier architecture using SigD2 as a base learner.

We compared the performance of our approach with the other state-of-the-

art models in terms of accuracy, memory requirements and hyper-parameter

tuning feasibility on 10 different UCI datasets. We explored different sampling

and tuning methods and added a filtering phase along with scanning and

cascading phase to the ensemble architecture to improve the accuracy of our

proposed model. From our experiments, we show that our model performs

better than other existing models including gcForest and deep neural networks

for different datasets not only in terms of accuracy but also in terms of memory

needs. We also show that our model reduces the memory requirement to a

great extent in comparison to deep neural networks and SigD2 which makes our

model suitable to run in low-resource hardware. Our proposed model DAC

has only two hyper-parameters to tune as compared to gcForest which has

four to tune and deep neural networks which have several hyper-parameters.

Further, our model achieves excellent performance across various datasets in

terms of accuracy.
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6.2 Future Research Direction

• The sampling method of DEAL provides promising results when using

SigD2 as a base learner since it ensures diversity and feature space cov-

erage. Random Forest also uses a subset of the features and the subsets

are chosen randomly. It would be interesting to use our sampling method

in the case of Random Forest. This would eliminate the need to prede-

termine the number of estimators in Random Forest.

• DEAL is a framework where the base learner SigD2 could be replaced. A

better rule based learner that is not as constrained by the dimensionality

of the feature space could allow experimenting with a larger sampled

feature subspace.

• In our proposed model CFAR, we use SigD2 as base learner. We can

also use other associative classifiers as base learners in this model. It

would be interesting to use other associative classifiers as base learners

and compare their performance. our study comprises applying CFAR

only to tabular data. In the future, we want to deploy CFAR on text

and image data. In our model, CFAR is a framework where we replaced

the max voting strategy with aggregating the association rules for final

prediction. It would be interesting to explore the same strategy in other

interpretable ensemble models.

• While selecting rules in CFAR we use a simple criteria which we call Rela-

tive Frequency Ration (RFR) which we calculate based on the frequency

of appearance of a rule. It would be an interesting idea to investigate

other measures to select rules.

• In DAC, in the cascading step, we employ a filtering process to ensure

that identical class probabilities are not appended more than once in

the output feature vector. Our current filtering strategy simply avoids

repetition by multiplying the probabilities by a weight equal to the count

of repetitions of identical predictions. The performance of our model
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could be improved by exploring other filtering methods that still ensure

diversity in the subsequent ensemble and safeguard the feature vector

size in the layer output. Moreover, the random sampling of features for

the base learners in the layer ensemble during the cascading step makes

the model less stable across different runs. A better strategy of feature

sampling that guarantees diversity and coverage could not only ensure

stability but also eliminate the need to select the size of the ensemble

as a hyper-parameter but instead automatically determine this size per

layer.

• In DAC, the number of layers is determined automatically by the model.

While determining the number of layers, we stop execution if we do

not find any improvement at a layer from its previous layer. From our

experiment we find in all the cases the execution stops after 3 to 4 layers

which is not very deep compared to the deep learning models. It would

be an interesting idea to see the performance of the model if we allow

the model to add few more layers even if the accuracy does not increase

because it might be the case for some dataset that the accuracy might

go down and then go up again.

• While sampling the features in DEAL, CFAR and DAC, we select fea-

tures with random selection. Even for dynamic sampling we select the

features randomly and then compare the subsample with other subsam-

ples. It would be worthwhile to investigate other criteria for selecting

features for instance keeping the most correlated features together or the

least correlated features together or other feature selection approaches..

• Another important direction for DAC to explore is to investigate how

we can exploit the interpretability of the rule-based classifier, SigD2, to

make DAC explainable. Understanding the important features in a deci-

sion is tricky with a cascade of layers each with an ensemble of deciders

voting by majority. Moreover, the salient features composing the vec-

tors in each layer are made up not only of the initial input features but
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also collected weighted probabilities from the ensemble of the previous

layers. Finding the salient features is a problem in itself but translat-

ing those back to the original features is another open problem worth

investigating.
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