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Abstract

We provide a characterization of plan recognition in terms of a general framework of
belief revision and non-monotonic reasoning. We adopt a generalization of classical
belief revision to describe a competence model of plan recognition which supports
dynamic change to all aspects of a plan recognition knowledge base, including back-
ground knowledge, action descriptions and their relationship to named plans, and
accumulating sets of observations on agent actions.

Our plan recognition model exploits the underlying belief revision model to assim-
ilate observations, and answer queries about an agent’s intended plans and actions.
Supporting belief states are determined by observed actions and non-monotonic as-
sumptions consistent with background knowledge and action descriptions.

We use a situation calculus notation to describe plans and actions, together with
a small repertoire of meta predicates which are used to specify observations to the
belief revision system, and to query the reasoning system regarding the current status
of plans and predictable actions.

Our intent is to demonstrate the connections between a general plan recognition
model and important concepts of belief revision and non-monotonic reasoning, to help
establish a basis for improving the specification and development of specialized plan

recognition systems.
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Chapter 1

Introduction

1.1 Problem specification

Knowing the plan an agent is pursuing is important for several reasons. It allows
us to predict actions the agent might take in the future, and it allows us to aid or
hamper the agent by suggesting or even taking action alternatives.

In its simplest conception, a plan explains a sequence of actions if they comprise
the plan. To recognize an observed set of actions as a plan first requires that one
establish a representation of plans as a named or similarly identified set or sequence
of actions. With that plan representation and given a set of observed actions, a plan
recognition system constructs the set of possible plans which explain the specified
actions [9].

Like all recognition tasks, the object to be recognized has to be described in terms
of some number of components. Sentences are sequences of words, programs are
sequences of instructions, and plans might simply be conceived as named sequences
of actions. The concept of “sequence” is typically too simple however, and can be
elaborated along at least two dimensions. First, a plan of any practical complexity
will likely include alternative actions to accomplish the same subgoals (which turns
any plan description into a tree or lattice). Second, any set of actions to accomplish

any particular plan will typically have optional actions which serve only to embellish
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the goal; so there will be necessary and contingent actions for any practical plan.

Within this kind of situation, a plan recognition system must be able to use
incomplete information to provide the required flexibility. A general plan recognition
system must be able to perpetually accept revised descriptions of a world in which
actions take place, including changes to the observed relationships amongst actions
and plans. To anticipate the behaviour of agents acting in a dynamic observable
world, the plan recognition system must be able to hypothesize consistent plans.
Within this kind of framework, it is unsurprising that non-monotonic reasoning and
belief revision will provide a basis for reasoning in this kind of incomplete information
context.

At least four different general plan recognition strategies exist in the literature:
parsing [21], plausible inference [2] and circumscribing a hierarchical representation
of plans using deduction [9] and abduction [12].

The method proposed here uses ideas related to at least the last three of these
methods, developed within a framework for managing and reasoning about beliefs.
We use the Ghose-Goebel belief change model to maintain a dynamic set of assertions
that represent actions and relationships amongst actions and plans. This method ex-
plicitly supports reasoning with incomplete knowledge and revision of the belief base
with newly observed facts. Observed actions are assimilated within the belief revision
system and, together with current beliefs about actions and their affects, constrain the
plans that can be recognized. Additionally, The Ghose-Goebel (henceforth GG) rea-
soning framework supports the maintenance of multiple mutually inconsistent states
of the world, providing a basis to assume alternative hypothetical completions of

plans.

1.2 Motivation

One of the central issues of Artificial Intelligence deals with representing plans and

actions. Plan recognition allows for reasoning with observed or completed actions
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in terms of constructing plans which contain these actions. This type of reasoning
is very important and useful in the areas of story understanding, strategic planning,
and scheduling.

In order for a plan recognition system to be really useful, it should interact with
the changing environment by dealing with uncertainties inherent to a dynamic plan
library. The use of belief revision is an attempt to incorporate possible uncertainty
handling to the plan recognition system. For example, by finding the set of assump-
tions (non-monotonically) that entail the action observations, we are able to hypoth-
esize the observed agent’s goals according to the plans contained within the plan
library. The many possible consistent sets of assumptions entailing the observations
may be handled by the GG belief revision reasoning framework.

Current techniques used for solving the plan recognition problem deal with static
knowledge bases, where a plan library already exists and the relationships amongst
its comprising actions are known. In such systems, certain heuristics are applied to
recognize viable plans. Carberry’s focusing heuristic [2] hypothesizes a set of viable
plans, selects the “best” one and incorporates it into a context model. Kautz 9]
presents yet another beuristic used for selecting plans amongst multiple plausible
plans.

Our method does not pretend to know which of the possible plans might be deemed
as “the best.” Instead, the GG belief revision framework allows the maintenance of
all feasible plans which are recognizable, based on given observations. Eventually,
and in any practical situation, such preferences for particular plans will be captured
as epistemic entrenchment conditions [14]. We claim it is unnecessary and in fact
dangerous to make a premature commitment to some plausible plan, when in fact all
the possible plans ought to be presented to reflect the competence of a plan recognition
system. This is consistent with the belief revision principle of informational economy
which states that belief states should change in such a way as to maintain the maximal
amount of information from state to state [5).

By using the techniques developed in belief revision, we explicitly allow for our



knowledge base to consist of incomplete knowledge. We incorporate new observations
into our knowledge base using the belief revision expansion, revision and contraction
operators [5, 6, 15]. Our plan library is therefore dynamic. This mimics a more natu-
ral temporal varying behaviour of beliefs: in every reasonable possible world changes
occur. As observations are made, the plausibly inferred plans are incrementally de-

termined by belief states.

1.3 Scope of this thesis

We provide a new way of looking at the plan recognition problem. Not only do we
expand the definition of plan recognition to include the possibility of having dynam-
ically changing plan libraries, but also we describe a way of handling such environ-
ments. We propose the use of a belief revision framework known as the Ghose-Goebel
framework which is capable of dealing with the dynamically changing nature of plan
libraries to maintain the changing knowledge about the world. We make use of non-
monotonic reasoning to make certain assumptions which aid us in recognizing plans.

This dissertation contains the following sections:

® Description of the existing methods currently used to solve the plan recogni-
tion problem. Among these are Henry Kautz’ [9] monumental plan recognition
work, Marc Vilain's [21] use of parsing context-free grammars, Charniak and
Goldman'’s [3] probabilistic approach to deal with plan recognition via Bayesian

networks and other approaches.

o Description of the GG reasoning framework, which is used in the belief mainte-
nance module to keep track of how new observations affect the existing knowl-
edge base, and what to do with inconsistencies. Included is a comparison of this
model with the traditional AGM belief revision model and reasons for selecting

the GG model over the traditional one.



o Description of plan recognition based on the belief maintenance module using
non monotonic assumptions to recognize and predict possible plans and actions

which may potentially occur.

¢ Knowledge representation of axioms (including actions, plans and state affecting

axioms) which support the plan recognition model.

o The evaluation of the benefits and drawbacks of using this plan recognition

model.

¢ Implementation design characteristics and performance issues of such a model

are examined.

o Future work which may be performed to further develop this dynamic method

of solving the plan recognition problem.

1.4 An overview of the system

The system we propose consists of two modules. The belief maintenance module uses
the Ghose-Goebel Belief Revision System to maintain a body of knowledge based on
observations. This system maintains a plan library and a knowledge base. It allows
for dynamic change of both of these based on new information observed by an agent.
The knowledge base or the plan library may be expanded, revised or contracted,
depending on the type of new information which is observed. Multiple mutually
inconsistent belief sets are maintained as potential belief states that can be used to
recognize plans.

The second module is respousible for plan recognition using the information about
the world maintained by the first module. This system allows for observation of new
information, certain types of predictions, and recognition of possible plans in the
given state of the world. It relies on non monotonic assumptions which are used in

the plan recognition and prediction aspects of its functionality.
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Figure 1.1: Overview of our system.
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Figure 1.2: The system as seen by the agent.

Figure 1.1 shows the two modules interacting with the plan library. The belief
maintenance system maintains its current status, while the plan recognition module
uses it to predict and recognize possible plans and actions.

When viewed from the outside, the belief maintenance module is completely trans-
parent. It is not important to the agent to know the intricacies of maintaining a valid
knowledge base and plan library. What the agent is interested in is the plan recog-
nition system because this system actually provides to the agent the information the
agent requires in the form of predictions and plan recognition. Furthermore, any
observations that the agent makes are passed on to the belief maintenance module
which appropriately revises the knowledge base or the plan library as to maintain in-
formational economy and consistency among the many potential states of the world
which may result.

Figure 1.2 shows a graphical representation of the plan recognition module seen
by the agent. This module makes continuous uses of the belief maintenance module

which keeps track of all revisions based on observations made by the agent.



1.5 Assumptions

We base our system on a set of assumptions which define guidelines for comparison

with other existing systems. These assumptions also provide an outline as to what

the system can be expected to do and what its limitations are. Some of these as-

sumptions could be loosened, but this would impact the competency of representing

plan recognition by means of belief revision.

. All knowledge about the world is contained in the two repositories labeled plan

library and knowledge base. The plan library is responsible for holding all infor-
mation which deals with representing known plans. These are represented by
sequences of actions. The knowledge base contains all other information about
the world, as required by the reasoning engine to draw conclusions based on
the plan library. The information here includes different types of axioms which
describe potential states, effect axioms of actions, frame axioms, as well as other

types of axioms which are required for reasoning.

. We leave it up to the reasoning engine underlying the belief revision system to

figure out how to use the information in the plan library and the knowledge

base.

We do not require the belief maintenance system to make choices between po-
tential belief states which are created when the plan library or knowledge base
are revised by newly observed information. In fact, we adopt the Ghose-Goebel
Belief Revision model whose inherent property is the ability to maintain all
possible potential belief states, since each one has a likelihood of being correct.
We do not know whether this approach will require copious amounts of storage
and time to be practically implementable, but our objective is not optimality

but competency of representing plan recognition with belief revision.

We are guided by the principle of informational economy which states that no

information should be discarded, however unlikely it may appear, if there is the



slightest chance that it in fact may be true in some future state.

. We allow nonmonotonic assumptions to guide our plan recognition process. We
assume that if no evidence exists which would preclude a fact or action from
holding or being possible, then such fact or action may be used in the plan
recognition process. This assumption is important because it gives us a freer
hand in recognizing plans. If no evidence exists which would be inconsistent
with recognizing a plan, that plan should be feasible, even if supporting evidence

for it has not yet been observed.

. We leave it up to various epistemic entrenchment techniques to support any
selection of best plans. The value of the entrenchment of various facts, axioms,
plans or other notions may be based on multiple factors depending on the
situation. Some measures of entrenchment have been based on probability,
utility and source of information; in most instances, previous plan preference

methods fit easily into this framework.



Chapter 2

Belief maintenance system

2.1 Introduction

Whenever beliefs change, inconsistencies may result. These inconsistencies are caused
by relationships between facts and rules which make up our beliefs. Since these
relationships are very often complex, any change to any of the facts and rules causes
a cascade of changes which have to propagated in order to maintain consistency.

A belief maintenance system should provide a comprehensive competence theory
for the process of belief change. It should allow for new information to be added and
subtracted from a knowledge base describing a situation of the world. It should also
allow for information in the knowledge base to be modified without being added or

subtracted. This modification is commonly referred to as belief revision.

2.2 Definitions

Before discussing further details, we informally describe some of the key components
of our chosen representation. We use a version of situation calculus syntax based
roughly on work by Lifschitz [11] and Kowalski [10].

We initially distinguish of three predicates: holds, observed and goal. The pred-

icate holds allows us to describe each state in terms of fluents which are claimed to
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Figure 2.1: The plan RobBank consisting of two actions.

be true in a state.

A knouwledge base is a collection of axioms. These axioms describe actions, action
effects, and relationships amongst fluents, actions, and plans. A belief state is a
situation represented by constant symbols, e.g., s or by composite terms result(a, so)

when a denotes an action. A fluent is a truth function defined on a state:
holds(hasGun(Fred), sq) (2.1)
is a fluent denoting the fact that Fred has a gun in state sq, while
=holds(isInBank(Fred), s;) (2.2)

is a fluent denoting the fact that in state s; Fred is not in the bank. An action is an
n-ary function from states to states, e.g., as in the agent named “Fred” in the action

getGun, here asserted to have taken place in state s,:
holds(hasGun(Fred), result(getGun(Fred), s;)) (2.3)

The simplest form of a plan is a sequence of actions leading from some state to some

subsequent state. Actions are contained in a plan if a plan explains them: e.g.,
goal(toHunt, so) « predictable(getGun(Fred), so) (2.4)

This simple one action plan “to hunt” is one explanation for the “get a gun” action
[11]. If it is possible for Fred to obtain a gun or if at least we can assume this, then
also it is possible to satisfy the goal of hunting.

The holds relation also allows us to describe relations amongst actions and fluents

by specifying state axioms, effect axioms and frame axioms. The observed relation
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serves the purpose of distinguishing actions which we have not “seen” an agent change
from actions which have caused fluents to be included into our knowledge base. Ex-

ample 2.5 shows how a fluent observed in some state holds in the next state.

holds(isLoaded, s,) <
observeF'luent(isLoaded, so) A s < s, (2.5)
Similarly the trivial example 2.6 demonstrates the relationship between observing
an action and knowing that an action is possible. If an action is observed in some state.

than it is executable in that state. For precise definitions of executable, assumable

and predictable actions refer to section 4.2.

possible(loadGun(X), so) «
observeAction(loadGun(X), so) A s < s, (2.6)
Finally, the predicate goa! allows us to define a relationship between plan names
and a situation, and can be viewed as a plan recognition-specific instance of a non-
monotonic derivability relation like that used, for example, in hypothetical reasoning
systems like Theorist [16, 17]. Example 2.7 expresses the relation that it is plausible

that one has the goal robBank, in the situation resulting from the actions of getting

a gun and going to a bank. The predicate predictable determines whether:
l. The contained action can be executed based on the information returned by the

plan recognition module.

2. The contained action can be non-monotonically assumed to be executable by

that nothing contradicts it.

goal(robBank(X),S) «
predictable(goToBank(X), S) A
predictable(getGun(X), S) (2.7)

11



See section 4.2 for analysis of what predictability, possibility and assumability

relations may be defined on actions and plans.

2.2.1 Basic operators

Belief revision is the process of changing a belief state according to some new infor-
mation. We use three operators to define belief state change:

Ezpansion (equation 2.8) defines how to add new information to the knowledge
base. This might be a new observation, the definition of an action description, some
new relationship between actions and their effects, or even a new plan. The idea of
expansion is to assume that one can simply append the knowledge base with new
information which does not result in any portion of the knowledge base becoming
inconsistent.

If our belief state is represented by a theory K, and K is expanded by a fact z,
commonly written K7, then, under the AGM theory, there is formed a union between

the consequences of K and the new fact z.

Cn(K)} = Cn(Cn(K)uU {z}) = Cn(K U {z}) (2.8)

Contraction (equation 2.9, denoted by K~) defines the process of removing a fact

z from theory K in such a way as to eliminate from K the possibility of believing «.
Therefore if  is accepted in K, it ought also be accepted in the intersection of A
and K7 (which is the revision operator described next). The Harper identity is based
on this observation, and defines contraction in terms of revision. The idea is to try
to eliminate from the knowledge base some fact which we see being invalidated by

observation. If no evidence points towards the removal of a fact after its addition to

a theory, such a fact ought not to be abandoned:

Cn(K); = Cn(Cn(K)NCn(K?2)) (2.9)
Revision (equation 2.10), denoted as K*, defines how to add a potentially incon-

sistent fact z to a theory K, as long as the new theory K is consistent and closed
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under logical consequence [15]. Abstractly, the AGM version of revision anticipates
the need to remove some potentially conflicting information, and so stipulates that
“minimal changes” ought to be made to the theory which is being revised. This desire
is motivated by an equally abstract goal of preserving the postulate of informational
economy.

The Levi identity may be employed to define revision in terms of contraction and
expansion. [t is important to keep in mind that revision will most likely result in
multiple logical theories within our knowledge base, because there will most likely be

multiple ways of contracting z.

Cn(K); = Cn((KZ,) U {z}) (2.10)

2.3 Classical belief revision

Classical belief revision usually refers to the Alchourrén-Makinson-Gardenfors (AGM)

model of belief revision [5, 6, 15]. Their systematic study of belief change consists of

[6]:
1. A specification of expressible beliefs which an agent may have.
2. A way for representing a belief.

3. A specification of operators to update a belief state with new beliefs which will

guide belief change.

4. A set of rationality postulates which specify constraints on belief change oper-

ations.

The AGM model uses the definition of a knowledge base K, which is a deductively
closed propositional theory, and describes any given state. Various beliefs are valid,

false or unknown.

1. If belief z is valid, then K k= z.



2. If belief z is false, then K = —i.

3. If belief z is unknown, then K = z or K |= -r.

Based on these possibilities, the AGM model makes use of the operators discussed
in Section 2.2.1. Furthermore, for each operator a set of guiding postulates is pre-
sented which constrain the operator and may be used to test candidate resulting belief

states. Here are the postulates for contraction:

1. K7 is a theory.

This is the closure postulate which states that after performing the contraction

operation, a theory should result.
2. K; CK.

The inclusion postulate states that the revised theory is contained in the old

one.

3. If r¢ K,then K7 = K.

The vacuity postulate states that if contraction is attempted on a belief which

does not hold, then no changes should be made to the knowledge base.

4. If z ¢ Cn(0), then x ¢ K.

The success postulate says that contraction will remove any belief, unless it is

a tautology.

5. If Cn(z) = Cn(y), then K] = K, .

The preservation postulate ensures that the syntax of the contracted belief

should not impact the resulting theory.

6. K CCn((K:-)Uz).

The recovery postulate states that if a belief is removed and then added back to

the knowledge base, sufficient information in the knowledge base should remain



to arrive at the original state of the knowledge base, prior to contraction. The

original belief is recovered.

7. (K7)N(K;) C K;

TAY®
The first supplementary postulate states that if a conjunction of beliefs is re-

moved, then the resulting belief state should have more information than if the

beliefs were contracted individually.

8. Ifz ¢ k,,, then K, C K.

The second supplementary postulate states that if a belief is not in the belief
base resulting from a contraction of a conjunction of beliefs, then the belief base
resulting from such a conjunction contraction is a subset of a belief base which

results after contracting just a single belief.

2.4 Challenges for the AGM model

In order for a belief revision theory to be competent, to explain what is meant by
ideal belief change, some difficulties of the AGM theory of belief revision must be

presented. As pointed out by [6], among the most serious of these are:

l. An inadequate method of providing for retraction of beliefs. The retraction of
a belief is simply not recorded in the new belief state. This contrasts with the

fact that the addition of a belief is recorded.

For example, let Ky, the initial belief state be
Ko = Cn({a — b}) (2.11)
Here a and b are arbitrary logical sentences such as:

a = Tweety is a bird.

b = Tweety flies.

1)
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Now if we contract Kj with b, we get:
R, = (Ko); = Cn({a - b}) (212)

Contraction is so defined that K; is represented identically to K because b is
not a consequence of the beliefs contained in Ko. Now if we expand the beliefs

in K, with a, we obtain
K; = (K))} = Cn({a,a = b}) (2.13)

In belief state K3, b is a valid belief. The fact of contracting b from Ky has not
been recorded, and b has been unintentionally added to the new belief state K,

despite its earlier direct contraction.

The AGM belief revision framework does not specify a method for revising a
belief beyond a single step. This is clearly demonstrated by the example just
provided. The contraction of b has not been recorded and the subsequent step
has revised the belief state is such a way, that the information contracted is

held to be true.

Similarly, the principle of informational economy is not preserved in the AGM
theory of belief change. This principle provides a guiding strategy for performing
belief revision and states that, whenever possible, information ought not to be

needlessly discarded.

In the example just provided, if the belief state K is revised with b, then there

are three possible potential resulting belief states:

Cn({a,a — b}) (2.14)
Cn({a}) (2.15)
Cn({a — b}) (2.16)

The AGM theory forces the selection of one of the three states and discards

the others. This approach assumes the existence of certain priority orderings
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amongst the sentences. Given this ordering (epistemic entrenchment) [14] (sec-
tions 2.6 and 4.5.1), the AGM theory selects one of the orderings arbitrarily.
However, [6] argues that without explicit ordering information, all three must
be maintained until some new information becomes known, which allows us to
choose the appropriate ordering. Otherwise, a potentially valid belief state may

be lost.

4. Similarly, the AGM theory does not explain how beliefs should change if cred-
ibility of information is unknown. This allows for information to be discarded
prematurely, when in fact the credibility may become known at some future

time.

2.5 The Ghose-Goebel model of belief revision

We use the Ghose-Goebel belief change model to maintain a dynamic set of assertions
that represent actions and relationships amongst actions and plans. This method ex-
plicitly supports reasoning with incomplete knowledge and for revision of the belief
base with newly observed facts without unnecessarily discarding potential beliefs.
Observed actions are assimilated within the beljef revision system and, together with
current beliefs about actions and their affects, constrain the plans that can be recog-
nized. The Ghose-Goebel reasoning framework supports the maintenance of multiple
mutually inconsistent states of the world, providing a basis to assume alternative

hypothetical completions of plans.

2.5.1 Expansion

To provide a simple concrete example, we provide some details based, again, on the
style of Kowalski. Under that scheme, state description axioms (Equation 2.17) are
used to describe the status of the fluents of a potential state. This information is used

to determine which actions are possible in a state. The axioms here are roughly based
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holds}islnBank(tred),sO)
holds(hasGun(fred),s0)

+

New Observation
holds(isLoaded, s0)

’ holds(isinBank(fred),s1)
I holds(hasGun(fred),s1)
l holds(isLoaded,s1)

Potential Belief State

Figure 2.2: Expansion of a knowledge base with a state description axiom.

on the problem discussed by Hanks and McDermott [8]. In this case, two fluents are

true: Fred is in the bank and has a gun. The original knowledge base consists of:

holds(isInBank(fred), so) (2.17)

holds(hasGun(barney), so)

When the knowledge base in Equation 2.17 is expanded with the axiom 2.18, the
resulting knowledge base will have this axiom included. The use of the expansion
operation presumes that the addition of the new axiom to the knowledge base makes
nothing inconsistent. Furthermore, in order to expand the knowledge base, the new
state description axiom must be observed. This is specified by the observeFluent
predicate which indicates that the information is new to the knowledge base and the
knowledge base must be appropriately revised to accommodate the new information.
Equation 2.18 shows the new state description axiom which will be true in the next

state.

holds(isLoaded, s, ) (2.18)

Equation 2.19 shows the potential belief state after expansion. The whole process



~holds(hasGun(fred),s1) -> holds(hasGun(fred), result(getGun(fred),s0))
~holds(isLoaded,s1) ~> holds(isLoaded, resuit(loadGun, s0))

+
New Observation

~holds(isinBank(fred), s1) -> holds(isinBank(fred), result(goToBank(fred),s0))

Potential Belief State
~holds(hasGun(fred),s1) ~> holds(hasGun(fred), result(getGun(fred),s0))
~holds(isLoaded, s1) -> holds(isLoaded, resuit(loadGun, s0))
~holds(isinBank(fred), s1) > holds(isinBank(fred), result(goToBank(fred),s0))

Figure 2.3: Expansion with an action effect axiom.

of expanding a knowledge base with a fluent is graphically shown in Figure 2.2,

holds(isInBank(fred),s) (2.19)
holds(hasGun(barney), s,)
holds(isLoaded, s,)

Expansion is not limited to the incorporation of new state description axioms into
our knowledge base. The belief state may be expanded by any axiom which we have
defined to exist. Thus, action effect axioms, describing the pre and post conditions
of actions may be added. In fact whole new plans may be added as well.

To illustrate further, Figure 2.3 shows how a knowledge base is expanded with a
new action effect axiom. Such actions may be appended to the knowledge base at
any time of the plan recognition reasoning process. The initial belief state contains

just two action effect axioms
—holds(hasGun(fred), so) = holds(hasGun(f red), result(getGun( fred), so))

—holds(isLoaded, so) — holds(isLoaded, result(loadGun, So)) (2.20)

If we expand the knowledge base with a new axiom, then this axiom will appear

in the belief state which occurs after the expansion. We may use the observed Action
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predicate to append the new action to our knowledge base. Let

—holds(isInBank(fred), sy) — (2.21)
holds(isIn Bank(fred), result(goToBank(fred), so))

be the newly expanded axiom. The new potential belief state will contain the axioms

from the initial belief state in Equation 2.20, as well as the new axiom:

~holds(hasGun(fred),s;) —
holds(hasGun( fred), result(getGun(fred), so))

~holds(isLoaded, sq) — holds(isLoaded, result(loadGun,sq))  (2.22)

—holds(isInBank(fred), so) —
holds(isIn Bank( fred), result(goToBank( fred), so))

Figures 2.4 and 2.5 show how new plans are added to the knowledge base. Since
plans are thought of as sequences of actions, the same plan may be defined in terms
of different sequences of actions, if they all name the same goal. This is true with
other axioms as well. For example action effect axioms describe preconditions which
must hold true in order for some action to be executable. Each action is not limited
however to a single set of preconditions and postconditions. It may happen that some
action is permissible when some set of preconditions are fulfilled, resulting in certain
postconditions. When some different set of preconditions is met, the same action may
be permissible resulting in a different set of postconditions.

As is demonstrated by expansions on plans, the same plan may be added to the
knowledge base (Figure 2.4) if it is uniquely different from plans already defined
therein. Here the initial belief state consist of only one plan toHunt which is com-

prised of three actions.

plan(toHunt, [getGun(fred),loadGun, goToF orest( fred)]) (2.23)



plan(toHunt,[getGun(fred), loadGun, goToForest(fred)])

+

New Observation

plan(toHunt,[getGun(fred), goToForest(fred)])

|

Potential Belief State

plan(toHunt,[getGun(tred), loadGun, goToForest(fred)))
plan(toHunt,[getGun(fred), goToForest(fred)])

Figure 2.4: Expansion with a new definition of a plan.

plan(toHunt,[getGun(fred), loadGun, goToForest(fred)])

+
New Observation
plan(robBank,[getGun(fred), goToBank(fred)))

Potentiai Belief State

plan(toHunt,[getGun(fred), loadGun, goToForest(fred)])
plan(robBank,[getGun(fred), goToBank(fred)))

Figure 2.5: Expansion with a new plan.



holds(isinBank(fred),s0)
holds(hasGun(fred),s0)
holds(isLoaded, s0)

New Observation
holds(isLoaded, s0)

holds(isinBank(fred),s1)
holds(hasGun(fred),s1)

Potential Belief State

Figure 2.6: Contraction of a state description axiom.

This belief state may be expanded with a different plan toHunt, comprising of
only two actions. We do not revise the original plan here and substitute it with
the new plan, if we believe that both plans accurately subsume actions necessary to

perform hunting. Therefore
plan(toHunt, [getGun(fred), goToF orest(fred)]) (2.24)

is a different version of the plan toHunt which is added to our original belief state.
The resulting belief state accommodates the old and the new information, by listing
both plans. This plan expansion can be viewed as revision without the existence of

contradictory information.

plan(toHunt, [getGun( fred), loadGun, goToForest( fred)])
plan(toHunt, [getGun(fred), goToF orest(fred)]) (2.25)

In the same way, a completely new plan may be added to the knowledge base. This

is demonstrated in Figure 2.5.

2.5.2 Contraction

As defined previously (Section 2.2.1), contraction deals with the removal of informa-

tion from the knowledge base. The removed information is no longer believed to be



~holds(hasGun(fred),s1) -> holds(hasGun(fred), result(getGun(fred),s0))
~holds(isLoaded, s1) -> holds(isLoaded, result(loadGun, s0))

New Observation
~holds(hasGun(fred), s1) -> holds(hasGun(fred), result(getGun(fred), s0))

|

Potential Belief State
~holds(isLoaded, s1) -> holds(isLoaded, result(loadGun, s0))

Figure 2.7: Contraction of an action effect axiom.

true. Contraction may be therefore, in the strictest sense, thought of as the opposite
operation of expansion. The original knowledge base contains some axioms, which
after contraction no longer appear in the resulting knowledge base. We assume that
any axiom which is representable may be contracted.

Figure 2.6 shows the simplest example of contraction. Here a state description
axiom is removed from a belief state, because it no longer holds true. The initial belief
state contains three state description axioms, and the final belief state contains only
two of them. Information is therefore lost. This loss of information may be caused
through the observation of the world or through observation of the agent performing
some action which changes the description of the world.

Similarly, action effect axioms may be removed from the belief state. This type
of removal decreases the number of such axioms in the resulting belief state. Whole

plans may also be removed as shown in Figure 2.8.

2.5.3 Revision

The revision operator is quite different from the last two operators described. We as-
sume that revision is used in cases where information is neither necessarily contracted

from the belief set, nor is the belief set necessarily expanded. After the modification



plan(toHunt,[getGun(fred), loadGun, goToForest(fred)))
plan(robBank,[getGun(fred), goToBank(fred)))

New Observation
plan(robBank,[getGun(fred), goToBank(fred)])

Potential Belief State

plan(toHunt,[getGun(fred), loadGun, goToForest(fred)))

Figure 2.8: Contraction of a plan.

has taken place, there may result different possible mutually exclusive belief sets.
The ambiguity of possible belief states, which results from the revision operation, is
caused by the creation of choices of performing the revision. It may be impossible to
determine which revision technique results in the “most correct” future belief state.
Had this information been provided via some statistical measurement, utility func-
tion or epistemic entrenchment value [14], it might be possible to make a choice. In
most cases such a choice is nevertheless impossible to make, and if made, would be
paramount to guessing, with the consequence of loss of potentially important infor-
mation.

Let us examine three examples to illustrate the peculiarities of the belief revision
operation. Assuming an initial belief state K; to contain only three state description

axioms

holds(isInBank(fred), so) (2.26)
holds(hasGun(fred), sq)
holds(is Loaded, sp)

we wish to revise it with the negation of the first axiom. We may not simply

expand our belief state with this new axiom, as we have done previously, because the
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holds(isinBank(tred),s0)

holds(hasGun(fred),s0)
holds(loaded,s0)

New Observation
~holds(isinBank(fred),s0)
-~ - "\~
7 “\\ "

Pt \\,\,
holds(isinBank(fred),s1) ~holds(isinBank(fred),s1)
holds(hasGun(fred),s1) holds(hasGun(fred),s1)
holds(ioaded,s1) holds(loaded,s1)

Potential Belief State Potential Belief State

Figure 2.9: Revision of a state description axiom.

new axiom contradicts the previously believed axiom. This type of revision occurs
each time we entertain a new piece of knowledge which contradicts one of the believed

axioms and thus results in an inconsistency. If we observe
~holds(isIn Bank( fred), sq) (2.27)

we are forced to somehow revise our original belief state in such a manner as to
eliminate the inconsistency which would otherwise result from adding the observation
to our belief state. It turns out that there are at least two possible interpretations

which may be used to perform this revision.

1. We can disregard the newly observed axiom and output a belief state identical
to our original belief state. In this case, revision would be guided by our original
axiom holds(isInBank( fred), so) having a larger epistemic entrenchment value

than the observed axiom -holds(isInBank(fred), so).

2. We can contract the inconsistent axiom from our original belief state, and ex-
pand the state with the newly observed axiom. This revision operation assumes
that the epistemic entrenchment of the new observation is higher than that of

the original inconsistent axiom.



~holds(hasGun(fred),s1) -> holds(hasGun(fred), result(getGun(fred),s0))
~holds(isLoaded, s0) -> holds(isLoaded, result(loadGun, s0))

New Observation

~holds(isLoaded, s1) -> holds(isLoaded, resuit(loadGun, s0)) &
holds(hasGun(fred), result(loadGun, s0))

—

Potential Belief State

~holds(hasGun(fred),s1) -> holds(hasGun(fred), result(getGun(fred),s0))
~holds(isLoaded, s0) -> holds(isLoaded, result(loadGun, s0))

A Potential Belief State

~holds}hasGun(1red),s1) -> holds(hasGun(fred), result(getGun(fred), s0))
~holds(isLoaded, s1) -> holds(isLoaded, result(loadGun, s0)) &
holds(hasGunfred), resuit(loadGun, s0))

Figure 2.10: Revision of an action effect axiom.

In both cases the same amount of information is discarded. Which potential be-
lief state do we then hold as true? In the AGM reasoning framework, we would have
been forced to make a choice and use the result in subsequent knowledge maintenance
operations. The Ghose-Goebel reasoning framework does not require us to do this.
Instead, we maintain that it would be most frugal and correct to maintain both po-
tential belief states, and only dispense of one of them when sufficient new information
allows us to do this.

This approach is costly, but it has the benefit of minimal informational loss and
the possibility to reach any potential future belief state. Figure 2.10 demonstrates
the revision operator used on action effect axioms. It is noteworthy that here, as well
as with plan revision in Figure 2.11, multiple possible potential belief states result.

We may not discard any of them without loss of information.



plan(toHunt,[getGun(fred), loadGun, goToForest(fred)))

New Observation
plan(toHunt,[getGun(fred), goToForest(fred)])

Potential Belief State

plan(toHunt, [getGun(fred), loadGun, goToForest(fred)])

R N Potential Belief State

plan(toHunt,(getGun(fred), goToForest(fred)])

Figure 2.11: Revision of a plan.

2.6 Entrenchment of beliefs

The Ghose-Goebel belief change model maintains a dynamic set of assertions that
represent actions and relationships amongst actions and plans. This method explicitly
supports reasoning with incomplete knowledge and for revision of the belief base with
newly observed facts. All information, however improbable, is maintained in some
knowledge base, as long as there is a chance that it may become useful in some future
state. The result of multiple revision operations, yields a large number of mutually
inconsistent knowledge bases. Some of these are more probable of reflecting the true
nature of the world than some others [5).

Some state description axioms have a higher probability of conforming to a realistic
view of the world. Such fluents are said to have a higher epistemic entrenchment than
other fluents. The value of the entrenchment may be used to rank axioms within
each knowledge base and to rank knowledge bases, which result from belief revision

operations.
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There is no single way to determine the entrenchment value of individual beliefs,
because such calculations are based on context of each knowledge base. Furthermore,

entrenchment calculations may be made based on various criteria, including:

Probability: The probability of a fluent being true. Let f; and f; be two fluents
which hold in state S. If P(f;,S) > P(f;,S), then the axiom denoted by fi is
said to be at least as epistemically entrenched as the axiom denoted by fi in

state S.

Utility: The utility of a fluent. This might be a very unrealistic criterium for de-
termining entrenchment. By utility, we mean the usefulness of the fluent. The
utility might very well differ from probability and something quite useful, might
be very improbable. Let U(f;) denote a measure of utility of fluent fi in state
S. HU(fi,S) 2 U(f;,S), then the axiom denoted by f; is said to be at least as

epistemically entrenched as the axiom denoted by f; in state S.

Reliability: The reliability (credibility) of the source. This criterium only considers
the source of information. The motivation lies in the fact that we are more
likely to believe a fact learned from a reliable source, than one learned from a
less reliable source. Let R(f;) denote a measure of reliability of the source of
fluent f; in state S. If R(f;,S) > R(f;, S), then the axiom denoted by f; is said
to be at least as epistemically entrenched as the axiom denoted by f; in state
S.

Peter Gérdenfors in [5] specifies postulates for epistemic entrenchment. Let fi>
fi represent the notion that f; is more epistemically entrenched than fi- The five

postulates are presented in equations 2.28 to 2.32.

If i<f; and f; < [, then f; < fi (2.28)

The justification of this transitivity postulate (2.28) is motivated by the assump-

tion that entrenchment is a function of linear measurement. If an axiom f} is at least



as entrenched as some other axiom f;, then f is also at least as entrenched as a third

axiom f;, of lower or equal entrenchment to f;.

If fi+ f;, then f;<f; (2.29)

The rationality of this dominance postulate (2.29) draws from the contraction
operation. If either f; or f; must be contracted from K, and f; entails f;, then f;
ought to be contracted. This follows from the reasoning that if we contract f;, it
is still entailed in f;, and thus f; must also be contracted in addition to fj- This
reasoning is counter intuitive, but required for the presentation of the other three
postulates 5. The counter intuitiveness derives from preserving the postulate of
informational economy which states that minimal amount of information should be
discarded when performing belief change operations. Since the contraction of f;
discards more information than the contraction of f;, informational economy does

not seem to be preserved in this case.

Forany f; and f;, fi S(ihf;)y or f; S (finf;) (2.30)

This conjunctiveness postulate (2.30) follows directly from postulate 2.29.

When K# Ky, fi¢ K iff fi</[; forall f (2.31)

This minimality postulate (2.31) requires that axioms not in the knowledge base

have a lower epistemic entrenchment than the axioms in the knowledge base.

If f; <fi forall f;, then F f; (2.32)

The final mazimality postulate (2.32) follows from postulate 2.29, since if F f;,
then Vf; | fiF fi
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Chapter 3

The plan recognition system

3.1 Purpose

To help make our intuition clear, and as a basis for elaborating specific details, we
begin by assuming that any plan recognition system has to be able to both accept ob-
servations about a changing world, and make predictions about what could plausibly
take place in that world. To help make these ideas concrete, we first assume that we
could use a goal-directed logic programming reasoning system like Prolog to define
the top level functionality of a generic belief revision system.

This generic system would have to interpret the following relations:

o observe(Action, Situation) We can assert that a particular action has been ob-

served in a particular situation.

o predict(Action, Situation) We can query the system to determine if it is reason-

able to expect a certain action in a particular situation.

Note that the idea of being able to predict the next anticipated action can be elabo-
rated to the more familiar plan recognition relation as follows: if we assume that plan
recognition takes place in the context of a plan library consisting of named sequences
of actions, e.g.,

plan(planName, [a,, ay, ..., a,)) (3.1)
30



then we can generalize predict(Action, Situation) to the more familiar output of

conventional plan recognition systems, namely
predict Plan(Plan, Situation) (3.2)

We expect our non-monotonic reasoning system to assume consistent hypotheses
based on observations, and to provide us with the names of plans that could plausibly
be considered as those intended by an agent that had carried out some number of the
actions in the given situation.

Here we want the underlying belief revision system to process observations as
expansions, contractions, or revisions, and then be able to produce predictions based
on existing plan libraries. The predictions could be in the form of guessing what
action might be next attempted by an observable agent, or in the form of a named
plan, whose actions somehow consistently subsume those already observed.

To be a little more specific, we can begin with the following definitions:

o observedAction(Action, Situation). True when Action has been observed in

Situation, e.g., observedAction(getGun( fred), s,).

¢ observedFluent(Fluent, Situation). True when Fluent has been observed in

Situation, e.g., observed Fluent(isIn Bank(fred), s3).

e predict Action(Action, Situation). True if there is a belief state consistent with
Situation and Action is possible in that state. e.g., Action = goToBank,

Situation = result(getGun(fred), s;)

e predict Plan(Plan, Situation). True if the plan library contains a definition of
Plan in a form which associates Plan with a list of actions which comprise it:
plan(Plan,[ag, ay,...,a,]). Furthermore, the preconditions or consequences of

actions comprising the plan but not yet observed must hold or be assumable.

To explore the ideas of how non-monotonic reasoning plays a role in plan recognition,

note that if the preconditions or consequences of unobserved actions are at least



assumable, the the plans associated with those actions are plausible.

predict Plan( Plan, Situation) < (3.3)
(plan(Plan,[ao, ay,. .., ai, @ity .. .,ay))),
observedOr AssumedAll([aq, ay,.. ., ai,@it1,. . ., a4,

Situation)

If the actions a,,...,a; have been observed, it may be non-monotonically feasible to
assume that Plan is a plan if it can be verified that the actions a;4i,...,a, may be
taken from Situation, or that the consequences of required but unobserved actions
are themselves assumable. As long as no information contradicts such assumptions for
actions a;41,...,ay, Plan is plausible. This is analogous to saying that the enabling
conditions and affects are not required to hold or be observed, but only to be possible.

This is true if nothing would make these actions impossible [13)].

3.2 Various approaches for plan recognition

3.2.1 Recognizing Kautz’ plans

Henry Kautz provides a theory of plan recognition capable of handling concurrent
actions, shared steps between actions and disjunctive information. His theory views
plan recognition in terms of deductive inference based on a set of observations, a plan

library, and a set of constraints. He presents two underlying assumptions:

1. The known ways of performing an action are the only ways, meaning that all

ways of performing it are known;

2. All actions are purposeful and all possible reasons for performing an action are

known.

Kautz’ framework introduces an action taxonomy which serves as an exhaustive

description of ways in which actions can be performed. This taxonomy specifies that
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Figure 3.1: A Subset of Kautz’ Action Hierarchy

an action can be used as a step of a more complete action. The action representation

is based on two hierarchies:

1. A specialization hierarchy (abstraction hierarchy) which subdivides action types
top to bottom with more specific actions being instances of more general actions.
For example in figure 3.1 an instance of making a pasta dish is also an instance

of preparing a meal.

2. A decomposition hierarchy indicates the necessary conditions for an action in-
stance to occur. For example in figure 3.1 an instance of making spaghetti

marinara consists of at least making spaghetti and making marinara.

The plan library is encoded with axioms. Both of Kautz’ hierarchies are encoded.

An example of a specialization hierarchy axiom is encoded as:

Ve o1(e) D pale) (3.4)

Here ¢, and ¢; are plans (action types) such that ¢, is a specialization of @2. In
figure 3.1 ¢ could be represented by the action type Make Pasta Dish, while w2 by
Prepare Meal.

The decomposition hierarchy divides each plan ¢ into its components a .. .q,.

These have associated with them action types v, ..., since each plan component



is viewed as an action. An axiomatized decomposition hierarchy consists of axioms

of the form:

Ve w(e) D i(ar(e)) A... Apy(aa(e)) (3.5)

In reference to figure 3.1 we decompose the plan Make Spaghetti Marinara as
consisting of two actions Make Spaghetti and Make Marinara. Assume that an o
occurs predicate is introduced. Formally, this decomposition could be axiomatized

as:

o( Plan, MakeSpaghettiMarinara) O (3.6)
o(Action, M akeSpaghetti) A o( Action, MakeM arinara)

Since Kautz’ assumptions deal with a closed world scenario, plan recognition is ac-
complished by finding a sequence of actions which in a thrift (smallest cardinality from
the leaf of the plan library to the recognized plan within the tree structure of which
the plan library comprises) sense describe the plan. According to Kautz’ assump-
tions, no specializations are present within the plan library which are not specified
and non-leaf plans (action types which can be decomposed) are in fact decompos-
able into simpler plans. These assumptions are achieved by Kautz by performing a
sequence of nonmonotonic circumscriptive minimizations of axioms which maintains
the closed world assumptions [9, 21].

Kautz views plan recognition as deductive inference which is based on an action
taxonomy (specialization and decomposition hierarchies). His approach is different

from ours because of two very significant assumptions. In his framework:

1. All known ways of performing an action are known and recorded in his action
hierarchy. This implies that the stated actions are the only ones which constitute
plans. Qur method of plan recognition is based on a dynamically changing belief

maintenance system, where only a small subset of the plan library is known and



as new information becomes available, it is incorporated into the knowledge

base.

2. All actions are purposeful and all possible reasons for performing an action are
known. Our framework allows for actions which are irrelevant (are observed,
but are not part of any known plan) and redundant (the same action may occur

more than once without an effect on the resulting state(s)).

Thus the key difference of Kautz's approach lies in his plan library being static.
The advantages of this approach lie with a well defined search space and a closed world
scenario. The disadvantages lie in the approach not reflecting the true nature of the
changing environment which our PR architecture accounts for using BR operators

and GG belief maintenance.

3.2.2 Vilain’s plan parsing

Marc Vilain [21] uses the Kautz’ plan recognition model to suggest that plan recog-
nition is in reality similar to parsing text. He provides a relationship of Kautz’ model
to existing grammatical frameworks and recognizes areas where parsing may be effi-
ciently used to perform plan recognition.

Vilain argues that since parsing is a well understood problem which possesses ef-
ficient solutions, it follows than that when applying parsing techniques to plan recog-
nition, similar efficient techniques can be found. His approach to plan recognition by

parsing involves:

® The construction of a contezt free grammar to represent plan libraries. It is
important to note that these grammars allow acyclic hierarchies, which Kautz’
plan library does not. This is significant because recursive plan definitions may
be represented. Furthermore, actions which are not necessarily strongest in the

context of Kautz may be utilized to recognize a plan.

A AL



e The application of an extension of Earley's context-free recognition algorithm
to perform parsing of the grammar to locate plans. The parse trees obtained

by the algorithm could be interpreted as first-order logic statements.

Briefly, Earley’s algorithm works by analyzing all observations and adding gram-
matical rules based on derived constituents of the hierarchies. It generates interme-
diate parse trees by certain rule manipulations and modifies the grammar. It consists
of three phases: prediction, scanning and completion. Upon completion a set of rules
has been created which is capable of recognizing plans.

Marc Vilain’s [21] approach stipulates the following propositions:

1. Under the sentential interpretation of parse trees, Earley’s algorithm computes
the minimal covering models of a base-level observation with respect to a de-

composition hierarchy with ordered unshared steps [12].

2. There is a O(n®) time plan recognition algorithm for hierarchies with ordered,

unshared steps and for disjunctive or abstract observations.

3. Recognizing plans with abstraction and partial step order is NP-Complete, re-

gardless of the recognition tactic.

This approach shows the aspects of Kautz’ [9] plan recognition methods which

can be performed by parsing and which achieve gains in tractability [21].

3.2.3 Charniak’s probabilities model

Charniak and Goldman [3] argue that plan recognition is a problem dealing with
inference under uncertainty. They show a method of solving the plan recognition

problem which is based on Bayesian probability theory. Their solution consists of:
1. Retrieving candidate plan explanations.

2. Assembling the explanations into a Bayesian plan recognition network. The

network represents a probability distribution over the possible explanations.

A



3. Updating of the network to make a selection of the strongest plan explanation,

based on the most likely interpretation.

The authors utilize two distinct knowledge representation methods. One is used to
deal with plans and actions and is based on predicate calculus. The other deals with
representing probabilities in terms of the Bayesian networks. Such a network contains
nodes and edges between them. Probabilities are assigned to the edges and these
represent various interactions between actions. The nodes represent various random
variables. The authors use the diagnosis example to demonstrate the differences
between nodes and edges. Various diseases would be represented by the nodes, and
the edges would direct these towards symptoms which might be caused by the diseases.

The network is created by using clauses. Objects may be introduced into a net-
work if proper evidence exists. Five main clauses are used to build the network and
traverse through it. Once a network has been created, rules are used to perform plan
recognition. These include proposing a plan hypothesis, creating a plan hypothesis
and linking actions with a plan.

The authors treat actions and plans equally. Plans, in their view, are simply
more complex actions which consist of other actions. Plan recognition is achieved by
evaluating the Bayesian networks and selecting the most likely plan.

The authors claim at least three advantages of the probabilistic approach to plan

recognition over Kautz’ method [3, 9):

I. It is claimed that since Kautz' methods are based on the concept of finding
minimal set covers, if two or more plan explanations exist, Kautz’ technique
is incapable of selecting the most likely explanation. In our opinion this is
not necessarily a drawback. A most likely ezplanation may not be the desired

explanation.

o

Finally, abduction and set minimization are said to be incompatible. This is a
very strong statement, which definitely holds in the area of diagnosis. Some-

times it may be required to stipulate all possible diseases instead of just one,



based on the symptoms. We agree with such an approach because our method
also provides all of the possible methods, as long as they are possible, but not

necessarily most likely.

The key to the probabilistic approach lies in the rules which translate plan recog-

nition problems into Bayesian networks.

3.2.4 Lin’s abductive model

Lin discusses plan recognition as an application of obvious abduction. He utilizes a
plan hierarchy network to represent domain knowledge about plans which is based on
Kautz’ network of Figure 3.1. Instead of having only specialization and decomposition
links, as does Kautz, he introduces a third type of relationship, the isa link. These
represent special cases of the specialization hierarchy. In Figure 3.1, there exists
a specialization link between “make spaghetti” and “make noodles” because making
spaghetti is a special case of making noodles. There is an inverse isa link since making
noodles is a form of making spaghetti.

The inputs to the plan recognition system are comprised of observations about the
actions an agent has taken. They are represented as leaf nodes in the hierarchy. The
best examples from our diagram are “make spaghetti” and “make marinara”. Plan
recognition in Lin’s framework selects a subset of the plan library which contains the
observed actions, together with some higher level goal. The goal is represented as a
higher level node in the hierarchy, an example of which would be “prepare meal” in
Figure 3.1. The links from the actions to the goal provide a scenario of actions which
are recognized to satisfy the goal. The paths such generated represent the recognized
plans and their action constituents [12].

Lin’s obvious abduction method makes assumptions regarding the relationship
amongst possible actions, so that the plan recognition algorithm is a computation. His
method selects the most probable plan, under an interpretation similar to Charniak’s

and Goldman'’s.



Chapter 4

Plan recognition competence

4.1 Overview

In order to fully understand our merger of the techniques underlying plan recog-
nition, belief revision and non-monotonic reasoning, it is important to note several
assumptions.

Plan recognition competence is achieved by separating our knowledge mainte-
nance system from the plan recognition system. The knowledge maintenance system
is responsible for propagation of belief change operations, maintenance of possible
potential belief states and non-monotonic assumptions as to the possibility of an ac-
tion occurring with no evidence to the contrary. The plan recognition system is based
on a goal-directed logic programming system, where the information provided by the

knowledge base is used to define its top-level functionality.

4.2 Expected behaviour
The plan recognition system has to interpret the following relations:

1. assumable(Action, Situation) We can assert that a particular action may be
executed in some future situation. This behaviour is achieved by checking the

preconditions of the action. If there do not exist any preconditions which are
39
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in conflict with the state description axioms in the knowledge base, then the

specified action may be executed in some future situation.

This is a very powerful relation since it does not require all of the action’s pre-
conditions to be fulfilled. The only criterium which is taken into consideration
is that no contradictory information is present in the knowledge base describ-
ing the specified situation [9]. We are not concerned whether an action can be
executed now; we non-monotonically assume those of the action’s preconditions
which are not currently supported by the knowledge base, as long as, they are
not contradicted by information we already have. This allows us to treat the

action as possibly executable in some future state.

The drawbacks of this assumption lie in the possibility of the assumed precondi-
tions becoming false in the future. This can happen if the preconditions become

contradicted by newly acquired information.

For example, let Cn(A’s) be the set of the consequences of the axioms of the

knowledge base in situation S, then

assumable(a;, §) 4.1)

is True if and only if
Cn(Ks) U preconditions(a;) ¥/ False (4.2)
assumable([a,, ay, ..., a,), Situation) We can assert that the specified sequence

of actions may be executed from some future situation. The difference between
this and the previous relation lies in the possibility of determining whether a
sequence of actions could possibly be executed. This behaviour is achieved by
checking the preconditions of each action. If there do not exist any preconditions
which are in conflict with the state description axioms in the knowledge base,
then the specified action may be executed in some future situation. This is

repeated for each subsequent action specified in the relation.



As above, this is also a very powerful relation because it does not require all
of the actions’ preconditions to be fulfilled. The only criterium which is taken
into consideration is that no contradictory information is present in the knowl-
edge base describing the specified situation. We are not concerned whether an
action can be executed now; we non-monotonically assume those of the actions’
preconditions which are not currently supported by the knowledge base, as long
as, they are not contradicted by information we already have. This allows
us to treat the action as possibly executable in some future state. Again the
drawbacks of this assumption lie in the possibility of the assumed preconditions
becoming false in the future. This can happen if the preconditions, become
contradicted by newly acquired information. Note that this assumes a chain or

sequence of assumptions regarding preconditions.

For example, let Cn(K’s) be the set of the consequences of the axioms in the

knowledge base in situation S, then
assumable([a), az,. .., q,),S) (4.3)
is True if and only if

Cn(Ks) U preconditions([ay, az, .. .,a,]) i/ False (4.4)

possible(Action, Situation) We can assert whether an action may be executed in
the specific situation. If the preconditions of Action are fulfilled in Situation,
then the relation is True, otherwise False. A way to increase the usefulness of
this relation, is for the relation be defined over the list of preconditions which
have failed for Action. This addition could serve as a specification for actions
which have to still take place in order for Action to be executable in the specified
situation. When the returned list of unfulfilled preconditions would be satisfied,

then and only then could Action be executed.

4l



For example, let Cn(Ks) be the set of the consequences of the axioms in the

knowledge base in situation S, then
possible(a;, S) (4.5)
is True if and only if

preconditions(a;) € Cn(Ks) (4.6)

. possible([a;,az,...,a,], Situation) We can assert whether a sequence of ac-

tions may be executed from the specified situation. If all preconditions of
[a,az,...,a,) are fulfilled in Situation, then the relation would return a boolean
True, otherwise a False would be returned. To be more specific, the precon-
ditions of each action specified in the list [ay,a3,...,a,] of actions has to be

fulfilled in the knowledge base.

The definition of this relation could be expanded for the relation to return the
list of preconditions which have failed for all actions in [a;,as,...,a,). This
addition could serve as a specification for actions which have to still take place
in order for each Action in the list to be executable in the specified situation.
When the returned list of unfulfilled preconditions would be satisfied, then and

only then could the plan [a),ay,...,a,] be executed from Situation.

For example, let Cn(Ks) be the set of the consequences of the axioms in the

knowledge base in situation S, then
possible([ay, ay,. .., a,],S) (4.7)
is True if and only if

preconditions([a), a3, .. .,a,]) € Cn(Ks) (4.8)

. predictable(Action, Situation) We can predict Action in the specified situation.

Perhaps the simplest form of prediction takes place when Action is simply pos-
sible in the specified situation. Here, we mean ‘simplest’ because we predict

every action which is possible. Thus one interpretation is:



predictable(a;, S) < possible(a;, S) (4.9)

Yet another interpretation takes into account the non-monotonic nature of plan
recognition. Predictability may be defined on those actions which we assume
may occur in the future. This interpretation opens up the possibility of predict-
ing actions based on their preconditions, as long as these are not contradicted

by any knowledge in the knowledge base. Thus

predictable(a;, S) < assumable(a;, S) (4.10)

We could also combine the previous two definitions to yield a third interpreta-
tion, which perhaps serves as the most comprehensive. If we strive to provide a
competent theory of plan recognition, the aim should be to predict any feasible
future action. This implies actions which are possible now or are assumable in
some future state. The interpretation of predictability could therefore be stated

as:

predictable(a;, S) « possible(a;, S) V assumable(a;, S) (4.11)

See the examples in section 4.4.

One way of implementing this relation, could involve the usage of the action-
effect axioms which are included in the current knowledge base to retrieve a set
of preconditions for all actions defined for the specified situation. Then for each
action defined in the action-effect axioms, a match could be instituted against
the state description axioms to find which preconditions are fulfilled. If all of
the preconditions for the actions were fulfilled, than that action is said to be

executable from the current situation.

. predictable(Plan, Situation) We can predict whether the specified plan may

be executed in the specified situation. This relation may be implemented in
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terms of a set of predictable(a;, S) relations where each a; € Plan. If Plan =
[a1,az,...,a,], then predictable( Plan, Situation) may be determined using any
of the interpretations for predictability as discussed in examples 4.9, 4.10, and

4.11. Therefore:

predictable([a,, ay, ... ,q,),S) <
possible([ay, ay,...,a,],S) V

assumable([a), ay,. .., a,},S) (4.12)

predicts all plans which are possible or assumable in state S.

The significance of this relation lies in the fact that it actually determines
whether Plan is possible by non-monotonic assumption of the preconditions

of actions which constitute the Plan.

. predictPlans(Plans, Situation) We can predict a set of plans which are possible

in the specified situation. This is an extension of the previous relation to re-
trieve all possible plans, not just the specified one. It could be implemented by
means of multiple predictable([a,, az, ..., a.],S) relations, each corresponding
to a different plan defined in the knowledge base. If Plans = {P,, P,, ..., P.},
then

predictable( Plans, S) <

predictable( P, S) A

predictable( Py, S) A

predictable(...,S) A (4.13)

predictable( P,, S)

Each plan P; is just a sequence of actions which constitute it, where a} denotes

the j** action in the #** plan.

predictable(P;, S) < predictable([a}, d.,...,a}], S) (4.14)
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possible(A.S) \
predictable(A,S)
assumable(A,S)/

Figure 4.1: The plan recognition relational hierarchy.

4.3 Plan recognition relational hierarchy

Before going on with a demonstration of how each of these relations could be em-
ployed in pursuit of plan recognition and action prediction, it is important to note the
hierarchy which exists among the relations. This hierarchy may serve as a guideline
as to the generality and specificity of information which could be gathered from the
knowledge base. It distinguishes possible actions from assumable ones.

The two relations on the left of Figure 4.1 are used in the definition of the relation
on the right. The possible(A, S) and assumable(A, S) relations return truth values
based on actions’ preconditions. The predictable(A, S) relation makes use of the truth
values returned. to establish the feasibility of the specified action or plan. Note that
the diagram simply presents the simplest case of a single action in a state. This could

be analogously extended to plans.

4.4 Demonstration of possibilities

In order to demonstrate the plan recognition aspects of our reasoning, we must come
up with a feasible state of the world described by state description axioms, action-
effect axioms and plan definitions. Assuming that all required frame axioms and
state axioms are also defined, which allow us to reason in a goal-oriented manner, let
our initial state of the world consist of the following state description axioms: Sy =
{f1, f2, f3}, where f; are fluents such as holds(is/ nBank(fred), s¢). In addition, the
following table lists the action-effect axioms subdivided into their three constituent

parts.



Preconditions | Action | Postconditions
i fa a ~fi, fa
=fi,fa a; =i, fa
Ja, f4 as =N
=hi a4 -Ni

In order for the action a, to be executable, the fluents f; and f, must hold. After

the action has executed the fluents —f;, f; hold. The other actions behave similarly.

In addition, the following plans are also defined in Sp.

Plan | Actions

P | a1,a;,a3

P, as, a;
Ps ag, ay
P4 a)

Now, starting with the most specific relation possible(a,, Sp), we determine whether
the specified action is possible. The following table demonstrates the behaviours of

each relation. The predictability relation has been evaluated according to the defini-

tion specified in example 4.11.



Axiom Result

possible(ay, Sp) True

possible(ay, So) | False

possible(as, So) | False

possible(aq, So) | False

True

False

assumable(ay, So

assumable(ay, So

assumable(ag, So True

predictable(a,, So) | True

predictable(ay, So) | False

predictable(as, Sp) | True

)
)
)
assumable(aq, So) | False
)
)
)
)

predictable(ayq, So) | False

The action «, is executable in Sy because all of its preconditions are satisfied, with-
out having to resort to non-monotonic assumptions about their possible future state.
preconditions(ay) = {=fy, f3} and So = {f1, f2, f3}. Clearly ~f; and f; are inconsis-
tent and therefore the action a; may not be assumed to be executable in some future
state, nor can it be executed in Sp. This is not the case with action a3. The axiom fa
does not hold in Sy, therefore the actions may not be currently executed. However,
none of the currently held axioms f}, f, nor f3 is in conflict with f;. The axiom fa
may be assumed to possibly hold in some future state, hence the assumable(as, Sp)
returns a positive value. The action a4 is neither assumable nor possible by the
same reasoning as action a;. It has been included in the table to demonstrate the
applicability of entrenchment in plan selection which will be discussed in section 4.5.

The plural versions of these relations behave in a very similar way. Any plan
containing a sequence of actions among which are a; and a, will not be predicted.
This is due to the definition of predictability in example 4.11. The following table

demonstrates the behaviours of each relation as pertaining to state Sy and plans P,

tf



Py, Ps and Py. Note that actions are treated on an individual basis as if they were

possible or assumable in state Sy.

Axiom Result
possible(Py,Sy) | False
possible(P,,So) | False
possible(Ps, So) | False
possible( Py, So) True
assumable( Py, Sp) | False
False

assumable( P, So

assumable( Py, So) | True

)

)
assumable( P, So) | True

)

)

predictable( Py, So) | False
predictable( Py, So) | False
predictable( Ps, So) | False
predictable( Py, Sp) | True

If we treat the actions as aggregate sequences where the specified order is impor-
tant, we end up with different possibility, assumability and predictability results. This
is true, because after performing the first action in the sequence, the resulting state
S1 may be different from So, thus where the second action might have been feasable
in state So, it may no longer be in state S;. One interpretation of the aggregate view

of sequences of actions may be:



Axiom Result
T&c—i-l;le( Py, So)

possible( P2, So) | False
possible(P3, So) | False
possible( Py, So) True

True

assumable( Py, So) | True

True
assumable(Ps, So) | False

)
)
)
assumable( Py, So) | True
)
)
)
)

assumable( P;, Sy

predictable( P, So) | True
predictable( P, So
predictable(Ps, So

predictable( Py, So

True

False

True

Let us explain these results by examining plan P,. This plan consists of three
actions a; followed by a; and a3. By executing action q, in state So = {f}, f2, f3},
one of the resulting states due to revision will be S, = {~f, f3, f3}. Clearly action a;
is possible in this state since all of its preconditions are satisfied. It is also assumable
because S} does not contain axioms which would contradict any preconditions of this
action. The resulting state S; = {=fi, f, f3, f4} satisfies the preconditions of action

az.

4.5 How can we predict better?

After careful examination of the definitions of assumability and possibility, it is pos-
sible to note that an action may not be possible and not assumable. This is true
because the definition of possible asserts that all of the action’s preconditions must
hold in the current state. If they hold, then clearly they are not in contradiction with

any of the preconditions, thus they must be assumable.



possible(a;, S) = assumable(a;, S) (4.15)

Equation 4.15 is easily argued by examining the preconditions of a;. If, however,
an action is not possible in some state, it cannot be determined whether the action
is or is not assumable.

We could tend to prefer predicting based on:

o The highest number of possible and assumable relations satisfied for each pre-

dictable action or plan.

This criteria flows from satisfying the abstract notion of the informational econ-
omy postulate. It does not take any kind of entrenchment measurements into
consideration and is simply based on the amount of information used to deter-
mine predictability. For example, the predictable relation 4.16 uses four fluents
Ay through to A4 to predict the action A in state S. The predictable relation
4.17 of action B in state S, uses only three fluents By, B; and B;. Given that a
higher number of relations is used to predict the action A, this heuristic would

prefer to predict A over B.

predictable(A, S) <

possible(A;, S) A

possible( Az, S) A

assumable( Az, S) A (4.16)
assumable( Ay, S)

predictable(B, S) <

possible( By, S) A

possible( B,, S) A

assumable(Bs, S)A (4.17)

Ju



vJa
¢ The largest number of possible relations which are satisfied for each predictable
relation, given at least two predictable relations with the same cardinality of

comprising relations.

predictable(C, S) «

possible(Cy, S) A

possible(C,, S) A

possible(Cs, S) A (4.18)
assumable(Cy, S)

Consider a belief state with two predictable relations 4.16 and 4.18. Note that
the cardinality of both of these is 4 since each is comprised of a total of four
possible or assumable relations. It is the case that in the predictable relation
4.16, two possible relations are used. In the case of the predictable relation 4.18,
three possible relations are employed. Given, that in the latter case, a higher
number of possible relations is used, we would tend to prefer to predict action

C over action A.

The motivation here lies in the fact that in state S, only C; needs to be satisfied
before the action can take place, versus two fluents As; and Ay having to be

satisfied.

o The belief state with the largest number of predictable relations.

The motivation for this heuristic lies in the fact that more information is used
when we can predict a larger number of actions and plans. Note that due to
revision, we may end up with several mutually exclusive belief states. Without
considering any form of entrenchment, we may wish to prefer to predict based
on the highest number of probabilities which are “makable.” This will depend

on each belief state.



4.5.1 Predicting based on entrenchment

So far, prediction has been limited to whether an axiom has been possible or assum-
able. This simple view need not be the only one which can be taken to recognize
actions or plans. In section 2.6 the concept of epistemic entrenchment has been in-
troduced, which strives to order axioms within a belief state according to utility,
probability or reliability. It may be possible to rank the belief states themselves
according to the entrenchment of beliefs contained within them. This ranking, in
turn, can serve a very useful purpose in predicting actions or plans based on the
entrenchment criteria discussed in section 2.6.

To demonstrate the role of entrenchment in predicting, we provide the following
illustrative example. We may predict based on any criteria using a heuristic function
which is suitable in the context of the problem.

The following are some heuristics which may be employed:

¢ The highest entrenchment value of a possible relation satisfied for each pre-

dictable action or plan.

This criteria flows from satisfying the abstract notion of the epistemic entrench-
ment orderings amongst the fluents. It does not take into account the satisfac-

tion of the postulate of informational economy.

For example, the predictable relation 4.19 uses four fluents D; through to D, to
predict the action D in state S. Now assume that the epistemic entrenchment
ordering D) < E, exists, meaning that the action or plan E is more epistemically
entrenched than the action or plan D. The predictable relation 4.20 of action E
in state S, uses only two fluents £, and E;. Since the entrenchment of action

E is higher than that of D, this heuristic would prefer to predict E over D.

predictable(D, S) «
possible(D,, S) A
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possible( Dy, S) A
assumable( D3, S) A (4.19)
assumable( Dy, S)

predictable(E, S) <
possible( Ey, S) A
assumable( E;, S)A (4.20)

o The highest entrenchment value of an assumable relation satisfied for each pre-

dictable action or plan.

o The sum of the epistemic entrenchment values of the relations comprising each

predictable relation.

o The belief state with the highest epistemic entrenchment ordering. (A sum or

product of the axioms contained within each knowledge base).

The motivation for this heuristic lies in the fact that predictions made on the
basis of such entrenchment measurements will be more probable, useful or reli-

able, than blind predictions [5, 14].



Chapter 5

Conclusion and Future Work

A plan recognition system must be able to use incomplete information to provide the
required flexibility. A general plan recognition system must be able to perpetually
accept revised descriptions of a world in which actions take place, including changes
to the observed relationships amongst actions and plans. To anticipate the behaviour
of agents acting in a dynamic observable world, the plan recognition system must be
able to hypothesize consistent plans.

We use the Ghose-Goebel belief change model to maintain a dynamic set of asser-
tions that represent actions and relationships amongst actions and plans. This method
explicitly supports reasoning with incomplete knowledge and for revision of the belief
base with newly observed facts. Observed actions are assimilated within the belief
revision system and, together with current beliefs about actions and their affects,
constrain the plans that can be recognized. Additionally, the Ghose-Goebel reason-
ing framework supports the maintenance of multiple mutually inconsistent states of
the world, providing a basis to assume alternative hypothetical completions of plans.

The system we propose consists of two modules. The belief maintenance module
utilizes the Ghose-Goebel Belief Revision System to maintain a body of knowledge
based on observations. This system maintains a knowledge base and allows for its
dynamic change based on new information observed by an agent. The knowledge

base may be expanded, revised or contracted, depending on the type of new informa-
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possible(A,S) \
predictable(A,S)
assumable(A.§)—

Figure 5.1: The two plan recognition relations.

tion which is observed. Multiple mutually inconsistent belief sets are maintained as
potential belief states which that can be used to recognize plans.

The second module is responsible for plan recognition using the information about
the world maintained by the first module. This system allows for observation of new
information, certain types of predictions, and recognition of possible plans in the
given state of the world. It relies on nonmonotonic assumptions which are used in
the plan recognition and prediction aspects of its functionality.

We propose two fundamental plan recognition relations:

These are used to predict possible (meaning that they are executable) or assum-
able (meaning that they could be executable) plans and actions. Together with the
multiply defined knowledge bases they provide a wide spectrum of plan recognition
functionality.

Some of the drawbacks of our approach lie in the fact that the knowledge base
which must be maintained will grow in size very quickly. This is due to a copy of a
knowledge base which has to be maintained for each interpretation of a belief change
operation.

This system is a proposal for a plan recognition system which presents a competent
model which tries to maintain all of the possible information with which the system
comes across. It is not implemented and only suggestions are provided as to the
implementation process.

Not enough has been mentioned about the possible impact of entrenchment which
beliefs may have. This information is crucial to determine the level of belief we may
place in various pieces of information. This information in turn may be used by the
system to prefer certain plans over some other plans when suggesting them to the user.

If the user’s preferences were taken into account in determining the entrenchment,

)



TINT

the system would be user-tuned and not general, the way it is proposed now. This is
something to consider in the future.

Another important future consideration involves the development of other rela-
tions and predicates which will allow for more complex relationships in the knowledge
base to be retrieved. For example the relation findSatis fyingAction(Action, S ituation)
might return the actions’ names whose postconditions satisfy the specified action’s

preconditions in order to make it possible or assumable. Similarly
findSatis fyingPlan(Action, Situation) (5.1)

could be used to find a sequence of actions which would have to be performed in order
to satisfy the preconditions of the specified action. These are very powerful relations
because they tell the user the sequence of actions or a single action which must be
performed in order to perform another action.

Similarly, this idea may be extended to encompass all possible knowledge bases
which exist as a result of belief change operations. These powerful relations would
make it unnecessary to make a choice of a belief base used, and would be capable of

predicting based on information in all of the knowledge bases.
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