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Abstract

A graph G is a subtree overlap graph if there exists a tree T and a set of subtrees
{T:} so that there exists a one-to-one mapping between vertices and subtrees and
two subtrees overlap if and only if their respective vertices are adjacent. The class
of subtree overlap graphs is proven to contain the classes of circle, spider or circle
polygon, and chordal graphs.

An upper bound on the size of the subtree overlap model is proven to be 3m. As
well a general algorithm to find the maximum independent set for any class of overlap
graph is given, provided testing for containment and intersection in the overlap graph
can be done in polynomial time, and the maximum weight independent set problem is
solved for the related class of intersection graph. The complexities of the Hamiltonian
Cycle, several domination problems, isomorphism and colouring are shown to be as

hard for subtree overlap graphs as they are for graphs in general.
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Chapter 1

Introduction

1.1 Intersection, Containment, and Overlap Graphs

Different ways exist to represent graphs. The traditional model defines the graph
in terms of a set of vertices and a set of edges, where each edge consists of a pair
of vertices. We will assume each graph is a simple, undirected, connected graph
and therefore does not contain loops or multiple edges between two vertices. Or.
alternatively, the two vertices comprising each edge will be different, and each edge
pair will be unique in the set of edges, without regard to direction.

An alternate way to model the graph’s data relies on objects of some type Z
to represent the individual vertices, and the relationship @ between these objects to
represent the edge structure of the graph. These objects can be geometric - as for
example unit circles in the plane. or they can consist of sets - such as for instance sets
of integers. The possibilities for object types is broad, and any type of object can be
used as long as it is possible to define intersection, containment, and overlap between
any two objects of the this type. Then ¢ is defined. for two objects =;.z; € Z so that

(21 7,) = { 1 Ef zi and z; are rele%ted
0 if z and z; otherwise

Three such possible relationships are intersection, containment. and overlap. A
fourth relation - disjointedness - will not be discussed. In an intersection graph, two
vertices are adjacent if and only if their respective two objects intersect, whereas in a
containment graph two vertices are adjacent if and only if the object representing one
vertex is fully contained in the other. Lastly, in an overlap graph, two vertices are

adjacent if their objects intersect, but neither object is contained in the other. These



three relationships are reflected in the following three refinements of the & function.

representing the intersection, containment, and overlap relationships respectively.

b1z, 2:) = 1 if z; and z; intersect
=== 1 0 otherwise

1 z; 1s contained in z;
oc(zi, z5) = or z; is contained in z;
0 otherwise

o1z, z5) =1
do(zi,z5) = and ¢c(zi,2;) =0
0 otherwise

The definitions of these three methods to model a graph are almost identical, in
that all three models are defined by the type of objects that represent the vertices in
the original graph, but the edge relationships are defined by ¢, ¢c, or oo.

Each of these models restricts the structure of the underlying graphs. but provides
polynomial solutions for some problems which are NP-complete in general. Moreover.
for some problems, this method of modelling the data can be more intuitive, as the
definitions of the objects and their intersections can be tailored to individual classes
of problems. For instance. if the objects consist of non-overlapping regions in the
plane. then the intersection graph of these objects can be used to represent a planar

graph. where two regions will intersect if they share one or more boundary points.

1.2 Motivation

The three classes of graphs modelled by intervals on a line and intersection, contain-
ment, or overlap relationships have been widely studied, both as graphs using this
model of intervals on a line and as equivalent graphs that are represented differently
by, for instance, intersecting chords inscribed in a circle.

Similarly, the subtree intersection and subtree containment graph classes have
been studied extensively, albeit primarily as their equivalent classes, which are the
classes of chordal and comparability graphs, respectively. Very little work has been
done. however, on the class of subtree overlap graphs. As such, the subtree overlap

graph class makes for an interesting study; [ wanted to explore both the question of
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recognizing and possibly constructing a subtree overlap graph model, and the com-
putational complexity of some common graph theoretic problems, such as colouring,

for the class of subtree overlap graphs.

1.3 Main Results

The class of subtree overlap graphs is not completely unexamined; a few facts are
known about this class of graphs. It is known that every interval overlap graph is a
subtree overlap graph, yielding a place in the hierarchy of graph classes. Moreover
a sufficient condition has been proven to show that a given graph is not a subtree
overlap graph. Research for this thesis, then, was directed to three questions: can the
position of the subtree overlap graph class in the hierarchy be refined, can the subtree
overlap graph class be characterized or can a recognition algorithm be constructed,
and what are the computational complexities of well known graph problems for the
class of subtree overlap graphs?

In the process of exploring the subtree overlap graph, three main results are

proven:

L. The spider graph class is a proper subclass of the subtree overlap graph class.

2. The subtree overlap model modelling a subtree overlap graph is shown to contain
at most 3m vertices, if the subtree overlap model is minimal. Here m = the

number of edges in the subtree overlap graph

3. An algorithm is given to solve the Maximum Independent Set problem for any

overlap model, including the subtree overlap model.

By proving 1, it is possible to further refine the position of the subtree overlap
graph class in the hierarchy of classes. Especially so since the class of spider graphs
itself includes a host of other graph classes.

While exploring different computational problems for the subtree overlap graph.
a more general solution for the Maximum Independent Set problem was developed.
This solution applies to any class of overlap graphs, and yields an algorithm to find
the maximum independent set of any overlap graph in polynomial time if an inter-

section/containment matrix can be built in polynomial time for the overlap graph’s
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model and the maximum weight independent set can be found in polynomial time for
the intersection graph represented by the same model.

Result 2 provides an upper bound on the size of a subtree overlap model. This
upper bound applies only to minimal subtree overlap models, but an algorithm is
given to reduce any subtree overlap model to a minimal subtree overlap model rep-
resenting the same graph. Due to this upper bound, it is possible to build an inter-
section/containment matrix of a minimal subtree overlap model in O(m) time. This
in turn leads to the result that the Maximum Independent Set problem is solvable in
O(mn?) time for subtree overlap graphs.

Therefore, of the three original questions we sought to address. two have been
addressed. The question of recognizing or characterizing the subtree overlap graph

class remains open.

1.4 Outline

Chapters 2 and 3 provide the definitions of the graph classes discussed in this thesis.
In part, we are concerned with the placement of the subtree overlap graph class in
the hierarchy of graph classes: this necessitates the definition of many graph classes.
We begin by introducing graphs modelled by intervals on a line. and extend them to
graphs modelled by subtrees of a tree.

Following these graph definitions, Chapter 4 discusses and proves the relationships
between the graph classes. This is also where the first of the original results is
presented, when it is proven that the spider graph class is a proper subclass of the
subtree overlap graph class.

In chapter 5. the upper bound on the size of a minimal subtree overlap graph is
proven, which leads to the result in Chapter 6 that the maximum independent set
problem is solvable in O(mn?) time for subtree overlap graphs.

Chapter 7 discusses the computational complexity of several well known graph
problems for the subtree overlap graph class. For most of these problems the com-
plexity is NP complete, with the exception of the graph isomorphism problem, which

is isomorphism complete.



Chapter 2

Intervals on a Line

Perhaps the easiest objects to visualize are intervals lying on a line. Each interval ¢
on can be defined by its left and right endpoints so that ¢; = (I;,r;). Then a given
graph G = (V, E) can be modeled if every vertex v; € V can be mapped to an interval
¢ so that ¢(c,¢;) =1 if and only if (v, v;) € E.

The interval model - be the relationship that of intersection, containment. or
overlap - is a very useful mathematical structure and models real world problems
well. The intervals all rest on a line: this line may represent time. or distance. or
some other one-dimensional concept. The intervals. in turn. may be restricted by
physical restrictions - such as file size in sequential storage in a computer, or time
dependencies - such as the life span of a group of individuals. If an interval graph
modeled. for instance. the lifespan of a group of humans on a timeline. finding the
point in time at which the largest number of humans was living would involve finding
the maximum clique in either the intersection or containment model.

Note that many of the definitions used in this chapter come from Golumbic’s book.

which provides an overview of these graph classes.

2.1 The Intersection Graph Model:
The Interval Graph

Definition 2.1 (Interval Intersection Graph) (see [Gol80]) A graph G = (V. E)
is an interval graph if and only if there exists a one-to-one mapping from the vertices

v; of G to intervals ¢; on the line such that or(ci,cj) =1 < (v;,v;) € E.



[nterval graphs are intersection graphs of intervals on a line. Booth and Lueker
(BL76] show that this class of graphs can be recognized in linear time. As Golumbic
shows by the wide range of his sample applications, this class of graphs can be used
to model real world data very easily. ranging over problems in chemistry, genetics.
archaeology, and database and file structures. Interval graphs can also be used to
model a wide variety of scheduling problems.

Many scheduling problems reduce to the question of colouring the interval graph.
For instance, given a set of lectures which occur at certain times, determining the
minimum number of rooms needed to host those lectures is equivalent to colouring
the interval model of these lecture sessions. Each lecture session becomes an interval
on a time line, with starting point equal to the time the lecture begins, and ending
point equal to the time the lecture ends (plus possibly ten minutes to clear the room).
Since it is impossible to present two different lectures at the same time in the same
room, any two intervals passing through the same point must be differently coloured.
Olariu [Ola91] provides a linear algorithm to colour an interval graph.

Sometimes, however, when the problem is inherently cyclic - as in for instance
a weekly lecture schedule, placing the intervals on a straight line will not yield the
optimal model. It is possible. of course, to place intervals, instead, on a circle. leading

to the definition of the circular-arc graph class.

Definition 2.2 (Circular-arc) (see [Gol80]) A graph G = (V. E) is a circular-arc
graph if and only if there ezists a one-to-one mapping from the vertices v; of G to

circular arcs ¢; on a circle such that oj(ci.c;) =1 < (vi.v;) € E.

Every interval graph is a circular-arc graph, since the underlying line can be
deformed to a circle. There will be at least one point p on this circle, then. which
is not covered by any interval. As Golumbic points out, the class of interval graphs
is a proper subclass of the class of circular-arc graphs. The class of interval graphs
excludes chordless cycles of length greater than 3, but these graphs can be modeled by
circular arcs. Moreover, the model of any circular-arc graph which is not an interval

graph will not contain a point p on the circle such that p is not covered by any interval.



2.1.1 Proper Intersection

Related to the intersection model is the proper intersection graph model. The key,
and only, difference between the two is that there are no contained objects in the

proper intersection model.

Definition 2.3 (Proper Intersection Graph) An intersection graph G = (V, E)
is a proper intersection graph if there exists an intersection model so that oc(z;,z;) =

0 for all objects z;, z; € Z representing all vertices v;,v; € V.

Due to this restriction, it is easy to see that for any class of objects, the proper
intersection graph class is a subclass of the related overlap graph class of the same
objects, given the definitions of ¢; and #¢.

[t is also interesting to note that both the proper interval and proper circular-
arc graph classes are subclasses of the overlap or circle graph, which is defined in

Section 2.3 [Gol30].

2.2 The Containment Graph Model:
The Permutation Graph

Definition 2.4 (Interval Containment Graph) A graph G = (V.E) is an in-
terval containment graph if and only if there ezists a one-to-one mapping from the

vertices v; of G to intervals ¢; on the line such that oc(ci,cj) =1 <> (vi.v;) € E.

The interval containment model is similar to the interval model. and can be used
to solve a similarly wide variety of problems. Consider for instance the problem
of finding, given a set of square regions in the plane of varying size, the maximum
sequence of regions that fit one inside the other. This problem can be solved by
finding the maximum clique of the related interval containment graph. Each interval
will represent one square region, and will have length equal to the length of one side
of the region. All the intervals will then be placed on the line so that all the intervals
are centred at one point. Then, for any two intervals, if one is contained within the
other, one square region would fit inside the other. Thus a sequence of regions fitting

one inside the other would be equivalent to a clique of intervals, and a maximum
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clique would contain the same number of vertices as the number of containers in the
maximum sequence of nested containers.

An optimal algorithm to solve the this problem may not be immediately apparent.
It is useful, in fact to look at a different class of graphs. known as permutation graphs.

which are defined as follows.

Definition 2.5 (Permutation Graph) (See [Gol80]) A graph G=(V,E) is a mem-
ber of the permutation graph class if there ezists a permutation m of the numbers [1,2,
..., 1] such that the edge v;v; € E if and only if i < j and and =(i) > w(j). (See also

Figure 2.2

The following theorem, first proven by Dushnik and Miller. explains the interest

in permutation graphs:

Theorem 2.6 [DM{1] The classes of interval containment and permutation graphs

are equivalent.

Then optimal algorithms exist to solve this problem of finding a maximum clique
for permutation graphs. Felsner, Miiller, and Wernisch [FMW97] present optimal
algorithms for finding the maximum clique for trapezoid graphs, a graph class which
includes the class of permutation graphs as a subclass. These algorithms run in
O(nlogn) time.

A permutation graph can be converted to an interval containment graph in O(n)
time. McConnell and Spinrad prove that a permutation graph can be recognized in

O(m + n) time[MS94].

2.3 The Overlap Graph Model:
The Circle Graph

Definition 2.7 (Interval Overlap Graph) [Gav73] A graph G = (V. E) is an in-
terval overlap graph if and only if there exists a one-to-one mapping from the vertices

vi of G to intervals c; on the line such that ¢o(ci,cj) =1 < (v;,v;) € E.

The third and last graph model is that of the interval overlap graph, also known
as the overlap graph. Gavril, in [Gav73], provides the following definition of circle

graphs, and then proceeds to prove the following theorem:
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Figure 2.1: The circle graph.

Definition 2.8 (Circle Graph) [Gav73] A graph G=(V,E) is defined to be a circle
graph if and only if there exists a one-to-one mapping from the vertices in V to unique
chords ¢; inscribed in a circle such that two chords ¢; and c; intersect if and only if

their respective vertices v; and v; are adjacent. (See Figure 2.1)

Theorem 2.9 [Gav73] The classes of interval overlap graphs and circle graphs are

equivalent.

1 2 3 4 5 6 —1)=a 1 2

—————0—0— ’ ®

T —@=5 '

A !

K TT(3) = R :
SN @=5 6y | .3

< TT(4) =1 R

A —(5)=3 j

—(6)=2 . .

1.2 3 4 5 6 (6= 5 4

Figure 2.2: The permutation graph - chords across parallel lines.

This definition of the circle graph, and the equivalence of the circle and interval
overlap graphs, leads to an odd conclusion: in the definition of the overlap graph two
vertices v; and v; are adjacent if and only if oo(ci,c;) = 1. But this implies that
dc(cisc;) = 0, and @y(ci,c;) = 1 or 0. And yet, the class of permutation graphs,
which is equivalent to the class of interval containment graphs, is a proper subclass
of the circle graph.

That the permutation graph class is a proper subclass of the circle graph class is

easy to see if the permutations of the permutation graph are represented as chords

9



across two parallel lines, as in Figure 2.2. Then these parallel lines can be joined at
the ends and deformed to a circle, resulting in a circle graph. This circle graph is. in
turn, equivalent to an interval overlap graph.

This suggests that the relationships between intersection. containment. and over-
lap graphs defined by the same class of objects are not as intuitive as they might
seem. It seems counter-intuitive that, for intervals on a line, the class of containment
graphs is contained in the class of overlap graphs. Given an interval containment and
its model however. it is important to note that when the interval containment model
has been transformed to a permutation model, which is in turn transformed into a
circle model, and thence to an interval overlap model, this resulting interval overlap
model represents the same graph but consists of different intervals.

Returning to the problem of recognition mentioned in the previous sections, circle
graphs can be recognized and and a circle graph model constructed in O(n?) time
[Spi94]. Once constructed, a circle graph model can be transformed to an interval

overlap model in O(n) time.

2.4 Extending the Circle Graph

As mentioned in Section 2.3 and generally well known. the circle graph is a gener-
alization of the permutation graph. This section is concerned with other ways of
extending and generalizing the circle graph. These generalizations do not rely on the
interval overlap graph model but. instead, seek to generalize the notion of intersecting
chords inscribed in a circle.

Section 2.4.3 provides an example of an alternative and previously unconsidered
extension of the circle graph class. This section is included as another example of

ways to extend the circle graph class.

2.4.1 The Circle Polygon Graph

One extension of the circle graph class is the circle polygon graph, the intersection
graph of polygons inscribed in a circle. This extensionsion was first found in [KK97],
where Kostochka and Kratochvil provide the following definition and then go on to

discuss upper bounds on the number of colours used to colour a spider graph if the
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colouring is not optimum.

Definition 2.10 (Circle-Polygon Graph) [KK97] A graph G=(V ,E) is defined to
be a circle-polygon graph if and only if there ezists a one-to-one mapping from the
vertices in V to convex polygons inscribed in a circle such that two polygons intersect

if and only if their respective vertices are adjacent.

¢ b a {
b o/ L.
o / (1
. - ad g DY SN
PR 4 { “wb
et e T AN
- 7 fo -
| // \\ / \ \\ ” ‘ f
\ S \‘ ( i -/
e d o ’—o
d v |
'Y -@
e T ¢

Note that in the circle polygon

graph, a,b,c,d, and e are

represented by 2 sided polygons,

and f is represented by a 5 sided polygon.

Figure 2.3: A circle polygon graph

Again as in the circle graph class an alternative definition of this graph class
is presented. Consider that each convex polygon consists of an ordered collection
of connected non crossing chords. Then two polygons - or collections of connected
chords - P; and P; intersect if and only if there exists at least one pair of chords
(czi¢y), where c; € P; and ¢, € P, so that c; and ¢, intersect, as they do for circle

graphs.

Definition 2.11 (Circle-Polygon Graph) A graph G=(V.E) is defined to be a
circle-polygon graph if and only if there exists a one-to-one mapping from the ver-
tices in V to sets of connected non-intersecting chords inscribed in a circle such that
two vertices are adjacent if and only if their respective sets of chords contain at least

one pair of intersecting chords.

Circle graphs are obviously contained in circle polygon graphs; we can treat each

chord as a 2 polygon, and the definition holds. However, as you can see from Fig-
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ure 2.3, the class of circle polygon graphs includes but is larger than the class of circle

graphs.

2.4.2 The Spider Graph

A B C
L '_‘ﬁ
. ‘\//‘_ "/
.,\ .
D E

This graph G can be represented
in the following way as a spider graph.

1
12— 2
N ' -

11//,1/’/’/ .3 A={1,5,9}

,'/.\} [ | \’(/,R B - {2' 4}
i : C={(3,7

10// o )¢ D={(6, 8, 11}
| - / E =10, 12}
Q‘t ’TE;’ K -'/5
8( \\‘_,/ - 6
7

Figure 2.4: The spider graph

Similarly, the spider graph is another extension of the circle graph model. Consider
that each chord in a circle graph intersects with the circle at two places, specifically
the two endpoints of the chord. One endpoint can be arbitrarily chosen and labeled
I. Moving around the circle in clockwise direction, each successive endpoint can be
numbered in increasing order from 2 to 2n.

Then endpoint 7 lies between (i + 1) mod n and (i — 1) mod n. Each chord has
associated with it a pair of unique numbers {z,y}, | < r < y < 2n, and two chords

{z,y} and {a,b} intersect if and only ifa <z <b<yorz <a<y <b.

12



The spider graph extends this model by allowing two or more points inscribed on
the circle to correspond to a given vertex. In the circle graph each vertex is described
by exactly two points. For the spider graph. the points inscribed on the circle are
still numbered 1.2....,k in clockwise direction, starting arbitrarily at one point. but
each vertex is represented by two or more points, as can be seen in Figure 2.4.

[n the figure the endpoints are joined by lines - chords for those sets of points of
size 2, and lines converging on a unique central point for those sets whose size exceeds
2. There are two such sets in the figure, those representing the vertices 4 and D in
the graph, and the central point unique to each of the two sets is circled in the figure.
The physical location of this central point is not unique within the circle and can be
shifted in any direction, as long as the central point falls within the inscribed polygon
whose vertices are those endpoints inscribed on the circle which represent this vertex.
and is in terms of the definition of the spider graph completely irrelevant.

For the spider graph, then. consider a circle with points inscribed on the circle
and numbered in increasing order starting at one arbitrary point and traveling around
the circle in clockwise order. Then spider graphs are formally defined by Koebe as

follows:

Definition 2.12 [Koe92] A graph G = (V. E) is called a spider graph if for each
vertez v; € V there ezists a set of unique numbered points C; = {ci1,¢ciz,- ... Cix, }
inscribed on a circle such that (vi,v;) € E if and only if there exist a.b € C; and

r,ye(C,sothata<r<b<yorr<a<y<hb.

Kostochka and Kratochvil [KK97] mention in passing that the classes of circle
polygon and spider graphs are equivalent, but do not provide a proof, in part because

the proof is fairly straightforward.
Theorem 2.13 The classes of spider and circle polygon graphs are equivalent.

Proof:

Consider a graph G which is a circle polygon graph. Then each vertex v in G
is represented by a polygon P, inscribed in a circle. Choose one polygon vertex on
the circle arbitrarily and start numbering the vertices from that polygon vertex on

in clockwise order from 1,2,... .k, where &k = " (number of sides in P, ) is the

13



The spider graph is just another way of looking
at the circle polygon

graph.

Figure 2.5: A circle polygon graph is a spider graph.

total number of polygon vertices lying on the circle. Build a spider graph by letting.
for each vertex v, the collection C, be the set of points on the circle which are the
polygon vertices of P,.

Two vertices v and w in G will be adjacent if and only if the two polygons P, and
P, intersect. Each polygon consists of a collection of sides’ or chords inscribed in the
circle which share endpoints. Therefore the two polygons intersect if there exists at
least one intersection between two chords C, and C,, contained in the two polygons
P, and P, respectively. Consider the endpoints of those two chords. and let {a.b}
be a chord comprising one side of P, and {r,y} be a chord comprising one side of
P,, where a,b,z,y € [1.2,....k] such that these two chords intersect. Then either
a<r<b<yorr<a<y<h

Thus, if two such chords exist in P, and P,, then their endpoints will be contained
in C, and C, respectively, and these endpoints can be used to show intersection
between the vertices v and w in the spider graph representation of G.

If two such intersecting chords do not exist, then P, and P, do not intersect.
Then no polygon vertices {a,b} exist in P, and {z,y} in P, sothata < r <b< yor

I < a <y <b, and there is no intersection between C, and C, in the spider graph.

14



Therefore every circle polygon graph is a spider graph.

Now consider a graph G which is a spider graph. Then each vertex v in G is
represented by a collection of points C, inscribed on the circle. So let P, - the
polygon representing v in a circle polygon graph - be the polygon inscribed on the
circle whose vertices are exactly those included in C,. Since P, must by definition be
a convex polygon and since the vertices are numbered in increasing order clockwise
around the circle. the construction of the polygon is well defined.

Then it remains only to show that v and w are adjacent if and only if P, and
P, intersect. There exist {z.y} in C, and {a,b} in C, such that a < r < b < y or
£ < a <y<bifand only if v and w are adjacent by the definition of the spider
graph. If the two vertices v and w are adjacent, then the chords {z,y} and {a,b}
will intersect and are part of P, and P, respectively. On the other hand, if the two
vertices v and w are not adjacent, then no such foursome of numbers will exist in C,
and Cy, and hence no chord comprising a side of P, will intersect with any chord
comprising a side of P,,.

Therefore the classes of circle polygon and spider graphs are equivalent.O

The class of circle polygon, or spider, graphs is a broad class, containing as
proper subsets all trees, cycles, interval. permutation. trapezoid. and of course circle
graphs[Koe92, Koe90]. As well. both Koebe and Kratochvil and Kostochka[KK97]
prove that chordal graphs form a proper subclass of spider graphs. Moreover. Koebe
provides a polynomial recognition algorithm for spider graphs [Koe92].

The spider graph. in this thesis. is more convenient to use than the circle polygon
graph due to the straightforward way to represent the graph. Moreover, as shown in
the proof for Theorem 2.13. conversion between circle polygon and spider represen-
tations of a graph can be made in O(n) time complexity.

Given a spider graph representing a graph G with n vertices, so that there are k
endpoints on the circle, the circle can be arbitrarily cut, and the endpoints numbered
clockwise from that point around the circle in increasing order. Then each vertex v
is associated with a set C;, where C; consists of an ordered list of numbers between |
and k, and each number occurs in exactly one C;. This representation of the spider

graph will be assumed for the remainder of this thesis.



2.4.3 A Brief Discursion into the Realm of the Sphere Graph

Consider, briefly, the sphere graph, which is the intersection graph of planes contained
within a sphere. In this graph class two planes intersect if and only if they do so within
the sphere.

A proper intersection graph is an intersection graph none of whose objects are
completely contained one inside another. The planes can, without loss of generality,
be required to be unique, which means that the sphere graph is actually a proper
intersection graph of planes in the sphere. Similarly, the intersecting chords are
unique in the circle graph, and the circle graph is a proper intersection graph of

chords in a circle.

Definition 2.14 (Sphere Graph) A graph G=(V,E) is defined to be a sphere graph
if and only if there erists a one-to-one mapping from the vertices in V to unqiue
planes inscribed in a sphere such that two planes P; and P; intersect if and only if

their respective vertices v; and v; are adjacent.

B S L
\2\ [ | ‘/
i e
/‘,\\\ | /ﬂ /

A .
//
// ~ B
D

In this sphere graph, since the chords
A and C are parallel, the planes

A and C are also parallel.

Similarly the planes B and D are
parallel.

Figure 2.6: Inscribing a circle graph on a sphere graph.
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Theorem 2.15 The class of circle graphs is a proper subclass of the class of sphere

graphs.

Obviously the class of circle graphs is contained in the class of sphere graphs, since
any circle graph can be converted to a sphere graph. This conversion consists of a
three step process. First, the sphere is cut by one plane, whose intersection with the
sphere will form a circle. The chords are then inscribed in this circle. Lastly each
chord C is converted to a plane which cuts the circle plane along C; and forms a 90°
angle with the circle plane.

Since two inscribed planes P; and P; will intersect within the sphere if and only
if their respective chords C; and C; intersect, the two representations represent the

same underlying graph.

a
.

e ,~'// b
\ ! /
\ PN ;

\ ;N
\\\ // N ”/
N/ -/

c; / Y
c

‘ In this example, the vertices

c a, b, ¢, d, and e are represented
by 5 planes all of whom form a
90 degree angle with the sixth
plane representing f.
The dashed lines represent the
diameter of each of the first
five planes, and the dashed lines
all lie on the sixth plane.

Figure 2.7: A sphere graph is not always a circle graph.

The circle and sphere graph classes are not equal, since there exist graphs which
can be represented on the sphere but not the circle. One such graph consists of a

cycle of length five with a sixth vertex that is adjacent to each of the cycle’s vertices.
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This graph cannot be represented as a circle graph[GSH89], but can be represented
as a sphere graph. This can be done most simply by first constructing the sphere
representation of the five cycle. Each of the five planes will then intersect the circle
plane. Therefore, if the sixth vertex is mapped to the circle plane, it will be adjacent
to each of the other five vertices.

Both the sphere and circle polygon graph classes contain the circle graph class as
a proper subset. It is not clear at this point that the two class graphs are equivalent,
and in fact I would conjecture that they are not.

A literature survey produced no references for sphere graphs, however, which
suggests that no research has been done into the class of sphere graphs. As such,
this class might prove interesting to explore further, in the future. A first question
to address would be the question of whether this class of graphs is equivalent to any

other class of graphs.
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Chapter 3
Subtrees of a Tree

In Chapter 2 the intersection, containment, and overlap graphs of intervals on a
line were introduced and discussed. This chapter will introduce the intersection,
containment, and overlap graphs of connected subtrees of a connected tree. In each of
the three graph classes, each vertex in the graph is represented by a connected subtree
of the tree. [t is important to note that, for the intersection and overlap models in
particular, it is important to insist that the the subtrees must be connected. If the
subtrees are not required to be connected, the class of graphs that can be represented
by either model is equal to the class of all graphs.

Each of the three graph classes will be presented. and in the case of the subtree
intersection and subtree containment graph. the equivalent graph classes will also
be introduced. As well, the complexity of recognizing these graph classes will be
discussed.

This chapter is fairly short, but, with Chapter 2, provides all the definitions

required for Chapter 4.

3.1 The Subtree Intersection Graph Model:
The Chordal Graph

Definition 3.1 (Subtree Intersection Graph) [Gav74] A graph G = (V, Eg),|Ve| =
ng is a subtree intersection graph if and only if the following holds:
There ezists a tree T = (Vr, ET) and a collection of ng connected subtrees T:,1<:<

nG, so that ¢(T;,T;) =1 < (vi,v;) € Eg, for all vi,vj € Vg (see Figure 3.1).
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The subtrees consist of the following
collections of vertices.

In this subtree interval graph
the tree consists of 7 vertices
and is characterized by the solid bold line.
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T(A)={1,2} T(K)=(5} T(X)={8, 7}
IB)={11 TL)=(5 T(Y)=(7}
TC)={1} TM)={54} T(2)={7)

T(O) = {2, 3, 4, 6}

~—

Figure 3.1: A subtree intersection graph

The first of the three graph classes modelled using subtrees of a tree is the subtree

intersection graph. Gavril provides the following definition of chordal graphs. and

then proceeds to prove Theorem 3.3.

Definition 3.2 (Chordal Graph) [Gav7{] A graph G = (V. E) is a chordal graph

tf G does not contain any chordless cycles of length > 3.

Theorem 3.3 [Gav7{] The classes of chordal and subtree intersection graphs are

equivalent.

Chordal graphs have been studied extensively. Rose, Tarjan, and Lueker [RTL76]

have shown that chordal graphs can be recognized in O(m + n) time.

The ¢ function for subtrees of a tree is defined as follows:

o(T:, T;) = {

0 otherwise



3.2 The Subtree Containment Graph Model:
The Comparability Graph

Definition 3.4 (Subtree Containment Graph) A graph G = (Vi, Eg), |Vs| =
ng 1s a subtree containment graph if and only if the following holds:
There exists a tree T = (Vir, ET) and a collection of ng connected subtrees T;,1 < i <

ng, so that ¢c(T;, T;) =1 < (vi,v;) € Eg, for all vi,v; € V.

Definition 3.5 (Comparability Graph) An undirected graph G = (V, E) is a
comparability graph if it can be transitively oriented so that £ — y and y — =z implies

=2z foralz,y,z€V.

Theorem 3.6 [GS89] The classes of subtree containment graphs and comparability

graphs are equivalent.

Golumbic and Scheinerman discuss the class of subtree containment graphs and
proves Theorem 3.6. McConnell and Spinrad [MS94] present an algorithm to recognize
comparability graphs in O(n?®) time.

Comparability graphs, in turn, are also widely studied, and can be used for such
applications as implication reduction, where a given set of implications is reduced as
far as possible. Each implication is a directed edge of the graph: the graph is then
modified to a comparability graph by adding the requisite number of directed edges
so that the graph meets the definition’s standards. At that point the shortest path

between any two vertices will represent the most fully reduced implication.

3.3 The Subtree Overlap Graph Model

Lastly, consider the definition of the subtree overlap graph.

Definition 3.7 (Subtree Overlap Graph) [Nov94] A graph G = (Vg, Eg), Vel =
ng is a subtree overlap graph if and only if the following holds:
There exists a tree T = (Vr, Et) and a collection of ng connected subtrees T;,1 < i <

ng, so that ¢o(T;, T;) =1 <= (v;,v;) € Eg, v;,v; € Vo (see Figure 3.2).



The subtrees consist of the following
collections of vertices:

In this subtree overlap graph,
the tree consists of 13 vertices

and is characterized by the bold line.

TA;:{S, 6, 12}

TgB ={5,6, 7}
T(C) = {6, 7}
T(K)={2, 3}
TgL)={2, 3, 4}

T(M) ={3, 4, 11}
T(X)={8, 9, 13}
T§Y§={8, 9, 10}

T(Z) = {9, 10}
T(0O)={1, 11,12, 13}

Figure 3.2: A subtree overlap graph

The definition is given in terms of the function &o which can be defined. for

subtrees, as follows:

¢o(T;, T;) =

finT; #0
andT;UTj;éTg
and T, UT; #T;

0 otherwise

However, this definition of ¢¢ is somewhat unwieldy - though precise - and can be

simplified to a search for three vertices a,b, and ¢ that match the following require-

ments. If these vertices don’t exist, then there is no overlap between the two subtrees

in question.



Jda.b,c € VT such that
bo(TyT;) =1 a;fdeaTé’ ;"]¢ch €Ty
0 otherwise

Novillo did some work on the structure of subtree overlap graphs, partially proving
the containment of circle and chordal graphs in the class. No proof of equivalence
with some known graph class has been established yet, and no recognition algorithm
has been presented.

We will attempt to address both these questions, and others, in the following
chapters. In particular, we are concerned with the hierarchy of graph classes, the
possible recognition of the subtree overlap graph, and the algorithmic complexity of

some common problems with respect to the subtree overlap graph class.
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Chapter 4

Hierarchy of Classes

. /——\~,
¢ Subtree Y
: Overlap _~

I

7 Subtree - - Subtree .
{ Containment } ' Intersection |
~ (Chordal)

~ (Comparability) ./

|
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|
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! Overlap i :
i <. (Circle) / |
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' ]
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;" Interval e ( :nterval ‘

. Containment ) - Intersection
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\—/”

Figure 4.1: A simple hierarchy of the mentioned graph classes

Figure 4.1 shows the relationships between graphs modelled using intervals on a
line and graphs modelled using subtrees of a tree, as discussed in Chapters 2 and 3.
Each directed arrow between two graph classes denotes a proper subclass relationship.
If an arrow leads from class A to class B, then graph class 4 is a proper subclass
of graph class B. This means that every graph in A is a member of B, but B

contains graphs that are not members of A. If no such arrow links two subclasses,
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then neither class of graphs is a proper subclass of the other. Since none of the graph
classes displayed in this hierarchy are equivalent, that means that two unconnected
graph classes have no containment relationship.

The relationship between interval containment (permutation) graphs and interval
overlap (circle) graphs is discussed in Section 2.3. Golumbic provides counter ex-
amples to show the lack of relation between interval containment (permutation) and
interval intersection graphs{Gol80]. The relationship between subtree overlap and
subtree intersection (chordal) graphs is proven in Theorem 4.5 (pg- 33), and the
lack of relationships between the subtree containment (comparability) and the other
subtree graphs is discussed in Section 4.3.2.

In general, every class of graphs modelled using intervals is a subclass of the class
of graphs modelled using subtrees of a tree and the same relationship. The intervals on
the line are equivalent to subpaths of a path, and hence subtrees of a tree. Moreover.
each of these classes of graphs modelled by intervals on a line are well known to be

proper subclasses of the related classes of graphs modelled using subtrees of a tree.

’/-’—\‘
¢ Subtree |

~_  Overlap 7
»/’___\‘ | - ~ —
Subtree . I ( Subtree ‘
' Containment - { ~__ Intersection _/
| ' Spider |
] o ~T
/—;\_, —_—— - \K_'/ T~ — - \"/’———\
7 Interval p i /" Interval
~. Containment .~ i -~ Intersection
o Interval \
- Overlap ) J

Figure 4.2: Placing the spider graph in the hierarchy of the graph classes

The hierarchy of Figure 4.1 can be refined however, by adding in the class of
spider graphs, yielding the expanded diagram in Figure 4.2. The dashed lines are
holdovers from the previous diagram which become unnecessary as the containment

relationship is transitive.

(8]
(V)1



Theorem 4.4 proves that the class of spider graphs is a proper subclass of the

class of subtree overlap graphs. Moreover, the class of spider graphs includes - as

proper subclasses - the classes of subtree intersection (chordal) and interval inter-

section graphs, and the classes of interval overlap (circle) and interval containment

(permutation) graphs [Koe90, Koe92, KK97].

4.1 The Class of Spider Graphs

Given this graph G which can be represented as this spider graph
A 1
RN 14 N )
; s e T}
.4 L * 13 .7+ | ‘ "f ‘ 3
. /| s / “ gl
| e CA) // \' o
- . i / — ! \, ,r\ ‘
: A 12/ / | —
| 14 o c /,/”“ ;,“ \ ; ’ D
E - S T - <
/ ; /’ \ \. ’,\
/ L / \[ l 7 \/B )
4 ML /Z | p =t
D = e Z S )
n~=14 N [ ) / A/J
S 7 F ) | N /\,v,
10—~ .

The sets of endpoints are as follows:
C(A)={1, 6, 13}

C(B) = {2, 5}
C(C) = {3, 9, 12}
C(D) = (4, 8}
C(E) = {7, 11}
C(F) = {10, 14)

The collection C(x) — for all x in {A, ..., F} -
will be the initial input to the algorithm

Figure 4.3: Initial input of a spider graph.

The class of spider graphs is neither a class of graphs modelled using intervals,

nor a class of graphs modelled using subtrees of a tree explicitly. The class is a

generalization of the class of circle graphs, and it will now be proven that the class

of spider graphs is a proper subclass of the class of subtree overlap graphs.
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Figure 4.4: Construction of the underlying tree

Theorem 4.1 Fvery spider graph is a subtree overlap graph.

Proof:

Given a graph G = (VY E%),|VS| = n%, so that G is a spider graph S(G) =
({C:})), where each C; corresponds to v; in the original graph, and consists of a
set {ci1, Ci2,. .., cir, } of sorted endpoints inscribed in the circle. Let ns = :‘._i |Cy].
Again, we can without loss of generality insist that each endpoint on the circle is
contained in only one C;, and hence is unique.

Given this structure, an arbitrary endpoint can be chosen and labeled as 1. where
each next clockwise endpoint is labeled 2,3,...,ng. Then each C; is first sorted so
that c¢;; < ciyVa < b before the set {C;} is sorted so that Vi,j,i < j = ¢;; < Ci1s
resulting in input as in Figure 4.3. This input is sorted in lexicographical order both
within each collection of endpoints, and within the set of collections of endpoints.

To show that G is a subtree overlap graph, we need to construct a tree T =
(VT,ET) and a set of n€ subtrees T}, so that each T: represents v;, and oo(7;, T;) =
| < (vi,v,;) € E°.

Each T; will consist of a set of vertices of T, so that the graph induced by T;: on
T is a connected tree. For each subtree we will also store a set of interior endpoints

[ = {ci2,. ..\ Ci(ky—1) }, where I; = 0 if k; = 2.

ALGORITHM:

e Construct a tree T = (VT, ET) consisting of a path of length ns — 1 whose

vertices are numbered 1,2, ..., ng, so that each vertex v7 € VT,i=1...ng has

T

one neighbour v, - which is adjacent only to v;, as for example in Figure 4.4.
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The tree T representing the original graph consists of 28 vertices (12 of which we can actually prune away.)

The subtrees representing the vertices of the graph consist of the following collections of vertices:

T(A)={1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 23) A

T(B)=1{2,3.4,5 A

TgC = }3, 4,5,6,7,8,9, 10, 11, 12, 20} BN

T(D) = {4, 5, 6, 7, 8, 20} F ; 5

T(E)={7,8,9, 10, 11, 23} . .

T(F) = (10, 11, 12, 13, 14} | :

I

e

Which matches up correctly with the original graph G: P C

D

Figure 4.5: Converting a spider graph to a subtree overlap graph.

e For:=1...n% do

I. Set T; = the path from ¢;; to ci,

o

. Set 1,’ =Cl _{Cilacfk.}
3. Foryj=1...:-1do

(a) For each point z in [, if £ € T; then T; = T; U {vT, __}

r+ngs

(b) For each point y in [;, if y € T; then T; = T; U {vI __}

y+ns
After completion of this algorithm, T and T}, 1 < ¢ < n, form a subtree overlap
model representing G, as in Figure 4.5.
We can prove the accuracy of this algorithm using induction, where we want to

show that for any ¢ < n® the subtrees T;,7 <1 are a correct representation of the

subgraph induced on G by the set of vertices {v&)1 <j <i}
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The base case, i = 1. is trivially true.

Now, assume this hypothesis holds for i. We want to show that the hypothesis
still holds after we add the subtree Tis1-

Having followed the algorithm to construct Ti+1. and modified all T}, < i as
required, consider each of the i vertices in turn.

For each vertex j,1 < j < i there are two possibilities:
1. 00(Tj;, Tiz1) = 0, which is to say that one of the following holds:

(2) T;NTiy =0
(b) T; C Tiyy
(c) Tiy1 CT;

2. 00(T;,Tiyy) = 1

Then. for each j, we want to prove that condition 2 holds if and only if (v§. v&,) €
EC, or, alternatively, that (vJ-G, v%,) € E€ if and only if condition 1 holds. Since the
two are mutually exclusive, it is enough to prove the first if and only if statement,
reflecting condition 2. which we will prove using the following two lemmas.

Lemma 4.2 (v¢ v,—cil) € EY implies 00(T,. Tip) =1

7

Assume (ij, v,-c_’;l) € ES. Then by the definition of the spider graph there exist

abeCjandr,y e Ciyysothat a < £ < b < y,orr <a<y<b Wecan ignore
the case where r < a < y < b since if this is true there also exist other a.b.r.yso
that e < r < b < y or ci+1)1 < ¢;1 which would contradict the inductive nature of
the algorithm. given that j < + 1.

In fact, we can let ¢ = ¢j1 and & = ¢41);. We know. then. that a < r since the
Ci are sorted by the first element and J < i+ 1. Then we only need to find a b and
a ysothata <z < b <y Wecan also let Y = C(i+1)k,y, Without loss of generality,
since this is the maximum possible for y in any case. Lastly, let b be the smallest Cjz
so that | < r < kj and b > z. Such a b will exist, given the assumption and the
definition of the spider graph.

Then to show ¢o(T}, Tiy1) = 1, we need to establish the following three points:
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1. T; and T;4; have at least one vertex z7 € V7 in common.

(W]

. There exists a vertex yT € V7 such that yT ¢ T, but y7 ¢ T,

3. There exists a vertex zT € VT such that z7 ¢ T, but =7 € Tipq
j +

Consider first point 1; since T} and Tiy; will minimally have the path from v7 to
v/ in common after the algorithm is applied. they certainly have at least one vertex
In common.

Similarly. for point 2. since a < z. this guarantees that by the algorithm vl € T,
but vT ¢ T4, since a is smaller than the left most (and hence smallest) endpoint in
Cit1.

Point 3 leads to two possibilities. If y > Cjk,, which is to say the largest endpoint
of Ci41 exceeds the largest endpoint of Cj, then vz € T4y by the algorithm, but
vl ¢ T, and so =T = vl satisfies the condition. If y < ¢;k, then it follows that b,
which is less than y, must be an interior endpoint of v; and hence b € [;. Then. by
the algorithm, v/, € Tiy, but vin, € T and =7 = vl .. satisfies the condition.

Since all three points are satisfied. we can conclude that oo(T;. Tiyy) = 1. O

Lemma 4.3 ¢o(T,.Tiy,) = 1 implies (UJC v ) EEY. j<i+1.

Assume 0o(T;,Ti+1) = 1. Then we want to show that this implies the existence
of a.b € C; and r.y € Ciyy suchthat a < £ < b < y. If such a.b.z. and y exist. then
(vJG. vZ 1) € EY by the definition of the spider graph.

Let a = min{eT;vT € T;}. Since T, includes the path Citv---+Cjk,. and ¢jy is
guaranteed by the algorithm to be the minimum vertex in T;. this means a = ;.
Similarly, let £ = min{vT; T € Tit1}. which implies that r = ci+1)1- Moreover, since
the construction of the subtrees works from smaller to larger, the minimum vertex in
T; is guaranteed to be smaller than the minimum vertex in Tiy) since j < i+ 1, and
therefore a < .

Let y = maz{vT;vT € Tiyy, 0T < ns}, which is to say let y be the largest vertex
in Ti41 that is not one of the leaves. Then Y = Cli+1)k4,» and r < y since each

collection of endpoints C, representing the vertex vf" € V© contains at least two

distinct endpoints which have been sorted.
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It remains only to find a b € C; such that r < b < y. There are two possible cases

to consider:
1. maz{vT;vT € T;. 0T < nst <y
2. maz{vT;eT € T;,vT < ns} >y

Each subtree consists of a path of length > 1 which travels from the smallest to
the largest endpoint, and possibly includes a collection of leaves. Since each endpoint
is unique, we know that the third case. maz{v7;vT € T,, o7 < ns} = y will never
occur.

So let us first consider case 1. In this case. let b = mar{vT;v7 ¢ T;,vT < ng} =
cjk,- Then b < y. But we know b > z. otherwise ©o(Tj, Tix1) # 1. which would
contradict the assumption.

Let us then consider the other case, case 2. In this case, since ¢o(7,.Ty) = 1
and using the above algorithm. T; must contain a vertex vf such that the following

hold:
e b>r
* vbT+n5 € Tina
i vbT+n5 T,

vf € Tiyq and of € T,

At least one such b exists since otherwise T:;, would be fully contained in T; which
would mean ¢o(T}, Tiy1) # 1. Given the way the algorithm works, b € /;, and hence
b € C;. Moreover, b < y or v] would not be in Ty,. Similarly, b > r, and r < b < y.

To sum up, we can choose four endpoints a, b, r, and ysothat a <z < b <y,
where a.b € C;, and z,y € Ciy,. But, by the definition of the spider graph, this
means that C; and Ciy, intersect, and hence (v}, v;4,) € EC. O

Therefore, by Lemma 4.2 and Lemma 4.3, the induction proof holds, and therefore

Theorem 4.1 is true.

0
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Therefore the class of spider graphs is certainly contained in the class of subtree
overlap graphs, begging only the question of whether the two classes are equal or
the class of subtree overlap graphs is larger. The following theorem shows that while
every spider graph is a subtree overlap graph, not every subtree overlap graph is a

spider graph.

Theorem 4.4 The class of spider graphs is a proper subset of the class of subtree

overlap graphs.

B. C D
Given this graph G f : :
E! Fl G
Yields the tree T: With the following subtrees:
9
]
| T(B)={4,5,6, 7}
8. T(C) {5.6,7,8,9,10, 11}
7 10 T(D) = {10, 112}
o T(E)={1, 2 3, 4}
5 . R T(G) = (12, 13, 14, 15}
. 16 T(A) = {7, 8, 10, 16}
4 -~ 6 -12 T(F)={2,3,4,5,6,7,8,10, 11, 12, 13, 14, 16}
. . . T(H)=3,4,5,6,7,8,9,10, 11, 12, 13, 16}
| .13
2 14 . . 15

Figure 4.6: Not every subtree overlap graph is a spider graph.

The graph G shown in Figure 4.6 is not a spider graph [Koe92], but as can be

seen from the tree T and its collection of subtrees, G can be represented as a subtree
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overlap graph. Therefore there exists a graph G that is a subtree overlap graph, and

not a spider graph, which proves the theorem. O

4.2 The Class of Subtree Intersection Graphs

This section considers the class of subtree intersection graphs and the relationship
between this class and the class of subtree overlap graphs. As mentioned previously.
both Koebe and Kostochka and Kratochvil [Koe92, KK97] prove that chordal graphs
form a proper subclass of spider graphs. and hence immediately form a proper subclass
of subtree overlap graphs.

However, it is interesting to consider this alternative proof, which takes advantage
merely of the variation between the definitions of the ®p and ¢; functions, and the

ability of the model of a subtree intersection or overlap graph to be modified as

needed.
Given the graph G consisting of a cycle of length 5
‘/v\ We can build the following subtree overlap graph,
using a tree with 5 vertices, and 5 subtrees as follows:
E B T(A) = {1,2)
- /’ T(B)={2, 3}
] T(C) = {3, 4}
T(D) = {4, 5}
T(E) ={2, 3, 4}
D; c
Mg —

Figure 4.7: A subtree overlap graph which is not a subtree intersection graph

Theorem 4.5 The class of subtree intersection graphs is a proper subset of the class

of subtree overlap graphs.

Proof:

Gavril, in [Gav74], proves that every subtree intersection graph is a proper subtree

intersection graph, which is to say that the underlying tree and collection of subtrees
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of any subtree intersection graph can be transformed so that no subtree is contained
in any other subtree. Therefore. every subtree intersection graph is a subtree overlap
graph.

Consider the graph G consisting of a chordless 5 cycle Cs. We know that G is not
a subtree intersection graph, for G is not a chordal graph, and the classes of subtree
intersection and chordal graphs are equivalent [Gol80, Gav74]. Cs is a circle graph
and hence a subtree overlap graph. So as Figure 4.7 shows, G is a subtree overlap
graph.O

Gavril takes advantage of the fact that the subtrees used to model the vertices of
the graph are dynamic and can be modified as needed as long as the edge relationships
are maintained. Where intervals on the line are narrowly circumscribed and can be
extended only to the left or right, the tree and the subtrees can be modified by
adding extra branches, or extra leaves, or even by adding entire new trees to the
model. Similarly, as mentioned later, it is possible in some cases to prune the tree,

without modifying the edge dependencies created by the subtrees.

4.3 Graphs That Are Not Subtree Overlap Graphs

The previous sections concentrated on those graph classes contained in the class of
subtree overlap graphs. A similarly interesting question is that of exclusion: which

graphs are not subtree overlap graphs.

4.3.1 The Class of Graphs That Are Not Subtree Overlap
Graphs

Novillo[Nov94] discusses the class of all graphs which are not subtree overlap graphs,

and provides the following interesting theorem.

Theorem 4.6 [Nov9{] A graph G is not a subtree overlap graph if G contains two
induced subgraphs G, and G such that

1. Gy is a cycle Cy, with k> 5

2. Gy is a connected graph with |G| > k
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3. Every verter v; in Gy is adjacent to a different verter v, in G5 and v, is not

adjacent to any verter other than v; in G,

Based on Theorem 4.6. Figure 4.8 is not a subtree overlap graph. However. The-
orem 4.6, as Novillo notes, is not complete, and more work remains to be done on

graphs that are not subtree overlap graphs.

Figure 4.8: This graph is not a subtree overlap graph

4.3.2 The Class of Subtree Containment or Comparability
Graphs

The class of comparability graphs and the class of subtree overlap graphs share some
graphs - such as for instance the cycles (5 of even size - but neither class is contained
in the other. Similarly. the class of comparability graphs intersects the class of chordal
graphs. but neither class is fully contained in the other. Both of these statements will

be proven simply, using counter examples.

&

oy

Figure 4.9: Transitively oriented version of Figure 4.8.

s

Lemma 4.7 The class of comparability graphs is not a subclass of the class of subtree

overlap graphs.



Proof: Consider Figure 4.9. which is a transitively oriented version of Figure 4.8.
This graph is therefore a comparability graph. but is not a subtree overlap graph by
Theorem 4.6.0

Lemma 4.8 The class of subtree overlap graphs is not a subclass of the class of

comparability graphs.

Proof: Consider the cycle Cs. This cycle is not a comparability graph since it
can’t be transitively oriented. However. as shown in Figure 4.7 on page 33, Cs is a

subtree overlap graph.O

2 & L ]

Figure 4.10: Chordal but not a comparability graph

The relationship between chordal and comparability graphs is well-known. and
discussed by Golumbic[Gol80]. In short, Cy is a comparability but not a chordal

graph, and Figure 4.10 is a chordal. but not a comparability graph.
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Chapter 5

The Structure of the Subtree
Overlap Graph

The previous Chapter shows that certain classes of interval and subtree graphs are
subclasses of the subtree overlap graph class. Each of these subclasses is recognizable
in polynomial time, which begs the question of the difficulty of recognizing the subtree

overlap graph.

Complezity of Graph Class Subclass of class of

Recognition Problem Subtree Overlap Graphs
O(n + m) [BL76] Interval Y
O(m + n) [MS94] Permutation Y
O(n?*) [Spi94] Circle Y

| Polynomial [Koe92] Spider Y |

O(m + n) [RTL76] Chordal Y
O(n?8) [MS94] Comparability N
Unknown Subtree Overlap -

Table 5.1: Complexity of recognizing the different graph classes.

This hierarchy of subclasses does not immediately lead to a characterization of the
subtree overlap graph class, naturally. Such a characterization has not been developed
yet, and will be the topic of future research.

This chapter is concerned with the structure of the subtree overlap graph and its
associated model. When dealing with a model, the representation of the model in
memory needs to be addressed, and is discussed in Section 5.1. Section 5.2 discusses
the size of the model used to model a subtree overlap graph and proves an upper

bound on the size of the model.
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5.1 Representing the Subtree Overlap Graph

Chapter 7 discusses several computational problems and their computational com-
plexity for the class of subtree overlap graphs. Therefore a schema is needed to
represent the subtree overlap graph in memory.

The circle graph is frequently represented in memory as n pairs of integers C; =
{ci1,ci2} where ] < i< n,1 < ¢ < ¢ <2n, and ¢ = cjp <= tia = jb. This
presentation is produced in Spinrad’s recognition algorithm for circle graphs[Spi94].
or can be built given a circle and a set of chords by arbitrarily choosing one endpoint
of one chord and assigning it the number 1, and then moving around the circle in
clockwise fashion, numbering each next endpoint in increasing order.

Similarly, the spider graph can be represented as sets C; of points inscribed on
the circle. as Koebe does[Koe92], where the points are again labeled in increasing
integers starting from one arbitrarily selected point and moving clockwise. and labeled
1.2,... k. Here k = 31, |Gl

In both the circle and spider graph cases. however. the underlying structure on
which the endpoints lie is known to be the circle. The circle is a static structure and
knowing the relative ordering of the endpoints as they are inscribed in the circle is
sufficient to reconstruct the graph. The underlying structure of the subtree overlap
graph, on the other hand, is a tree. And, unlike the structure of the circle. the
structure of the tree is dynamic as the tree can be modified by adding more vertices to
the tree and possibly to the subtrees. in any way which preserves the edge relationship
between subtrees. Therefore two pieces of data must be recorded in any schema: the
structure of the underlying tree. and the portion of the underlying tree covered by
each subtree.

In this thesis a subtree overlap graph will be represented as a tree T = (V7, ET)
which is stored as a standard graph, including vertices and edges. and as a set {T}}
of subsets of VT, where each subtree T} is the subgraph of 7" induced by T:. One
example of such a represention is Figure 4.6 on page 32.

With this schema. it is required that each subtree be connected. Moreover, the
evaluation of &o(7T;, T;) now becomes a search within the two sets of vertices in T;

and T for a triplet (a,b,c) such that a,b € Ti;,c ¢ T; and a ¢ T;,b,c € T;. If at least
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one such triplet exists then the two subtrees intersect, but neither is contained in
the other. If no such triplet exists then either the subtrees fail to intersect and there
doesn’t exist any vertex which lies in both. or one subtree is contained in the other.
Such a search can be made in O(IVT|) time. One of the first questions addressed is

therefore the maximum size of this underlying tree.

5.2 Limiting the Number of Vertices in the Un-
derlying Tree

This section is concerned with the size of the tree used to model a subtree overlap
graph. Specifically, an algorithm will be presented to reduce any subtree overlap
model to a minimal subtree overlap model, and an upper bound on the size of this
resulting minimal subtree overlap model will be proven. But first. naturally. the

concept of a minimal subtree overlap model needs to be defined.

Definition 5.1 (Spare Vertex) Given a subtree overlap model consisting of a tree
T = (VT.ET) and a set of subtrees {T:}. a vertex v € VT is a spare verter if for
every subtree T; containing v the following holds:

For every subtree T;.i # j such that oo(T:,T,) =1
o ifv €T, then there ezists aw € VT, w # v such that we T, and w € T;
o ifv ¢ T, then there ezists aw € VT. w # v such that w € T, and w ¢ T,

Definition 5.2 (Minimal Subtree Overlap Model) A subtree overlap model con-
sisting of a tree T = (VT, ET) and q set of subtrees {T;} is minimal if the model does

not contain any spare vertices.

In Figure 5.1, the subtree overlap model is not minimal. In this model. every
vertex except 3 is spare. Note that 8 is a spare vertex since it is not contained in any
subtree. Removing all the spare vertices in one swoop from the model would result in
a model with no spare vertices, but also one which no longer accurately represented
the graph. On the other hand, if eack vertex is examined in turn to see whether it
is still spare and, if so, immediately removed from the model, then certain vertices

will cease to be spare before they can be removed. For instance, given Figure 5.1 and
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This simple graph can be
represented by this
subtree overlap model

/,_\ .
B — 4 =
’// . N .
A c
. I/ T(A) = (1, 2, 3)
f2%) T(B) = {3, 4, 5) RS
L T(C) = {4, 5, 6, 7) -

Figure 5.1: A non-minimal subtree overlap model.

removing spare vertices, one after another; Vertex 8 can be removed first; it is not
contained in any subtree, and hence irrelevant. If vertex 7 is removed, then vertex 6
ceases to be spare and is not removed. Vertex 4 is still spare, and can be removed
next, but if 4 is removed, 5 ceases to be spare. Vertex 2 is also still spare, so is
removed next. When 2 is removed, 1 ceases to be spare, and so is not removed either.
The final minimal model which results after vertices are examined in this particular
order is shown in Figure 5.2. For the purpose of this algorithm it is sufficient that
the vertices are examined iteratively in some arbitrary order, and it should be noted

that the resulting model is minimal, but not necessarily minimum.

This simple graph can be represented by this minimal subtree overlap model

— B Cc -
; l I . . . ‘ E
(3 s)

T(A)={1, 3}
T(B) = {3, 5)
T(C) = {5, 6}

Figure 5.2: The subtree overlap model is now minimal.

Essentially the algorithm to reduce a subtree overlap model consists of one step:

examine each vertex v of the model in turn to see if v is a spare vertex in the current
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model and, if so, remove this v from the model. Removing a spare vertex from the
model will never create new spare vertices - any vertex that wasn’t spare before will
not become spare - and the removal may result in several other vertices ceasing to be
spare vertices, as happens in the above example when vertices 7.4, and 2 are each

removed in turn from the model. This algorithm can be coded as follows:

1. For vertex v e VT

if v is a spare vertex then

(a) Set N={z;2 € VT (v,1) € ET} so N = {ni,nq, ..., nc} is the set of all

neighbours of v, where & is the number of neighbours of v.
(b) Set ET = ET — {(v,n;);1 <i <k}
(c) Set ET = ET 4 {(ny,ni);1 <i < k}
(d) Forall T; such that v € T, T, = T, — {v}
(e) Set VT =VT _ {v}

Lemma 5.3 (Correctness of Algorithm) Given a subtree overlap graph G = (V5.

represented by a subtree overlap model consisting of a tree T = (VT.ET) and a collec-
tion of subtrees {T.}:‘_fl the model resulting after the algorithm is erecuted is minimal

and still correctly represents the graph G.

Proof: The resulting subtree overlap model will be minimal since the spare vertices
are removed in step 1. The spare vertices are removed iteratively, which is to say that
each vertex v, in the model is examined in turn and if - at that point in the algorithm
- v; is still a spare vertex, it is then removed. Moreover, for all vj.) < 1, if v is
still a vertex of the model, v; is guaranteed not to be a spare vertex, since otherwise
v; would have been removed from the model. Therefore, when the algorithm has
examined all the vertices in the model, no spare vertices will remain.

[t remains only to show that the subtree overlap model still accurately represents
G after each iteration of this step is completed and a spare vertex v is removed. For
each iteration where v is not spare, nothing happens, and the model remains accurate.

Therefore we can assume that v is a spare vertex, and therefore the removal of v will
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N n < B n
ny v/‘ 3 . >—“< 3
\ Ny ; Ny
g .5

Figure 5.3: Removing a spare vertex from the model.

not affect any edge relationships between subtrees. It remains only to show that after
this step the tree and all affected subtrees remain connected.

Step 1 is illustrated in Figure 5.3. The first step in the algorithm is to contract
the edge between this v and one of its neighbours. The tree remains connected after
this edge contraction, but every subtree containing v is now unconnected, since v is
no longer adjacent to any vertex in the graph. However, simply removing v from
every subtree which contains v - which is the next step - will produce subtrees that
are once more connected.

[t remains only to show that the subtrees still accurately model the graph G.
Therefore consider any two subtrees 7' and T;. It is easy to see that if neither subtree
contains v then the edge relationships will remain undisturbed. Therefore we can

assume without loss of generality that v € T:.. Then there are four possible cases:

l. @0(T:.T;) =1 and v € T,

O]

. 00(T:,T;) =l and v ¢ T;

3. 0o(T:,Tj) =0and v € T;

o

- 90o(T:,T;) =0 and v ¢ T,

In the first two cases, the definition of a spare vertex will guarantee that there
exists some other vertex w € V7 which will satisfy the edge relationship. In the
third case, where both subtrees include v, either T; is contained in T; or vice versa.
Regardless, v is removed from both subtrees, and the containment of one subtree

within the other remains. In the last case. where T; does not contain v, either T and
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T, do not intersect and the edge relationship after v is removed remains unchanged.
or T, is contained in T; and will remain that way when v is removed.
Therefore the subtree overlap model will still represent G after every iteration of

each of the two steps, and the final subtree overlap model will correctly represent G.

a

Lemma 5.4 (Complexity of Algorithm) The algorithm runs in O((nT)?(n%)?2))

time.

Proof:

Step 1 will iterate n7 times, once for each vertex in the tree T. Each vertex is
examined to see if it is - at this point in the algorithm - still a spare vertex. This
examination requires the checking of each pair of subtrees; a pair of subtrees can
be checked in at most nT steps, and (n%)? pairs need to be checked. Therefore the
complexity of this step and this algorithm is O((n7)?(n%)?).0

[n short, it is possible, given a subtree overlap model. to reduce this model to a
minimal form in polynomial time. This is important because it is possible to prove an
upper bound on the size of a minimal subtree overlap model, as the following theorem

shows.

Theorem 5.5 Given a subtree overlap graph G = (V7 E®) with a minimal subtree
overlap model consisting of a tree T = (VT ET) and a set of subtrees {T;}. |VT| < 3m.

where m = |E¢

Proof: Consider a subtree overlap graph G. with m edges, and a minimal subtree
overlap model consisting of a tree T = (VT,ET) and a set of subtrees {T.} which
accurately represents G.

For each edge ¢; = (v;,vy) € EY find one triple p; = (ai, b, c;) so that a.b €
T:.c¢ T:and a ¢ T,.b,c € T,. At least one such triple must exist for every edge. for
otherwise ¢o(T:,T,) = 0, contradicting the assumption that this model represents G'.
Let P be the set of all vertices contained in all p;. [t follows that |P| < 3m, since
exactly m triples were constructed, and each triple contains 3 vertices. |P| < 3m if
duplication occurs between two or more triples.

[t remains only to show that P = V7.
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Assume that P # VT. P C VT, and therefore there must exist at least one
v € VT such that v ¢ P. Then v is not a part of any triple. If v is not contained in
any subtree, then v is a spare vertex, contradicting the assumption that the subtree
overlap model is minimal. Therefore v must be contained in at least one subtree.
But each edge relationship between a subtree T; containing v and any other subtree
can be represented using some other vertex w.w # v in the tree, since v not in P.
Therefore v is a spare vertex. again contradicting the assumption that the subtree
overlap model is minimal.

Therefore P = VT, O

It is possible, then, to reduce any subtree overlap model to a minimal form; and.
moreover, there exists an upper bound on the size of the minimal model. The algo-
rithm will not yield a minimum subtree overlap model in all cases, where a minimum
subtree overlap model is a model of minimum size. However, the key point is that a
bound can be put on the size of the model in terms of the number of edges of the origi-
nal graph. This means that the size of any subtree in the model is similarly bounded.
for no subtree can exceed the tree in size. This is particularly important in Sec-
tion 6.2, when proving that the Maximum Independent Set problem is polynomially

solvable for subtree overlap graphs.
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Chapter 6

The Maximum Independent Set
Problem

Gavril, in [Gav73], presents an algorithm to find the maximum independent set in
a circle graph. This section generalizes the algorithm Gavril presents to provide a
solution for any pair of overlap/intersection graph classes, as long as certain conditions
are met, and then proves that the pair of subtree overlap and subtree intersection
graph classes meets those conditions, yielding a polynomial algorithm.

Given a graph G = (V, E). an independent set consists of a subset H C V such
that for all v.w € H (v.w) ¢ E). Then an induced subgraph of G induced on
the vertices in H would contain absolutely no edges. A mazimum independent set
is an independent set of G whose cardinality is not exceeded by that of any other
independent set of G.

A pair of overlap/intersection graph classes refers to the overlap graph class and
intersection graph class of objects of type Z. The two graph classes are related in
that the definition of Z remains constant for both graph classes. An example of one

such pair are the subtree overlap and subtree intersection graph classes.

6.1 Algorithm for any Pair of Overlap /Intersection
Graphs

Note that this algorithm is very similar to the one that Gavril presents, but is a

generalization to all pairs of intersection/overlap graphs of a shared class of objects

Z.



Firstly, to introduce the notation. Let a(G) denote the size of a maximum inde-
pendent set for a graph G. Moreover, if G is a weighted graph, a,(G) will denote
the sum of all the weights of all the vertices of a maximum weight independent set.

Now, if G’ is an overlap graph of objects Z. then every vertex in GG is mapped to
some object of type Z, and C is the collection of objects that represent the vertices
of G. If G is a subtree overlap graph, then C is the set of subtrees {T:}. Then let
G represent the intersection graph of this collection C of objects of type Z. Then if
G is a subtree overlap graph, G is the subtree intersection graph whose tree T and
collection of subtrees {T;} is identical to that of G.

Note that every object e € C denotes a vertex v in both (& and C’, and that two
vertices are adjacent in G if their objects overlap (which is to say, they intersect but
neither contains the other) but that those same two vertices are adjacent in G if their
objects intersect. Therefore G will always contain all the edges of GG, but may also
contain extra edges.

Now given an overlap graph G = (V. E),|V| = n with a collection of objects
C = {c;}L,. where ¢; represents v; € V. let U; = {c;i¢; C i} be the set of all objects
contained in the object ¢;. Let G; be the overlap subgraph of G induced by U;.

Then assume that a weight WT (i) = o(G;) + 1 is assigned to every vertex v € G.
Now assuming {v, vz, ..., v,} is a maximum weight independent set of G’ and D;, 1 <
J < ris a maximum independent set of G, consider the following lemma.

Note that Lemma 6.1 shows that finding the maximum independent set of an
overlap graph G is equivalent to finding the maximum weighted independent set of
the graph G, if each vertex v € V is assigned a weight WT(v) and a set D, so that
WT(v) = a(G,) + 1 and D, is a maximum independent set of G,,.

D— c F

B——— E a—

Figure 6.1: An illustration of Lemma 6.1

Consider the examplein Figure 6.1. In this figure. for instance. Up={A.C.E,F.H}.
Then, for the overlap graph represented by this model, every independent set con-
taining the vertex D, could also contain vertices from Up forming an independent set.

For instance, any independent set containing D could also contain A, C, and F. Then
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Dp is an independent set of Up whose weight is maximized, and in this example Dp

could be {A,C, F}.

Lemma 6.1 o(G) = a,(G) and LrJ(Dj U {v;}) is @ mazimum independent set of G.
j=t

Proof:

Let .J be a maximum independent set of G.

Let A={x;r€Jc:Cecy—y ¢ J} Assume A = {uy,uy,...,u}.

Then for every 1 < ¢ < t. the set J,, = {vy;v, € J and ¢, C ¢, } is an independent
set of Gy,. Let C' be a maximum independent set of G,,, and assume |J, | < |C].

Then certainly (J — J,,) U C is an independent set of G, and one which has more
vertices than J, which is a contradiction. Therefore |J,,| = |C| and forevery 1 < i <t
Ju, is a maximum independent subset of G,,,.

Note that for every i # j, where v;,v; € J, one of three possibilities hold: ¢; C ¢;.
or ¢; C ¢, or ¢; Nc, = 0. However, since A contains only those v; whose objects
are not contained in the objects representing any v;, it follows that for every pair of
vertices v;, v, € A, ¢; N¢; = 0. Therefore A is an independent set of G.

Moreover WT(u;) represents the size of the independent set consisting of the
vertex u; and the maximum independent set of the subgraph G, of G. This subgraph
G, consists only of those vertices v; such that ¢; C ¢, . which means that each of
these v; are not adjacent to u; in G.

Therefore

a(G) = ¥ WT(:) < au(C)

=1
where each W T (u;) represents the size of the maximum independent set of the sub-
graph G,, which consists of the vertex u; and all vertices u; such that Cu, C Cy,-
Now let B = {r;,z3,...,z,} be a maximum weight independent set of G. Then

each D; is a maximum independent set of G;, and D, U {z;} is an independent set
r

of G. Since ¢;, Ner, =B forall 1 <i<j<r, [ J(D;U{z;}) is an independent set
1=1

of G. Therefore

@u(G) = S WT(z) = | Uje, (D; U {2,})] € a(G)

=1
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Therefore a(G) = a,(G) and Ul_1(D; U {z,}) is a maximum independent set of

G.O

Consider the following algorithm to find the maximum independent set of a graph

G. which has been modified from Gavril’s algorithm as presented in [Gav73]:

L. Build a containment/intersection n x n matrix M such that

2.

3.

4.

3.

6.

0 ¢ and ¢; do not intersect
M;; =< 1 ¢ and ¢; intersect but c; does not contain c;
2 ¢; is contained in c;

Define a family of subsets of C (the collection of objects) in the following way:
Ar = {ci; there does not exist ¢; € C such that ¢; C ¢}

A2 = {c;e ¢ Ay and if ¢; C o then ¢; € A}

k=1 k-1
Ar={ciici ¢ [J A;and if ¢; C e then¢; € U 4}
1=1 J=t

For each vertex v; such that ¢; € 4,. set WT(v;) =1 and D, =0.
For zr =2...k do:

(a) For each vertex v; such that ¢; € A, do the following:

i. Build G, which is the overlap subgraph of all vertices contained in ¢;

ii. Assign to each corresponding vertex u € CU' the weight WT (u).

iii. Find a maximum weight independent set {w), wy, ..., w,} in Gy,

iv. Set WT(v;) = (G ) + 1 = an(G,) + 1

v. Set D, = O(Dw) U {w,})

j=1

For every vertex v in G, attach the weight WT(v) to the corresponding vertex
in G.

Find a maximum weight independent set {w;,w,,...,w,} of G.
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7. Compute the set B = U(ij U {w;}) which is a maximum independent set of
G.

J=1

The proof of this algorithm is inductive. and follows after the following observa-
tions. Firstly ¢; € A, if and only if ¢; contains at least one object ¢; € A;_, and for
every object ¢, contained in ¢;, ¢; € Uizl A,

Secondly, if ¢;,¢; € A, then ¢ and c; overlap or are disjoint, but neither is con-
tained in the other. Moreover, if r # y. then A, N Ay = 0. and every ¢; is a member
of exactly one A,.

Thirdly, once the matrix M has been constructed. the intersection and contain-
ment status of two objects ¢; and ¢; can be determined in constant time by looking up
M;; and M,;. Clearly, if M;; = M,; = 0, the two objects do not intersect. Similarly,
if M,; = M,; = 1, the two objects do overlap, but if M;; = 1 and M,; = 2 then ¢;
is contained in ¢;. It can be assumed without loss of generality that no two objects
will be identical, so that the case of M;; = M;; = 2 will never occur. If the matrix
is constructed correctly the case where M;; = 0 and M;; = | should never occur,
since that would indicate that ¢; intersects c;, but c¢; has no contact with ¢;, which
would be a contradiction. Naturally. it must be possible to construct this matrix in
polynomial time for a given graph G modelled using overlapping objects of type Z.

Fourthly, the maximum weight independent set problem must be polynomially
solvable for any graph G modelled using intersecting objects of type Z to complete

Steps 4 and 6.

Theorem 6.2 This algorithm will produce a mazimum independent set for an over-
lap graph G of objects of type Z in O(maz(f(n.m),n(g(n,m))) time if the contain-
ment/intersection matriz M can be built in time O(f(n,m)), and the marimum weight

independent set problem is solved for intersection graphs of objects of type Z in time

O(g(n,m)).

Proof: Clearly, in the base case, for every v € 4, WT(v)=1and D, =90.
Now assume by induction on z that all the vertices v; where ¢; € Uf;ll Aj are

attached a weight WT'(v;) = a(G,,) + | and a maximum independent set D,, of G,,.
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Consider a vertex u with a corresponding object ¢ such that ¢ € 4,. For every
vertex v; of G, ¢; € Uf;ll A;, and thus every vertex v; in G, has already been
assigned both a WT(v;) and a D,,. Assigning the same values for each v; € G,
to the corresponding vertices of G, results in the weighted object graph G,. whose
maximum weighted independent set {wy, ws,...,w} can be found in polynomial time
O(g(n,m)).

Applying Lemma 6.1, a(G,) = au,(C.r'u) and U;:I(ij U {w;}) is a maximum
independent set of G,. So defining WT(u) = a(G,)+1 and D, = U;‘=1(Dw, U{w;})
effectively attaches the weight WT(u) and a maximum independent set D, of G, to
every vertex u of G. Applying Lemma 6.1 again. it follows that B is 2 maximum
independent set of G. Therefore this algorithm will produce a maximum independent
set for G.

The complexity of this algorithm is then O(maz(f(n.m), n(g(n,m)))), where n =
IV]. Step I requires O(f(n,m)) compiexity. Once the matrix M has been constructed,
Step 2 can be completed in O(n?) time. Steps 3 and 4 will require O(g(n.m)) time
to compute the weight and maximum independent set for each vertex and will visit
each of the n vertices once, resulting in a complexity of O(n(g(n,m))). Step 5 can
be completed in O(n) steps, and step 6 will then require O(g(n,m)) time. Lastly,
step 7 can be computed in O(n) time. Since each of the steps follows linearly. the

time complexity is the larger of O(f(n.m)) and O(n(g(n,m)).0

6.2 The Subtree Overlap Graph

Consider a pair of subtree overlap and intersection graphs G and G. where G is a sub-
tree overlap graph with a minimal subtree overlap model. As proven in Theorem 6.2.
if the matrix M in the algorithm can be built in polynomial time and the maximum
weight independent set problem is solved for the class of subtree intersection graphs.
then the maximum independent set can be found in polynomial time for any subtree
overlap graph.

Building the matrix will require O(mn?) < O(n*) complexity, where m = |E|.
To build the matrix n? pairs of subtrees need to be examined. By Theorem 5.5,

each subtree will contain at most 3m vertices if G is modelled by a minimal subtree

30



overlap model, and so comparing any two subtrees will require O(m) complexity,
since the information stored for each subtree T consists of the vertices contained
in T;, and testing for intersection between two subtrees T and T; requires only the
finding of a triple (a, b, c) where a, b, and c are vertices in the underlying tree so that
a.beTi.a¢ Tjand b,c € T;,c ¢ T;. If there is no b. there is no intersection. If there
1s no a. but there is a b. then T is contained in T;. Similarly. if there is no ¢ but
there is a b, then T is contained in T;. If all three vertices can be found, then T; and
T; intersect without containment.

To address the second requirement, Gavril presents, in [Gav72] a polynomial al-
gorithm to find the maximum weighted independent set of a chordal graph in O(n?)
time, where n = |V|. Since the chordal and subtree intersection graphs are equiva-
lent, this means that the maximum weighted independent set of a subtree intersection
graph can be computed in O(n?) time.

Thus, by Theorem 6.2, the complexity of the maximum independent set for G is

O(mazx(mn?,n®)) = O(mn?). This leads to the following theorem:

Theorem 6.3 The Mazimum Independent Set Problem for subtree overlap graphs is

solvable in O(mn?) time if a minimal subtree overlap model for the graph is given.

6.3 Overlap Graphs and NP-completeness

A polynomial solution for the maximum independent set problem may not exist for
every type of overiap graph. In fact if the Independent Set problem is NP-complete
for the related proper intersection graph. then the problem is NP-complete for the
overlap graph, since the proper intersection graph class is always contained in the

overlap graph class. Asano, in [Asa88], presents the following theorem.

Theorem 6.4 [Asa88] The Mazimum Independent Set problem is NP-complete for
intersection graphs of objects of type M if M is:

1. a class of unit squares

<

2. a class of unit circles

a class of line segments in the plane



4. a class if horizontal and vertical line segments in the plane, any two of which

may overlap

5. a class of horizontal, vertical. and {5 degree line segments in the plane with no

two of the same type touching.

The theorem describes several different classes of intersection graphs. Classes 3
and 4 are not proper classes of intersection graphs, since the containment of one
object inside another is not precluded. Class 5, in contrast. is a proper intersection
graph since no two line segments of the same type are allowed to touch, let alone
contain one inside the other. Therefore the maximum independent set problem is
NP-complete for the class of overlap graphs of objects of type 3.

The two classes of unit squares and unit circles are not immediately proper, since
one square could be overlay another exactly, if the two squares are identical. However.
for purposes of solving the maximum independent set problem this guarantees that
at most one of these identical squares, or circles, will be chosen, and that moreover
the choice of which identical square, or circle, is chosen is irrelevant. Therefore.
the intersection graph can be preprocessed to remove all but one copy of identical
squares, or circles, and the remaining graph will be a proper intersection graph. Then.
since the Maximum Independent Set problem is NP complete for these two classes of
intersection graphs, the problem will also be NP-complete for the related classes of
overlap graphs.

Similarly. Rim and Nakajima show, in [RN95] that the Maximum Independent Set
problem is NP-complete for intersection graphs of rectangles in the plane whose sides
are parallel to the axes. From this it follows then that the Maximum Independent
Set problem is also NP-complete for the overlap graph of the same rectangles. and
they show that that does indeed follow.

On aslightly different note, Kashiwabara, Masuda, Nakajima, and Fujisawa [KMNF91]
apply the algorithm of Theorem 6.2 to the specific case of the class of graphs modelled
by overlapping circular arcs, showing that the complexity of the maximum indepen-

dent set problem for this class of graphs is O(n?).

(V)]
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Chapter 7

Algorithmic Complexities

The maximum independent problem is polynomially solvable for the class subtree
overlap graphs. But what of other well known graph problems? This chapter is
concerned with the question of the complexity of various well known graphs problems.
including the Hamiltonian Cycle, vertex colouring, several variants of domination

problems, and the question of graph isomorphism.

7.1 The Hamiltonian Cycle Problem

Given a graph G = (V. E). G contains a Hamiltonian path if it is possible to follow
a path through the graph that passes through every vertex exactly once. G con-
tains a Hamiltonian Cycle if the graph contains a Hamiltonian path whose start and
endpoints are adjacent.

Damaschke, in [Dam89], shows that both problems are NP-complete for circle
graphs. Since, by Theorem 4.1, the class of circle graphs is a proper subset of the class
of subtree overlap graphs, it follows that the Hamiltonian Cycle and Path Problems

are NP-complete for subtree overlap graphs too.O

7.2 Domination Problems

For a graph G = (V, E), a subset S C V of the vertices of G is a dominating set if
every vertex v € V that is not in S is adjacent to a vertex in S. In general, domination
problems are concerned with finding a minimum cardinality S. Moreover. domination

problems can be varied by placing restrictions on the structure of the subgraph Gs
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induced on G by the set S.

Possible restrictions include the requirement that S is connected so that there is
a path from every vertex in S to every other vertex in S, or that S is a clique which
means that every pair of vertices in S is adjacent. Similarly S can be a total set,

which means G5 has no isolated vertices. or S can be an independent set.

7.2.1 Domination and the Circle Graph

Keil[Kei93] proves that the problems of finding 2 minimum dominating set. minimum
total dominating set. and minimum connected dominating set are all NP-complete
for circle graphs. Since Theorem 4.1 shows that the class of circle graphs is a proper
subset of the class of subtree overlap graphs, it follows that these problems are NP-
complete for subtree overlap graphs too.

However, Keil presents an O(nm) algorithm to solve the problem of finding a
minimum dominating clique for the circle graph, and notes that the problem of finding

the minimum independent dominating set for a circle graph is still open.

7.2.2 Domination and the Chordal Graph

Theorem 4.5 shows that the class of subtree intersection graphs. which is equivalent
to the class of chordal graphs. is a proper subset of the class of subtree overlap graphs.

Booth and Johnson[B.J82] show that the problem of finding the minimum domi-
nating set is NP-complete for chordal graphs. which again means that the problem is
NP-complete for subtree overlap graphs. too. Keil also mentions in [Kei93] that the
minimum cardinality dominating clique problem is NP-complete for chordal graphs.
and hence NP-complete for subtree overlap graphs.

Yen and Lee[YL96] consider the problem of the perfect dominating set. A perfect
dominating set D of a graph G = (V, E) is a subset of V' such that every vertex not
in D is adjacent to exactly one vertex in D. As before, the structure of the graph Gp
induced in G by the set D can be further restricted so that Gp is a connected. total,
or independent graph.

They prove that the general problem of finding 2 minimum perfect dominating
set, as well as finding minimum perfect total and independent dominating sets, are

all NP-complete for chordal graphs.



7.3 The Graph Isomorphism Problem

It is possible, as shown in Lemma 5.5 to put a constraint on the size of the underlying
tree for a subtree overlap graph. However, the problem of determining whether two
graphs are isomorphic is isomorphism-complete for subtree overlap graphs.

Booth and Leuker show that the problem of graph isomorphism is isomorphism-
complete for chordal graphs [BL76]. Since by Theorem 4.5 chordal graphs are a
proper subset of subtree overlap graphs, the problem of isomorphism is isomorphism-

complete for subtree overlap graphs.

7.4 Colouring a Subtree Overlap Graph

Colouring a graph G = (V, E) means that each vertex in the graph is assigned some
colour so that no two adjacent vertices are assigned the same colour. In general the
problem of colouring the graph with a minimum number of colours is NP-complete,
although for some simple graph classes. including the permutation graph class as
mentioned in the introduction. polynomial algorithms exist.

Unger. in [Ung88], shows that the problem of colouring a circle graph with &
colours is NP-complete for £ > 4, although he provides an O(nlogn) algorithm for 3-
colouring circle graphs [Ung92]. Therefore, since by Theorem 4.1 the class of subtree
overlap graphs contains the family of circle graphs. the k-colouring problem is NP-

complete for & > 4, and is at least O(nlogn) for k = 3.
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Chapter 8

Conclusion

In studying the subtree overlap graph, several results are obtained. Some of these
results are specific to subtree overlap graphs, whilst the algorithmic solution of the
maximum independent set problem provides a more general solution for all overlap

graphs. The results obtained, then, can be divided into the following two sections.

8.1 Subtree Overlap Graphs

[n studying the subtree overlap graph, two main results are proven. Firstly, the place
of the subtree overlap graph class in the hierarchy of graph classes is further refined
by proving that the class of spider graphs is a proper subclass of the class of subtree
overlap graphs. This leads to a better understanding of the scope of this class of
subtree overlap graphs.

Secondly, an upper bound on the size of a subtree overlap model is proven to
be of order O(m) if the model is minimal. An algorithm is provided to reduce any
subtree overlap model to a minimal - but not necessarily minimum - subtree overlap
model. This bound is then used to show that an intersection/containment matrix M
can be built in O(mn?) time. M can be used to reduce the testing for intersection,
containment, and overlap thenceforth to O(1) rather than O(m) time.

Thirdly, a survey was completed of well known graph problems as to their compu-
tational complexity. Since the place of the subtree overlap graph class in the hierarchy
of classes is known, most problems which are NP-complete for a subclass of the sub-
tree overlap graph class are also NP-complete for the class of subtree overlap graphs

itself.
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One exception to this "inheritance of difficulty’ rule is the problem of recognition:
there exist classes of graphs who are recognizable in polynomial time but who contain
a subclass of graphs that is not recognizable in polynomial time. One such pair of

graphs are the classes of circle and k-polygon graphs[ES].

8.2 The Maximum Independent Set Problem

A far more general result is proven for the maximum independent set problem. An
algorithm is presented which will find the maximum independent set of any overlap

model if the following two conditions hold:
. An intersection/containment matrix can be built in polynomial time

2. The maximum weight independent set problem is polynomially solvable for the

intersection graph obtained from the same model.

A brief survey is made of overlap graph classes for which the maximum indepen-

dent set problem is either polynomially solvable using this algorithm, or NP-complete.



Chapter 9

Future Research

Several avenues of exploration remain.

Work also needs to be done on the recognition algorithm for the subtree overlap
graph; it is good to know that there is an upper bound on the subtree overlap model,
and that - given the model - we can find a maximum independent set for a subtree
overlap graph. However, these result will become more useful once it is possible to
recognize a subtree overlap graph and construct its model.

The maximum independent set algorithm can be also be expanded. As long as
the weight of any vertex in the graph is greater than the sum of the weights of
the maximum independent set of vertices contained within the object representing
this vertex, the algorithm is guaranteed to produce a maximal independent set. By
manipulating the weights, it may be possible to generate all maximal independent
sets. or even the minimum independent dominating set.

Similarly, the minimum independent dominating set problem remains open for
circle graphs, and bence for spider graphs and subtree overlap graphs. as does finding
an approximate minimum colouring. An upper bound has been established on the
number of colours needed to colour a spider graph, albeit sub optimally but in poly-
nomial time, but no such bound has been established for the subtree overlap graph
as yet.

A definition of the new class of sphere graphs is given, and it is shown that the
class of circle graphs is a proper subclass of the class of sphere graphs. Exploring this
class further proved to lie beyond the scope of the thesis, but does offer interesting

avenues of exploration in the future.
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