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Abstract
The statistical tools available to ecologists are becoming increasingly sophisticated, 
allowing more complex, mechanistic models to be fit to ecological data. Such models 
have the potential to provide new insights into the processes underlying ecological 
patterns, but the inferences made are limited by the information in the data. Statistical 
nonestimability of model parameters due to insufficient information in the data is a 
problem too- often ignored by ecologists employing complex models. Here, we show 
how a new statistical computing method called data cloning can be used to inform 
study design by assessing the estimability of parameters under different spatial and 
temporal scales of sampling. A case study of parasite transmission from farmed to wild 
salmon highlights that assessing the estimability of ecologically relevant parameters 
should be a key step when designing studies in which fitting complex mechanistic 
models is the end goal.

K E Y W O R D S

modeling, spatial or time series, statistics

1  | INTRODUCTION

A model in its elegance
Is better than reality
Its graphical simplicity
Denotes a rare intelligence.

The simple graph incites the wrath
Of field men who, half undressed,
Go rushing out to start a test
Which culminates in aftermath.

John McLauren Burns (1975)  
BioGraffiti: A Natural Selection

Models are useful tools for understanding and predicting patterns 
in ecological data (Hilborn & Mangel, 1997; May, 2004). The processes 
underlying ecological patterns are often complex, involving many 

interacting factors. Advances in the statistical methods commonly ap-
plied by ecologists are making it possible to fit increasingly complex 
models to ecological data. Examples include hierarchical models ac-
counting for multiple sources of variability, such as state- space models 
(Buckland, Newman, Thomas, & Koesters, 2004; Fleischman, Catalano, 
Clark, & Bernard, 2013) and mixed- effects models (Bolker et al., 2009), 
and nonlinear dynamic models describing how populations change in 
space and/or time (e.g., Clark & Bjørnstad, 2004). Such models have 
helped maximize the understanding gleaned from ecological data 
that are often noisy and sparse. However, fitting more complex mod-
els comes with the increased risk that model parameters may not be 
estimable—a potential problem too- often ignored by ecologists (Lele, 
2010).

Parameter non- estimability can result from two sources: a) struc-
tural nonidentifiability, a problem, that is, associated with the structure 
of the model that is being fitted, and b) practical nonidentifiability, also 
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called nonestimability arising from the inadequacy of the particular 
data at hand (Campbell & Lele, 2014; Raue et al., 2009).

Structural nonidentifiability occurs when two or more parameters 
cannot be uniquely identified even when an infinite amount of data is 
available. A simple example is the inability to distinguish the magni-
tude of two sources of error that are additive; that is, if Yi|μi∼N

(
μi, σ

2
)
 

and μi∼N
(
μ, τ2

)
 , then Yi∼N

(
μ,σ2+τ

2
)
, and the parameters σ2 and τ2 

cannot be uniquely identified no matter how many data points are col-
lected (Lele, 2010). This may seem obvious for this simple example, but 
determining structural identifiability can be difficult for more complex 
models (Wu, Zhu, Miao, & Perelson, 2008).

Given that the parameters of a model are structurally identifi-
able, they may still be nonestimable if the data are observed at the 
wrong points or intervals in space or time (i.e., statistical estimabilty; 
Campbell & Lele, 2014). Even if the model parameters are identifiable 
in theory and the data are collected with precision, inference may 
not be possible if those data do not adequately capture the process 
being modeled. For example, species invasions are often driven by 
rare long- distance dispersal events that may not be observed with-
out thorough sampling at the appropriate spatial scale (Clark, Lewis, 
McLachlan, & HilleRisLambers, 2003; Kot, Lewis, & van den Driessche, 
1996). Without information on the magnitude and frequency of these 
dispersal events, inferring speed of population spread will be difficult 
or impossible. Such problems would be avoided if researchers were 
to consider parameter estimability along with choice of model when 
designing studies.

In this study, we are concerned with statistical estimability of 
parameters in ecological models. We show that data cloning, a new 
statistical tool for obtaining maximum likelihood parameter estimates 
using Bayesian machinery (Lele, Dennis, & Lutscher, 2007), can be 
used in simulation studies to determine the appropriate spatial and/
or temporal scale of sampling to ensure that model parameters of in-
terest are estimable. To illustrate this, we use data cloning to evaluate 
parameter estimability for an established model of parasite dispersal 
from point sources along a corridor (Krkošek, Lewis, Volpe, & Krkosek, 
2005) under three different spatial scales of sampling. We begin with 
a description of the data cloning method and then introduce our case 
study, followed by a general discussion of how data cloning can aid in 
the design of ecological studies.

1.1 | What is data cloning?

Data cloning, also known as “prior feedback” (Robert, 1993), was 
conceived as a way to obtain maximum likelihood parameter es-
timates using a Bayesian framework (Lele et al., 2007). Bayesian 
methods have achieved popularity among ecologists wanting to fit 
complex models (Ellison, 2004) due to the computational advantages 
of Markov Chain Monte Carlo (MCMC) for hierarchical models and 
the availability of free and accessible software to implement MCMC 
(e.g., WinBUGS (Ntzoufras, 2009) and JAGS (Plummer, 2003)). In the 
Bayesian approach, inference is based on the posterior distribution, 
which is proportional to the likelihood of the data given the model 
multiplied by the prior distribution of the model (Ellison, 2004). The 

prior is chosen by the researcher and therefore introduces a degree 
of subjectivity into the analysis. This can be an advantage when there 
is a wealth of prior information the researcher wishes to incorporate, 
but more often than not, such prior information is lacking in eco-
logical studies and there is a desire for objective parameter estimates 
that are invariant to the choice of prior (Lele, 2010; Lele & Dennis, 
2009).

Data cloning removes the influence of the prior distribution in a 
Bayesian analysis by raising the likelihood to some power, K, where 
K is the number of “clones” of the data. As K approaches infinity, the 
mean of the resulting posterior distribution approaches the maximum 
likelihood estimate (MLE) and the posterior variance is 1/K times the 
variance in the MLE (see Lele, Nadeem, & Schmuland, 2010 for proof). 
Thus, given enough clones, the posterior distribution should be invari-
ant to the choice of prior provided the prior has nonzero probability 
around the highest peak of the likelihood. In practice, data cloning is 
carried out by running a Bayesian analysis using K copies of the data. 
An R package called dclone that integrates with existing MCMC soft-
ware is available that makes data cloning easy to implement (Sólymos, 
2010). This package uses the Bayesian machinery of MCMC and is 
thus easy to implement even for dynamical models that must be solved 
numerically and/or hierarchical models with latent variables or random 
effects. However, we note that there are alternative methods for opti-
mizing a cloned likelihood, such as Laplace approximation (Baghishani, 
Rue, & Mohammadzadeh, 2012), that may be more efficient in certain 
cases (e.g., when using Gaussian Markov Random Fields and closely 
related latent structures).

One major advantage of data cloning is that the results can be 
used to assess the statistical estimability of parameters (Lele et al., 
2010). If a parameter is estimable, then the variance in the posterior 
distribution should decline to zero as K is increased, ideally at the rate 
of 1/K. If a parameter is nonestimable, then the posterior distribution 
for that parameter will converge to a truncated prior distribution with 
nonzero variance as K is increased. Thus, a simple diagnostic plot of 
the variance in posterior distribution over K can be used to assess 
estimability. Further diagnostics have also been developed to rigor-
ously test estimability under different prior assumptions (Campbell & 
Lele, 2014).

Tests of parameter estimability using data cloning can be performed 
on simulated data to determine whether the parameters of interest are 
estimable given a certain frequency of sampling in space and/or time. 
This is similar to the idea of a power analysis to determine the sample 
size required to detect an effect should one exist (Peterman, 1990; 
Toft & Shea, 1983), but considers the subtleties of spatial and tempo-
ral sampling intervals that can affect parameter estimability in mecha-
nistic models. Just as a power analysis requires an estimate of variance 
among observations, simulations to determine estimability of model 
parameters may require some a priori knowledge of the spatial and/
or temporal scale of patterns in the data. In the following section, we 
illustrate this novel approach with a case study of the spatial sampling 
design needed to estimate parameters in a mechanistic model of sea 
louse transmission from farmed to wild salmon in the narrow inlets of 
British Columbia, Canada (Krkošek, Lewis, et al., 2005).
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2  | CASE STUDY: ESTIMATING SOURCES  
OF SEA LICE ON WILD JUVENILE SALMON

Sea lice (Lepeoptheirus salmonis and Caligus spp.) are parasitic marine 
copepods that naturally occur on wild salmon (Figure 1), but out- 
migrating juvenile salmon are normally relatively parasite- free until 
they encounter adults in the open ocean. However, salmon farms 
have introduced a novel host population near rivers that can transmit 
sea lice to juvenile wild salmon when they are small and vulnerable 
to the impacts of the parasites (Krkošek, 2010). Due to the potential 
impact of sea lice on wild salmon survival, there has been considerable 
interest in quantifying the relative importance of salmon farms as a 
source of infection for juvenile wild salmon.

We consider a mechanistic model describing the infection of mi-
grating, juvenile wild salmon with sea louse parasites from both dis-
tributed sources (e.g., adult wild salmon) and a point source at the 
location of a salmon farm (Krkošek, Lewis, Morton, Frazer, & Volpe, 
2006; Krkošek, Lewis, et al., 2005). The model includes the advection 
and diffusion of free- living sea louse larvae from the point source, 
yielding a spatial distribution of infectious larvae, and the attachment 

and development of sea lice on juvenile salmon migrating through this 
distribution of larvae.

2.1 | Data

We fit the model to infection data from spatially intensive surveys 
of juvenile wild salmon throughout their migration. Surveys have 
taken place in the Broughton Archipelago, Canada (Figure 2) from 
2003 to 2012. For simplicity, we focused on 2003 when there was 
just one active salmon farm along the migration route, thereby mini-
mizing the number of free parameters to be estimated (see Section 
2.2 and Table 1 for a summary of model parameters). The model can 
also be applied to the scenario where there are multiple point sources 
of infection (Krkošek et al., 2006; Morton, Routledge, McConnell, & 
Krkošek, 2010).

The data include the number of L. salmonis or C. clemensi sea lice 
per wild juvenile salmon. Salmon were collected from sixteen sites 
that spanned the Knight Inlet—Tribune Channel migration route 
from 20 km before the farm location to 40 km after the farm loca-
tion (dataset II- Apr in Krkošek, Lewis, et al. (2005); Figure 2). At each 
site, anywhere from 100 to 258 salmon were sampled, depending on 
availability. Each salmon was visually inspected for sea louse parasites 
before being released at the location of capture (see Krkošek, Morton, 
& Volpe, 2005 for further details of sampling methodology).

Sea lice were classified according to their developmental stage as 
copepodid, chalimus, or motile. Copepodid-  and chalimus- stage sea lice 
are tethered to their host and cannot move among hosts (Boxaspen, 
2006). The developmental stages of attached sea lice therefore act 
as biological tags that indicate the approximate time of infection. The 
number of sea lice on hosts in a sample can be used to infer the infec-
tion pressure at a previous point in the migration, using a mechanistic 
model previously published by Krkošek, Lewis, et al. (2005), Krkošek 
et al. (2006) and as described below in Section 2.2.

2.1.1 | Spatial spread of sampling

In addition to fitting the model to the original data, we also fit the 
model to two alternative scenarios for the sampling design to inves-
tigate how changes in the spatial spread of sampling sites affected 

F IGURE  1 A juvenile pink salmon infected with several adult 
sea lice (Lepeoptheirus salmonis) is measured as part of a spatially 
intensive monitoring program in the Broughton Archipelago, Canada 

F IGURE  2 Map of study area showing 
the location of an active salmon farm 
(square) and sampling locations of juvenile 
wild salmon (n = 16, stars). Juvenile salmon 
migrate along the corridor, from east (right) 
to west (left). We investigated the effect 
of more/less spatially spread sampling 
locations by simulating data where sample 
sites are moved (circled stars) to earlier 
locations along the migration (blue stars) 
or within the range of existing sample 
locations (red stars) 
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parameter estimability. To simulate a decrease in the spatial spread 
of sample locations, we removed the first three sample sites from the 
original data (−20, −15.5, and −11.5 km from the farm; shown by red- 
circled sites in Figure 2). We then added three sites at 0, 5, and 16 km 
(shown by red stars in Figure 2) and simulated data for these added 
sites (details below). The site locations were chosen to spatially dis-
tribute the sampling effort as evenly as possible within the range of 
the remaining original data (Figure 2). Similarly, to investigate whether 
a greater spatial spread in sample locations would make the key pa-
rameters of interest estimable, we removed two sites from the middle 
of the sampling route in the original data (−6.0 and 29.5 km; shown by 
blue- circled sites in Figure 2) and added two sampling locations earlier 
in the migration (−30 and −40 km; shown by blue stars in Figure 2).

We simulated the number of copepodid, chalimus, and motile 
sea lice at the added sites by drawing Poisson random variables with 
expected value equal to the model prediction for the new sampling 
location, using parameter values from the fits to the original data. In 
order to facilitate comparisons among sampling designs, we used the 
same numbers of fish when simulating the data as was sampled at the 
removed sites so that the number of data points was the same among 
the original, less- spread, and more- spread datasets.

2.2 | Model

The model follows the approach of Krkošek, Lewis, et al. (2005) and 
considers the migration corridor of juvenile salmon (Figure 2) as a 

one- dimensional domain. Along this corridor, there is a constant am-
bient density of infectious sea lice from wild sources, L0(x) = κ. Larval 
sea lice also disperse according to simple advection and diffusion from 
a point source at a salmon farm along this migration corridor, and de-
velop into the infectious stage, yielding a spatial distribution of infec-
tious sea lice originating from the farm, L1(x) (see Krkošek, Lewis, et al., 
2005 for details). The total density of infectious sea lice is therefore 
L(x) = κ + α L1(x), where α is a parameter controlling the strength of the 
farm source. The original model also included an additional term, L2(x), 
describing the production of larval sea lice from infected migrating ju-
venile salmon. However, we do not include this additional term in our 
modeling described here so as to keep the presentation and analysis 
as simple as possible. The expected number of sea lice on juvenile 
salmon migrating at speed v is proportional to the density of infec-
tious sea lice encountered previously during their migration:

where β is the transmission coefficient, sc and sh are the survival of 
copepodid (c) and chalimus (h) stages, λc, λh, and λm are the cumulative 
distances a salmon will travel during the developmental times of the 
copepodid, chalimus, and motile stages, respectively.

We calculate the likelihood of the observed number of sea lice on 
juvenile salmon assuming that the number of sea lice, Ni(x), of stage i 
on a juvenile salmon at a given point in space, x, is a Poisson random 
variable. The likelihood of observing j lice of stage i at sampling loca-
tion x is therefore

where I(x) is the model- predicted number of lice of stage i from 
Equations (1–3). The free parameters to be estimated are summarized 
in Table 1. Other parameters, including the advection, development, 
and mortality parameters controlling the dispersal of lice from farms, 
were fixed at previously estimated values (see Krkošek et al., 2006). 
The transmission coefficient, β, and migration speed, v, always appear 
together in the model as βv−1 and thus cannot be uniquely identified 
(an example of structural nonidentifiability). Further, they appear only 
as multiples of κ or α. Therefore, estimates of parameters controlling 
the density of infectious larvae are in proportion to the transmission 
coefficient β and inversely proportional to the migration speed v (i.e., 
κβv−1 and αβv−1).

2.3 | Data cloning

We used data cloning to estimate the free parameters in the sea louse 
transmission model (Table 1) and assess the estimability of these 

(1)C (x)=
β

v

x

∫
x−λc

L (u)du

(2)H (x)= sc
β

v

x−λc

∫
x−λh

L (u)du

(3)M (x)= shsc
β

v

x−λh

∫
x−λm

L (u)du

(4)P{Ni= j; λ= I (x)}=
I(x)i

i!
e−I(x)

TABLE  1 Free parameters estimated using the sea louse 
transmission model of Krkošek, Lewis, et al. (2005) and described 
here in Equations (1–4). Fixed parameters include the advection 
coefficient and survival/development of free- living larvae, as given in 
Krkošek et al. (2006).

Parameter Description Equation
Prior 
meana

D Diffusion coefficient in 
dispersal from farm 
point source

Krkošek, Lewis, 
et al. (2005) and 
Krkošek, 
Morton, et al. 
(2005): 
Appendix A

3.5

κβv −1 Strength of background 
sources

−7.0

αβv −1 Strength of farm source 1.0

sc, sh Survival of copepodid-
  and chalimus- stage lice 
to the next stage

Equations (2–3) 2.0

λc Distance travelled by 
juvenile salmon during 
the duration of the 
copepodid stage

Equation (1) 1.0

Lh = λh/λc
Lm = λm/λc

The distances travelled 
during cumulative time 
for development of lice 
to chalimus and motile 
stages, relative to λc

Equations (2–3) 3.0

aMean (μ) for normal priors on log- transformed (or logit- transformed for sc, 
sh) parameters, with standard deviation σ = 0.5 for all parameters. See 
Supporting Information for results under different prior distributions.
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parameters. In particular, we wanted to know whether the parameters 
of biological interest—that is, the ambient density of infectious lice, 
κ, and the strength of the farm source, α—were estimable given the 
available data. We fit the model in a Bayesian framework using the 
software JAGS (Plummer, 2003), interfacing with R (R Development 
Core Team 2016) using the packages dclone (Sólymos, 2010) and rjags 
(Plummer, 2016).

We fit the model to three different datasets (in order of increasing 
spatial spread of sampling locations): (1) data with three sites moved 
to simulate less spatial spread, (2) the original data, (3) data with two 
sites moved to simulate more spatial spread (Figure 2). For each data-
set, we assumed normal priors on the log-  or logit- transformed param-
eters (Table 1). If parameters are estimable, the maximum likelihood 
estimates from data cloning should be invariant to the choice of prior 
(Lele et al., 2007), even for priors that are far apart in their means 
(Campbell & Lele, 2014). To test this, we fit the model under three 
different prior assumptions, each with different means and standard 
deviations (Table S1). Each fit consisted of three independent chains 
initiated with parameter values drawn randomly from their prior dis-
tributions. The use of different starting points is important in the case 
of multimodality in the likelihood surface; estimability results may be 
misleading if only a single chain started near the MLE is used. Each 
chain was allowed 5,000 MCMC iterations for adaptation (where the 
JAGS software adapts the algorithm for maximum efficiency of the 
samplers) and a burn- in of 40,000 iterations, using the subsequent 
20,000 iterations as posterior samples. We report results for K = 1 to 
25 clones of the data. For each number of clones, we ran three inde-
pendent MCMC chains and assessed convergence of the chains by 
calculating the Gelman and Rubin’s convergence diagnostic (̂R; Gelman 
& Rubin, 1992). We considered the chains to be well mixed and to 
have converged to the target distribution if ̂R ≤ 1.1.

3  | RESULTS

The parameters controlling the contribution of background and farm 
sources of sea lice to infections on wild juvenile salmon were nones-
timable for the data scenario with less spread in sampling sites; the 
scaled variance of parameter estimates for κ and α under the less- 
spread data scenario did not converge to zero as the number of clones 
increased (Figure 3). Further, different prior distributions lead to dif-
ferent estimates and standard errors on these parameters (Figure 
S1). This was particularly true for the ambient source strength, κ 
(Figure 3a). Both the ambient and farm source strengths became esti-
mable when the original data were used, and these parameters were 
also estimable for the simulated data with more spatial spread in sam-
ple sites (Figure 3a, b and Figure 4). Once again, this was evident from 
the estimates under different prior distributions, which converged 
when the spatial spread of the data increased (Figure S2). For the data 
scenario with increased spatial spread, sites added earlier in the migra-
tion route were outside the footprint of the salmon farm, and so they 
helped only to distinguish the background louse abundance. However, 
when sites were removed so that the sampling only covered areas 

affected by the salmon farm, it became more difficult to distinguish 
farm and ambient sources (Figure 5).

The survival of sea lice transitioning from copepodid to chalimus 
stages (sc) and from chalimus to motile stages (sh) was nonestimable 
even as we increased the spatial spread of sampling (Figure 6). Under 
the more- spread data scenario, the estimates of survival and standard 
errors depended on the prior distribution (Figure S3). This may have to 
do with the relatively low prevalence of copepodid- stage sea lice, and 
inconsistent difference in prevalence between chalimus and  motile 
stages (Figure S4).

For all parameters except those for survival sc and sh (which could 
not be reliably estimated), the posterior parameter estimates de-
pended on the assumed prior distribution when the model was fit to 
the less- spread data (Figure S1). However, when using the original 
and more- spread datasets, these estimates converged to the same 
value when 20 clones were used, regardless of the prior distribution 
assumed (Figures S2–S3). This also suggests that the parameters of 
interest were estimable when the spatial spread of the data was in-
creased, and that the estimates are invariant to the choice of prior 
distribution (Campbell & Lele, 2014).

The model fits to all three datasets gave very similar predictions for 
the number of sea lice on juvenile salmon (Figure 5), even though the 

F IGURE  3 Posterior variance for (a) κ and (b) α scaled by the 
variance for a single clone over the number of clones (K) for three 
different data scenarios. The dashed line indicates the ideal rate of 
convergence to a variance of zero as K goes to infinity 
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parameter estimates giving rise to those predictions were not neces-
sarily the same (Figure 7). In particular, the estimates for the diffusion 
coefficient and the background source strength changed significantly 
moving from the less- spread dataset to the original data. Using the 
less- spread data, the diffusion coefficient (D) was estimated to be 
much higher and the ambient source strength was estimated to be 
lower (Figure 7). Because the spatial spread of the data was limited in 
the scenario with less spatial spread, the ambient source strength was 
confounded by higher diffusion of farm- source sea lice.

4  | DISCUSSION

Model formulation and simulation are key steps in the scientific pro-
cess that, ideally, should be carried out before data collection in order 
to inform experimental design. Traditional tools to guide study design 
include prospective power analyses to determine the sample size re-
quired to detect an effect should one exist (Peterman, 1990; Steidl 
et al., 1997; Toft & Shea, 1983). In an age of increasingly complex, 
mechanistic models in ecology, more sophisticated tools are needed 
to ensure that the parameters of interest can be uniquely estimated 
given the data to be collected. Here, we have presented data cloning 
(Lele et al., 2007) as a statistical tool that can be used to assess param-
eter estimability (Lele et al., 2010) for dynamical models and ensure 
the appropriate spatial and/or temporal scales of sampling in ecological 
studies.

Collecting more data is often cited as a means to increase statisti-
cal power (Peterman, 1990; Steidl et al., 1997) and may in some cases 
solve problems of parameter nonestimability. However, for models 
that describe temporal or spatial dynamics, the location of data points 
in time or space may be more important than the quantity of data. If 
the model describes a spatial process, collecting additional years of 
data may not improve parameter estimability if the additional data are 
collected at the same points in space. Similarly, if the model describes 
a long- term cycle in some time series, then collecting data from more 
individuals or more locations may not make parameters estimable if 
the data simply do not span a long enough time period to capture the 
cycle being described.

Our case study involving a mechanistic model for the trans-
mission of sea lice from farmed to wild salmon showed that esti-
mating the relative importance of farm and ambient sources of sea 
lice  required data on sea louse abundance over a 60–80 km corri-
dor centered on the farm location. Initial attempts at quantifying 
sea louse transmission from farmed salmon assessed infections on 
wild salmon up to 1 km from the salmon farm—much too small a 
 radius to  detect any spatial decline in infection indicative of a point 
source (M. Krkošek, personal communication). Later studies revealed 
that sea lice can disperse up to 30 km as free- living larvae (Krkošek, 
Lewis, et al., 2005; Krkošek et al., 2006). In this case, the magnitude 
of currents causing the diffusion of sea lice from point sources at 
salmon farms was required before simulation analyses could be used 
to look at parameter estimability under different data collection 

F IGURE  4 Posterior samples from the 
MCMC algorithm for all parameters from 
fits to the data with three sites moved to 
decrease spatial spread (red circles), the 
original data (black squares), and the data 
with two sites moved to increase spatial 
spread (blue diamonds). See Table 1 for a 
description of parameters 
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scenarios. In general, pilot studies may be required to obtain rough 
estimates of the spatial and/or temporal scale of the process under 
study before more detailed simulations can be performed to assess 
parameter estimability.

In cases where some parameters are found to be nonestimable, 
it may still be possible to draw some inference. First, data clon-
ing can be used to investigate whether combinations of parame-
ters can be estimated (Lele et al., 2010). In some cases, there may 
be an ecologically relevant function of parameters that is estima-
ble even if the individual parameters themselves are not. Second, 
nonestimable parameters may not necessarily present a problem if 
there are not central to the ecological question be asked. In our 
case, the parameters of interest in our study (i.e., κ and α) were 
estimable shown to be consistent for different priors, even though 
survival estimates were not (Figure S3). However, it is not well es-
tablished that those estimates will remain consistent in the pres-
ence of some nonestimable parameters. Although we do not know 
of any example where some parameters are nonestimable and that 
makes estimates of other parameters biased, this is not necessarily 
a generalizable result. Inference for the so- called partially identified 
models is an active area of research (e.g., Gustafson, 2015; Romano 
& Shaikh, 2008). Thus, caution should be exercised when drawing 
inference from models where some parameters are shown to be 
nonestimable.

Obtaining additional data or altering the study design is not always 
possible. For example, long- term monitoring data are often collected 
without a particular hypothesis in mind and may be subsequently used 
in many different studies. In these cases, parameter nonestimability 
cannot be addressed by collecting new data or altering the study de-
sign, but data from other sources may make parameters estimable. In 
an extension of the sea louse transmission model with multiple farm 
sources (Krkošek et al., 2006), the number of sea lice on each salmon 
farm from industry data can be used to constrain the relative strengths 
of the different sources. This additional constraint, although it may 
seem like added complexity, made the farm- source strengths estima-
ble (Peacock et al. in prep.).

5  | CONCLUSIONS

Mechanistic models can improve the inferences made from noisy and 
sparse ecological data, but the potential for parameter nonestimability 
when fitting such models is too- often ignored (Lele, 2010). Often, col-
lecting more data, which usually requires additional resources, may not 
be required to solve estimability problems; it may be that collecting 
different data is all that is needed. Data cloning is a new statistical tool 
that can be used to assess parameter estimability during data analy-
sis stage (Lele et al., 2007, 2010), but may also be useful in designing 

F IGURE  5 Model fits to the three datasets (red: less spread, black: original data, and blue: more spread), showing the predicted number of 
copepodid (C(x)), chalimus (H(x)), and motile (M(x)) sea lice per juvenile salmon, used as the expected value in the Poisson likelihood. The data are 
shown as mean lice per fish ±95% bootstrapped confidence intervals. Solid points in the simulated data are those sites that were added, with 
the corresponding color in the original data indicating the points that were removed
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studies with the appropriate spatial and/or temporal scales of sam-
pling to ensure that parameters of interest will be estimable. Our case 
study highlighted that assessing parameter estimability should be a 
key step in study design where fitting complex mechanistic models is 
the end goal.
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