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Abstract. Soil microbial communities and processes have repeatedly been shown to impact plant community
assembly and population growth. Soil-driven effects may be particularly pronounced with the introduction of plants
to non-native ranges, as introduced plants are not typically accompanied by transference of local soil communities.
Here we describe how the mechanisms by which soil community processes influence plant growth overlap with several
known and well-described mechanisms of plant invasion. Critically, a given soil community process may either facili-
tate or limit invasion, depending upon local conditions and the specific mechanisms of soil processes involved.
Additionally, as soil communities typically consist of species with short generation times, the net consequences
of plant-soil feedbacks for invasion trajectories are likely to change over time, as ecological and evolutionary
adjustments occur. Here we provide an overview of the ecological linkages of plant-soil feedbacks and underlying
mechanisms of invasion.

Keywords: Invasion; native species; non-native ranges; soil communities; virulent pathogens.

Introduction 2013). Common groups of organisms involved in PSFs

Due to the sustained nature of plant growth, soil-mediated
interactions have the potential to develop feedbacks
among plants and soil communities (Klironomos 2002;
Callaway et al. 2004; Petermann et al. 2008; Terborgh
2012; van der Putten et al. 2013). Plant-soil feedbacks
(PSFs) refer to plant-induced changes in soil community
structure and function that in turn impact the subsequent
establishment and growth of plants (van der Putten et al.
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include bacteria, arbuscular, ectomycorrhizal and patho-
genic fungi, and nematodes and other soil invertebrates.
Individually and combined, these organisms can in part
generate plant-soil feedbacks that have neutral, positive
or negative effects on plant growth (Inderjit and van der
Putten 2010; van der Putten et al. 2013). The contingency
of the net effects is a function of numerous factors both
intrinsic and extrinsic to the organisms involved.
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Plant-soil feedbacks, through their impacts on plant
growth, can influence a diversity of processes associated
with plant invasion (Inderjit and van der Putten 2010).
Most notably, PSFs are involved in enemy release, novel
weapons, biotic resistance (BRH, Levine et al. 2004), accu-
mulation of native soil pathogens (Mangla et al. 2008),
shifts in litter decomposition and nutrient availability
(Ehrenfeld 2003; Mata et al. 2013; Perkins and Nowak
2013) and disruption of mutualistic associations (Stinson
et al. 2006; Hale et al. 2011; Hale and Kalisz 2012)
(Table 1). Because PSFs can alter invasion mechanisms,
it is not surprising that PSFs can impact the probability,
speed and consequences of plant invasion in natural sys-
tems (reviews by Bever 2003; Ehrenfeld et al. 2005; Wolfe
and Klironomos 2005; Levine et al. 2006; Reinhart and
Callaway 2006; Inderjit and van der Putten 2010; Bever
et al. 2012; Hodge and Fitter 2013; Suding et al. 2013;
van der Putten et al. 2013; Mehrabi and Tuck 2015). Due
to the intertwining of PSFs and several mechanisms of
plant invasion, it is useful to discuss linkages between
soil-mediated processes and plant invasion. These lin-
kages are complex, as it becomes clear that PSFs are
highly contextual. For example, soil microbial communi-
ties often exert differential impacts on a species in its
native and non-native ranges (review by Inderjit and
van der Putten 2010). Differences in community compos-
ition and functioning of soil communities between native
and introduced soils is well known (Reinhart et al. 2003;
Yang et al. 2013), though the underlying causes are un-
certain and in need of more attention. When focussing
on the potential linkages between PSFs and plant inva-
sion, we suggest a useful first step would be to differenti-
ate among PSF impacts that involve conspecific and
intraspecific interactions, and those that predominantly
involve interspecific and/or heterospecific feedbacks
(van der Putten et al. 2013). Intraspecific PSFs may involve
direct interactions among the soil community and the in-
vading plants species, while interspecific PSFs will involve

indirect interactions among the invading plant commu-
nity, the resident plant community and the soil com-
munity (Fig. 1). We use this framework below to describe
some of the ways PSFs can influence plant invasion.

Direct Plant-Soil Feedbacks

Virulent pathogens: escape or encounter in invaded
communities

A lack of virulent pathogens associated with the intro-
duced species in the non-native range can facilitate the
initial stages of invasion, an example of the enemy
release hypothesis (Mitchell and Power 2003; Reinhart
et al. 2010). Although introduced species may gain ad-
vantage in introduced habitats due to their escape from
pathogens present in their home range, multiple intro-
ductions of a species increase the chances of introduction
of associated pathogens (Torchin and Mitchell 2004),
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Figure 1. Soil feedbacks, soil pathogens, mycorrhizae and/or nutri-
ent dynamics, impact invasion either directly or through interactions
with other ecological processes including competition and herbivory.

Table 1. Different kinds of plant-soil feedbacks that could impact exotic and/or native plant species. Impacts: +, positive; —, negative;

0, neutral.

Plant-soil feedbacks Mechanism

Absence of virulent pathogens  Enemy release
Biotic assistance
Biotic resistance Pathogenesis of invader

Mycorrhizal network disruption  Suppression of mycorrhiza
Impact on mutualists Enhanced mutualists
Impact on pollinators

Microbe-aided nutrient release  Soil fertility

Accumulation of native soil pathogens

Mycorrhizal-mediated tri-trophic interactions

Impacts Examples
Invader Natives
.............. +0Colc|utt|etal(2004)
0 - Eppinga et al. (2006)
- 0 Levine et al. (2004)
0 - Hale and Kalisz (2012)
+ 0 Reinhart and Callaway (2004, 2006)
0 - Cahill et al. (2008)
+ 0 Ehrenfeld (2003)
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thereby reducing the value of ‘escape’ as a mechanism to
maintain populations in a new habitat.

Not all soil-borne pathogens necessarily have the same
impacts on invasion. For example, highly virulent soil-
borne pathogens (e.g. Phythium spp., Fusarium spp.) that
affect many plant species may more strongly limit plant
growth than do specialist pathogens (Reinhart et al.
2010). However, relative to studies of specialist pathogens,
we know less about whether generalist pathogens exert
fitness pressure equally in native and non-native ranges
(Parker and Gilbert 2007). Commonly, there is a lack of
the data needed to characterize a microbe as ‘pathogen’,
‘generalist’ and/or ‘specialist’, particularly in the context of
multiple hosts. Most ecological experiments on negative
soil feedbacks do not identify the specific microbe asso-
ciated with a given response, and use approaches different
from what is commonly done in traditional plant path-
ology research.

Many studies assume that escaping specialist enemies
is important but enemy release is really about escaping
enemies with impact which should have more to do
with virulent than avirulent enemies regardless of them
being generalists, specialists or intermediates (K. Reinhart,
pers. comm.; Barrett et al. 2009; Reinhart et al. 2010;
Callaway et al. 2011). Especially since most soil-borne
pathogen species known for being virulent have generalist
tendencies (or at least intermediates). Enemy release
emphasizes specialization and appears to assume specia-
lists are somehow more virulent than generalists or
that generalists have equal pressure in both regions
(K. Reinhart, pers. comm.; Chun et al. 2010; Halbritter
et al. 2012). Further effects of soil-borne pathogens vary
by host species. Pathogen may be able to colonize the
roots of many hosts but may be able to cause disease in
only a subset. So, susceptibility may be a key issue. Filling
this gap in our knowledge will be critical to understanding
the relative contribution of this form of enemy release to-
wards facilitating plant invasion. Additionally, as there
may be different evolutionary responses to specialist
and generalist pathogens (Jarosz and Davelos 1995;
Parker and Gilbert 2004), the specificity of the pathogen
to the host may influence the long-term stability of
PSF-mediated mechanism of plant invasion.

Indirect Plant-Soil Feedbacks

Soil pathogen-mediated biotic resistance

Direct interactions between invaders and soil pathogens
can be driven by the activities of the resident plant com-
munity, not the invader itself. For example, native species
may culture pathogens that can also infect the invader,
an example of soil-mediated biotic resistance (Maron
and Vila 2001; Levine et al. 2004; Nijjer et al. 2007;

Halbritter et al. 2012; Flory and Clay 2013). For example,
European beach dune grass Ammophila arenaria experi-
ences both enemy release and biotic resistance in non-
native ranges, and it is the balance between these
mechanisms that determines its invasiveness (Knevel
et al. 2004).

Soil pathogen-mediated biotic assistance

Some invaders cultivate and accumulate local soil patho-
gens that inhibit native species more than themselves,
a form of apparent competition (Eppinga et al. 2006;
Mangla et al. 2008). When invaders enhance the growth
of pathogens of the native plants, the PSF provides a form
of biotic assistance to the introduced species. In some
situations, pathogens hosted by the invader could sup-
press the establishment and growth of native species,
the phenomenon is identified as ‘spillover’ by Flory and
Clay (2013). This is directly analgous to the previously
discussed biotic resistance that PSFs may also provide in
some invasion scenarios.

Positive impacts on soil mutualists

Mutualists may have more positive impacts in non-native
ranges than the native ranges of the invaders, as pre-
dicted by the enhanced mutualists hypothesis (EMH)
(Reinhart and Callaway 2004, 2006; Sun and He 2010).
For example, the neutral to negative impacts of PSFs on
invaders such as Triadiaca sebifera (Chinese tallow) in its
native range China compared with positive PSFs in its
non-native range USA was linked to the higher levels of
AMF colonization and greater net benefits to the invader
in USA than in China (Yang et al. 2013), which supports
EMH. However, invasion may not always be linked to
EMH. For example, Callaway et al. (2011) studied the
effect of soil biota from native and expanded ranges in
USA, and invasive European ranges of Robinia pseudoaca-
cia. These authors did not find any role of mutualistic
N-fixing organisms in the invasion of R. pseudoacacia.
The various components of soil communities therefore
may have differential impacts on the invader, which
make evolutionary relationships and spatial soil hetero-
geneity important.

Negative impacts on soil mutualists

In some situations, soil mutualists may not directly impact
an invader, but instead a decline in soil mutualists may re-
duce the performance of native hosts, thereby indirectly
benefitting the invader. For example, some invasive spe-
cies can chemically suppress AMF, disrupting mutualistic
associations among local tree seedlings and mycorrhizal
fungi and suppressing the establishment and growth of
local trees (Stinson et al. 2006; Hale and Kalisz 2012).
Meinhardt and Gehring (2012) reported a non-mycotrophic
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invasive tamarisk (Tamarix sp.) suppressed native Populus
fremontii by disrupting its mutualistic associations between
AMF and ectomycorrhizal fungi and P. fremontii.

Soil community mediated impacts on resource
availability

In addition to the impacts of pathogens and mutualists
described above, soil microbial communities can influ-
ence soil fertility through decomposition of litter, which
in turn may influence invasion. Any difference in the
chemical composition of exotic and native litter (e.g.
higher C:N ratios in litter) could cause a shift in the
decomposition rate of the litter (Hawkes et al. 2005;
Rout and Chrzanowski 2009; van der Putten et al. 2013),
thereby altering soil fertility and invasion trajectories.
These plant-induced soil processes develop feedbacks
between and among plants and soil communities,
which may facilitate the establishment and growth of
an invader (Bajpai and Inderjit 2013).

Soil microbial communities may be an important driver
of litter-nitrogen release, facilitating invasion. Soil invaded
by an aggressive invader, Ageratina adenophora, had
higher values for available nitrogen and microbial respir-
ation compared with soils not yet invaded (Bajpai and
Inderjit 2013). Terpene-rich litter of A. adenophora was
linked to the higher soil microbial activity that results
in the release of nitrogen from decomposing litter. Litter-
released nitrogen facilitates the growth of A. adenophora.
Although soil pathogens are largely responsible for die-off
in its own soil in non-native ranges. The higher biomass ac-
cumulation of Bromus tectorum (cheatgrass) in its die-off
monoculture stands was probably due to higher nitrate-
nitrogen (Meyer et al. 2014).

Microbial-aided decomposition of exotic litter of some
invaders may lead to higher release of nutrients upon
compared with native litter as a consequence of greater
organic C in soil (Ehrenfeld et al. 2005; Hata et al. 2012;
Kaur et al. 2012; Meisner et al. 2012). Although several
studies have investigated the interactions among inva-
sion, soil communities and decomposition, the focus is
typically on inorganic nitrogen. Many plant species are
also able to use organic forms of nitrogen, both directly
and indirectly (Ndsholm et al. 2009), and its role in plant
invasion may have been overlooked. The root foraging
behaviour (sensu Cahill and McNickle 2011) of most spe-
cies, invasive and otherwise, is poorly understood.

Contingencies in PSF in Temporal
and Evolutionary Contexts
The introduction of a novel plant species to a community

can cause compositional and functional shifts in soil com-
munities, which can lead to shifts over time in PSFs and

their impact in the invasion process. As invasion is an
ongoing process, with different communities within an
invaded region varying in time since invasion, there may
be substantial temporal and spatial complexity in the net
effects of PSFs and their influence on invasion (Fig. 2). The
overarching goal of this paper is to develop linkages
between soil microbial communities-mediated processes
and invasion, and to discuss contingencies in PSFs in
temporal and spatial contexts, in a unique manner not
addressed previously.

Time Since Invasion

Over time, the introduced species is no longer ‘novel’, and
the local microbial populations will likely have responses
through population and evolutionary changes, with
dynamics eventually stabilizing. Under stable-state con-
ditions, there is no expectation that PSF-mediated inva-
sion mechanisms that operated during the transient
dynamics soon after introduction will continue in the
same direction or intensity. Thus, we suggest PSFs may
have differential roles in the processes of invasion and
persistence (Hawkes 2007).

One of the assumptions of the novel weapons hypoth-
esis (Callaway and Ridenour 2004) is that naive soil com-
munities in the non-native ranges could not use novel
chemicals, and thus indirectly helps in building phytotoxic
pool of novel chemicals (Callaway and Ridenour 2004).
Interacting species within soil communities may coevolve
over time, increasing resistance to the invader with time
since invasion (Lankau 2010). For examples, coevolved/
resistant soil communities in the late invasion stages
may able to break down allelochemicals released by the
invader, while early-stage soil communities may not have
this functional ability. This idea is supported by Lankau
(2011a), who found that microbial richness near Alliaria
petiolata declined with age of invasion, and native commu-
nity become more resistance to A. petiolata invasion with
increasing age of invasion. The community’s resistance to
A. petiolata invasion resulted in the (i) establishment of
sensitive soil microbes and (ii) increase in the abundance
of native woody species (Lankau et al. 2009; Lankau
2011a, b). Information on invasion age of sites would
help to understand any variation in the impact of soil com-
munities in invasion process (see also Strayer et al. 2006).

The net effect of soil pathogens-mediated feedbacks on
plant invasion will be a function of degree of their abun-
dance and their virulence. As is common to many host-
pathogen systems, the intensity of interaction can change
over time, due to a diversity of ecological and evolutionary
responses of the interacting species (Tack and Laine 2014).
We need to understand the mechanisms of long-term
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Figure 2. Interaction of soil communities within introduced ranges along spatial and temporal scales. The spatial variation in the soil microbial
communities could impact ecosystem components and processes on spatial and temporal scales (Kardol et al. 2006). Root exudates of the
exotic and native species can manipulate plant-soil feedbacks in the rhizosphere (Lange et al. 2014). Rhizosphere soil communities could im-
pact accumulation and functioning of chemicals in native and invaded ranges at very small spatial and temporal scales (Inderjit et al. 2006,
2011). Plant species may experience negative soil feedbacks in its native range, and neutral to positive impact in its non-native ranges at small
spatial and temporal (metres and months, respectively) scales (Callaway et al. 2004). Plant-soil feedbacks from heterospecific vs. conspecifics
could impact a species in small scales. At larger spatial (hundreds to thousands of kilometres) and temporal (months to years) scales, escape of
an invader from virulent pathogens, native soil pathogens and accumulation of native soil pathogens facilitate invasion. Soil mutualists may
impact invasion by mediated tri-trophic interactions and manipulating soil fertility. In addition any negative impact of invader on soil mutualists
may facilitate invasion. At still larger temporal (decades to hundreds of years), the invader may experience new enemies, resistant neighbours,
coevolved soil communities that can result in establishment of native plant species and naturalization of other exotic plant species. Reproduced
after modification with permission from the publisher (Inderjit et al. 2011).

interactions in native vs. non-native ranges to understand
whether they would be stable or labile over time.

temporal flux of soil communities are important to
learn that PSF are spatially and temporally variable.

An entirely different approach could be taken to avoid
the confounding effects of different soil types/textures of
soil inoculum from across ranges or among sites per
range. Approaches such as pathogenicity or mycorrhizal
dependency enable testing effects of specific microbes
from different regions in a standard growth media to de-
termine shifts in interaction strength (e.g. Reinhart et al.
2010). This helps to lessen the black box of describing
general soil biota effects and numerates effects of specific
soil component parts.

Spatial Heterogeneity

Positive or negative PSFs in the non-native ranges do not
necessarily occur in all locations largely because ecosys-
tem processes and habitat factors may influence the
underlying mechanisms driving PSFs. Significant variation
in the strength of negative PSFs in native European soils
(Maron et al. 2014) suggests the need to identify soil
pathogens and to carry out more biogeographic studies
to quantify the PSFs on different species. The pathogenic

effects may be irreqularly distributed over the range of a Summary

species and vary across native vs. non-native ranges. The
distribution of the plant and pathogen may also be tem-
porally variable. It may be that an effect for a given loca-
tion is entirely unique relative to the majority of the rest
of the species’ range. Therefore, heterogeneity and

The mechanisms underlying PSFs, including microbial
population growth, plant competition and mutualistic
benefits, are all contingent upon local conditions such
as herbivory (Bezemer et al. 2013), soil texture (Schradin
and Cipollini 2012), soil fertility and heterogeneity
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(Heather and Haubensak 2008), plant species and soil
conditioning (Harrison and Bardgett 2010), root exudates
(Lange et al. 2014) and soil community density (Aguilera
2011). Any variation in the mechanisms underlying PSFs
along gradients or with time would impact the net PSF ob-
served (Ehrenfeld et al. 2005). We have a lack of empirical
evidence on the biogeographic comparisons of the direct
effect of mycorrhizae on invader’s growth in its native vs.
non-native ranges. Such effects would likely depend on
interactions with soil fertility (N: P ratios) and specific
mycorrhizal associations from native and non-native
ranges. Interactions among mechanisms further en-
hance the biocomplexity of the system, and decrease
generality across space and time. It is not practical to
design individual field studies to include each and every
potential contributing factor, nor is it likely effective
to continue to (typically) ignore the role site variation
can play in determining PSFs and their impacts on inva-
sion trajectories. However, a current lack of capacity to
manipulate and study this complexity does not reduce
its potential importance to the processes governing
species invasion.

Future work on the interaction of PSFs with other
invasion mechanisms in field situations would help to
understand PSFs at bigger spatial and temporal scales,
although there are obviously legal and ethical issues
associated with large field experiments in invasive spe-
cies. The role of PSFs in invasion should be evaluated in
examining PSFs interactions with other ecological com-
ponents such as herbivores, competitors, consumers,
chemicals, abiotic factors and habitat heterogeneity.
Further research on the adding trophic interactions and
their spatial complexity on top in terms of biogeographic
comparisons of the impacts of mycorrhizal fungi on plant
defense against enemies, pollinators, competitors, would
be interesting but likely not compelling or even logistically
not feasible.

There is a need for taking the complexities of plant - soil
feedback impacts on invasion into account to better
understand when soil communities are, or are not, critical
contributors towards the facilitation and resistance of
plant invasion.
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