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Abstract

Annealing-based Ising machines have shown promising results in solving combinato-

rial optimization problems. As a typical class of these problems, however, traveling

salesman problems (TSPs) are very challenging to solve due to the constraints im-

posed on the solution. This thesis proposes a parallel annealing algorithm for a fully

connected Ising machine that significantly improves the accuracy and performance in

solving constrained combinatorial optimization problems such as the TSP. Unlike pre-

vious parallel annealing algorithms, this improved parallel annealing (IPA) algorithm

efficiently solves TSPs using an exponential temperature function with a dynamic

offset. Compared with digital annealing (DA) and momentum annealing (MA), the

IPA reduces the run time by 44.4 times and 19.9 times for a 14-city TSP, respectively.

Larger scale TSPs can be more efficiently solved by taking a k-medoids clustering ap-

proach that decreases the average travel distance of a 22-city TSP by 51.8% compared

with DA and by 42.0% compared with MA. This approach grourps neighboring cities

into clusters to form a reduced TSP, which is then solved in a hierarchical manner by

using the IPA algorithm on each cluster.

Furthermore, an Ising machine that implements this annealing algorithm is de-

signed by using a half-precision floating-point representation of the coefficients in the

Ising model. This design reuses adders in the local field accumulator units (LAUs)

for variable calculation and approximates the momentum scaling factor by a linear

increment to save hardware. Approximate arithmetic is considered in the design for

improving the speed of accumulation in the LAUs. A hybrid approximation method

using lower-part-OR truncated adders (LOTAs) is applied and shown to reduce the
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delay of the circuit by 3.8% at the cost of an increase in average travel distance

by 1.9%. Finally, an IPA-based Ising machine prototype with 64 spins is built and

synthesized by using the Synopsys Design Compiler. Using a 28-nm CMOS process

with a supply voltage of 1.0 V, a temperature of 25 ◦C, and a clock frequency of

200 MHz, the total area of the circuit is 6.262 mm2, the power dissipation is 41.108

mW, and the delay is 3.82 ns. Compared with other designs, the area and power

dissipation of this circuit are larger due to the implementation of a half-precision

floating-point representation. However, the IPA-based Ising machine is expected to

solve more complicated problems and improve the solution quality.
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In Chapter 3, an improved parallel annealing algorithm (IPA) is proposed. This work
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Chapter 1

Introduction

1.1 Motivation

Combinatorial optimization problems exist in many applications, such as data min-

ing, drug discovery, Internet of Things technology, chip design, and machine learning

[1]. However, combinatorial optimization problems are time-consuming to solve with

enumeration methods on a conventional computer [2]. Because it is non-deterministic

polynomial-time hard (NP-hard), the number of such problems’ candidate solutions

dramatically increases when the problems’ size increases. For example, (M − 1)! can-

didate solutions need to be traversed to solve a traveling salesman problem (TSP)

with M cities [3]. The traversal time will substantially increase as the value of M

becomes large, making finding the shortest path in a TSP difficult. However, getting

an optimal solution at the cost of energy and time is infeasible in industrial appli-

cations. Offering a solution with acceptable accuracy in a short time and at high

power efficiency is more attractive. Approximation methods are often used to obtain

a suboptimal or good enough solution in industrial applications. Recently, an efficient

approximate system, called an Ising machine, has emerged for solving combinatorial

optimization problems [4].

Ising machines can broadly be classified into three categories: oscillator-based Ising

machines, bifurcation-based Ising machines, and annealing-based Ising machines. The

oscillator-based Ising machines are of two kinds. One consists of physical oscillators,
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such as the coherent Ising machines (CIM) implemented with degenerate optical para-

metric oscillators (OPO) [5, 6], coupled lasers [7, 8], and the design in [9] built with

phase-transition nano-oscillators (PTNO). The other branch emulates the character-

istic of oscillators on the complementary metal-oxide-semiconductor (CMOS) circuits,

like the simulated CIMs in [10, 11]. The bifurcation-based Ising machines follow the

adiabatic and chaotic (ergodic) evolutions of nonlinear Hamiltonian systems, such as

the adiabatic simulated bifurcation (aSB) [12, 13], ballistic SB (bSB) [14, 15] and the

discrete SB (dSB) [16]. The annealing-based Ising machines belong to two categories.

One is implemented on the superconducting circuits using a quantum annealing al-

gorithm [17]. The other is executed on conventional digital CMOS circuits using

simulation-based algorithms, such as simulated quantum annealing (SQA) [18–20]

and simulated annealing (SA) [21–24]. This paper focuses on CMOS Ising machines

that use SA because CMOS circuits are easy to manufacture and scale [25].

SA was first proposed in [21] and it can solve combinatorial optimization prob-

lems. Based on SA, the CMOS annealing [25–29] uses a majority-voter circuit to flip

the state of each spin (as a model of magnetic spins). These CMOS annealing ma-

chines can achieve significant speed improvement in solving large-scale combinatorial

optimization problems than conventional computers. A 20k-spin three-dimensional

adjacently connected Ising prototype chip based on 65-nm CMOS technology was

developed in [25], and the power efficiency is 1800 times higher than a general central

processing unit (CPU). A more complex FPGA-based model was proposed in [26].

Four spins consist of a complete graph as a unit placed in a grid pattern, and spins

in the same position in every neighborhood unit are connected. They reduced 90%

of the logic elements and increased the solution accuracy. Then in [27], a 2×30k spin

multichip CMOS annealing processor that expands the coefficients’ bit-width and

scalability was developed based on 40-nm CMOS technology. Its annealing speed is

26,000 times faster than the conventional CPU. The latest CMOS annealing-based

Ising machine is constructed with 9 ASIC annealer chips that can scale up to 144k
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spins [29]. The CMOS annealing Ising machines use a limited number of interac-

tions between spins as they only implement the sparsely-connected topology of Ising

models.

An embedding process is required for mapping a complex combinatorial optimiza-

tion problem into a sparsely-connected Ising model, which is not always straight-

forward. However, a combinatorial optimization problem can be mapped directly

to a fully-connected Ising model. Digital annealing (DA) [24, 30–32] realized the

fully-connected Ising model structure on the field-programmable gate array (FPGA).

In [24], researchers implemented the fully-connected architecture on a 28-nm CMOS

technology and built a 512-spin Ising machine with 4-bit interaction accuracy. A

1024-spin fully-connected DA Ising machine with a parallel trial scheme and a dy-

namic offset was implemented on FPGAs in [32]. This design can be 12,000 times

faster than the conventional processor and 6000 times faster than conventional SA.

However, only one spin can be flipped per Monte Carlo (MC) step as the spins

connected are not allowed to simultaneously update in the Ising model. This increases

the average time for an Ising machine to find a solution. The momentum annealing

(MA) was proposed in [33] to update all spins of the fully-connected Ising model in

parallel. The MA uses a two-layer-spin structure and self-interactions for ensuring two

layers be equivalent in the ground state. It is implemented on a graphics processing

unit (GPU), the annealing time for a fully-connected Ising machine with 100,000

spins is 250 times faster than the SA on a CPU. The stochastic cellular automata

annealer (STATICA) [1] can simultaneously update all spins in the fully-connected

Ising model. This Ising machine is based on a stochastic cellular automata annealing

(SCA) algorithm. It also introduces duplication for each spin, and self-interactions

for making each spin have the same state as its duplication at the end of annealing.

Unlike [33] implementing MA on GPU, the STATICA is built on a 3mm-by-4mm

512-spin fully-connected Ising machine chip with the 65-nm CMOS technology. The

speed of STATICA is 3.8 times faster than simulated bifurcation (SB) and 500 times

3



faster than SA for solving combinatorial optimization problems with 512 vertices.

However, the MA and SCA are dedicated to solve unconstrained combinational

optimization problems, such as the max-cut problems. No Ising machine with paral-

lel spin update has been proposed for solving constrained combinational optimization

problems such as the TSP. So in this work, we propose an annealing algorithm that

can efficiently solve constrained and unconstrained combinational optimization prob-

lems, and at the same time, achieve parallel spin update on the fully-connected Ising

model. Furthermore, the hardware of an Ising machine that implements this anneal-

ing algorithm is developed.

1.2 Thesis Objectives

This research aims to design a parallel annealing Ising machine with high performance

in solving combinational optimization problems. In particular, the research objectives

are addressed as follows.

The existing parallel annealing algorithms have restrictions in solving constrained

combinatorial optimization problems. Thus, we aim to propose an improved parallel

annealing (IPA) algorithm that efficiently solves constrained and unconstrained com-

binatorial optimization problems. This improved annealing algorithm is expected to

implement a full-connected topology while simultaneously updating all spins. There-

fore, it can solve Ising problems without an embedding process and achieve a high

annealing speed. Furthermore, it can easily escape from a local minimum, thus im-

proving the quality of solutions.

Then an Ising machine that implements the improved parallel annealing algorithm

is designed. It aims for the best tradeoffs between accuracy and hardware efficiency.

Furthermore, the number of spins in an Ising model is fixed when the chip is fabri-

cated. It is impossible to solve a larger scale problem using a fixed scale Ising machine.

Therefore, the circuit design must support applications in a multi-chip system, and

achieve high scalability.

4



1.3 Thesis Contribution

First, an IPA algorithm is proposed that applies an exponential temperature function

with a dynamic offset and a clustering approach. It reduces the runtime by 44.4

times compared with a conventional parallel annealing algorithm in solving a 14-city

TSP. The parameter setting for producing the optimal solution quality is discussed.

The performance evaluation and comparison between the IPA and other annealing

algorithms are presented. Second, a circuit is designed to realize the function of the

IPA. In order to improve hardware efficiency, the circuit units in the design are reused

for variable calculations. Furthermore, approximate arithmetic circuits are used to

balance the hardware efficiency and the solution quality. Two approximate methods

are considered and the performance of the Ising machine using the approximation

methods is demonstrated. Finally, a hybrid approximation method using both a

lower-part-OR adder and a truncated adder is applied.

1.4 Thesis Outline

This thesis is organized as follows. Several typical CMOS circuit-based Ising ma-

chines are reviewed and classified in Chapter 2. Then an improved parallel annealing

algorithm, which improves the solution quality in solving constrained combinational

optimization problems, is proposed in Chapter 3. In Chapter 4, a circuit design of the

improved parallel annealing machine is presented. Finally, this thesis is concluded in

Chapter 5.
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Chapter 2

Background

2.1 The Ising Model

An Ising model mathematically describes the ferromagnetic interactions of magnetic

spins. In the Ising model, each spin can be in either an upward (+1) or downward

(−1) state. The interactions among the spins and external magnetic fields affect the

states of spins. In an N -spin system, the Hamiltonian in an Ising model is defined as

[34]:

H(σ1, ..., σN) = −
∑︂
i,j

Jijσiσj −
∑︂
i

hiσi, (2.1)

where σi ∈ {−1,+1} (i ∈ {1, 2, ..., N}), denotes the state of the ith spin, Jij indicates

the interaction between the ith spin and the jth spin, and hi is the external magnetic

field for the ith spin.

Some designs of Ising machines implement a sparse spin-to-spin structure, such

as the 2-D lattice topology, the 3-D lattice topology, and King’s graph topology.

As shown in Fig. 2.1 (a), each spin in a 2-D lattice topology has four connections

with its neighbor spins (i.e., the connections with the north, east, south, and west

spins). The dotted lines indicate the connections between the spins at the edge with

those not shown in this figure. A 3-D lattice topology consists of two (or more)

layers of 2-D lattices. As shown in Fig. 2.1 (b), each spin in a 3-D lattice topology

has five connections with its neighbor spins (i.e., the connections with the north,

east, south, west, and the front/back spins). King’s graph topology is also a planar

6



σ1 σ2 σ3

σ4 σ5 σ6

σ7 σ8 σ9

(a)

σ1 σ2 σ3

σ4 σ5 σ6

σ7 σ8 σ9

σ10 σ11 σ12

σ13 σ14 σ15

σ16 σ17 σ18

(b)

σ1 σ2 σ3

σ4 σ5 σ6

σ7 σ8 σ9

(c)

σ2 σ3

σ4

σ5σ6

σ1

(d)

Figure 2.1: (a) A 2-D lattice topology, (b) a 3-D lattice topology, (c) a King’s graph
topology, and (d) a complete graph topology of the Ising model.

structure but it is more complex than the 2-D lattice topology. Fig. 2.1 (c) shows

the structure of the King’s graph topology. Each spin in a King’s graph topology has

eight connections with its neighbor spins (i.e., the connections with the north, east,

south, west, northeast, northwest, southeast, and southwest spins).

However, spins for solving Ising problems can have more interactions than those

in sparse spin-to-spin structures. Therefore, Ising machines with sparse spin-to-spin

structures need an embedding process to convert general Ising problems to the avail-

able physical Ising models [3]. Several spins in physical Ising models are used to

represent one spin in Ising problems in an embedding process. All Ising problems

can be mapped to a complete graph. Therefore, some Ising machines use a complete

graph topology, as shown in Fig. 2.1 (d). In the complete graph topology, all the

spins are connected. The number of a spin interactions depends on the scale of an

Ising machine.
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Figure 2.2: The energy profile of the Ising model during annealing with random flips
[35].

2.2 Review and Classification of Annealing Algo-

rithms and Ising Machines

Solving a combinatorial optimization problem via an Ising machine is to find the

ground state of the energy (or the Hamiltonian of the Ising model). Annealing-based

Ising machines search for the ground state using annealing algorithms. As shown in

Fig. 2.2, the Ising energy tends to converge to a minimum value during the annealing

process. Furthermore, the unexpected flips help the Ising machine escape from a local

minimum.

Simulated annealing (SA) serves as the basis of various annealing algorithms,

such as CMOS annealing, digital annealing (DA), momentum annealing (MA), and

stochastic cellular automata annealing (SCA). SA mimics the thermal annealing in

metallurgy. The spin-flip probability decreases as the temperature decreases, and the

temperature decreases during the annealing process. As shown in Algorithm 1, the

spin-flip probability is calculated by the energy variation and temperature. It will

always be 1 if the energy variation value is negative. Thus, spin-flips tend to decrease

the total energy of an Ising model. The spin-flip probability is high with a large
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temperature value even if the energy variation is positive. Therefore, unexpected

spin-flips can be caused at high temperatures. This unexpected spin-flip helps an

Ising model escape from local minima and improves the solution quality. At the end

of an annealing process, the spin configuration is stable as the temperature is low

enough.

Algorithm 1 Simulated annealing

1: Initialize spin states
2: for each temperature T do
3: for each MC sweep at this temperature do
4: for i = 1 to N do
5: Calculate the energy variation ∆Ei

∆Ei ⇐ 2σi(hi +
∑︁

j Jijσj)
6: Calculate the spin-flip probability Pi

Pi ⇐ min{1, exp(−∆Ei/T )}
7: Update the spin state

if Pi > rand then
σi ⇐ −σi

end if
8: end for
9: end for
10: Update the temperature T
11: end for

Then, three typical types of simulated annealing-based algorithms and their circuit

designs are introduced.

2.2.1 CMOS Annealing Machines

The research group that proposed CMOS annealing machines used SRAMs to cause

random flips of spins in the first-generation design. Thus, their designs are called

CMOS annealing machines, although the newer generations do not use SRAMs for

causing random flips. The architecture of a CMOS annealing machine is shown in

Fig. 2.3(a) [28]; it consists of nine spin cells, and the structure of a generalized spin

cell is shown in Fig. 2.3(b). Each spin cell has one output for the state of the spin

(σi), and N inputs that connect to the outputs of adjacent spin cells (from σ1 to σN).
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(a)

(b)

Figure 2.3: (a) The architecture of a CMOS Ising machine [28], (b) the structure of
a generalized spin cell.
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Figure 2.4: The architecture of the first-generation CMOS Ising machine [25].

Figure 2.5: The architecture of the third-generation CMOS Ising machine [29].
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N + 1 memory cells store N interactions (from J1 to JN) and one external field (Hi)

in the spin cell. The interactions are multiplied with the corresponding spin states,

and the Hi is multiplied with σi. All the products and a random number (Rand), for

causing unexpected spin-flips, are sent as inputs to a spin operator to determine the

new state of the current state σi.

There are four generations of the CMOS annealing machines so far. The first-

generation [25] applies a 3D lattice topology and achieves a 2-bit precision for the

coefficients. Therefor, the inputs for neighbor spin states are described in σX (X =

N(north), E(east), S(south),W (west), F (front)), the interactions stored in static

random-access memory (SRAM) cells are described in JX0 and JX1 (the first bit

and the second bit of an interaction), and the external field is described in H0 and

H1. Its interaction and external field can only be +1, −1, or 0 and are stored SRAM

cells. The structure of a first-generation’s spin cell is shown in Fig. 2.4 [25]. The spin

operator is a majority voter circuit: the new spin state is +1 when the number of +1

is more than the number of −1 among the inputs, and vice versa. The multiplication

is realized by an XOR gate and a switch. Instead of causing unexpected spin-flips

via a high temperature, this design directly uses a random number sequence of 1 and

0 to invert the state of a spin. The new spin state is inverted if the random number

is 1. Furthermore, the random number is generated by utilizing the variability of

SRAM cells (the SRAM cell called Inversion). A low supply voltage of the memory

cells can cause random error bits in SRAMs, which are used to change the states of

spins. To not change the interactions and external fields, only SRAM cells that store

the states of spins are activated when lowering the supply voltage.

The second-generation [27] improves the precision for the coefficients to 3-bit and

implements King’s graph topology. The interactions and external fields can take

integers from −3 to +3. Thus, the maximum voting strength is 55(= 9 × 6 + 1),

where the 1 is caused by the Rand F . Rand F , which is used to avoid repeatedly

getting the same vote result, is also added to the external field and has the same
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probability of being zero and one. The new spin’s state is +1 if the input of the

decision logic circuit n ≥ 28, or −1 if the input of the decision logic circuit n < 28.

Another random variable Rand G, for the temperature, is added to the interactions to

cause unexpected spin-flips. It is regarded as an approximation of the SA algorithm

because the new spin’s state is related to the temperature.

The third-generation [29] achieves 5-bit precision for the coefficients and also imple-

ments King’s graph topology. Because the approximated SA in the second-generation

is for improving the hardware efficiency when the bit-width for the coefficients is small,

it deteriorates the solution quality as the coefficients’ bit-width increases in the third-

generation. Thus, a flip-flop-based spin cell circuit that emulates the Metropolis

algorithm is proposed in the third-generation to improve the accuracy of solutions.

As shown in Fig. 2.5 [29], the third-generation is a multi-chip design. Every single

chip contains 128 × 128 spins and communicates with its adjacent eight chips. Fur-

thermore, the new spin’s state is determined by a comparator. The state is +1 when

the energy variation is larger than a random variable for the temperature, and vice

versa. There are 9-chip × 16k spins in total. The fourth-generation [36] is a large

scale design with 9-board × 9-chip × 16k spins based on the third-generation.

CMOS annealers only implement sparsely connected topologies, such as the 3D

lattice topology and King’s graph topology. Mapping combinatorial optimization

problems to sparsely connected Ising machines needs extra embedding steps and the

number of required spins rapidly increases if the problem is complex. However, an

advantage of CMOS annealing machines, scalability, benefits from its sparse connec-

tion. It can achieve high-speed multi-chip communication. Thus building a CMOS

annealing machines with an arbitrary number of spins is theoretically possible.

2.2.2 Digital Annealing Machines

Digital annealing machines are developed as an architecture that can be implemented

in digital circuits because they can achieve a high precision for the coefficients. A dig-
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ital annealing machine with N spins consists of N ∆E (energy variation) calculation

units, N acceptance decision blocks (ADB), an update selector, an Eoff generator,

and a state variable update block, as shown in Fig. 2.6 [32]. Only one spin is selected

via the update selector and updated in each annealing step. An index that indicates

which spin is updated is sent to the state variable update block, then the new state

of the flipped spin is sent back to ∆E calculation units for new ∆E computations. In

each ∆E calculation unit, an interaction value corresponding to the update-bit index

is selected and multiplied with the new state of the flipped spin. Then the product

is accumulated with the former local field value. The summation is multiplied by the

local spin state, and a new ∆E value is obtained. The new ∆E value is used in the

ADB for the new spin’s state processing. Metropolis-Hastings or Gibbs criterion can

be used for determining the new spin’s state. A random number between 0 and 1 and

the dynamic offset variable Eoff are required in ADB. The Eoff decreases the ∆E

so that the spin flip probability is increased when there is no spin flipped for several

iterations (stuck in a local minimum). The digital annealing machines implement

a fully connected topology. Thus, each ∆E calculation unit needs a large memory

block to store all the interaction values.

There have been three generations of the digital annealing machines so far. The

architecture of the first-generation [32] and the second-generation [31] are the same.

The scale of the second-generation is eight times larger than the first-generation

(1024 spins for the first-generation and 8192 spins for the second-generation), and the

second-generation achieves higher coefficient precision (16 bits for the first-generation

and 64 bits for the second-generation).

The third-generation of the digital annealing machine [37] improves the speed and

the solution quality by integrating software and hardware. The software intervention

layer (SIL) first searches for near-optimal solutions. Then these spin configurations

are used in the hardware search core as the start points for optimal solution search.

The architecture of the hardware search core is the same as the second-generation.
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Figure 2.6: The architecture of a digital Ising machine [32].
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Unlike the CMOS annealing machines, that only utilize sparsely connected topolo-

gies, digital annealing machines implement fully connected topology. It benefits from

the implementation of sequential processing for the ∆E calculations. Calculating ∆E

sequentially using ∆E calculation units and then deciding on new spin states in the

ADB decreases the hardware overhead of the circuit. Therefore, it is possible for digi-

tal annealing machines to process a large number of interaction coefficients. Although

solving combinatorial optimization problems using a digital annealing machine does

not require embedding steps, the multi-chip processing of digital annealing machines

faces a data communication problem. Because for CMOS annealing machines, multi-

chip processing only needs to transmit a predictable number of bits that represent

the states of spins placed at the edge of chips. However, the number of bits that need

to be transmitted increases with the total number of spins in a digital annealing ma-

chine. Thus, the required data communication between chips changes when one more

chip is added. Moreover, the area for memory block exponentially grows with the

increasing number of spins. Another disadvantage of the digital annealing machines

is that, it can only update one spin’s state in each annealing step. Therefore, the

processing speed is the bottleneck for digital annealing machines.

2.2.3 Parallel Annealing Machines

A two-layer structure for fully connected Ising models is proposed to realize the paral-

lel spin update and thereby speed up the annealing process for momentum annealing

(MA) [33] and stochastic cellular annealing (SCA) [1]. They are called parallel an-

nealing in this thesis as they can update all spins simultaneously. A parallel annealing

machine with N spins consists of N local field accumulation units (LAUs), N spin

update units (SUUs), a delta-driven simultaneous spin update (DDSS) unit, and a

memory block (SRAM), as shown in Fig. 2.7 [1]. The DDSS unit sequentially outputs

indexes that represent flipped spins to SRAMs. When the SRAM receives an index

from the DDSS, the corresponding interaction values in the same row are output to
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LAUs to update the local field values. The new values are obtained after the DDSS

traverses all the flipped spins. Then new spins states are determined by SUUs. For

determining the new spins’ states, the Gibbs criterion is used in the SCA, and the

Metropolis criterion is used in the MA. The new spin state and flag signal ∆i that

indicates whether the spin is flipped are sent to DDSS for the next update cycle. In

SCA, a sigmoid function is approximated by a linear function, to reduce the hardware

cost.

Figure 2.7: The architecture of a parallel Ising machine [1].

The parallel annealing machine improves the annealing speed compared with the
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digital annealing machine. It also achieves a high precision. Besides the parallel

spin update, the SCA significantly increases the annealing speed by utilizing a DDSS

unit. Although the energy can converge quickly in parallel annealing, it is difficult to

escape from local minimum states when solving constrained combinatorial optimiza-

tion problems. Thus, the parallel annealing machines do not perform well in solving

constrained combinatorial optimization problems, such as TSPs.

2.3 Combinatorial Optimization Problems

Combinatorial optimization problems can be divided into two categories, constrained

and unconstrained [38]. The constrained problems are usually more complex than the

unconstrained ones. Max-cut problems (as unconstrained problems) and traveling

salesman problems (as constrained problems) are introduced as two typical types of

combinatorial optimization problems.

2.3.1 Max-Cut Problems

By dividing a given graph G = [V , E] into two subsets, where V is the set of all

vertices (v0, v1, v2, ..., vn), and E is the set of all edges between the vertices, a max-

cut problem is to find a division that makes the summation of the edges’ cut weights

maximum [39]. The Hamiltonian of an n-vertex max-cut problem can be expressed

as:

HMax−cut =
∑︂
i<j

Wij(ai + aj − 2aiaj), (2.2)

where ai ∈ {0,+1} indicates that vi is divided into subset V1 (+1) or not (0), and

Wij denotes the weight of the edge between vi and vj. The Hamiltonian represents

the weight summation of the cut edges.

Then the max-cut problem can be mapped to the Ising model by converting ai (∈

{0,+1}) to σi (∈ {−1,+1}) as follows [40]:

HMax−cut =
1

2

∑︂
i<j

Wij −
1

2

∑︂
i<j

Wijσiσj. (2.3)
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The first term in (2.3) is a constant. The second term correspond to the interaction

term in (2.1), and it does not have a term for the external field.

2.3.2 Traveling Salesman Problems

A traveling salesman problem (TSP) is to find the shortest route to visiting all cities.

Each city can only be visited once, and the salesman should return to the starting

point [41]. The Hamiltonian of an n-city TSP can be expressed as [4]:

HTSP = A

n∑︂
k ̸=l

n∑︂
i

Wklaika(i+1)l +B

n∑︂
i

(
n∑︂
k

aik − 1)

2

+C
n∑︂
k

(
n∑︂
i

aik − 1)

2

, (2.4)

where aik (∈ {0,+1}) indicates whether the kth city is visited (+1) or not (0) at

the ith step, and Wkl denotes the distance between the kth city and the lth city.

The first term in (2.4) is the objective function of the TSP, which computes the

total distance of the route. The second and the third terms in (2.4) implement

the constraints that prevent visiting multiple cities in one step and visiting a city

more than once, respectively. These two terms take the minimum value 0 when∑︁
k aik =

∑︁
i aik = 1. A, B and C are the parameters (with positive values) that

balance the weights between the objective function and the constraints.

The TSP can be mapped to the Ising model by converting aik(∈ {0,+1}) to σik(∈

{−1,+1}) as follows [4]:

HTSP =
A

4

n∑︂
k ̸=l

n∑︂
i

Wklσikσ(i+1)l +
A

2

n∑︂
k ̸=l

n∑︂
i

Wklσik

+
B

4

n∑︂
i

n∑︂
k

n∑︂
l

σikσil +
(n− 2)B

2

n∑︂
i

n∑︂
k

σik

+
C

4

n∑︂
i

n∑︂
k

n∑︂
j

σikσjk +
(n− 2)C

2

n∑︂
i

n∑︂
k

σik

+
A

4

n∑︂
k ̸=l

n∑︂
i

Wkl + (
n3

4
− n2 + n)(B + C). (2.5)
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The last two constant terms in (2.5) that are unrelated to the states of spins are

ignored when minimizing HTSP . The first, third, and fifth terms correspond to the

interaction term in (2.1), and the other terms correspond to the external field term

in (2.1). Fig. 2.8 shows an example for mapping a 3-city TSP to the Ising model.

Figure 2.8: Mapping a 3-city TSP to the Ising model.

The σ22 equals to 1 when city B is visited at the second step, and the other spins

in the same row and column (σ12, σ21, σ23, and σ32) should be −1 to conform the

constraints.

2.4 A Clustering Approach

Clustering is a process of dividing a set of objects into several groups in terms of

their characteristics [42], so that all objects in a group are similar and the objects in

different groups are different. It has been implemented in many research areas, such

as computational statistics and data mining [43].

In the TSPs, we call a solution that conforms to the constraints a feasible solution

and a solution that does not conform to the constraints an infeasible solution. The

feasible solution with the lowest Ising energy is the optimal solution. Every solution

corresponds to a spin configuration in the Ising model, and the adjacent spin config-

urations of a feasible solution are infeasible solutions. The penalty terms make the
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Ising energy of the infeasible solutions extremely high. Thus, every feasible solution

corresponds to a local minimum in the Ising energy. The number of local minima is

large for solving large-scale TSPs. It decreases the probability of an Ising machine

finding the optimal or a near-optimal solution. However, the traveling distances of

many feasible solutions are very long, and the efficiency of the problem solving can

be increased by avoiding looking for those feasible but long-distance solutions. A

clustering approach can be used for this purpose, as briefly explained below.

(a) (b)

(c) (d)

Figure 2.9: Solving a TSP with a clustering approach: (a) the original TSP, (b) after
clustering, (c) solving the TSP consisting of the central points, (d) solving the original
TSP.

First, the clustering approach divides cities into several groups with respect to

their locations, as shown in Fig. 1 (b). Nearby cities are divided into the same group.

Second, a smaller-scale TSP consisting of the central points of each group is solved,
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Figure 2.10: The ripple-carry adder [44].

Figure 2.11: The carry look-ahead adder [44]

as shown in Fig. 1 (c). After obtaining a visiting order of these groups, a constraint

dictates that the cities in the next group can not be visited until all cities in the

current group have been visited. Finally, solving the original TSP with this visiting

order constraint, as shown in Fig. 2(d).

2.5 Approximate Arithmetic

Approximate arithmetic is considered in this design to improve the hardware effi-

ciency. The accumulation of local fields is the most time-consuming process for the

Ising machine and does not require a high accuracy. Thus, approximation is applied

to the adders in local field accumulation units.

An adder is a fundamental component in digital circuits. The ripple-carry adder

(RCA) and the carry look-ahead adder (CLA) are the two best-known types. The

carry in an n-bit RCA is propagated from one full adder to the next, while n full

adders are cascaded, as shown in Fig. 2.10. Thus, the critical path delay of an n-bit
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RCA is O(n). An n-bit CLA generates in parallel, as shown in Fig. 2.11. It is much

quicker than an RCA, because it’s critical path is shorter. However, the CLA is more

hardware-consuming than the RCA. Many approximate adders have been proposed

to reduce the design’s delay and hardware cost. There are four approximate adder

methodologies, i.e., speculative adders, segmented adders, carry select adders, and

approximate full adders [45].

Most carry chains do not propagate through an adder’s entire length [46]. Thus,

an almost correct adder (ACA) [47] that is based on the speculative adder [48] is

proposed. It generates the carry utilizing the k least significant bits (LSBs) [44].

This method reduces the critical path delay to O(log(k)). Moreover, compared with

conventional speculative adders, the ACA saves hardware by sharing the circuits in

sub-carry generators.

As a basic structure of the segmented adders, the equal segmented adder (ESA),

consists of several smaller sub-adders that work in parallel [44]. The carry inputs of

each sub-adder are fixed. Therefore, its critical path delay is also O(log(k)) (k is the

length of the segmented adders), as there is no carry propagation between sub-adders.

Furthermore, the hardware cost of an ESA is much lower than an ACA because it

does not require sub-carry generators.

Similar to the segmented adders, a carry select adder is divided into several blocks,

and each block calculates the summation of k bits [49]. However, except the first

block, all the others have two k-bit adders. One is for the summation with carry-

in = 0, and the other for carry-in = 1. These two summations are selected as a

part of the final result by the carry-out signal from the former block. The critical

path delay of this adder is a little bit longer than the ESA’s, as it has an additional

multiplexer delay. Furthermore, the hardware cost is much higher because it requires

two sub-adders and multiplexers. However, it achieves a high accuracy.

An approximate full adder modifies the least significant bits (LSBs) of an accurate

adder to shorten the critical path and reduce the hardware cost. The lower-part-OR
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Figure 2.12: The lower-part-OR adder [44].

adder (LOA) [50] uses a simple approximate full adder. As shown in Fig. 2.12 [44],

the lower part of the result is directly generated by using OR gates, and one AND

gate is applied to generate the carry-out bit to the more significant part. The more

significant part of the result is calculated via an accurate sub-adder. Therefore, its

critical path delay decreases to O(log(n− l)), where l is the length of the lower part.

Furthermore, the truncated adder (TruA), which directly prunes LSBs, is a baseline

design of approximate full adders. It is efficient in a system that does not require a

high accuracy.

The Ising machine is an approximate system. An Ising machine’s speed and power

dissipation are critical performance metrics. Therefore, the LOA and TruA are ap-

plied in this design for hardware efficiency improvement.
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Chapter 3

Algorithm Design

3.1 Introduction

This chapter presents an improved parallel annealing (IPA) algorithm to solve con-

strained combinatorial optimization problems, such as the TSP, using parallel fully

connected Ising machines. To the best of the authors’ knowledge, this work is the

first attempt to do so. The contributions lie in the following novelties aimed at im-

proving the performance of fully connected Ising machines in solving TSPs: (1) using

an exponential temperature function with a dynamic offset and (2) using k-medoids

clustering in Ising model-based TSP solvers to preprocess data for improving the

quality of solutions.

The remainder of this chapter is organized as follows. Section 3.2 reviews the

background of parallel annealing algorithms. The IPA algorithm and the k-medoids

are discussed in Section 3.3 for solving the TSPs. Section 3.4 reports the experimental

results on TSP benchmarks. Section 3.5 concludes the chapter.

3.2 Parallel Annealing (PA)

In the two-layer spin structure for the Ising model, the couplings between σL
i and

σR
j are denoted as Jij(i ̸= j), whereas the couplings between σL

i and σR
i are called

self-interactions (denoted as ωi). Thus, the Hamiltonian for PA, HP , is given by [1,
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Figure 3.1: A two-layer spin structure for the Ising model [1, 33].

33]:

HP = −
∑︂
i,j

Jijσ
L
i σ

R
j − 1

2

∑︂
i

hi(σ
L
i + σR

i ) + ωi

∑︂
i

(1− σL
i σ

R
i ). (3.1)

Only when the self-interactions ωi are sufficiently large, are the spin configurations in

both layers the same, i.e., σR
i = σL

i . Thus, the third term in (3.1) can be eliminated,

so (3.1) becomes the same as (2.1) [1, 33]. ωi is given by [33]:

ωi =

⎧⎪⎪⎨⎪⎪⎩
∑︂
sj∈S

|Jij| −
1

2

∑︂
sj∈C

|Jij| (si ∈ C)

λ

2
(si /∈ C)

, (3.2)

where λ is the largest eigenvalue of −J (J is a matrix of Jij), si is the ith spin, C is

a subset of the set of all spins S and C satisfies C = {si|λ ≥
∑︁

sj∈S |Jij|}.

The spin-flip probability is calculated using the Metropolis algorithm [51]. If σL
i is

flipped, the total energy will be increased by

∆Ei = 2σL
i (

hi

2
+
∑︂
j

Jijσ
R
j + ωiσ

R
i ). (3.3)

Then, the new spin-flip probability is min{1, exp(−∆Ei/T )}, where T is the temper-

ature.
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To improve the efficiency of annealing, dropout and momentum scaling are intro-

duced in [33]. The dropout sets each ωi to be “0” with a decreasing probability. The

momentum scaling multiplies every interaction ωi by an increasing factor from 0 to

1. Thus, at the end of momentum annealing, every interaction ωi will return to the

value computed in (3.2) to ensure σR
i = σL

i in (3.1).

3.3 Improved Parallel Annealing for TSPs

3.3.1 Improved Parallel Annealing (IPA)

The IPA for solving TSPs is shown in Algorithm 2. An exponential temperature func-

tion is used in the IPA and a dynamic offset is applied to the temperature function.

First, the state of a spin is randomly initialized to “− 1” or “+ 1”, and the tempera-

ture increment (∆T ) due to the dynamic offset is initialized to “0”. In Fig. 1(c), spins

in the left layer are updated when the current step step is odd; otherwise, the spins

in the right layer are updated. In each iteration (step ∈ [1, iternum]), the dropout

rate (pstep) and the momentum scaling factor (cstep) are updated, where the iternum

is the total number of iterations. The temperature (Tstep) is then recalculated, where

r in Algorithm 1 is the cooling coefficient. During the annealing, the self-interaction

(ωik) is set to “0” with the probability pstep or decreased to cstep · ωik. Then, the

energy variation (∆Eik) when σik is flipped is evaluated using the spin interaction

(Jikjl) and the updated ωik. Subsequently, the spin-flip probability (Pik) is calculated

using the Metropolis algorithm. If Pik is larger than a randomly generated number

within (0, 1), the spin will be flipped. Otherwise, the spin will remain unchanged.

After each iteration, if no spin is flipped, ∆T will increase. Otherwise, ∆T will be

reset to “0”. Finally, the spin configuration (σ) at the end of iterations is output as

the solution to the combinatorial optimization problem found by the IPA.
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Algorithm 2 Improved Parallel Annealing for TSPs [35]

Input: spin interaction: J ; external magnetic field: h;
the number of cities: M ; self-interaction: ω;
hyperparameters: iternum, Tinit, Tinc, r

Output: spin configuration (σ)
1: Initialize spin configurations
2: Ts ⇐ Tinit

3: ∆T ⇐ 0
4: for step = 1 to iternum do
5: if step is odd then
6: A ⇐ L,B ⇐ R
7: else
8: A ⇐ R,B ⇐ L
9: end if
10: Update pstep and cstep
11: Tstep ⇐ (Tstep +∆T ) · rstep−1

12: for i = 1 to M do
13: for k = 1 to M do
14: Temporarily set ωik ⇐ 0 with the probability pstep, and temporarily de-

crease ωik ⇐ cs · ωik

15: ∆Eik ⇐ 2σA
ik(

hik

2
+
∑︁

j,l Jikjlσ
B
jl + ωikσ

B
ik)

16: Pik ⇐ min{1, exp(−∆Eik/Tstep)}
17: if Pik > rand then
18: σA

ik ⇐ −σA
ik

19: end if
20: end for
21: end for
22: if no spin is flipped then
23: ∆T ⇐ ∆T + Tinc

24: else
25: ∆T ⇐ 0
26: end if
27: end for
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3.3.2 A Temperature Function

The classical annealing algorithm with parallel spin-update uses a logarithmic func-

tion as the temperature function to solve the max-cut problem as [33]:

Tstep =
1

β0 ln (1 + s)
, (3.4)

where β0 is a scaling factor for the inverted value of temperature and Tstep denotes the

temperature in the stepth iteration. When the Ising model reaches a local minimum

or ground state and Tstep is sufficiently small, the flip probability for each spin, Pik,

is considered to be close to 0 (see lines 15 and 16 in Algorithm 2). With a proper β0,

however, the temperature only decreases to a value that results in low flip probabilities

for all spins. Hence, it is possible for the Ising model to escape from local minima

when solving max-cut problems.

To solve a TSP, the temperature required for maintaining low spin-flip probabilities

is larger because ∆Eik is larger due to the constraints. However, an Ising model cannot

reach a local minimum or ground state, or meet the constraints at such a temperature.

Thus, the temperature needs to be sufficiently low at the end of annealing when

solving TSPs. It will, therefore, be difficult for the Ising model to escape from a local

minimum. Moreover, the temperature using a logarithmic function rapidly decreases,

so it will prevent the Ising model from traversing additional local minima, thereby

reducing the quality of solutions. Hence, an exponential function is used as the

temperature function to solve the TSP, as

Ts = Tinit · rs−1, (3.5)

where Tinit is the initial temperature and r is the cooling rate. The slower decreas-

ing rate of the exponential function makes the Ising model stay longer at a high

temperature, therefore improving the quality of solutions.

Considering that the number of local minima increases with increasingly large

TSPs, the Ising model is prone to be stuck in a local minimum during annealing.
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Reducing the time spent in a local minimum can improve efficiency. Thus, we consider

introducing a dynamic offset, as in [30–32], into the temperature function. To increase

the probability of escaping from a local minimum, the temperature Tstep needs to be

very large. Therefore, ∆T is added to Tstep, where ∆T is increased by Tinc if the spin

configuration is unchanged. Lastly, ∆T is reset to zero after a change of the spin

state has occurred.

The improvement of the solution quality after using an exponential function with

a dynamic offset and the details for setting a proper Tinc are discussed in Section 3.4.

3.3.3 A Clustering Approach

The solution quality drastically deteriorates when the number of cities in the TSP

is large. We further consider a clustering approach [4] to improve the quality of the

solution. The basic idea is to group the nearby cities into one cluster and use the

central point to represent each cluster. Then the TSP consisting of those central

points can be solved by using the IPA. After learning the visiting order of each

cluster, the original TSP can be more efficiently solved. This Ising machine can

avoid producing solutions that conform to the constraints but with very long travel

distances. For example, if cluster A contains three cities and is first visited among

the clusters, then the visiting order of these three cities will be confined to the first

three steps.

The k-medoids and k-means are two typical clustering approaches. To divide M

vertices into k clusters, the first step of the k-means approach is to randomly generate

k new vertices as the central points of the k clusters, whereas the k-medoids method

chooses k vertices from the original set as the central points. In the second step, after

the k central points are obtained, the other (M − k) vertices in the set are assigned

to the closest central point and form a cluster. In the third step, the k-means method

generates a new central point for each cluster according to the mean value of the

coordinates of the vertices in the cluster, whereas the k-medoids method chooses the
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vertex with the smallest sum of distances from the other vertices in the same cluster

as the new central point. Then, the second and the third steps are repeated until

there is no change in any cluster.

Algorithm 3 The k-medoids clustering [35]

Input: distance matrix: W (M ×M); the number of clusters: k
Output: vertex indexes (with cluster labels)

Step 1
1: for i = 1 to M do
2: Di =

∑︁M
j=1 Wij

3: end for
4: Choose k vertices (v) with the first k smallest D as the central points

Step 2
5: for i = 1 to M do
6: Assign vi to the closest central point and mark the label of vi with the index

of the corresponding central point
7: end for

Step 3
8: for each cluster do
9: for each vi in the cluster do
10: di =

∑︁
j Wij

11: end for
12: Choose v with the smallest d to be the new central point of the current cluster
13: end for
14: Repeat Step 2 and Step 3 until there is no change of elements in each cluster

Compared with the k-means, the disadvantage of k-medoids is the computation

time for each cluster in the third step, O(m2), where m is the number of vertices in

one cluster. However, there are M ×M accumulators in the circuit of an Ising model

for M × M spins that solves an M -city TSP, where M =
∑︁k

i=1mi and mi is the

number of vertices in the ith cluster. Thus, this computation time can be reduced

to O(m) as it can be calculated in parallel with m accumulators. Furthermore, the

calculation of the distances between the vertices is not required in an Ising machine

as the distance values are included in the system’s input, i.e., in the spin interaction

matrix J . In contrast, the k-means method needs extra arithmetic units to compute

the distances between the vertices and the central points. Therefore, using k-medoids
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for clustering can achieve a higher hardware efficiency than using k-means with no

performance trade-off in an Ising machine.

The k-medoids clustering was proposed in [52], but it is first applied in an Ising

model-based TSP solver in this work, as shown in Algorithm 3. A strategy for choos-

ing the k vertices at the center of the map as initial central points is applied to improve

the efficiency of k-medoids. The k vertices with the k smallest sums of distances from

all the other vertices are selected as initial central points.

To implement the visiting restrictions, an M -by-M matrix hp is added to the

external magnetic field matrix, h. For example, if the first three cities are confined

to be visited at the first three steps, hp =

⎛⎝a b

c d

⎞⎠, where a and d are 3-by-3 and

(M−3)-by-(M−3) zero matrices, respectively; b and c are 3-by-(M−3) and (M−3)-

by-3 matrices of M ·max{abs(J)} (as a large value), respectively. The max{abs(J)}

returns the entry in matrix J with the largest absolute value.

3.4 Experimental Results

Seven benchmark datasets are used in the experiments, including burma14, ulysses16,

ulysses22, and four other sub-datasets randomly selected from the TSPLIB bench-

mark (n = 6 and 12 from gr431 and n = 7 and 10 from ali535). The average

(Ave), maximum (Max), minimum (Min), and standard deviation (Std) of the travel

distances are obtained after performing annealing by 100 times with an iteration

number of 10k. The simulation was run in MATLAB on an AMD processor Ryzen 5

3600X (3.8 GHz).

We evaluate the effect of the penalty parameters B and C on the performance of

the IPA with six benchmark datasets, including burma14, ulysses16, n = 6 and 12

from gr431 and n = 7 and 10 from ali535. The results are obtained with Tinc =

max{abs(J)}, r = 0.97, and Tinit = 1 × 107. Here, Tinit is an arbitrarily large

value and r is selected to ensure Tinc · rstep−1 close to 0 at the end of annealing.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: The effect of the penalty parameters B and C (B = C) on the quality of
solutions: (a) for n = 6 from gr431, (b) for n = 7 from ali535, (c) for n = 10 from
ali535, (d) for n = 12 from gr431, (e) for the benchmark burma14, and (f) for the
benchmark ulysses16. The blue shadow area indicates the results that do not meet
constraints [35].
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(a)

(b)

(c)

Figure 3.3: The effect of Tinc on the quality of solutions: (a) for the benchmark
burma14, (b) for the benchmark ulysses16, and (c) for the benchmark ulysses22
[35].
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As shown in Fig. 3.2, for all six TSPs, more stable solutions with smaller Ave can

be obtained when the penalty parameters decrease. It is due to the fact that for

lower penalty parameter values, the Ising model escapes from the local minima with

a higher probability. However, the parameter values must be large enough to ensure

all solutions meet the constraints, which are violated when B and C are smaller than

0.85×max{W }. The improvement in solution quality is less significant when B and

C are smaller than 1 × max{W }. Therefore, we choose B = C = 1 × max{W } as

the penalty parameter setting in our further experiments.

As a key to increasing the probability of escaping from a local minimum, an ap-

propriate setting of Tinc can optimize the efficiency of an Ising model. Therefore,

we investigated the effect of different Tinc values on the Ave and Std of solutions

found by the IPA. The results for the three benchmarks, burma14, ulysses16, and

ulysses22, are obtained with penalty parameters B = C = 1 ×max{W }, r = 0.97,

and Tinit = 1 × 107. As shown in Fig. 3.3, the Ave, Max, and Std of the travel dis-

tances found by the Ising models decrease when Tinc decreases from 10×max{abs(J)}

to max{abs(J)}/10. Furthermore, the Ave, and Max tend to be stable when Tinc

is between max{abs(J)}/10 and max{abs(J)}
90

. The further decrease of Tinc results in

an increase of Ave, so it degrades the quality of solutions. A small Tinc reduces the

chance of the Ising models escaping from local minima, and thus a larger iteration

number is required for finding a suboptimal solution.

To evaluate the performance of the proposed methods, MA [33] and DA [32] are

considered for comparison. The MA implements parallel spin-update but using a

logarithmic temperature function, while the DA employs a dynamic offset but without

parallel spin-update. Three benchmarks, burma14, ulysses16, and ulysses22, are

used. The results are obtained with r = 0.97, Tinc =
max{|J |}

90
and Tinit = 1× 107 for

the IPA and DA. For the MA, β0 = 9×10−4 for burma14, β0 = 8×10−4 for ulysses16,

and β0 = 5 × 10−4 for ulysses22. These β0 values are chosen to produce the best

solution quality in the experiment. The penalty parameters in (2.5) are set as A = 1,
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Table 3.1: (Unitless) Travel distances by using the IPA, MA, and DA for solving the
TSP [35]

Metrics
iternum = 10k iternum = 50k

IPA MA DA IPA MA DA

burma14

Ave 4241.6 5322.4 8832.9 4018.5 5133.3 6451.8

Max 4703.0 7524.0 9655.0 4423.0 7443.0 8009.0

Min 3839.0 4178.0 7507.0 3580.0 4099.0 4945.0

Std 185.1 683.7 379.8 159.9 547.7 696.4

ulysses16

Ave 8804.2 11513.0 12722.0 8387.6 11451.0 12040.0

Max 9869.0 13992.0 15454.0 9218.0 14366.0 14669.0

Min 7816.0 8859.0 9827.0 7554.0 9242.0 8815.0

Std 407.9 1113.6 1141.5 303.3 1057.4 1240.4

ulysses22

Ave 11170.0 13811.0 16619.0 10389.0 13367.0 16435.0

Max 12301.0 18914.0 20316.0 11167.0 16799.0 18862.0

Min 9527.0 11154.0 13224.0 9163.0 9363.0 13000.0

Std 527.3 1622.3 1425.6 433.7 1284.8 1156.4
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B = C = 1 ×max{W }. Table 3.1 shows the performance of the IPA, MA, and DA

for solving the TSP. The algorithms with parallel spin-update (IPA and MA) obtain

lower Ave than DA for all three benchmarks. However, the Ave obtained by MA

can hardly be improved by increasing the number of iterations. This occurs because

the annealing algorithm using a logarithmic temperature function is easily stuck in a

local minimum when solving TSPs. On the contrary, the algorithms that employ a

dynamic offset, such as the IPA and DA, can find shorter distances when the iteration

number increases. For solving burma14, when the iteration number is 10k, the IPA

decreases the Ave by 52.0% compared with DA and by 20.3% compared with MA.

The required iterations for the DA, MA, and IPA to produce an Ave around 4920 are

250k, 20k, and 1k, respectively, while the runtimes are 4.44 seconds, 1.99 seconds, and

0.10 seconds, respectively. The IPA achieves a 44.4× speed-up in runtime compared

with DA, and 19.9× compared with MA.

Further decrease in Ave is obtained by using the clustering approach. We applied

k-medoids twice for each benchmark. The original TSP is clustered into a second-level

TSP with k1 centric points, and the second-level TSP is clustered into a third-level

TSP with k2 centric points. The iteration number for solving the third-level TSP is

1000; it is 2500 for the second-level TSP and 3000 for the original TSP, so the total

iteration number is 6500. As shown in Table 3.2, the reduction in Ave is 51.8% or

42.0% compared to DA or MA for ulysses22 (iternum = 10k), 39.4% or 33.1% for

Table 3.2: (Unitless) Travel distances by using the k-medoids clustering in the IPA
for solving the TSP [35]

Metrics
burma14 ulysses16 ulysses22

(k1 = 7, k2 = 4) (k1 = 8, k2 = 4) (k1 = 10, k2 = 6)

Ave 3813.8 7705.0 8011.4

Max 4334.0 8923.0 9371.0

Min 3345.0 6686.0 7219.0

Std 268.9 440.9 433.2

37



ulysses16, and 56.8% or 28.3% for burma14, respectively.

Furthermore, the performance of the IPA in solving unconstrained combinatorial

optimization problems, such as max-cut problems, was tested. Two max-cut bench-

marks, G11 and G12, were used. The parameter settings of IPA and DA were the

same as those for the TSP tests. However, for MA, β = 0.1 in the max-cut tests

because the bit-with of interactions is 2 [33]. Fig. 3.4 shows the distribution of the

results after performing annealing 100 times. The x-axis is the cut value, while the

y-axis is the distribution frequency of the cut values. The iteration number for IPA

and MA is 1k, and it is 5k for DA. IPA obtains a higher average cut value and a

lower standard deviation than MA and DA. The improvement is 2.6% for G11 and

1.7% for G12 compared with MA, 21.7% for G11 and 12.6% for G12 compared with

DA. The performance gap between IPA and MA is insignificant because MA has al-

ready been optimized for solving unconstrained problems. Moreover, these results are

obtained by using DA with a five times larger iteration number. Thus, the improve-

ments in solution quality and performance after realizing the parallel spin update are

significant.

3.5 Conclusions

This work attempts to solve constrained combinatorial optimization problems, such

as the TSP, using parallel fully connected Ising machines. Specifically, an IPA algo-

rithm is proposed to leverage an exponential temperature function with a dynamic

offset and a k-medoids clustering approach. The exponential temperature function

with a dynamic offset can alleviate the problem of being stuck in local minima, while

the k-medoids clustering significantly reduces the average travel distance. The IPA is

at least an order of magnitude faster than DA and MA to find a similar average travel

distance. A shorter average travel distance can further be found by the IPA with a

smaller number of iterations due to the use of k-medoids clustering. Moreover, the

proposed IPA also excels in solving unconstrained combinatorial optimization prob-
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4: Max cut results obtained using IPA, MA, and DA: (a) solving G11 using
IPA, (b) solving G12 using IPA, (c) solving G11 using MA, (d) solving G12 using
MA, (e) solving G11 using DA, (f) solving G12 using DA.

lems, such as max-cut problems. These results pave the way for the development

of energy-efficient circuit architectures for solving combinatorial optimization prob-

lems using the Ising model. The hardware design of this improved parallel annealing

machine will be carried out in the next chapter.
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Chapter 4

Hardware Design

4.1 Introduction

The circuit design of an improved parallel annealing Ising machine is presented in

this chapter. Our architecture is inspired by the parallel annealing machine in [1].

However, a half-precision floating-point representation is implemented in this design

to obtain a more extensive range for the coefficients, thus solving more complicated

problems. The contributions lie in the following improvements aimed at the balance

of speed and hardware efficiency: (1) the design of a new local field accumulator,

which reuses adders in a pipeline for variable calculation; (2) approximating the mo-

mentum scaling factor to a linear increment and the proposal of a new self-interaction

generating unit (SIGU), (3) the design of a new buffer-based energy calculation unit,

and (4) using approximate arithmetic to improve the hardware efficiency. A model

with 64 spins is shown as an example to demonstrate the function and performance

of the circuit.

The remainder of this chapter is organized as follows. Section 4.2 introduces the

components’ circuits in the proposed improved parallel annealing machine. The ap-

proximate schemes are discussed in Section 4.3 for improving the hardware efficiency

and evaluates the function of the optimized circuit design. Section 4.4 concludes this

chapter.
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4.2 Architecture and Circuit Design

4.2.1 Architecture of the Ising Machine

Fig. 4.1 shows the hardware architecture of the improved parallel annealing-based

Ising machine with 64 spins. It is inspired by the parallel annealing machine in [1]. It

consists of nine components, i.e., a local field accumulator unit (LAU), a spin update

unit (SUU), a delta-driven simultaneous spin update unit (DDSS), a controller, an

annealing schedule unit (ASU), a self-interaction generating unit (SIGU), a random

number generator (RNG), a solution update unit, and a memory block. The con-

troller, LAU, SIGU, and solution update unit are newly designed; while others are

inspired by [1].

An Ising machine with 64 spins is implemented in this design. Thus, 64 LAUs,

SUUs, RNGs, SIGUs are required in the architecture. The local field (lfi), dropout

rate (pstep), momentum scaling factor times self-interaction (cstep · ωi,original, ωi,original

is the value in (3.2)), and dynamic offset (∆T ) are calculated in the LAUs. In

particular, each LAU generates one lfi and one cstep · ωi,original. The SIGUs calculate

64 new self-interactions (ωi,step) with pstep, cstep · ωi,original, and 64 random variables

generated by RNGs. The SUUs use random numbers from RNGs, lfi from the LAUs,

and ωi,step from the SIGUs to compute the new states of spins, lfi · σi values, and ∆i

that indicates whether the ith spin is flipped. Two 64-bit vectors, sigmas and ∆s,

consist of the 64 σnew
i and ∆i, respectively, while lfi · σi consists of an inout array

type signal, called energies. The inout array signal type is defined by an array (63

downto 0) of std logic vector (15 downto 0). The sigmas and ∆s are sent to the

DDSS to obtain index and σold
j , while the sigmas and energies values are used in the

solution update unit to compute the solution. The index is sent to the memory block

to select corresponding 2 ·J0,j to 2 ·J63,j. The 2 ·J0,j to 2 ·J63,j and σold
j are used in the

LAUs for new lfis’ calculation. Moreover, the controller determines the behaviors of

the entire system by coordinating the circuit timing with a 12-bit instruction signal.
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The details of each unit are illustrated in the following subsections.

4.2.2 A Local Field Accumulator (LAU)

A LAU is newly designed for reusing its adder in a pipeline. The energy variation

(∆Ei), shown in (3.3), is required to calculate the spin-flip probability. The states

of spins on the left and right layers, denoted by σL
i and σR

i , respectively, can be

represented by σnew
i and σold

i , where σnew
i denotes σL

i (or σR
i ) and σold

i denotes σR
i (or

σL
i ) for updating σL

i (or σR
i ). A larger ∆Ei value leads to a lower spin-flip probability,

according to [32]:

P (∆Ei) =

⎧⎪⎪⎨⎪⎪⎩
min [1, exp(

−∆Ei

T
)] (Metropolis)

1

1 + exp(∆Ei

T
)

(Gibbs)
. (4.1)

The last term in (3.3), 2ωi,step ·σR
i ·σL

i , becomes 2ωi,original when σR
i = σL

i . It decreases

the spin-flip probability and makes σL
i the same as σR

i . Thus, the last term can be

simplified to 2ωi,step to decrease the spin-flip probability at the end of annealing when

the value of ωi,step is large. Then, the energy variation function implemented on the

circuit is shown in (4.2):

∆Ei(hardware) = 2σnew
i (

hi

2
+
∑︂
j

Jijσ
old
j ) + 2ωi,step. (4.2)

The LAU calculates the local field, (hi

2
+

∑︁
j Jijσ

old
j ) in (4.2). This unit is idle

when the other units are working. Thus, it can be utilized to accumulate other values

for the system. Here, the LAU is also used for the calculation of the dropout rate

(pstep), momentum scaling factor times self-interaction (cstep ·ωi,original), and dynamic

offset (∆T ). As shown in Fig. 4.2, it consists of a multiplier, four registers, two

multiplexers, and a demultiplexer. Only one LAU needs four registers in a system

and others just require two, as pstep and ∆T are two variables that are shared among

all spins. The demultiplexer and two multiplexers share one select signal (se), while

four different signals control the four registers. When the LAU is working for local
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Figure 4.1: The architecture of the Ising machine [1].
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Figure 4.2: The local field accumulator unit (LAU).

field accumulation, mode = 1. se selects 2 ·Jij and σold
j is multiplied with 2 ·Jij by the

multiplier. Then the adder accumulates the product to the value in the register of lf .

This multiplier only performs ×(+1) or ×(−1), where +1 and −1 are represented by

1 and 0 in this Ising machine, respectively. Therefore, it inverts the sign bit of the

half-precision floating point input when σold
j = 0, and does no operation to the input

if σnew
i = 1. Furthermore, the multiplier has a mode input, the input from multiplexer

will be output without any change when mode = 0, as the same as when the σold
j = 1.

The spin states are initialized to “− 1”s. Thus, the initial accumulation result of the

local field value and external field value (with all spin states being “ − 1”) is stored

in the register. The products from the multiplier need to be multiplied by 2 as the

energy is increased or decreased by 2 ·Jij ·σold
j when σold

j is changed. Therefore, 2 ·Jij

is stored in the memory block.
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Figure 4.3: The self-interaction generating unit (SIGU).

4.2.3 A Self-Interaction Generating Unit (SIGU)

The pstep (pstep = max [0, 0.5− step
2stepmax

]) decreases from 0.5 to 0 and cstep (cstep =

min [1,
√︂
( step
stepmax

)] increases from 0 to 1, respectively, where step is the number of

the current step and stepmax is the number of total steps in the annealing process.

They are used in the self-interaction generating unit for calculating self-interaction

(ωi), as shown in Fig. 4.3. It is a new design for generating self-interactions. The

ωi is multiplied with the value of cstep. Then the output of a SIGU can be zero at

a probability pstep, or be cstep · ωi,original at a probability (1 − pstep). It consists of a

comparator and a two-to-one multiplexer. The pstep value is calculated in the LAU,

and decreases from 0.5 by 1
(2stepmax)

every iteration. It is compared with a random

number between 0 and 1. ωi,step is 0 if pstep > rand, and cstep · ωi,original otherwise.

The circuit for implementing the function,
√︂
( step
stepmax

) · ωi,original, is hardware-

consuming. To save the area of the circuit, the momentum scaling factor cstep is ap-

proximated by min [1, step
stepmax

]. Thus, an approximate linear function, step
stepmax

ωi,original,

is implemented. This value is also calculated in the LAU and increases from 0 by

ωi,original

stepmax
every iteration.

4.2.4 A Spin Update Unit (SUU)

Taking lfi and ωi,step as the inputs, the SUU determines the new state of the ith spin.

As presented in Fig. 4.4, the SUU consists of a multiplier, an adder, a compara-
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Figure 4.4: The spin update unit (SUU) [1].

tor, an exclusive-or (XOR) gate, and two registers [1]. First, lfi is multiplied with

σnew
i . The multiplier inverts the sign bit of lfi if σ

new
i = 0 and does no operation

on lfi if σ
new
i = 1. Then the product is added to ωi,s to obtain the energy variation

(∆Ei(hardware), shown in (4.2)). The Gibbs criterion in (4.1) is used to calculate the

spin-flip probability. It is equivalent to the sigmoid function, as shown in (4.3). To

reduce the hardware cost, the sigmoid function is approximately implemented by us-

ing a linear function, as shown in (4.4) [1]. The spin-flip probability is 1 when ∆Ei is

larger than 2T , 0 when ∆Ei is smaller than −2T , or ∆Ei

4T
+ 0.5 when ∆Ei is between

−2T and 2T . Thus, ∆Ei is compared with a random number between −2T and 2T

by using a comparator. Its output, ∆i, indicates whether the state of the ith spin is

flipped (by 1) or not (by 0). Then, the new spin state is generated by XORing the
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old spin state and ∆i. Furthermore, the summation of the adder is output as lfi · σi

to the solution update unit for total energy calculation.

S(t) =
1

1 + exp(−t)
. (4.3)

P =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∆Ei

4T
+ 0.5 (−2T < ∆Ei < 2T )

1 (∆Ei > 2T )

0 (∆Ei < −2T )

, (4.4)

4.2.5 A Random Number Generator (RNG)

Two kinds of random numbers are required following uniformly distributions from

zero to one and −2T to 2T , respectively. It is inspired by [1] but implementing a

half-precision floating-point representation. The random number generator (RNG)

circuit is shown in Fig. 4.6. An XORshifter can generate a maximum length state

sequence if the switches states are following the primitive polynomial. Fig. 4.5 shows

a 4-bit XORshifter, and its primitive polynomial is X4 + X + 1. The power of the

variable X value indicates the corresponding switch is on. A 22-bit XORshifter is

used to generate a 22-bit pseudo-random sequence in this design, whose primitive

polynomial is X22 + X + 1. The 21th down to 12th bits and 11th down to 2st

bits are used to generate two random numbers between [1, 2), which subtract 1 to

obtain random numbers between [0, 1). The random number between [−2T, 2T ] are

Figure 4.5: A 4-bit XORshifter.
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generated by a similar method but using the 22nd bit and 1st bit as the sign, and

then multiplied with the value of 2T .

4.2.6 A Delta-Driven Simultaneous Spin Update (DDSS) Cir-
cuit

The DDSS circuit receives all the new spin states (σnew
0 to σnew

63 ) and ∆s (∆s indicates

which spins are flipped) from the SUUs, and then outputs the state of flipped spin

σold
j to LAUs and the corresponding index to the memory block [1]. It consists of 64

one-bit registers, a 64-to-1 multiplexer, a priority encoder, and a 6-to-64 decoder, as

shown in Fig. 4.7 [1]. The ∆s from SUUs are stored in registers and updated with the

ddss en signal. To identify the flipped spins and calculate new local field values, a

DDSS circuit works as follows. The priority encoder outputs an index that indicates

the position of the first “1” in ∆s. Meanwhile, the multiplexer chooses the bit at the

same position in sigmas, which indicates the state of the flipped spin σold
j . Then the

decoder returns a 64-bit rsts signal to the 64 registers (each register receives one bit).

It will reset the detected first “1” in registers to “0”. When all “1” signals are reset

to “0”, the empty signal becomes 0, which means all states of flipped spins have been

output to LAUs and the system is ready for the next spin update cycle.

Figure 4.6: The random number generator (RNG) design.
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Figure 4.7: The delta-driven simultaneous spin update (DDSS) circuit [1].

Figure 4.8: The annealing schedule unit (ASU).
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4.2.7 An Annealing Schedule Unit (ASU)

The annealing schedule unit counts the annealing step and calculates the temperature.

It is different from the design in [1] as the temperature in this work has a dynamic

offset. It consists of two adders, two registers, one multiplier, and one comparator, as

shown in Fig. 4.8. The annealing process stops when the step value is larger than the

step preset value, and the finish signal becomes “1”. The new Tstep+1 is calculated

as:

Tstep+1 = (Tstep +∆T )× r, (4.5)

where r is the decreasing rate of temperature (r ≤ 1). The updates of step value and

Tstep are controlled by the step add signal.

4.2.8 A Solution Update Unit

In order to select a solution with the lowest total energy among the found results,

a solution update unit is newly designed. Its structure is shown in Fig. 4.9. This

solution update unit consists of a candidate generator, an energy calculator, and an

update unit.

Calculating the total energy of the Ising model at each iteration is inefficient. The

total energy is calculated by accumulating the lfi · σi values from SUUs. Thus, the

accumulation cycle increases when the size of the Ising model increases. On the other

hand, not all energies during the annealing need to be calculated because feasible

solutions only show up at local minima or the ground state for TSPs. Therefore, the

solution update unit only calculates the total energy when the system moves to no

flip state. The noflip signal pulses every clock cycle if there is no change in the spins’

configuration. An RS flip-flop and an AND gate are used to generate a candidate

signal that only pulses one time when the spins’ configuration stays with no change,

as shown in Fig. 4.10.

The buffer in the candidate generator is for making the candidate hold for a delay
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period. Suppose a new candidate signal pulse comes, but the accumulation of the last

total energy is not finished: in that case, the Ising machine needs to stop annealing

and wait for the accumulation process to finish. It decreases the speed of the Ising

machine. Therefore, registers are used to store the data waiting for accumulation.

Fig. 4.11 shows a structure of the energy calculator unit. For this Ising machine with

64 spins, 64 storage blocks are required, and each storage block has 16 16-bit registers.

The Ising machine can store at most 16 candidates for accumulation, reducing the

effect of energy calculation to the annealing speed. All registers are controlled by

the candidate signal. In each storage block, a read address signal determines which

candidate is output to the accumulator, and a write address signal determines which

new candidate data are written into which registers. These two signals are 5-bit, and

only the lower four bits are connected to the multiplexer and demultiplexer. The

write address and read address are added by 1 at the rising edge of candidate and

accum done, respectively. The accum done signal becomes 1 when count = 64, which

indicates all the 64 values have been accumulated. The count signal is added by 1

at the rising edge of clk accum, while the clk accum is generated by ANDing the clk

and accum en signals. The count is reset to 0 after the accum done signal becomes

1. An annealing en signal changes from 1 to 0 when all data in the 16 registers have

not been accumulated but a new candidate signal arrives. In this situation, the Ising

Figure 4.9: The solution update.
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Figure 4.10: The waveform of the candidate signal.

machine needs to wait until storage space is released and then continues the annealing

process. An accum en signal changes from 1 to 0 when all data in the 16 registers

have been accumulated but no new candidate signal arrives. The Ising machine

needs to wait the next rising edge of candidate and then continues the accumulation

process. A finite state machine (FSM) is used to realize the change of annealing en

and accum en. The FSM has three states: state 1 (annealing en = 1, accum en =

0), state 1 (annealing en = 1, accum en = 1), and state 1 (annealing en = 0,

accum en = 1). In state 1, FSM is waiting for candidate becomes 1, and then moves to

state2. In state 2, annealing and accumulation continue working until w addr− 15 =

r addr (w addr represents write address and r addr represents read address in the

figure of FSM) and candidate becomes 1. For example, when the candidate = 1,

w addr = 16(10000) and r addr = 1(00001) (w addr indicates the register0 and

r addr indicates the register1 in the storage block, as only the lower four bits are

connected to the multiplexer and demultiplexer), the next input data will be written

into the register1 (w addr+1) but the accumulation of the old data in the register1

has not been finished. Therefore, FSM moves to state 3 and waits the accumulation

to be finished. When an accumulation is finished, accum done becomes 1, and the

FSM moves back to state 2. Furthermore, when w addr = r addr, which means

all data in registers have been accumulated, the FSM moves back to state 1 and

waits candidate becomes 1. The initial state of this FSM is state 1. Another similar

storage blocks array in the energy calculator unit is used for storing sigmas’ states.

The write address and read address are shared with those in storage blocks for
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Figure 4.11: The energy calculator unit.
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Figure 4.12: The update unit.

energies. In the update unit, the new summation of energy (energy candidate) is

compared with the lowest energy that the Ising machine found before, as shown in Fig.

4.12. If the new energy is lower, the lowest energy is updated by this energy candidate

and the solution is updated by the corresponding sigmas’ states (sigmas candidate).

Otherwise, the lowest energy and the solution do not change. Furthermore, the

registers are controlled by the accum done delay signal. The delay of a buffer is

applied for ensuring the outputs of multiplexers and the comparator are stable before

the sampling.

4.2.9 Control Unit

The control unit is a finite state machine. No details of this unit have been disclosed

in the previously published papers. As shown in Fig. 4.13, it has fifteen states. All

the delay states, i.e., step adding delay, DDSS enable0 delay, LAU enable delay1,

LAU enable delay2, DDSS enable1 delay, and no flip delay are used for making

the instruction signal hold for one clock cycle to ensure the accuracy of the sampled

signals. All the state transitions are controlled by clock and corresponding signals.
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Figure 4.13: The state transition of control unit.
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If there is no label on the arrow, it means the transition is only controlled by clock

signal. The idle and memory write states are used for the system initialization. The

circuit does not work at idle state, and data is written into the memory block at

memory write state. The state returns to idle when ready is 1, which indicates all

data have been written. The system starts annealing when start signal is 1 and stops

annealing if finish becomes 1. The SUU enable, step adding, DDSS enable0, LAU

enable, DDSS enable1, and no flip are used for coordinating the annealing process

as follows. SUU enable is the start point (also the end point) of the annealing; SUUs

are working at this state and generate new spins states. Then the system adds an

annealing step by one at step adding, if finish = 0. After adding the step, the

system goes through DDSS enable0, LAU enable, and DDSS enable1. The DDSS

outputs index and spin state at DDSS enable0 and DDSS enable1 states. The

DDSS enable0 and DDSS enable1 are for distinguishing whether still no spin is

flipped (empty = 0) after the spin update. If empty = 0, state moves to no flip

and then back to SUU enable for updating the spins again. The dynamic offset

increases at no flip state. Otherwise, the state moves to LAU enable and performs

the accumulation of lfi in LAUs. Meanwhile, if annealing enable = 0, which means

there is no space in the solution update unit, the system needs to stop annealing and

waiting for the accumulation of total energy.

The output of the control unit is a twelve-bit instruction signal, as shown in Fig.

4.14. The 11th bit is mode that controls the calculation model of LAU; the 10th bit

is rstdynamic that resets the value of dynamic offset to zero when a spin is flipped;

the 9th bit is noflip; the 8th bit is Cs update that controls the adding of Cs; the

7th and 6th bits are se1 and se0 that used in LAU ; the 5th and 4th bits are write

Figure 4.14: The instruction generated by the control unit.
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Table 4.1: Instructions and the corresponding states

state Instruction

idle 000000000000

memory write 000000100000

SUU enable 000000000010

step adding 000001000000

step adding delay 000001000000

DDSS enable0 000010001000

DDSS enable0 delay 000110001000

LAU enable 110000010000

LAU enable delay1 110000010000

LAU enable delay2 110000010100

DDSS enable1 000000001000

DDSS enable1 delay 000000001000

waiting accumulation 000000000000

no flip 000011000000

no flip delay 001011000000
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and read signals for memory block; the 3rd, 2nd, 1st, and 0th bits are DDSS en,

LAU en, SUU en and step add signals that control the update of registers in DDSS,

LAU, SUU and ASU, respectively. Table 4.1 shows the instruction signals of different

states.

4.3 Results and Discussion

4.3.1 Approximation of the Momentum Scaling Factor

The momentum scaling factor is cstep =
√︂

step
stepmax

in the algorithm simulation, where

step is the current step number and stepmax is the step number at the end of annealing.

Because the self-interaction (ωi) is different for every spin, calculating cstep ·ωi requires

a multiplier, and the number of multipliers depends on the number of spins. It incurs

a high cost when the number of spins in the system is large. However, with a linear

cstep, the adders in LAUs can be reused to calculate cstep · ωi because the increment,

(cstep · ωi − cstep−1 · ωi), is constant. Therefore, a linear momentum scaling factor

cstep = step
stepmax

is applied in the circuit implementation for hardware efficiency. Fig.

4.15 shows the effect after applying a linear momentum scaling factor. The increase

on average is 1.6% for burma14, 1.9% for ulysses16, and 0.7% for ulysses22, while

the increase in the standard deviation is 15.2% for burma14, 13.3% for ulysses16,

and 9.7% for ulysses22.

4.3.2 Approximation of Floating-point Adders

A half-precision floating-point is implemented in this design. As shown in Fig. 4.16,

it contains a sign bit, 5 bits for the exponent, and 10 bits for the mantissa. The

architecture of a floating-point adder consists of circuits for the larger-exponent de-

tection, mantissa alignment, mantissa summation, normalization, and rounding, as

shown in Fig. 4.17 [53]. First, two operands are unpacked, and the hidden 1 before

the decimal point is added to each mantissa. The mantissa with a smaller exponent is

right-shifted for alignment. Then two mantissas are added by using an adder. After
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(a)

(b)

Figure 4.15: The (a) average and (b) standard deviation of travel distance after ap-
plying a linear momentum scaling factor (new cstep). (the old cstep is the conventional
momentum scaling factor)

Figure 4.16: The IEEE 754 half-precision floating point format.
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the normalization and rounding of the summation, the result is ready for the IEEE

standard representation. The mantissa adder requires 12 bits in the accurate design.

In our Ising machine circuit design, the mantissa adders in the floating-point adders

in the LAUs are replaced by TruAs and LOAs.

The truncated adders (TruA) and lower-part-OR adders (LOA) are considered to

improve the hardware efficiency of the circuit design. The mean relative error distance

(MRED), error rate (ER), normalized mean error (NME), and normalized mean error

distance (NMED) of truncated adders and lower-part-OR adders are shown in Table

4.2 and Table 4.3, respectively. The k indicates the least significant bits (LSBs)

truncated in TruA and the length of the lower part in LOA. The error, error distance

(ED), and the relative error distance (RED) are calculated as [44]:

error = R′ −R, (4.6)

ED = |R′ −R|, (4.7)

RED =
|R′ −R|

R
, (4.8)

where R′ is the approximate result, and R is the accurate result. The normalized

error (NE) and normalized error distance (NED) are normalizations of error and error

distance by the maximum output of the half-precision floating-point adder (65504 for

16-bit). The MRED, NME, and NMED are the average values of RED, NE, and

NED, respectively.

Table 4.2: The error characteristics of k-LSB truncated adders

k MRED (10−3) ER (%) NME (10−3) NMED (10−3)

3 3.1 96.93 -2.9 2.9

4 6.7 99.21 -6.2 6.2

5 13.9 99.81 -12.9 12.9

6 28.3 99.96 -26.3 26.3
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Figure 4.17: The architecture of a floating-point adder [53].

Table 4.3: The error characteristics of k-bit approximated lower-part-OR adders

k MRED (10−3) ER (%) NME (10−6) NMED (10−3)

4 1.4 68.14 7.68 1.3

5 2.7 76.35 7.14 2.5

6 5.4 82.33 6.83 5.0

7 10.7 86.50 8.92 10.0

8 21.1 89.95 8.68 20.1
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The NMED and MRED of LOA− 8 are close to those of TruA− 6. The number

after the name of an approximate adder is the number of truncated LSBs in a TruA

and the number of approximated LSBs (using OR gates) in an LOA. However, the

ER of LOA − 8 is much lower than that of TruA − 6 because truncation leads to a

loss in precision. Furthermore, the NME of LOA−8 is close to zero as the error of an

LOA can be positive or negative, whereas the error of a TruA can only be negative.

The error introduced by the approximated bits is compensated by itself and averaged

to zero during the accumulation. Therefore, LOA is a better approximation scheme

for accumulators than TruA considering accuracy albeit with increased circuit area.

The error in a half-precision floating-point adder can be significant when the ex-

ponent is large or marginal when the exponent is small. Therefore, NMED and NME

are unreliable metrics in a performance judgement of an approximate floating-point

adder, and the relative error distance (RED) is first considered in the experiment.

By observation, the distribution of REDs resembles a gamma distribution. Thus, we

used gamma distributions to approximate the distribution of RED. The probability

density of the gamma distribution is given by [54]:

f(y|α, β) = βα

Γ(α)
yα−1e−βy, (4.9)

where Γ(.) is the gamma function, α is the shape parameter, and β is the inverse

scale parameter. The α and β can be calculated by using the expected value (Exp)

and standard deviation (D) of the gamma distribution. The relationships between α,

β, Exp and D are as follows:

Exp =
α

β
, (4.10)

D =
α

β2
. (4.11)

The random variable that follow a gamma distribution (rand gamma) is applied

to the accumulation process in the IPA machine to test the system’s fault tolerance.

In particular, when calculating a + b, the result after applying the rand gamma is

(a + b) × (1 − rand gamma) for simulating RED of a TruA (the error is always
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Figure 4.18: Fitting the probability density of TruAs’ errors using gamma distribu-
tions.

Figure 4.19: Fitting the probability density of LOAs’ errors using gamma distribu-
tions.
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negative for a TruA); and is (a + b)× (1± rand gamma) for simulating RED of an

LOA (the error can be positive or negative with equivalent probability for an LOA).

As shown in Fig. 4.18, the RED of TruA− 3, TruA− 4, TruA− 5, and TruA− 6,

are approximated by gamma distribution with α = 2.96, β = 956.79; α = 3.28,

β = 489.41; α = 3.63, β = 260.84; and α = 3.86, β = 136.48; respectively. For

LOAs, as shown in Fig. 4.19, the RED of LOA − 4, LOA − 5, LOA − 6, LOA − 7,

and LOA − 8, are approximated by gamma distribution with α = 1.20, β = 627.40;

α = 1.14, β = 294.41; α = 1.10, β = 168.61; α = 1.08, β = 78.85; and α = 1.00,

β = 53.82; respectively.

With the decrease in ER, the probability of having a zero in RED is increased.

Thus, the probability distribution of RED is changed and a pinnacle shows up at 0

in the RED’s curve. The gamma distribution do not fit the actual RED distributions

well in this scenario. For simplicity, however, gamma distributions are used for an

error tolerance test. All fitted gamma distributions take higher values than the actual

RED distributions when RED is larger than 0. Therefore, rand gamma has a higher

probability to take a value large than RED and cause more errors than an approximate

adder.

Table 4.4 shows the average (Ave), maximum (Max), minimum (Min), and stan-

dard deviation (Std) of the travel distances obtained by the IPA machine after ap-

plying the random variables that simulated the error due to the approximate adders.

The violation rate (V R) indicates the probability of getting a result that does not

conform to the constraint. As our model only implements 64 spins, an 8-city TSP is

used as the benchmark. Furthermore, the distances between each city are scaled to

[0, 1] to ensure the solution update unit works well. The V R increases significantly

when the number of truncated bits or approximated bits is larger than 4 for TruAs

and larger than 6 for LOAs. Therefore, the Ising machine can tolerate errors with an

MRED around 0.0067. TruA− 3, TruA− 4, LOA− 4, LOA− 6, and LOA− 6, are

considered and implemented in the circuit design for the hardware simulation.
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Table 4.5 shows the average travel distance (Ave), maximum travel distance (Max),

minimum travel distance (Min), standard deviation of the distance (Std), and V R

of solutions found by the IPA machine after applying LOAs or TruAs.

In the actual implementations, both TruA − 3 and TruA − 4 achieve 0% V R,

and the Aves are smaller than the results obtained in the fault tolerance test. This

occurs because the difference between the augend and addend is not large due to

the small scale of the problem, but a significant relative error distance shows up

when the difference between the augend and addend is extremely large. Therefore,

a lower V R is obtained in the actual implementations. The same is observed in

the actual implementations of LOA − 4, LOA − 5, and LOA − 6. Both V R and

Ave decreases in actual implementations, but the decreasing rate is smaller than

after using a TruA, because the RED of a LOA is much smaller than that of a

TruA, which leads to smaller gaps between the results from fault tolerance tests and

actual implementations. The solution quality obtained by using TruA−3, TruA−4,

LOA− 4, and LOA− 5, are similar. Using any of them can find the shortest travel

distance (2.39) while keeping a low Std, which means the quality of solutions is

stable. However, the Ising machine can not find the shortest travel distance after

using LOA− 6 and the Ave becomes much larger.

The circuit area (Area), power dissipation (Power), and Delay of the IPA machine

after implementing a TruA or a LOA are shown in Table 4.6. Simulated results are

obtained by synthesizing circuits using the Synopsys Design Compiler. The CMOS

28 nm technology is applied with asupply voltage of 1.0 V, temperature of 25 ◦C, and

clock frequency of 200 MHz. Using approximate adders in Ising machines decreases

the hardware cost. Implementing LOA− 6 results in the smallest circuit area (6.259

mm2) and the shortest delay (3.79 ns). However, it shows a 4% probability of getting

a solution that violates the constrains of TSPs and leads to a much higher average

traveling distance. The circuits by using LOA − 5 and TruA − 4 result in similar

average travel distance, V R, area, and delay time. However, the power consumption
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Table 4.4: The travel distances after applying randomly generated numbers that
follow gamma distributions (for TruAs and LOAs) as noise.

Ave Max Min Std V R

Gamma1(TruA− 3) 2.87 3.54 2.39 0.25 0%

Gamma2(TruA− 4) 3.07 4.63 2.39 0.30 7%

Gamma3(TruA− 5) 4.42 6.67 2.39 0.97 72%

Gamma4(TruA− 6) 6.92 11.05 3.37 1.64 98%

Gamma5(LOA− 4) 2.82 3.18 2.39 0.22 0%

Gamma6(LOA− 5) 2.91 3.91 2.39 0.31 2%

Gamma7(LOA− 6) 3.16 4.33 2.39 0.42 8%

Gamma8(LOA− 7) 4.29 8.10 2.51 1.14 63%

Gamma9(LOA− 8) 6.59 12.00 2.90 1.71 96%

Table 4.5: The travel distances after using TruAs and LOAs.

Ave Max Min Std V R

No Approximate 2.67 3.08 2.39 0.17 0%

TruA− 3 2.69 3.14 2.39 0.18 0%

TruA− 4 2.74 3.58 2.39 0.24 0%

LOA− 4 2.71 3.06 2.39 0.18 0%

LOA− 5 2.77 3.17 2.39 0.21 0%

LOA− 6 3.08 3.82 2.65 0.26 4%
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of using TruA − 4 is slightly lower and it is the most power-efficient scheme among

the five approximate adders.

In order to gain more improvement in hardware efficiency, we propose an approxi-

mate scheme that combines both TruA and LOA, thus referred to as a lower-part-OR

truncated adder (LOTA). It truncates the k LSBs of an l-bit LOA. Thus, OR gates

process (l − k) bits, and k can not be larger than (l − 1). Table 4.7 shows the er-

ror characteristics of this adder. The NME of a LOTA is mainly determined by its

truncated bits. However, the ER of a LOTA is related to the number of approxi-

mated bits. The ER of LOTA − 5&3 is close to that of LOTA − 5&4, and the ER

of LOTA − 6&3 is close to that of LOTA − 6&4. (LOTA − l&k means a LOTA

with l − bit approximation and k − bit truncation.) Furthermore, when the number

of approximated bits is only one more than the number of truncated bits, the NMED

and MRED of a LOTA are between that of the LOAs with the same approximated

bit and TruAs with the same truncated bit. For example, the NMED and MRED of

LOTA− 4&3 and LOTA− 5&4 are lower than that of TruA− 3 and TruA− 4 but

higher than that of LOA−4 and LOA−5. The REDs of LOTA−4&3, LOTA−5&3,

LOTA − 5&4, LOTA − 6&3, and LOTA − 6&4 are fitted by gamma distributions

with α = 2.17, β = 712.62; α = 2.63, β = 622.54; α = 2.18, β = 310.75; α = 2.15,

β = 325.93; and α = 2.62, β = 324.00; respectively. As shown in Table 4.8, the V R

Table 4.6: The hardware overhead after applying LOAs or TruAs

Area(mm2) Power(mW ) Delay(ns)

No Approximate 6.300 41.289 3.97

TruA− 3 6.275 41.035 3.90

TruA− 4 6.266 40.931 3.89

LOA− 4 6.273 41.263 3.84

LOA− 5 6.266 41.223 3.82

LOA− 6 6.259 41.080 3.79

67



Table 4.7: The error characteristics of approximate adders that combine LOA and
TruA (LOTAs)

l 4 5 6

k 3 3 4 3 4

NMED (10−3) 2.5 3.6 5.3 6.1 7.5

MRED (10−3) 2.8 3.9 5.7 6.6 8.1

ER (%) 93.40 97.06 97.16 98.42 98.88

NME (10−3) -2.1 -2.1 -4.6 -2.1 -4.7

Figure 4.20: Fitting the probability density of LOTAs’ errors using gamma distribu-
tions.
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of solutions becomes higher than 10%, while both the Ave and Std increase when

applying gamma4, gamma5, and gamma6 to the Ising machine as noise. Therefore,

LOTA − 4&3 and LOTA − 5&3 are chosen and implemented for hardware simula-

tions. Table 4.9 shows the average travel distance (Ave), maximum travel distance

(Max), minimum travel distance (Min), standard deviation of the distance (Std),

and V R of solutions found by the IPA machine after applying LOAs or TruAs. Table

4.10 show the Ising machines’ hardware overhead after implementing LOTAs. Both

LOTA − 4&3 and LOTA − 5&3 can achieve a 0% V R and find the shortest travel

distance. The delays by using LOTA− 4&3, and LOTA− 5&3 are the same as those

using LOA − 4, and LOA − 5, respectively, because the delay is determined by the

number of approximate bits. The circuit area by using the LOTA is lower than using

the LOA and TruA with the same LOA or TruA bits. While the power consumption

after using LOTA is between those of using the LOA and TruA with the same LOA

or TruA bits (higher than TruA but lower than LOA). Furthermore, the circuit

area, delay, and power dissipation of using LOTA−5&3 are slightly lower than using

LOTA− 4&3, while they can find a similar average travel distance. Compared with

TruAs and LOAs, the average travel distance obtained via LOTA − 5&3 is similar

to TruA− 4 and LOA− 4 but the circuit area and delay are reduced. Furthermore,

the power dissipation after using LOTA− 5&3 is close to that after using TruA− 4,

while TruA−4 results in lowest power dissipation. Therefore, LOTA−5&3 is chosen

and implemented in the IPA machine for hardware efficiency.

Compared with the circuit without approximate adders, the circuit area is reduced

by 0.6%, the power consumption is reduced by 0.4%, and the delay time is reduced by

3.8%. The decrease in circuit area and power consumption is not significant, because

the area of LAUs is only 11% of the total circuit area. As a trade-off, the average

travel distance is increased by 1.9%. Therefore, the circuit area of the 64-spin IPA-

based Ising machine is 6.262 mm2, power consumption is 41.108 mW, and delay is

3.82 ns.
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Table 4.8: The travel distances after applying randomly generated numbers that
follow gamma distributions (for LOTAs) as noise.

Ave Max Min Std V R

Gamma10(LOTA− 4&3) 2.83 3.50 2.39 0.23 0%

Gamma11(LOTA− 5&3) 2.90 3.99 2.39 0.29 2%

Gamma12(LOTA− 5&4) 3.11 4.60 2.39 0.44 11%

Gamma13(LOTA− 6&3) 3.18 5.47 2.39 0.59 15%

Gamma14(LOTA− 6&4) 3.21 4.51 2.39 0.50 17%

Table 4.9: The travel distances obtained by using LOTAs.

Ave Max Min Std V R

LOTA− 4&3 2.71 3.17 2.39 0.20 0%

LOTA− 5&3 2.72 3.06 2.39 0.21 0%

Table 4.10: The hardware overhead due to LOTAs

Area(mm2) Power(mW ) Delay(ns)

LOTA− 4&3 6.269 41.130 3.84

LOTA− 5&3 6.262 41.108 3.82
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4.3.3 Circuit Evaluation

The circuit of an IPA machine with 64 spins was implemented by VHDL in Vivado.

Validating the function of the circuit requires a test benchmark. However, the values

in memory blocks must be preset for the IPA machine. Manually writing the testbench

code is inefficient. Therefore, we used MATLAB to generate a testbench code in a

text file and then copied and pasted it to Vivado. We also used the same 8-city

TSP as before, and the distances between cities were scaled to [0, 1]. The parameter

settings are: Tinit = 400, r = 0.97, and stepmax = 1000. The output of the circuit

is a 64-bit binary sequence indicating the spin configuration. After interpreting the

binary sequence to the visiting order of cities, we obtained the travel route. Fig. 4.21

presents some travel routes obtained by using the IPA machine. The route of 2.39

(unitless) long is the shortest distance and optimal solution of this 8-city TSP.

4.4 Conclusions

In this chapter, a circuit design is proposed to realize the function of the improved

parallel annealing algorithm. Although the architecture is inspired by the structure of

STATICA, many improvements were introduced for solving TSPs. First, this system

implements a half-precision floating-point representation with a precision sufficient for

solving large-scale TSPs. Second, reusing accumulators in the LAUs and approximat-

ing the momentum scaling factor to a linear increment save hardware costs. Using

a linear momentum scaling factor only results in a marginal reduction in solution

quality. Third, the solution update unit improves the quality of the solutions, and it

is essential to introduce a dynamic offset. Moreover, a LOTA− 5&3 is applied in the

design for higher hardware efficiency. It decreases the area, power, and delay of the

circuit while only incurring a 1.9% increase in the average travel distance. Although

the decrease in circuit area and power dissipation is not significant, the reduction in

delay improves the speed of the design.
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(a) (b)

(c) (d)

(e)

Figure 4.21: Travel routes of an 8-city TSP obtained using the improved parallel
annealing machine.
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Chapter 5

Conclusions & Future Work

5.1 Conclusions

This dissertation begins with reviewing and classifying CMOS-based Ising machines

and the underlying annealing algorithms. Then an improved parallel annealing algo-

rithm (IPA) is proposed for solving TSPs. The proposed IPA performs better than

MA and DA in solving unconstrained and constrained combinatorial optimization

problems, such as TSPs and max-cut problems. Finally, circuits are designed for a

high-performance and area-efficient implementation of the IPA.

In Chapter 2, simulated-annealing-based Ising machines are reviewed, including

CMOS annealing machines, digital annealing (DA) machines, momentum annealing

(MA) machines, and stochastic cellular annealing (SCA) machines. Furthermore, MA

and SCA are classified as parallel annealing (PA) because they simultaneously update

all spins. CMOS annealing-based Ising machines can achieve high-speed multi-chip

communication and great scalability that benefit from the sparsely-connected Ising

topology. However, solving complicated combinatorial optimization problems via

CMOS annealing machines requires an embedding process. DA-based Ising machines

implement a fully-connected Ising topology and are thus adaptive for solving combina-

torial optimization problems without embedding. Moreover, DA requires a dynamic

offset for solution quality improvement. However, only one spin’s state is updated

per iteration, and thus the speed of annealing is the performance bottleneck of DA-
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based Ising machines. PA-based Ising machines overcome the speed limitation while

implementing the fully-connected Ising topology. However, PA is inefficient in solving

constrained combinatorial optimization problems such as TSPs. Moreover, the back-

ground of Ising models, combinatorial optimization problems, clustering approaches,

and approximate arithmetic are also reviewed in this chapter.

An IPA for solving TSPs is proposed in Chapter 3. It applies an exponential

temperature function with a dynamic offset and prevents the Ising energy from getting

stuck in local minima. Therefore, it is more efficient than a conventional PA for solving

TSPs. Furthermore, the k-medoids clustering significantly reduces the average travel

distance. In addition to improving the solution quality, the IPA improves the speed

of annealing in solving a 14-city TSP compared with other annealing algorithms.

Moreover, larger cut values are obtained by using the IPA in max-cut problems than

using MA and DA. It is promising in solving both constrained and unconstrained

combinatorial optimization problems.

In Chapter 4, the circuit design of IPA is proposed. A half-precision floating-

point representation is implemented in this design. Floating-point adders in the

local field accumulator units (LAUs) are reused, and a momentum scaling factor is

approximated to a linear increment for improving the hardware efficiency. A solution

update unit is used to output the solution with the lowest Ising energy found during

the annealing process. Furthermore, the circuit delay is shortened by using lower-part-

OR truncated adders (LOTAs) in the LAUs. Meanwhile, the circuit area and power

dissipation are also saved. As a trade-off, the solution quality suffers a marginal

deterioration. However, a drawback is that the area and power dissipation of this

circuit are larger than other designs due to the implementation of a half-precision

floating-point representation. The IPA machine is expected to solve more complicated

problems and improve the solution quality.

74



5.2 Future Work

Although the proposed IPA machine performs well when solving 8-city TSPs, it has

limitations in scalability. First, the IPA machine does not have input and output

(IO) ports for communication between chips. Therefore, it can not be implemented

in a multi-chip system for constructing a larger-scale Ising machine. Second, the

design’s random number generators require multipliers to calculate Tstep×rand (Tstep

is the temperature at stepth iteration and rand is a random number between [0, 1)),

resulting in a relatively large circuit area and power consumption. Furthermore, the

hardware costs increase with the size of the IPA machine as each spin needs a random

number generator. Therefore, the scalability of the IPA machine will be investigated

in our future work. The IPA Ising chip will be enhanced with a speedy IO port and

be embedded into a multi-chip system like the CMOS annealing machines. However,

a challenge is that the bandwidth of the IO port and the number of required memory

blocks will be significant because this design implements a fully-connected topology.

Moreover, a lightweight random number generator will be developed. The objective

is to generate Tstep × rand without using multipliers, where the rand is a random

number between 0 to 1. Additionally, the clustering approach is not integrated into

the circuit as solving 8-city TSPs does not require it. In future work, a unit for

preprocessing data via a clustering approach will be added to the system. It will

reuse the accumulators in the LAUs, thus limiting the hardware overhead.
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